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You can’t always get exactly what you want.

The paper discusses an inductive approach to constructing log flips. In addition to special termination
and thresholds, we introduce two new ingredients: the saturation of linear systems, and families of
divisors with confined singularities. We state conjectures concerning these notions in any dimension
and prove them in general in dimension ≤ 2. This allows us to construct prelimiting flips (pl flips)
and all log flips in dimension 4 and to prove the stabilization of an asymptotically saturated system
of birationally free (b-free) divisors under certain conditions in dimension 3. In dimension 3, this
stabilization upgrades pl flips to directed quasiflips. It also gives for the first time a proof of the
existence of log flips that is algebraic in nature, that is, via f.g. algebras, as opposed to geometric flips.
It accounts for all the currently known flips and flops, except possibly for flips arising from geometric
invariant theory.
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1. INTRODUCTION

1.1. Prelimiting contractions. We write f : X → X∨ to denote a prelimiting contraction,
or pl contraction, with respect to a divisor S. By this we mean that f is a birational contraction
such that

(1) S =
∑

Si is a sum of s ≥ 1 prime Weil divisors S1, . . . , Ss on X that are Q-Cartier and
proportional, that is, Si ∼Q ri,jSj for some rational ri,j > 0;

(2) there is a boundary B such that �B� = 0 and K + S + B is divisorially log terminal, and
purely log terminal if s = 1; and

(3) K +S +B is numerically negative/X∨ (that is, it is minus an ample R-Cartier divisor/X∨).

By conditions (1), (2) and Shokurov [41, следствие 3.8] (see also Kollár and others [27, Ch. 17]),
the divisors Si are normal varieties, with normal varieties in their intersections and normal crossing
at the generic points of these intersections. In particular, Y =

⋂
Si is a normal variety, the core

of f .
Conditions (2) and (3) together mean that (X/X∨, S+B) is a log Fano contraction with only log

terminal singularities. Thus, by the Connectedness of LCS [27, Theorem 17.4], Y is irreducible of
dimension d = n− s′ near each fibre of f , where s′ is the number of Si that intersect that fibre and
n = dim X. Moreover, f induces a contraction Y → f(Y ) ⊂ X∨, and (Y,BY ) is Klt (Kawamata
log terminal) [27, Definition 2.13; 41, с. 110] for the adjoint log divisor

KY + BY = (K + S + B)
Y
.

These properties establish an induction on Y in our construction of pl flips below (see Section 3
for inductive sequences and compare the proof in Example 3.40).

We always consider the local situation, where f is a germ over a neighborhood of a given point
P ∈ X∨. In particular, all the Si intersect the central fibre X/P = f−1P . Thus, dimY = d =
n − s ≤ n − 1 by condition (1). The core dimension d measures the difficulty of constructing pl
flips in the sense indicated in Induction Theorem 1.4 (see Corollary 1.10 and also Examples 3.53
and 3.54).

Sometimes, it is also reasonable to consider a contraction f that is not birational. Then S is
not numerically negative/X∨, in contrast to the case of elementary pl flips. This situation occurs
naturally in Section 3 in certain applications of Main Lemma 3.43 (see Example 3.38).
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However, in Reduction Theorem 1.2 below, we can assume that the pl contractions f we are
most interested in are elementary, that is, satisfy in addition the following conditions:

(4) S is numerically negative/X∨ ;
(5) K + S + B is strictly log terminal/X∨, that is, X is Q-factorial and projective/X∨;
(6) f is extremal in the sense that it is the contraction of an extremal ray of the Mori cone;

that is, ρ(X/X∨) = 1, where ρ denotes the relative Picard number; and
(7) f is small, or equivalently, under the current assumptions, S is not f -exceptional.

We can omit the final condition (7), but then we meet an additional well-known situation when
the contraction is divisorial and is its own S-flip (cf. Example 3.45). Note also that, by (6), f
is nontrivial, i.e., is not an isomorphism. (Compare a remark after Example 3.53 when f is an
isomorphism.)

A pl flip is the S-flip of a pl contraction f (see [45, Section 5] and Example 3.15 below).
By a log flip we mean the D-flip of a birational log contraction (X/T,B) over any base T (see
Conventions 1.14), with D = K + B, where we assume that

• K + B is Klt, and
• −(K + B) is nef/T

(cf. Shokurov [41, с. 105, теорема]). Thus, each pl flip for which −S/X∨ is nef is also the log flip of

(X/T,B) = (X/X∨, (a + r)S + B + H)

for some real numbers 0 < r 
 a < 1 and for a general effective divisor H ∼R −(K + aS + B)
(a complement) that is numerically ample/X∨. This holds because K + (a + r)S + B + H is Klt
and ∼R rS (compare the proof of Theorem 3.33). Note also that a D-flip is uniquely determined
up to isomorphism by the class of D up to ∼R and positive real scalar multiples (see Corollary 3.6).
By condition (4), each elementary pl flip is also a log flip.

Interest in pl flips rests on the following result:
Reduction Theorem 1.2. Log flips exist in dimension n provided that

(PLF)eln elementary pl flips exist in dimension n; and
(ST)n special termination holds in dimension n.

We discuss Termination (ST) presently in Section 2, where we sketch a proof of Reduction
Theorem 1.2. In Special Termination 2.3, we also prove that (ST)n follows from the log minimal
model program (LMMP; see Conventions 1.14) in dimension n − 1. By our reduction, this is
sufficient for the existence of 3-fold and 4-fold log flips.

Corollary 1.3. In dimension n ≤ 4, (PLF)eln implies the existence of all log flips.
See the proof at the end of Section 2. The following inductive statement is similar in nature,

but its proof is more sophisticated. Note, however, that the extremal property is not preserved on
passing to covers (cf. Lemma 3.51), so that we are obliged to drop it in our approach to pl flips,
together with the assumption that our contractions are elementary.

Induction Theorem 1.4. The statement

(PLF)small
n small pl flips exist in dimension n

follows from

(FGA)m the finite generation (f.g.) of certain sheaves of algebras3 over varieties of dimen-
sion m ≤ n − 1.

3(FGA)m algebras = lca saturated pbd algebras of Section 4; see below. (RFA) stands for restricted functional
algebra, which is usually an (FGA) algebra.
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More precisely, for any small pl flip (as in (PLF)small
n ) of core dimension d = n−s, we need the

birational version (FGA)d(bir) in dimension d. Moreover, for these pl flips to exist, it is enough
to assume the birational restricted version (RFA)n,d(bir) in dimension d. We refer forward to
Definition 3.47 and Conjecture 3.48 for (RFA). Sections 3 and 4 explain all the statements (FGA)
and (RFA) together with variations on them and relations between them.

Corollary 1.5. LMMP and (FGA)m in dimension m ≤ n − 1 imply the existence of log flips
in dimension n. More precisely, for these flips to exist, it is enough to assume (FGA)m(bir) or
even (RFA)n,m(bir) in dimension m ≤ n − 1.

See the proof at the end of Section 2. Since LMMP is known in dimension ≤ 3 [45, Theorem 5.2],
for 3-fold and 4-fold log flips, we can focus on (FGA) and (RFA).

Corollary 1.6. (FGA)m in dimension m ≤ 3 implies the existence of log flips in dimension
n ≤ 4. More precisely, for the existence of these flips, it is enough to assume (FGA)m(bir) or even
(RFA)n,m(bir) in dimension m ≤ n − 1.

Proof. Immediate by Corollary 1.3 and Induction Theorem 1.4. �
Main Theorem 1.7. (FGA) and (RFA) hold in low dimension:
(FGA)m holds for m ≤ 2; and
(RFA)n,m(bir) holds for all n ≤ 4 and m ≤ n − 1.
These are among the main results of the paper, and they imply
Corollary 1.8. Log flips exist in dimension ≤ 4.
Proof. Immediate by Corollary 1.6 and Main Theorem 1.7. �
Corollary 1.9. Directed Klt flops exist in dimension ≤ 4.
Proof–Explanation. Let X → T be a log flopping contraction of a Klt pair (X,B), that is, a

birational 0-contraction: K+B ≡ 0/T (thus, (X/T,B) is a 0-log pair as in Remark 3.30(2)). Then,
for any Weil R-divisor D on X, there is a directed D-flop X ��� X+/T that is a D-flip. (Indeed,
X+/T is small. Therefore, the modified (X+/T,B+) is also a 0-contraction, and the modification
is a flop.) Since X/T is birational, we can assume that D ≥ 0 up to ∼R. By Corollary 3.6 below,
the flop is a D-flip, and is a log flip with respect to K +B+εD for sufficiently small ε > 0 if X/T is
Q-factorial. Otherwise, first we need to replace X/T by its Q-factorialization; the latter exists by
the same arguments as in the proof of [45, Theorem 3.1] with empty set of blowing up divisors, and
Special Termination 2.3 in dimension 4 (see Corollary 2.5, and cf. Example 3.15). The corollary
now follows from Corollary 1.8. Strictly speaking, this works only when −D or −(K + B + εD) is
nef/T . The nef assumption on −(K+B+εD) can be replaced by small X/T (cf. [41, теорема 1.10],
and see the proof of Reduction Theorem 1.2). For this, first replace X/T by T/T and then take its
Q-factorialization. �

In dimension 3, we can generalize pl flips to directed quasiflips associated with (FGA)pl
3 algebras

as in Corollary 6.44. However, in higher dimensions, for general algebras, we only get
Corollary 1.10. Small pl flips of core dimension d ≤ 2 exist in any dimension n.
Proof. Immediate by Induction Theorem 1.4 and Main Theorem 1.7. �
The same arguments work for any d provided that the restricted algebra is trivial (see Corol-

lary 3.52 and Example 3.53, and cf. Example 9.11). This gives all the toric flips and flops (Ex-
ample 3.54). Thus, our approach embraces all the currently known flips and flops, except those
arising from geometric invariant theory (GIT; see Dolgachev and Hu [9] and Thaddeus [49]). Of
course, GIT flips also arise from f.g. algebras of invariants (Hilbert), but we admit that this is not
geometric; compare Conjecture 3.35 versus the log flip conjecture.

Some variations of existence conditions for flips are possible; for example, in Corollary 1.8, the
nef assumption for −(K + B)/T can be replaced by the small property for the contraction X → T
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(see the end of the proof–explanation of Corollary 1.9 and [27, 18.12]; cf. also [41, теорема 1.10,
следствие 1.11]).

1.11. Structure of the paper. To conclude the introduction, we outline the ideas and key
points in our arguments, as well as the structure of the paper as a whole. Section 3 proves the
(RFA) statement of Induction Theorem 1.4, and Section 4, the (FGA) statement. These two
sections explain the role of pl flips in the LMMP as a link between the geometry and algebra of
flips.

The starting point is Shokurov [40, предложение 2.12], which states that an adjoint diagram or
flip exists if and only if a pluri-ring associated with an adjoint canonical divisor is finitely generated.
The same holds for any flips, in particular, for log and pl flips. For the local case, we replace the
pluri-ring by the sheaf of algebras associated with a divisor, and finite generation of algebras by
that of sheaves of algebras.

Section 3 introduces and discusses the basic properties of graded divisorial sheaves of algebras,
their subalgebras, and the restricted functional algebras appearing in (RFA).

After a restriction, we no longer assume that algebras are of adjoint type. But the ambient
variety and its subvariety should be appropriate for induction. For our main application, this
means a pl contraction X/X∨ with its normal core Y . Main Lemma 3.43 states that, under certain
obvious assumptions, a divisorial algebra is finitely generated if and only if its restriction to Y is
finitely generated. The key difficulty is thus to prove that the restricted sheaf of algebras is finitely
generated; the point is that a priori we do not even know that it is divisorial. We only know
that it is pseudo-b-divisorial (pbd, see Definition 4.10), i.e., is a subalgebra of a divisorial algebra.
Typically, such an algebra may not be f.g., but we conjecture that this is so for algebras of type
(RFA).

Section 4 introduces more general functional algebras, and we state a conjecture that we need
about finitely generated algebras (FGA) of a certain type. It is possible that both types are equal
(see Remark 4.40(6)). In any case, both types share a saturation property discussed in Section 4.
This section also associates with a pbd algebra a sequence of divisors with a limit, so that the
algebra is f.g. if and only if the limit stabilizes.

The main body of the paper proves f.g. of these algebras in low dimension, as stated in Main
Theorem 1.7. This needs more preparations; we carry these out for (FGA) in Sections 5 and 6,
and Section 6 contains the proof of (FGA). For (RFA), Sections 5–10 contain preparations, and
Section 11, the proof. Section 5 explains how saturation can guarantee the stabilization of a limit
of divisors on an appropriate model (or prediction model). Section 6 suggests a choice of such a
model and introduces conjectures on confinement of singularities for a saturated linear system or
for its generic member. The conjectures are proved in dimension ≤ 2, which is enough for Main
Theorem 1.7. For higher dimensions, in the theorem it is also enough to prove these conjectures in
the same dimensions (cf. Theorem 6.45).

We expect that the classes of (FGA) and (RFA) algebras generalize in the form of log canonical
algebras, in particular, for rather big subalgebras of a pluri-log canonical algebra (see Example 4.49
and Remarks 4.40(3) and 6.15(10)).

1.12. History. While not going back so deep into the past, the history is still impressive.
Here we do not pretend to give a complete or very accurate account.4 The history of flips can be
divided into four periods.

Flips first arise as flops in birational modifications of Fano threefolds; geometrically, these are
very classical, and appear as certain projections (see Iskovskikh and Prokhorov [16] for a modern

4A better one may be given in Reid’s lecture “Flips 1980–2001” at the Algebraic Geometry Conference in memory
of Paolo Francia in Genova 2001. (See the volume of proceedings of the Newton Institute program Higher
dimensional geometry.)
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treatment). Flops also appear in a paper of Atiyah of 1958 and, in modern terms, as a variation of
geometric invariant theory (VGIT) and the Thaddeus principle [9, 49].

Kulikov used flops systematically in his construction of minimal models for semistable degener-
ations of K3 surfaces; they appear under the name “standard perestroika” in the Russian original
of [30]. Almost at the same time, the appearance of the simplest genuine 3-fold flip (Francia [11])
manifested something weird that happens in higher dimensions.

The real history of flips starts with the Mori theory [31], which rapidly led to the Cone and
Contraction Theorems in the LMMP [40] and Kawamata [19]. This also led to the understanding
that flips and their termination are required to complete the LMMP. Formal definitions and con-
jectures on flips and flops were devised that complete the LMMP as a conjectural program and
that invite one to establish it. (In positive characteristic, Mori’s results remain unsurpassed.)

The search for 3-fold flips started in the mid-1980s in the geometric framework of the 3-fold
minimal model program (MMP), that is, with only terminal singularities, and was successfully
completed by Mori [32]. This approach uses

(1) the existence of flops; and

(2) a very deep result on the generic member of the relative anticanonical system (“general
elephant” in Reid’s glossary) of a 3-fold flipping contraction with only terminal singularities.

(1) was proved independently by Kawamata, Kollár, Mori, Shokurov, and Tsunoda with some
variations in the methods and level of generality. Essentially, this can be viewed as rooted in
the Brieskorn–Tyurina theory of simultaneous resolution of deformations of rational double points.
Kawamata [21] also gave a proof in positive and mixed characteristic, and Corti gave an updated
version in characteristic 0 [8] (see also Kollár and Mori [29, Ch. 7]). Actually, a weak form of (2) is
enough to prove 3-fold flips, which is the main part of [32]. The existence of flips in the LMMP, that
is, log flips, was also established for 3-folds [41, 27]. In place of (1) and (2), [41] used, respectively,
semistable flips and complements more general than elephants. The most difficult part of [41] is
concerned with special log flips (that is, pl flips with B = 0) having a 2-complement. This is still
only understood by few people, even among experts (for an updated treatment, see Takagi [48]).
These results on flips and flops are so technical that they cannot be included in textbooks or even
monographs, except for the semistable case [8]. Nonetheless, they reduce 3-fold flips to very explicit
geometric flips, and finally to Reid’s pagodas.

With the aim of generalizing Mori’s approach to dimension 4, Kachi [17, 18] obtained some
results on special flips, but these are still far from general 4-fold flips, even semistable ones. (2) is
quite doubtful in dimension ≥ 4, even in MMP.

This paper treats flips from a more algebraic point of view, based on pl flips and their f.g. prop-
erties. It may eventually be possible to generalize our methods to produce general log flips directly
(cf. stabilization in Section 9). Such a tendency to algebraization (formalization) in geometry is
not new but a rather common phenomenon. Of course, our approach gives rather little geometric
information about the flips and flops that are constructed. However, we hope that this can be
remedied a posteriori [47].

Finally, general log termination remains an open problem in dimension ≥ 4.

Remark 1.13. Minor modifications of our arguments also prove the existence of 3-fold and
4-fold log flips and directed flops in the analytic category; the same applies where relevant to most
of our other results.

1.14. Conventions. By LMMP we usually mean that of [45, Section 5]. Note that [45]
develops the LMMP in the log canonical category, which is more general than that of Kollár and
others [27]; it involves contractions to log canonical singularities, possibly contracting a locus of
log Kodaira dimension ≥ 0 along its Iitaka fibration. Thus, the LMMP in dimension n involves
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the classification of log varieties, in particular, the abundance conjecture, in dimension n− 1. The
work [45] settles the case n = 3.

X/T is used for any contraction. X/X∨ is used exclusively for a pl contraction. X/Z is used
when X is complete or projective/Z but not necessarily birational; writing X → Y/Z where X → Y
is birational and Y → Z is a fibre space allows us to treat families of contractions.

Since the construction of flips is local, we fix a point P ∈ S∨ ⊂ X∨ and view f : X → X∨
throughout as a germ/P . All other varieties and their objects are considered locally/P . For exam-
ple, if D is a divisor on a variety X/Z, P ∈ Z, then |D| denotes its linear system in a neighborhood
of the fibre X/P .

Mov D and Fix D denote the mobile and fixed components of an R-Weil divisor D, that is,
divisors M = Mov D and F = Fix D such that |D| = |M | + F and |M | does not have fixed
components. These are well defined if |D| �= ∅. Then D = M + F with F ≥ 0 and M integral
(Cartier in codimension 1). If |D| = ∅, we set F = +∞; then M = −∞ and OX(M) = 0.

To say that an R-divisor D is nef always means, in particular, that D is R-Cartier (compare
b-nef in Lemma 4.23). This last condition holds for every R-divisor if X is Q-factorial.

The base field k is of characteristic 0. For example, k = C.
Much of the paper uses the language of birational divisors, or b-divisors; see [45, 14] for the

discussion of these ideas. In particular, A = AX = A(X,B) denotes the discrepancy, or coboundary,
b-divisor of the pair (X,B) for some R-divisor B on X. (This is R in [45, Definition 1.1.4], with
C = 0 as a b-divisor, and CX = B in the formula.) B = BX = B(X,B) = −A denotes the
codiscrepancy, or pseudo-boundary, b-divisor of (X,B).

1.15. Acknowledgements. We owe special thanks to Miles Reid for his enormous attempt
to make the final version of this paper more readable. We also received helpful comments from
Florin Ambro, V.A. Iskovskikh, and Yuri Prokhorov.

2. SPECIAL TERMINATION

Let (X/Z,B) be a log pair such that

• f : X → Z is a proper morphism; and
• (X,B) is log canonical.

Let g : X → Y/Z be a birational contraction of (X/Z,B) that is log canonical, that is, g satisfies
the following property:

(log canonical) K + B is numerically negative/Y .

Equivalently, this is a contraction contF = g of an extremal face F of NE(X/Z) with (K+B)·F < 0.
We say that the (K + B)-flip of g is a log canonical flip (see [45, Section 5]).

Caution 2.1. These flips are log flips in the sense of Section 1 only if K + B is Klt.

Special termination in dimension n is the statement

(ST)n for arbitrary (X/Z,B) with dimX = n, any chain of log canonical flips in extremal
faces F with |F | ∩ �B� �= ∅ terminates.

Here the support |F | of an extremal face F is the exceptional subvariety of contF , that is, the union
of curves C/Z with contF C = pt.

Example 2.2. Suppose that we have a chain of log canonical flips of (X/Z,B) in extremal rays
R with S ·R < 0, where S is reduced and 0 < S ≤ �B�. Then |R| ⊂ �B� and |R| ∩ �B� = |R| �= ∅.
If (ST)n holds, then any such chain terminates. We meet this situation below in the proof of
Reduction Theorem 1.2.

Theorem 2.3 (Special Termination). LMMP in dimension ≤ n − 1 implies (ST)n.
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Remark 2.4. For the proof of Reduction Theorem 1.2, we need the situation where

• f : X → Z is projective;

• (X,B) is log terminal;

• X is Q-factorial; and

• the contractions of (X/Z,B) and their flips are extremal, that is, they are contractions g
satisfying

(extremal) ρ(X/Y ) = 1.

Flips preserve this situation. Thus, under these assumptions, in Special Termination 2.3, it would
be enough to assume log termination in LMMP (cf. Remark 2.6 below).

Corollary 2.5. (ST)n holds for n ≤ 4.

Proof. Immediate by Special Termination 2.3 and LMMP in dimension 3 [45, Theorem 5.2]. �
Proof of Special Termination 2.3. Suppose that we have a chain of flips as in (ST)n. We

first claim that

(A) after a finite number of flips, the support |F | of any subsequent flip does not contain any
log canonical center.

As in the proof of Theorem 4.1 in [41], this holds because the set of log canonical centers is finite,
and the flip of F eliminates any log canonical center in |F |. We prove the following claim by
increasing induction on d:

(Bd) after a finite number of steps, the support |F | of any subsequent flip does not intersect
any log canonical center S ⊂ �B� of dimension ≤ d.

For d = 0 this follows from (A), and for d = n − 1, it implies (ST)n. For our applications, the
only difficult case is d = 1 and n = 4, that is, a curve S ⊂ �B� in a 4-fold X. Assume (Bd−1).

By induction, S is a minimal center and is normal as a subvariety near |F | (cf. Kawamata [22,
§1] and [41, лемма 3.6]; alternatively, under the restrictions of Remark 2.4, this follows by [41,
следствие 3.8]). By the local divisorial adjunction, (K + B)

S
∼R KS + BS with BS = Bdiv (the

divisorial part of adjunction) is Klt near a generic point of each prime divisor P ⊂ S (see [23, 36]),
and all possible multiplicities of Bdiv belong to a finite subset of the real interval [0, 1). This subset
only depends on the local structure of (X,B) near the generic points of codimension 1 in S and
includes the multiplicities of B near P . Moreover, under the restrictions of Remark 2.4, these
multiplicities are all of the form

m − 1
m

+
∑ li

m
bi, (2.5.1)

where bi are the multiplicities of B and m and li are natural numbers. This follows from [41,
следствие 3.10, лемма 4.2]. A similar formula is proved for n ≤ 4 and conjectured in general [36].

Introduce the notation µS = mld(S,BS) for the minimal log discrepancy of (S,BS) in its Klt
part, for the initial model (X,B). Then there are, in particular, only finitely many numbers of
the form (2.5.1) in the interval [0, 1 − µS ]. Conjecturally, over the whole S, BS = Bdiv + Bmod,
where Bmod is b-semiample on S/Z, and (S,BS) is Klt in the Klt part of (X,B), in particular, near
|F | ∩ S. For example, it is true with Bmod = 0 under the restrictions of Remark 2.4. It was also
established in a more general situation but still under certain assumptions by Kawamata [24].

Another workable approach is to let (W,BW ) → S be a projective Iitaka (possibly disconnected)
fibration over S, with dimW = n − 2, then replace S by W and use the divisorial adjunction
on W for a crepant, strictly log terminal resolution of S ⊂ �B�. Then the finiteness of the
possible multiplicities for BS follows from the finiteness of such models for which the vertical
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boundary multiplicities of the resolution are numbers of the form (2.5.1) in [0, 1 − µW ], where
µW = mld(W,BW ), except for the horizontal components, for an initial model (W,BW ); the
horizontal part of BW is fixed. Indeed, there are only finitely many possibilities for the vertical
boundary multiplicities of (W,BW ) and, thus, for all multiplicities of BW .

The only interesting case is d = 1 and n = 4; then W is a log elliptic Iitaka fibration over a
curve with a positive lower bound for the mld given by the boundary multiplicities of the above
form and fixed horizontal components. The proof in this case and for 3-fold fibrations follows from
[45, Second Main Theorem 6.20]. We can use the same arguments together with LMMP for W/Z
in higher dimension [45, Remark 6.23.5]; this also includes the finiteness of S/Z when dimS ≥ 2.
However, this phenomenon should have a better explanation based on complements [36].

Each flip restricts to a birational transformation of (S/Z,BS) or of the Iitaka fibration
(W/Z,BW ). Unfortunately, the restricted transformation may not be a flip (however, it will be a log
quasiflip in the terminology of [47]); this happens exactly if the flipped contraction on (S+/Z,B+

S )
or (W+/Z,B+

W ) is not small (cf. the end of the proof). In this case, it blows up prime divisors
that again have multiplicities of B+

S or B+
W in our finite set, and < 1− their log discrepancy on the

previous model (S/Z,BS) or (W/Z,BW ). However, there only exist a finite number of transforma-
tions with these properties (cf. the proof of Theorem 4.1 in [41]): we can only decrease B+

S or B+
W

a finite number of times with the above possible multiplicities of the divisorial part of adjunction.
The final monotonicity follows from adjunction and the opposite monotonic property of log

discrepancies for flips, strict monotonic in the blown-up prime divisors over |F | under the numerical
negativity of (K +B)/Y (see [40, 2.13.3] and [47, Monotonicity]). Only such transformations occur
in our main case d = 1 and n = 4.

Then we use the termination of log flips on (S/Z,BS) or (W/Z,BW ) by LMMP. For this to be
valid, we need to know that they really are log flips. More precisely, for (S/Z,BS), a birational
log contraction g : X → Y/Z and its log flip g+ : X+ → Y/Z induce the birational log contraction
S → T = g(S)/Z and its log flip S+ → g(S)/Z when the latter is small. To prove this, we
can complete these modifications locally/T into log flops (of 0-log pairs, see Remark 3.30(2)). As
above for S this implies that T and S+ are normal, and we have contractions. The semiadditivity
of the modular part of adjunction [36] (the complement can be non-lc here) implies that the
decomposition BS = Bdiv + Bmod is preserved under the flips on (S/Z,BS) because this holds for
birational contractions and small modifications of 0-log pairs. For (W/Z,BW ) we can consider the
termination of lifted log flips from S/Z to W/Z (actually, it is a composite of log flips up to flops,
which do not affect the log termination); the log flips are lifted into log quasiflips of the qlog pair
(W/Z,BW ) [2, Section 4]. �

Remark 2.6. The termination at the end of the proof of special termination is that of any
chain of successive log flips [45, 5.1.3]. They are not necessarily extremal, that is, they may contract
extremal faces of dimension ≥ 2. Using LMMP, we can reduce this to a chain of extremal flips.
Thus, we need LMMP in dimension n − 1 in an essential way.

Proof of Reduction Theorem 1.2. We follow the part of the argument in the proof of
Reductions 6.4 and 6.5 in [41] that concerns limiting flips, with improvements due to Kollár and
others [27, (18.12.1.3–4)]. In this reduction, each small contraction contR becomes elementary pl if
we discard all the reduced irreducible components Si in B with Si ·R ≥ 0. Indeed, by construction,
B includes a reduced component Si with Si · R < 0. Thus, log flips exist by (PLF)eln and are the
same as before discarding some of the Si. They terminate by Example 2.2 and (ST)n (cf. [41,
следствие 4.6]). �

Proof of Corollary 1.3. Immediate by Reduction Theorem 1.2 and Corollary 2.5. �
Proof of Corollary 1.5. Immediate by Reduction Theorem 1.2, Induction Theorem 1.4, and

Special Termination 2.3. �
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3. DIVISORIAL OZ -ALGEBRAS AND FLIPS

In this section we explain the relation between the geometry and algebra of D-flips and prove
Induction Theorem 1.4 in the case of (RFA) algebras. We start with geometry. Definition 3.3, while
admittedly somewhat clumsy, aims to unify some standard geometric constructions, in particular,
flips and contractions.

Definition 3.1. A rational contraction c : X ��� Y/Z is a dominant rational map with con-
nected fibres. Resolution of indeterminacies expresses c as a composite c = h ◦ g−1 in a Hironaka
hut

W

X

g

←
Y/Z

h→ (3.1.1)

where g is a proper birational morphism and h is a dominant morphism with connected fibres.
We say that c : X ��� Y is a rational 1-contraction if it does not blow up any divisor; in other

words, in (3.1.1), every exceptional prime divisor E of g is contracted by h, that is,

dim h(E) ≤ dimE − 1 = dim X − 2.

For a birational contraction c : X ��� Y , there is no ambiguity about what it means for a divi-
sor E on X to be exceptional (contracted) on Y . But if c : X ��� Y is a rational fibre space (with
positive-dimensional fibres), we need to be more precise.

Definition 3.2. We say that a divisor E of X is

• exceptional on Y if it is contracted by c and is not horizontal, that is, has c(E) �= Y ;
• very exceptional on Y if SuppE does not contain gh−1Γ for any prime divisor Γ of Y , that

is, E does not contain entire fibres over divisors of Y ; all the inclusions and transforms are
birational (or as of cycles), that is, gh−1Γ = 0 or Supp gh−1Γ = ∅ if it is nondivisorial; in
particular, gh−1Γ �= 0 if a very exceptional E exists, which is a condition on c (cf. (ZD)
below);

• truly exceptional if dim c(SuppE) ≤ dimY − 2, so that c(E) does not contain any prime
divisor of Y .

Definition 3.3. We say that a Weil R-divisor D on X is b-sup-semiample/Z or bss ample if
one of the following two equivalent conditions holds:

(BSS) there exist a rational 1-contraction c = contZ D : X ��� Y/Z and a numerically am-
ple R-divisor H on Y/Z such that D ∼R c∗H + E/Z, where E is effective and very
exceptional on Y ; or

(ZD) “Zariski decomposition”: there exist a 1-contraction c with hut (3.1.1) and a numeri-
cally ample R-divisor H on Y/Z such that g−1D + F ∼R h∗H + E/Z, where F and E
are Weil R-divisors on W that are exceptional on X and Y , respectively, E is effective,
and the complement to SuppE in the fibre over each divisor in Y is not exceptional
on X, so that, in particular, g(E) is very exceptional on Y .

In addition, H is the greatest divisor as it is explained below.
The 1-contraction c = contZ D is a generalization of the contraction defined for semiample D

in [45, Definition 2.5]. The decomposition of D in (BSS) can easily be converted into a Zariski form
(see Remark 3.30 and [34, разд. 5]).

For a rational contraction c : X ��� Y and any R-Cartier divisor H on Y , the Weil R-divisor
c∗H = g(h∗H) on X is independent of the choice of the hut (3.1.1). In terms of b-divisors,
c∗H = HX , where H = h∗H, see [45, Example 1.1.1]. The fact that the divisor H is the greatest
means the same for H up to ∼R, that is, a b-semiample b-divisor Dm ∼R H is the greatest under
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the property (Dm)X ≤ D. In many instances, it is easy to verify this property; thereupon, we do
not mention this.

Proof of the equivalence in Definition 3.3. The divisor E in (ZD) gives E := g(E) in the
statement (BSS) since F is exceptional on X and g(E) is still very exceptional on Y . Conversely,
D ∼R c∗H + E/Z gives an equivalence g−1D + F ∼R h∗H + E/Z in which E := g−1E ≥ 0 and F
are still very exceptional on Y and X, respectively. �

Each bss ample divisor is effective up to ∼R:

D ∼R h∗H + E ∼R h∗H ′ + E and ≥ 0,

where H ′ ∼R H/Z is an effective R-divisor. Thus, not every divisor D is bss ample. However, the
following uniqueness result holds.

Proposition 3.4. Suppose that D is bss ample. Then (X/Z,D) uniquely determines the divi-
sor E, the rational contraction c = contZ D (up to isomorphism), and the divisor H (up to ∼R /Z).

Addendum 3.4.1. The greatest condition can be replaced by its variation over the generic
point of Y :

if F is a horizontal/Y R-divisor such that g(F ) ≤ 0 and F is semiample over the generic point
of Y, then F = 0. In particular, this is true whenever the same holds with nef instead of semiample.

Addendum 3.4.2. The horizontal/Y part of the greatest (Dm)W given up to ∼R /Y is
uniquely determined by its part that is nonexceptional on X.

Addendum 3.4.3. We can omit the greatest condition if dim X/Y ≤ 1, in particular, if D
is big, equivalently, h is birational. We can omit the same condition if Y = Z. Thus, always for
dim X ≤ 2.

Proof. Since Dm is the greatest, it is unique and H ∼R Dm/Z. Hence, E = D − (Dm)X and
c are also unique.

In Addendum 3.4.1, take F that satisfies the variation. Then there exist ε > 0 and a vertical/Y
divisor E′ ≥ 0 such that Dm + εF − E′ is semiample/Z and

(Dm + εF − E′)X ≤ (Dm)X − (E′)X ≤ (Dm)X ≤ D.

Thus, Dm + εF − E′ ≤ Dm and F ≤ 0; moreover, F = 0 by the semiampleness.
Conversely, suppose that Dm is b-semiample and its contraction c under (ZD) also satisfies the

variation of the greatest property. Up to ∼R /Z, we can suppose that Dm is effective. Let H be
another b-semiample b-divisor which is semiample/Y/Z and with g(HW )X ≤ D = (Dm)X + E. If
F is the horizontal/Y part of HW , then it satisfies the variation conditions. Thus, F = 0 and HW

is vertical/Y ; moreover, HW = h∗H for a semiample/Z divisor H on Y . Over each prime divisor
in Y , (Dm)W ≥ HW at least in one nonexceptional divisor on X. Hence, Dm ≥ H everywhere.

In Addendum 3.4.2, the difference F satisfies the variation of Addendum 3.4.1: F ∼R 0/Y with
g(F ) = 0. Thus, F = 0.

Most of the results in Addendum 3.4.3 are well known. The last one with Y = Z by Negativ-
ity 1.1 in [41]. �

Corollary 3.5. If D′ ∼R rD for some positive r ∈ R, then D′ is also bss ample with the same
rational 1-contraction c, E′ = rE, and H ′ ∼R rH. Thus, bss ample is a property of the ray R+ ·D
in the space of divisors up to ∼R.

Proof. Immediate by Proposition 3.4 because rE > 0 and H ′ = rH is ample. Note also that
∼R and the multiplication preserve ≥. �

In the most important applications, E = 0; then we say that D is b-semiample/Z, that is,
semiample on some model W of X, possibly after adding certain divisors that are exceptional
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on X. Equivalently, D = DX for a b-semiample b-divisor D (∼R H). For example, if Y = pt., then
H = 0, E = 0, and D ∼R H = 0.

Corollary 3.6. Suppose that f : X → Z = T is a birational contraction. Then any D-flip is
uniquely determined by D up to ∼R and multiplication by positive real numbers.

Lemma 3.7. The D-flip of a contraction f : X → T exists if and only if

(BSA) the divisor f(D) on T/T is bss ample/T,

and then the flipped contraction f+ = c−1 : Y → Z = T is small, and the flipping modification is
c ◦ f ; we have E = 0 in (BSS).

The same holds for D itself on X/T if f is small ; that is, if f is small, the D-flip exists if and
only if (BSA) holds for D on X/T .

In (BSA) E = 0, so f(D) is b-semiample/T .
Proof. If the D-flip exists, then it defines a small contraction Y = X+/T with H = D+ =

c(f(D)) numerically ample/T and a flipping modification X ��� X+ = Y/T . Then f(D) is bss
ample with the rational 1-contraction c : T ��� X+ given by H and E = 0. Indeed, f(D) = c∗H =
c∗D+.

If f(D) is bss ample, then Y/T = Z is small, E = 0, and

D+ = c(f(D)) ∼R c(c∗H) = H.

The same arguments apply to D itself for any small f . �
Proof of Corollary 3.6. Immediate by Lemma 3.7, Proposition 3.4, and Corollary 3.5. �
Corollary 3.8. Suppose that D is nef/Z. Then D is bss ample with H ∼R D if and only if it

is semiample. In addition, E = 0. In particular, every semiample divisor D is bss ample.
Proof. We can replace (X/Z,D) by (W/Z, g∗D) in (ZD). Then E = 0 by (BSS) and Negativ-

ity 1.1 in [41]. Thus, D ∼R h∗H, D ∼R H, and h contracts all curves C on W/Z and X/Z with
D · C = 0. �

Thus, if D is bss ample, Proposition 3.4 defines a unique decomposition of D as a sum of two
Weil R-divisors:

D = Dm + De,

the exceptional fixed part De = E ≥ 0 and the R-mobile part Dm = D − E. If X/pt. is a surface,
this is a Zariski decomposition (the converse holds if the positive part of the Zariski decomposition
is semiample); then c in (BSS) is a regular contraction. It is also useful to consider the unique
b-divisors Dm ∼R H with Dm

X = Dm and De = E (considered as a b-divisor) with De
X = De. The

divisor
Dsm =

∑
(multDi D)Di for Di not in SuppDe = SuppE (3.8.1)

is also important (here sm = supported in mobile part). We define generalizations of these divisors
for any D in Section 4 (see Example 4.30 and Remark 3.30).

Again, if Y is a point, then De = De = 0, Dsm = Dm ∼R 0, and Dm ∼R 0.

3.9. The algebra of flips. Here we interpret a flip in terms of a certain sheaf of functional
graded algebras. Its homogeneous elements (that is, elements of pure degree) are sections of divi-
sorial OX -sheaves OX(D) = OX(�D�) with

Γ(U,OX(D)) =
{
a ∈ k(X) | (a) + D ≥ 0

}
,

where D is a Weil R-divisor and k(X) denotes the function field of X; we write (a) for the divisor
of a nonzero element a ∈ k(X), with the convention that 0 has divisor (0) = +∞. An axiomatic
treatment of divisorial sheaves is given in Reid [37, Appendix to §1]. The OX(D) are functional
sheaves, that is, coherent subsheaves of the constant sheaf k(X). They are defined if D is nonsin-
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gular, that is, every generic point of SuppD is nonsingular in X. (We assume that D is 0 at any
irreducible codimension-1 subvariety Di along which X is nonnormal; the above sheaf condition
means that f is regular at Di.) Nevertheless, since X is usually assumed to be normal, we can
disregard these subtleties. (See, however, Corollary 5.21 and the explanation of the nonnormal case
in the proof, p. 148; see also [2].) Any Weil R-divisor on a normal variety X is nonsingular because
S is nonsingular in codimension 1.

Definition 3.10. Let f : X → Z be a proper morphism. We define the N-graded OZ-algebra
of a Weil R-divisor D on X as

RfD = RX/ZD
def=

∞⊕
i=0

f∗OX(iD).

This is an N-graded functional OZ -subalgebra of the constant sheaf of OZ -algebras

k(X)• =
∞⊕
i=0

k(X)

(that is, having sections
⊕∞

i=0 k(X) over every nonempty Zariski open subset of X). The multipli-
cation in RX/ZD is induced by the multiplication in k(X)•: for homogeneous elements

a ∈ OX(iD) ⊂ k(X) and b ∈ OX(jD) ⊂ k(X) ⇒ ab ∈ OX((i + j)D) ⊂ k(X).

Indeed, (ab) + (i + j)D = (a) + iD + (b) + jD ≥ 0.
An N-graded OZ -algebra is divisorial for X/Z (or relatively divisorial) if it is isomorphic to

RX/ZD for some D. An N-graded OZ -algebra is (relatively) b-divisorial for X/Z if it is isomorphic
to RY/ZD for some model Y/Z of X/Z and for some divisor D on Y . Section 4 generalizes these
algebras and the notation (see Definition 4.10 and Example 4.12 below).

Remark 3.11. If f is the identity, each homogeneous piece f∗OX(iD) = OX(iD) is a divisorial
sheaf. The algebras RX/XD have a similar axiomatic description if D is integral (in other words,
locally mobile: D = Mov D for X/X). If X/Z is a birational contraction, then f∗OX(iD) is a
b-divisorial sheaf. These also have an axiomatic description, as do b-divisorial algebras when D
is mobile on Y/X (cf. Proposition 4.15(4)). All of this is more complicated for R-divisors; in
particular, it has a satisfactory description for R-mobile D.

Example 3.12. If D is a Cartier divisor on X, its algebra RX/XD is the tensor algebra of D

T (OX (D)) =
∞⊕
i=0

OX(D)⊗i.

This graded algebra is defined for any R-divisor D. However, the above isomorphism does not hold
for general R- or Q-Cartier divisors D, even in the local case X/X, because the tensor algebra is
generated by finitely many homogeneous elements of degree 1. More generally, any sheaf M of
coherent OX -modules defines a symmetric tensor OX -algebra

SymM =
∞⊕
i=0

Symi M.

The symmetric tensor algebra of a torsion free sheaf M of rank r embeds into the symmetric
algebra of V , where V is a vector space over k(X) of dimension equal to the rank of M. We
only consider rank 1 here. However, such sheaves and their subsheaves appear in the theory of
Bogomolov instability of M, sections of the tangent bundle, etc.

For any integral divisor D, the divisorial algebra RX/XD is the reflexive tensor algebra of D

A(OX(D)) = T (OX(D))∨∨.

This may, of course, be infinitely generated.
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If X/Z is not the identity and/or D is not integral, then divisorial and b-divisorial algebras are
more complicated. But they are sometimes f.g., as we see in Section 4.

Definition 3.13. An OZ -algebra has finite type if it is finitely generated, or f.g. This means
that, locally/Z, it is generated as an OZ -algebra by a finite set of sections (generators).

In particular, if the algebra is functional (cf. Definition 4.1), each component is a coherent sheaf.
Example 3.14. The divisorial algebra R(X/Z,B) = RX/Z(K + B) associated with a log

divisor K +B is called log canonical. We usually assume that it corresponds to a log pair (X/Z,B)
with boundary B and with only log canonical singularities (cf. Example 4.48 below).

In this situation, in dimension ≤ 3, it is known that K + B is bss ample/Z when the relative
numerical log Kodaira dimension [45, Section 2, p. 2673] of (X/Z,B) is big. (See Corollary 3.34 and
Theorem 3.33 and [34, предложение 5.6].) The same is conjectured in any dimension. (In general,
when the Kodaira dimension is nonnegative, we conjecture that there exists a maximal divisor that
is b-semiample/Z as in the decomposition of Remark 3.30; see Example 5.8 in [34].) Thus, if B is
a Q-divisor, R(X/Z,B) is f.g. by Theorem 3.18 below. LMMP reduces the first conjecture to

(1) the existence of log flips, a very special case of the second conjecture;
(2) the termination of log flips; and
(3) the semiampleness of K + D if it is nef

(cf. the proof of Theorem 3.33 below). For a Q-divisor B, the condition on the Kodaira dimension
means that R(X/Z,B) is nontrivial, but (3) means much more, namely, the global almost generation
defined below.

Example 3.15. Let f : X → T be a birational contraction and D be an R-Weil divisor. The
flipping algebra of (X/T,D) is the divisorial algebra

FRX/T D = RT/T f(D).

For any Q-divisor D, by Corollary 3.32, the D-flip exists if and only if FRX/T D is f.g. If f is small,
then

FRX/T D = RX/T D

by Example 3.21(b). But this fails in general, for example, if f is divisorial and D = H is a
hyperplane section of X/T (use Theorem 3.18 below).

Example 3.16 (Stupid Example). Let P be a point on a complete curve C. Take D = dP
with nonnegative d ∈ R. Then RC/pt.D has finite type if and only if d is rational (cf. Theorem 3.18
below). Nonetheless, D is semiample for any real d ≥ 0 and bss ample by Corollary 3.8.

Note that RC/pt.D is also f.g. for any real number d < 0 because then it is trivial, that is, it
has no sections of positive degree.

Thus, f.g. is a somewhat different condition from ample, or bss ample, although the notions are
closely related. Here the important phenomena are rationality of multiplicities and nonvanishing
in positive degrees. However, to explain f.g. in geometric terms of bss ampleness, we need an
additional condition related to generators.

Definition 3.17. A divisorial algebra R = RX/ZD is globally almost generated (g.a.g.) if
there is a natural number N and sections of f∗O(ND) that generate the algebra RX/XND in
codimension 1 on X, except possibly at a finite set of divisors that are exceptional on Y = ProjZ R.
(In this form, the definition assumes that R is finitely generated. But one can generalize it to get
rid of this assumption.) In particular, this implies that R is nontrivial, that is, it has a nonzero
element of some positive degree d > 0; this implies that R has a nonzero element in each degree i
divisible by d.
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Theorem 3.18. The divisorial algebra R = RX/ZD is f.g. and g.a.g. if and only if D is bss
ample/Z and Dsm is a Q-divisor (see (3.8.1)); this rationality condition holds, in particular, if D
is a Q-divisor.

Moreover, if R is f.g. and g.a.g., then, in the notation of Definition 3.3, Y/Z ∼= ProjZ R, E is
the stable base divisor of R, and SuppE is the stable divisorial base locus of R.

The proof is given on p. 100. The theorem allows us to define divisors Dm, E and b-divisors
Dm, De, etc., for R. These are well known: E is the stable base divisor of D and gives the stable
divisorial base locus SuppE as the exceptional divisorial subset of Definition 3.17. Either of these
divisors can be associated with D or with the divisorial algebra R, but as an algebra associated
with D, not as an abstract algebra (cf. Truncation Principle 4.6 and the remark in the proof of
Proposition 4.15(7) on p. 114).

Note that, if we replace bss ample by semiample in the theorem, we should replace g.a.g. by the
usual global generation of the algebra RX/XND. The next result shows under what circumstances
we can add an effective divisor to the mobile part of a multiple linear system.

Lemma 3.19. Let D be a semiample Q-divisor and c : X → Y/Z be the contraction it defines.
Suppose that E is an effective Weil Q-divisor not contracted by c, or is exceptional but not very
exceptional on Y (see Definition 3.2). Then, for some natural numbers N � 0 and M, the base
locus Bs(ND + ME) is a strict subset of SuppE, that is,

SuppFix(ND + ME) � SuppE.

Addendum 3.19.1. Moreover, if E is integral, we can take M = 1 except for the following
two cases:

• D has numerical dimension ν(X/Z,D) = dimX −1 (see Kawamata, Matsuda, and Matsuki
[25, Definition 6-1-1]), the generic fibre of the contraction is a curve of genus g ≥ 1, and
every component of E dominates Y ; then we can take M = g + 1; or

• E is contained in multiple fibres of the contraction; then we can take M to be the least
common multiple of the multiplicities.

Proof. We can assume that all components of SuppE have a single irreducible image under
c : X → Y/Z. Then we have three cases:

Case 1: E is not contractible and horizontal. Then

ν(X/Z,D) = dim SuppE = dim X − 1.

The generic fibre of c is a curve of genus g, and ND+ME cuts out a divisor of positive degree ≥ M .
Thus, on the generic fibre we have the required result by RR for curves. This implies the lemma
for N � 0 in this case.

Case 2: E is not contractible and not horizontal. Then ν(X/Z,D) = dimX and c is birational.
In this case, the lemma follows from the general RR (compare Reid [37, proof of Lemma 1.6]).

Case 3: E is contractible but not very exceptional. The assumption means that ν(X/Z,D) <
dim X, so that c is fibred, and SuppE forms the fibre over the prime divisor E′ = c(SuppE) of Y .
Let M be the lcm of the multiplicities of c∗E′. Then there exists a natural number m such that
ME −mc∗E′ is effective and very exceptional. Therefore, we obtain this case from the second one
with E = mE′. �

On the other hand, in certain cases we certainly cannot add an effective divisor to the mobile
part of a multiple of the linear systems.
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Proposition 3.20. Let c : X ��� Y/Z be a rational 1-contraction, D be an R-Cartier divisor
on Y, and E be an effective divisor on X that is very exceptional on Y . Then c induces an
isomorphism

c∗ : i∗OY (D) ≈−→ f∗OX(c∗D + E),

where i : Y → Z.
This statement has the following applications, which can also be proved directly and generalized:
Example 3.21.

(a) If c : X ��� X+/T is a D-flip/Z and X/T is small, then c induces an isomorphism

c∗ : f+
∗ OX+(D+) ≈−→ f∗OX(D),

where D+ = c(D), f : X → Z, and f+ : X+ → Z. Indeed, c∗D+ = D and E = 0 in this
case. The proof is a direct verification; it is enough to do it for Z = T .

(b) Moreover, we can replace the D-flip by any small birational transformation, that is, assume
that it is a 1-contraction in each direction. Here we can omit the assumption that D is
R-Cartier.

Thus, in either case c induces an isomorphism of OZ -algebras

c∗ : RX+/ZD+ ≈−→ RX/ZD

since c∗ is compatible with multiplication.
Lemma 3.22. In the hut (3.1.1), suppose that D is an R-Cartier divisor on W satisfying the

following conditions:

(i) the negative part of D is very exceptional on Y ; and
(ii) −D is nef at general curves of Ei/h(Ei) for all prime divisors Ei that occur in D with

negative multiplicity.

Then D is effective.
Note that the statement is only about h and D.
Proof. For birational W/Y , this follows from the negativity of a proper modification [43,

Negativity 2.15]; in general, see [34, лемма 1.6]. Indeed, each prime Ei with negative multiplicity
has a sufficiently general curve/Z on which D is numerically nonpositive, namely, a general curve
in the generic fibre of Ei/h(Ei). By (i), this exists because every prime divisor Ei that occurs in D
with negative multiplicity is contractible/Y . �

Proof of Proposition 3.20. First, c induces an inclusion because, for any nonzero rational
function s ∈ i∗OY (D) ⊂ k(Y ), the function c∗s ∈ k(X) belongs to f∗OX(c∗D + E). Indeed,
(s) + D ≥ 0. Hence,

(c∗s) + c∗D + E ≥ c∗(s) + c∗D = c∗((s) + D) ≥ 0.

The surjectivity uses Lemma 3.22. For this, we decompose c into h ◦ g−1 as (3.1.1). We need
to show that

c∗ = (g−1)∗ ◦ h∗ : i∗OY (D) → f∗OX(g∗(h∗(D)) + E)

is surjective. Thus, take a nonzero section s ∈ f∗OX(g∗(h∗(D))+E). Then (s)+g∗(h∗(D))+E ≥ 0.
Hence, (g∗s) + h∗(D) + g−1E ≥ 0 in any prime divisor Ei that is not exceptional on X. We claim
that the horizontal part H of the latter divisor is 0. First, H ≥ 0 because c is a 1-contraction. We
can, of course, suppose that W is nonsingular, so that any R-divisor is R-Cartier. Finally, since
g−1E is exceptional on Y , H ≡ (g∗s) ≡ 0 over the generic point of Y = h(H). Hence, H = 0
because it is ≡ 0 over the generic point of Y .
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Thus, g∗s has no horizontal zeros or poles. Therefore, g∗s = h∗s′ for some rational function
s′ ∈ k(Y ). Moreover, c∗s′ = (g−1)∗ ◦ h∗s′ = (g−1)∗g∗s = s, and

h∗((s′) + D) + g−1E = (h∗s′) + h∗(D) + g−1E = (g∗s) + h∗(D) + g−1E

is ≥ 0 in any prime divisor Ei that is not exceptional on X, in particular, in any prime Ei over a
prime divisor h(Ei) that is not exceptional on X and not in g−1E. Since g−1E is very exceptional,
such Ei exists over each prime divisor in Y . Hence, h∗((s′) + D) ≥ 0 by Lemma 3.22, (s′) + D ≥ 0,
and s′ ∈ i∗OY (D). �

Example 3.23. Let c : X ��� X+/T be a D-flip/Z, where X/T is a D-contraction/Z, that
is, D is numerically negative/T . Then c induces a canonical isomorphism

c∗ : f+
∗ OY (D+) → f∗OX(D),

where D+ = c(D), f : X → Z, and f+ : X+ → Z (see Example 3.21(a)). Indeed, D = c∗D+ + E,
where E is effective by Lemma 3.22. We can decompose c into birational contractions g and h
as in Lemma 3.22. Then g∗D = h∗D+ + EW , where EW is (very) exceptional on X+ and
−EW = h∗D+ − g∗D is nef/X+. Thus, the lemma applied to W → X+ gives EW ≥ 0. Hence,
E = g(EW ) ≥ 0, and the required isomorphism follows from Proposition 3.20.

Thus, c induces a canonical isomorphism of OZ -algebras

c∗ : RX+/ZD+ → RX/ZD.

In fact, we can replace the D-flip X+/T by any small contraction (cf. Example 3.21(b)).
By the following result, Proposition 3.20 can also be applied in cases where c∗D +E is replaced

by a linearly equivalent divisor.
Lemma 3.24. Let D ∼ D′ be linearly equivalent divisors; that is, D = D′ + (s), where

s ∈ k(X) is a nonzero rational function. Then the multiplication map t �→ st gives an isomorphism

∼ : f∗OX(D) → f∗OX(D′)

and an isomorphism of OZ-algebras

∼ : RX/ZD → RX/ZD′.

These isomorphisms are not unique and depend on the choice of s. But they are compatible
with multiplication provided we take si for iD ∼ iD′.

Proof. Immediate from the definitions. �
Corollary 3.25. Under the assumptions of Proposition 3.20, suppose that D′ ∼ c∗D + E.

Then c and ∼ induce isomorphisms

∼ c∗ : i∗OY (D) → f∗OX(D′) and ∼ c∗ : RY/ZD → RX/ZD′.

Proof. Immediate by Proposition 3.20 since c∗ is compatible with multiplication. �
However, we cannot replace ∼ by ∼R in Lemma 3.24 and Corollary 3.25, or even by ∼Q.

This last equivalence only gives a quasi-isomorphism of algebras (see Example 4.12). Together
with an application of the Truncation Principle 4.6 (see Corollary 3.29), this is enough to prove
Theorem 3.18. For this, we first clarify one definition.

Definition 3.26 (compare [45, Definition 2.5]). We say that D and D′ are Q-linearly equiv-
alent if D −D′ is a Q-principal divisor, that is, a rational linear combination of principal divisors.
We write D ∼Q D′. Equivalently, iD ∼ iD′ for some nonzero integer i.

Note that ∼∗ does not need/Z (even if we have a base Z!). However, it does make a difference
whether we consider ∼∗ on X/Z locally or globally: locally, the ∗-principal divisors are just the
∗-Cartier divisors (in the analytic case, in a neighborhood of a compact subset), whereas, globally,
most of these are not ∗-principal.
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Since every principal divisor is integral, the R-vector space of R-principal divisors is defined
over Q, and all its Q-divisors are Q-principal. Thus, two Q-divisors D and D′ are ∼R if and only
if they are ∼Q. Also, if D ∼Q D′ and D is a Q-divisor, then so is D′.

Proposition 3.27. Suppose that D is bss ample/Z and Dsm is a Q-divisor (see (3.8.1)). Then
there exist a Q-divisor H on Y and a natural number I such that

(i) H is (numerically) ample/Z;
(ii) D ∼Q c∗H + E; and moreover,
(iii) iD ∼ ic∗H + iE if and only if I | i; equivalently,
(iv) for all i � 0, the ith component Ri of R = RX/ZD is nonzero if and only if I | i.

The natural number I is unique, and H is unique up to ∼.
Addendum 3.27.1. The divisorial algebra R = RX/ZD is equal to its truncation

R[I] =
∑
I|i

Ri

and isomorphic to the truncation
(RY/ZH)[I],

where [I] means that we preserve degrees.
Note that a truncation of a divisorial algebra RX/ZD is again divisorial: (RX/ZD)[I] =

RX/Z(ID). The converse does not hold in general, even for subalgebras of a functional algebra;
e.g., (RY/ZH)[I] is usually not equal to RY/ZH for I ≥ 2.

Lemma 3.28. Let f : X → T be a contraction and suppose that D and E are R-divisors on
T and X, respectively, such that

• D is R-Cartier,
• E is vertical, and
• E ∼R f∗D.

Then there is a unique R-divisor F on T such that

• F ∼R D,

• in particular, F is also R-Cartier, and
• E = f∗F .

Proof. We can assume that D = 0. Indeed, if we replace E by E − f∗D and D by 0, then the
required F is F − D ∼R 0.

Thus, E is R-principal and vertical. In other words, E =
∑

di(fi), where all di ∈ R and all fi

are nonzero rational functions on X. We need to find a presentation in this form with functions
fi = f∗gi, where the gi are nonzero rational functions on T . Indeed, we can then take F =

∑
di(gi).

Since E is vertical, a presentation of the required form is a presentation with Q-linearly inde-
pendent and nonzero (fi) over the generic point of T , that is, in the horizontal components.

A presentation of this form exists by the following inductive procedure. Suppose that∑
ri(fi) = 0 over the generic point of T , where all ri ∈ Q and one of them is nonzero, say, r0 �= 0.

Then the same holds for some integral coefficients ri. Hence, (
∏

f ri
i ) = 0 over the generic point

of T and the rational function g =
∏

f ri
i does not have horizontal zeros or poles over the generic

point of T , that is, 0 over the generic point of T . Thus, in our presentation, we can replace (f0) by
a rational linear combination of other divisors (fi) and (g). But (g) = 0 over the generic point of T .

The uniqueness follows because f∗ is injective since f is surjective. �
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Proof of Proposition 3.27. We first check that the extension Dsm
W = Dsm

W is also a Q-divisor.
Indeed, by definition Dm

W = Dm
W ∼R h∗H. Thus, Dm

W ∼R 0 over the generic point of Y ; again by
definition, (Dm

W )X = (Dsm
W )X = Dsm outside SuppE. On the other hand, over the generic point

on Y , E is 0 and the irrational part of Dm
W is exceptional on X. It is unique over the generic

point of Y by Addendum 3.4.2. Therefore, Dm
W is rational (a unique point given by rational

linear equations, nonexceptional multiplicities on X, in a finite-dimensional rational linear space of
divisors with given support and ∼R 0 over the generic point of Y ) and Dm

W ∼Q 0 over the generic
point of Y . In particular, Dm

W is vertical if Dm is.
Thus, over the generic point of any prime divisor in Y , the irrational part of Dm

W and SuppE
is very exceptional on Y . By Lemma 3.22, it is uniquely determined by the linear equations with
rational coefficients Dm

W ·Ci = 0 for general curves Ci of Ei/h(Ei). Hence, it is rational and Dm
W is

rational over such points.
Since Dm

W ∼Q 0 over the generic point of Y and E is vertical, we can suppose that the divisors
Dm

W and D are themselves vertical/Y up to Q-linear equivalence. By Lemma 3.28, we can replace
H by an R-linearly equivalent divisor such that Dm

W = h∗H and it is also (numerically) ample/Z.
Then H is also rational because h∗ is Q-linear. This is our choice of H. In particular, Dm

W and
Dsm

W are also Q-divisors.
Take I as the minimal natural number such that IDm

W , or even IDsm
W is vertical/Y up to ∼. The

former vertical divisor is IDm
W = Ih∗H = h∗(IH). Then H and I satisfy the required conditions.

Indeed, for any natural number i divisible by I, iD + F ∼ iDm
W + iE = ih∗H + iE on W , where F

is exceptional on X. This induces

iD ∼ iDm + iE = ic∗H + iE on X.

On the other hand, if this holds for any integer i, it holds for its nonnegative remainder r by I,
and r = 0 by our choice of I since then rDm

W = rh∗H and rDsm
W are vertical.

This implies that Ri = 0 whenever I � i. Thus, Addendum 3.27.1 follows by Corollary 3.25. In
addition, R[I] has a nonzero element in each i � 0 divisible by I because this holds for RY/ZH.
This gives Proposition 3.27(iv).

As a minimal natural number, I is unique. This implies the uniqueness of H up to linear
equivalence ∼. �

In Section 4, p. 119, we derive the following result from Truncation Principle 4.6:
Corollary 3.29 (cf. Stupid Example 3.16). Let H be an R-divisor that is numerically am-

ple/Z. Then H is a Q-divisor if and only if its algebra RX/ZH is f.g. Moreover, it is g.a.g. with
the empty stable base locus, and with E = 0 whenever it is f.g.

Proof of Theorem 3.18. Suppose that R = RX/ZD is f.g. and g.a.g. Then we can take
Y/Z ∼= ProjZ R. It is well known that the correspondence c from X to Y/Z is then a rational
1-contraction by Lemma 3.19, and D = Dm + De, where, for some natural number N � 0,

Dm = Mov(ND)/N, De = Fix(ND)/N,

and
|ND| = |Mov(ND)| + Fix(ND)

is a decomposition of the linear system/Z into its mobile and fixed components. More precisely,
this holds for any N > 0 for which the Nth component RN = f∗OX(ND) generates the subalgebra

RN =
∞⊕
i=0

RiN

(see Definition 4.3). G.a.g. implies that E = De is exceptional on Y and very exceptional, again
by Lemma 3.19. Indeed, in codimension 1, SuppE is exactly the locus where RX/XND is not
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generated by global sections. Then we apply Lemma 3.19 to a divisor h∗c(D′) for D′ ∈ |ND| on
any model W/Z of X/Z that is regular/Y with a contraction h : W → Y/Z. If E = De is exceptional
but not very exceptional on Y , there is an effective exceptional but not very exceptional Q-divisor
E′ ≤ E. By Lemma 3.19, this contradicts f.g. The greatest property see in [34, 5.9, 5.11]. Thus,
D is bss ample and Dsm is a Q-divisor equal to Dm outside SuppDe.

Conversely, suppose that D is bss ample/Z and Dsm is a Q-divisor. By Corollary 3.25, Proposi-
tion 3.27, and the description of its isomorphism, the divisorial algebra R = RX/ZD = RX/Z(D−E)
is isomorphic to its truncation (RY/ZH)[I]. On the other hand, the latter is f.g. by Corollary 3.29
because H is a Q-divisor and is (numerically) ample/Z. Moreover, H is g.a.g. with the empty
stable base locus on Y . Since E is an effective divisor on X and RX/ZD = RX/Z(D − E), g.a.g.
holds for D on X with exceptional stable base divisor E on X. �

Remark 3.30. By the proof of the theorem, every nontrivial f.g. algebra RX/ZD gives a de-
composition D = Dm + E, where Dm is b-semiample/Z, E = De ≥ 0 is a stable base divisor, and
RX/ZD = RX/ZDm (cf. Example 4.30). Dm is the minimal divisor with these properties and is,
of course, a Q-divisor.

It is not difficult to show that this is equivalent to a geometric decomposition D = Dm + E
for an R-divisor D with E ≥ 0 and with maximal b-semiample Dm, under the assumption that
the maximal divisor Dm is a Q-divisor. A decomposition of this form can be defined even if the
maximum Dm is not a Q-divisor; it is unique if it exists and can be considered as a generalized
Zariski decomposition. Our decomposition differs from Zariski decompositions in the sense of Fujita
or Cutkosky, Kawamata, and Moriwaki (see [25, Definitions 7-3-2 and 7-3-5]) because we replace
b-nef by b-semiample. More precisely, our decomposition implies either of the latter whenever it
exists. Details will appear in [34]. (Compare pseudo-decompositions in Example 4.30.)

In the case when D is bss ample/Z, E is very exceptional. However, in general, there is
no numerical criterion for Dm to be maximal, e.g., for E to be exceptional or negative (cf. [43,
Examples 1.1 and 1.2]). But this can be done in certain situations, namely, if

(1) D is big/Z (cf. Corollary 3.31 below), or

(2) (cf. Theorem 3.33 and Corollary 3.34 below) there is a boundary B on X such that (X/Z,B)
is a 0-log pair, that is,

• X/Z is projective (actually, this is not necessary; see Theorem 3.33 below),

• (X,B) is Klt, and

• K + B ≡ 0/Z.

Moreover, we then expect the existence of the decompositions for all divisors D ∼R D′ ≥ 0 that
are effective up to ∼R.

For example, (1) holds if X/Z is finite or birational; and, by the base point free theorem,
(2) holds if X/Z has the structure of a weak log Fano contraction (X/Z,B) with only Klt singu-
larities [43, Conjecture 1.3, (WLF)]. Moreover, for weak log Fano contractions, we can replace D
effective by D pseudo-effective, since one expects the cone of effective divisors to be polyhedral in
this case (Batyrev [4]).

Corollary 3.31. Suppose that D is big/Z. Then D is bss ample/Z and has a Q-divisor Dsm

if and only if RX/ZD is f.g.
In particular, the rationality of Dsm holds if D is rational.

Proof. Indeed, for each divisor D that is big/Z and with f.g. divisorial algebra R = RX/ZD,
the algebra R is big/Z (that is, k(X) is finite/k(R)) and g.a.g. This follows by definition because
the model Y/Z is birational to X/Z. Thus, we can omit the g.a.g. assumption in Theorem 3.18. �

The corollary applies, for example, to a birational contraction f .

ТРУДЫ МАТЕМАТИЧЕСКОГО ИНСТИТУТА ИМ. В.А. СТЕКЛОВА, 2003, т. 240



102 SHOKUROV

Corollary 3.32. Suppose that f : X → T is birational and D is a Q-divisor on X. Then the
D-flip exists if and only if FRX/T D is f.g.

If X/T is small, FRX/T D = RX/T D, so that the D-flip exists if and only if RX/T D is f.g.

Proof. Immediate by Lemma 3.7, Example 3.15, and Corollary 3.31. Indeed, each divisor on
X is big/T since f : X → T is birational. �

Theorem 3.33. LMMP and the log semiampleness (see [45, Conjecture 2.6]) in dimension n
imply the existence of both decompositions of Remark 3.30(2) in dim X = n, for any divisor D that
is effective up to ∼R. In particular, the algebra RX/ZD is f.g. for any Q-divisor D.

Moreover, we can omit the log semiample assumption if D is big/Z or D is b-semiample/Z.
We can also omit the projectivity of X/Z.

Proof. This follows essentially because the LMMP is compatible with the decompositions.
After a Q-factorialization of X, we can assume that D is R-Cartier.

By Corollary 3.5, we can also assume that D is effective and (X,B + D) is still Klt. Moreover,
the new D and Dsm are again Q-divisors whenever the old D and Dsm are; and the old algebra
RX/ZD is a truncation of the new. Thus, it is enough to establish the theorem for effective D; the
f.g. needs Truncation Principle 4.6.

For this, we apply LMMP to the pair (X/Z,B + D). This is the same as the D-MMP [45,
Section 5] since K +B+D ≡ D/Z by Remark 3.30(2). Thus, if D is not nef, we have an (extremal)
D-contraction h : X → Y/Z that is birational since D is effective. By LMMP, we can make a D-flip
c : X ��� X+/Z, where D = c∗D++E with E ≥ 0 by Lemma 3.22 (cf. Example 3.23). Lemma 3.22
also implies that the maximal Dm, if it exists, is ≤ c∗D+; and it exists and is equal to c∗D+m if and
only if it exists for D+. By Example 3.23, the same holds for f.g. of the algebra RX/ZD = RX+/ZD+

and the rationality of Dsm because the divisorial SuppE is contractible on X+.
By the termination in LMMP, we can suppose that D is nef. Then it is semiample by [45,

Conjecture 2.6], and we have its bss decomposition by Corollary 3.8 with Dm = D and E = 0. Thus,
if Dsm = D is a Q-divisor, then RX/ZD is f.g. by Theorem 3.18. If D is big/Z or b-semiample/Z,
the log semiampleness for a Q-divisor D [45, Conjecture 2.6] follows from [40] and [25, Remark 6-
1-15, (3)] (by this remark, it is enough that D ≥ M where M �= 0 is b-semiample), and then, for
an R-divisor D, from [45, Remark 6.23.5].

If we do not assume that X/Z is projective, we can establish bss ampleness starting from any
projective log resolution of (X/Z,B). Then c : X ��� Y/Z is the log canonical rational morphism,
and H is defined by an Iitaka contraction from a log minimal model (Xmin/Z,Bmin), that is,
Dm = KXmin

+ Bmin.
Finally, note that if D is not effective up to ∼R, then RX/ZD = f∗OX or OZ if f : X → Z is

a contraction, is trivial and f.g., but not g.a.g. �
Corollary 3.34. In dimension n ≤ 3, we can omit LMMP and log semiampleness as assump-

tions in Theorem 3.33.

Proof. Immediate by Theorem 3.33 and [45, Theorems 2.7 and 5.2]. For a Q-divisor D, log
semiampleness is essentially due to Kawamata and Miyaoka (see [26]). �

Thus, we expect, in particular, the following:

Conjecture 3.35. Let f : X → X∨ be a pl contraction with respect to S =
∑

Si. Then

(PLF)n the divisorial algebra RX/X∨S is f.g.

We denote this statement by (PLF)n,d if f has core dimension d = n − s.

On the other hand,

Corollary 3.36. (PLF)n implies Induction Theorem 1.4, (PLF)small
n , and the existence of

elementary pl flips in dimension n.
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Proof. Immediate by Corollary 3.32. �
In turn, we have the following result.

Theorem 3.37. (RFA)n,d(bir) of Conjecture 3.48 implies (PLF)n,d of Conjecture 3.35.

This is the main result of this section. We explain and prove it below, but we start with the
following:

Proof of (RFA) assertion of Induction Theorem 1.4. Immediate by Corollary 3.36 and
Theorem 3.37. �

Example 3.38. Let X be a projective variety with an ample reduced effective divisor S and H
be an R-divisor such that S ∼ rH for some natural number r and the divisorial SuppH∩ SuppS = ∅.
Then it is known that H is a Q-divisor and RXH is f.g. (cf. Corollary 3.29). However, the essential
ingredient here is not just Truncation Principle 4.6 but rather an induction on n = dimX as follows:
restricting rational functions without poles on S to S defines a canonical homomorphism of graded
k-algebras

·
S

: RXH → RSH
S
.

Moreover, to prove that RXH is f.g., it is enough to prove that the image subalgebra R = RXH
S
⊂

RSH
S

is f.g. (use Main Lemma 3.43 below).

On the other hand, by Serre vanishing, the truncation R[I] of R is equal to that of RSH
S
.

Thus, by Truncation Principle 4.6 it is enough to verify that RSH
S

is f.g. This gives an induction
using the base point free theorem for multiples of H

S
.

We use the same idea in the diametrically opposed situation, when −S can be ample. However,
as for pl contractions, this is only possible in the local case if X/Z is generically finite or birational.
For a more general situation than the above example, in Main Lemma 3.43 below, the f.g. of RX/ZD
reduces to that of its restriction R = RX/ZD

S
. It is a subalgebra of the divisorial algebra RS/ZD

S
.

Truncation Principle 4.6 applies again, but now Serre vanishing does not work. Replacing it by
Kawamata–Viehweg vanishing is a natural guess; the idea is right, but, rather than to divisorial
algebras up to truncation, it leads us to the (FGA) algebras of Section 4.

Definition 3.39. A normal ladder (respectively, normal irreducible ladder) {Si} in X is
a chain S0 = X ⊃ S1 ⊃ S2 ⊃ . . . ⊃ Ss, where

• each Si is a normal (irreducible) proper subvariety of pure codimension i in X, and

• for all j ≤ i, the generic points of Si are nonsingular points of Sj.

It would be sufficient in applications to treat only irreducible ladders, but we prove Main
Lemma 3.43 without making this assumption.

Let D be an R-Cartier divisor of X. A sequence S1, . . . , Ss of reduced Weil divisors is inductive
with respect to D if

• the subvarieties Si = S1 ∩ . . . ∩ Si form a normal (irreducible) ladder with normal crossing
at the generic points of each Si;

• SuppD does not contain any components of Si; and

• each Si ∼ riD for some natural number ri ≥ 1.

The final condition means that, for each i = 1, . . . , s, there exists a rational function 0 �= ti ∈ k(X)
such that (ti) = Si − riD. In particular, the riD must be integral divisors. Thus, D itself is
a Q-Cartier divisor, possibly not integral, and each Si is also Q-Cartier.

Note also that ti ∈ OX(riD) since (ti)+riD = Si > 0, so that ti ∈ RXD has degree ri. Moreover,
the rational function ti Sj ∈ k(Sj) must be �= 0 on each component of Sj for all s ≥ i > j ≥ 0
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because, otherwise, a component of Sj lies in Si, contradicting the assumption on a normal ladder;
it gives the rational equivalence Si Sj ∼ riD Sj . We call ti a translation function for Si of degree ri.

Example 3.40. Let (X/T, S + B) be a log pair such that

• X/T is a (birational) contraction;
• S =

∑
Si is a sum of s ≥ 1 prime Weil Q-Cartier divisors S1, . . . , Ss;

• the Si with t ≤ i ≤ s are linearly proportional to an integral divisor D, that is, each Si ∼ riD
for some natural number ri ≥ 1 (cf. 1.1(1) for pl contractions);

• K + S + B is divisorially log terminal with �B� = 0; and
• K + S + B is numerically negative/T .

(Here t ≥ 1 is given: see Definition 3.47 for an application with t = 1, and flips of type (S+−) in
Section 11, p. 212 for one with s = t = 2.)

This is a slight twist on the definition of pl contraction, which we use as follows: the restrictions
Si St−1 for t ≤ i ≤ s form an inductive sequence with respect to a divisor D′

St−1, where D′ ∼ D.
Moreover, the normal ladder Sj for 1 ≤ j ≤ s is irreducible and X/T induces a contraction Sj/f(Sj)
for each j. This follows by induction on s.

By [41, следствие 3.8], S1 = S1 is normal and irreducible/T , even formally so (that is, single
branched). The fact that K + S + B is numerically negative and the other assumptions imply that
K +S1 +B′ is numerically negative for a boundary S1 +B′ ≤ S +B with �B′� = 0. In other words,
(X,S1 + B′) is purely log terminal with the reduced divisor S1 in the boundary. Then any linear
system that defines the contraction X/T restricts surjectively to S1 (cf. the proof of Lemma 3.6
in [41]) and, thus, induces a contraction S1/f(S1); and P ∈ f(S1) since S1 intersects the fibre
f−1P .

Each Si with i ≥ 2 gives a prime Weil divisor Si S1 = Si∩S1 in S1. Indeed, by [41, следствие 3.8]
again, this last intersection is normal as a subvariety and transverse at generic points. In other
words, it gives a normal ladder S1 ⊃ S1 ∩ Si and Si S1 =

∑
Tj is a sum of prime Weil divisors. In

fact, we have a single Ti. First, some Tj exists by Connectedness of LCS (Kollár and others [27,
Theorem 17.4]) for K + S + B − εS′, where 0 
 ε < 1 and S′ =

∑
j �=1,i Sj . In other words, S1

intersects any other Si in f−1P since each Si intersects f−1P . Second, there is only one Ti for the
same reasons; namely,

⋃
Ti is a normal subvariety with disjoint components Tj and, by adjunction

[41, (3.2.3)], (K + S + B − εS′)
S1 = KS1 + B′′ +

∑
Tj is divisorially log terminal with �B′′� = 0,

where the LCS is
⋃

Tj . Finally, each restriction Ti = Si S1 is Q-Cartier.
Thus, by adjunction, we preserve the situation for Ti = Si S1 for s ≥ 2 and for an appropriate

choice of D. Since D is integral, the generic point of Ss is nonsingular in X and X/T is projective,
and by the Moving Lemma we can assume that, up to linear equivalence, SuppD does not contain
Ss or any other Si with i ≥ 2. The new contraction Sj/f(Sj) may not be birational even if X/T
is (cf. Example 3.45).

Note also that the definition of pl contractions does not always give the above situation since
the Si do not necessarily satisfy the linear proportionality. Indeed, the proportionality 1.1(1) only
implies that there exists an integral divisor D such that each Si ∼Q riD for a natural number ri.
Fortunately, we can upgrade this to ∼ using the covering trick (cf. Lemma 3.51 and the proof of
Theorem 3.37 below).

To generalize Example 3.38, we need to consider restrictions of divisorial algebras.
Definition 3.41. Let Y ⊂ X be a subvariety and D be an R-Cartier divisor such that

• SuppD does not contain the generic points of Y .

Then restricting functions to Y induces a restriction of divisorial algebras

·
Y

: RX/ZD → RY/ZD
Y
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(see Remark 3.42 for the restriction of divisors). This map is an OZ -homomorphism of N-graded
algebras. In particular, it induces a restriction homomorphism ·

Y
: L → RY/ZD

Y
of any N-

graded OZ -subalgebra L ⊂ RX/ZD (functional in the terminology of Definition 4.1). Note that the
image L

Y
of a sheaf subalgebra L is also a sheaf OZ - or Of(Y )-algebra which is locally generated

by the restrictions of some sections from L. In particular, the restriction L
Y

of the coherent
OZ -subalgebra L is again coherent.

Remark 3.42. The above restriction is defined provided that functions in RX/ZD have no
poles at generic points of Y , that is, the support of positive components of D does not contain
any generic point of Y . The restriction can, however, be zero; and this may happen even under
our assumption on D. The important point in the definition is that if D

Y
is defined, then each

restricted nonzero function f
Y

for f ∈ RX/ZD belongs to a divisorial algebra in the same degree,
so that its zeros and poles are controllable.

Restriction naturally generalizes to D that are not R-Cartier if we assume that

(1) we restrict L either as a subalgebra for a divisorial algebra of R-Cartier D′ ≥ D; or
(2) Y is the final step Ss of a normal ladder (or

Y ν on the normalization Y ν for a nonnormal
ladder).

See [41, §3] for restricting Weil R-divisors to a normal divisor, and thus, at the same time,
to its normalization. Note that a Q-divisor restricts to a Q-divisor, but an integral divisor may
not restrict to a Z-divisor (cf. [41, предложение 3.9]). However, an integral divisor restricts to
an integral divisor along any nonsingular locus of X (the ambient space; cf. D in Definition 3.39
and Lemma 6.29 below). Inequalities between divisors such as D1 ≥ D2 are preserved, and, in
particular, an effective divisor remains effective. (This follows from Negativity 1.1 in [41].) This
implies an inclusion RX/ZD2 Y

⊂ RX/ZD1 Y
.

Main Lemma 3.43.

(SDA) Let L ⊂ RX/ZD be a coherent OZ-subalgebra of a divisorial algebra (see Definition 4.1);
(IND) let {Si | 1 ≤ i ≤ s} be an inductive sequence with respect to D with translations ti

satisfying
(TRL) ti ∈ Lri for each i and

t−1
i : LN (−Si) → LN−ri for every N ≥ ri;

that is, at−1
i ∈ LN−ri for a function a ∈ LN (−Si), where

Lj = L ∩ f∗OX(jD)

is the jth component of L, and

LN (−Si) = LN ∩ f∗OX(ND − Si) =
{
a ∈ LN

∣∣ (a) + ND − Si ≥ 0
}
.

Then, for Y = Ss, the algebra L is f.g. near f(Y ) if and only if its restriction L
Y

is.
Addendum 3.43.1. The required translations ti exist if L = RX/ZD is divisorial.
Proof. We only need to check that L is of finite type if L

Y
is, and, by induction on s, we only

need to consider the divisorial case, that is, s = 1 and Y = S = S1 = S1 with a single translation
t = t1 of degree r = r1 ≥ 1. Indeed, for s ≥ 2, the restrictions

L
S1,

{
Si S1

∣∣ 2 ≤ i ≤ s
}
, D

S1 , and ti S1 for 2 ≤ i ≤ s

again satisfy the assumptions of the lemma (with the same ri). Thus, L
S1 is f.g. by induction.
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The problem is local. Thus, we fix a point P ∈ f(S) ⊂ Z and check that L is f.g. near P .
Since the algebra L

S
has finite type near P , it has a system of homogeneous generators s1, . . . , sm.

Recall that a homogeneous element of a graded algebra is an element in a homogeneous piece; in
our case, (L

S
)j = Lj S

. The sections can be presented as restrictions si = ti S
, where ti ∈ Lj. We

claim that t, the sections ti, and the generators of the OZ -modules Lj for j < r generate L near P .
We can take this last set to be finite since each Lj is coherent.

Indeed, for any homogeneous a ∈ L of degree N ≥ r, we can find a polynomial p(x1, . . . , xm) ∈
Of(S),P [x1, . . . , xm] such that a

S
= p(s1, . . . , sm) and p is homogeneous, that is, all its monomials

are homogeneous of weighted degree N , where deg xi = deg si. The coefficients of p are in the
local ring Of(S),P of P ∈ f(S). Thus, p can also be obtained as the restriction p = q

S
of a

similar polynomial q(x1, . . . , xm) ∈ OZ,P [x1, . . . , xm] with coefficients in the local ring OZ,P . Then
a − q(t1, . . . , tm) vanishes on S and belongs to LN (−S). This last conclusion holds because S �⊂
SuppD. Hence, by (TRL), b = t−1(a − q(t1, . . . , tm)) ∈ LN−r, and a = q(t1, . . . , tm) + tb, where b
is homogeneous of degree (N − r) < N . Induction on N completes the proof.

For Addendum 3.43.1, we need to verify (TRL) for the divisorial algebra L = RX/ZD with any
translations ti. By Definition 3.39, ti ∈ RX/ZD is homogeneous of degree ri. Moreover,

(a) + ND − Si ≥ 0 for any a ∈ LN(−Si) = f∗OX(ND − Si).

Thus, at−1
i belongs to LN−ri = f∗OX((N − ri)D):

(at−1
i )+(N −ri)D = (a)− (ti)+(N −ri)D = (a)−Si +riD+(N −ri)D = (a)−Si +ND ≥ 0. �

Remark 3.44. We have proved more, namely, that the kernel I of the restriction is f.g. as
a subring (without 1) with (some external) generators from L; if 1 ∈ I, all the generators lie in
I = L (cf. the next Example 3.45). Of course, if A � B is a surjection of algebras and its kernel
is f.g. in this sense, then A is f.g. if and only if B is.

Example 3.45. Let g : Y = Ss → g(Y ) be a contraction of fibre type, and suppose that D is
numerically negative on general curves of its generic fibres. Then L

Y
= Of(Y ) is trivial and needs 0

generators. Thus, L is f.g./Z. More precisely, it is generated by the translations ti and generators
of Lj with j ≤ max{ri}.

If we replace condition (7) (see Subsection 1.1) for elementary flips by its opposite, that is, by
the condition

• f is divisorial,

or, more generally, if we consider a divisorial pl contraction with S numerically negative/X∨, then
S = S1 = S1 and RX/X∨S = RX/X∨0 is f.g., that is, (PLF)n,n−1 holds in this situation. This is,
of course, well known. But from our point of view, S ∼ D with S �⊂ SuppD and D is numerically
negative on S/X∨. Hence, RX/X∨S is isomorphic to L = RX/X∨D, which is generated by t with
(t) = S − D and 1 ∈ L0 = OX∨ .

Of course, Main Lemma 3.43 only proves f.g. near f(S), but it holds outside f(S) because
RX/X∨S = RX/X∨0 there. In general, the lemma is entirely sufficient for local purposes since
P ∈ f(S), as we assume throughout what follows.

Corollary 3.46. Under the assumptions of Example 3.40, there exists D′ ∼ D such that the
algebra L = (RX/T D′)

St−1 is f.g. if and only if L
Ss is.

Proof. Immediate by Main Lemma 3.43 and Example 3.40 if we take D such that Ss �⊂
SuppD′. The restricted algebra L is an Of(St−1)-subalgebra of RSt−1/f(St−1)D

′
St−1. The condition

(TRL) on St−1 is induced by the same condition on X by Addendum 3.43.1. �
Definition 3.47. Under the assumptions of Example 3.40, suppose that X/T is birational,

t = 1, and Ss �⊂ SuppD. Then we say that the restricted algebra L = (RX/T D)
Y

is of type
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(RFA)n,d, where Y = Ss, n = dim X, and d = n − s = dimY . If Y/f(Y ) is again birational, we
say that L is of type (RFA)n,d(bir).

Conjecture 3.48.

(RFA)n,d(bir) Every algebra of type (RFA)n,d(bir) is f.g.

Corollary 3.49. (RFA)n,d(bir) of Conjecture 3.48 implies

(RFA)n,d every algebra of type (RFA)n,d is f.g.

Proof. In other words, (RX/T D)
Y

is still f.g., even if Y/f(Y ) is not birational. Indeed, since
X/T is birational but Y = Ss/f(Y ) = f(Ss) is not, it follows that, for some 1 ≤ i < s, Si/f(Si) is
still birational but E = Si+1/f(Si+1) is not. Therefore, E is a Weil divisor of Si and is exceptional
on f(Si+1). By our assumptions, it is Q-Cartier and ∼ ri+1D. Thus, D is numerically negative
on general curves of the generic fibre of Si+1/f(Si+1). Therefore, the algebras (RX/T D)

Si+1 and
(RX/T D)

Y
are trivial and f.g. by Example 3.45. �

3.50. The covering trick. Further applications need the covering trick.

Lemma 3.51. Let π : X̃ → X be a finite cover that is etale in codimension 1.

(1) The pair (X̃, D̃ = π−1D) is divisorially log terminal if (X,D) is; and (X̃, D̃ = π−1D) is
log canonical, respectively, Klt, or purely log terminal if and only if (X,D) is;

(2) π−1D = π∗D is Q-Cartier (or R-Cartier) if and only if D is;

(3) π−1D ∼R π−1D′ if and only if the same holds for D and D′;

(4) π−1D = π∗D is bss ample/Z (or b-semiample, semiample, ample) if and only if D/Z is;
and

(5) a pl contraction f : X → X∨ induces a pl contraction f̃ : X̃ → X̃∨ with S̃ = π−1S and finite
X̃∨/X∨; the same holds for f : X → T of Example 3.40; in addition, f has a pl flip or even
a D-flip for any contraction f if and only if the same holds for f̃ .

Proof. (1) is immediate from the pullback formula [41, 2.1] (cf. the proof of Corollary 2.2
in [41]). For the divisorial log terminality (which means that the log discrepancies are only 0 over
normal crossing intersections of �B�), note that π is etale over the nonsingular points and preserves
the nonsingularity of the log canonical centers and normal crossings of �B� in their generic points.
The nonsingularity in codimension 1 of irreducible components of �B̃� follows from [41, лемма 3.6,
следствие 2.2].

For (2) and (3), see the proof of Corollary 2.2 in [41]. (4) is immediate by Definition 3.3 and
the uniqueness of Proposition 3.4.

(5) follows by the connectedness arguments of Example 3.40 and again by [41, следствие 2.2].
They imply that S̃i = π−1Si are again prime. The rational numbers ri,j and natural numbers ri are
the same on X̃. The final statement on pl and D-flips follows from (4) (cf. [41, лемма 2.5]). �

Proof of Theorem 3.37. Let f : X → X∨ be a pl contraction with respect to S. By Corol-
lary 3.31, RX/X∨S is f.g. if and only if S is bss ample. Thus, by Lemma 3.51, we can replace X by
any finite cover that is etale in codimension 1.

On the other hand, by condition 1.1(1), the divisors Si generate an Abelian subgroup of rank 1
in the group of integral Weil divisors up to ∼Q. It is torsion free. Hence, there is a generator of this
subgroup that is the class up to ∼Q of an integral Weil divisor D. In other words, each Si ∼Q riD
for some natural number ri; and S ∼Q (

∑
ri)D. By Corollary 3.5, RX/X∨S is f.g. if and only if D

is bss ample and, hence, if and only if RX/X∨D is f.g.
After a finite cover that is etale in codimension 1, we can assume that each Si ∼ riD for the

same natural number ri; and S ∼ (
∑

ri)D. Indeed, if Si ∼Q riD, then it defines a cyclic cover π
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that is etale in codimension 1 such that π−1Si ∼ riπ
−1D [41, конструкция 2.3]. Then we use

induction on i. In addition, we can choose D up to ∼ such that SuppD does not contain all Sj for
j ≥ 1. We are now in the situation of Definition 3.47, and, by Main Lemma 3.43, R = RX/X∨D is
f.g. if L = L

Ss is. This last algebra is of type (RFA)n,d. Hence, if Ss/f(Ss) is birational, then L is
f.g. by our assumption. Otherwise, we use Corollary 3.49. �

Corollary 3.52. (PLF)n holds for a pl contraction X/X∨ if Y = Si = E or Y ⊂ f−1P,
where E is the exceptional locus for X/X∨ and f−1P is the fibre of X/X∨ over P .

Proof. Immediate by the proof of Theorem 3.37 because Y = Ss is a point whenever it is
birational/f(Y ). But if Y is a point, any subalgebra of RY/P D = k• is f.g./k (and is quasi-
isomorphic to a divisorial algebra whenever it is nontrivial). �

For example, the latter case in the proof applies to Example 3.38 even if f is not a pl contraction
and is not birational.

However, even if Y is a curve, a subalgebra L ⊂ RY/f(Y )D need not be divisorial in general
(cf. (1) and (2) in Example 4.18). Thus, further investigations are needed to specify restricted
subalgebras. We do this in Section 4.

Example 3.53 (cf. flips of type (6.6.2) in [41]). Let X/X∨ be a pl contraction with respect
to S such that

• S is numerically negative/X∨ .

For example, this holds for an elementary pl contraction. Then X/P ⊂ E ⊂ Y = Ss, where
X/P = f−1P is the fibre/P and E denotes the exceptional locus of f .

Indeed, Si · C < 0 for any curve C/P and for each Si. Hence, if such a curve C/P exists, then
C ⊂ Y , and s ≤ n − 1, where n = dim X. More precisely,

(DPT) s ≤ n − dim E ≤ n − dim X/P . Moreover, s = n − dimE holds only if E = Y ; and
dim E = dim X/P holds only if E = X/P .

Thus, if E �= ∅ and s = n−dim E ≤ n−1, then RX/X∨S is f.g. by Corollary 3.52. In particular,
elementary pl flips exist under this assumption. For example, this holds if s = n − 1 and f is not
an isomorphism.

Another trivial case is when f : X → T is an isomorphism. Then any divisorial algebra RX/T D
is f.g. for a Q-Cartier divisor D by Corollary 3.29. Our restriction arguments apply again to this
case in the last Example 3.53 because the restrictions are surjective.

Example 3.54. The same arguments apply to any toric contraction (X/T, S) provided that

• X is Q-factorial, and

• X/T is birational and extremal, that is, ρ(X/T ) = 1;

S =
∑

Si denotes the invariant divisor, where the Si are the invariant prime divisors and 1 ≤ i ≤
dim X + 1 = n + 1 (cf. Theorem 6.4 and the conjecture after it in [43]). We order the Si so that
those with 1 ≤ i ≤ s are the only divisors that are numerically negative/T . It is known that the
exceptional locus E of X/T is then also invariant and, thus, is of the form E =

⋂
1≤i≤s Si with

s ≤ n − 1, and one of the other divisors, say Sn, is numerically positive/T . Unfortunately, the
contraction may not be pl with respect to S− =

∑
1≤i≤s Si since the pair (X,S−) may not be

divisorially log terminal, having singularities along log centers. However, we can eliminate all these
after a finite covering (even in the toric category) using the positive Sn and get a pl contraction.
Then Example 3.53 implies that S− is bss ample or, equivalently, that RX/T S− is f.g. This gives
also a construction of toric flips (more general than in [39]), or it would be better to say flops.
Finally, the termination of toric log flips implies the existence of all toric log flips.

This is the best we can do using divisorial algebras.
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4. FINITELY GENERATED pbd ALGEBRAS

This section focuses on N-graded OZ -algebras over a normal algebraic variety Z. We again
consider the local case near P ∈ Z.

Definition 4.1. We say that an N-graded OZ -algebra L =
⊕

i≥0 Li ⊂ k(X)• is a (coherent)
functional algebra if each homogeneous piece Li of degree i is a coherent OZ -submodule Li ⊂ k(X),
where X/Z is a proper morphism. We always assume that L0 = f∗OX or OZ if f : X → Z is
a contraction.

In a slightly more abstract form, we have:
Proposition 4.2. For any functional algebra L,

• L is commutative;
• L is integral, that is, has no zero divisors;
• the homogeneous field of fractions of L has finite type over k(Z); and
• each Li is a coherent OZ-module, and L0 = f∗OX is the integral closure of OZ in the

homogeneous field ; thus, L0 = OZ if k(Z) is algebraically closed in the homogeneous field.

Conversely, each N-graded OZ-algebra with these properties is a functional algebra.
Proof–Explanation. The homogeneous field of fractions of an integral graded algebra L is

a field L such that L is a graded subalgebra of L•; each element (function) of L is a fraction l/l′,
where l, l′ ∈ Li have the same degree i and l′ �= 0. For a functional algebra L, it is a subfield of
k(X) and is of finite type over k(Z). Thus, the properties of L are immediate from the definition.

Conversely, every integral graded algebra has a homogeneous field of fractions L. It has an
inclusion L ↪→ L• given by fractions:

Li ↪→ L defined by li �→
li

ti/d
=

lil
i/d
m

l
i/d
n

,

where, for a nontrivial algebra L, d | i, d = gcd{i | Li �= 0}, and t = ln/lm with n − m = d,
0 �= ln ∈ Ln, 0 �= lm ∈ Lm. For a trivial algebra, we take t = 1.

Since L has finite type over k(Z), it follows that L = k(X) for a normal algebraic variety X,
and we can assume that X/Z is proper. Then L0 = f∗OX .

Note that any OZ -subalgebra of finite type of k(X) is coherent since OZ is Noetherian. We
give a more explicit form soon (see Proposition 4.15). �

If X/Z is birational, then a coherent OZ -submodule Li ⊂ k(X) = k(Z) is locally a submodule
of OZ up to a nonzero multiple, and is thus known as a fractional ideal sheaf. For some classes
of algebra, the coherent property is itself nontrivial and actually equivalent to quasicoherent (even
slightly weaker, equivalent to locally generated; see Example 4.12 and Remark 4.20 below). In
birational geometry, this problem frequently means that a divisorial sheaf is independent of a good
or “sufficiently high” model (cf. Examples 4.48, 4.47 and Proposition 4.46; see also [14]).

Definition 4.3. Let L =
⊕Li be an N-graded algebra and I be a natural number. The Ith

truncation of L is the algebra L[I] =
⊕

I|i Li. Our convention is to give elements the same degree
(although we sometimes follow the other tradition and give them degree i/I). A truncation of
a functional algebra is again functional.

Two algebras are quasi-isomorphic if they have isomorphic truncations.
For example, two divisorial algebras RX/ZD and RX/ZD′ are quasi-isomorphic if D′ ∼Q rD for

0 < r ∈ Q; the converse does not hold in general (cf. Example 4.12 and Proposition 4.15(8)).
Example 4.4. Let (X/Z,B) be a Klt log pair with Q-boundary B and relative log Kodaira

dimension l (that is, its log canonical algebra R(X/Z,B) has homogeneous field of fractions of tran-
scendence degree l over k(Z)). Then the effective adjunction of Fujino and Mori [12, Theorem 5.2]
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says that there exists another Klt log pair (Y/Z,BY ) of relative dimension l whose log canonical
algebra R(Y/Z,BY ) is quasi-isomorphic to R(X/Z,B). We do not expect isomorphism here in
general (compare Kollár’s remark on the stability properties of f∗ωm

X/Z [28, p. 362, (ii)]). Thus,
we usually consider log canonical algebras up to quasi-isomorphism. In particular, this allows us
to reduce the f.g. of such algebras to the case when K + B is big/Z [12, Corollary 5.3]. However,
g.a.g. (Definition 3.17) is more subtle, especially, when l ≤ 0 (cf. Example 3.14).

Example 4.5. Let L be the graded k-algebra

Li =

{
kxi/2 for i even,
kεi for i odd,

with xixj = xi+j, εix
j = εiεj = 0.

Then L[2] is isomorphic to k[x], and so is f.g., in fact generated by x = x1. But L itself is not f.g.
Note that L is not integral, in particular, not functional.

Theorem 4.6 (Truncation Principle). Quasi-isomorphism preserves f.g. of functional alge-
bras.

Proof. It is enough to prove this for a truncation L[I] ⊂ L. If L is f.g., it is clear that L[I]

is also f.g.: if L is generated by s1, . . . , sm, then L[I] is generated by the monomials of degree I in
these.

Conversely, assume that L[I] is f.g. To prove that L is f.g., it is enough to prove that it is of
finite type as a L[I]-module. Now

L =
⊕

0≤r≤I−1

Lr, where Lr =
⊕

i≡r mod I

Li,

and each Lr is isomorphic to a coherent OZ -submodule of L[I]: indeed, we can assume that Lr �= 0.
Then there is some 0 �= s ∈ Lr of degree i ≡ r, and the multiplication x �→ sI−1x is an inclusion
Lr ↪→ L[I]. Thus, Lr is of finite type by the Noetherian property. �

Example 4.7 (blowup of an ideal). Let I ⊂ k(Z) be a fractional ideal, that is, up to a
multiple, a coherent OZ -ideal I ⊂ OZ . It generates a functional algebra S = S(I), with Si = I i =
im{I⊗i → OZ} ⊂ O⊗i

Z = OZ (see Example 3.12). This algebra is always f.g. and its projective
spectrum σ : ProjZ S → Z is the blowup of Z in I or in its subscheme. It is a projective birational
morphism, possibly not small: any projective birational morphism to Z can be obtained in this
form.

If I = OT (f(D)) for a birational contraction f : X → T = Z as in Example 3.15, the corre-
sponding tensor algebra S(I) is a subalgebra of the flipping algebra FRX/T D = RT/T f(D), and is
a proper subalgebra in many interesting cases. Indeed, for integral D, FRX/T D = A(I) = S(I)∨∨

is the reflexive hull of the tensor algebra (called the symbolic power algebra in [27, Remark 4.3]).
If this last algebra is f.g., its Proj is a small contraction: namely, the D-flip X+/T . However, if D
is not Cartier on X+, the blowup in I is bigger, and even divisorial if X+ is Q-factorial.

Blowups in ideals have other drawbacks: they can give nonnormal varieties, which are outside
our category. This also concerns other functional algebras, and can be improved in terms of
functional algebras.

Example 4.8 (integral closure). Let L be a functional algebra. Then L =
⊕Li with

Li =

{
a ∈ k(X)

∣∣∣∣∣ am + l1a
m−1 + . . . + lm−1a + lm = 0

for some elements lj ∈ Lj
i

}
,

where Lj
i denotes the product OZ -submodule Li . . .Li (j times) in k(X) (or in any other field F ),

is also a functional algebra in k(X)• (or in F•, that depends on F ). We call it the integral closure
of L in k(X) (respectively, in F ). We have L = L. The proof is given in Proposition 4.15 below,
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together with another description of integral closure. We also prove that L is f.g. if and only if L
is; in this case, the projective spectrum morphism ProjZ L → ProjZ L is the normalization. It is
birational in the homogeneous field of fractions for L (see Corollary 4.17). We say that an algebra
is normal if it is integrally closed in its homogeneous field of fractions. By Proposition 4.15, these
are the pbd algebras (up to a truncation).

Example 4.9 (twist). Let A be a coherent OX -algebra. It gives an N-graded OX -algebra A•

with components Ai = A for i ≥ 1 and A0 = OX . We define its twist A[D] by a Cartier divisor D
on X by setting A[D]i = Ai(iD) = Ai ⊗OX

OX(iD). Since A is coherent, the twisted algebra
is finite as a module over RX/XD. Moreover, f∗A[D] is also finite as a module over the algebra
RX/ZD = f∗RX/XD if D is ample/Z.

The algebra f∗A[D] is functional if A does not have torsion, that is, is a submodule of
k(Y )/k(X). For example, if g : Y → X is a proper morphism, then g∗OY is a coherent OX-subal-
gebra of k(Y ) with the natural multiplication. Its twist g∗OY [D] is the divisorial algebra RY/Xg∗D
by the Projection Formula.

However, the most important functional algebras for us are geometric, that is, associated with
divisors.

Definition 4.10 (pbd algebra). Let D• = (Di)i∈N be a system (sequence) of R-b-divisors of
X/Z such that

• Di + Dj ≤ Di+j;
• D0 = 0; and
• each f∗OX(Di) is a coherent OZ -module,

where the sections of the OX -sheaf OX(Di) = OX(�Di�) are

Γ(U,OX(Di)) =
{
a ∈ k(X)

∣∣ (a) + Di ≥ 0 over U
}
,

and the principal divisor (a) is considered as a b-divisor, namely, the Cartier completion of the
ordinary principal divisor (a) [43, Example 1.1.1]. Since X/Z is proper, it is enough to assume
that OX(Di) is coherent. A sheaf of this form is a torsion-free sheaf of rank 1 (a fractional ideal
sheaf) and is integrally closed. We call it a b-divisorial sheaf. Note that f∗OX(D0) = f∗OX . In the
incoherent case, it makes sense to consider the maximal coherent subsheaf OX(Di)coh contained in
OX(Di) (cf. Example 4.12 and the proof of Proposition 4.15 below); for example, this can be 0 as
for Di = −∞.

Then we can associate a functional OZ -algebra

RX/ZD• = RfD•
def=

∞⊕
n=0

f∗OX(Dn)

with the system, which we call a pseudo-b-divisorial algebra (pbd algebra).
Multiplication is well defined since it is for X/X: for a ∈ OX(Di) and b ∈ OX(Dj), ab ∈

OX(Di+j) because (ab) + Di+j ≥ (a) + (b) + Di + Dj (cf. Definition 3.10). The product of two
coherent subsheaves is contained in the coherent subsheaf OX(Di+j)coh.

This definition gives a functorial homomorphism RX/Z( ·) from systems of b-divisors to func-
tional algebras. It is compatible with truncations, where the truncation of D• is the system
D[I]

i = DiI . To preserve degrees, we make the convention D[I]
i = Di for I | i and D[I]

i = −∞
otherwise. We say that two systems having identical truncations are similar. We can replace
identity by linear equivalence of truncations: two systems D• and D′

• are linearly equivalent if
Di = D′

i + i(a) for some 0 �= a ∈ k(X). Linear equivalence induces an isomorphism of algebras
(cf. Lemma 3.24). This is multiplication by ai on Ri and so the identity on the homogeneous
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field of fractions. We always assume this condition for isomorphisms of functional algebras (cf.
Proposition 4.15(8)). This applies to general isomorphisms if we add isomorphisms of systems.

Corollary 4.11. Quasi-isomorphism preserves f.g. (and g.a.g.) of a pbd algebra. In particular,
a pbd algebra is f.g. (and/or g.a.g.) if and only if any truncation is; or, more generally, similar
systems have the same f.g. (and g.a.g.) properties (with the same stable base divisor and locus; cf.
Example 4.29).

Moreover, if

• D• is big/Z (cf. Remark 3.30(1)); and
• R = RX/ZD• is f.g.,

then the algebra is g.a.g. (cf. Corollary 3.31).
Proof–Explanation. F.g. is immediate by Truncation Principle 4.6, and g.a.g. comes from

the following definitions.
A pbd algebra R = RX/ZD• is globally almost generated (g.a.g.) if there are a natural num-

ber N and sections of OX(ND) that generate the algebra RX/XD[N ]
• in codimension 1 except for

a divisorial subset that is exceptional on Y = ProjZ R. However, for pbd algebras, g.a.g. is not
directly associated with the stable base locus (see Example 4.31 below).

A system D• is big/Z if its algebra R is big, that is, k(X)/F is a finite field extension, where F
is the homogeneous field of fractions of R; in particular, F = k(Y ), where Y = ProjZ R whenever
R is f.g. �

Example 4.12. Let D be an R-b-divisor such that

• OX(iD) is a coherent OX -module for all i ∈ N.

Then the system (Di = iD | i ≥ 0) satisfies the assumptions of Definition 4.10 and gives a
b-divisorial algebra RX/ZD = RX/Z(iD | i ≥ 0). The divisorial algebra of Definition 3.10 for some
b-divisor D with DY = D is a particular case. For example, if D is R-Cartier on a model Y/Z of
X/Z, we can take D = D by Proposition 3.20.

Since each OX(iD) =
⋂

g∗OY (iDY ), where the intersection runs over all models g : Y → X/Z
of X/Z, coherence means that this intersection is also coherent; this condition usually fails. Since
OX(iD) is a subsheaf of the coherent sheaf g∗OY (iDY ), it is coherent if and only if it is quasico-
herent, or even locally generated. This holds, for example, when the intersection stabilizes, that is,
OX(iD) = g∗OY (iDY ) over some (sufficiently high) model Y/X where DY is the trace of D on Y
(cf. Examples 4.47 and 4.48 as well as Example 4.31).

For any D, we can replace each OX(iD) by its maximal coherent subsheaf OX(iD)coh; cf.
Remark 6.15(4).

In general, we need infinitely many models, as in the more typical case of Example 4.14 below.
Thus, the difference between (pbd) b-divisorial and divisorial algebras is the minor one that

our divisor is not on X but rather on a different model Y (or on different models Xi). However,
divisorial is not so useful from the f.g. point of view (cf. Example 3.15).

Finally, note that, as for divisors, D′ ∼Q rD for some 0 < r ∈ Q if and only if the corresponding
systems (iD) and (iD′) are similar. The equivalences ∼∗ can be defined for b-divisors as for divisors
(see Definition 3.26): we replace ∗-principal divisors (a) by their b-divisors (a). Thus, an equivalence
D′ ∼Q rD with 0 < r ∈ Q gives a quasi-isomorphism of the algebras RX/ZD and RX/ZD′ provided
that both are functional (cf. Corollary 3.5). For the converse, see Proposition 4.15(8).

Example 4.13. For a b-divisor D as in Example 4.12, the system Di = �iD� defines a pbd
algebra that is actually equal to the b-divisorial algebra RX/ZD. However, for fractional D, the
system Di = �iD� does not usually define a pbd algebra, because it may happen that �iD�+�jD� >
�(i + j)D�, so that multiplication is not defined. This type of rounding up appears later as an
important tool to pass from saturation to f.g. (see Example 4.41 and Section 5 below).
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Example 4.14. Let (Xi/Z,Di | i ∈ N) be a sequence of models Xi/Z of X/Z and their
R-Cartier divisors such that

• Di + Dj ≤ Di+j, where Di = Di.

Then the system (Di) again satisfies the assumptions of Definition 4.10.
In fact, by Proposition 4.15 below, an integrally closed functional algebra L is always of this

form, but is usually not b-divisorial. Moreover, we can assume that each Di is Cartier with
Bs |Di| = ∅ whenever Li �= 0. A system with this property for all Di or for some truncation is
birationally free (b-free). In particular, any b-free system or its truncation is integral, that is, has
integral Di or Di.

We now construct the inverse of RX/Z(−), namely, the functorial homomorphism sending a func-
tional algebra L to its mobile system MovL = M•. But first we make the convention either to
accept −∞ as a divisor and b-divisor, or to define M• only as a truncation, and only for nontrivial L.

Proposition 4.15. For each functional OZ -algebra L in k(X)•, there is a unique system M•

of b-divisors of X/Z with the following properties:

(1) each Mi is b-free and, in particular, integral ;
(2) M• satisfies the assumptions of Definition 4.10 and L ⊂ RX/ZM•;
(3) for any system D•, if L ⊂ RX/ZD•, then M• ≤ D• (each Mi ≤ Di); that is, M• is the

minimal system for which inclusion (2) holds;
(4) L = RX/ZM• and MovL = MovL = M•; thus, L = RX/ZM• if L is integrally closed in

k(X)/Z;
(5) if D• is b-free, then MovRX/ZD• = D•;
(6) L is f.g. if and only if RX/ZM• is f.g.;
(7) RX/ZM• is g.a.g. with E = 0 on each model Y/Z of X/Z; and finally,
(8) quasi-isomorphic algebras give similar systems.

For an incoherent functional algebra L, we say that it has bounded components Li if each Li is
a subsheaf of a functional coherent sheaf (see Remark 4.20). We can define the mobile system of
an algebra L of this type to be that of its maximal coherent subalgebra Lcoh (cf. Definition 4.10
above and Remark 6.15(4) below; see also [14]).

Proof–Construction. We first construct Mi for each Li �= 0 (if Li = 0, then Mi = −∞).
Set

Mi = sup
{
−(s)

∣∣ 0 �= s ∈ Li
}

= − inf
{
(s)

∣∣ 0 �= s ∈ Li
}

= max divisor of poles of s ∈ Li.

Here the sup and inf are taken componentwise, as for b-divisors (the same applies to max and min
in what follows); in particular, the result is not necessarily a principal divisor. Since Li ⊂ k(X) is
a finite OZ -module, locally/Z, there is a finite set of generators 0 �= si ∈ k(X) for Li, and the sup
and inf are in fact the max and min, respectively, for b-divisors (si) considered as functions over
prime b-divisors. In particular, it is a b-divisor, and its trace on each model of X/Z is an ordinary
divisor.

Indeed, the analogous results for ordinary principal divisors imply

• if s ∈ OZ ⊂ k(X), then (s) ≥ 0; and
• for any s, s′ ∈ k(X), (s + s′) ≥ min{(s), (s′)}.

Therefore, for any 0 �= s ∈ Li, since s =
∑

aisi with all ai ∈ OZ ,

(s) =
(∑

aisi

)
≥ min

{
(aisi)

}
= min

{
(ai) + (si)

}
≥ min{(si)}.
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For each 0 �= s ∈ Li, we have Mi ≥ −(s) or (s) + Mi ≥ 0, which gives the inclusion Li ⊂
f∗OX(Mi) of (2). However, for RX/ZM• to be functional, we need it to be coherent. For this, (1)
is enough. Next, Mi is the minimal divisor for which the inclusion Li ⊂ f∗OX(Mi) holds, which
proves (3). Indeed, if the same holds for Di, then Di ≥ −(s) or Di + (s) ≥ 0 for any 0 �= s ∈ Li.
Hence, Di ≥ Mi.

The trace Mi = (Mi)Y on each model Y/Z of X/Z is mobile/Z, provided that Mi �= −∞ or
Li �= 0. (In a certain sense this always holds.) This means that Mov Mi = Mi or, equivalently, the
linear system |Mi| does not have fixed components. This proves (7) with E = 0 on each model of
X/Z. Moreover, Li gives its nonempty linear subsystem Li also without fixed components (in that
sense any functional algebra L is g.a.g. with E = 0).

The linear system Li only depends on Li: every element of

Li = {(s) + Mi | 0 �= s ∈ Li} ⊂ |Mi|

is the restriction to Xi of (s) + Mi, and the general element has no fixed components. Indeed, by
the definitions, BsLi = min Li = 0. If we take a model Xi/Z on which Li is free (which exists by
Hironaka), then Mi is also free on Xi, and Mi = Mi. Indeed, for any other model g : X ′

i → Xi and
general Di = (Di)Xi in Li, the divisor does not contain the center of any exceptional divisor, and
its birational transform D′

i = (Di)X′
i

does not contain any exceptional divisor. Thus,

D′
i = g−1Di = g∗Di, Di = (s) + Mi = Di, and Mi = Mi,

which completes the proof of (1). Hence, the components Li �= 0 of functional algebras are equiva-
lent to linear systems Li without fixed components.

Now Mi+j ≥ Mi +Mj for all i, j, which completes the proof of (2). Indeed, since Li+j ⊃ LiLj,

Mi+j = sup
{
−(s)

∣∣∣ 0 �= s ∈ Li+j

}
≥ sup

{
−(s)

∣∣∣ 0 �= s ∈ LiLj

}
≥ sup

{
−(ss′) = −(s) − (s′)

∣∣∣ 0 �= s ∈ Li and 0 �= s′ ∈ Lj

}
= sup

{
−(s)

∣∣∣ 0 �= s ∈ Li

}
+ sup

{
−(s′)

∣∣∣ 0 �= s′ ∈ Lj

}
= Mi + Mj.

Each Li = f∗OX(Mi), which proves the first statement in (4). Indeed, Li ⊂ f∗OX(Mi) =
f∗OX(Mi) by (2). This last equation corresponds to the completeness of the linear system for
f∗OX(Mi): if 0 �= s ∈ k(X) such that sm + l1s

m−1 + . . . + lm−1s + lm = 0 with all lj ∈ f∗OX(jMi)
or, equivalently, (lj) + jMi ≥ 0, then

m((s) + Mi) = (sm) + mMi = (l1sm−1 + . . . + lm−1s + lm) + mMi

≥ min
{
(l1sm−1), . . . , (lm−1s), (lm)

}
+ mMi

= min
{
(l1) + Mi + (m − 1)((s) + Mi), . . . ,

(lm−1) + (m − 1)Mi + ((s) + Mi), (lm) + mMi

}
≥ min

{
(m − 1)((s) + Mi), . . . , (s) + Mi

}
,

and (s) + Mi ≥ 0. Hence, s ∈ f∗OX(Mi).
On the other hand, each element s ∈ f∗OX(Mi) is integral for Li, which gives the opposite

inclusion f∗OX(Mi) ⊂ Li. The linear systems Li and |Mi| induce a morphism g : ProjZ RX/ZMi =
Y ′ → ProjZ

⊕Lj
i = Y that is finite because it is quasifinite and proper. Hence, the b-divisorial

algebra RX/ZMi, isomorphic to RY/ZA[D], is finite as a module over the product functional algebra
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i ↪→ RY/ZD (under the above isomorphism) by Example 4.9, where A = g∗OY ′ = h∗OXi ,

h : Xi → Y , and OY (D) = OY (1) or Mi ∼ h∗D with very ample D on Y/Z. Indeed,
⊕Lj

i
∼=

RY/ZD for all degrees i � 1 because Li is isomorphic to e∗OY (1), e : Y → Z. In particular, each
s ∈ f∗OX(Mi) is integral because, by the Noetherian property, the chain of

⊕Lj
i -submodules

(1) ⊂ (1, s) ⊂ . . . ⊂ (1, s, . . . , sm−1) = (1, s, . . . , sm−1, sm)

terminates.
We have MovL ≤ M• by (3) since RX/ZM• = L. Conversely, M• ≤ MovL by (3) again

because L ⊂ L implies M• = MovL ≤ MovL. This completes the proof of (4).
(5) follows by construction: a b-free divisor is the minimal one giving any linear system.
If L is f.g., by Truncation Principle 4.6, we can assume that it is generated by L1. In addition,

we can assume that RX/ZM1 gives the normalization ProjZ RX/ZM1 of Y = ProjZ L in k(X).
Then L = RX/ZM• = RX/ZM1 up to a finite number of components (by normality for high
multiples of a very ample divisor). Hence, RX/ZM• is a finite module over RX/ZM1. But in turn,
this last algebra is a finite L-module by Example 4.9 and the above arguments. Hence, RX/ZM•

is also a finite L-module and is f.g. by the Hilbert basis theorem.
Conversely, suppose that RX/ZM• and f∗OX(M1) generate the algebra; in particular,

RX/ZM• = RX1/ZM1. Then each Li defines a finite morphism Y = ProjZ RX1/ZM1 → Yi =
ProjZ

⊕Lj
i . Moreover, the inclusions Lj

i ⊂ Lij define finite morphisms Yij → Yi. However, this is
only possible under a stabilization: Yij

∼= Yi for some i � 1 and all j ≥ 1. This implies that L[i] is
f.g. because Li

∼= e∗OYi(1) generates Lij for all j � 1, and completes the proof of (6).
Finally, suppose that algebras L and L′ are quasi-isomorphic, that is, isomorphic up to a trun-

cation. Since we assume that the isomorphism induces the identity on their homogeneous fields
of fractions, each nontrivial Li is isomorphic to L′

i under a multiplication t �→ sit for a unique
0 �= si ∈ k(X). Since this is a homomorphism of algebras, sisj = sij. Then we can find sd ∈ k(X)
(even if Ld = 0) such that each sid = si

d, where d is the gcd of j with Lj �= 0. This implies the
linear equivalence M• ∼ M′

• = MovL′ and completes the proof of (8). �
On the way we have proved the following two corollaries:
Corollary 4.16. L is f.g. if and only if its mobile system M• is b-divisorial up to a truncation:

there exists a natural number I such that MiI = iMI for all i ≥ 1.
Corollary 4.17. If L or L is f.g., the operation of taking projective spectrum induces the

normalization ProjZ L → ProjZ L of ProjZ L in k(X). In particular, if it is birational, it is the
normalization of ProjZ L.

By Proposition 4.15(6), it is enough to consider pbd algebras to establish the criterion of
Theorem 4.28 for f.g. By Corollary 4.16, most pbd algebras are not f.g.

Example 4.18. Let C/C be a curve considered locally. In either of the following cases, the
pbd algebra RC/CD• is not f.g.:

(1) D• = (−P,−P, . . . ,−P, . . .);
(2) D• = (P, 22P, . . . , n2P, . . .).

The algebra in (2) is not f.g. because its mobile system grows too fast.
Definition 4.19. We say that a functional algebra L is bounded by a b-divisor D of X if L is

a subalgebra of RX/ZD. We will see in Proposition 4.22 that it is equivalent for L to be bounded
by a divisor.

Remark 4.20. In particular, each component Li is bounded, that is, a subsheaf of a b-diviso-
rial sheaf f∗OX(iD) (cf. Example 4.12), provided that f∗OX(iD) is coherent, equivalently, locally
bounded and generated.
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Example 4.21 (restricted algebra). Comparing the two Definitions 3.41 and 3.47, we see that
in either the restriction to Y of the divisorial algebra RX/ZD is bounded: RX/ZD

Y
⊂ RY/ZD

Y
.

Moreover, in this inclusion, we can replace D by its b-divisor D = D, and D
Y

by D
Y

= D
Y
.

See 7.2 for fixed restriction of b-divisors.
In particular, each restricted algebra of type (RFA)n,d (Definition 3.47) is bounded. This is

a good sign, but not surprising because it holds for any bounded algebra (cf. Corollary 4.27).
Proposition 4.22. Let L be a functional algebra and M• = MovL be its mobile system. Then

L is bounded if and only if any one of the following holds:

(1) L is divisorially bounded; moreover, there exists a Cartier divisor D on X such that L ⊂
RX/ZD = RX/ZD if X/Z is projective.

(2) The characteristic system (Di) = (Mi/i) is bounded ; that is, there exists a b-divisor D such
that all Di ≤ D.

(3) The algebra is convergent; that is, the limit

D = lim
i→∞

Di

exists, where we consider only Di �= −∞.

Addendum 4.22.1. In (3), the limit D satisfies

(MXD) each Di = Mi/i ≤ D; and
(BSD) all the Di are supported in a b-divisor, that is, SuppDi ≤ S for a fixed reduced

b-divisor S. (Here we set Supp(−∞) = 0.)

Thus, to say that an algebra is bounded restricts its characteristic divisors Di in two ways: in
multiplicities and in supports.

Lemma 4.23. Let M be an R-b-divisor that is b-nef/X and H be an R-Cartier divisor on X
such that MX ≤ H. Then M ≤ H.

In particular, this holds if M is b-semiample.
Proof–Explanation. In general, we say that an R-b-divisor M is b-nef /Z (or b-semipositive)

if it is R-Cartier and nef, that is, there is a model Y/Z of X/Z such that

• MY is an R-Cartier divisor on Y and is nef/Z, and
• M = MY .

b-semiample (see Section 3, after the proof of Corollary 3.5) implies b-nef; numerically b-semineg-
ative is defined similarly.

For the lemma, we need to prove that H − M is effective. This is immediate by Negativity
Lemma 3.22 because H−M is numerically b-seminegative/X and (H−M)X = H−MX ≥ 0. �

Lemma 4.24. Let M• be a system of R-b-divisors satisfying

Mi + Mj ≤ Mi+j

(compare Example 4.14). Then the system (Di) = (Mi/i) has the following properties:

• convexity Di+j ≥ (iDi + jDj)/(i + j) for all i, j; thus,
• arithmetic monotonicity Dij ≥ Di; and
• convergence sup{Di} = limi→∞Di; in particular, D• is convergent if and only if it is bounded

from above. In this case, all the Di have common support as in (BSD) of Addendum 4.22.1.

Caution 4.25. We should really write lim sup rather than lim; thus, to be more precise, we
make the convention that we omit all Di = −∞ in the sequence! The limits are taken component-
wise and are not necessarily uniform (cf. Remark 5.8(2)). The limit itself may not be a b-divisor
(cf. (BSD) of Addendum 4.22.1).
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If M• is a b-free system, that is, M• = MovL for a pbd algebra L = RX/ZM•, then, by
arithmetic monotonicity, L has subalgebras

Li = RX/Z(jMi/i)′,

where (jMi/i)′ is the system (jMi/i) with jMi/i replaced by −∞ whenever i � j. The algebra
is quasi-isomorphic to a (b-)divisorial algebra RX/ZMi and is bounded by RX/ZMi/i. The total
algebra L is an inductive limit limi|j Li for the inclusions Li ⊂ Lj with i | j. From this point
of view, it is pseudo-b-divisorial but not b-divisorial since the limit of b-divisors does not always
exist, and, if it exists under the convergence of the lemma, its algebra may be different from L
(even up to quasi-isomorphism, cf. Example 4.18(1)), or worse, may not be defined (that is, not
coherent). The only case when the inductive limit is well defined as a b-divisorial algebra up to
a quasi-isomorphism is when it stabilizes, that is, L is quasi-isomorphic to Li for some i � 1 (cf.
Limiting Criterion 4.28 below). This means f.g.

Proof of Lemma 4.24. The convexity means

Mi+j = (i + j)Di+j ≥ iDi + jDj = Mi + Mj .

Thus, by induction on j,

Dij ≥ (i(j − 1)Di(j−1) + iDi)/ij ≥ (i(j − 1)Di + iDi)/ij = Di.

It is enough to prove the convergence componentwise, that is, for a numerical sequence Di. More-
over, it follows from the existence of D = limi→∞Di and from its upper bound (cf. Proposi-
tion 4.22, (MXD)), that is, for all i,

Di ≤ D,

where in the limit we consider only Di �= −∞, but the limit can be +∞. The case when all
Di = −∞ is trivial.

Otherwise, by monotonicity, if d is the gcd of the indices i with Di �= −∞, then all Dj �= −∞
with d | j � 1 and all Dj = −∞ with d � j. Truncating by d, we can assume that Di �= −∞ for all
i � 1.

Again by monotonicity, we have an increasing subsequence Dij for Di �= −∞. It converges to D
that is a real number if the sequence is bounded from above, or to +∞. Thus, we have a convergent
subsequence Dij → D.

This gives the required limit. For any ε > 0, there exists j ≥ 1 such that Dj > D − ε/2 (or
> 2ε if D = +∞), and all Di �= −∞ with i ≥ j. Then, for all i � 1, i = jq + r with j ≤ r ≤ 2j,
0 < jq, and

Di ≥
jq

i
Djq +

r

i
Dr ≥ jq

i
Dj +

r

i
Dr >

jq

i

(
D − ε

2

)
+

r

i
Dr > D − ε

(or > jq
i 2ε + r

iDr > ε). Thus, lim infi→∞Di ≥ D.
Since this holds for any convergent subsequence, limi→∞Di exists, is equal to D, and by arith-

metic monotonicity we have the inequality Di ≤ D.
Finally, to find the common support S of the b-divisors Di, we can again assume that Di �= −∞

for all i � 1, or say, for all i ≥ j ≥ 1. Then, as above, for all i � 1,

Di ≥
jq

i
Dj +

r

i
Dr,

where j ≤ r ≤ 2j. On the other hand, if the characteristic system is bounded by D, then all Di ≤ D.
Thus, for all i � 1, SuppDi is in the union of SuppD and of all SuppDr. (If D ≥ Di ≥ D′, then
SuppDi is in the union of SuppD and SuppD′.) Taking the union of SuppDi not included in the
i � 1 gives S. �
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Proof of Proposition 4.22. Let L be an algebra bounded by a b-divisor D. Then, by Propo-
sition 4.15(3), each Mi ≤ iD, which implies (2). Conversely, (2) together with Proposition 4.15(2)
imply the inclusion L ⊂ RX/ZD, provided that D satisfies the coherence of Example 4.12. In fact,
we can choose the required D as the completion D, where D is a Cartier divisor on X such that
D ≥ DX . Moreover, such D exists among the hyperplane sections of X/Z.

Thus, each (Mi)X ≤ (iD)X = i(DX) ≤ iD. Hence, each Mi ≤ iD = iD by Lemma 4.23, which
implies (1) and boundedness.

Finally, by Lemma 4.24, (2) is equivalent to (3) and Addendum 4.22.1 with a b-divisor D. �
Corollary 4.26. Quasi-isomorphism preserves boundedness of algebras. The corresponding

characteristic limit satisfies D′ ∼Q rD for some positive r ∈ Q (cf. Corollary 3.5).
Proof. Immediate by Proposition 4.15(8) and Proposition 4.22(2),(3). �
Corollary 4.27. The restriction of a bounded algebra is also bounded (provided it is well

defined).
Proof–Explanation. Immediate by Proposition 4.22(1) because L

Y
⊂ RY/ZD

Y
. The ex-

istence of a Cartier divisor D such that D
Y

is well defined follows from the proof of Proposi-
tion 4.22(1). Indeed, L

Y
is well defined if Y ⊂ X is not contained in the poles of any 0 �= s ∈ L.

We then say that Y is in general position with respect to L or L is in general position with respect
to Y (cf. Definitions 3.41 and 3.47). Equivalently, the positive component of each b-divisor Mi in
MovL or of its characteristic system does not contain Y . The same should hold for the limit D.
Then we can find D ≥ DX such that its positive component does not contain Y . �

Note that the restriction D
Y

is usually not well defined even on a subvariety Y = Si of a nor-
mal ladder (see Definition 3.39), even if L is considered up to a quasi-isomorphism or the limit
limi→∞Di = D up to similarity. This is because D may have irrational multiplicities along Y
(cf. Section 9, Corollary 9.20). However, in Mixed restriction 7.3, we introduce a certain type of
restriction

Y
for which limi→∞Di Y

exists, provided that L is bounded. The limit does not usually
commute with the restriction (actually, it semicommutes by Lemma 4.23; that is, the limit of the
restriction ≤ the restriction of the limit; cf. the b-nef property of Dm in Example 4.30 below) and
is formal but, nonetheless, useful (cf. Proposition 9.13, (BWQ)).

Theorem 4.28 (Limiting Criterion). A functional algebra L is f.g. if and only if the limit
D = limi→∞Di stabilizes, that is, D = Di for some i � 1.

Under either assumption, the limit D is a b-semiample Q-divisor ; the algebra and its charac-
teristic system are bounded.

Proof. Immediate by Corollary 4.16 and the arithmetic monotonicity of Lemma 4.24. Note
that stabilization is preserved under similarity of systems.

In general, stabilization does not mean that D = Di for all i � 1. However, this holds up to
a truncation, essentially by the above monotonicity (cf. Corollary 5.13). �

By Example 4.18(1), for an algebra to be f.g., it is not sufficient that its limit D is a b-semiample
Q-divisor.

Example 4.29. Let D• be a bounded system of R-b-divisors associated with a pbd algebra (see
Definition 4.10); that is, there exists a b-divisor D′ such that all Di/i ≤ D′ (cf. Proposition 4.22(2)).
Then, by Lemma 4.24, the characteristic system Di/i has a finite limit D = limi→∞Di/i. The pbd
algebra is also bounded and has a characteristic limit Dm def= limi→∞Mi/i ≤ D. Thus, we have
a decomposition

D = Dm + De,

where De is effective, the fixed part of D•. We say that De is the stable base b-divisor ; its support
is the stable base b-locus. We call their traces on X the stable base divisor and stable base locus.
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Example 4.30. We now discuss the case of b-divisorial algebras. Let D be an R-b-divisor as in
Example 4.12. Its characteristic limit is the characteristic limit of its algebra RX/ZD, that is, Dm def=
limi→∞Di. This exists because RX/ZD is bounded by itself, and Dm ≤ D by Proposition 4.15(3)
(but not always = D). Thus, we have a decomposition

D = Dm + De,

where De = D − Dm ≥ 0, and, if algebra RX/ZD is nontrivial (e.g., D is effective up to ∼Q or
big/Z), then Dm is the maximal pseudo-b-semiample part (or b-divisor) of D (or maximal pbs
ample part of D for short), and De is the fixed part of D. Indeed, the b-semiample part of D is
a b-semiample R-b-divisor D′ ≤ D, and D′ = Dm if D′ ≥ Dm. A pseudo-b-semiample divisor is a
limit of these (see [34, разд. 8]). In particular, D = Dm itself is pbs ample if De = 0.

This generalizes the decompositions of Remark 3.30. Indeed, if D = Dm + E is as in the
remark, then Dm = Dm

X for some b-semiample R-b-divisor Dm. Thus, if we take D = Dm + E,
then D = DX , Dm = Dm

X , and E = De.
In general, Dm is not always b-semiample. However, it is b-nef whenever it is b-R-Cartier, i.e.,

Dm = Dm for an R-Cartier divisor Dm on a model Y/Z of X/Z. This follows from the formal
fact that, on a good model Y , the mixed restriction Dm

C
to a generic curve is ≥ limi→∞(Di C

),
although it may not commute with the limit (cf. Lemma 4.23).

If RX/ZD is f.g., then Dm is b-semiample by Limiting Criterion 4.28 (cf. Remark 3.30); moreover,
Dm is then a Q-b-divisor. However, g.a.g. can fail even if D is big/Z because Lemma 3.19 does not
hold for any prime b-divisor E (see Example 4.31 below). The latter is related to saturation, as we
discuss below.

We do not expect f.g. for an arbitrary b-divisor D, even in the situation of Remark 3.30(2) (cf.
Theorem 3.33). This can again be attributed to saturation (cf. Conjecture 4.39 and Example 4.35
below).

Example 4.31. Let D be a nonzero effective Weil R-divisor on X considered as a b-divisor
and dim X = n ≥ 2. Then the system iD satisfies the coherent assumptions of Example 4.12
with OX(iD) = OX for all i but does not stabilize. That is, for any model g : Y → X of X,
g∗OY (iDY ) �= OX = OX(iD) for i � 0. Thus, D has mobile part Dm = 0 and fixed part De = D;
the algebra is f.g. and g.(a.)g., but with nontrivial stable base divisor.

Proof of Corollary 3.29. Immediate by Corollary 4.11 for Q-divisors; and g.a.g. holds with
empty base divisorial locus or E = 0 (cf. Proposition 4.15(7)).

If D is an R-divisor that is ample/Z but not a Q-divisor, then RX/ZD is never f.g. (cf. Stupid
Example 3.16). Indeed, since D = D is (b-semi)ample and RX/ZD = RX/ZD is f.g., D = Dm is
a Q-divisor by Example 4.30. �

4.32. Saturation of linear systems. Saturation can sometimes be explained in terms of
sheaves and their algebras. However, in the situations where we need it in an essential way, a better
explanation (and arguably the only possible explanation) uses divisors and linear systems. Let D
be an R-Weil divisor on X/Z. We recall that its linear system is the set

|D| = |D|X/Z =
{
D′ ∣∣ D′ ≥ 0 and D′ ∼ D/Z

}
.

In its local version over a point P ∈ Z, |D| is defined up to the equivalence relation that identifies
divisors D′ that are equal over a neighborhood of P . Most important for us is the decomposition
of D into mobile and fixed parts (see Conventions 1.14).

Similarly, for any R-b-divisor, we can define R-b-divisors MovD and FixD, the mobile and fixed
parts (or components) of D (or of its linear system |D|, or sheaf f∗OX(D) ⊂ k(X)); for the definition,
see the construction of Proposition 4.15. By definition, (MovD)Y ≤ Mov(DY ) on any model Y/Z
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of X/Z. However, if the sheaf OX(D) is coherent and stabilizes on passing to higher models as in
Example 4.12, then, by Proposition 4.15(1),(4), we have the following stabilization on a sufficiently
high resolution Xhr: there is a model g : Xhr → Z of X/Z such that f∗OX(D) = g∗OXhr

(M), where

M = (MovD)Xhr
= Mov(DXhr

), MovD = M, Bs |M | = ∅,

and |M | + FixDXhr
= |DXhr

| = |D|Xhr
.

(However, see Example 4.31.)

Definition 4.33. Let D and C be R-divisors on X. We say that D is saturated with respect
to C or C-saturated if M = Mov�D + C� ≤ D. By convention, Supp(−∞) = ∅, and the condition
holds if |�D + C�| = ∅, i.e., M = −∞. There is also nothing to check if �D + C� ≤ D.

We can attribute the same saturation to the linear system |D|, or even to any (incomplete)
linear system, as well as to a functional sheaf F ⊂ k(X). In this last case, we take D = MovF .
Moreover, if F = f∗OX(D), then C-saturation of D implies the same for F (cf. Remark 4.34(1)
below).

For R-b-divisors D and C, the saturation of D with respect to C or C-saturation means the
C = CXhr

-saturation of D = DXhr
on any sufficiently high models Xhr/Z of X/Z. This means that

there is a model Y/Z of X/Z such that saturation holds for any model Xhr/Z that is also /Y .
For asymptotic saturation, we consider a system D• of R-b-divisors (e.g., a characteristic system

Di = Mi/i). This system is asymptotically saturated with respect to C or asymptotically C-saturated
if there exists a natural number I, the saturation index, such that, for all natural numbers i, j with
I | i, j and on any sufficiently high model Xhr/Z, the decomposition into mobile and fixed parts
satisfies

Mov(�jDi + C�Xhr
) ≤ j(Dj)Xhr

(cf. Remarks 4.34(2),(3) below).
A functional algebra is asymptotically C-saturated if this holds for its characteristic system D•.

Moreover, a pbd algebra associated with a system M• is asymptotically C-saturated if this holds
for its characteristic system (Di = Mi/i) (cf. Remark 4.34(1)).

Finally, we say that an R-b-divisor D is asymptotically C-saturated if this holds for its charac-
teristic system (Di = D) (cf. Example 4.12). Even if D = D is a Cartier b-divisor, we still need
to run through all sufficiently high models Xhr/Z (cf. Example 4.35 below). The point is that we
have no universal Xhr/Z unless the b-divisorial algebra of D is f.g. (cf. Remark 4.34(2)).

Remarks 4.34. (1) It is enough to verify the inequality

M = Mov�D + C� ≤ D

over �D + C� > D, that is, to check that multDi M ≤ multDi D for any prime divisors Di with
�multDi D + multDi C� > multDi D. The same holds for the other saturations.

This is equivalent to Mov�D + C� ≤ Mov D. In most applications, D is mobile, or even free.
Then Mov D = D and saturation is equivalent to Mov(D + �C�) = Mov�D + C� ≤ Mov D = D.
Thus, if in addition �C� ≥ 0, then D ≤ Mov(D + �C�) ≤ D, and Mov(D + �C�) = D or, in terms
of linear systems,

|D + �C�| = |D| + �C�,

where �C� = Fix(D + �C�).
(2) In general, (Mov�j(Di) + C�)Xhr

≤ Mov(�j(Di) + C�Xhr
), but equality does not necessarily

hold. In important cases, equality holds on any sufficiently high model Xhr; this means that
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Mov(�j(Di) + C�Xhr
) stabilizes on all sufficiently high models, but only for the given i, j (cf. Ex-

amples 4.35 and 4.47 below). In applications, however, we need some sufficiently high model Xhr

on which, say, some divisors have normal crossing, and some b-divisors are Cartier (cf. the proof
of Proposition 6.26). But we prefer to consider all sufficiently high models Xhr because, in most
cases, it is easy to verify saturation for all such Xhr by stabilization (cf. Proposition 4.46 below).

The mobile part decreases on passing to higher models. Thus, if Dj is b-R-Cartier over a model
Y/Z of X/Z, that is, Dj = Dj for an R-Cartier divisor Dj on Y , then we do not have to worry about
any sufficiently high model if saturation holds on some model (see Lemma 6.36), for example, if
Dj is b-semiample or Mj = jDj is b-free/Z. This holds for any functional algebra.

(3) By remark (1), the inequality in saturation is equal to the inequality Mov�D +C� ≤ Mov D
for the mobile part and, in turn (cf. Proposition 4.15(3)), to the inclusion

f∗OX(�D + C�) ⊂ f∗OX(D).

The same thing holds for other types of saturation.
If D• is the characteristic system of a functional algebra with mobile system M• and i | j, then,

as in (1) above, asymptotic saturation means that

M = Mov(jDi + �C�) = Mov�jDi + C� ≤ Mov jDj = jDj

with C = CY , Di = (Di)Y , Dj = (Dj)Y on any sufficiently high model Xhr = Y/X, where
iDi = Mov(Mi)Y , jDj = Mov(Mj)Y and both linear systems |iDi| and |jDj | are free (cf. Propo-
sition 4.15(1)). Thus, in terms of linear systems,

|jDi + �C�| = |M | + F,

where M = Mov(jDi + �C�) ≤ Mj = jDj and F = Fix (jDi + �C�). This can be interpreted in
terms of sheaves: namely,

f∗OY (Mi)⊗j/i ⊗OY
OY (�C�) = f∗OY (jDi + �C�) ⊂ f∗OY (jDj) = f∗OY (Mj),

where Mi = iDi and �C� is assumed to be Cartier. However, in most applications, we consider
i � j, and then asymptotic saturation has no sheaf theoretic interpretation (cf. Example 4.35
below) because the integral parts depend on divisors up to a linear equivalence, not up to Q-linear
equivalence (compare Lemma 6.30 below).

(4) Again, if D• is the characteristic system of a functional algebra, then the arithmetic mono-
tonicity of Lemma 4.24 gives the inequalities

Mov(�j(Di) + C�Xhr
) ≤ j(Dj)Xhr

≤ j(Dl)Xhr
≤ j(D)Xhr

with any j | l and limiting divisor D. In fact, this last inequality for D is the most important (cf.
Example 4.41).

(5) For j = i, the asymptotic saturation inequality implies

Mov(�Mi + C�Xhr
) = Mov(�i(Di) + C�Xhr

) ≤ i(Di)Xhr
= (Mi)Xhr

,

which means that Mi = iDi is C-saturated. The same holds for each component Li of a functional
algebra provided that L is asymptotically saturated (cf. the proofs of Theorem 6.19(2), p. 163 and
Theorem 9.9, p. 197).

(6) In general, asymptotic C-saturation does not imply that D• is bounded (cf. Example 5.14);
but this holds for a functional algebra and its characteristic system. By Lemma 4.23, it is enough to
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establish this on any model Y/Z of X/Z, for example, on X itself. Then D• is convergent and has
other properties (cf. (FGA)n in Definition 4.38 and Conjecture 4.39 below). However, we always
consider bounded algebras, as they appear in our applications.

(7) Note also that similarity of characteristic systems is induced by similarity of (Mi = iDi);
e.g.,

• D• ∼ D′
•, where D• = D′

• + (a); and

• truncation means D[I]
• = I(DiI), that is, each D[I]

i = IDiI .

Similarity preserves asymptotic C-saturation for any system D• (see Proposition 9.17 below).
We discuss other properties of saturation below (see Propositions 4.42, 4.50, Lemma 4.44, and

their addenda, Propositions 6.32, 6.34, and 9.17, Lemmas 6.36, 9.16, and 9.23, Corollary 9.19). In
most applications, the saturation is very exceptional, i.e., C or �C� are exceptional on X.

Example 4.35 (exceptional saturation). We say that the saturation of Definition 4.33 is
exceptional/X if it holds for any C that is exceptional on X. Exceptional saturation is the extension
from Weil divisor to Cartier b-divisor that gives the equality OX(D) = OX(D). It usually means
that D is also exceptionally saturated as a b-divisor with Mov D = D. In dimension 1, the
saturation means nothing; cf. Example 4.41, even with a stronger saturation.

In particular, an integral divisor D on X/X is exceptionally saturated; for this, since C is quite
arbitrary, we only need to check the inequality

Mov�Dhr + CXhr
� = Mov(Dhr + �CXhr

�) ≤ Dhr

for a prime divisor D that is not exceptional on X. On Xhr, we can add any effective exceptional
divisor over X to D. This is usually taken for granted in classical algebraic geometry when we work
with Cartier divisors (cf. Lemmas 3.19 and 4.23). Indeed, if D is Cartier, its completion D = D is
saturated: OX(D) = OX(D) and (MovD)X = Mov D = D. This does not hold if D is considered
as a Weil b-divisor (cf. Example 4.31 where D �= 0 but Mov D = Dm = 0).

The sheaf OX(D) is also saturated; for a divisorial sheaf, this means that

OX(D)∨∨ = OX(D)

(or [37, Proposition 2, (iv)]). The divisorial algebra RX/XD is also exceptionally asymptotically
saturated with I = 1. This means that OX(iD) = OX(iD) for each i, where D is the characteristic
limit of this algebra; for an R-divisor D, this holds for some I ≥ 1 if and only if D is a Q-divisor
(cf. Stupid Example 3.16 and Theorem 3.18). Thus, it fails for most R-divisors D, and asymptotic
saturation is closely related to rationality.

This also holds for X/Z, and we can explain exceptional saturation for D/Z and its algebra
RX/ZD in the same style in terms of double dual. However, for divisorial functional sheaves, it has
three different versions, namely: e.g., for birational X/Z,

(f∗OX(D))∨∨ ⊃ (f∗(OX(D)∨))∨ ⊃ f∗(OX(D)∨∨) = f∗OX(D).

In general, for a functional subsheaf L ⊂ k(X), we can take any of these versions. We use the
maximal saturation (f∗L)∨∨ = L (independent of X) or the minimal saturation f∗(L∨∨) = L,
where we take the double dual for OX . Thus, the minimal saturation depends on the choice of X.
However, the maximal saturation corresponds to very exceptional saturation on divisors; that is,
we can add any divisors that are very exceptional on Z. Usually, RX/ZD is not maximally or very
exceptionally saturated, say, if X/Z is birational, because there is a difference between divisorial
and b-divisorial sheaves and algebras. Minimal saturation agrees with exceptional asymptotic
saturation/X, and it holds for any integral or Q-divisor D (only integral in the case of sheaves).
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This does not hold in general for b-divisorial, pbd-divisorial, or functional algebras L ⊂ k(X)•.
But in the cases we are interested in, minimal saturation and exceptional asymptotic saturation
hold over a different birational model Y/Z of X/Z (for this, see prediction models, triples, Adden-
dum 5.12.2, and Conjecture 6.14, (BIR)):

• the flipping algebra of Example 3.15 with Y = X+ = ProjT FRX/T D and the Q-divisor D
(here I = 1 if D is integral);

• the (pre-restriction) algebra RX/T D with Y = ProjT RX/T D and I = 1 of Example 3.40
(cf. proof of Induction Theorem 1.4, p. 134);

• any b-divisorial algebra as in Example 4.12 with a Cartier Q-b-divisor D, on a model Y over
which D = D for a Q-Cartier divisor D on Y ; and

• any f.g. functional algebra L on any model of Y/ProjZ L, by Corollary 4.16.
In this sense, asymptotic saturation is a necessary condition for f.g., but not a sufficient condition
since f.g. also needs certain conditions on X/Z (cf. Remark 3.30(2), Theorem 3.33, Conjectures 3.35
and 4.39, Proposition 4.42, and Remark 4.40(2)). However, asymptotic saturation may help in
finding a model Y on which we expect f.g. to hold. Indeed, if L is exceptionally asymptotically
saturated/Y and f.g., then Proj defines a rational contraction of X to ProjZ L that is a rational
1-contraction on Y ; in particular, apart from a contractible divisorial subset, Y and ProjZ L are
isomorphic in codimension 1 if L is big. In the case of a pbd algebra, it gives the g.a.g. of Dm or
even D• over Y (cf. bss ampleness in Theorem 3.18, where the Q-divisor condition for Dsm can
be replaced by exceptional asymptotic saturation/X; see an example after Proposition 4.54); this
generalizes Zariski decomposition (cf. Example 4.30).

Unfortunately, saturation conditions are no good for induction on the dimension. It is well
known that the usual saturation is not preserved under restrictions that are not surjective; cf.
reasons (2) and (3) in our motivation for introducing (log) canonical saturations below. The same
applies to our saturations for an arbitrary C.

Definition 4.36. A C-saturation is log canonical/X or, more precisely, log canonical over
(X,B), if C = A = AX = A(X,B) is the discrepancy b-divisor of the pair (X,B) for some
R-divisor B on X. In the divisorial case, we take C = AX = −B.

We abbreviate log canonical asymptotic saturation to lca saturation.
Caution 4.37. For another pair (Y,BY ) with a model Y/Z of X/Z, in general AY =

A(Y,BY ) �= A and BY = B(Y,BY ) �= B. Thus, the log canonical saturation can be different
over (Y,BY ).

As usual, AY denotes the restriction divisor of the b-divisor A on a model Y of X. In general,
BY = BY �= BY . The latter is the codiscrepancy of (Y,BY ) on Y , and BY = BY = BY if and only
if (Y,BY ) is a crepant birational transform of (X,B) (cf. Definition 6.9, (CRP)). Then lc and lca
saturations are the same over both models.

By Example 4.18(1), for a nondivisorial algebra, saturation on its own is not enough for f.g. But
we hope that asymptotic saturation works better, especially lca saturation (cf. Conjecture 4.39 and
Example 4.41 below). In view of the applications we have in mind, there are four reasons for this:

(1) the restriction of a flip may be a nonflip, e.g., a semistable flip restricted on irreducible
Y = D = D1, with a = 1 [42, рис. 4(a)] (cf. also the proof of Special Termination 2.3);

(2) log canonical saturation is compatible with restrictions by Kawamata–Viehweg vanishing
(cf. Proposition 4.50);

(3) A is sufficiently effective: e.g., for a Klt pair (X,B), �A� ≥ 0 is exceptional and, at the
same time, grows at least linearly with blowups (cf. Proposition 4.46, (CGR), and (LGD)
for prediction models in Section 5 below); and

(4) A-saturation is well defined (cf. Example 4.47 below).
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Definition 4.38. Suppose that a pair (X/T,B) satisfies

(i) X/T is a contraction;
(ii) (X,B) is Klt;
(iii) −(K + B) is nef and big/T ; and, finally,
(iv) dimX = n.

Conditions (ii) and (iii) mean that (X/T,B) is a weak log Fano contraction (cf. (WLF) in Propo-
sition 4.42).

Then we say that a functional OT -algebra L ⊂ k(X)• or its characteristic system D• is of
type (FGA)n if

(FGA)n the algebra is bounded and lca saturated over (X/T,B).

It is of type (FGA)n(bir) if X/T is birational.
Conjecture 4.39. An algebra of type (FGA)n is f.g./T .
By Limiting Criterion 4.28, an equivalent condition is the stabilization of limi→∞Di for the

characteristic system D• of L. Thus, the system stabilizes if

(LIM) there is a limit D = limi→∞Di (which is finite for nontrivial algebra); and
(LCA) it is lca saturated.

However, we prefer to work with b-divisors (cf. Remark 4.40(5)). Note for this that the sys-
tem D• also satisfies

(MXD) each Di = Mi/i ≤ D by Addendum 4.22.1;
(LBF) each Mi = iDi is b-free by Proposition 4.15(1); and

(AMN) arithmetic monotonicity: for any j | i, we have Di ≥ Dj by Lemma 4.24.

Moreover, one can expect that LMMP in dimension m ≤ n implies (FGA)n (cf. Theorem 3.33).
By Corollary 1.5, the conjecture would imply the existence of log flips in dimension n modulo

LMMP in dimension m ≤ n − 1 (cf. Remark 4.40(6)). This would be an inductive construction of
log flips.

Remark 4.40. Some of the assumptions in the conjecture can be relaxed or modified:
(1) We can replace the contraction X/T by any proper morphism X/Z of normal algebraic

varieties or normal algebraic spaces (certainly), and probably also normal analytic spaces (use the
Stein factorization of X → Z [10, Pt. II, Ch. 2, 3.7]). (Compare Lemma 10.15 and its proof.)

(2) We expect that Conjecture 4.39 also holds for the 0-log pairs (X/Z,B) of Remark 3.30(2)
(cf. Theorem 3.33).

(3) Moreover, Conjecture 4.39 may hold for pairs (X/Z,B) with DX = D = K + B + H, where
H is a nef and big/Z R-divisor; or the same on some crepant model (Y/Z,BY ) of (X/Z,B) for
(Di)X with i � 0. Possibly, K +B+H can be weakened just to log canonical divisor or its positive
multiple on a good (e.g., Klt) model, and even up to numerical equivalence ≡ /Z if it is big (cf.
Example 4.49 below). Note that, in a similar situation, the proof of base point free uses induction
for log canonical divisors of this type, rather than nef divisors on Fano contractions [40, §2].

(4) Everything possibly works for more general gradings, e.g., Nr-gradings (cf. Cox’s rings and
[13, Conjecture 2.14]).

(5) It can also be generalized to worse singularities, that is, when (X,B) is not Klt, B is not
a boundary, and X is nonnormal, or not even seminormal. However, we still need to assume that
B is effective and that the algebra L behaves well (f.g.) or the limit D = limi→∞Di stabilizes near
the locus of log canonical singularities LCS(K +B) (see [41, определение 3.14], Example 4.41, and
Corollary 6.42 below).
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(6) The restriction of a general flip or a pl flip is not necessarily a flip. However, we expect
that (FGA)n−1(bir) = (RFA)n,n−1(bir). For algebras, this means that each normal algebra L of
type (FGA)n−1(bir) up to a quasi-isomorphism is a restricted algebra of type (RFA)n,n−1(bir) as
in Definition 3.47 (cf. proof of Induction Theorem 1.4, p. 134). Then the existence of n-fold flips
would be equivalent to (FGA)n−1(bir).

(7) Finally, if D is big, the stable crepant model (Xst/T,Bst) of (X/T,B) in the conjecture with
Xst/T = ProjT L is isomorphic in codimension 1 to a crepant weak log Fano model of (X/T,B) (cf.
the bss ampleness, Addendum 5.12.2, Example 5.27, and Remark 6.23, as well as Addendum 6.26.2).
For given (X/T,B), the family of such Xst/T should be finite according to Batyrev [4] (cf. canonical
confinement and triples in (BIG) of Conjecture 6.14 below). Moreover, if we replace Klt by the
more precise property of ε-log terminality, then, for all such (X/T,B) and under the big condition,
according to the conjectures of Alexeev and the Borisovs, Xst should be bounded in modulus (cf.
[1, 0.4, (1)] and [5, с. 134, теорема]). One expects the same to hold even without the big condition
(cf. the proof of Theorem 6.19(2), Conjecture 6.14, (CCS), and Remark 6.15(8) below).

Example 4.41 (a Pythagorean dream). Suppose that X = C is a normal algebraic curve and
B =

∑
bmPm is a Klt R-boundary; in other words, each bi ∈ [0, 1). Then any lca saturated/(C,B)

algebra L is f.g., or the limit D = limi→∞Di stabilizes. Note that in this case D =
∑

dmPm = D =
limi→∞Di is a limit of divisors Di = Di =

∑
dm,iPm,i. Equivalently, each dm = limi→∞ dm,i with

dm,i ∈ Q. In particular, stabilization means that each dm is also ∈ Q. This is the point.
All the divisors D and Di are supported in a finite subset of C by Lemma 4.24. Thus, the limit

takes place for the vector of coefficients in Rn (for a divisor supported in F , see DF on p. 141).
On the other hand, the discrepancy

∑
amPm = A = A = −B ≤ 0. Moreover, by Klt, all

am = −bm ∈ [0,−1). In the one-dimensional case, any Xhr = Chr = C. After truncating L, we can
assume that the saturation has index I = 1. Thus, lca saturation gives the inequality

Mov�jDi + A� ≤ jDj for all natural numbers i, j.

In our situation, we can assume that Mov�jDi + A� = �jDi + A� for all i, j � 1.
By RR on curves, this holds unless C is complete, Z = pt., and deg D ≤ 0. Moreover, then

deg D = 0 because we consider the limit only for nonempty linear systems |Mi| = |iDi|. Thus,
deg Di ≥ 0. Hence, D = 0, and we have stabilization by (MXD) (see Addendum 4.22.1). The
stable model in this case is Cst = ProjZ L = pt./Z = pt.

Otherwise, we have the inequality �jDi + A� ≤ jDj or, componentwise, for each Pm and all
i, j � 1,

�jdm,i + am� ≤ jdm,j .

Again by (MXD), this gives, for each Pm and all j � 1,

�jdm + am� = �jdm,i + am� ≤ jdm,j ≤ jdm,

when we take i � j ! By Diophantine geometry, for any real number a = am > −1, any real
number d = dm satisfying

�jd + a� ≤ jd

for all natural numbers j � 1 is rational. (See Cassels [7, Lemma 1A]; take the best upper
approximations, for θ = d; cf. proof of Approximation Lemma 5.15 below. See also Kronecker’s
theorem.) This explains also that positive a = am are also not good (cf. Remark 4.40(5)). However,
A with �A� = 0, if even the total A = 0, does have an effect!

Since dm is rational, for any j � 1 with integral jdm we get stabilization

�jdm + am� = jdm,j = jdm.
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By (AMN), this implies stabilization: each dm,i = dm for all i divisible by some j. Finally, since
the divisors have bounded supports, we get stabilization by a truncation of D•. In particular, this
establishes (FGA)1.

By these arguments, we can generalize f.g. for any effective B assuming that the limit stabilizes
near the LCS(K +B) = {Pm | bm ≥ 1}; that is, dm = limi→∞ dm,i stabilizes at each such point Pm.

For nonnormal C, stabilization near bad singularities means that, up to a similarity, all Di

and D are nonsingular, that is, are supported in nonsingular points of C.
To establish even (FGA)2 is not so simple; this is discussed below after some preparations

(see the proof of (FGA) in Main Theorem 1.7, p. 174). Now we turn to the proof of Induction
Theorem 1.4. For this, we need some results on saturations.

Proposition 4.42. For any effective R-divisor B such that K + B is R-Cartier, any excep-
tional saturation/X implies lca saturation/(X,B).

Thus, (FGA)n implies f.g. of any algebra RX/T D with a Q-divisor D, provided that

(WLF) (X/T,B) is a weak log Fano contraction, that is, (X,B) is Klt and −(K + B) is nef
and big/T

(cf. Theorem 3.33 and Remark 4.40(2)).
Addendum 4.42.1. Any exceptional saturation/X implies the corresponding saturation for

A′ = A(X,B) + E , where E is a reduced b-divisor such that

• EX is supported over SuppAX = SuppB, and
• the A-saturation is integral over E.

Definition 4.43. The fact that asymptotic C-saturation is integral over E means that each
jDi + C is integral over E .

We also need its weak version (see (εA′S) in Proposition 9.13). The asymptotic C-saturation
that is integral weak over E requires only the inequalities in Definition 4.33 under the assumption
that jDi + C is integral over E .

The same applies to other types of saturations for D + C. The weak assumption is void when
E = 0, but the saturation is void when all the inequalities do not satisfy the integral weak assump-
tion.

The proposition applies, in particular, to a flipping algebra FRX/T D. Models of algebras having
exceptional asymptotic saturations are obtained as models for bss ample divisors by a rational 1-
contraction of X. The former (FGA)n algebras are more general, and their models can blow up
some divisors exceptional on X (cf. Remark 4.40(7)). This is the main difference between the
former (FGA) approach and the latter Zariski approach to f.g. algebras.

Lemma 4.44. Let C1 ≥ C2 be divisors and C1 ≥ C2 be b-divisors on X/T . Then C1-saturation
implies C2-saturation, C1-saturation implies C2-saturation, and asymptotic C1-saturation implies
asymptotic C2-saturation.

Addendum 4.44.1. Asymptotic C1-saturation implies asymptotic C′
2-saturation with C′

2 =
C2 + E , where E is a reduced b-divisor such that

• C1 > C2 over E (that is, > over each b-prime component of E); and
• the C2-saturation is integral over E.

For the integral weak asymptotic C′
2-saturation, the inequality C1 > C2 over E is sufficient. The

same holds for the other types of saturation.
Proof. We use two facts:

• C1 ≥ C2 implies that �D + C1� ≥ �D + C2�; and
• C1 ≥ C2 implies the inclusion |�D + C1�| ⊃ |�D + C2�|+E with E = �D+C1�−�D+C2�≥ 0.
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This last fact implies that if |�D + C2�| �= ∅, then |�D + C1�| �= ∅ and D ≥ Mov�D + C1� ≥
Mov�D + C2�. This gives the first statement.

The b-divisorial case and asymptotic saturation follow from the same estimate. C′
2-saturation

follows from two facts:
• we can replace C2 by C2 +

∑
εiEi with 0 < εi 
 1 by the lemma; and

• the effect of this is equivalent to replacing C2 by C′
2.

This last fact follows from equations �d + εi� = d + 1 = �d + 1� for any integer d. �
Proof–Explanation of Proposition 4.42. By any saturation in the statement, we mean

any type of saturation in Definition 4.33: e.g., for a divisor, for a b-divisor, etc.
Since B is effective, the codiscrepancy B = B(X,B) is also effective up to components excep-

tional on X. Thus, there is an exceptional b-divisor C such that C ≥ A = −B; in the divisorial
case, we take C = CX = 0. Then the proposition follows immediately from Lemma 4.44, and
Addendum 4.42.1 follows from Addendum 4.44.1. The statement on RX/T D then follows from
Example 4.35. �

Now we apply this to the following situation.
Example 4.45. Let (X/T,B) and (X/T,B+) be two log pairs such that
• (X,B) is Klt;
• (X,B+) is log canonical;
• B+ ≥ B, or equivalently,

A = AX ≥ A+ = A+
X ,

where A+ = A(X,B+); and
• A+-saturation is integral over the prime b-divisors where (X,B+) is exactly log canonical,

that is, the discrepancy is −1.
Then lca saturation/(X,B), e.g., of Proposition 4.42, implies asymptotic A′-saturation with A′ =
A+ + E , where E =

∑
Ei is a sum of prime b-divisors with discrepancy −1 for (X,B+). Integral

saturation for A+ means that each divisor jDi,hr = j(Di)Xhr
is integral over LCS(Xhr, B

+
hr) (for

crepant (Xhr, B
+
hr)). For example, this holds when each Di is in general position with respect to

each log canonical center of (X,B+) (see (GNP) in Proposition 4.50 below).
Indeed, by monotonicity [41, (1.3.3)], we have B+ = B(X,B+) ≥ B, or equivalently, A ≥ A+;

and A > A+ wherever the discrepancy of (X,B+) is −1. Hence, lca saturation implies A+- and
A′-saturations by Lemma 4.44 and Addendum 4.44.1, respectively.

In general, the b-divisorial sheaf OX(D) may not be a coherent sheaf (see Definition 4.10 and
Examples 4.12–4.14). In our applications, this usually means also a stabilization, that is, the
equality for inclusions OY (DY ) ⊇ OX(D) on a sufficiently high model Y/X (see Example 4.12).
For example, this holds for any R-Cartier divisor D by Proposition 3.20 over any model Y , where
D = D for some R-Cartier divisor D on Y ; the same holds for �D�, but usually not for �D� (cf.
Example 4.13). However, stabilization and even coherence are sometimes unimportant (cf. the
remark on ≤ instead of = in the proof of Proposition 4.50, p. 131, as well as the independence of
the upper bound in the proof of Theorem 5.12, p. 146).

Proposition 4.46. Let D be an R-Cartier b-divisor on X, E be a finite reduced b-divisor, and
C be an R-b-divisor on X such that

(INO) D and C (or just D + C) are integral over SuppE ; and
(CGR) C grows canonically: CXhr

≥ g∗(CY ) +
∑

aiEi for any further resolution g : Xhr → Y
of some (sufficiently high) resolution Y of X, where ai = a(Y, 0, Ei) are the standard
discrepancies.

Then the sheaf OX(�D + C + E�) is coherent and stabilizes (see Example 4.12).
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Proof. Take a sufficiently high resolution Y such that

• D = D for an R-divisor D on Y ;
• (CGR) is satisfied for Y ;
• CY has normal crossing support on Y (a property of all b-divisors on some resolution);
• moreover, the supports of all divisors under consideration have normal crossings; and
• E = EY is a divisor on Y whose prime components are all pairwise disjoint.

It is enough to verify that, for any other model g : Xhr → Y ,

g∗(�D + C + E�Y ) ≤ �D + C + E�Xhr

because then
OY (�D + C + E�Y ) ⊂ g∗OXhr

(�(D + C + E)Xhr
�)

by Proposition 3.20, which even gives the equality as well as the stabilization and the coherence of
OX(�D + C + E�).

Set
�D + C + E�Y = (D + C + E)Y + F,

where F =
∑

fiEi is the fractional part, that is, all fi ∈ [0, 1). Note that (Y, E + F ) is purely log
terminal by (INO), the fact that the E are disjoint, and normal crossings.

Thus, by (INO), because D is Cartier, and by (CGR), we get the inequality

g∗(�D + C + E�Y ) = g∗(DY + CY + EY ) + g∗F = g∗(DY ) + g∗(CY ) + g∗(E + F )

≤ DXhr
+ CXhr

+ g∗(E + F ) −
∑

aiEi

= (D + C + E)Xhr
+ g∗(E + F ) − E −

∑
aiEi.

Since we need to verify the above inequality for integral parts over the exceptional Ei, it is enough
to verify that

multEi

(
g∗(E + F ) − E −

∑
aiEi

)
= multEi

(
g∗(E + F ) −

∑
aiEi

)
< 1

for each exceptional Ei. (For any integer i and real numbers f < 1 and r, the inequality i ≤
r + f implies i ≤ �r�.) But this means that (Y, E + F ) is purely log terminal: A(Y, E + F ) =
A(Y, 0) − g∗(E + F ) has each exceptional multiplicity > −1. �

Example 4.47. A discrepancy divisor C = A = A(X,B) is the typical example when (CGR)
in Proposition 4.46 holds. Indeed,

AXhr
= KXhr

− (K + B)Xhr
= KXhr

− g∗(K + BY ) = KXhr
− g∗(KY −AY )

= g∗AY + KXhr
− KY = g∗AY + A(Y, 0)Xhr

.

Thus, for C = A in Proposition 4.46, we get that OX(�D + A + E�) is coherent.
In particular, for D = 0 and E = 0, the fractional ideal OX(�A�) is always coherent and

stabilizes; the fractional ideal sheaf

JX = J(X,B) = OX(�A�) = h∗OXhr
(�A�Xhr

)

and the functional sheaf

JZ = f∗J(X,B) = f∗OX(�A�) = (f ◦ h)∗OXhr
(�A�Xhr

)

are independent of the sufficiently high resolution h : Xhr → X. If B is effective, JX is the well-
known ideal sheaf of LCS(X,B).
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Example 4.48. Since K = KY + A(Y, 0) over any Q-Gorenstein model Y/Z of X/Z, the
proposition again implies that OX(K) = OX(�K�) is coherent and stabilizes. This is the well-
known invariance of regular differential forms. The same applies to each natural multiple mK, and
the coherent property holds for all m on a universal model, e.g., a nonsingular one. This is also
known for log b-divisors K + B, �K + B� = K + �B� and their multiples: m(K + B),

m�K + B� = m(K + �B�), and �m(K + B)� = m(K + �mB�/m),

where B is a b-boundary [45, Example 1.1.2]. However, the corresponding coherent sheaves may
be different and the proposition may not apply directly (see Example 3.14 and the case with E = 0
in [14]).

The algebra RX/Z(K+B) is log canonical over some model. The same is true for the b-divisors
m(K + B), m�K + B�, and �m(K + B)�; their algebras up to a quasi-isomorphism correspond to
the b-divisors B, �B�, and �mB�/m, respectively.

We can also replace �·� by �·�. Moreover, the system Di = �i(K + B)� defines a pbd algebra.
But it is again log canonical RX/Z(K + B) (cf. Example 4.13).

Example 4.49. A bounded pbd algebra is called pseudo-log canonical if its limit D =
limi→∞Di satisfies DY ∼R r(KY + BY )/Z (or = r(KY + BY ) under an appropriate choice of KY

up to ∼R), where r is a positive real and (Y/Z,BY ) is a log canonical pair that is a model of
X/Z with some boundary BY . In particular, an algebra of this form is log canonically bounded
when r = 1. By the LMMP and [45, Log semiampleness conjecture 2.6], we expect that each log
canonical algebra (see Example 3.14) is also pseudo-log. We expect the converse to hold under lca
saturation (see Remark 4.40(3)). In addition, if (Y,BY ) is Klt and (Y/Z,BY ) is of general type,
then one can replace ∼R /Z by ≡ /Z.

Each nontrivial algebra of (FGA) type is pseudo-log canonical because, after a complement,
we can assume that (X,B+ + εDX) with KX + B+ ∼R 0 and DX ≥ 0 up to ∼R (cf. the proof
of Theorem 3.33) is log canonical, even Klt. One may hope that a similar conjecture on f.g. for
pseudo-log canonical algebras has a better induction than for (FGA) ones. In the latter case, we
use the following property of lca saturation.

Proposition 4.50. Let (X/Z,B) be a pair with B an R-divisor, Y be a prime divisor of X,
and D• be a system of R-b-divisors such that

(GLF) (X/Z,B) is a general log Fano map: −(K + B) is nef and big/Z;

(LCC) Y is a log canonical center: a(X,B, Y ) = −1;

(ASA′) the system D• is asymptotically saturated with respect to A′ = A(X,B) + Y ;
(BNF) each Di is b-nef, in particular, if

(BSA) each Di is b-semiample: Di = Di for a semiample R-divisor Di on a model W/Z of
X/Z (cf. Lemma 3.7); and

(GNP) D• is in general position with respect to Y : for each Di, Y �⊂ SuppDi.

Then the restriction D• Y ν is lca saturated over (Y ν , BY ν ), where ν : Y ν → Y is the normalization
of Y, D• Y ν is the fixed restriction (see the proof and Fixed restriction 7.2 below), and BY ν =
(B − Y )Y ν is the different of B − Y (see [41, §3] and [27, Proposition 16.5]).

Addendum 4.50.1. L ⊂ k(X)• be a functional algebra such that

(ASA′) L is asymptotically saturated with respect to A′; and

(GNP) L is in general position with respect to Y, as is the mobile system N•.

Then L
Y ν is lca saturated/(Y ν , BY ν ). If, in addition, (X,B) is purely log terminal, then L

Y ν is
normal/f(Y ) if L/Z is.
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Addendum 4.50.2. In general, under (ASA′) and (GNP), if L/Z is normal, then L
Y ν is

normal/f(Y ) with respect to the fractional ideal J = JY ν (that we consider as a b-divisorial
sheaf/Y ν ; see Example 4.47); that is, for each mobile component Mi of L

Y ν on any sufficiently
high model Yhr/f(Y ) of Y ν/f(Y ), the complete linear system

|JYhr
(Mi)Yhr

| =
∣∣(L

Y ν )[J ]i
∣∣
Yhr

is associated with the ith component of the twisted fractional ideal L
Y ν [J ] = J(L

Y ν )∩L
Y ν in L

Y ν ,
where J(L

Y ν )i = JYhr
⊗ (L

Y ν )i = g∗JYhr
(Mi) for g : Yhr → Y ν. Hence, L

Y ν satisfies

(NOR) the normal property: if L
Y ν is f.g., then its Projf(Y )(LY ν ) is a normal (geometrically

but not projectively) algebraic variety.

For a log canonical center Y of higher codimension, we need the divisorial part of an adjunction
formula [23, 36].

Addendum 4.50.3. If we assume only that Y is an exceptionally log terminal center [43,
Definition 1.5] (compare (ELT) in Addendum 9.21.1 below), B ≥ 0 near the general point of E,
and A′ = A(X,B) + E, where E is a prime b-divisor with a(X,B,E) = −1 and centerX E = Y,
then lca saturation holds over Y ν with the above A(Y ν , BY ν ) replaced by divisorial Adiv (see the
proof below). Of course, we assume that D• Y ν or L

Y ν are well defined : e.g., each Di = 0 over the
generic point of Y and is b-semiample (see also Fixed restriction 7.2 below).

Proof. Take a log resolution W/Z of (X/Z,B) that is sufficiently high over X and over Y ν ,
and take any natural numbers i and j. Let Yhr ⊂ W be the birational transform of Y on W . By
construction, Yhr is normal, and we have a decomposition Yhr → Y ν → Y , where ν : Y ν → Y is the
normalization. Then the restriction

|�j(Di)W + A′
W �| Yhr−−→

∣∣�j(Di)W + A′
W �

Yhr

∣∣ =
∣∣⌈j(Di)W Yhr

+ (AY ν
)Yhr

⌉∣∣
is surjective, where AY ν

= A(Y ν , BY ν ). Indeed, by adjunction, KY ν + BY ν = (K + B)
Y ν (see [41,

3.1] and [27, Proposition 16.5]). On the other hand, by definition, A = A(X,B) = K−K + B and
AY ν

= KY ν − KY ν + BY ν , where K and KY ν
are canonical b-divisors of X and Y ν , respectively

[45, Example 1.1.3], that is, KW = KW and KY ν

Y ν = KY ν . Hence,

A′
W Yhr

= (AW + Yhr)Yhr
=

(
KW + Yhr − (K + B)W

)
Yhr

= (KW + Yhr)Yhr
−

(
(K + B)

Y ν

)
Yhr

= KYhr
− (KY ν + BY ν )Yhr

= (AY ν
)Yhr

,

where
Y ν = ν∗ ◦

Y
. (In terms of fixed restrictions, this amounts to A′

Y ν = AY ν
; see 7.2 below.)

By normal crossings of supports in the following formula, the roundup �·� commutes with
restriction:

�j(Di)W + A′
W �

Yhr
=

⌈
j(Di)W Yhr

+ A′
W Yhr

⌉
=

⌈
j(Di)W Yhr

+ (AY ν
)Yhr

⌉
.

For surjectivity, it is enough to establish the vanishing

R1h∗OW (�j(Di)W + A′
W � − Yhr) = 0,

where h : W → Z. It is natural to use the Kawamata–Viehweg vanishing for this:

�j(Di)W + A′
W � − Yhr = �j(Di)W + AW + Yhr� − Yhr

= �j(Di)W + AW � = �j(Di)W + KW − r∗(K + B)�
= KW + �j(Di)W − r∗(K + B)�,
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because Yhr and KW are integral and AW = KW − r∗(K + B), where r : W → X is the resolution.
Now we get the required vanishing since (Di)W is nef/Z by (BNF) and −(K + B) is nef and big/Z
by (GLF). The former holds on W over any model where Di = Di for nef Di. (Vanishing holds for
R-divisors. However, in our applications, we only need Q-divisors, e.g., for Addendum 4.50.1.)

Thus, by the surjectivity of the above restriction,

|�j(Di)W + A′
W �| �= ∅ provided that

∣∣⌈j(Di)W Yhr
+ (AY ν

)Yhr

⌉∣∣ �= ∅.

Moreover, in this case, by Hironaka and because OX(�j(Di) +A′�) is coherent by Proposition 4.46
and Example 4.47, we can assume that

Bs |Mov�j(Di)W + A′
W �| = ∅

on a sufficiently high resolution W (cf. the proof of Proposition 4.15(1)) and both Mov stabilize.
Note now that, by definition, (Di)W Yhr

= (Di Y ν )Yhr
. Therefore, surjectivity gives

Mov
⌈
j(Di)W Yhr

+ (AY ν
)Yhr

⌉
=

(
Mov�j(Di)W + A′

W �
)

Yhr

(in general, only ≤ holds), and

Mov
(⌈

jDi Y ν + AY ν⌉
Yhr

)
≤ j(Dj)W Yhr

= j
(
Dj Y ν

)
Yhr

provided that
Mov�j(Di)W + A′

W � ≤ j(Dj)W .

The previous equality holds by the definition of fixed restrictions of b-divisors (see 7.2 below) if Yhr

lies over a model such that Di = Di for semiample Di. This implies lca saturation for D• Y ν and
on any model/Yhr by (ASA′) with the same index I.

Addendum 4.50.1 follows from the proposition applied to the characteristic system D• of L. In-
deed, the characteristic system of L

Y ν is the restriction D• Y ν (cf. Fixed restriction 7.2), and (BSA)
holds by Proposition 4.15(1). The normality of restricted algebras follows from the surjectivity of
mobile parts when j = i.

Indeed, (GLF) and the connectedness of LCS(W,BW = BW )/Z (Kollár and others [27, Theo-
rem 17.4]) imply that, locally/Z near the connected component of fibre/P intersecting Y , A has only
one divisor Y with a(X,B, Y ) = −1 if (X,B) is purely log terminal. Then �A′� ≥ 0, but Ni = iDi

is integral as a b-free b-divisor in Proposition 4.15(1). Hence, |�i(Di)W + A′
W �| = |(Ni)W |+ �A′

W �
by saturation (cf. Remarks 4.34(1),(3)).

On the other hand, by the adjunction of [41, (3.2.3)], (Y ν , BY ν ) is Klt. Thus, �AY ν� ≥ 0 and

i
(
Di Y ν

)
Yhr

=
(
Ni Y ν

)
Yhr

= (Ni)W Yhr
= (Mi)Yhr

is integral and mobile, where Ni Y ν = Mi =
(
MovL

Y ν

)
i
. Thus, again,∣∣⌈iDi Yhr

+ (AY ν
)
⌉
Yhr

∣∣ = |(Mi)Yhr
| + �AY ν�Yhr

.

Thus, we get the surjectivity of the restriction

|(Ni)W | Yhr−−→ |(Mi)Yhr
|,

and, by Proposition 4.15(4), this implies that L
Y ν is normal if L is. Finally, note that Y = Y ν is

normal itself by [41, лемма 3.6].
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If (X,B) is not purely log terminal, the last surjectivity does not hold. However, the above
argument gives by definition the surjectivity

|J ′(Ni)W | Yhr−−→ |JYhr
(Mi)Yhr

|,

where J ′ = OW (�A′�) and J ′(Ni) = OW (Ni + �A′�) for the crepant model (W,BW ). Thus, by
(ASA′) for j = i and Proposition 4.15(4),

|J ′(Ni)| = |L[J ′]i|W .

The left-hand side denotes the complete linear system of (Ni + �A′�)W , and the right-hand side its
complete subsystem with the mobile part in |Ni| = |MovLi|. In terms of rational functions, this
means that the subsystem corresponds to the functions in

L[J ′]i = J ′(Li) ∩ Li = J ′(Ni) ∩ Li = J ′(Ni) ∩ f∗OW (Ni)

(cf. LN (−Si) in Main Lemma 3.43, (TRL), and the twist in Example 4.9). Now when L is normal,
L = L by Proposition 4.15(4). Thus, |J ′(Ni)| = |L[J ′]i|W . This is normality with respect to J ′ on
X/Z (conversely, normality implies (ASA′)). Then surjectivity implies the required normality of
Addendum 4.50.2 with respect to J on Y ν/f(Y ).

The normal property (NOR) of Addendum 4.50.2 follows from the following fact: for any ideal
sheaf J− and any ample divisor H on an algebraic variety X/Z, J−(NH) with N � 0 is very
ample/Z. We apply this to the model of Projf(Y ) LY ν . The normality condition and the projection
formula then imply that L

Y ν has at least sections vanishing on J−, where J− is given by the
negative part of the b-divisor �AY ν� (base conditions on sections).

Note that J ′ = OW and J = OY ν if (X,B) is purely log terminal and (Y ν , BY ν ) is Klt. This
gives the usual normality of Addendum 4.50.1.

In Addendum 4.50.3, we are done if Y = E is divisorial. Otherwise, on the resolution, we replace
Yhr by E and lca saturation for D• E

over (E/Y ν , BE), where (E,BE) is the adjunction of (W,BW )
as described above (note that BE and BW are not necessarily boundaries or subboundaries). On
the other hand, Y has a canonical b-divisor Bdiv, the divisorial adjunction b-boundary (again not
necessarily even a subboundary) such that

(boundary), (BP) Bdiv has the boundary property; that is, we have

Bdiv = B(Yhr, Bdiv = (Bdiv)Yhr
) = BYhr

on a sufficiently high model Yhr/Y . It is equivalent to saying that the divisorial discrepancy
b-divisor Adiv = −Bdiv behaves as a discrepancy. Moreover, the following also hold:

(monotonicity) (lAE)E ≥ f∗
E(lAdiv)Yhr

, where l means that we take log discrepancies, assuming
that Yhr has mild singularities (at worst log canonical), (lAdiv)Yhr

is R-Cartier (e.g., Y is
nonsingular), and the induced projection fE : E → Yhr is regular; and

(semiadditivity) if we replace B by B +D, where D is an R-Cartier divisor in general position
with Y , then Bdiv should be replaced by Bdiv + D

Y
; equivalently,

(anti-semiadditivity) Adiv should be replaced by Adiv − D
Y

.

If (X,B) is exceptionally log terminal [43, Definition 1.5] and B ≥ 0 near E, then all this holds
over Yhr = Y ν = Y , and this is known as the divisorial part of adjunction. In general, by the
semiadditivity, we can assume that B ≥ 0. Then we can use a log resolution and semiadditivity
once again to reduce to the divisorial part of adjunction. (Here we do not need the boundary
property (BP). It follows from LMMP at least in dimW ≤ 4.5)

5Recently F. Ambro proved (BP) in any dimension [3].
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Question 4.51. Can we omit the assumption that B ≥ 0 near the general point of Y ?
Now we are ready to verify the asymptotic saturation of (D•)Y ν with respect to Adiv. By lca

saturation over (E,BE), which is already proved, and the monotonicity (cf. (CGR) and the proof
of Proposition 4.46), we have

f∗
E Mov

⌈
jDi Y ν + Adiv

⌉
Yhr

= f∗
E Mov

(
(jDi Y ν + Adiv)Yhr

+
∑

emEm

)
= f∗

E Mov
(
(jDi Y ν + lAdiv)Yhr

+
∑

(em − 1)Em

)
≤ Mov f∗

E

(
(jDi Y ν + lAdiv)Yhr

+
∑

(ei − 1)Ei

)
≤ Mov

(
(jDi E

+ lAE)E +
∑

rm′(em′ − 1)Em′

)
= Mov

(
(jDi E

+ AE)E +
∑

(rm′(em′ − 1) + 1)Em′

)
,

and, since all rm′(em′ − 1) + 1 < 1, Mov is integral, and Fix is effective,

≤ Mov
⌈
jDi E

+ (AE)
⌉
E
≤ (jDj E

)E

= f∗
E(jDj Y ν )Yhr

,

where Ei and E′
i are, respectively, on Yhr and E, all 0 ≤ ei < 1, and all 0 < rm′ = multEm′ f∗

EEm

for all Em′/Em. The sums are finite even if we add an extra redundant divisor Ei, the fractional
and branching places. We also assume that jDi Y ν is R-Cartier over Yhr. This gives the required
saturation in Addendum 4.50.3. �

Example 4.52. Consider a pl contraction X/X∨ and assume that

• X/X∨ satisfies the inductive assumptions of Definition 3.39 with respect to a divisor D
on X; and

• L is a functional algebra bounded by D and satisfying the other assumptions of Main
Lemma 3.43.

We say that such an algebra L is of type (FGA)pl
n if, in addition,

• L is lca saturated over (X,B + S − εS) for some ε > 0; and
• dim X = n.

As in Conjecture 4.39, we expect such algebras to be f.g. More precisely,

(FGA)d ⇒ (FGA)pl
n ,

where d = dim Y is the dimension of the irreducible normal variety Y = Ss =
⋂

Si (cf. Example 3.40
with t = 1 and s = n−d). The implication means that the first conjectural finite generation implies
the second.

Indeed, by Example 4.45 with B+ = B + S − εS′ and S′ =
∑

i≥2 Si, lca saturation of L
implies asymptotic saturation of L for A′ = A+ + S1. Thus, by Addendum 4.50.1, this implies lca
saturation/(S1, BS1) with the different BS1 = (B+ − S1)S1 = (B + S′ − εS′)S1 . Since K + B + S
is numerically negative/X∨, (GLF) holds for B+/X∨ if 0 < ε 
 1. Because (X,B) is divisorially
log terminal, (X,B+) is purely log terminal for such ε and S1 is the only log canonical center, with
a(X,B+, S1) = −1. The algebra L is in general position to S1 by our choice of D (cf. Definition 3.39
and Main Lemma 3.43).

Then, by Example 3.40, we can use induction on d because

BS1 = (B + S′ − εS′)S1 = (B + S′)S1 − ε
(
S′

S1

)
by semiadditivity [41, (3.2.1)]. The pair (S1/f(S1), (B + S′)S1) satisfies the same assumption as
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(X/X∨, B) by Example 3.40; in particular,(
S1, (B + S′)S1 − ε

(
S′

S1

))
is Klt, and the restriction L

S1
is of type (FGA)pl

n−1.
Hence, by induction, L

Y
is lca saturated/(Y,BY ), where BY corresponds to the successive

adjunction. Moreover, (Y,BY ) is Klt. Thus, by (FGA)d, the algebra L
Y

is f.g. Then L is f.g. by
Main Lemma 3.43 (of course, locally near P ∈ X∨). In addition, L

Y
is normal if L is.

This is a generalization of Induction Theorem 1.4 for (FGA) algebras (cf. its proof below).
If, for d = n and for big L, we knew the equivalence

(FGA)n ⇔ (FGA)pl
n ,

this would imply the existence of log flips in dimension n by induction on n (cf. Reduction Theo-
rem 1.2 and Conjecture 4.39).

In Section 6, as an application of the example, we prove (FGA)pl
3 (cf. Corollary 6.44 and

Remark 11.8 below).
Now we are ready to prove the main result of this section.
Corollary 4.53. (FGA)d ⇒ (RFA)n,d, and small pl flips of core dimension d exist.
Proof–Explanation. We verify that a restricted algebra L = (RX/T D)

Y
of type (RFA)n,d

satisfies (FGA)d; the required f.g. then follows from Main Lemma 3.43. Indeed, the bounded algebra
RX/T D is exceptionally asymptotically saturated/X by Example 4.35. Thus, by Proposition 4.42,
RX/T D is lca saturated/(X,B + S − εS) for any ε ∈ [0, 1]. In addition, by Addendum 3.43.1, the
algebra RX/T D is of type (FGA)pl

n . Thus, by Example 4.52, the restriction L is of type (FGA)d.
The existence of pl flips follows from Induction Theorem 1.4. �
Proof of Induction Theorem 1.4 for (FGA). Immediate by the corollary and by case

(RFA) in Section 3 or by Theorem 3.37. Moreover, we only need (FGA)d(bir) as for (RFA). �
As a first application of Induction Theorem 1.4 and its proof, by Examples 4.41, 4.52 and by

Corollary 4.53, we get the f.g. of algebras of type (FGA)pl
n and, by Truncation Principle 4.6, (PLF)n

with d = 1 (see Conjecture 3.35). By Reduction Theorem 1.2, this gives all log flips in dimension 2,
which is well known since they are divisorial contractions. However, the same method also allows
us to construct log flips for seminormal surfaces and these in fact may not be contractions (cf.
modifications of surfaces D of the semistable models for D [42]).

In higher dimensions, pl flips with d = 1 are also trivial since they are negative on Y (cf.
Example 3.53). Nonetheless, (FGA)1 also gives f.g. for L in (FGA)n over the generic points P ∈ T
when dim f−1P = 1 and over the generic points of the prime divisors D ⊂ T when X/T is birational
(cf. condition (BED) in Proposition 4.54 and in Theorem 9.9). This follows by induction on n after
taking general hyperplane sections.

Proposition 4.54. Over codimension-d points, (FGA)n follows from (FGA)d. Thus, by in-
duction on n, it is enough to prove (FGA)n over closed points in T assuming, after a truncation,
that L locally has a stabilized characteristic system:

(BED) for all i, D = Di outside f−1P over T, that is, over T \ P .

The same holds for (RFA) in place of (FGA).
For example, L = RX/T D has (BED) in codimension 1 when D is integral and X/T is birational.

For a pl contraction X/T = X/X∨, after a truncation, this holds even in codimension 2 since X is
normal and Q-factorial in codimension 2. (Any flipping algebra satisfies this over X = T if X is
Q-factorial in codimension 2, e.g., has rational singularities.) By (FGA)1 and the proposition, this
holds, but only in codimension 1, for any (FGA)n algebra when X/T is birational. In Corollary 6.43,
this is established in codimension 2 on a similar basis.
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Proof of Proposition 4.54. Take a general hyperplane section H of T and a point P ∈ T
and Y = f−1H. Then L

Y
is of type (FGA)n−1. The lca saturation/(Y/H,B

Y
) follows from

Addendum 4.50.1 with X/Z = X/T and B := B + H, where (ASA′) holds by Example 4.45. Then
local f.g. of L

Y
near H ∩ P implies local f.g. of L near P by general properties of restrictions and

the definition of stabilization. Then we use induction on n.
For (RFA), note that the restriction

Y
also preserves (RFA). �

We remark finally that, in the proof of (FGA)1, it was very important that every prime divisor,
and every effective divisor of rather high degree up to linear equivalence, was nonsingular, that is,
each is a reduced, nonsingular subvariety (cf. Example 6.24 below). In Section 5, we explain to
what extent we need this property (“prediction models” in Definition 5.10), and in Section 6, we
state when we may expect this property to hold (“triples” and Conjecture 6.14 below).

5. SATURATION AND DESCENT

5.1. Descent of divisors. In this section, we consider the following problem, the key to
our construction of pl flips. Given a morphism f : Y → X of algebraic varieties and an R-Cartier
divisor D on Y , can we find an R-Cartier divisor DX on X for which D = f∗DX? If so, we say
that DX is the descent of D; this is thus a descent problem. We solve this problem under very
special circumstances, when our divisor is a limit or a rather high element in a sequence of divisors
on birational models of X. Thus, in fact, we consider this problem for b-divisors (see [15] and [45]).
Therefore, we can replace D by its Cartier completion D = D or some other R-b-divisor, and Y by
some birational model. The problem is then to know whether D = DX holds.

Remark 5.2. If we replace the equality of divisors by linear equivalence, we get a different
problem, that is better stated in terms of sheaves: OY (D) = f∗OX(DX). This is equivalent to
the first problem if Y/X is birational and DX is Cartier; otherwise, the second is quite different
and more flexible. However, we can relax the problem with equality = down to the problem with
linear equivalence ∼ by considering D up to linear equivalence: D′ ∼ D and D′ has a descent (cf.
Lemma 3.28). It is even reasonable to consider ∼Q, ∼R, or ≡ (cf. bss and b-semiampleness above,
and the case of triples in Lemma 8.12 below).

The obstruction to the problem is easy to find.

5.3. Descent data. The descent of D on X exists if and only if E = E(D) := DX −D is 0 as
a b-divisor. The b-divisor E is the descent data of D over X.

Proposition 5.4 (properties of descent data). Let D be an R-b-divisor of X. Then

(EXI) the descent data E of D over X exists if DX is R-Cartier, in particular, if X is
Q-factorial ;

(EXC) E/X is exceptional on X;
(ADD) additivity: E(D + D′) = E(D) + E(D′)/X;
(HOM) homogeneity: E(rD) = rE(D)/X for any real number r;
(DEP) the descent data E only depends on D up to R-linear equivalence, or even only up to

numerical equivalence/X; and
(EFF) E is effective if D is b-semiample, or even b-nef /X.

Thus, for D as in (EFF), if we know that E ≤ 0, then E = 0 and the descent exists.
Proof. (EXI), (EXC), (ADD), and (HOM) follow directly from the definitions; (EXC) means

that EX = 0. Assertion (DEP) for ∼R follows because the descent data for a principal R-b-divisor
is trivial. In turn, by (ADD) and (HOM), this follows from the same fact for principal b-divisors:

E((f)) = (f)X − (f) = (f) − (f) = 0.
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For numerical equivalence, by (ADD) and (HOM), we can apply (EFF) to the difference.
For (EFF), it is enough to check that EY = f∗DX−DY is effective for any resolution f : Y → X.

For b-semiample D, this follows from (DEP) and the fact that f∗D is effective if D is. For
a b-divisor D that is b-nef/X, we get this by Lemma 4.23 or by [43, Negativity 2.15]. �

For a general divisor D, as well as for a general b-divisor D, descent may not exist even on
a sufficiently high model. However, we are interested in two related cases: D = limi→∞Di, where
each Di is the Cartier completion of some R-Cartier divisor Di on a model Yi/X; that is, Di = Di

(cf. Example 4.14). Thus, each Di has a descent Di on Yi. We also expect that, under certain
conditions, the b-divisor D may also have a descent, or even that all the Di have a descent on one
model, and D together with them.

5.5. Asymptotic descent problem. Suppose that D = limi→∞Di is a limit of b-divisors
on X/Z. Find a model Y/Z of X/Z such that

• D = (D)Y ;

• the limit stabilizes, that is, Di = D for some i � 0; in particular,

• for every such i, also Di = (Di)Y = D.

Thus, in this case, infinitely many Di have a descent on a single model Y (cf. Remark 5.6(4)).
Our approach gives a strict asymptotic descent; that is, stabilization holds for some i � 0 after
any truncation of D•. But, in fact, in applications, we get a complete asymptotic descent; that is,
stabilization holds for all i after a truncation of D• (cf. Theorem 5.12 versus Corollary 5.13).

The sheaf version of these conditions is related to f.g. and is given in our standard Example 5.27
below.

The minimal assumptions on the system D• are the following:

(FDS) finite divisorial support : the divisors (Di)X are supported in one reduced divisor F ;
and

(MXD) as in Addendum 4.22.1: each Di ≤ D.

However, these assumptions plus the two standard ones (saturation and boundedness) are scarcely
enough for partial rationality of D (cf. Examples 4.41, 5.14, and Theorem 5.12). For descent, we
need more. The additional assumption on the system D• is

(BNF) each Di is b-nef /X in the sense of Lemma 4.23; in particular, this includes

(CAR) each Di is R-Cartier : Di = Di for the R-Cartier divisor Di = (Di)Xi over some model
Xi/Z of X/Z (cf. Example 4.14).

In the above assumptions, each Di means up to a truncation.

Remarks 5.6. (1) As in Remark 4.34(7), similarity of characteristic type preserves the mini-
mal assumptions, the additional assumptions, and the asymptotic descent itself.

(2) In our applications, b-nef follows from b-semiample; and, usually, each Di is Q-Cartier (cf.
Example 5.27 below).

(3) Since every modification blows up at most a finite number of divisors, assertion (FDS) is
birationally invariant: if it holds on one model of X, then it also holds on any other. It is equivalent
to (BSD) in Addendum 4.22.1 but is weaker than the following condition:

(FSP) finite support : there exists a proper subvariety S ⊂ X such that all Di are supported
over S.

However, under (BNF), which holds in most of our applications, if each Di ≥ 0, the two conditions
are equivalent by Lemma 10.9 below.
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(4) A limit of R-Cartier b-divisors is not necessarily R-Cartier in general. For example, this
is usually the case for the limit of the characteristic system of an infinitely generated functional
algebra. However, under (FDS), if (CAR) holds on a single model Y = Xi for infinitely many i,
the limit D is also R-Cartier/Y . By definition, it is enough to establish this (locally) for principal
divisors. These are R-Cartier/Y because R-principal divisors with support in a fixed reduced
divisor form an R-vector subspace (defined/Q) in the space of all R-divisors with given support.

We can resolve the asymptotic descent problem for D• under asymptotic saturation and the
following confinement.

Definition 5.7 (confined descent data). Suppose that C and D are two R-b-divisors of X.
We say that the descent data E of D over X is confined by C if

• the data E = DX −D is defined, in particular, DX is R-Cartier, and

• E ≤ C over Y , that is, multEi E ≤ multEi C for each prime b-divisor Ei (see [15]) that is
exceptional on X.

Now let D• be a system of R-b-divisors of X, for example, the sequence of a limit D = limi→∞Di.
The system D• is asymptotically confined by C if there exists a sequence of positive real numbers ri

for some i � 0 such that

• limi→∞ ri = +∞, and

• for each ri, the descent data Ei = (Di)X − Di over X is confined by C/ri, or equivalently,
riEi ≤ C over Y .

We say that the asymptotic confinement is strict if we can choose a subsequence of real num-
bers ri with the stated property for any truncation of D•; the subsequence of D• corresponding to
the ri will be called strictly infinite.

Remarks 5.8. (1) Under (FDS), limi→∞ Ei = E = DX −D is the descent data for D over X.
Indeed, DX is also R-Cartier by Remark 5.6(4), and passing to the limit commutes with restric-
tion ( ·)X and Cartier completion ( ·).

(2) If, in addition, the sequence of the limit D = limi→∞Di satisfies (BNF), then each Ei ≥ 0
by (EFF) in Proposition 5.4, and thus E ≥ 0. On the other hand, for chosen i, we have Ei ≤ C/ri

over X, so that E = limi→∞ Ei ≤ 0. (This means that the limits E = limi→∞ Ei and D = limi→∞Di

are uniform with respect to C.) Hence, E = 0 and D = DX has descent DX on X. Thus, the limit
D = limi→∞Di has asymptotic descent if and only if it stabilizes; and the latter descent is also
on X.

(3) Asymptotic confinement is a necessary condition for the existence of asymptotic descent
on X, namely, for any C ≥ 0 and any sequence of ri with i such that Ei = 0.

(4) Similarity of characteristic type as in Remark 4.34(7) preserves strict asymptotic confine-
ment. For the truncation IDiI , we can take the same C and new real numbers ri/I := ri/I, whereas
we can take the same (truncated) real numbers ri/I := ri for the usual truncation DiI .

(5) Similarly, by Proposition 5.4, (HOM), multiplication by any positive real number q preserves
(strict) asymptotic confinement: we can take positive reals ri := ri/q.

(6) It is also useful to consider asymptotic confinement over a sequence (Xi, Ci), where now Ei

is the descent data of Di over Xi, riEi ≤ Ci, and Di, Ci are b-divisors of Xi. The most important
case for us is canonical asymptotic confinement, where Ci = A(Xi, Bi) for a sequence of log pairs
(Xi, Bi) (see Addendum 6.8.2 below), say, of crepant models of a given (X/Z,B) with the same
C = A = A(X,B) = A(Xi, Bi) (see the proof of Proposition 9.13 below).
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Remark 5.8(2) is very close to the stabilization required for f.g. The main difference is in
a universal descent; that is,

• infinitely many Di have descent on the single model X.

To establish this, we need asymptotic C-saturation (cf. Theorem 5.12). In addition, asymptotic
C-saturation gives

• rationality : D is a Q-divisor.

Both of the properties are essential for f.g. of functional algebras (cf. Limiting Criterion 4.28 above
and Example 5.27 below).

For b-divisors, the choice of an appropriate model for descent is crucial (cf. Example 5.14,
triples, and Conjecture 6.14). A criterion for an appropriate model is asymptotic confinement over
it (cf. Remarks 5.8(2),(3)).

5.9. Choice of Y in the asymptotic descent. In our approach to the descent problem
(cf. Theorems 5.12, 6.19(3), and 8.23 below), it is easier to present a b-divisor by a semiample
R-Cartier divisor than by any other. Because, by definition, semiample gives some model and an
R-Cartier divisor on it! Thus, we need a model Y/Z of X/Z such that

(SAM) DY is semiample/Z, in particular, nef/Z.

Semiampleness/Z means the semiampleness of R-divisors [45, Definition 2.5]. If D = DY is a
Q-divisor, this condition is equivalent to eventually free, that is, Bs |ND| = ∅ for some natural
number N .

We also need an R-divisor C on X, a reduced Q-Cartier divisor F on Y , and a positive real
number γ such that

(EEF) exceptional effectiveness: C ≥ 0/Y , that is, multEi C ≥ 0 in each prime b-divisor Ei

that is exceptional/Y ; and

(LGD) linear growth for divisor : in each prime b-divisor Pi,

multPi C > −1 + γ multPi F,

or, equivalently,
(AEF) C − γF is almost effective: �C − γF � ≥ 0.

The latter implies that C is also almost effective, i.e., �C� ≥ 0, whereas (EEF) states more/Y ,
namely, that C is exceptionally effective/Y .

Definition 5.10. We say that (Y/Z, C, F, γ) is a prediction model for the asymptotic descent
problem if Y, C, F , and γ exist and satisfy the following conditions:

(SAC) the descent data for D• is strictly asymptotically confined/Y by C; and
(UAD) F includes the supports of the irrational part of DY , and the divisorial locus where

the strict asymptotic descent is unknown (not given) (cf. Remark 5.11(3)); that is, for
any prime divisor Pj in this locus of Y , multPj D is irrational, or after any truncation
multPj D is an accumulation point of multPj Di.

Under (FDS), by Definition 5.7 and Remark 5.6(4), (SAC) implies (SAM).

Remarks 5.11. (1) In applications under (BNF), confinement implies that

βC ≥ Ei ≥ 0/Y

for some natural number i and positive real β (cf. Proposition 5.4, (EFF), and Example 5.27).
Thus, C ≥ 0/Y as in (EEF).
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(2) If C ≥ εF/Y for some ε > 0 and �CY � ≥ 0, then (EEF) and (LGD) hold for some 0 < γ 
 ε.
(3) For simplicity, we can assume in (LGD) that, for any F , there exists a positive γ for

which it holds. In fact, we need a bounded family of F , or just a single F in most applications
(compare the triples of Definition 6.9 below). The minimal assumption on F is (UAD), but it is
enough that F contains the support of the fractional part for every divisor (Di)Y . (See (FDS) in
the minimal assumptions above and Examples 5.27, 8.21 below.) We need this assumption even
though a posteriori F = 0, as in Theorem 5.12.

(4) Similarity of the characteristic type as in Remark 4.34(7) preserves (SAC) and the other
properties for the same prediction model. For (UAD), we can use the invariance of the irrational
part of D under similarity (see Remark 5.8(4) above and Lemma 6.30 below).

Now we are ready to state the main result of the section.
Theorem 5.12. Let D = limi→∞Di be an asymptotic descent problem such that

• the problem has a prediction model (Y/Z, C, F, γ);
• D• satisfies the minimal assumptions of 5.5: (FDS) on Y (maybe, for some reduced divisor
�= F ) and (MXD); and

• D• is asymptotically C-saturated.

Then DY is a Q-divisor, and strict stabilization holds on Y : after any truncation, (Di)Y = DY for
some i � 0.

Addendum 5.12.1. If (BNF) also holds (on an infinite subsystem in D•), then the strict
asymptotic descent problem has a solution on Y .

Addendum 5.12.2. Moreover, if we assume that D is big/Z and (CGR) of Proposition 4.46
also holds, then DY (or D) contracts all prime divisors Pi on Y with multPi C > 0. Thus, CXst ≤ 0
on the stable model

Xst/Z = ProjZ RZDY = ProjZ RZD

(see Conjecture 6.14 and Addendum 6.26.2).
The main part of the theorem is a rationality theorem (see Theorem 3.18 and Example 4.41),

while Addenda 5.12.1 and 5.12.2 treat the descent and the structure of the stable model.
Corollary 5.13. Under arithmetic monotonicity (assertion (AMN) of Conjecture 4.39), com-

plete stabilization on Y holds, i.e., for all i after a truncation of D•. More precisely, there exists
a stabilization index I such that (Di)Y = DY for all I | i � 0.

Addendum 5.13.1. Again under arithmetic monotonicity (AMN) and assumption (BNF),
complete stabilization holds for D•. More precisely, there exists a stabilization index I such that
Di = D = DY for all I | i � 0.

Proof. Immediate by the theorem together with Addendum 5.12.1, (MXD), and (AMN). �
The proof of the theorem also implies its nonnormal and rather singular generalization that we

discuss at the end of the section (see Corollaries 5.21 and 5.23 below). Finally, we use this in the
proof of (RFA) of Main Theorem 1.7, in particular, for 4-fold log flips (see Corollaries 6.42, 10.14
and Theorem 6.45 below).

Example 5.14. Let Y → X be a divisorial contraction with an exceptional Cartier divisor E.
For example, it might be a blowup of a smooth locus in X. Take a system Di = diE, where di is
a sequence of real numbers with limi→∞ di = d. If all di ≤ d and d > 0, then D• satisfies all the
conditions of Theorem 5.12 on X, except for (BNF). The descent problem has a solution on Y , but
it does not stabilize and may not be rational. Nonetheless, for a prediction model X (for example,
(X/X, 0, 0, 1)), DX = 0 is always rational as in the main part of the theorem.

Note that the same holds even for d = +∞.
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Lemma 5.15 (Diophantine approximation). Let Q ⊂ RN = ZN ⊗RR be a rational polyhedron
(not necessarily convex ) and D = (d1, . . . , dN ) ∈ Q be a point in it. Then there exist positive real
numbers r (depending only on N) and ε, an infinite set of natural numbers m, and a sequence of
rational points Qm ∈ Q such that

• each mQm is integral: mQm ∈ ZN ,

• ‖D − Qm‖ < ε/m1+r.

Moreover, if D is irrational, then there exist D′ ∈ Q and a sequence Qm = (qm,1, . . . , qm,N ) as
above for D′ such that

• D′ ≤ D; but
• qm,i > di at least in one coordinate (the ith); and
• qm,i = di for the rational coordinates di.

Notation 5.16. We write ‖(x1, . . . , xN )‖ = max{|xi|} for the maximal absolute value norm
in RN ; it induces the usual real topology of RN . The inequality

D′ = (d′1, . . . , d
′
N ) ≤ D = (d1, . . . , dN )

means that each d′i ≤ di.

By the proof below, we can take any 0 < r < 1/N . For a weaker approximation with r
about (1/2)N , we can take D′ = D (for this and other directed approximations, see Borisov and
Shokurov [6, разд. 1]). In Section 8, we use similar but nondirected approximations.

Proof of Lemma 5.15. Step 1. We can assume that D is irrational; that is, it has an
irrational coordinate di. Otherwise, we take Qm = D for m such that mQm are integral, and take
any r and ε > 0. In particular, N ≥ 1 if D is irrational.

Step 2. We can assume that each coordinate di of D is irrational and, moreover, that D does
not belong to any proper rational affine subspace H. (If di is rational, then D ∈ H = {xi = di}.)
Indeed, if D ∈ H, then there is a rational affine embedding A : RM ↪→ RN with

• A(RM ) = H, and
• M ≤ N − 1.

Note that P = A−1Q ⊂ Rm is also a rational polyhedron with C = A−1D ∈ P. Thus, if Pm ∈ P

is a sequence with the required property for C, then QIm = A(Pm) gives the required sequence for
D = A(C) ∈ Q, where I is an index for A, that is, IA is integral. The set of natural numbers m
is replaced by Im (truncation). Hence, ImQm = (IA)(mPm) ∈ ZN , and

‖D − QIm‖ = ‖A(C − Pm)‖ < ‖A‖ε/m1+r = ‖A‖I1+rε/(Im)1+r ;

thus, we can take ε := ‖A‖I1+rε for QIm, where ‖A‖ = max ‖Ax‖/‖x‖, for x �= 0, is the usual
norm of the linear part of A. However, we need to replace the conditions on D′ by geometric ones;
namely, for a polyhedral cone D with the single vertex D,

• D′ ∈ D; but
• each Qm /∈ D; and

• D′ is still in each rational face of D.

For example, the original cone D is given by the inequalities xi ≤ di. But the cone C = A−1D

with C as its only vertex is more general. Nonetheless, if C ′ ∈ C has a required sequence Pm, then
QIm satisfies the lemma with D′ = A(C ′). Note that each rational face of D gives a (nonempty)
rational face of C (because C belongs to it).
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Step 3. We can assume that dim Q = N near D and D is in the interior of Q. Thus, we can
assume that Q = RN locally near D. Otherwise, there is a rational face H ⊂ RN of Q such that
D ∈ H. Then we can reduce the lemma to H as in Step 2. Therefore, by induction on N , we get
the interior.

The required approximations then exist for any 0 < r < 1/N and ε ≥ N/(N + 1) by Cassels [7,
Ch. I, Theorem VII], where N ≥ 1 is the dimension of the approximation space RN .

Step 4. By the arguments of Step 3, we can assume that the cone D has no rational faces.
Finally, the last statement of the lemma requires a more accurate choice of m and Qm, namely,

Qm /∈ D. Otherwise, there is an infinite subsequence Qm ∈ D. Their affine span H is rational and
contains D since D = limm→∞ Qm. Thus, by Step 2, H = RN , and the cone D is big ; that is,
dim D = N . Since N ≥ 1, there is a rational line L in RN such that the polyhedron D∩L = [D′,∞)
is a ray and its vertex D′ is close to D and irrational on L. By Step 2, we can reduce the last
statement of the lemma to L with D′. In the latter case, we use continued fractions for the best
approximations in L from outside [D′,∞) [7, Ch. I, Theorem II]. �

We apply the lemma to a polyhedron in an R-vector space

DF =
N⊕

i=1

RPi

of R-divisors on X supported in F , where F =
∑N

i=1 Pi is a reduced divisor on X. The multiplicities
of divisors define a canonical isomorphism/Q of the space with RN . It induces the well-known
topology in DF and norm, the maximal absolute value of the multiplicities in prime divisors (or in
prime b-divisors in the case of R-b-divisors). In particular, the limits of divisors (but not b-divisors)
are limits in the norm (cf. Caution 4.25). The isomorphism transforms the ordering of divisors into
≤ in RN .

In the space, we take a polyhedron D of semiample/Z divisors under the following extra as-
sumption.

Definition 5.17. For a given set of divisors D, e.g., for a cone of divisors in Example 5.18
below,

(BND) semiampleness is bounded (effective) if there exists a natural number M such that, for
some N ≤ M , all |N ′ID| with N ′ ≥ N are free, where I is the index of D

(compare triples and Lemma 8.12(4) below). Of course, this only applies to Q-divisors in the set.

Example 5.18. Any rational polyhedral cone D generated by a finite set of divisors Di that
are semiample/Z satisfies (BND) of Definition 5.17. Indeed, we can assume that

• each Di is a Q-divisor;

• F is the common support of all divisors Di; and

• the cone is simplicial.

Thus, each D ∈ D has a unique presentation D =
∑

riDi with coordinates ri ∈ R, each ri ≥ 0, and
D is rational if and only if each ri is rational. There is a natural number j such that each rational
jID has integer coordinates ri, where I is the index of D. Then we can take M in (BND) such
that M is the minimal natural number for which every |MDi| is free.

Corollary 5.19 (Diophantine approximation). Let D be an R-divisor on X that is semi-
ample/Z. Then there exist positive real numbers r and ε, an infinite set of natural numbers m, and
a sequence of Q-divisors Qm on X such that

• each |mQm| is free, and, in particular, each Qm is semiample;
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• each Supp(D−Qm) ⊂ SuppDirr, where Dirr is the irrational part of D; that is, the approx-
imation concerns only the irrational multiplicities of D;

• ‖D − Qm‖ < ε/m1+r.

Moreover, if D is not a Q-divisor, then there exist an R-divisor D′ and a sequence of Q-divisors Qm

on X as above for D′ such that

• Supp(D − D′) ⊂ SuppDirr;
• D′ ≤ D; but
• multPi Qm > multPi D at least in one prime divisor Pi on X; and
• multPi Qm = multPi D for the rational multiplicities multPi D.

Addendum 5.19.1. For any ideal sheaf J on X, we can also assume the following freedom
with respect to J :

• each subsystem |J(mQm)| ⊂ |mQm| is free over T \ c(SuppJ), where c : X → T/Z is
a contraction given by D, that is, c(Bs |J(mQm)|) ⊂ c(SuppJ).

The last statement generalizes to the nonnormal and nonreduced case in the style of Corol-
lary 5.21 below. We can also take D′ = D; for this, see Borisov and Shokurov [6, следствие 2.1,
добавление 2.1.1].

Proof. To apply Lemma 5.15, we include D in a rational polyhedron Q.
Since D is semiample/Z,

(NBH) each divisor in a neighborhood of D is (nef and) semiample/Z;

moreover, (BND) holds in it. Indeed, D ∼R c∗H, where

• c : X → T/Z is the contraction in Addendum 5.19.1; and
• H is an R-divisor on T that is numerically ample/Z.

In other words, D = c∗H +
∑

ri(fi), where ri ∈ R and 0 �= fi ∈ k(X). Let F be a reduced divisor
on X that contains the supports of divisors (fi) and c∗H. Take any rational polyhedral cone H

consisting of R-divisors H ∈ H on T that are numerically ample/Z, with Supp c∗H ⊂ F . Then the
rational polyhedral cone

D = c∗H ⊕
(⊕

R(fi)
)
⊂ DF

is generated by semiample divisors because each divisor that is numerically ample/Z is semiample/Z
by the Kleiman criterion, and each principal divisor is also semiample/Z. By Example 5.18, it
satisfies (BND) with some natural number M . (In addition, we can suppose that H and D are
respective neighborhoods of H and D in their linear spans/Q.) By construction, D ∈ D.

To preserve the rational multiplicities (coordinates) under the approximation, set Q = D ∩ Q,
where Q is the subspace of DF given by the system of affine equations/Q: multPi x = multPi D,
provided that the latter multiplicity is rational. By construction,

• Q is a rational polyhedron; and
• D ∈ Q.

Then Lemma 5.15 gives real numbers r and ε and a sequence of Q-divisors Qm ∈ Q. They satisfy
the corollary except for |mQm| free. However, mQm is an integral divisor, jmQm is Cartier for
some j depending only on Q, and |MmQm| has no base points by Example 5.18 with M := jM .
Thus, as in Step 2 in the proof of Lemma 5.15, we can replace Qm by QMm := Qm and take
ε := M1+rε.

The addendum follows from its ample case. The splitting into c∗H and R-principal parts is given
over Q. Thus, again as in Step 2 of the proof of Lemma 5.15, we can assume that mQm ∼ mc∗Q′

m,
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where Q′
m ∈ H is a Q-divisor and mQ′

m is also integral. Since the subsystem |J(mQm)| in |mQm|
depends only on J and the complete system itself on mQm up to ∼, the freedom with respect to J
is preserved up to ∼, and we need to establish it for mc∗Q′

m. On the other hand, J coherent implies
that there is an ideal sheaf JT on T such that

• JT = OT (−H ′) for some effective very ample divisor on T/Z;
• c∗|JT (mQ′

m)| ⊂ |J(mc∗Q′
m)|;

• c(SuppJ) ⊂ SuppJT ; and
• c(SuppJ) =

⋂
SuppJT for such H ′ up to ∼ /Z.

Then it is enough to establish the addendum for ample mQ′
m with respect to JT , which follows

from the fact that mQ′
m − H ′ is ample and free for an appropriate m because we can assume that

the generators of H satisfy the same property: MD − H ′ is very ample for any integral ample
divisor D in H (cf. the end of the proof of Addendum 4.50.2, p. 132). �

However, to apply the corollary to b-divisors, we need the following result.
Lemma 5.20. Let C and D be two b-divisors of X, F be a reduced divisor, and α ≤ 1 and τ

be positive real numbers such that

• F is Q-Cartier and
multPi αC > −α + τ multPi F ; (5.20.1)

in each prime b-divisor Pi,

• the descent data E of D over X is confined by (1 − α)C, that is,

E ≤ (1 − α)C/X; (5.20.2)

and
• DX = Dbf + Dfr, where |Dbf | is free, SuppDfr ⊂ F, and ‖Dfr‖ < τ .

Then Mov�D + C�/Z satisfies the following estimate: on any model W/X,

Mov�D + C�W ≥ (Dbf)W ;

in particular, the nonvanishing |�D + C�W | �= ∅/Z holds.
Addendum 5.20.1. If an ideal sheaf J on X is given, then

Mov J(�D + C�W ) ≥ (Dbf)W

over X \Bs |J(Dbf)|; in particular, the nonvanishing |�D + C�W | �= ∅/Z holds if X �= Bs |J(Dbf)|;
the base points are considered as for the subsystem |J(Dbf)| in |Dbf |.

Note that DX is R-Cartier since its descent data is confined (cf. Definition 5.7).
Proof. By the definition of descent data, D = DX − E . Then, by the decomposition of DX ,

D = Dbf + Dfr − E = Dbf + Dfr − E ,

and, hence, D+C = Dbf+Dfr+C−E . Since Dbf is integral, it is enough to verify that �Dfr+C−E�≥ 0
(cf. the proof of Proposition 4.46), or that Dfr + C − E is almost effective (cf. (AEF) in 5.9).

We make it into two steps. First, on X. Since 0 < α ≤ 1, (5.20.1) implies

�CX − τF � ≥ 0. (5.20.3)

Indeed, (5.20.1) times α−1 gives (5.20.3) with τ/α instead of τ . Since F ≥ 0 and 1/α ≥ 1, we can
replace τ/α by τ .
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Since SuppDfr ⊂ F , F is reduced and ‖Dfr‖ < τ ; hence, F =
∑

Pi and Dfr =
∑

dfr,iPi with
each |dfr,i| < τ . Thus, each dfr,i > −τ = −τ multDi F for Pi in F . In other words, Dfr ≥ −τF .
Therefore,

(Dfr + C − E)X = Dfr + CX ≥ CX − τF,

and, by (5.20.3), �Dfr + C − E�X ≥ 0 on X.
Second, we work on a model/X. Note that Dfr ≥ −τF implies Dfr ≥ −τF . Therefore,

by (5.20.2),

Dfr + C − E ≥ C − τF − (1 − α)C = αC − τF/X.

Hence, by (5.20.1), �Dfr + C − E� ≥ 0 over X because −α ≥ −1. Finally, the nonvanishing follows
since |Dbf | is free.

We have also proved the inclusion

OW (g∗Dbf) = OW ((Dbf)W ) ⊂ OW (�D + C�).

Thus, by the projection formula,

J(Dbf) = J ⊗ g∗OW (g∗Dbf) ⊂ J ⊗ g∗OW (�D + C�W ) = J(�D + C�W ),

where g : W → X/Z, and |J(Dbf)| ⊂ |J(�D + C�W )|. The latter implies

Mov J(�D + C�W ) ≥ Mov((Dbf)W )

over X \ Bs |J(Dbf)| but Mov((Dbf)W ) = (Dbf)W = g∗Dbf . This completes the proof of the
addendum. �

Proof of Theorem 5.12. After a truncation of D•, we can assume that the saturation index
is I = 1 and (UAD) holds without truncation. The conditions of the theorem are preserved by
Remarks 5.8(4), 5.11(4), 5.6(1), and 4.34(7). To prove strict asymptotic descent, we can do it after
any truncation.

First, we verify that D := DY is a Q-divisor. Thus, suppose that D is not a Q-divisor. Then
we find i and j such that, on any model W/Y/Z of X/Z,

Mov�jDi + C�W �≤ jDW ,

and the mobile part is finite; the latter means that the nonvanishing result |�jDi + C�W | �= ∅
holds/Z. The �≤ contradicts asymptotic C-saturation. Indeed, by (MXD), this implies that the
mobile part is �≤ j(Dj)W for such i and j on any sufficiently high model W = Xhr.

An estimate for the mobile part can be obtained from Lemma 5.20 for D = jD′
i constructed

below and F in the prediction model with some j and i � 0 on any W/Y .
By Corollary 5.19 and (SAM), for D, there exist positive real numbers r and ε, an R-divisor D′

on Y , an infinite set of natural numbers m, and a sequence of Q-divisors Qm on Y such that

• each |mQm| is free;

• each Supp(mD′ − mQm) ⊂ Supp (mDirr) ⊂ F by (UAD) for the prediction model;

• ‖mD′ − mQm‖ < ε/mr;

• D′ ≤ D; but

• mQm �≤ mD; and

• mQm = mD′ = mD in the rational multiplicities of D.
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It is enough to verify that, for some j = m and i � 0, on any model W/Y/Z of X/Z,

Mov�jD′
i + C�W ≥ m(Qm)W ,

where D′
i = Di − E, and E = D − D′ ≥ 0 is an effective divisor on Y by construction. Since E is

also effective, for the same j and i � 0, on any model W/Y/Z of X/Z, we have

Mov�jDi + C�W = Mov�jD′
i + jE + C�W ≥ Mov�jD′

i + C�W ≥ m(Qm)W .

On the other hand, m(Qm)W �≤ mDW = jDW , even on W = Y .
Note that the b-divisors D′

i share most of their properties with the b-divisors Di: e.g.,

• (FDS) and (UAD) hold for D′
•; moreover, each Supp (jD′

i − jD′)Y = Supp (Di −D)Y ⊂ F ,
where D′ = D − E; usually, in (FDS), we need a reduced divisor ≥ F ;

• limi→∞D′
i = D′, whereas D′

Y = D′; and

• (SAC) holds for D′
• with the same i because E(E) = 0 and E(D′

i) = E(Di − E) = E(Di)/Y
by (EFF) and (ADD) in Proposition 5.4.

Now take any positive α < 1 and set τ = αγ. Then (LGD) for the prediction model (multiplied
by α) implies (5.20.1). Take any j = m � 0 such that ε/mr ≤ τ . Then DY = mD′ = Dbf + Dfr

satisfies the assumptions for the decomposition in Lemma 5.20, where

D := mD′, Dbf = mQm, and Dfr = mD′ − mQm.

Indeed, by construction, ‖Dfr‖ < ε/mr ≤ τ and SuppDfr ⊂ F .
By (FDS), the limit

lim
i→∞

(D′
i)Y = D′

Y = D′

takes place on Y in the norm ‖ · ‖. Thus, by (UAD), for such j = m and any i � 0, the
decomposition DY = j(D′

i)Y = Dbf + Dfr satisfies the assumptions of Lemma 5.20, where Dbf =
mQm is still the same but D := jD′

i and

Dfr := j(D′
i)Y − mQm = j(Di)Y − jE − mQm

with ‖Dfr‖ < τ and SuppDfr ⊂ F .
The bound (5.20.2) in the lemma holds for some i � 0. More precisely, take any i � 0 with

m/ri ≤ (1−α); the latter is > 0. Then (5.20.2) holds for the i. Indeed, by (EEF) in the choice of Y ,
mC/ri ≤ (1 − α)C/Y . Thus, by (ADD) in Proposition 5.4 and by the definition of confinement,

E(D) = E(jD′
i) = mE(D′

i) = mE(Di) = mEi ≤ mC/ri ≤ (1 − α)C/Y.

Hence, by Lemma 5.20,

Mov�jD′
i + C�W = Mov�D + C�W ≥ (Dbf)W = m(Qm)W .

This completes the proof that D is a Q-divisor.
Second, we check that limi→∞Di = D stabilizes on Y . Using Corollary 5.19 again, but this time

in the trivial case when D := DY is a Q-divisor, the above arguments do not give a contradiction.
But the asymptotic saturation gives that, for some j = m (with integral mDY ) and some i � 0,
on any W/Y/X,

j(Dj)W ≥ Mov�jDi + C�W ≥ m(Qm)W ,
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whereas m(Qm)Y = mQm = mD = mDY because the approximation is trivial. Hence, Qm ≤ Dj

for such j = m � 0, and DY = Qm ≤ (Dj)Y on Y . Thus, (MXD) gives the stabilization of the
limit on Y , namely, (Dj)Y = DY .

Third, we assume (BNF) and prove the stabilization in Addendum 5.12.1. It is enough to verify
that E(D) = 0/Y . Indeed, then, for some j = m � 0, Qm = D and Dj ≥ Qm = D. Hence, (MXD)
gives stabilization, namely, Dj = D.

By Remarks 5.8(1),(2), under (FDS) and (SAC),

E(D) = E
(

lim
i→∞

Di

)
= lim

i→∞
E(Di) ≤ lim

i→∞
C/ri = C/ lim

i→∞
ri = 0/Y.

On the other hand, under (BNF), E(D) ≥ 0/Y by Remarks 5.8(1),(2) once again. Therefore,
E(D) = 0/Y .

Finally, we also assume (CGR) and verify Addendum 5.12.2, that is, D := DY contracts every
prime divisor Pi on Y with multPi C > 0. (Equivalently, D

Pi
is semiample but not big on every

such Pi. For b-divisors Pi that are exceptional on Y , the same follows from the above descent.)
Here we use the arguments of Reid [37, Proposition 1.2]. By our assumptions, δPi ≤ C for some
δ > 0. By the asymptotic descent Addendum 5.12.1 and by Reid (or by Addendum 3.19.1), if D is
big/Z and multPi C > 0, on any model W/Y/Z of X/Z and for all j = m � 0 such that |mD| is
free, we have the following lower bound:

Mov(j(Dj)W + Pi) = Mov(jDW + Pi) = jDW + Pi = j(Dj)W + Pi.

This contradicts asymptotic C-saturation whenever the upper bound

Mov�jDj + C�W ≤ j(Dj)W

with i = j holds in asymptotic saturation over some W (cf. Remarks 4.34(2),(5)) that does not
depend on j. More precisely, the above upper bound holds on any Xhr/W and for any j = m.
Indeed, since jDj = jD is integral,

j(Dj)W + Pi ≤ �j(Dj)W + δPi� ≤ �jDj + C�W

and

j(Dj)W + Pi = Mov(j(Dj)W + Pi) ≤ Mov�jDj + C�W ,

which contradicts asymptotic C-saturation.
The independence of the upper bound from Xhr/W follows from Proposition 4.46 for D := jDj

and E := 0. Note only that the bound for some j = m implies the same bound with the same W
for any other natural number j := m′ under our assumptions. Indeed, we can assume that m′ ≥ m
and |(m′ − m)D| is free. Then

�m′Dm′ + C� = �m′D + C� = (m′ − m)D + �mDm + C�.

Thus, by the projection formula (see a standard text on algebraic geometry), if

OW (�mDm + C�W ) = OW (�mDm + C�),

the same holds for other natural numbers m′ on W because (m′ − m)D = (m′ − m)D is a Cartier
b-divisor/Y (cf. b-free in Example 4.14). �
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Our construction actually proves more:
Corollary 5.21. Under the assumptions of Theorem 5.12, suppose that J is a sheaf of ideals

on the prediction model Y such that

(RST) DY is rational, and complete stabilization holds with an index I on Y over c(SuppJ),
where c : Y → T/Z is a contraction given by DY ; that is, each (Di)Y = DY with I | i
and is rational over c(SuppJ); and

(JAS) asymptotic C-saturation with respect to J holds/Z (rather than asymptotic C-satura-
tion), that is,

g∗J(�jDi + C�Xhr
) ⊂ (g ◦ h)∗OXhr

(j(Dj)Xhr
);

here we write J(�jDi + C�Xhr
) = J ⊗ h∗OXhr

(�jDi + C�Xhr
), where h : Xhr → Y and

g : Y → Z.

Then the conclusions of Theorem 5.12 and its addenda hold, where Addendum 5.12.2 concerns only
prime Pi not in SuppJ and CXst ≤ 0 over Xst \ SuppJst with the image Jst of J on Xst.

Moreover, this holds for nonnormal Y (and X) if SuppJ includes the nonnormal singularities
of Y, where J can be replaced by any nontrivial coherent functional sheaf /Y, and the support is
taken only for the common zeros (fixed points) of its sections.

This can also be extended to the nonreduced case where the nonreduced locus of Y is in
SuppJ . Note that if J = OY , then this gives exactly Theorem 5.12 with its addenda. Indeed,
then Y is reduced and normal, (RST) is empty, and (JAS) is equal to asymptotic C-saturation (see
Remark 4.34(3)).

Addendum 5.21.1. For all Di that are b-nef /Y and Q-divisor (Di)Y on Y, we can modify
(RST) into

(RST)′ (Di)Y is rational and stabilization Di = D = DY holds on Y over SuppJ ⊂ Y .

In particular, this holds for the finite b-divisors Di of the characteristic system for any functional
algebra when all the D′

i stabilize over SuppJ ⊂ Y (see Conjecture 5.26 and the log singular case
in Example 5.27, p. 152).

Proof–Explanation. We can use the same proof as that of Theorem 5.12 with the following
modifications. First, we need an additional truncation to satisfy (RST) with I = 1.

Second, instead of contradicting asymptotic C-saturation, we aim to contradict the J-version of
asymptotic C-saturation as in (JAS), namely, that

g∗J(�jDi + C�W ) �⊂ (g ◦ h)∗OW ((jDj)W ),

where h : W → Y/Z for an arbitrary model W versus Xhr, or, equivalently (see Remark 4.34(3)),

Mov J(�jDi + C�W ) �≤ (jDj)W .

By (MXD), the latter follows from the estimate

Mov J(�jDi + C�W ) �≤ jDW .

Third, instead of Corollary 5.19, we use its Addendum 5.19.1, which only gives freedom with
respect to J . Note also that, by (RST), the irrational multiplicities of D = DY are over T\c(SuppJ),
and so mQm �≤ D over T \ c(SuppJ).

Fourth, this time we can prove that, for some j = m and i � 0,

Mov J(�jDi + C�W ) ≥ m(Qm)W ,

but only over T \c(Supp J). This is enough to give a contradiction. This can be done as in the proof
of the theorem with Addendum 5.20.1 instead of Lemma 5.20, where the same inequalities work
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(at least) over T \ c(SuppJ) with Mov J(�·�W ) instead of Mov�·�W . This proves the rationality
and stabilization on Y . (Actually, a more accurate approximation allows us to prove the rationality
and stabilization for D over T \ c(SuppJ) without (RST).)

Addendum 5.12.1 can be done in this case in the same way as without J , and the same goes
for Addendum 5.12.2 outside SuppJ .

If Y is nonnormal, we can replace it by its normalization ν : Y ν → Y . In general, if we replace J
by the functional sheaf Jν over Y ν generated by J , (JAS) might not be preserved. However, since
each nontrivial functional sheaf J on Y has an invertible subsheaf of ideals, we can first replace J by
a subsheaf with the property that it preserves (JAS) on Y and on its normalization, by definition
of J(�jDi + C�Xhr

) and the projection formula. We can also assume that the support of the new J
includes the old one plus a mobile divisorial set, in particular, the one that does not include all
components of F over T \ c(SuppJ) for an appropriate choice.

Then (RST) is preserved by the following argument: if Y is nonnormal, the main difficulty is
defining DY . For a nonnormal divisorial point, there is no reasonable choice to extend DY . In view
of (RST), we can assume that each b-divisor D is R-Cartier over the nonnormal locus, that is,

(EXT) DY has an extension as an R-Cartier divisor to the nonnormal locus such that D = DY

along this locus.

Note that such an extension is unique if exists. Then (RST) over the nonnormal locus means that,
in addition, each Di = D and is rational over it. Thus, (RST) is preserved on Y ν over the nonnormal
locus and so over SuppJν , by our choice of Jν and the finiteness of SuppDY . In addition, we need
to continue the normalization of a nonnormal prediction model and explain what it means. Under
(EXT), the descent data E(D) is well defined/Y and = 0 over the nonnormal locus. We assume the
same for each Di as a condition for the existence of descent data (cf. Definition 5.7). In particular,
(SAC) over the nonnormal locus follows from (EEF). As for F , we assume that it is nonsingular
reduced Q-Cartier, that is, is supported divisorially in the nonsingular and normal locus of Y .
Thus, we define F ν on the normalized prediction model as ν∗F on it; we take the same γ. This
converts the normalization Y ν into a prediction model.

Now we can apply Theorem 5.12 with its addenda in the normal case, and this implies the
nonnormal case.

Finally, to prove Addendum 5.21.1, we need to derive (RST) from (RST)′. More precisely, if
Di is b-nef/Y and (Di)Y is a Q-divisor such that Di = D = DY over SuppJ , then (Di)Y = (D)Y
holds over c(SuppJ) (in fact, over a neighborhood of c(SuppJ)). Indeed, the R-Cartier divisor
G = (Di −D)Y ≤ 0 by (MXD). Thus, by Lemma 4.23 and (RST)′,

Di −D = Di −DY ≤ (Di)Y −DY = G ≤ 0 over SuppJ,

and Di−DY ≤ 0 over Y . Since Di−DY is b-nef/Y and the fibres of c are connected, the inequality
is strictly < 0 everywhere over a point P ∈ c(SuppJ) with c−1P intersecting negative components
of G. Thus, by (RST)′, G = 0 over a neighborhood of c(SuppJ), which is (RST). �

Example 5.22 (cf. Example 4.41). Let (C/pt., B) be a nonsingular curve with three distinct
points p, q, and B = r such that n(p−q)+p �∼ r for any integer n. Take all Di = D = D = α(p−q)
with real α. Then the trivial limit limi→∞Di = D satisfies the assumption of Corollary 5.21
with J = OC(−r) (see Example 5.25 below for such a choice) and (RST)′ instead of (RST). (As
a prediction model, we take (C/pt., 0, 0, 1).) Indeed, J�jD� = OC(�jα(p − q) − r�) does not have
global sections because �jα(p − q) − r� ≤ n(p − q) + p − r �∼ 0, where n is �jα�. However, α can
be irrational.

Corollary 5.23. Corollary 5.13 and its addendum hold under the changes of Corollary 5.21
in Theorem 5.12.

Proof. Immediate by Corollary 5.21. �
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Remark 5.24. In Theorem 5.12 and its addenda, corollaries, and generalizations, we can
replace one prediction model by a finite set (Yi/Z, C, Fi, γ) of them. However, (SAC) has a sequence
of ri with confinement over the corresponding Yi. Then, on one of these prediction models, (SAC)
holds for a strictly infinite subsequence of ri, which gives the case of a single prediction model.
Actually, we can replace the finite set by a set of prediction models that are bounded in the
following sense (for simplicity, they are all models versus deformations of X/Z with the same
b-divisor C): each (Yi/Z, C, Fi, γ) corresponds to a closed point in an algebraic family of prediction
models (Yu/Z, C, Fu, γ) for u ∈ U . As above, we can consider a single model; now we can assume
that the family is irreducible. But an irreducible family of birational models is birationally a single
model over a function field that can have infinitely many special points corresponding to elements
of (Yi/Z, C, Fi, γ). (Note that the family might have no constant resolution.) Thus, limi→∞Di = D
and C are defined as constant b-divisors with respect to this family. But this does not hold for
the descent data because DYu may vary for the family. Conditions (FDS), (EEF), and (LGD) in
Theorem 5.12 are assumed to hold over the whole family (we recommend the reader to state this
precisely). However, (MXD), (SAC), (BNF), and (CGR) hold (at least) birationally over the generic
point (see the proof of Theorem 6.19(3) and Remark 6.15(8) below). Asymptotic C-saturation also
holds over the generic point because it holds at each special point as a birational property over a
sufficiently high model. In applications, the latter needs just a good resolution as in the proof of
Proposition 4.46 (for example, cf. the proof of Proposition 9.13 below). Thus, we again get the case
of a single model over the generic point. Then the rationality and stabilization over the generic
point imply, by Theorem 5.12, the same on most prediction models in our family. Likewise for its
addenda, corollaries, and generalizations.

Example 5.25. Let (X/Z,B) be a general log pair with a discrepancy divisor A = A(X,B).
For this, we only need that K + B is R-Cartier. Then, by Example 4.47, the fractional ideal sheaf
J = JX = h∗OXhr

(�A�Xhr
) is coherent and independent of the sufficiently high model h : Xhr → X.

If (X/Z,B) is generalized, that is, B ≥ 0, then J is the well-known ideal sheaf for LCS(X,B),
and it can be given as J = JX = h∗OXhr

(�A−�Xhr
), where A− corresponds to the log nonpositive

part of A, that is, to the multiplicities ≤ −1. In this case, any A-saturation implies the same type
of C-saturation with respect to J/Z, where C = A+ = A − A− corresponds the log positive part
of A; in particular, the lca saturation gives (JAS) of Corollary 5.21. Indeed, by Remark 4.34(3),
the saturation Mov�D + A�Xhr

≤ DXhr
is equivalent to the inclusion (f ◦ h)∗OXhr

(�D + A�Xhr
) ⊂

(f ◦h)∗OXhr
(DXhr

). On the other hand, if D is integral over SuppA−, in particular, over the LCS,
the decomposition A = A+ + A− implies the inclusions

J(�D + C�Xhr
) ⊂ h∗h

∗J ⊗ h∗OXhr
(�D + C�Xhr

) ⊂ h∗(h∗J ⊗OXhr
(�D + C�Xhr

))

⊂ h∗(OXhr
(�A−�Xhr

) ⊗OXhr
(�D + A+�Xhr

))

⊂ h∗OXhr
(�D + A�Xhr

);

this, after taking f∗, implies (JAS) for D = jDi by the above inclusions under the same integral
condition.

This also applies to the generalized nonnormal and nonreduced case, where a generalized log
canonical divisor ω instead of K + B is given (see [2, Definition 4.1 and Example 4.3.1]):

• ω is R-Cartier;
• adjunction: a reduction and normalization ν∗ω ∼R K + B for a general (Xν , B); and
• B ≥ 0.

We also assume that ω ∼ K+B at normal and reduced points. In applications, B will also be unique
over nonnormal points. In addition, a closed subscheme X−∞ ⊂ X is given. In the normal case,
X \ X−∞ is the largest open subset on which (X,B) is log canonical. Thus, X−∞ ⊂ LCS(X,B).
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Conjecture 5.26. The f.g. conjecture for (FGA)n algebras has an important generalization
to (FGA)∗n algebras, where ∗ means the presence of log singularities. Namely, f.g. for a functional
OT -algebra L ⊂ k(X)• such that

• (X/T,B) is a generalized log Fano contraction, that is, we replace Klt in Definition 4.38(ii)
by the condition that K + B is R-Cartier and B ≥ 0;

• −(K + B) is ample/T in a neighborhood of the LCS(X,B);

• the algebra L is bounded and lca saturated over (X/T,B); and

• L is ample on the LCS/T and stabilizes over a neighborhood of the LCS. That is, in
this neighborhood, up to similarity of characteristic systems, each Di = H, where D• is the
characteristic system of L and H is a Q-Cartier Q-divisor that is ample on LCS/T .

Actually, we only need to assume ampleness over X−∞, but stabilization holds for Cartier semi-
ample H over a neighborhood of the LCS (see the log singular case in our standard Example 5.27);
we possibly need weaker conditions (cf. Corollary 6.42).

(FGA)∗1 is proved in Example 4.41, and (FGA)∗2 in Corollary 6.42 below. Now we are ready to
explain what we have to do to prove (FGA) or (FGA)∗ and how to apply it to flips (cf. Corollary 1.5).

Example 5.27. Let L be an algebra of type (FGA) over (X/T,B) (see Definition 4.38) and D•

be its characteristic system. We expect that such L is always f.g. By Theorem 4.28, this is equiv-
alent to an affirmative solution of the problem of asymptotic descent for the limit D = limi→∞Di

on some model Y/ProjT L/T of X/T , where D is b-semiample/T and is a semiample/Y/T
Q-b-divisor. This last condition means that D = DY is a Q-Cartier divisor that is semiample/T
and D = D.

By Addendum 4.22.1 and Proposition 4.15(1), respectively, the system D• satisfies the minimal
and additional assumptions in Theorem 5.12. Indeed, (BSD) in Addendum 4.22.1 implies (FDS).
Moreover, by (FGA) of Definition 4.38, asymptotic saturation holds for D• with C = A = A(X,B),
that is, lca saturation holds. By Example 4.47, (CGR) holds for the chosen C = A.

Thus, the main obstacle to apply Theorem 5.12 is choosing a prediction model (Y/Z =
T, C, F, γ). Our choice of C = A is canonical. On the other hand, because (X,B) is Klt, on
any model Y/T of X/T and for any Q-Cartier divisor F on Y , linear growth (LGD) of 5.9 holds for
some γ > 0 (cf. Example 8.21 below). In particular, (FDS) implies (UAD) on any Y/T for some F
(cf. Remarks 5.6(3) and 5.11(3)).

However, to satisfy the effectiveness (EEF), we need to take a model Y/T on which every
prime b-divisor Pi with nonpositive discrepancy ai = di = d(Pi, B,X) = multPi A (see [45, Exam-
ple 1.1.4]) is blown up, that is, Pi is a divisor on Y . Again, since (X,B) is Klt, such models exist
by [45, Lemma 1.6]. In addition, we can assume that Y is Q-factorial.

Using LMMP, we can make a more accurate choice of Y , where infinitely many Di = (Di)Y
are nef/T and even semiample/T . This implies (SAM) for D = DY = limi→∞ Di on such Y/T (cf.
Remark 5.6(4)) and indicates where one can choose a prediction model (cf. triples in (MOD) of
Conjecture 6.14 and Corollary 6.40 below).

Note that the limit D is only nef/T , in particular, R-Cartier by Remark 5.6(4). But, in general,
nef/T does not imply semiample/T ; this is the difference between numerical and linear geometries.
However, by the log semiampleness conjecture [45, Conjecture 2.6] (proved in dimension ≤ 3 [45,
Theorem 2.7]), for an effective divisor D on X (or it would be enough for D to be effective up
to ∼R), nef is equivalent to semiample if

(0LP) X/T is a 0-log pair for some boundary B as in Remark 3.30(2); in particular, if (X/T,B)
has an R-complement (cf. (EC) in Conjecture 1.3 in [43] and [35]).
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For example, by [41, предложение 5.5], this holds if

(WLF) (X/T,B) is a weak log Fano contraction as in Proposition 4.42.

Moreover, when X/T is projective, we do not need the log semiampleness conjecture if we assume
(WLF); and (WLF) also implies

(RPF) the effective cone NE(X/T ) is rationally polyhedral and has contractible and flippable
birational faces/T (cf. (RPC) in Inductive Theorem 2.3 in [43]).

We assume X/T projective in the remainder of this section; this holds, for example, if (X/T,B)
is a Fano contraction, that is, −(K + B) is ample/T . Or X/T projective can be achieved by the
contraction by −(K + B). If X/T is projective, we can increase B to B′ such that (X/T,B) is
a Klt Fano contraction; see Lemma 9.7 below.

In addition, (WLF) for some boundary and (RPF) are preserved by modifications in any face of
NE(X/T ), that is, under the D-flips of any birational contraction of X/T for which D is negative.
Indeed, let X ��� X+/T be such a modification, H be an ample/T divisor on X+, and H−

be its birational transform on X. Then there exist ε > 0 and a boundary B′ ≥ B such that
(X/T,B′ + εH−) is a 0-log pair. The modification is a flop, (X+/T, (B′)+ + εH) is again a 0-log
pair, and (X+/T, (B′)+) is a (weak) log Fano contraction. Therefore, it again satisfies (RPF).

Since (X/T,B) satisfies (WLF), under LMMP, we can apply this to modify X/T to make
a divisor semiample (cf. Theorem 3.33). For any effective R-Cartier divisor D (even up to ∼R;
compare the effectiveness of bss divisors explained before Proposition 3.4), there is a model Y/T
of X/T where the birational transform (composition of the above modifications in faces) of D is
nef/T , and so, by (RPF), is semiample/T . Moreover, if

(SA1) D is semiample in codimension 1, that is, for any effective divisor E on X, there is an
effective D′ ∼R D with disjoint SuppE and SuppD′; hence, such D is nef on general
curves/T of any divisor in X,

then we can take the model Y/T isomorphic to X/T in codimension 1.
Indeed, if D is nef, we take Y = X and we are done. Otherwise, by (RPF), there is a contraction

X → Z/T on which D is negative. It is birational because D ≥ 0. Moreover, it is small under (SA1).
Thus, we can modify X/T by D-flips, and the D-MMP gives the required model Y/T . Assuming
(SA1), the modification is small. The required termination is as in the proof of Theorem 3.33, that
is, by LMMP for (X/T,B′ + εD), where (X/T,B′) is a 0-log pair.

Note that the use of LMMP is justified by our approach (cf. Corollary 1.5 and the remark at
the end of Conjecture 4.39).

Since f.g. depends on L only up to quasi-isomorphism, or equivalently, stabilization depends
on D• only up to similarity, we can assume that all Di are effective. Moreover, by (LBF) in
Conjecture 4.39, we can assume (SA1) for D := Di := (Di)X . Thus, if Di is Q-Cartier, we can
construct a model Yi/T such that

• Yi is isomorphic to X in codimension 1; and

• Di is nef, and even semiample/T on Yi by (RPF).

After taking a complement (X/T,B′), by the conjecture of Alexeev [1, 0.4, (1)] and the Borisovs
[5, с. 134, теорема] (compare Remark 4.40(7)), we expect that only a finite number of models Yi/T
satisfy the above conditions. The same would follow from Kawamata’s conjecture on the finiteness
of log minimal models [20]. However, for our purposes, it is sufficient to have LMMP by (RPF) in
the proof of the Second Main Theorem [45, Theorem 6.20] with prime b-divisors Di = Pi of SuppF
in (FDS) and Pi that are exceptional on X with ai = multPi A(X,B) ≤ 0. Then the equivalence of
weakly log canonical models (Yi/T,B′ + εDi) means that the divisors Di are nef on both models.
This gives a model Y/T with (SAM) and infinitely many semiample Di = (Di)Y .
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To secure the other properties of a prediction model, e.g., (EEF), we need to make a crepant
terminal (in codimension ≥ 2) resolution of (Y/T,B′), or of (X/T,B′), or even of (X,B) before
the modifications. We can also assume that the resolution is Q-factorial. The existence of such
a resolution follows from [45, Theorem 3.1] again up to the LMMP. (Apply it to (X,B′) with B′ ≥ B
and such that the new discrepancies ai := multPi A(X,B′) are negative for all exceptional Pi with
old ai := multPi A(X,B) ≤ 0.)

This satisfies all the requirements for a prediction model, except for confinement (SAC)! This
may actually fail (cf. Addendum 6.26.2 and Example 6.38). However, we expect that it holds for
Y/T provided that D is big (see Conjecture 6.14 and Proposition 6.26). Moreover, this is the only
possible choice by Addendum 5.12.2 and Example 6.39.

Finally, note that the same approach with the following modifications works in the log singular
case (FGA)∗. Instead of LMMP, we use the log singular Q-version LMMP∗ due to Ambro [2,
Theorem 5.10] when B is a Q-divisor; each Di is a Q-b-divisor. This time, the modifications do not
change a neighborhood of LCS(X,B). Indeed, according to stabilization Di = H in a neighborhood
of the LCS and b-semiampleness of Di, the exceptional locus does not intersect the LCS. Thus,
we can make a log flip as in the usual LMMP. Log termination holds for the same reasons (the
log singularities have a log resolution). We take C and J on a prediction model by Example 5.25.
Then we can use Corollary 5.21, its addendum and Corollary 5.23 instead of Theorem 5.12, and
Corollary 5.13 and their addenda. Since C has a lot of 0s over the LCS, to satisfy (LGD), F in
(UAD) should be quite accurate, namely, SuppF should be disjoint from the LCS. This can be
done either

• by Q-factorialization of F ; or
• if Y/T is projective, by augmenting F to a Cartier divisor by a free divisor in a neighborhood

of the LCS, which gives F = 0 in this neighborhood, as for a free divisor; or
• by replacing F by an effective R-Cartier divisor with the same support as F .

The final method is the most natural when F is the minimal divisor for (UAD) (cf. Remark 5.11(3)),
but this requires a modification of the estimates in Lemma 5.20. Again, this satisfies all the
requirements for a prediction model, except for confinement (SAC)!

Thus, the main difficulty in constructing pl flips is confinement (SAC). We start to attack it in
the next section where we propose a conjecture to resolve the difficulty and solve it in dimension 2.
This is enough for 3-fold log flips, for (FGA)∗ and 4-fold log flips.

6. CANONICAL CONFINEMENT AND SATURATION

We start with another interpretation of confinement and asymptotic confinement in the canoni-
cal case, that is, when we take C to be the discrepancy b-divisor C = A = A(X,B) (cf. Example 5.27,
Definition 6.4, and Proposition 6.8).

Lemma 6.1. Let (X,B) be a log pair, D be an R-b-divisor, and {η} be a set of scheme-theoretic
points of X such that

• the divisors K + B and DX of X are R-Cartier ;
• each η has codim η ≥ 2 in X; and
• D ≥ 0 over each η, that is, multEi D ≥ 0 in each prime b-divisor Ei with centerX Ei = η.

Then, for any real number c ≥ 0 such that (X,B + cDX) is canonical in each η, we have

cE ≤ A

over each η, where E = DX −D is the descent data of D over X (see 5.3) and A = A(X,B) is the
discrepancy b-divisor of (X,B).
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We say that inequalities of this type hold over X (or hold/X) if {η} is the set of all codimen-
sion ≥ 2 points of X (cf. (EEF) in 5.9). When dimX = 1, the inequalities always hold/X because
{η} = ∅: there are no exceptional divisors.

Remark 6.2. It is easy to generalize the lemma to the situation when

• the η have arbitrary codimension; and

• canonical η is replaced by ε-log canonical or ε-log terminal (where ε may depend on η).

Then the inequality cE ≤ A should be replaced by

multPi A ≥ ε − 1 + cmultPi E

for each prime b-divisor Pi with centerX Pi = η in the ε-log canonical case (respectively, > in the
ε-log terminal case; cf. (LGD) in 5.9), or A should be replaced by its ε-log version if it is defined
as a b-divisor (cf. [45, Example 1.1.4]).

In the lemma, ε = 1. The log canonical and log terminal cases have ε = 0 (see Example 8.21).

The converse of the lemma usually fails, essentially because A and E are independent of D up
to ∼R by (DEP) in Proposition 5.4, whereas canonical depends on D.

Example 6.3 (see Addendum 6.40.1). Let D be an R-Cartier divisor on X and D = D. Then
DX = D and E = 0, so that 0 = cE ≤ A/X if and only if (X,B) is canonical in codimension ≥ 2.
Of course, this does not imply that (X,B + cDX) is always canonical in codimension ≥ 2, e.g.,
when c > 1, D is effective Cartier passing through η, and dimX ≥ 2 (cf. Example 6.7(3)).

However, if D = DX , then, by the proof of Lemma 6.1, cE ≤ A over each η if and only if
K + B + cDX is canonical in each η of Lemma 6.1. Indeed, then K = K + cD over each η.

Proof of Lemma 6.1. By definition, K = K + B + A and D = DX − E (cf. the proof of
Proposition 4.50, p. 130). Thus, for each η, since D ≥ 0/η,

K ≤ K + cD = K + B + cDX + A− cE/η

and K−K + B + cDX ≤ A−cE/η. Therefore, if K+B+cDX is canonical over η, then, by definition,
A(X,B + cDX) = K − K + B + cDX ≥ 0/η as the discrepancy b-divisor. Hence, A− cE ≥ 0 and
cE ≤ A/η. �

Definition 6.4. Let D be a set of (effective) R-b-divisors and (X,B) be a log pair such that

• B may not be a boundary, but

• K + B and DX for every D ∈ D are R-Cartier.

We say that D has canonically confined singularities, or simply that it is canonically confined on
(X,B), if there exists a real number c > 0 such that each pair (X,B + cDX) is canonical in
codimension ≥ 2. More precisely, the family is confined by c (from below).

If we replace (X,B) by a family (Xi, Bi) of log pairs, with the Xi models of X (usually crepant
models; cf. (CRP) in Definition 6.9), D confined on the family means that, for each D ∈ D, there
is a pair (Xi, Bi) on which D is confined by the same c. Thus, c is uniform.

Remarks 6.5. (1) We define ε-log canonical (terminal) confinement of D on (X,B) at a
point η or on a family of points (cf. Remark 6.2) in the same way. Thus, if ε = 1 and codim η ≥ 2, we
get again canonical (terminal) confinement; for ε = 0, we get log canonical (terminal) confinement
(cf. Example 8.21).

(2) If D is confined, we define its threshold as sup{c}. This is a more precise characteristic of
the singularities of D.
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Definition 6.6. A set S of reduced divisors S =
∑

Pi on X is bounded if its elements are
bounded as reduced subvarieties of X (cf. the proof of Theorem 8.4, p. 180 and E in Fixed restric-
tion 7.2). More generally, a bounded set of divisors is a set of divisors D such that all S = SuppD
of D ∈ D are bounded, that is, belong to a bounded family of reduced divisors S. In this case,
we say that D is bounded by S and D is bounded by S, respectively. For b-divisors, this also has
the flavor of bounded in moduli (see Examples 6.7); that is, such divisors belong to a bounded
algebraic family of b-divisors, where the family can be defined over birational models of X.

A stricter condition, bounded with multiplicities on Y , includes boundedness of the multiplici-
ties6 for each DY , where Y is a model of X.

Examples 6.7 (trivial). (1) If D is a finite or bounded set of b-divisors D, including multi-
plicities on X, and (X,B) is terminal in codimension ≥ 2, then D is confined on (X,B) (cf. the
proof of Lemma 8.22).

(2) If each b-divisor D of D is the Cartier completion D = D of a sufficiently general element in
a free linear system and (X,B) is terminal in codimension ≥ 2, then D is also confined on (X,B).

(3) If each b-divisor of D is sufficiently general and b-free, that is, as in (2) on some model Y/X
of X, and (X,B) is Klt, then D is confined on a family (Xi, Bi) that consists of the crepant models
(Xi/X,Bi) terminal in codimension ≥ 2. Note that c = 1 + minA is the minimal log discrepancy
of (X,B) (cf. Example 6.25). In particular, c = 1 when (X,B = 0) is canonical.

Now we show how to apply canonical confinement to get asymptotic confinement.
Proposition 6.8. Under the assumptions of Definition 6.4, suppose also that

(CMD) each model (Xi/Z,Bi) is a crepant model of (X/Z,B) (cf. Example 6.7(3)); and
(EFF) each D ∈ D is effective.

Then D canonically confined by c on the family (Xi, Bi) implies that, for each D ∈ D, there
exists a pair (Xi, Bi) such that the descent data cE of cD over Xi is confined by A/Xi, where
A = A(X,B) = A(Xi, Bi) is the discrepancy b-divisor.

Addendum 6.8.1. Let Di be a sequence of b-divisors and pi be a sequence of positive real
numbers such that

• limi→∞ pi = +∞; and
• each piDi ∼R Mi ∈ D (or even just numerically equivalent), where
• all the Mi are canonically confined by c on a common model (Y = Xj , BY = Bj) in the

family.

Then the descent data for the sequence Di is asymptotically confined by A/Y .
Addendum 6.8.2. The same confinement holds over the sequence (Xi,A) (in fact, even in

the discrepant case; see Remark 5.8(6)) if we weaken the last condition to

• all the Mi are canonically confined by c on a sequence (Xi, Bi) in our family.

Proof. The confinement cE ≤ A/Xi follows from Lemma 6.1 for (X,B) := (Xi, Bi), for the
set {η} of points of codimension ≥ 2, and for the given canonical confinement c, where (Xi, Bi)
itself corresponds to D under the canonical confinement. By (HOM) of Proposition 5.4, E(cD) =
cE(D)/X := Xi.

Since c > 0, each ri = cpi > 0 and also limi→∞ cpi = +∞. On the other hand,

riEi = cpiEi = cE(piDi) = cE(Mi)/Y

by Proposition 5.4, (DEP) and (HOM). Hence, the given canonical confinement for D and for Mi

implies that riEi = cE(Mi) ≤ A/Y , which means asymptotic confinement. �
6That is, the multiplicities on Y are in a fixed segment [a, b] ⊂ R.

ТРУДЫ МАТЕМАТИЧЕСКОГО ИНСТИТУТА ИМ. В.А. СТЕКЛОВА, 2003, т. 240



PRELIMITING FLIPS 155

We define desirable pairs (Xi, Bi) of confining families in terms of triples.
Definition 6.9. A triple (X/T/Z,B,F) includes

• a log pair (X/Z,B) for which K + B is R-Cartier but B may not be a boundary;
• a contraction g : X → T/Z; and
• a bounded set F of reduced divisors on X.

Let (X/Z,B) be a weak log Fano contraction (see (WLF) in Proposition 4.42). A desirable
triple for (X/Z,B) is a triple (Y/T/Z,BY ,F) such that

(CRP) (Y/Z,BY ) is a crepant model of (X/Z,B);
(QFC) Y is Q-factorial;
(TER) (Y,BY ) is terminal in codimension ≥ 2; and
(RPC) the nef cone NE(T/Z) is rationally polyhedral and has contractible faces/T (cf. [43,

Inductive Theorem 2.3]).

Let M be a b-free b-divisor. A triple (Y/T/Z,BY ,F) is a desirable triple for M if, in addition,

• MY = g∗M , where M is nef and big on T/Z; and
• κ(X/Z,M) = dim T/Z, where κ is the Iitaka dimension/Z.

Remarks 6.10. (1) T/Z is a contraction if X/Z is.
(2) We sometimes need to weaken the assumptions, even for desirable triples; e.g., X/T may

be an incomplete morphism of normal varieties, with log singularities omitted, or (X,B) may not
be Klt. Moreover, X itself may be nonnormal and nonreduced; for example, (X/Z,B) could be a
generalized log Fano contraction (as in Conjecture 5.26), or even just a morphism. In the latter
case, we modify the conditions as follows:

(CRP)∗ (Y/Z,BY ) may also be a nonnormal and nonreduced crepant model of (X/Z,B);
that is, both have a common crepant normal model; in applications, (X/Z,B) is
isomorphic to (Y/Z,BY ) outside a neighborhood of LCS(X,B) that includes the
non-Klt singularities;

(QFC)∗ Y is Q-factorial outside LCS (the image of LCS(X,B), or the LCS of (Y,BY ) itself);
that is, a divisor that is R-Cartier in a neighborhood of the LCS is so everywhere;

(TER)∗ (Y,BY ) is terminal in codimension ≥ 2 in each closed center outside the LCS; and
(RPC)∗ the effective curves subcone of NE(T/Z) having only faces defining contractions that

embed T−∞ = g(Y−∞) ⊂ g(LCS) into their target space (that is, ample/Z in
a neighborhood of g(LCS)) is rationally polyhedral and has contractible faces/Z
(cf. Ambro [2, Theorems 5.6 and 5.10]).

Such a triple (Y/T/Z,BY ,F) is a desirable triple for M if, in addition,

• M in Definition 6.9 is ample on c(LCS)/Z; and
• M = MY = g∗M over a neighborhood of the LCS.

See (CCS)∗ in Conjecture 6.14 and Addendum 6.19.1 below.
(3) It might be better to spread the boundedness of F into the boundedness of a family of simple

triples (X/T/Z,B,F ) having a 1-element set {F} ⊂ F for F ∈ F. We say that a family of triples
is bounded to mean bounded in moduli (cf. (7′) in the proof of Theorem 8.4).

(4) (CRP) in the definition means that A(Y,BY ) = A(X,B) = A (cf. Caution 4.37).
(5) We could possibly drop (QFC), but then we can only confine singularities of a divisor D hav-

ing R-Cartier restriction DY (cf. Lemma 6.1 versus Lemma 8.12). This holds in many applications.
For example, MY is Q-Cartier on a desirable triple for M by definition.
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(6) The divisor BY in (TER) need not be a boundary. However, since (X,B) is Klt, BY is a Klt
subboundary ; that is, each of its multiplicities bi < 1.

(7) (RPC) is intermediate among the following conditions on T/Z that we list in order of
increasing strength:

(LSA) the limit of any semiample sequence of R-divisors on T/Z is a semiample R-divisor
on T/Z, and we assume that M is semiample in the definition of desirable triple (cf.
Remark 5.6(4));

(NSA) each divisor M on T that is nef/Z is semiample;

(0LP) T/Z is a 0-log pair for some boundary BT as in Remark 3.30(2); in particular, (NSA)
then holds for each effective divisor, and we can assume that M is effective, and any
limit of effective divisors is also effective under (MXD);

(RPC) as in Definition 6.9 (cf. Lemma 8.12(2) below); and

(WLF) (T/Z,BT ) is a weak log Fano contraction or morphism for some boundary BT .

For the main application of (CCS) below (cf. Theorem 6.19), (LSA) is enough. But for approxi-
mations, we need at least (RPC) (cf. Theorem 8.15 below). In addition, we prefer to work with
notions defined up to numerical equivalence rather than up to linear equivalence.

The reader may wonder what role the set of divisors F plays in triples. In fact, we need very
special sets F that we call standard. First, standard families are bounded in typical examples, such
as the fixed and fractional parts that appear in Corollary 6.40 and in Proposition 9.15. Second,
they generalize the canonical confinement conjecture (cf. (GCC) in Conjecture 6.14). They are also
needed for birational rigidity (see the proof of Theorem 6.19(3)). Finally, they are crucial in our
construction of 4-fold flips (cf. Theorem 6.45).

Definition 6.11. Let (X/Z,B) be a log pair. We say that a set F is standard on (X/Z,B)
if it contains only standard divisors. A standard divisor S on (X/Z,B) is a reduced divisor S =
SuppDX , where D is an effective R-b-divisor such that

(SEF) D is strictly effective/X; that is, it has multEi D ≥ 0 in each exceptional/X prime
b-divisor Ei and > 0 over SuppDX , where the support is considered as a divisorial
subvariety (cf. (EEF) in 5.9); and

(STD) 0 is saturated with respect to A + D on any sufficiently high model Xhr/Z of X/Z.

The standard set S is the set of all standard divisors. In general, it may be unbounded. However,
by (SSB) in Conjecture 6.14, we expect that S is bounded when (X/Z,B) is a weak log Fano
contraction. In particular, then (X/X/Z,B,S) is a triple. For any other triple (Y/T/Z,BY ,SY ),
the induced standard set SY is defined as the log birational transform of the set S of X.

A desirable triple for (X/Z,B) with the induced set SY is a desirable triple (Y/T/Z,BY ,SY )
with the induced standard set.

Caution 6.12. It may happen that SY itself is actually nonstandard (cf. Remark 6.13(2)).

Remarks 6.13. (1) If D is an effective R-Cartier divisor on X, then D satisfies (SEF).

(2) The induced set SY is well defined, namely, it is bounded when S is bounded. Indeed, the
log birational transform of S ∈ S is g−1S +

∑
Ei, where each Ei is a prime divisor on Y that is

exceptional on X. Note that
∑

Ei is finite and fixed for any such transform.
In general, SY is not standard even up to the additive log contribution

∑
Ei. Let X be

a del Pezzo surface having two −1-curves E1 and E2 that intersect transversally in a single point P ,
for example, two intersecting lines on a cubic surface in P3. Then E1 and E2 belong to the standard
set S(X/Z = pt., 0), but E1 +E2 does not (cf. Example 6.38). For the blowup g : Y → X in P , the
blowup E3 of P (the log transform of 0) is standard. The birational transform g−1Ei of each Ei
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is also standard (in addition to their log transforms g−1Ei + E3). But now g−1E1 + g−1E2 and
g−1E1 + g−1E2 + E3 are also standard since g−1E1 + g−1E2 + a(E3)E3 = g−1E1 + g−1E2 + E3 has
trivial mobile part on Y .

Nonetheless, the difference between SY and S(Y/Z,BY ) is not great (cf. (GFC) in Conjec-
ture 6.14).

Other facts about standard sets and equivalent forms of the standard property (SEF)+(STD)
are given below in Proposition 6.34. In general, a confining family (Xi, Bi) may itself be unbounded
(cf. Example 6.7(3)), and an infinite subset in D may be unbounded on any bounded subfamily of
(Xi, Bi). However, we need and expect the following:

Conjecture 6.14 (canonical confinement). We assume that (X/Z,B) is a weak log Fano
contraction with a contraction X/Z. We expect the following sets to be bounded. First,

(SSB) the standard set S = S(X/Z,B) of (X/Z,B) is bounded.

In particular, this includes boundedness of the prime components of the standard divisors. Moreover,
we expect that

(PRM) the prime standard set P = P(X/Z,B) is bounded; here P is the set of prime stan-
dard divisors P = SuppDX on X with D ≥ 0 and D satisfying saturation (STD) of
Definition 6.11.

The third set is the linearly fixed primes for the (SAT) set D = D(X/Z,B) of effective R-b-di-
visors D under saturation:

(SAT) D is log canonically saturated/(X,B) on any sufficiently high model Xhr/Z of X/Z
(cf. Definition 4.36); that is, it is A-saturated, where A = A(X,B) is the discrepancy
b-divisor.

In most cases, D itself is unbounded, even on X. However, we expect that

(PFC) the set of prime linearly fixed components, that is, the set of components of
Supp(FixD)X for D ∈ D on X (cf. Remark 6.15(4)) is bounded.

(PFC) is equivalent to (PRM). Actually, the set is equal to P (cf. Theorem 6.19(1) and its proof ).
By definition, (PRM) and (PFC) hold on any desirable triple (Y/T/Z,BY ,F) if they hold on
(X/Z,B). Indeed, P(Y/Z,BY ) is the birational transform of P plus some Ei on Y that are
exceptional on X. Moreover, we expect that

(GFC) each of the conjectures (PRM), (PFC), and (SSB) holds on any general log Fano
contraction (X/Z,B) (see (GLF) in Proposition 4.50) with a Klt subboundary B
for (SSB).

Each D ∈ D has the form D = M + F with b-free M ≥ 0, M = MovD ∈ |MovD|, and fixed
F = FixD ≥ 0. This splits D as a partial sum (cf. Remark 6.15(6))

D(X/Z,B) ⊂ M(X/Z,B) ⊕ F(X/Z,B),

where M = M(X/Z,B) and F = F(X/Z,B) are the subsets of b-free and fixed (with M = 0)
b-divisors in D. Indeed, under Klt, (SAT) is equivalent to

(SAF) M is saturated with respect to A + F on any sufficiently high model Xhr/Z of X/Z
by Proposition 6.34(2);

and, in turn, by Proposition 6.34(3), (SAF) is equivalent to

(STD) as in Definition 6.11 for fixed D := F .

Also, F satisfies (SAT) because Mov�F + A� ≤ 0 ≤ F , and so does M by Lemma 4.44 with
C1 = A + F and C2 = A. We use the splitting D = M + F to confine the singularities of the sum
in terms of its two summands. Moreover, we can consider any such sum (cf. Remark 6.15(6)).
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Indeed, M and F ≥ 0, and, on each desirable triple (Y/T/Z,BY ,F) of (X/Z,B), DY ∼MY +FY

with a Q-Cartier integral Weil divisor MY ≥ 0 and an R-Cartier FY ≥ 0. Thus, because the
canonical property is convex (cf. [41, (1.3.1)]), it is enough to prove that DY ∼ MY + FY is
canonically confined for each summand. If F is confined by cf from below and M by cm, then D
is confined by any weighted combination of them, e.g., by the half-sum c = (cm + cf )/2.

On any desirable triple (Y/T/Z,BY ,F), by (PRM) and Example 6.7(1), each irreducible com-
ponent fiPi of FY (with prime Pi) has canonically confined singularities if the multiplicities fi

are bounded. For the whole F , we need more, namely, boundedness of the number of irreducible
components, which is equivalent to (SSB) and holds for D := F under condition (SEF)/Y of
Definition 6.11, or for the log transforms in SY from (X/Z,B) (see Remark 6.13(2)).

The mobile part M behaves worse (cf. Remark 6.15(7)):

• canonical confinement from below holds for some effective M (usually meaning sufficiently
general); and

• on some triples.

With a certain degree of optimism, we expect that

(CCS) there is an algebraic (throughout the paper ; cf. Remark 8.16) bounded family of de-
sirable triples (Y/W/T,BY ,F) on which M = M(X/Z,B) has canonically confined
singularities up to ∼, where M is the set of b-free b-divisors satisfying log canonical
saturation (SAT). More precisely, for each M ∈ M, there are D ∈ |M| and a desir-
able triple (Y/W/T,BY ,F) for M in the family such that D is canonically confined
on (Y,BY ).

Thus, jointly,

(GCC) canonical confinement for some D + F ∼ M + F over the family

is equivalent to (CCS) + (SSB). But the latter needs extra assumptions on F , such as (SEF) of
Definition 6.11. Without it, (GCC) means (CCS)+(PRM).

In addition, we expect (cf. Remark 6.15(8)) that

(BIG) for big M, the subfamily of desirable triples is finite; in particular,
(BIR) for birational X/Z, the whole family of desirable triples can be taken to be finite; and,

more generally,
(MOD) among birationally equivalent M, that is, M that define birationally the same con-

tractions Y → T/Z (see Definition 6.20), the subfamily of desirable triples M is finite;
in addition, dimT/Z = κ(X/Z,M) is the Iitaka dimension of M/Z.

However, to be more realistic, we can restrict ourselves to very special subsets in M and impose
further conditions. We consider mobile systems M• ⊂ M at least under asymptotic saturation
(LCA); e.g.,

(CCS)(fga) condition (CCS) for M• = MovL for each individual functional algebra L in
Definition 4.38; and

(CCS)(rfa) (CCS) for each algebra in Definition 3.47.

Finally, if (X/Z,B) is a generalized log Fano contraction (see Conjecture 5.26), we consider
only b-free M ∈ M = M(X/Z,B) that are ample on the LCS(X,B)/Z, with M = MX over a
neighborhood of the LCS, and |M|X is free in a neighborhood of the LCS, where M satisfies the
same log canonical saturation (SAT) (but now A may be quite ineffective). Thus, we concentrate
only on singularities outside such a neighborhood and modify (CCS) to

(CCS)∗ there is an algebraic bounded family of desirable triples (see Remark 6.10(2)) on which
M = M(X/Z,B) has canonically confined singularities over Y \ LCS up to ∼. More
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precisely, for each M ∈ M, there are D ∈ |M| and a desirable triple (Y/W/T,BY ,F)
for M in the family such that D is canonically confined on (Y \ LCS, BY ).

Perhaps, we can weaken the ampleness on the LCS as in Conjecture 5.26 (cf. also (GEN) of
Remark 6.15(9) and Addendum 6.40.2 below).

As above, we can consider (CCS)∗(fga) for algebras of (FGA)∗ type. The conditions we really
need are (CCS)(rfa),(bir) and the same with ∗ (see the notation below and Conjecture 3.48).

Remarks 6.15. (1) We can expect generalizations of the conjectures when X/Z is only
a proper morphism of normal varieties but possibly not a contraction, or X/Z has other extra
structures, e.g., a group action, a morphism X/W , etc. The latter relates, in particular, to the
nonlocal case X/W with a proper morphism W → Z and local/Z, as we always assume.

(2) (PRM): drop (SEF) in Definition 6.11 but assume that S = P is prime.
(3) We can drop the effective condition for D ∈ D in (PFC). Indeed, if |D| = ∅, the prime

component of the base locus is a single prime variety X that we can add to P. Otherwise, D ≥ 0
up to ∼ that preserves saturation (SAT) and the fixed components. Perhaps, we can also add other
prime maximal fixed centers (that is, maximal under inclusion). In dimension 0, boundedness is
obvious over an algebraically closed field. One can expect something like (SSB), or boundedness of
the entire base locus (cf. Addenda 6.26.1 and 6.26.2).

Again, in (CCS) and (GCC), we need the effectiveness of M and M+F (respectively, up to ∼).
Otherwise, M = −∞ is canonically confined on any model. Thus, we can also drop effectiveness.

(4) Any R-b-divisor D has a decomposition D = M+F with a b-free mobile part M = MovD
and a fixed part F = FixD ≥ 0. We explained this in Proposition 4.15(1),(3) when OZ(D) is
coherent. In general, there is a maximal coherent subsheaf

OZ(M) = OZ(D)coh ⊂ OZ(D) ⊂ OZ(DX) ⊂ k(X)

(because the coherent sheaf OZ(DX) is Noetherian). Note that, in the global case with Z = pt.,
each OZ(D) is coherent. See also [14].

An R-b-divisor D is effective up to ∼ if and only if M �= −∞, or equivalently, |M| �= ∅, or
OZ(M) = OZ(D)coh �= 0. If D ≥ 0, then OZ(D)coh �= 0 and D ≥ F ≥ 0. In the same way, D ≥ 0
is mobile if and only if |M| �= |0|, or equivalently, OZ(M) = OZ(D)coh has > 1 generators (is
nonprincipal).

(5) For general log Fano contractions in (GLF) of Proposition 4.50, we drop any properties of B.
In general, (SSB), (PRM), and (PFC) do not hold for contractions that are not general log Fano
contractions, even for rational varieties X. For example, let (X/pt., 0) be a sufficiently high blowup
of P2, e.g., such that the set of exceptional (= contractible) curves on Y is infinite and unbounded.
Then S and P include at least the exceptional curves C (take D = C for (SSB)) that are linearly
fixed. We expect that (PRM) and (PFC) hold on any general log Fano contraction but for (SSB)
we need Klt; in particular, B is a subboundary (cf. bad singularities in remark (9) below).

(6) We say that D splits only as a partial sum in Conjecture 6.14 because, for sufficiently
ample M, Mov�M + F + A� can certainly be > M, which gives a different splitting.

(7) Write m = mld(X,B) for the minimal log discrepancy of (X,B). If some element D ∈ |M|
is canonically confined by c with 0 ≤ c ≤ m, then so is the general D′ ∈ |M|. (By Proposition 9.17
below, D and D′ ∼ M also satisfy (SAT).) Hence, (CCS) for some D implies (CCS) for general D,
in fact with the same c. Indeed, D canonically confined on (X,B) means that (X,B + cDX) has
canonical singularities in codimension ≥ 2. Equivalently, on any crepant model (Y/X/Z,B), the
crepant subboundary

BY := B(X,B + cDX)Y = B(X,B)Y + (cDX)Y
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has only nonpositive multiplicities in divisors that are exceptional on X, and (Y,BY ) is canonical
in codimension ≥ 2. Note that, for any other D′, if B′

Y := B(X,B + cD′
X)Y is a subboundary on Y

such that B′
Y = cL + F , where F ≤ BY in the divisors that are exceptional on X, and Bs |L| = ∅,

then, by monotonicity (cf. [41, (1.3.3)]), for sufficiently general L (that is, D′), (X,B + cD′
X) is

also canonical in codimension ≥ 2. This holds on some good model Y/Z, where |D′| = |D′
Y |, with

Bs |D′
Y | = ∅, and L = D′

Y = 0/X. Indeed, for such fixed model and for a general D′,

B′
Y = B(X,B)Y + (cD′

X)Y and

(cD′
X)Y = c(D′

X )Y ≤ c(DX)Y = (cDX )Y /X.

This can also be established by inversion of adjunction (cf. after Proposition 5.13 in [41]).
Klt implies that (X,B) has minimal log discrepancy mld(X,B) > 0. On the other hand,

c ≤ mld on M by Example 6.7(3).

(8) We could perhaps expect more for the triples (Y/T/Z,BY ,F) that are required for the
conjecture, e.g.,

• each model Y/Z is a contraction over a crepant terminal resolution of (X/Z,B) and is thus
a rational 1-contraction over X/Z. That is, it is a 1-contraction from a model over the
resolution, and the boundedness of triples means essentially the boundedness of blowups in
such a resolution; and

• in (BIG), Y/Z is isomorphic in codimension 1 to a crepant terminal resolution of (X/Z,B)
(cf. Remark 4.40(7)).

The discussion in Example 5.27 sheds light on the finiteness in (BIG). In fact, each of the finiteness
assertions in (BIG), (BIR), (MOD) and (CCS)(fga), (CCS)(rfa) amounts to a single triple (cf.
Remark 5.24). In general, the desirable family may be bounded but not finite (cf. Addendum 6.26.2
and Remark 6.28(3)); however, it has only a finite number of irreducible components. Note that,
by the definition of such a family, each special Mu extends to M over the family or its irreducible
component that is desirable over the generic point for M. In addition, (Mu)Yu gives a family
of Q-Cartier divisors obtained from the b-divisor M over the generic point. The inversion of
adjunction from the special fibre (Yu, BYu) gives canonical confinement with the same c for M on
the triple (at least) over the generic point. For the latter, we need to assume that the family is
smooth in the following sense: the parameter space is nonsingular and each fibre is smooth at its
generic point. For any scheme-theoretic point in the parameter space, the family restricted to its
generic point satisfies the same properties. In applications, this allows us to derive finiteness from
boundedness of triples (see the proof of Theorem 6.19(3) below).

To prove (CCS) in general, it is enough to consider a desirable triple (X/T/Z,B,F) with the
subset N = N(X/T/Z,B) of M ∈ M satisfying the following conditions:

(NEF) MX is nef/Z and

(SFB) MX is supported in fibres of X/T of Iitaka dimension/Z κ(X/Z,M) = dim T/Z.

In particular, both hold when the triple is desirable for M (conversely, M is desirable in codimen-
sion 1 on T ; thus, if T is Q-factorial, this always holds, and X does not have divisors that are truly
exceptional on T ; this rarely happens). Then, to prove that N is canonically confined on (X,B)
up to ∼, we can additionally assume that

(IRR) MX is irreducible

except for the case of a pencil, when any boundedness and confinement of singularities are known, in
particular, canonical confinement. Since MX is integral and by the cone property (RPC), divisors
for which the triple is desirable correspond up to ∼ to integral points in the rational cone dual
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to the Kleiman–Mori cone NE(T/Z). As in Truncation Principle 4.6, it is enough to establish
canonical confinement

• for a truncated subcone: for M with a rather high index of height on X, namely, for some
natural number I, every such MX ∼ ∑

hig
∗Hi, where each Hi is nef and big on T/Z, and

I | ∑
hi, and

• for bounded heights
∑

hi.

We hope that, for some I � 0, the former M are freef over X, that is, M = MX and Bs |MX | = ∅.
Perhaps, in the latter case, bounded height implies confined singularities by reduction to lower
dimension of T . Finally, for general elements in N, we can use the birational case after a localization
over non-Q-factorial points of T or assume that T is Q-factorial.

Example 5.27 explains how to find such triples and to secure their finiteness if M is big and
T = X. This shows, in particular, why we expect Conjecture 6.14 to hold in full. However, for the
(FGA) conjecture, we only need boundedness of triples (cf. the proof of Theorem 6.19(3)).

Canonical confinement really requires the terminal property (TER) of desirable triples (cf.
remark (11) below). For example, if Mi = iH over a terminal resolution Y/X of (X/Z,B) with
ample H/Z, then M• ⊂ M, but M• has confined singularities on X only when X = Y .

Note also that we need fibred triples for which X/T is not birational (cf. Example 6.38 and the
proof of Corollary 6.40 below).

(9) Possible important generalizations concern bad singularities of (X,B); e.g., we could weaken
the Klt condition even further than in (CCS)∗ in Conjecture 6.14 to admit nonnormal and nonre-
duced singularities, but still assume that B ≥ 0. As above, we need extra assumptions to ensure
good behavior on bad singularities, namely,

(GEN) on a universal normal crepant model (Y/Z,BY ) of the contraction (X/Z,ω), each DY

is free on LCS(Y,BY )/Z, but possibly ample on X−∞/Z.

Thus, again, we do care about canonical singularities outside LCS.
(10) Another generalization concerns the numerical conditions of Fano type (GLF) (of Propo-

sition 4.50); we can replace it by

(ADJ) DX ≡ (K + B + D)/T , where D is a sum D = F + H of effective F plus nef and big
H/T , or some version in the style of Remark 4.40(3).

(11) We expect similar results in the ε-log category, for example, ε-log canonical confinement.
But this requires appropriate restrictions, e.g., ε-log saturation with respect to ε-log discrepancy.
For triples, (TER) can be replaced by ε-log terminality in codimension ≥ 2.

Question 6.16. Can we replace the condition that M is b-free by the b-nef assertion of
Lemma 4.23?

Philosophy 6.17. Saturation (SAT) improves the properties of any D up to ∼, even if it is
not b-free (by analogy with regularizing solutions of elliptic differential equations, compare [10,
Weyl’s lemma]). On the other hand, by (DEP) in Proposition 5.4 and by Proposition 6.8, we can
confine the descent data for M in terms of the canonical confinement of an improved divisor. The
same applies when pD ∼R M with real number p > 0 and M has good canonical singularities (cf.
Addenda 6.8.1 and 6.8.2), for example, by Conjecture 6.14.

Notation 6.18. We use the following specifications:

• ( ·)n means ( ·) with dimX = n;
• ( ·)(X/Z,B) means ( ·) for (X/Z,B);
• ( ·)(big) means that (·) concerns only b-divisors that are big/Z;
• ( ·)(bir) means that X/Z is birational in (·);
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• ( ·)(fga) means that we consider ( ·) only on a subset M• = MovL for an algebra L of type
(FGA) in Definition 4.38;

• ( ·)(gl) means that Z = pt., that is, X is global in ( ·); and

• ( ·)(rfa) means that we consider (·) only on a subset M• = MovL for an algebra L of type
(RFA) in Definition 3.47.

We apply these mainly to (CCS) of Conjecture 6.14. For example,

• (CCS)n means (CCS) for all (X/T,B) with dimX = n;

• (CCS)n(fga), (bir) means (CCS) for any system M• of type (FGA) with birational X/Z and
with dimX = n; and

• (CCS)n(bir), (gl) = ∅ for n ≥ 1.

The main result of this section is

Theorem 6.19. (1) (PFC) = (PRM) (equality of sets).

(2) (CCS)n implies the same with any specifications (big), (bir), (gl), (fga), and (rfa).

(3) (CCS)(X/Z,B) implies (FGA)(X/Z,B), and (CCS)(fga)(X/Z,B) is equivalent to
(FGA)(X/Z,B).

(4) (CCS)n(fga) is equivalent to (FGA)n.

Addendum 6.19.1. Moreover, in the above statements, we can replace conditions (CCS) and
(FGA) simultaneously and respectively by their singular modifications (CCS)∗ and (FGA)∗.

We start by clarifying (MOD) of Conjecture 6.14.

Definition 6.20. Two contractions X1 → Y1 and X2 → Y2 are birationally equivalent if they
fit in a commutative diagram with birational equivalences X1 ��� X2 and Y1 ��� Y2. After some
resolution of X1 and X2 (compare the graph of a rational map in [10, p. 213]), we can assume that
X1 = X2 and the contractions are isomorphic over nonempty open subsets Ui ⊂ Yi.

Example 6.21. Suppose that X1 and X2 are birationally equivalent. Then

(1) any two big contractions are birationally equivalent;

(2) any two contractions to pt. are birationally equivalent; and

(3) two contractions over a curve are birationally equivalent if and only if each defines the same
pencil.

Lemma 6.22. Let D1 ≥ D2 be two R-b-divisors on X/Z. Then

(1) the Iitaka dimensions of D1 and D2 satisfy κ(X/Z,D1) ≥ κ(X/Z,D2), with equality if and
only if they are birationally equivalent ;

(2) if both D1 and D2 are b-nef, then ν(X/Z,D1) ≥ ν(X/Z,D2), and equality holds if and only if

ν
(
X/Z,D2 (D1−D2)

)
≤ ν(X/Z,D2) − 1;

(3) if D1 and D2 are both b-semiample, ν(X/Z,D1) ≥ ν(X/Z,D2), with equality if and only if
they are birationally equivalent.

Proof. (1) Immediate from the definitions.

(2) Taking an appropriate model of X/Z, we can assume that each Di = Di for a nef/Z divisor
Di = (Di)X . By definition, each ν(Di) = ν(Di). Since D1 ≥ D2, it is enough to check that
ν(D1) ≥ ν(D2). Indeed, D1 = D2 + F with F ≥ 0. Taking a general point of Z, we can assume
that Z = pt. and each ν(X/Z,Di) = ν(Di).
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It is enough to consider the case ν(D1) ≤ ν = ν(D2). Thus, for some cycle Cν of dimension ν,
we have CνD

ν
2 > 0. Equivalently, the same holds for mobile cycles Hn−ν , where n = dim X and H

is a hyperplane section of X, because Hn−ν is rationally equivalent to Cν plus an effective cycle.
Taking a hyperplane section gives an induction on the dimension n ≥ ν with divisors Di H

. Hence,
we can assume that ν = n. Then

Dn
1 = D2D

n−1
1 + FDn−1

1 ≥ D2D
n−1
1 ≥ . . . ≥ Dn−1

2 D1 = Dn
2 + Dn−1

2 F ≥ Dn
2 > 0.

This also means that ν(D1) = ν. In addition,

ν
(
D2 (D1−D2)

)
= ν

(
D2 F

)
≤ dim F ≤ n − 1 = ν − 1.

(3) Immediate by (1) because ν(X/Z,D) = κ(X/Z,D) for any b-semiample divisor D. �
Proof of Theorem 6.19. (1) Compare the proof of Proposition 6.34(3). For D ≥ 0, Klt

implies that

Mov�A + D� ≥ MovD ≥ 0.

Hence, (PRM) for P = SuppDX implies (PFC) for D with prime P = Supp(FixD)X because
FixD = D. Conversely, for any D = M + F ≥ 0 under (SAT) and with M = MovD and
F = FixD,

M + Mov�A + F� ≤ Mov(M + �A + F�) = Mov�D + A� ≤ MovD = M

since it is ≤ D (see Remark 4.34(3)). Thus, Mov�A + F� ≤ 0 and, actually, = 0 by Klt again.
This means (STD) of Definition 6.11 for D := F . By Lemma 4.44, the same holds for each prime
component D := (multP F)P ; that is, P ∈ P when multP F > 0. For (PRM), we do not need
(SEF) of Definition 6.11 (and prime standard divisors might not be prime divisors of the standard
set S).

(2) Immediate from the definitions, except for (fga) and (rfa). In these cases, we only need to
check that M• = MovL ⊂ M. More precisely, this only concerns effective Mi up to ∼. Indeed,
each Mi satisfies (SAT) by (LCA) and Remark 4.34(5).

(3) Let M• = MovL be a mobile system on (X/Z,B) for an algebra L of type (FGA). By
Limiting Criterion 4.28, f.g. of L is equivalent to stabilization of its characteristic system, that is,
of the limit D = limi→∞Di with Di = Mi/i. In turn, stabilization is equivalent to the asymptotic
descent problem. To solve the problem, we apply Theorem 5.12.

First, we choose a prediction model (Definition 5.10). By Lemma 6.22(3) and the arithmetic
monotonicity in Lemma 4.24, the numerical dimension ν(X/Z,Di) stabilizes. After a truncation,
we can assume that each Di has ν(X/Z,Di) = ν, the Iitaka dimension of L. Moreover, up to
a similarity, corresponding to a quasi-isomorphism of algebras by Proposition 4.15(8), we can
assume that ν ≥ 0 and the entire M• ⊂ M. Otherwise, L = OZ ⊕ 0• and is f.g. In addition to the
effectiveness of each Mi, we use the saturation (LCA) of (FGA), as in (2) above.

Since, by Lemma 6.22(3), the b-divisors Mi/Z are birationally equivalent, by (MOD) there is
a finite family of desirable triples (Y/T/Z,BY ,F) for them. (We can actually replace it by a single
triple; compare the arguments below.) Moreover, this can be in the strict form: each of the triples
has an infinite subset of Mi for itself, and the same holds after any truncation. Indeed, we can
discard all triples in our finite family that do not satisfy the essential infiniteness and replace M•

by a truncation for which the corresponding Mi has been discarded with triples. Then we take
a truncation such that some triple does not satisfy the essential infiniteness, etc. Finally, we get
a family with the strict property.
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Now any remaining triple (Y/T/Z,BY ,F) predicts (Y/Z, C = A, F, γ) for the asymptotic descent
problem D = limi→∞Di. If we consider only i for which this is a desirable triple, then (SAM) for
DY = limi→∞(Di)Y follows from the cone property (RPC) because, by our choice of b-divisors Di,
each (Di)Y is semiample/Z (cf. (LSA) in Remark 6.10(7) and the discussion in Example 5.27).
The b-discrepancy C = A is exceptionally effective (EEF) because the triples satisfy the terminal
property (TER). The boundedness of algebra L and (BSD) of Addendum 4.22.1 imply that there
is a reduced divisor F that contains the support of each (Di)Y . Thus, (UAD) holds for F (cf.
Remark 5.11(3)). On the other hand, the growth (LGD) for F and some γ > 0 follows from
(QFC), (CRP), and (X,B) Klt.

The property of prediction models that is hard to establish is confinement (SAC) of Defini-
tion 5.10; by Addendum 6.8.1, this follows from (CCS)(fga)(X/Z,B) with the common model
(Yi/Z,Bi) = (Y/Z,BY ) for Di with i for which this is a desirable triple and with pi = i. Indeed,
the descent data for D• is asymptotically confined by A/Y . This confinement is strict because
each truncation leaves infinitely many b-divisors Di for the required triple in the descent problem
depending on the choice of the triple.

Secondly, D• satisfies the minimal assumptions (FDS) by (BSD) and (MXD) by Adden-
dum 4.22.1 and the additional assumption (BNF) because each Mi is b-free.

Thirdly, as we know, (LCA) in (FGA) implies the required saturation. Thus, by Adden-
dum 5.12.1, the asymptotic descent problem has a solution on Y . Thus, Addendum 5.13.1 gives
the required stabilization.

Finally, we can use boundedness of triples instead of finiteness in (MOD) in the descent
of Theorem 5.12, its corollaries and addenda. Indeed, we can construct a family or a predic-
tion model over a functional field as in Remark 5.24. (Actually, this means that we choose
again a single prediction model, but over a functional field.) For this, we consider a Zariski
closed subset in the moduli of triples for (CCS) that has a Zariski dense strictly infinite sub-
set of special (closed) points corresponding to Mi according to (CCS). The subset can be cho-
sen by the Noetherian property and truncations (cf. the above choice of prediction model un-
der (MOD)). Then we take any of its irreducible components W . It also has a dense subset
with the same property. This functional triple gives the required prediction model. It is bi-
rationally equivalent (over the function field of W ) to a constant family. For this, we include
in F the poles and zeros of rational function that generate k(X); this induces FY on the triples.
The isomorphism induces birationally D = limi→∞Di with Di = Mi/i for the chosen family of
triples/W that satisfies (FDS) and birationally (MXD), (BNF), (AMN), and (LCA). Thus, as
above, we only need confinement (SAC). To secure this, choose an open subset U ⊂ W such
that

• F in (FDS) is (in F and) deforms universally/U ; that is, Fu = F
Yu

and DFu = DF Yu
; and

• the birational equivalence of Y/U with the constant family X ×U/U is well defined in each
fibre/U ; that is, it is regular for an open subset/U that has nonempty intersection with each
fibre of Y/U .

(SAC) holds for i corresponding to special points in U . This set of Di is strictly infinite because
its points are dense and preserves this property after truncation according to the construction. To
verify (SAC) birationally/W , we can use again Addendum 6.8.1. For this, we find M′

i ∼ Mi/W
such that (M′

i)Y satisfies (CCS) over the general point of W . By our choice of U , the birational
equivalence of Y/U with the constant family Yi × U/U is well defined too. As above, by (LCA)
and (CCS), we have M′

i ∼ Mi in the special fibre Yi/U . We extend it as constant with ∼ /U .
On Y/U , this induces (M′

i)Y ∼ (Mi)Y /U . On the other hand, (Mi)Y ∈ DF , (Mi)Y Yi
= (Mi)Yi ,

and (M′
i)Y Yi

= (M′
i)Yi . The latter is canonically confined. Canonical confinement at any special

point implies the same over the generic point by inversion of adjunction; this implies (SAC) at least
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over the generic point by Addendum 6.8.1 and so birationally. A posteriori stabilization holds over
an open subset in W .

Conversely, the stabilization in Limiting Criterion 4.28 gives (CCS) for a truncation of M•.
Then, by Truncation Principle 4.6, the same holds for any system M• (cf. Remark 6.15(7)).

(4) Immediate from (3).
Addendum 6.19.1 can be proven in the same way with the following modifications:

• Replace usual triples by triples as in Remark 6.10(2).
• Replace (CCS) by (CCS)∗.
• Replace (MOD) by its singular version (MOD)∗ or use arguments similar to the above.
• Replace Theorem 5.12, its corollaries and addenda by Corollary 5.21, its addendum and

corollary. By Example 5.25, lca saturation implies (JAS) with C = A+ on any triple for Mi.
After a truncation, each jDi is integral over A− by the definition of LCS and stabilization
on triples below. Indeed, each b-prime Pi in SuppA− has centerY Pi in the LCS. Thus,
jDi = jDj is integral over the generic point of centerY Pi due to the stabilization of the
limit near the LCS.

• Stabilization in a neighborhood of the LCS holds on any desirable triple for a strictly infinite
subset Mi. Indeed, by the stabilization on the LCS on the triple, Q-Cartier property of
corresponding Di, (AMN), and Lemma 10.9, D = limi→∞Di stabilizes in a neighborhood
of the LCS. Thus, after a truncation, (AMN) again gives the complete stabilization in this
neighborhood. The latter also implies the following:

• (RST)′ holds for all Di on any desirable triple for a strictly infinite subset Mi.
• F in (UAD) is disjoint from the LCS(Y,BY ) by stabilization near the LCS. Thus, it is

Q-Cartier by (QFC)∗.
• Addendum 6.8.1 is used over the same F only at terminal points by (TER)∗, where C =
A+ = A. To fulfill (EEF), we need to replace the exceptional/Y multiplicities < 0 in
C = A+ by 0. By (TER)∗ and the last stabilization, it does not effect the (JAS). Or we can
replace (EEF) by (EEF)∗, where we take into account only the exceptional b-prime divisors
with centers not intersecting the LCS. �

Remark 6.23. (CGR) of Proposition 4.46 holds for C = A by Example 4.47. Hence, by
Addendum 5.12.2, AXst ≤ 0 on the stable model Xst/Z, which proves Remark 4.40(7). Indeed, by
Klt, the crepant boundary Bst is actually a boundary and (Xst, Bst) is Klt. On the other hand,
by the improved (BIG) in Remark 6.15(8), it is dominated by a rational 1-contraction of a crepant
weak log Fano contraction for (X/Z,B). Thus, −(KXst + Bst)/Z is big and b-semiample. Hence,
by LMMP, (Xst, Bst) is isomorphic in codimension 1 to a weak log Fano contraction, with the same
boundary, on which −(KXst + Bst) is semiample = nef and big (cf. Example 5.27).

Similar facts hold for (FGA)∗ by Corollary 5.21 when L is ample in a neighborhood of the LCS.
The following examples illustrate Conjecture 6.14.
Example 6.24 (global curve). Let (X/Z = pt., B) be a complete log curve X with B arbitrary

(reduced but possibly reducible). Then it is terminal in codimension ≥ 2. The b-divisors are divisors
D on the normalization of X, that is, the space of a triple of the required form. Conjecture 6.14 holds
in this case. Note that DX is well defined for nonsingular divisors D (with SuppD ⊂ NonSing X),
and D = DX = D. Set D = M + F ≥ 0 with M = Mov D and F = FixD. Then M satisfies
(CCS) with c = 1, which does not need any saturation. (Even (SAT) with deg B � 0 can exclude
some M .) But the boundedness of F follows from the saturation (SAT) and RR. In addition, the
multiplicities of F are bounded. For example, if B = 0, then �F � ≤ g − 1, where g = g(X) is the
arithmetic genus of X.
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Example 6.25 (two-dimensional birational case). Let f : X → Z be a birational contraction
of a normal surface X. As we will soon see (cf. the proof of (FGA) in Main Theorem 1.7 at the end
of this section), this is the key point in our construction of 3-fold log flips. Except for confinement
(CCS), Conjecture 6.14 holds for any birational contraction with finite S(X/Z,B), P(X/Z,B) and
SuppF(X/Z,B)X supported in divisors of X that are exceptional on Z, and in the fractional part
of B.

Suppose first that B = 0, X is nonsingular, and X/Z is cohomologically rational, that is,
Z has rational singularities. We claim that (X/X/Z, 0,F) is a desirable triple in (CCS) for any
M ∈ M = M(X/Z,B) (and any bounded set of reduced divisors F).

Indeed, A = A(X, 0) = �A� ≥ E ≥ 0, where E is the reduced b-divisor of all prime b-divisors
that are exceptional on X, the support of the exceptional locus. By the rationality of X/Z, on any
model Y/Z of X/Z, each Cartier divisor M that is nef/Z is free/X (essentially due to M. Artin;
see [38, p. 105, Lemma]). In particular, this holds for any integral M ≥ 0 for which SuppM has no
exceptional components of Y/Z. In addition, if C is a −1-curve on Y/X and M ·C ≥ 1 (intersects
any M up to ∼), then M + C is also free, and

Mov�M + AY � = Mov(M + C + AY − C) ≥ Mov(M + C) + Mov(AY − C)

≥ M + C > M

because AY − C ≥ 0. Hence, no b-free M = M ∈ M since it does not satisfy (SAT). Conversely,
by (SAT), every M ∈ M descends to X as a free divisor/Z. Thus, we can take c = 1 in (CCS) of
Conjecture 6.14. This explains the role of saturation.

Indeed, if Y/X is a minimal resolution of the base locus for |M|X , then a −1-curve C as above
exists over the locus. If Y := Xhr is also a sufficiently high resolution for (SAT) and M = MY

is sufficiently general in |MY | = |M|Y , then we replace C by CY ≤ AY . This again contradicts
(SAT). Thus, M is free on X/Z.

Moreover, the same holds for (X/Z,B) under (TER). But in this case we may have c < 1,
namely, c = min{1 − bi}.

If (X/Z,B) is Klt, then (CCS) holds on a crepant terminal resolution (Y/X,BY ). Since
(X/Z,B) is not assumed to be a weak log Fano contraction, Remark 6.15(10) holds, even without
(ADJ).

Another approach that we discuss below reduces our problem to freedom in dimension 1 (cf.
Example 6.24). It is not so effective and, moreover, has some unpleasant new features (see Re-
mark 6.28(2)), but this finally leads to 4-fold flips.

The main techniques to establish Conjecture 6.14 in dimension 2 are contained in the following
proposition.

Proposition 6.26 (general two-dimensional case). Let (X/Z,B) be a log pair with a surface X
and D ≥ 0 be an integral b-divisor such that

(GLF) (X/Z,B) is a general log Fano contraction as in Proposition 4.50 with arbitrary B that
is not even assumed to be a boundary ;

(RIR) on any model Y/Z of X/Z, the general DY ∈ |D|Y is reduced and irreducible; and
(SAT) D ∈ D = D(X/Z,B); that is, D is saturated with respect to A = A(X,B).

Then, except for a bounded set of complete divisors DX , |D|X is free/Z outside CS(X/Z,B) on X,
where CS(X/Z,B) denotes the locus of canonical singularities. In other words, (X/Z,B) satisfies
(TER) outside CS(X/Z,B).

In dimension 2, CS(X/Z,B) is the union of the LCS(X,B) and the finite set of closed points at
which (X,B) is not terminal. In higher dimensions, these points may not be closed, and we take
their closure. Note that a terminal resolution is a crepant model with CS = ∅.
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Commentary. We only need two essential cases:

• D is b-free and does not consist of ≥ 2 copies of a pencil; or
• |D| = {P} is a fixed prime b-divisor.

By (RIR), |D|X free/Z somewhere on X means that D has a descent DX over the locus. (In the
proposition, outside CS.) From this point of view, “sufficiently general” DY means, in particular,
that DY has minimal multiplicities in every divisor that is exceptional on X, e.g., 0 for b-free D.

Addendum 6.26.1. If the assumptions (RIR) and (SAT) in the proposition are replaced,
respectively, by

(RED) on any model Y/Z of X/Z, a general DY ∈ |D|Y is reduced; and
(SA′T) D is saturated with respect to A′ = A(X,B)+

∑
Ei, where b-divisors Ei are the primes

over integral components of A that are exceptional on X,

then any two prime components (or even any two branches) D1 �= D2 of general elements DX ∈
|D|X intersect each other only at points Q ∈ X at which K + B is not Cartier or in LCS(X,B),
with a finite set of exceptions for D1 or D2. More precisely, any set of exceptions to this can only
include Di with (K + B) · Di = 0 (in particular, Di is complete and, hence, lies over P ). Thus,
these exceptions Di belong to a bounded family of reduced divisors F.

Moreover, we can replace (SA′T) by a weaker condition (cf. Proposition 6.34(4) and Re-
mark 6.35(2) below)

(Sa′T) as in (SA′T), but we assume that the primes Ei are over Bs |D|X .

Addendum 6.26.2. Suppose, in addition, that

• (X,B) is Klt and
• D is b-free.

Then |D|X has at most one base point on X outside CS(X,B); in particular, it has at most one
base point on a terminal resolution of (X/Z,B). In addition, |D|X is free in CS after the point is
blown up. Moreover, any pencil D is elliptic, that is, its general member is a curve of geometric
genus 0.

Corollary 6.27. Locally/Z, under the assumptions of Proposition 6.26, the singularities of
a general DX ∈ |D|X are bounded and confined outside CS, in particular, outside LCS(X,B) on
a terminal resolution.

Proof. The singularities of DX are bounded and confined for any free |D|X . The same holds
for any bounded set of divisors DX (Example 6.7(1)). �

Remarks 6.28. (1) (RIR) and (1) in the proof of Proposition 6.26 below (but not (2)) hold
when D is b-free and big. For surfaces, the latter means that D �= 0 and is not a pencil.

(2) Sometimes, Bs |D|X �= ∅, and this requires that c < 1 even if (X,B) is terminal in codi-
mension 2 (see Example 6.38 below).

(3) However, for b-free D, we expect only a finite set of linear systems |D| having base points
outside CS.

For example, one verifies this finiteness when (X/Z = pt., B) is a del Pezzo surface with a stan-
dard boundary B and of nonexceptional type [43].

Lemma 6.29 (lifting R-Cartier divisors). f ∗D is defined up to ∼ under the following condi-
tions:

• D is an R-Cartier divisor defined up to ∼; and
• for any morphism f : X → Y such that f(X) is not contained in the fractional prime compo-

nents of D, f(X) �⊂ Sing X, and Y/Z is projective or f(X) has only divisorial components.
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Addendum 6.29.1 (functoriality). For g ◦ f : X → Y → Z,

(g ◦ f)∗D = f∗(g∗D).

Proof. Since D is given up to ∼, we can assume that f and D are in general position; that
is, Suppf(X) ∩ SuppD is proper in each irreducible component of f(X). If Y/Z is nonprojective,
we can use Chow’s lemma and ∼ induced from a projective model of Y over Y . �

Lemma 6.30 (invariance of integral part under ∼). If D ∼ D′, then

�D� ∼ �D′� and �D� ∼ �D′�.

Thus, the same holds for the fractional parts.
Proof. F = D − D′ is principal, in particular, integral, and

�D� − �D′� = �F + D′� − �D′� = F = �D� − �D′�

is also principal. �
Lemma 6.31. Let D be a divisor on a complete nonsingular curve C with deg D ≥ d. Then

deg�D� ≥ �d�.
Proof. We need to check that if {di} is a set of real numbers such that

∑
di ≥ d, then∑�di� ≥ �d�. We can apply this to the set of multiplicities of divisor D =

∑
diPi on C.

Indeed, each �di� ≥ di (and = holds only if di is integral). The sum of these gives∑
�di� ≥

∑
di ≥ d

and the required inequality because
∑�di� is integral and any integer ≥ d is ≥ �d�. �

Proof of Proposition 6.26. We restrict to D = DX after a resolution. Up to a bounded set
of divisors D (or even a finite set), we can assume that

(1) SuppD ∩ SuppB is small ,

that is, the intersection does not contain any divisors.
We consider a sufficiently high resolution g : Y → X, where saturation (SAT) holds. Since ∼

preserves (SAT) (cf. Remark 4.34(7)), we can assume by (RIR) that D := DY is general, irreducible,
and reduced. Let gD : D → X be the induced morphism. After an additional resolution, we can
also assume that Y is a log resolution for (X,B + D). In particular, D is nonsingular.

The restriction

|D + �AY �| ���
∣∣(D + �AY �)D

∣∣ = |KD + �−g∗D(K + B)�|

of relative linear systems /Z is surjective. Indeed, we can use Lemma 6.29 because D is reduced
by (RIR) and K + B is integral on D by (1). Note also that AY ∼ KY − g∗(K + B), where
�AY � ∼ KY + �−g∗(K + B)� by Lemma 6.30. Thus, D + �AY � ∼ D + KY + �−g∗(K + B)� and,
by adjunction, normal crossings on Y , and Addendum 6.29.1, we have

(D + �AY �)D
∼ (D + KY )

D
+ �−g∗D(K + B)� = KD + �−g∗D(K + B)�.

Also, we use Kawamata–Viehweg vanishing: R1h∗OY (�AY �) = 0 with h = f ◦ g : Y → Z because
�AY � ∼ KY + �−g∗(K + B)� and (GLF).

By (SAT),
Mov(D + �AY �) = Mov�D + A�Y ≤ DY = D.

If |D|X has a base point Q ∈ X/Z outside CS, then Fix(D+�AY �) ≥ �AY � ≥ Ei for an exceptional
divisor Ei of discrepancy ai = a(X,B,Ei) > 0 and such that Ei intersects D on Y . Hence,

Fix
(
(D + �AY �)D

)
≥ Ei D

> 0 and Bs
∣∣(D + �AY �)D

∣∣ �= ∅;
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i.e., the restriction is not free by the above surjection. Hence, D is complete. Otherwise,
|(D + �AY �)D

| is always free.
Thus, D is complete and |(D + AY )

D
| = |KD + �−g∗D(K + B)�| must have base points or

be ∅. This is impossible if deg B′ > 1, where B′ = −g∗D(K + B), because then, by Lemma 6.31,
deg�B′� > 1 and, hence, ≥ 2. However, for such a divisor B′, the linear system |KD + �B′�| is free.
Hence, each D having fixed points on X outside CS should have bounded degree on X/Z; namely,
−(K + B) · D ≤ 1. Such divisors are bounded. Indeed, we need only consider complete divisors
D/Z. In particular, they include the contracted divisors D of X:

(2) −(K + B) is not big/Z on D;

this adds a finite set of divisors with discrepancy 0 to SuppB; cf. (GLF) above. �
Proposition 6.32. If D1 ≥ D2, then D1 C-saturated implies D2 C-saturated over prime

divisors at which D1 = D2. The same holds in the b-divisorial versions.

Proof–Explanation. Saturation over prime divisors at which D1 = D2 (or over any other set
of divisors) means that Mov�D2 + C� ≤ D2 over this set of divisors; in other words, the inequality
concerns only the prime divisors Pi in the set; that is, in our situation, multPi D1 = multPi D2.
Thus, the proposition is immediate from the definition. �

Proof of Addendum 6.26.1. Suppose that K + B is Cartier and canonical at a point Q ∈
D1 ∩ D2. Then K + B Cartier implies that each Di lies over an integral component of B. Again
by (1) in the proof of Proposition 6.26, we assume either that (K + B) ·Di < 0 for i = 1, 2 or that
Di is not complete. Then we verify that D is not A′-saturated on any sufficiently high Y/X. Since
−(K +B) is nef and big/Z, there exists only a finite number of complete Di with (K +B) ·Di = 0.
Thus, except finitely many possibilities for D1 or D2, the contradiction with A′-saturation means
that Q is not Cartier or not canonical.

By (RED) and Remark 4.34(1) (cf. the proof of Proposition 6.34(2)), we can replace D by its
components that are not exceptional on X or, in other words, omit the divisors that are exceptional
on X (because they are fixed in |D|Y ). Then, by (RED) and Proposition 6.32, it is enough to check
that the new D := D1 + D2 is not A′-saturated on any sufficiently high Y/X over D1 ∪ D2 and
some exceptional prime b-divisors Ei/Q. We also assume that each g(Di) passes through Q and
that either (K + B) · Di < 0 or Di is not complete. We derive a contradiction with A′-saturation
on any log resolution g : Y → X/Z for B + D.

On Y , we put together a chain of curves (maybe after additional blowups) C = D1∪(
⋃

Ei)∪D2

with only nodal singularities, where Ei are the exceptional curves over Q and Di are the end curves.
We check that |C + �AY �| = |�D + AY +

∑
Ei�| does not have base points in a neighborhood

of
⋃

Ei on Y/Z. Since AY +
∑

Ei ≤ A′
Y even under (Sa′T), by Lemma 4.44, this contradicts

A′-saturation for D on Y/X:

Mov�D + AY +
∑

Ei� ≥ D +
∑

Ei > D

over each Ei. Note that AY ≥ 0 and is integral over Q because Q is canonical for K + B.
As in the proof of Proposition 6.26, for the restriction to D, we get a surjective restriction/Z

on C:

|C + �AY �| ���
∣∣(C + �AY �)C

∣∣ = |KC + �−g∗C(K + B)�|

with gC : C → X/T . Indeed, here we can use Lemma 6.29 because C is reduced and K + BY is
integral on C (since K + B is Cartier at Q). As above, by Lemma 6.30,

C + �AY � ∼ C + KY + �−g∗(K + B)�.
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Thus, by Lemma 6.30, adjunction, and normal crossings on Y together with Addendum 6.29.1, we
get

(C + �AY �)C
∼ (C + KY )

C
+ �−g∗C(K + B)� = KC + �−g∗C(K + B)�.

Now, as before, Kawamata–Viehweg vanishing gives R1h∗OY (�AY �) = 0.
The construction gives a Cartier divisor L = (C + �AY �)C

∼ KC + M/Z such that

• M is nef on C/Z;

• each M
Ei

∼ 0 and deg(KC)
Ei

≥ 0; and

• for each Di, either deg M
Di

≥ 1 or Di is not complete.

Indeed, M = �g∗(−K −B)�
C

= �−g∗C(K + B)� by the normal crossings and by Addendum 6.29.1,
and we have

• −(K + B) is nef on X/Z;

• each K + B is Cartier in Q; and

• for each Di, either (K + B) · Di < 0 or Di is not complete.

Then Bs |L| = ∅ near
⋃

Ei, and this implies that |C + �AY �| is free near
⋃

Ei on Y/T . Indeed,
L is nef/Q and, by the rationality of Q, |L| is free over a neighborhood of Q (cf. Example 6.25).
Thus, we only need to glue it with each |L|

Di
. It is enough to have surjectivity ODi(LDi

) → OBDi
,

where, by adjunction (or the formula for canonical divisor),

L
Di

∼ (KC + M)
Di

= KDi + BDi + M
Di

and BDi is the reduced boundary (gluing points). Surjectivity follows by Kodaira vanishing if Di

is complete, or for reasons of dimension otherwise. �
Question 6.33. State and prove a semi-log canonical version of this final local freedom result

in higher dimensions (compare Fujita’s conjecture).

Proof of Addendum 6.26.2. Since K + B is Klt, �AY � ≥ 0. Thus, because D is b-free, in
the proof of Proposition 6.26 we have an effective Cartier divisor L ∈ |KD + �B′�|, this time with
deg B′ > 0. Thus, L has at most a single base point Q of multiplicity 1 (by RR and [10, Riemann’s
formula]). Moreover, L has trivial mobile part (0) and has Q as a base point only if KD ≡ 0 and
deg L = 1, that is, when D belongs to an elliptic pencil. Since deg L = 1, we only need one blowup
outside CS to resolve the base point, namely, the blowup in Q. �

Proposition 6.34. Let (X/Z,B) be a Klt pair. Then the following holds.

(1) For any crepant birational contraction g : X → Y/Z, we have

SY = g(S) = {g(S), S ∈ S} ⊃ S(Y/Z, g(B) = BY ).

(2) (SAT) = (SAF) in Conjecture 6.14 with the fixed F .

(3) (SAF) = (STD) in Definition 6.11 for any F ≥ 0.

(4) The standard set S = S(X/T,B) has the following equivalent description up to a component
over the fractional part of B (see below):

(Sa′F) S = Supp(FixD)X for some D ≥ 0 satisfying (Sa′T) of Addendum 6.26.1; and includes

(SA′F) a reduced divisor F is contained in the substandard set S′ = S′(X/Z,B) if SuppF
lies only over integral components of B, and some b-free b-divisor M is saturated for
A′ + F on some sufficiently high model Xhr/X. A′ = A +

∑
Ei with the exceptional

divisors Ei on X over integral components of A.
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Remarks 6.35. (1) Up to a component over the fractional part of B means that each S ∈ S

is S′ + F , where S′ under (Sa′F) and F is over the fractional part. Thus, the boundedness of the
two sets are equivalent conditions.

(2) (SA′F) and (SA′T) may look more appealing than (Sa′F) and (Sa′T), respectively, because
in them A′ is universal, that is, independent of D. However, in applications, we need (Sa′F) and
(Sa′T), and if B in the proposition is a boundary, then they are equivalent to (SA′F) and (SA′T)
(see the proof of Lemma 9.16 below).

(3) F is considered as a b-divisor.
Lemma 6.36. Let C and M be b-divisors with M b-R-Cartier. Then C-saturation of M on

some sufficiently high model of X/Z is equivalent to C-saturation on every sufficiently high model.
Proof. Indeed, Mov(�M + C�Y ) decreases for higher models Xhr/Y :

Mov(�M + C�Xhr
)Y ≤ Mov(�M + C�Y ),

because g
hr∗ : OXhr

(�M+ C�Xhr
) ⊂ g∗OY (�M+ C�Y ), where g : Y → Z and ghr : Xhr → Z. On the

other hand, if Y/Z is a model of X/Z over which M = MY , then, by Proposition 3.20, g∗OY (MY )
and Mov(MY ) are preserved on Xhr. Thus, Xhr satisfies saturation (cf. Remark 4.34(3)). �

Proof of Proposition 6.34. (1) For each s ∈ S(Y/Z,BY ), the log transform S of s is an
element of S(X/Z,B). Thus, s = g(S).

(2) By definition, Mov�M + F + A� ≤ M. This means (SAF). Conversely, assuming Klt, we
have

�A + F� ≥ 0, Mov�M + F + A� ≥ M,

and = M by (SAF). On the other hand, since F ≥ 0, M ≤ M + F , and this gives (SAT) for
M + F .

(3) L = Mov�A + F�. Again, �A + F� ≥ 0 and L ≥ 0. Since M is b-free, by (SAF),

M ≥ Mov�M + F + A� ≥ MovM + Mov�F + A� = M + L,

and L ≤ 0. Thus, L = 0, which means (STD) for D = F . Conversely, (STD) for D means (SAF)
for M = 0 and F = D.

(4) If S = SuppDX ∈ S, then, by Lemma 4.44, (STD) implies that 0 is saturated with respect
to �S′ + A′� ≤ �A + D�, where S is fixed and S′ is as in Remark 6.35(1). The inequality follows
from (SEF) since Bs |S′|X = S′ ⊂ S. Thus, (Sa′F) holds for D = S′.

Conversely, if D satisfies (Sa′F), then, as in (2) and (3) above, F +
∑

Ei + E′ satisfies (STD)
and (SEF), where F = FixD and E′ =

∑
εiEi with 0 < εi 
 1 for the exceptional divisors over

the fractional components of A. Note that E′ does not affect (Sa′F) (cf. Addendum 4.44.1):⌈
F + A +

∑
Ei + E′⌉ = �F + A′�,

but (SEF) holds because FX ⊂ Bs |D|X . Thus, SuppFX ∈ S.
By Lemma 4.44, (SA′F) implies (Sa′F) for D = M+F , where FixD = F and SuppF = F ∈ S.

In (SA′F), we can replace “for some model” by “for every model” by Lemma 6.36 with C = A′. �
Corollary 6.37. Let (X/T,B) be as in Proposition 6.26, and suppose that it is Klt (but B

may only be a subboundary). Then the standard set S = S(X/Z,B) of Definition 6.11 is bounded.
In particular, S′ is also bounded in (SA′F).
If B is a boundary, S bounded is equivalent to S′ bounded (see Remarks 6.35(1),(2)).
Proof. By Proposition 6.34(3),(4) and Remark 6.35(1), it is enough to establish bounded-

ness for a fixed reduced D =
∑

Di = DX = D (that is, Mov D = 0) that satisfies (Sa′F)
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and, in particular, (SA′F) with L = 0 and F = D; we can also assume that each component
Di �⊂ SuppB.

Since F is fixed and satisfies (Sa′F), by Lemma 4.44, each component Di is A′-saturated and even
A-saturated (cf. Proposition 6.34(3)). The same holds for any reduced 0 ≤ D′ ≤ D. In particular,
these components are complete by Proposition 6.26 applied to a terminal resolution of (X/T,B).
Moreover, the prime components Di belong to a bounded set. Thus, we need to verify that the
number of components in D is bounded. It is enough to consider only the global case with Z = pt.

Boundedness of the Di implies that they have bounded intersections. Thus, any two compo-
nents can be disconnected by a bounded number of resolutions. Suppose that the set of D is
unbounded. We derive from this a contradiction with the boundedness of resolutions to disconnect
two components Di and Dj . (Equivalently, the intersection numbers Di · Dj are bounded.)

Since the number of components is unbounded, there exists a set of divisors D containing un-
boundedly many algebraically equivalent irreducible components Di; clearly, D2

i ≥ 0, for otherwise
there can only be one such Di. If D2

i = 0, the divisors Di are all fibres of a fibration X → C
over a curve C. Then, for sufficiently many such components, there is an unbounded number of
nonsingular fibres 0 < D′ =

∑
Di ≤ D and

∑
Di is free, which contradicts A-saturation. Moreover,

D := D′ is never sufficiently general on any model Y/Z of X/Z, that is, general in the free linear
system |D| on Y/Z. Note that two b-free divisors have the same 0 multiplicities in any fixed finite
set of prime b-divisors. Indeed, then K + BY + D is again Klt. Hence, D ≤ �D + A�; this holds
at each prime Pi on Y because D is integral and �AY � ≥ 0 by Klt. If Pi is exceptional on Y , each
multPi(A−D) > −1 and so each multPi A > multPi D−1. Taking �·�, we get multPi�A� ≥ multPi D
because D is Cartier on Y with only integral multiplicities. Thus, on any fixed sufficiently high
model Xhr/Y , by the A-saturation for D := D′ as a b-divisor, D = DXhr

≥ Mov�D+A�Xhr
≥ DXhr

,
which contradicts the fact that D is fixed. (Compare the proof of Proposition 6.26.)

Hence, D2
i > 0 and the divisors Di intersect each other. By Addendum 6.26.1, any of these

Di intersects any other Dj
∼= Di at a finite number of points, bounded independent of D: namely,

in Di ∩ (SuppB ∪ CS), where CS denotes non-Gorenstein or noncanonical points. Therefore, an
unbounded number of prime components Di pass through the same point Q. This point depends
on D. We can make a bounded resolution at such points Q, namely, the minimal resolution if Q
is singular or the usual blowup if Q is nonsingular on X. Then we replace (X,B) by its crepant
transform. The set of models depending on D can now be infinite.

The A-saturation is birational, and the intersection points of Di lie only over the log transform
of Di ∩ (SuppB ∪CS). We consider the proper birational transform of D and of the prime compo-
nents Di. We again have an unbounded set of algebraically equivalent Di, and again D2

i > 0. Again,
we have some (new) point Q through which pass an unbounded number of components Di. Indeed,
the number of points in the intersection of Di with the log transform of the above intersection is
bounded and the bound is independent of D and the model. Again, we make a bounded resolution,
and so on.

But this process must terminate since any two components are disconnected by a bounded
resolution. Otherwise, we can see that the new self-intersection D2

i ≤ the old self-intersection
D2

i − const, where const = 1 for the usual blowup of nonsingular points and some positive numbers
at other points. �

Example 6.38. Let (X/pt., B = 0) be a (terminal) nonsingular del Pezzo surface. Then, in
Proposition 6.26, every D = DX is either free or is a −1-curve, except for del Pezzo surfaces of
degree 1 with D ∈ |−K| (see [16, Proposition 3.2.4]). The −1-curves D give fixed D of degree 1:
−K · D = 1. The standard sets are the disjoint sums of these −1-curves.

Then (FGA)(X/pt., 0) gives the models Xst = X, except for = P1 in the case of a pencil,
and = pt. (cf. Example 9.11 below).
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Pencils and irreducibility in (RIR) of Proposition 6.26. There is no pencil, �⊂ |C|, of
elliptic curves every element of which is tangent to the 1-complement boundary C, because the
restriction of the pencil on C is an isomorphism for a general divisor. Thus, we have only a single
element in the pencil with a single intersection (and tangent) point. However, for a higher genus,
these are possible.

Example 6.39. For (CCS) on X/Z or on a triple Y/Z in the 3-fold or higher dimensional
case (even the local case), we need the numerical condition that MY /Z is nef (cf. (NEF) in
Remark 6.15(8)). In the one-dimensional case, it is implied because D(X/Z,B) is effective in Con-
jecture 6.14; and in the two-dimensional case, because M is b-free or |M|Y is free in codimension 1.
But nef is important in dimension ≥ 3. Indeed, let f : X → Z be a small extremal contraction
with Klt X that is negative with respect to D. Then any infinite set of b-divisors D of the form
DX = nD for a natural number n is not canonically confined, or equivalently, not log canonically
confined. Otherwise, we have a very negative curve C contracted by f for K+cDX with C as a LCS
(center of log canonical singularities), and log threshold c along C for all DX . This is impossible by
anticanonical boundedness [44, Theorem]. However, we can take another model Y/Z (for example,
the D-flip) of X/Z, where {DY } is confined (if the flip conjecture holds).

Corollary 6.40. Conjecture 6.14 holds in dimension 2; that is, for any weak log Fano contrac-
tion (X/Z,B) with dim X = 2, there exists a bounded family of desirable triples (Y/T/Z,BY ,F)
with induced standard F = SY —or with any other induced bounded and confined set of reduced
divisors—such that, for each b-free M ∈ M(X/Z,B), the singularities of general MY are bounded
for some desirable Y/T . In particular, they are canonically confined with respect to BY .

Addendum 6.40.1. In general, the only estimate is 0 < c ≤ mld(X,B).

Addendum 6.40.2. (CCS)∗2 and (MOD)∗2 hold. Moreover,

• it is enough to assume that the singularities of M ∈ M(X/Z,B) on the LCS(X/Z,B) are
bounded ; and

• a neighborhood of the LCS is preserved isomorphic on a desirable triple for M if M is
Cartier over it, that is, M = M for Cartier M in a neighborhood of the LCS.

Then, in particular, (JAS) and (RST)′ hold on the latter (desirable) triples for the characteristic
system D• of any (FGA)∗2(X/Z,B) algebra.

Remark 6.41. In applications, we can extend the induced standard set SY to some F by
adding some fixed reduced divisors, e.g., SuppBY , or even bounded sets (cf. the proof of Proposi-
tion 9.15 below). However, we then lose (SA′F), for example, on triples other than (X/X,B,S).
Otherwise, to preserve (SA′F), we need to take SY as an integral log transform: with

∑
Ei, where

Ei lie over integral components of AY . Thus, we need (SA′F) only as a condition to establish that
F is bounded.

The integral condition on F in (SA′F) of Proposition 6.34 can be replaced by SuppF ∩
SuppBY = ∅ when BY is a boundary and (X,B) is Klt.

Proof. We assume that the surface X is complete. This is a nontrivial assumption that is
important in the applications below (cf. Theorem 9.9).

We associate desirable triples with respect to the bigness of M, which proves (MOD). As in
(CRP), each (Y/T,BY ) is a crepant model over (X,B) and satisfies (QFC). The corresponding
set F on Y is the log birational transform of the standard set S = S(X,B). This is bounded by
Corollary 6.37. We need to satisfy (TER) and on T (RPC). Choose a desirable triple for each
M ∈ M(X,B) (see Definition 6.9).

Thus, for big M, we take a terminal resolution (Y/T,BY ) as a desirable triple with the identity
Y/Y = T . In particular, it is a weak log Fano contraction satisfying (TER) and (RPC). In addition,
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MY = id∗M , where M = MY is big. Since dimX = 2 and M is b-free, M is nef. On any model,
all such sufficiently general MY are reduced and irreducible. Hence, by Proposition 6.26, all
such sufficiently general divisors MY have bounded and confined singularities everywhere because
(Y,BY ) is terminal at points. We can take just one such triple.

The next case is when M gives a 1-dimensional image, that is, there exists a rational contraction
X ��� C onto a curve C with MX in the fibres. In the classical terminology, |M|X is composed
of a pencil . In this case, we define Y/T as the regular contraction defined by this pencil. In
particular, T = C, and MY = g∗M for some divisor M > 0. Hence, M is nef and big, and, by
construction, all such sufficiently general MY have bounded and confined singularities everywhere.
This family of triples is bounded because the intersections of the elements of the pencil are bounded
by Proposition 6.26. More precisely, by Addendum 6.26.2, every such pencil is elliptic and has a
regularization in one blowup of a terminal resolution. In this case, C = T = P1 by the rational
connectedness of X [46, следствие 6], satisfies (RPC), and (Y,BY ) satisfies (TER).

Finally, suppose that dim |M|X = 0, that is, the mobile divisor M = 0. Take Y/T to be
X → pt.; then M = 0. This triple is unique.

To prove Addendum 6.40.2, we can use the same arguments outside the LCS. Under the as-
sumption that M is Cartier, |M|X will be free in a neighborhood of the LCS, and we do not need
additional blowups over the LCS to construct a desirable triple for M. For example, it works for
the mobile system of any algebra of (FGA)∗2 type that gives the last statement under the choice of
C and J of Example 5.25. �

Proof of (FGA) in Main Theorem 1.7. Immediate by Theorem 6.19(3) and Corollary 6.40.
The birational case was done in Example 6.25. �

Corollary 6.42. Each algebra of type (FGA)∗2 is also f.g. Moreover, in Conjecture 5.26, we
can assume that H is Cartier in a neighborhood of the LCS.

Proof. Immediate by Addendum 6.19.1 and Addendum 6.40.2. �
Corollary 6.43. Any (FGA)n(bir) algebra L = RX/T D is f.g. up to codimension 2 over T,

that is, over points of codimension ≤ 2.
Proof. Immediate by (FGA)n with n ≤ 2 in Main Theorem 1.7. �
Corollary 6.44. (FGA)pl

3 of Example 4.52 holds.
Models of such algebras may give not a flip but a log quasiflip [47] by Remark 6.23. However,

we still cannot drop the condition that L is bounded by D and satisfies Main Lemma 3.43 (cf.
Remark 11.8).

Proof. Immediate by (FGA)d(bir) with d ≤ 2, which was essentially done in Examples 6.25
and 4.52. �

Of course, by Corollary 4.53, (CCS) also implies (RFA), but we can prove more.
Theorem 6.45. Suppose LMMP and (BP) in dimensions d ≤ n − 1, (CCS)∗d−1, and

(SSB)d−1(gl), where ∗ means a modification in dimensions ≤ d − 1 including log singularities.
Moreover, we can drop (CCS)∗d−1 and (SSB)d−1(gl) with d ≤ 3, that is, for n ≤ 4; we can drop
(BP) for n ≤ 5.

Then (RFA)n,m(bir) holds with m ≤ n − 1.
In fact, as one sees from the proof, we can replace condition (CCS)∗d−1 by (CCS)d−1(gl),

(FGA)n−2(bir), and (FGA)∗d−1(gl) (compare the proof of Corollary 10.14 below).
For 4-fold log flips, we need and essentially prove the theorem for n = 4, that is, (RFA)4,m(bir)

proved in Section 11; the ∗ modification of (CCS) is explained in Conjecture 6.14. The proof of
the theorem is based on the stabilization of Theorem 9.9 in Section 9 and destabilization results in
Section 10. However, before, we need to clarify restrictions of b-divisors in Section 7 and develop
approximations in Section 8.

ТРУДЫ МАТЕМАТИЧЕСКОГО ИНСТИТУТА ИМ. В.А. СТЕКЛОВА, 2003, т. 240



PRELIMITING FLIPS 175

7. RESTRICTIONS OF b-DIVISORS

The new tools we introduce here are different flavors of b-restriction from X to a b-divisor E.
The proof of Theorem 9.9 systematically uses restrictions of b-divisors (see also Proposition 4.50).
There are essentially the two following types, or some mixture of them.

7.1. Mobile restriction. Let E be a prime b-divisor on X and D be a b-free divisor/Z. The
mobile restriction of D to E is the b-free divisor M = D

E
on E defined by the formula

MY = DY E
,

where Y/X is a model such that E is a normal divisorial subvariety of Y and D is free over Y/Z.
Thus, MY is also free over E/Z, and M = MY . To cut out the restriction as a Weil divisor,
it is enough to take a normal model Y/X on which E appears as a divisor and such that Y is
nonsingular at every prime divisor of E. Similarly, we can define a Cartier b-divisor D

E
for any

Cartier b-divisor D on X (compare (CAR) in the additional assumptions of 5.5). Thus, mobile
restriction is well defined because the divisor has only 0 multiplicities up to linear equivalence.
Mobile restriction is defined up to linear equivalence.

7.2. Fixed restriction. When we define the fixed restriction D
E
, we usually require D to

be Cartier and E �⊂ SuppD. Moreover, by Lemma 6.29, we can assume that D is K-Cartier (where
K = Z, Q or R); then D

E
is also K-Cartier and restriction preserves linear equivalence since it

extends it. (Locally, each K-Cartier divisor is K-principal; cf. Definition 3.26. The restriction of
any K-principal divisor is also K-principal.) In the same way, we can define the fixed restriction
D

E
of a K-Cartier b-divisor D whenever multE D = 0. Again, we take

MY = DY E
,

where Y/X is a model such that E is a normal divisorial subvariety of Y and D is K-Cartier/Y ,
that is, D = DY . The b-divisor M = MY is well defined as a K-Cartier divisor/E. In this case,
some multiplicities grow on subsequent blowups. This restriction also preserves linear equivalence.
The same applies to restrictions to a subvariety E ⊂ X such that E is not blown up on Y and D = 0
over the generic points of E; e.g., under the latter assumption, such Y exists if D is b-semiample or
even b-nef but X/Z is projective. We can also restrict any K-linear combination of such b-divisors.

In general, fixed restriction is well defined if it is independent of a sufficiently high resolution.
For example, this holds for A′ in the proof of Proposition 4.50, p. 130, or, equivalently, for the
restriction of (K + E)

E
up to linear equivalence. This is the restriction in adjunction of a log

canonical divisor to its log canonical center. Perhaps, up to multiplication, this is the only non-
Cartier restriction of b-divisors.

7.3. Mixed restriction. If D is a K-Cartier b-divisor having multE D ∈ K ′ ⊂ K, we can
define the mixed restriction M = D

E
by setting

MY =
(
DY − (multE D)E + (multE D)E′)

E
,

where Y/X is a model such that E is a normal divisorial subvariety of Y , D is K-Cartier/Y , and
E′ ∼ E on Y , but E �⊂ SuppE′. This is again a K-Cartier b-divisor.

In other words, if E is Q-Cartier on Y and K has characteristic 0, we obtain

M =
(
D − (multE D

)
E)

E
+ (multE D)E′

E
.

Of course, this divisor depends on the choice of model Y/X and on the equivalence E′ ∼ E.
Nonetheless, this restriction is compatible with K ′-linear equivalence, in particular, with ∼ for
K ′ = Z, by Lemma 6.29 and because E′ ∼ E implies E′ ∼ E.
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Caution 7.4. In general, E′ is not effective or prime. If Y is Q-factorial, then E is automat-
ically Q-Cartier.

Where is the support of D
E
? For saturations, we need to take integral parts of fractional divisors

and to estimate their fractional parts, in particular, for restrictions. For this, we now describe the
support of restrictions on a case-by-case basis. In addition, for a birational contraction f : X → T ,
we consider case (df) that behaves like a discrepancy: if D1 = K and D2 = KT , then (D1)T = (D2)T .

Definition 7.5. A b-divisor D on X is K-Cartier at p ∈ X if D = D′ locally near p, for some
K-Cartier divisor D′. Note that in this case D′ = DX near p.

Example 7.6. Suppose that D is an effective b-free divisor/Z or a K-linear combination∑
kiDi of such (for example, a difference). We assume that the Di are in general position on X,

and in particular, Supp(
∑

kiDi)X =
⋃

Supp(Di)X . This condition is equivalent to requiring that
D is a K-Cartier b-divisor up to ∼. Then D is Cartier outside Supp(DX) (a divisorial subvariety
on X; cf. Lemma 10.9 below). Indeed, D ∼ 0 outside the base locus of the linear system of |D|X .
The same holds for K-Cartier divisors D on X. They are K-Cartier and even Cartier outside
Supp(DY ) on any model Y/Z of X/Z whenever DY has a presentation as above with Di in general
position on Y . Moreover, for the K-Cartier property, we can replace SuppDY by the intersection⋂

Supp(D′
Y ),

where D′ runs through the b-divisors D′ ∼K D, at least locally/Y , and D′ is a K-linear combination
as above, also general on Y , although not necessarily effective.

For example, suppose that X → Y = P2 is the blowup of P ∈ P2, with E the −1-curve
over P , and let L and LP be distinct lines, with P ∈ LP . Then E = L − LP , where L = L and
|LP | = |L − P | are b-free. Thus, E is Cartier outside Supp((L − LP )Y ) = L ∪ LP . Note also that
LP ∼ L− E �≥ 0 if P /∈ L. However, LP is not Cartier at P outside Supp((L − E)Y ) = L.

Proposition 7.7. Let X be a model where E is a (normal) divisorial subvariety, and let
D, D1, D2 be K-Cartier b-divisors that are K-Cartier outside Supp((D∗)X). Then there are two
possible cases7 for Supp(D

E
)E :

(mv) common Supp(D
E
)E = ∅ for D up to linear equivalence near each point of E if D

is either Cartier or b-free on X; in other words, a Cartier b-divisor on X restricts to
a Cartier b-divisor on E;

(fx) Supp(D
E
)E ⊂ E ∩ SuppDX if multE D = 0.

Suppose, in addition, that E is Q-Cartier. Write D∗ for any of D or Di, and set D′
∗ ∼

D∗ − (multE D∗)E, so that multE D′
∗ = 0. Suppose that each D∗ − (multE D∗)E is K-Cartier

outside Supp (D′
∗)X . Then, up to linear equivalence, there are two possible cases for Supp(D

E
)E:

(mx) Supp (D
E
)E is contained in the union of

E ∩ Supp
(
DX − (multE D)E

)
= E ∩ SuppD′

X

and E ∩ SuppE′; or
(df) Supp (D

E
)E is contained in the union of

E ∩ Supp
(
(D1)X − (multE D1)E

)
= E ∩ Supp (D′

1)X

and
E ∩ Supp((D2)X − (multE D2)E) = E ∩ Supp (D′

2)X

for D := D1 −D2 − multE(D1 −D2)E.

7Supp commutes with the trace on E.
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Remark 7.8. If E is Q-Cartier, by Example 7.6, the condition that the final b-divisor D is
K-Cartier outside SuppD holds if D is b-free or a K-linear combination of such b-divisors in general
position on X.

Proof. (mv) and (fx) hold by definition (cf. Example 7.6). (fx) implies (mx) and (df). Indeed,
D − (multE D)E is nontrivial and is not K-Cartier/E only over

E ∩ Supp
(
D − (multE D)E

)
X

= E ∩ Supp
(
DX − (multE D)E

)
,

that is, up to linear equivalence, only over E ∩ SuppD′
X . In (df), we take D′ = D′

1 −D′
2. Note that

E′ is Q-Cartier everywhere on X together with E. �
Corollary 7.9. Suppose that

• K is a field ;

• a2D2 is b-free/Z for some 0 �= a2 ∈ K; and

• X/T is a birational contraction/Z, and (D1)T = (D2)T on T .

Then, up to linear equivalence, we can replace the union in (df) by

(
E ∩ Supp(D1)X

)
∪

(
E ∩ Bs |a2D2|X

)
∪

(
E ∩

(
exceptional divisors

of X/T other than E

))
.

If, in addition,

• a1D1 is a sufficiently general effective divisor that is b-free/Z for some 0 �= a1 ∈ K,

then the first term in the union can be replaced by E ∩ Bs |a1D1|X . In particular, for a1 = 1,
the non-Cartier points on E and the fractional part of (D

E
)E are all contained in E ∩ Bs |D1|X ,

E ∩ Bs |a2D2|X , and E ∩ (exceptional divisors of X/T other than E).
In the local case over P ∈ Z (which is more general), modify the last assumptions to

• (D1)T = (D2)T outside f−1P .

Then, up to linear equivalence, the last term in the union should be

E ∩ (divisors of X/P other than E).

Note that, in the proof below, we can assume that each aiDi is just b-free up to K-linear
equivalence with the corresponding linear system instead of |aiDi|X .

Proof. D1 − D2 is exceptional/T (and in the local case, in divisors/P ). The same holds
over X up to exceptional divisors of X/T . More precisely, by (df) (with D′

1 = D1 when D1 is a
sufficiently general effective b-free divisor) and because (D2)X = (D1)X up to exceptional divisors
(and respectively, divisors/P ), D

E
is nontrivial up to ∼ only over E∩the exceptional divisors (�= E)

of X/T (or respectively, E ∩ divisors/P ), E ∩ Supp (D1)X , or E ∩ Supp (Dg
2)X , where Dg

2 ∼ a2D2

is sufficiently general effective. The case with multE D1 �= 0 is trivial: E ⊂ Supp (D1)X .
Indeed, DX = 0 near any point Q ∈ E outside E ∩ exceptional divisors (�= E) of X/T (and

respectively, in E ∩ divisors of X/P ) and E ∩ Supp (D1)X . Hence, (D2)X = eE near Q with
e = multE D2. Since a2D2 is b-free/X (near Q, in particular) and a2 �= 0, it follows that D

E
is

nontrivial over Q only if D �= eE or a2D �= a2eE near Q and, therefore, by Example 7.6, only if all
(Dg

2)X pass through Q.
Taking the intersection of E ∩ Supp (Dg

2)X for all effective Dg
2 ∼ a2D2, we obtain that Q ∈

E ∩ Bs (a2D2)X whenever D
E

is nontrivial/Q. �
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8. APPROXIMATIONS

This section upgrades Section 5, especially Lemma 5.15 and Corollary 5.19, for application to
4-fold flips; the main addition to Section 5 is that approximations are not directed, and we are
working with sets of b-divisors.

Definition 8.1. Let F ⊂ X be a reduced divisor. A set of (effectively) bounded semiample/Z
divisors (or a bnd set/Z) is defined to be a set Nbnd(F ) = Nbnd(X/Z,F ) of R-divisors of X that
are semiample/Z and satisfy the following conditions:

(BFP) the fractional part of D is bounded by F : D = Dint + Dfr, where Dint is integral and
SuppDfr ⊂ F ;

(CFG) Nbnd(F ) has a set of generators that is compact plus finite : there is a compact rational
polyhedron Nc and a (finite) set of integral divisors Di in Nbnd(F ) such that each
D ∈ Nbnd(F ) has a decomposition D = Dc +

∑
niDi, or even the same conditions up

to linear equivalence , where Dc ∈ Nc and every ni ∈ N; and

(BND) as in Definition 5.17 for Nbnd(F ), or equivalently, the same holds for Nc.

Taking a bigger F , we can assume that the polyhedron of (CFG) is contained in the R-vector space
DF (for the notation, see Section 5, p. 141). (CFG) implies (BND) if {Di} is finite.

The uniform neighborhood of Nbnd(F ) with diameter δ ∈ R is the set of Weil R-divisors

Ubnd,δ(X/Z,F ) = Ubnd,δ(F ) =
{
D =

∑
diPi

∣∣∣ di ∈ R and ‖D − Nbnd(F )‖ < δ
}
,

assuming that ‖ · ‖ is taken over Supp(D − Nbnd(F )) ⊂ F . In other words, the following two
equivalent conditions hold:

(i) D = Dint + Dfr such that Dfr is supported in F and there exists D′ = Dint + D′
fr ∈ Nbnd(F )

with ‖D − D′‖ = ‖Dfr − D′
fr‖ < δ;

(ii) there exists D′ ∈ Nbnd(F ) such that D − D′ is supported in F and ‖D − D′‖ < δ.

In particular, in either case ‖D − Nbnd(F )‖ ≤ ‖D − D′‖ < δ. (i) implies (ii) because D − D′ =
Dfr−D′

fr is supported in F . (ii) implies (i) for Dfr = D−D′+D′
fr because then D = Dfr+D′−D′

fr =
Dfr + Dint and D − D′ = Dfr − D′

fr.

Examples 8.2. (1) Any rational polyhedral cone generated by a finite set of divisors Di that
are semiample/Z is a bnd cone/Z (cf. Example 5.18). We can assume that each Di is integral.
Then we can take

• F as the common support of all divisors Di; and

• Nc =
{∑

riDi | ri ∈ [0, 1]
}
.

(2) Let X → T/Z be a contraction. The most important example of a bnd set is the Abelian
semigroup N(F ) = N(X/T/Z,F ) of divisors D that are nef/Z and ∼R 0/T , and have fractional part
bounded by F . (In particular, D is assumed to be an R-Cartier divisor.) In this case, a uniform
neighborhood Uδ(F ) = Uδ(X/T/Z,F ) of N(F ) with diameter δ is the same as in Definition 8.1.

In fact, N(F ) is a bnd set, and is even semiample in several cases that, though special, are
crucial for our purposes:

(WLF) (X/Z,B) is a weak log Fano contraction for some boundary B and T = X (see
Proposition 4.42);

(0LP) (X/Z,B) is a 0-log pair for some boundary B (cf. Remark 3.30(2)) and T = Z; and

(TRP) triples (X/T/Z,B,F) with F ∈ F (see Definition 6.9).
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In (0LP), the bound (BND) does not hold in general: torsion points of Abelian varieties contradict
(BND). To satisfy (CFG) and (BND), we need to impose irregularity = 0, so that the Picard group
is finitely generated. Thus, integral points of N(X/Z/Z,F ) are finitely generated up to linear
equivalence, and Nc is a cube with bounded multiplicities as in (1) above. In particular, this is
true if X/Z is a weak log Fano contraction. Moreover, the bnd property for (WLF) follows from
(TRP) in the case of desirable triples (see Lemma 8.12(5) below).

Definition 8.3 (freedom with tolerance τ > 0). We fix a reduced divisor F ; then D ∼
Dbf + Dfr, where Bs |Dbf | = ∅. In particular, Dbf is Cartier and Dfr is supported in F with
‖Dfr‖ < τ (cf. Lemma 5.20). We pronounce the linear system to be free with tolerance τ and write
Bs |D| = ∅ mod τ .

(Integral) nonvanishing with tolerance τ > 0 is similar: D ∼ Dint + Dfr, where Dint is effective
integral and Dfr is supported in F with ‖Dfr‖ < τ . We pronounce the linear system to be nonempty
with tolerance τ and write |D| �= ∅ mod τ .

The main result of the section is
Theorem 8.4. Suppose that we have

• a bounded family (Xu/Zu, Fu) for u ∈ U of pairs with reduced divisor Fu on Xu;
• a family Nbnd(Xu/Zu, Fu) of bnd sets/U of divisors (see (7) and (7′) in the proof below);

and
• a tolerance τ > 0.

Then there exists M > 0 (depending on the family (Xu/Zu, Fu) and on τ) such that, for any
u ∈ U and any D ∈ Nbnd(Xu/Zu, Fu), there exists an integer m ∈ [1,M ] (depending on D) with
Bs |mD| = ∅ mod τ ; in particular, |mD| �= ∅ mod τ .

Addendum 8.4.1. Moreover, there is a real number δ > 0 (depending on the family
(Xu/Zu, F ) and τ) such that the same freedom and nonvanishing hold for any u ∈ U and any
D ∈ Ubnd,δ(Xu/Zu, Fu).

Remark 8.5. Both choices of M and δ are very ineffective, as Dirichlet’s theorem on simul-
taneous Diophantine approximation [6, теорема 1.1].

We start with properties of freedom with tolerance.
Proposition 8.6. (1) Freedom with tolerance τ is invariant under linear equivalence:

if D ∼ D′, then Bs |D| = ∅ mod τ ⇒ Bs |D′| = ∅ mod τ.

(2) Freedom with tolerance is an open property: if Bs |D| = ∅ mod τ, then there is an ε > 0
such that, for any D′ with D − D′ supported in F and ‖D − D′‖ < ε, also Bs |D′| = ∅ mod τ .

(3) If D = Dbf + D′, where Bs |Dbf | = ∅ and Bs |D′| = ∅ mod τ, then Bs |D| = ∅ mod τ .
The same holds for nonvanishing with tolerance τ .
Proof. (1) holds by definition. In (2), we can take any 0 < ε ≤ τ−‖Dfr‖, where D ∼ Dbf +Dfr

as in Definition 8.3 and D′ ∼ Dbf + D′
fr. (3) holds because the sum of two free linear systems is

also free. �
Proof of Theorem 8.4. Let (X/Z,F ) be a member of the family, possibly nonclosed (that is,

the generic member of an irreducible subfamily). Let F =
∑

Pi, and write DF = {∑ diPi | di ∈ R}
for the R-vector space of divisors generated over F .

For Nbnd(F ), suppose that we have a compact subspace Nc ⊂ Nbnd(F ), a (finite) set of Cartier
divisors Ti ∈ Nbnd(F ), and a finite set of Q-Cartier divisors Ni ∈ Nc with open neighborhoods Ui

of Ni ∈ DF , such that

(1) each Ti is free/Z;
(2) each Ni has a freedom index ni > 0 for which Bs |niNi| = ∅;
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(3) in addition, for each D ∈ Ui, Bs |niD| = ∅ mod τ ; more precisely, niD = niNi + Dfr with
Dfr supported in F with ‖Dfr‖ < τ ;

(4) Nc is a compact rational polyhedron with generators Ni;
(5) each D ∈ Nbnd(F ) decomposes as D ∼ Dc +

∑
tiTi with natural numbers ti and Dc ∈ Nc;

and, in turn,
(6) Nc ⊂

⋃
Ui; and

(7) each Ti is defined and is free/Zu for each specialization of (X/Z,F ) and for any general
point of (X/Z,F ). That is, for every u in some nonempty Zariski open subset U , Nbnd(F )
specializes isomorphically to Nbnd(Fu) preserving the structures Ti, Ni, and Nc in (1)–(4)
above.

Then Theorem 8.4 holds for Nbnd(F ), and there exists δ > 0 such that Addendum 8.4.1 holds for
Ubnd,δ(F ). Moreover, the theorem and addendum both hold for every u in a nonempty V ⊂ U . In
particular, we can use Noetherian induction in the proof of the theorem and addendum. That is,
it is enough to check both on a single member (X/Z,F ) of the family. Thus, if MV = MF and
δV = δF give the theorem and addendum at (X/Z,F ), and M(X/Z,F )\V and δ(X/Z,F )\V over the
closed proper subfamily (X/Z,F )\V , then both hold over all points (= specializations) of (X/Z,F )
with M = max{MV ,M(X/Z,F )\V } and δ = min{δV , δ(X/Z,F )\V }.

Now (1)–(6) hold over some V . (1) holds by our assumption in (7). (2) and (5) define a non-
trivial affine open subset V over which all niNi are free, and restriction (= specialization) of linear
equivalence on Xu/Zu is well defined (= in general position; cf. (GNP) of Proposition 4.50). For
specialization of linear equivalence to be well defined, it is enough to consider Xu/Zu that are
smooth at the generic point of Xu (= multiplicity 1), or just on the moduli space by Lemma 6.29.
Thus, (2) and (5) hold in each u ∈ V . The inequality in (3), the generators (4), and the inclusion
in (6) concern multiplicities of divisors Pi and are uniform over the connected component of F
in U because we assume that FU is reduced everywhere over U by (7′) below. This establishes the
Noetherian induction by (7).

Now, for a single fixed (X/Z,F ), we derive the theorem and addendum from (1)–(6) and then
check these together with (7). We take MF = max{ni} for the indexes in (2); δF is chosen later.
Indeed, Proposition 8.6(1),(3) and the above (1) and (5) imply that it is enough to check the
theorem and addendum, respectively, for Nc and for

Uc,δ =
{
D

∣∣ D − D′ ∈ DF , D′ ∈ Nc, and ‖D − Nc‖ ≤ ‖D − D′‖ < δ
}
.

In turn, both the theorem and addendum follow from (2), (3), and (6). For the addendum, we need
to choose δ = δF such that Uc,δF

⊂ ⋃
Ui; such a δF exists since

⋃
Ui is open.

Finally, we check (1)–(7). Note for this that the boundedness of the family means the following:

(7′) on the total space of the family, there are a reduced divisor F , integral semiample divisors Di,
and semiample Q-divisors Vi such that, for each u,

• Fu = F
Xu

is reduced;
• Vi Xu

are vertices of Nc(Fu) (= a simplicial structure with the vertexes);
• Di Xu

and Nc(Fu) generate Nbnd(Fu) as in (CFG); and, finally,
• (BND) holds uniformly for the family.

(BND) means that there is natural number I > 0 such that, for any semiample integral divisor D,
Bs |ID| = ∅. To satisfy (1) and (7), we take Ti = IDi. We set Nc = INc(F ) and Ni = IVi X

.
This implies (2) with some ni for each Ni, also by (BND). More precisely, ni ≤ Idi, where di is
the minimal natural number such that diNi is integral. Thus, (BFP) and Proposition 8.6(2),(3)
imply (3) for some Ui. By definition, we can take Ui as an open disc with center Ni in a rational
translate of DF and radius ri = τ/ni ≥ τ/Idi.
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(4) and (7) hold by (7′), with U as the normal points of the parameter space for the subfamily
given by the member (X/Z,F ). (5) holds by (CFG) for (X/Z,F ) in (7′).

To satisfy (6), we need to add Q-divisors Ni ∈ Nc that do not affect (4). Since each such Ni is
semiample, as above we can find ni and Ui for (2) and (3). If it is an open covering, then, by the
compactness of Nc, we can take a finite subset of Ni that satisfies (6) and still (2)–(4). Actually,
the discs form a covering. To verify this, we can assume that Nc is a simplex, and all its faces are
covered by induction. Indeed, the Q-points of the rational simplex Nc are Q-Cartier Q-divisors, so
these are covered.

On the other hand, by simultaneous approximation, Cassels [7, Ch. I, Theorem VII], for any
ε > 0, each point of the affine span L of Nc, in particular, each point D ∈ Nc, has a rational
approximation Ni in L such that ‖D − Ni‖ < ε/di. Hence, Ni ∈ Nc and D ∈ Ui, respectively,
whenever ε/di ≤ ε < the distance from D ∈ Nc to the complement L \ Nc and ε < τ/I. Thus, for
ε 
 1, the internal points of Nc that are outside the covering of the faces are covered by Ui. This
completes the induction and the proof of the theorem. �

Freedom with tolerance sometimes implies usual nonvanishing, but this is typically still a far
cry from freedom.

Corollary 8.7. Let Cu be a divisor on Xu with multPi Cu > −1 + τ for all prime divi-
sors Pi of X. Then, for any D ∈ Ubnd,δ(Fu), there exists some integer m ∈ [1,M ] such that
|�mD + Cu�| �= ∅.

Addendum 8.7.1. If multPi Fu = 0, we can assume just multPi Cu > −1.
Proof (compare the proof of Lemma 5.20). In the proof below, “all . . . ” means for all prime

divisors Pi of X. We drop the subscripts u.
Take m in Addendum 8.4.1 such that |mD| �= ∅ mod τ , that is, mD ∼ Dint + Dfr, where the

integral part Dint ≥ 0 and the fractional part Dfr =
∑

dfr,iPi with all |dfr,i| < τ , in particular,
dfr,i > −τ . Hence,

multPi(Dfr + C) = dfr,i + multPi C > multPi C − τ > −1

and all multPi�Dfr + C� = �multPi(Dfr + C)� ≥ 0. Thus, �Dfr + C� ≥ 0 and �Dint + Dfr + C� =
Dint + �Dfr + C� ≥ 0. This proves the required nonvanishing: �mD + C� ∼ �Dint + Dfr + C� ≥ 0
by Lemma 6.30 since mD + C ∼ Dint + Dfr + C.

Since dfr,i = 0 when multPi F = 0, Addendum 8.7.1 follows because then again

multPi(Dfr + C) = dfr,i + multDi C > 0 − 1 > −1. �

Example 8.8. We can use Corollary 8.7 as a restriction on the values of τ for which the above
nonvanishing holds:

(1) if C ≥ 0, for any τ < 1;
(2) if C = AE is the discrepancy divisor, then for all

τ < min{1 − bi}, mld(X,B) ≤ min{1 − bi}.
In particular, there exists τ > 0 provided that all bi < 1, that is, (X,B) is Klt in divisors.

Corollary 8.9. Suppose that each Fu is Q-Cartier on Xu. Let α < 1 and τ be positive real
numbers, and Cu be an R-b-divisor of Xu with Cu ≥ 0/Xu (see (EEF) in 5.9) and

multPi αCu > −α + τ multPi Fu for all Pi. (8.9.1)

Then there exist positive real numbers M and β, δ giving the following nonvanishing/Zu on any
Yu/Xu uniformly in u: for any u and for all b-divisors D such that the descent data E of D over Xu

is confined by βCu, that is, E ≤ βCu/Xu, and DXu ∈ Ubnd,δ(Fu), we have

|�mDYu + (Cu)Yu�| �= ∅ for some integer m ∈ [1,M ].
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In particular, we assume that DXu is R-Cartier if the descent data of D is confined (see Defini-
tion 5.7).

Proof. Again, we drop the subscripts u. By Addendum 8.4.1, we can choose M and δ > 0,
depending on the family (X/Z,F ) and τ . Now take any β ∈ R with

0 < β ≤ 1 − α

M
.

Then take any b-divisor D that satisfies the nonvanishing conditions, and let m ∈ [1,M ] be an
integer for which Bs |mDX | = ∅ mod τ . We check that |�mDY + CY �| �= ∅ for arbitrary Y/X;
this follows from Lemma 5.20 with D := mD. (5.20.1) follows from (8.9.1). Assumption (5.20.2)
follows from confinement of the descent data for the original D. Since C ≥ 0/X and by (HOM) of
Proposition 5.4, for any integer m ∈ [1,M ] (or even for any nonnegative real number), the descent
data E of D := mD is confined by mβC ≤ MβC ≤ (1 − α)C/X, that is, E ≤ (1 − α)C/X. �

Remark 8.10. For a given family (Xu/Zu, Fu) with Cu, we find constants α, β, δ, τ , and M
in the following order. First, we take any positive α < 1. Next, we choose an appropriate positive τ
(cf. Example 8.21 below). Next, by Theorem 8.4 and Addendum 8.4.1, we can find δ and M .
Finally, we take β as in the preceding proof. Note that, to find τ , we need to assume that each Fu

is Q-Cartier. For this, we usually assume that X is Q-factorial. In applications, we only need β, δ,
and M > 0, and so can drop α and τ (cf. Corollary 8.26 below).

Remark 8.11. If DX is R-Cartier, the descent data E exists by (EXI) in Proposition 5.4;
hence, it exists for all D if X is Q-factorial.

Now we apply the results obtained above to triples (X/T/Z,B,F) (see Definition 6.9 and cf.
Corollary 6.40). A bounded family of triples is a family with bounded moduli; for the details, see
the proof of Theorem 8.15 below.

The next preliminary result explains also the role of conditions (CRP) and (RPC) in Defini-
tion 6.9 (cf. Example 8.18 below). We first fix notation: write

CDiv0
R(X/T/Z) =

{
D ∈ CDivR(X/Z)

∣∣ D ∼R 0/T
}
.

Equivalently, every such divisor D ∼R g∗M/Z for some R-Cartier divisor M ∈ CDivR(T/Z) is
defined up to ∼R/Z (see Lemma 3.28); sometimes, R-linear equivalence ∼R/Z and numerical
equivalence ≡/Z are the same on T/Z (cf. Lemma 8.12(1) below). Thus, we have an R-linear
projection

g∗ : CDiv0
R(X/T/Z) → CDivR(T/Z)/≡.

This map is defined over Q, but not over Z in general, since there may be multiple fibres. Thus,
on each R-linear subspace L ⊂ CDiv0

R(X/T/Z), we have an induced splitting

L = L0 ⊕ L1,

where L0 = ker g∗ L
and L1 is isomorphic to g∗L. Note that L0 is a subspace of ker g∗ =

CDiv0
R(X/Z/Z). Although L1 is not uniquely determined, we use it to identify the second summand

and write g∗L for it. If L is defined/Q, the splitting can also be defined over Q. For example, if

L = C = C(X/T/Z,F ) =
{
D =

∑
diPi

∣∣∣ di ∈ R and D ∼R 0/T
}
⊂ DF

with F =
∑

Pi, we obtain a splitting C = C0 ⊕ g∗C, where

C
0 = C

0(X/T/Z,F ) =
{
D =

∑
diPi

∣∣∣ di ∈ R and D ∼R 0/Z
}
.
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Lemma 8.12. Let (X/T/Z,B,F) be a desirable triple for a weak log Fano contraction and
F =

∑
Pi ∈ F be a reduced divisor. Then

(1) g∗ induces a splitting C = C0 ⊕ g∗C over Q, where now

C0 = C0(X/T/Z,F ) =
{
D =

∑
diPi

∣∣∣ di ∈ R and D ≡ 0/Z
}
;

(2) Cone theorem: the nef cone or even the semiample cone

Nnef = Nnef(X/T/Z,F ) =
{
D =

∑
diPi

∣∣∣ di ∈ R, D is nef /Z and ∼R 0/T
}

is a rational polyhedral cone in C;
(3) g∗C is isomorphic/Q to CDivR(T/Z)/≡ whenever the components Pi generate the group of

Weil divisors of X up to linear equivalence;
(4) there exists a uniform constant I, the freedom index, a natural number such that the multiple

ID is free on X/Z for every integral Q-Cartier D ∈ CDiv0
R(X/T/Z) that is nef /Z;

(5) N(X/T/Z,F ) = Nnef(X/T/Z,F ) is a bnd set (cf. (TRP) in Example 8.2(2)).

Proof. (1) Since the triple is a desirable triple for a weak log Fano contraction (X ′/Z,B′), we
have a diagram of contractions

W

X ′

i

←
X

g→

h→
T/Z

where i ◦ h−1 : X → X ′ is a birational map to the weak log Fano contraction X ′/Z. We need
to prove that each R-Cartier divisor D ≡ 0 on X/Z is ∼R 0/Z. It is enough to check this for
h∗D on W/Z. Since X ′ has rational singularities, the problem descends to X ′/Z up to ∼R (see
[33, Corollary 1.3]). However, each R-Cartier divisor ≡ 0/Z is ∼R 0/Z on any weak log Fano
contraction/Z.

In addition, if D is a Cartier divisor and D ≡ 0, then D ∼ 0 essentially by Contraction
Theorem 2.1 in [40].

Remark 8.13. Apart from the final statement, the above holds if we assume only that X ′

has rational singularities and irregularity 0/Z.
(2) follows from the numerical description of the splitting in (1):

Nnef = C
0 ⊕ g∗Nnef .

By (1) and (RPC), this means that each nef/Z divisor in CDiv0
R(X/T/Z) is also semiample/Z, that

is, the cone is also semiample/∼R. Since

g∗Nnef = g∗C ∩ nef cone in CDivR(T/Z)/≡,

the nef cone g∗Nnef is rational polyhedral by (RPC) again. Hence, Nnef is also rational polyhedral.
(3) follows from the surjectivity of the projection g∗ since the integral Cartier divisors are also

generated by the components Pi.
To prove (4), as in (3), we can assume that an integral Weil divisor D/Z that is nef and

Q-Cartier is contained in C up to linear equivalence. By (2), we can decompose D into D0 + D1,
where D0 ∈ C0 and D1 ∈ g∗Nnef . This is a decomposition/Q but with bounded denominators,
which we include in I; thus, we can assume that both D0 and D1 are integral. Moreover, (4) for D1

follows from a similar decomposition by the cone property (RPC). Now D0 is free provided it is
Cartier, as remarked in the proof of (1). Hence, we can take I as the Cartier index for D0, so that
ID0 is Cartier. This exists because C0 is finite-dimensional.
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(5) Each divisor in N(X/T/Z,F ) is semiample by (2). (BND) follows from (4). If F is big
as in (3), (CFG) follows from (2) and (3) as in Example 8.2(1). For any subset of F , we need to
cut Nc by equations multPi D = j for j ∈ Z, to drop Pi and keep integral generators Di. In each
compact rational polyhedron Nc, this also cuts out a rational compact polyhedron. �

Notation 8.14. For a triple (X/Z,B,F) with a bounded family F, we set

N = N(X/T/Z,F) =
⋃

F∈F

N(F )

(cf. Example 8.2(2)), and N = N(X/Z,F) = N(X/X/Z,F) if T = X (cf. Theorem 8.23). In other
words, each D ∈ N is nef/Z, ∼R 0/T , and D = Dint + Dfr, where Dint is integral and SuppDfr is
in F. We set

Uδ = Uδ(X/T/Z,F) =
⋃

F∈F

Uδ(F ),

and Uδ = Uδ(X/Z,F) = Uδ(X/X/Z,F).

Theorem 8.15. Let (Xu/Tu/Zu, Bu,Fu) be a bounded family of triples desirable for some
weak log Fano contractions (see the proof), and let τ > 0 be a tolerance.

Then there exists M > 0 (depending on the family and τ) such that, for any (Xu/Tu, Bu,Fu)
in the family and each divisor D ∈ N = N(Xu/Tu/Zu,Fu), we have Bs |mD| = ∅ mod τ for some
integer m ∈ [1,M ] (depending on D) and, in particular, |mD| �= ∅ mod τ .

Moreover, there exists some δ > 0 such that the same nonvanishing and freedom results hold
uniformly in the neighborhood Uδ(Xu/Tu/Zu,Fu).

Proof. We reduce to the case of bnd sets in Theorem 8.4 and Addendum 8.4.1 using
Lemma 8.12(5). To apply this to a bounded family of triples, we need to check (7′) in the proof of
Theorem 8.4.

Note that a bounded family of triples (Xu/Tu/Zu, Bu,Fu) is equivalent to a bounded family of
simple triples (Xu/Tu/Zu, Bu, Fu) for u ∈ U , where the reduced divisor Fu =

∑
Pu,i is considered as

a 1-element set Fu = {Fu} (cf. spreading in Remark 6.10(3)). This means that we have a bounded
family X/T/Z/U of projective morphisms/U and horizontal divisors F =

∑
Pi and B on X, such

that each triple (Xu/Tu, Bu, Fu) in our family arises as a specialization of (X/T,B,F ) for some
u ∈ U .

In particular, the pairs (Xu/Zu, Fu) belong to a bounded family (X/Z,F ). To satisfy (7′), we
need to transform the family: e.g., change the base U , split it into an open subset and a closed
complement, etc. By Noetherian induction, this finally gives a family satisfying (7′).

Each Fu = F
Xu

is reduced by definition. After a base change, we can assume that each prime
component Pi of F specializes to a prime Pu,i. Thus, DF , the finite-dimensional R-vector space
generated by F , is locally constant over U (with respect to the basis Pi), that is, it specializes
isomorphically to DF,u from its generic point. By Lemma 8.12(1), the equivalence ∼R 0/T is
geometrically (= numerically) determined by the contraction g : X → T/Z; namely, D ∼R 0/T if
and only if D ≡ g∗M/Z for some R-Cartier divisor M on T/Z up to ≡/Z. Thus, for some nonempty
open subset V of U , C = C(X/T/Z,F ) is a subspace of DF that is constant/V , and specializes
isomorphically to Cu = C(Xu/Tu/Zu, Fu) for each u ∈ V .

Similarly, by Lemma 8.12(2), we can assume that over V the rational polyhedral cone
Nnef = Nnef(X/T/Z,F ) specializes isomorphically to the rational polyhedral cone Nnef ,u =
Nnef(Xu/Tu/Zu, Fu) for each u ∈ V . If the former is given by inequalities D · Ci ≥ 0 for a
finite set of (bounded) curves Ci/Z, then the latter is given by inequalities D · Cu,i ≥ 0 for their
specializations Cu,i. (Here it is better to assume that k = C. Since each Tu/Zu satisfies (RPC), it
also satisfies (RPC) with generating curves of bounded degree. Otherwise, the complement to the
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union stratified by the cones that are generated by curves of bounded degree gives a very generic
point where (RPC) does not hold. Indeed, each subfamily (a priori nonalgebraic) that corresponds
to cones Nnef ,u generated by curves of bounded degree is constructible; see Remark 8.16.)

To find the decomposition, in (CFG) we can add some prime components Pi to F such that
together they generate the group of Weil divisors of X/∼, and the same after specialization. In
a big case such as this with extended F , we get (CFG) and then deduce it for the original F as in
the proof of Lemma 8.12(5) (cf. Example 8.2(1)).

Thus, the compact rational polyhedron Nc specializes isomorphically to Nc,u for (Xu/Zu, Fu),
and Di specializes to Du,i = Di Xu

. Since we have a finite set of generators Di, (CFG) implies
(BND) uniformly for the family; as before, we do this over some open V of U , then repeat the same
for generic points of the closed complement U \ V , and so on. �

Remark 8.16. As explained in the proof, it is crucial that NE(Tu/Zu) has bounded genera-
tors. For weak log Fano contractions (Xu/Zu, Bu), this follows from anticanonical boundedness [44].
This is not enough for nonalgebraic families: nonalgebraic subsets in algebraic families (cf. Exam-
ple 8.18). However, for triples, any subfamily that corresponds to the bounded generators Ci is
constructible. Indeed, we can assume that U is irreducible and the subfamily is maximal , that is, is
not in a proper Zariski subset. Then we need to verify that Nnef is given by inequalities D ·Ci ≥ 0.
By maximality, each D ∈ Nnef is nef/Zu and semiample/Zu for very general u ∈ U . Exclude u
with D

Xu
·C ′ < 0 for some curve C ′/Z. To prove that Nnef is given by the above inequalities over

the generic point, it is enough to check that each D ∈ Nnef is semiample over the generic point.
We can assume that D is Q-Cartier and even Cartier. Then it is very semiample (free) over the
very general point u ∈ U by the standard properties of f∗OX(D). This implies that it is also very
semiample over the generic point of U .

As above, we derive results similar to Corollaries 8.7, 8.9 and new Corollary 8.20.
Corollary 8.17. For some triple (Xu/Tu/Zu, Bu,Fu), let Cu be a divisor on Xu such that all

multPi Cu > −1+ τ . Then, for any D ∈ Uδ(Xu/Tu/Zu,Fu), there exists an integer m ∈ [1,M ] such
that |�mD + Cu�| �= ∅.

Addendum 8.17.1. For D ∈ Uδ(Xu/Tu/Zu, Fu), if multPi Fu = 0, we can assume just
multPi Cu > −1.

Proof. The proof of Corollary 8.7, with Theorem 8.15 in place of Addendum 8.4.1. �
Example 8.18. Let (X/T = pt./Z = pt., B = 0,F) be a triple such that X is a complete

elliptic curve, and F = {p+ q | p �= q ∈ E}. Then Theorem 8.15 does not hold for this triple. (Quiz
time: why does not the theorem apply?)

Otherwise, by Corollary 8.17 with C = 0, there exists M > 0 such that, for any D ∈ N =
N(X/pt./pt.,F), there exists an integer m ∈ [1,M ] for which �mD� �= ∅. Thus, if D = p − q is a
torsion point of the elliptic curve, then D ∼R 0 and D ∈ N. But then m(p−q) = mD = �mD� ∼ 0,
that is, the order of all torsion points is bounded; this is a contradiction.

Corollary 8.19. Let α < 1 and τ be positive real numbers and Cu be an R-b-divisor of Xu

such that Cu ≥ 0/Xu and

all multPi αCu > −α + τ multPi Fu for any Fu ∈ Fu. (8.19.1)

Then there exist positive real numbers M and β, δ that give the following nonvanishing/Zu on any
Yu/Xu (uniformly in u). For all b-divisors D such that the descent data E of D over Xu is confined
by βCu, that is, E ≤ βCu/Xu, and DXu ∈ Uδ(Xu/Tu/Zu,Fu), we have |�mDYu + (Cu)Yu�| �= ∅ for
some integer m ∈ [1,M ].

Proof. The proof of Corollary 8.9 with Theorem 8.15 instead of Addendum 8.4.1. Note that
each Fu ∈ Fu is Q-Cartier on Xu by (QFC) of desirable triples. �
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Corollary 8.20. There are real numbers β, δ, and M > 0 giving the nonvanishing as in
Corollary 8.19 for the discrepancy b-divisors Cu = Au = A(Xu, Bu).

Example 8.21. Let (X,B) be a Klt pair with a subboundary B and Q-factorial X, and F

be a bounded family of reduced divisors on X. Then there exists a real number γ > 0 such that
(X,B + γF ) is Klt for any F ∈ F (compare stability (1.3.4) in [41]). Therefore, all

multPi A− γ multPi F = multPi(A− γF ) = a(X,B + γF, Pi) > −1

(cf. the proof of Lemma 6.1 and Example 5.27). Thus, for any real α > 0, we have α multPi A >
−α + τ multPi F for τ = αγ. This gives (8.19.1) and the required τ in Corollary 8.19 for Cu = Au.

If, in addition, (X,B) is canonical in codimension ≥ 2 and α < 1 is a positive real number (for
example, α = 1/2), then there exists τ > 0 that satisfies the inequalities, including (8.19.1) for
Cu = Au. Note that Au ≥ 0/X because (X,B) is canonical in codimension ≥ 2.

Lemma 8.22. Let Cu = Au be discrepancy b-divisors on a bounded family of desirable triples
for weak log Fano contractions (for example, as in Corollary 8.20), and let α ∈ (0, 1). Then there
exists τ such that all Cu satisfy the conditions of Corollary 8.19, in particular, (8.19.1).

Proof. Example 8.21 proves the lemma for each triple. Then we can use Noetherian induction
over U as in the proof of Theorem 8.15. Note that Klt is open in families (e.g., by Inverse of
adjunction 3.3 and deductions on p. 127 in [41]). For any desirable triple (Xu/Tu/Zu, Bu,Fu),
each Xu is Q-factorial by (QFC) of Definition 6.9, and each (Xu, Bu) is terminal in codimension ≥ 2
by (CRP) and (TER). �

Proof of Corollary 8.20. We can find β, δ > 0 and M by Lemma 8.22 and then use Corol-
lary 8.19 (cf. Remarks 8.10 and 8.11). �

An explanation on bounded nonvanishing: in fact, in applications, we can weaken the nef and big
condition on M to just nef in Definition 6.9 of desirable triples. Thus, we are interested in two types
of desirable triples corresponding to cases when M is big or a pencil in the proof of Corollary 6.40:
(1) (weak) log del Pezzo (Xt/pt., Bt) with only terminal closed points (= terminal resolution)
corresponding to triples (Xt/Xt/pt., Bt,F) with crepant Bt, and (2) elliptic fibrations/Tu = P1

corresponding to triples (Xu/Tu/pt., Bu,F) with an elliptic fibration Xu → Tu = P1 and crepant Bu.
In either case, F is obtained from the standard family on (X/pt., B) by log birational transform
(see Remark 6.13(2)).

As usual, the simplest form of freedom is on log Fano contractions.

Theorem 8.23. Let (X/Z,B) be a weak log Fano contraction; let F be a bounded family of
reduced divisors; and let τ > 0 be a tolerance.

Then there exists M > 0 (depending on (X/Z,B), F, and τ) such that, for each divisor D ∈
N = N(X/Z,F), we have Bs |mD| = ∅ mod τ, in particular, |mD| �= ∅ mod τ, for some integer
m ∈ [1,M ] (depending on D).

Addendum 8.23.1. Moreover, there exists a real number δ > 0 (depending on (X/Z,B), F,
and τ) such that the same nonvanishing holds for all D ∈ Uδ = Uδ(X/Z,F).

Proof. Immediate by Theorem 8.15. We consider the weak log Fano contraction (X/Z,B)
with bounded F as a triple (X/X/Z,B,F). �

Corollary 8.24. Let C be a divisor such that all multPi C > −1 + τ . Then, for any D ∈ Uδ,
there exists an integer m ∈ [1,M ] such that |�mD + C�| �= ∅.

Addendum 8.24.1. If multPi F = 0, we can assume just multPi C > −1.

Proof. Immediate by Corollary 8.17 and its addendum. �
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Corollary 8.25. Suppose that each F ∈ F is Q-Cartier. Let α < 1 and τ be positive real
numbers and C be a b-divisor such that C ≥ 0/X and

all multDi αC > −α + τ multDi F for any F ∈ F.

Then there exist positive real numbers M and β, δ giving the following nonvanishing/Z on any
Y/X (uniformly in F ). For all b-divisors D such that the descent data E of D over X is confined
by βC, that is, E ≤ βC/X, and DX ∈ Uδ, |�mDY + CY �| �= ∅ for some integer m ∈ [1,M ].

Proof. Immediate by Corollary 8.19. �
Corollary 8.26. Let (X/Z,B) be a weak log Fano contraction, with X Q-factorial and with

(X,B) canonical in codimension ≥ 2. Then, for any given bounded family F of reduced divisors,
there are real numbers β, δ, and M > 0 giving the nonvanishing/Z as in Corollary 8.25 for C = A.

Proof. Immediate by Corollary 8.20. �

9. STABILIZATION AT A CENTRAL DIVISOR

We are now ready to establish the stabilization of a central multiplicity. We first describe
what we mean by an inductive model and its central divisor Ec. Then, in Theorem 9.9, we state
conditions under which we expect a limit D = lim−→Di of b-divisors to stabilize at Ec; this means
that the multiplicity of Ec in Di is eventually constant, for i sufficiently large and divisible. The
next section (Theorem 10.13) treats stabilization in a neighborhood of Ec; this result includes, in
particular, a nonvanishing for the limiting divisor on Ec. Finally, we prove that both hold for
3-folds.

After this, we extend this stabilization to the freedom result of Corollary 10.16 under Klt, in
the realistic situation (CCS)(rfa) (cf. (CCS)(fga) in Conjecture 6.14). This is a freedom result on
a Klt model that is terminal in codimension ≥ 2, and this leads to the proof of Theorem 6.45 in
Section 11.

9.1. Conventions. In this section, “under LMMP” means that we assume LMMP in dimen-
sion n = dim X; for n ≤ 3, LMMP is proved, so this is not an extra assumption. In the same way,
we can drop assumptions (CCS), (MOD), and (SSB) for n ≤ 2 by Corollary 6.40.

Definition 9.2. We say that a limit D = limi→∞Di of R-b-divisors stabilizes near a set of
prime b-divisors Ei if there exists a model Y/X on which the limit stabilizes in a neighborhood of
the centers of these b-divisors (viewed as closed subvarieties). That is, Di = D for some i � 0 over
a neighborhood in Y of these centers.

Definition 9.3 (cf. Prokhorov–Shokurov [35, предложение 3.6]). An inductive model of a log
pair (X/Z,B) is a log model (Y/Z,BY ) of (X/Z,B) such that

(1) (X,BX )/(Y,BY ) is log proper , that is,

BY = B(Y,BY ) ≥ BX = B = B(X,B),

or, equivalently,
AY = A(Y,BY ) ≤ AX = A = A(X,B);

(2) (Y,BY ) with boundary BY is exceptional in the sense that there is a single prime divisor
Ec of Y with multEc BY = 1 and (Y,BY ) is purely log terminal;

(3) −(KY + BY ) is nef and big/Z (big is automatic if X/Z is birational);
(4) −(KY + BY ) is nef and big on Ec/Z.

We say that Ec is the central b-divisor of the inductive model. For a b-divisor D, the multiplicity
dc = multEc D is referred to as the central multiplicity. Note that (2) and (3) mean (WLF) of
Proposition 4.42 except that Klt is replaced by purely log terminal (cf. (PFN) in Lemma 9.7
below); but it is still not a generalized log Fano contraction as in Conjecture 5.26.

ТРУДЫ МАТЕМАТИЧЕСКОГО ИНСТИТУТА ИМ. В.А. СТЕКЛОВА, 2003, т. 240



188 SHOKUROV

In addition, we say that (X/Z,B) is a strict inductive model if Y is Q-factorial in (2) (so that
(Y,BY ) is strictly log terminal [41, с. 110], see also [27, Definition 2.13]), −(KY + BY ) is ample/Z
in (3) and ample/Ec/Z in (4).

Caution 9.4. In this definition, we do not assume that Y is /X.

Definition 9.5. A local weak log Fano contraction (X/T,B) means (WLF) of Proposition 4.42
in the local situation, when

• X/T is a local contraction, that is, dimT ≥ 1 and f : X → T is onto T .

Lemma 9.6 (cf. [35, предложение 3.6]). Under LMMP, let (X/T,B) be a local weak log Fano
contraction. Then, locally/T, there exists an inductive model. Moreover, we can assume that this
model is such that

• Y is Q-factorial and projective/T ;

• BY is a Q-divisor ; and

• Ec is complete (that is, Ec is /P ).

Addendum 9.6.1. Thus, we have a weak log Fano contraction (Ec, Bc) such that KEc +Bc =
(KY + BY )

Ec
. We call it a central model. We can assume that Bc is a Q-divisor.

Addendum 9.6.2. Let X be a Q-factorial inductive model, and assume that X is projective/T .
Then we can upgrade X/T to a strict inductive model Y/T .

Proof. We only consider the case when X/T is birational, which is all that we need. Prokhorov
and Shokurov [35, предложение 3.6] treat a case that is not birational. After adding a complement,
we assume that K+B ≡ 0/T . We can suppose, in addition, that B is a Q-divisor. This increases B,
which is important for (1) in Definition 9.3. Hence, after a contraction, we can assume that X = T .

First, we can build a log canonical singularity by adding εH for an ample divisor through P ∈ X.
Moreover, after perturbing H, we can assume that P is exceptionally log canonical for B + H with
some effective Q-Cartier divisor H. For this, we again increase B, strictly over P . By the exceptional
property, we have the required central divisor Ec/P as a unique b-divisor with log discrepancy 0.

Now take a strict log terminal resolution (Y/X,BY ) resolving Ec, where Ec is the only excep-
tional divisor on Y/X. The boundary BY is given by a crepant modification of (X,B + H). In
addition, we can assume that g−1H is nef/X; otherwise, we can apply LMMP to BY + εg−1H.

Finally, this gives the required model on replacing BY by BY −εg−1H. Properties (1)–(3) follow
by construction. For (4), we need to check that g−1H is big on Ec. Otherwise, since g−1H is nef/X
and strictly effective near Ec, it defines a contraction Y → Z/X, where Z/X is small nontrivial and
H is positive on Z/X. Since H is a Q-Cartier divisor, this is impossible (by the projection formula).

Addendum 9.6.1 follows from the adjunction formula [41, 3.1 и (3.2.3)] and the fact that Ec is
normal [41, лемма 3.6]. Addendum 9.6.2 follows directly from the following result (cf. the proof of
Lemma 3.3 in [35]). �

Lemma 9.7. (Under LMMP ; cf. remark at the end of the proof ) suppose that

(PFN) (X/T,B) is a purely log terminal weak Fano contraction, that is, (GLF) of Proposi-
tion 4.50 with purely log terminal (X,B) and with a boundary B,

such that X is projective/T, and suppose that −(K+B) is nef and big/T on each reduced component
of B (by [41, теорема 6.9], locally/T, there is at most one).

Then we can find another boundary B+ such that

• (X/T,B+) still satisfies (PFN) with ample −(K + B+)/T ;

• B+ ≥ B; and

• B and B+ have the same reduced components.
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Proof. We can contract all 0-curves C for K + B (that is, curves with C · (K + B) = 0) by a
contraction X → Y/T . The contraction is given by −(K + B) (see [40, следствие (2.7)]). (PFN)
is preserved because the reduced divisors of B are not contracted. There exists an effective mobile
divisor D on X that is negative/Y . In particular, for a general such D, the reduced divisors of B
are not in SuppD. Thus, we can replace B by the boundary B+ = B + εD for some 0 < ε 
 1.
Then −(K + B+)/T is ample, and (X/T,B+) satisfies all the required properties. For ampleness,
we use the fact that the Kleiman–Mori cone of (X/T,B) is polyhedral. We need projectivity of
X/T for the existence of D and the polyhedral property. �

Remark 9.8. We do not use the full strength of LMMP for Lemma 9.7; for our purposes, the
cone and contraction theorems are enough, and they work under our current assumptions.

Now we are ready to state the stabilization of the limit D = limi→∞Di at some central divi-
sor Ec:

dc = dc,j

for some j � 0, where dc,j = multEc Dj. This holds in the following situation.
Theorem 9.9. We assume LMMP, (CCS)n−1(gl), and (SSB)n−1(gl). Suppose that (X/T,B)

is a log pair, and let D = limi→∞Di be a limit of b-divisors such that

(LWF) (X/T,B) is a local weak log Fano contraction;
(LBF) linear b-freedom: iDi ∼ Mi/T for all i, where Mi is b-free;
(LCA) D• is lca saturated over (X,B);

(MXD) maximality of the limit: each Di ≤ D; and
(BED) each Di = D outside f−1P over T (cf. Proposition 4.54).

Then there exists an inductive model with central divisor Ec such that the limit dc = limi→∞ dc,i is
a rational number, and the limit stabilizes; that is, dc = dc,j for infinitely many j.

Corollary 9.21 below improves this result slightly. A more serious statement about local stabi-
lization is contained in Theorem 10.13 of the next section.

Remark 9.10. Under (LWF), linear b-free (LBF) is equivalent to numerically free iDi ≡
Mi/T , provided that iDi is Cartier, or merely integral. It is enough to establish this for i(Di)Y =
iDi ≡ 0/T . The required linear equivalence then follows from LMMP, or from descent of Cartier
divisors for their contractions on rational singularities, and from stable freedom on Y = X as in
(WLF) [40, следствие (2.7)] (cf. Remark 8.13).

The main steps in the proof of Theorem 9.9 are as follows. We first establish in Proposition 9.13
the slightly more general rationality result dc ∈ Q, together with a stabilization result. Then, using
Proposition 9.15 on bounded presentation of the fixed part of linear systems on the central b-divisor,
we reduce Theorem 9.9 to Proposition 9.13. Proposition 9.13 itself and its proof are similar to the
proof of the rationality theorem in the Kleiman–Mori cone and the nonvanishing theorem (see
[25, 4-1-1; 40, (0.2)]). However, this time, we need a birational version of nonvanishing, namely,
Corollaries 8.20 and 8.26. We interpret this nonvanishing as stabilization of D = limi→∞Di at Ec.
We need some preliminary results, Lemmas 9.6 and 9.7 above, Lemma 9.18, and Corollary 9.19 to
construct an appropriate inductive model.

The following example illustrates the use of an inductive model and is a paradigm for The-
orem 9.9 and for other results in this section and in the paper (cf. Corollary 9.21 and Adden-
dum 9.21.2).

Example 9.11 (projective space et al.). Let (X/Z,B) = (Pn/pt., 0) be a projective space.
Then (FGA) together with (SSB), (PRM), (PFC), (CCS), and (MOD) of Conjecture 6.14 hold on
it. Moreover, S = P = ∅, and in (CCS), Bs |M|Pn = ∅ for each M ∈ M; thus, c = 1! Moreover,
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for any R-b-divisor under saturation (SAT), Bs |D|Pn = ∅. Nontrivial (FGA) gives as stable models
only Pn itself or pt.

We can prove this using restriction to D = DY , as in the proof of Proposition 6.26. But this
needs Fujita’s bound for freedom, which is not yet established. Another realistic approach is to
use inductive models. The first one is (Y/pt., E = Pn−1), where Y → Pn is the blowup in a closed
point P ∈ DPn ⊂ Pn and E is the exceptional locus over P . If D = DY �⊃ E is fixed (prime),
we use saturation (STD) for D

E
for generic P ∈ DPn ; saturation is preserved (consider εDPn ; cf.

Lemma 9.16 and its proof below). Thus, by induction on n, D is mobile.
If D is mobile, for example, D = M ∈ M, we can also use the models (Pn/pt.,H = Pn−1)

with (general) hyperplane sections H. Again by induction, |D|Pn only has closed base points P
(cf. Proposition 4.54). For such P ∈ Bs |D|Pn , we use induction. Namely, |M|Y E

is free, where
M = MovD is general in the linear system on Y with MPn = DPn (cf. Proposition 9.15). Hence,

Mov�D + A� ≥ Mov(M + E) = (M)Y + E,

which contradicts saturation of D with respect to A = A(Pn, 0).
The same works for any other nonsingular Fano variety such that

• each blowup in a closed point is again a log Fano variety (Y/pt., E); or

• there are (base point free) ladders of smooth log Fano varieties (down to surfaces),

either of which gives inductive models. For example, this holds for nonsingular quadrics. Finally,
similar facts hold for nonsingular points (X/X,B = 0) and simple singularities having such a Fano
variety as exceptional locus of a minimal resolution. In addition to obvious models, the minimal
resolutions appear as stable models when the singularity is nonterminal. All of this is aesthetically
appealing, but unfortunately not deep.

The following result generalizes the Rationality Theorem for Cones.

Notation 9.12. In the following proposition, A′ = A′(X,B) = A + Ec is an adjusted
(truncated) discrepancy, where (X,B) is exceptionally log terminal with a single Ec having
multEc A = −1.

Proposition 9.13. Let (X/T,B) be a strict inductive model with central divisor Ec, E′ ∼ Ec

be a linear equivalence with Ec �⊂ SuppE′, and D• be a system of b-divisors Di such that dc =
limi→∞ dc,i. Then dc ∈ Q under the following conditions:

(BNF) each Di is b-nef/T in the sense of Lemma 4.23;

(εA′S) for some ε > 0, integral weak asymptotic saturation over Ec (cf. Definition 4.43) holds
for D• of index 1 with respect to C = A′ + dEc, for any 0 ≤ d ≤ ε;

(MXC) maximality of the central limit: each dc,i ≤ dc;

(BWQ) there exists a bounded family (Eu/Tu/pt., Bu,Fu) of desirable triples as required for
(Ec/pt., Bc) (cf. Theorem 8.15) such that each (Di Ec

)Ei ∈ N(Ei/Ti/pt.,Fi) (the mixed
restriction for K = R, cf. (mx) in Proposition 7.7) and the descent data of the restric-
tions Di Ec

is asymptotically confined by Ac = A(Ec, Bc) over a sequence of models Ei

corresponding to Di Ec
(see Remark 5.8(6));

(BRE′) Supp(E′
Ec

)Eu ≤ F ∈ Fu for each F ∈ Fu on each model Eu of triples in (BWQ).

Moreover, the limit stabilizes: dc = dc,j for infinitely many j.

Remark 9.14. E′ ∼ Ec induces E′′ ∼ E = g−1Ec on any other model g : Y → X with
E �⊂ SuppE′′. Take E′′ = g∗E′ + E − g∗Ec. Then the mixed restriction of 7.3 defined by E′′ on Y
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is independent of Y/X: in fact, since multEc D = multE D = d, we have

D
Ec

= (D − dEc)Ec
+ dE′

Ec
= (D − dEc)Ec

+ dE′
Ec

= (D − dEc)E
+ dg∗E′

E
= (D − dEc)E

+ d(E′′ + g∗Ec − E)
E

= (D − d(Ec − g∗Ec + E))
E

+ dE′′
E

= (D − dE)
E

+ dE′′
E

because g∗E′ = E′′ + g∗Ec − E and Ec = g∗Ec.
Proof of Proposition 9.13. Since (K + B)/T is negative, we can replace ε by a smaller

positive value so that the saturation (εA′S) still holds and −(K + B) + εEc is still nef and big/T .
Moreover, we can assume that the same holds for any smaller ε ≥ 0.

In particular, for any 0 ≤ d ≤ ε, for any real number j ≥ 0, and for any natural number i, on
a sufficiently high log resolution g : Y → X/T of (X/T,B), we have the following vanishing:

R1(f ◦ g)∗O(�AY + d(Ec)Y + j(Di)Y �) = 0.

Note that the resolution Y depends only on i. Indeed, we take a log resolution over which (Di)Y
is nef/T and R-Cartier. Then

�AY + d(Ec)Y + j(Di)Y � = KY + �−g∗(K + B) + dg∗Ec + j(Di)Y �
= KY + �g∗(−(K + B) + dEc) + j(Di)Y �,

where −(K + B)+ dEc is nef and big/T and (Di)Y is nef/T . It follows that g∗(−(K + B)+ dEc)+
j(Di)Y is nef and big/T , and Kawamata–Viehweg gives the required vanishing.

However, to apply this vanishing to a restriction to the birational image E of Ec in Y , we need
to assume that dEc + jDi has integral multiplicity in Ec, for integral weak saturation in (εA′S), or
equivalently, that d + jdc,i is an integer. More precisely, then we have a surjective map of linear
systems

|E + �AY + d(Ec)Y + j(Di)Y �| ���
∣∣(E + �AY + d(Ec)Y + j(Di)Y �)E

∣∣.
In addition, because d + jdc,i are integers, by normal crossing, Lemmas 6.29, 6.30, and Adjunction
Formula 3.1 in [41], for a sufficiently high resolution Y (over which Di is R-Cartier and nef/X/T ),
the linear system∣∣(E + �AY + d(Ec)Y + j(Di)Y �)E

∣∣ =
∣∣⌈(E + AY )

E
+ (d(Ec)Y + j(Di)Y )

E

⌉∣∣
=

∣∣⌈(Ac)E +
(
(dEc + jDi)Ec

)
E

⌉∣∣
=

∣∣⌈(Acr)E +
(
((d + jdc,i)E′ + jD′

i)Ec

)
E

⌉∣∣
=

∣∣⌈(Ac)E +
(
((d + jdc,i)E′′ + d(Ec − E) + jD′′

i )
E

)
E

⌉∣∣
is defined on E by the birational restriction (dEc + jDi)Ec

, that is, by(
(d + jdc,i)E′ + jD′

i

)
Ec

=
(
(d + jdc,i)E′′ + d(Ec − E) + jD′′

i

)
Ec

(as in Remark 9.14), where E is a sufficiently high resolution of Ec and E′ ∼ Ec on X/T with
Ec �⊂ SuppE′, and where E′′ ∼ E is induced on Y/T with E �⊂ SuppE′′, D′

i = Di − dc,iEc and
D′′

i = Di − dc,iE. This last resolution only depends on i. Hence, if we have nonvanishing for the
linear system restricted to E, the corresponding linear system

|E + �AY + d(Ec)Y + j(Di)Y �| = |�A′
Y + d(Ec)Y + j(Di)Y �|

is free on E. For saturation below, note that the system is independent of further resolutions/Y
by stabilization in Proposition 4.46 and Example 4.47.
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In the present situation, this is impossible because it contradicts (MXC), the maximality of dc.
Namely,

(NBF) |�A′
Y + d(Ec)Y + j(Di)Y �| cannot be free on E for a positive integer j and integers

d + jdc,i > jdc.

Indeed, then the multiplicity of the mobile part for the linear system is

multE�A′
Y + d(Ec)Y + j(Di)Y � = multEc(dEc + jDi) = d + jdc,i.

On the other hand, for any natural number i, by asymptotic saturation (see Definition 4.33), the
multiplicity is ≤ multEc jDj = jdc,j , that is, d + jdc,i ≤ jdc,j . Hence, dc,j ≥ dc,i + d/j > dc by the
inequality in (NBF). This contradicts (MXC).

By the above surjectivity, (NBF) is equivalent to the following vanishing:

(VN) on a sufficiently high resolution E/Ec,∣∣⌈(Ac)E +
(
(d + jdc,i)E′

Ec
+ jD′

i Ec

)
E

⌉∣∣ = ∅

whenever j is a positive integer and integer d + jdc,i > jdc.

However, if dc /∈ Q, we can disprove this for some i � 0 using bounded nonvanishing.
For triples (Eu/Tu/pt., Bu,Fu) in (BWQ), by Corollary 8.20, there exist real numbers β, δ,

and M > 0 such that, for any b-divisors D with the descent data confined by βAc over Eu and
DEu ∈ Uδ, we have the bounded nonvanishing

|�mDEhr
+ (Ac)Ehr

�| �= ∅ for some integer m ∈ [1,M ]

on any Ehr/Eu, in particular, for some rather high Ehr/Ec.
We apply this to the b-divisor

D = q(d/j + dc,i)E′
Ec

+ qD′
i Ec

for some natural number q > 0 and satisfying the nonvanishing conditions. Equivalently, D =
pE′

Ec
+ qD′

i Ec
, where now j = mq and p = d/m + qdc,i under the following conditions:

(1) m > 0 and p are integers, and
(2) p/q > dc.

These imply that mq = j > 0 and mp = md/m+mqdc,i = d+jdc,i are integers and mp = d+jdc,i >
jdc as in (VN).

Now we rewrite the nonvanishing conditions for D:

(3) DEi ∈ Uδ(Ei/Ti/pt.,Fi), and
(4) the descent data of D is confined by βAc/Ei.

Since
D = (p − qdc,i)E′

Ec
+ q

(
dc,iE′

Ec
+ D′

i Ec

)
,

we have q(dc,iE′
Ec

+ D′
i Ec

) = qDi Ec
(this mixed restriction is defined up to ∼R; see Mixed re-

striction 7.3), (Di Ec
)Ei ∈ N(Ei/Ti/pt., Fi) for some Fi ∈ Fi, and Supp(E′|Ec)Ei ≤ Fi by (BWQ)

and (BRE′), it follows that, for a natural number q, (3) holds for D = pE′
Ec

+ qD′
i Ec

, provided
that ‖(p − qdc,i)(E′

Ec
)Ei‖ < δ. (For a natural number q, note that D ∈ N(Ei/Ti/pt., Fi) implies

qD ∈ N(Ei/Ti/pt., Fi) because N(Ei/Ti/pt., Fi) is an Abelian semigroup, although not a convex
body.) This last inequality holds provided that

(3′) 0 ≤ p − qdc,i < δ/N , where N is ≥ the maximal absolute multiplicity of (E′
Ec

)Eu over all
F ∈ Fu,
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because Supp(E′|Ec)Ei ≤ Fi ∈ Fi by (BRE′). N is bounded under (BWQ) (by a Noetherian
induction as in the proof of Theorem 8.15; cf. Lemma 8.22). The strict form 0 < p − qdc,i of the
left inequality in (3′) follows from (2) and (MXC).

If Ei/Ec (e.g., for surface Ec by Proposition 9.15(2)), the descent data for (E′
Ec

) is 0/Ei, and
the descent data for D is the same as for qDi Ec

by (ADD) in Proposition 5.4. But for fixed q, the
descent data for qDi Ec

is asymptotically confined by Ac/Ei (cf. Remarks 5.8(5),(6)). Hence, for
some i � 0, the descent data of D is confined by βAc because, by definition, Ac ≥ 0/Ei. This
gives (4) for some i � 0.

If Ei is not/Ec, the descent data for (p−qdc,i)E′
Ec

is confined by γAc/Ei with arbitrarily small
γ > 0 for all i � 0, for instance, with γ = β/2. The rest can be confined by (β/2)Ac for some
i � 0 as above; this gives (4). Since Ei belongs to a bounded family and E′

Ec
is fixed, the descent

data for E′
Ec

is confined/each Ei (even Eu) with some γ > 0 by Example 6.7(1), Lemma 6.1, and
the Noetherian induction. Then we can make (p − qdc,i) arbitrarily small for all i � 0 as in (3′)
(cf. the proof below).

Thus, we need to find integers q > 0 and p satisfying (2) and (3′). This gives

mD = mpE′
Ec

+ mqD′
i Ec

= (d + jdc,i)E′
Ec

+ jD′
i Ec

,

which contradicts (VN) for j = mq and d = m(p − qdc,i) with some natural number 1 ≤ m ≤ M
by Corollary 8.20 and some i � 0.

Suppose that dc /∈ Q; then, for any real numbers N and ε > 0, there exists a rational approxi-
mation r = p/q with integers q > 0 and p such that

• r > dc, and
• r − dc < ε/Nq.

See continued fractions in [7, pp. 2–5].
We apply this result for certain real numbers: 0 < ε ≤ δ, where ε is ≤ that at the start of the

proof, and N ≥ M as in (3′). Thus, we get the required integers q > 0 and p satisfying (2) and (3′)
for all i � 0. Indeed, p/q = r > dc implies (2) and the left inequality in (3′) by (MXC). On the
other hand, since dc = limi→∞ dc,i, for all i � 0 we have

p/q − dc,i = r − dc,i < ε/Nq ≤ δ/Nq or p − qdc,i < δ/N.

We also need to verify that 0 ≤ d ≤ ε: since d = m(p − qdc,i) and the above argument gives more
than (3′), 0 < p − qdc,i < ε/N ; in fact, 0 < d < mε/N ≤ Mε/N ≤ ε because M ≤ N . This leads
to the promised contradiction. Therefore, dc ∈ Q.

Finally, we verify the stabilization of the limit dc = limi→∞ dc,i. We use the same arguments,
but now the contradiction turns into an honest nonvanishing and stabilization. In particular, we
replace (2) by the equation

(2′) p/q = dc.

Nonetheless, we get (3′) and the nonvanishing of the linear system in (VN) for some i � 0 by (3)
and (4). As explained above, this implies that |�A′

Y + d(Ec)Y + j(Di)Y �| is free on E. This time,
by asymptotic saturation, we get the inequalities dc,j ≥ dc,i + d/j = dc. Thus, by (MXC), dc = dc,j

for j = mq. We can find infinitely many j if we replace p and q by lp and lq, respectively, for any
natural number l > 0. (They may not be proportional to the first j since m depends on D.) �

To apply Proposition 9.13 in the proof of Theorem 9.9, we need to obtain bounded presentations
on the central divisor Ec of the restrictions (Di Ec

)Ei in (BWQ) for an appropriate inductive model
of (X/T,B). For this, we use Corollary 7.9 in conjunction with the following result, for a certain
set of b-divisors M, on the boundedness of their fixed components on Ec, that is, the boundedness
of the divisorial components of Bs |M|X ∩ Ec.
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Proposition 9.15. Under (CCS)n−1(gl) and (SSB)n−1(gl), let (X/T,B) be a strict induc-
tive model with central divisor E, Bs ⊂ X be a proper reduced subvariety, and {M} be a set of
(sufficiently general) b-free b-divisors M such that

(BSP) Bs |M|X ⊂ Bs; and
(SA′) M is A′-saturated on sufficiently high models Xhr/X with ′ over P and Bs, that is,

A′ = A +
∑

Ei with
∑

Ei exactly over the integral components of A over P and Bs ,
that is, with f(centerT Ei) = P or with centerX Ei ⊂ Bs;

then the set of b-divisors M satisfies

(1) boundedness of the fixed component of each |M|X on E, that is, the support of a whole
divisorial component of the intersection Bs |M|X ∩ E belongs to a bounded set F of reduced
divisors on E;

(2) in each linear system |M
E
|, a general element has confined canonical singularities on a

triple (Eu/Tu/pt., Bu,Fu) (with Eu/E, desirable for (E/pt., B), and also just bounded if E
is a surface); and

(3) the desirable triples in (2) belong to a bounded algebraic family.

Note that M is free on X outside f−1P if Bs = ∅ there.
Lemma 9.16 (cf. Proposition 4.50 and its proof). Under the assumptions of Proposition 9.15,

(SA′) for M implies (SA′F) of Proposition 6.34(4) with M := M
E

and F = SuppFix(|M|X E
),

except over SuppBE.
Proof. Suppose that MX is sufficiently general in its linear system |M|X and set M = MX .
Then, for any 0 < ε 
 1, on a sufficiently high log resolution g : Y → X/T of (X/T,B), we

have the following vanishing:
R1g∗O(�AY + εMY �) = 0;

M is well defined because X is Q-factorial (by the strict property in Definition 9.3(2)). This
resolution Y depends only on M. We take a log resolution such that Bs |M|Y = ∅. For general M ,
g−1M = MY is also general in |M|Y . Then the resolution is also a log resolution for B + εM , and

�AY + εMY � = KY + �−g∗(K + B) + εg∗M� = KY + �g∗(−(K + B) + εM)�,

where −(K + B) + εM is ample/T for all 0 < ε 
 1 since −(K + B)/T is ample/T (by the strict
form of Definition 9.3(3)). Thus, g∗(−(K + B) + εM) is nef and big/T , and Kawamata–Viehweg
gives the required vanishing.

However, to apply this vanishing downstairs to the restriction to the birational image EY of E
in Y , we need to assume that εM has rather small multiplicities ei in the exceptional divisors Ei of
Y/X. More precisely, each ei < 1− {ai} for each discrepancy ai = multEi A, where, as usual, {ai}
is the fractional part; in particular, ei < 1 for integral ai. Equivalently, �ai + ei� = �a∗i �, where
a∗i = multEi A∗ = ai + 1 for integral ai, when Ei is over M and even exactly over Bs |M|X for
the general M , and a∗i = ai otherwise. Thus, as compared to ′, the operation ∗ increases exactly
by 1 those integral values ai of components that are exceptional on X and lie over Bs |M|X ; in
particular, ∗ does not hold for E itself. (When MX is free outside f−1P , we can assume that ∗

only increases values over P .)
Hence,

�AY + εMY � =
⌈
AY + εMY +

∑
eiEi

⌉
= �A∗

Y � + MY ,

and we get the vanishing R1g∗O(�A∗
Y �+MY ) = 0. This gives the surjective map of linear systems

|EY + �A∗
Y � + MY | ���

∣∣(�A∗
Y + EY � + MY )

EY

∣∣ =
∣∣⌈(A∗

E)EY

⌉
+

(
M

E

)
EY

∣∣.
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Indeed, by definition and our choice of Y , MY EY
= (M

E
)EY

. The same holds for any sufficiently
high resolution Xhr/X and some sufficiently high resolution Ehr/E. In addition, (AY + EY )

EY
=

(AE)EY
by Adjunction Formula 3.1 in [41], where AE = A(E,BE). Hence, (A∗

Y + EY )
EY

=
(A∗

E)EY
, where (A∗

E)EY
= (AE)EY

+FEY
for FEY

=
∑

Fi with Fi = Ei ∩EY and Ei under ∗. This
assumes that we can extend FEY

birationally to F , or on (any) sufficiently high Ehr/E. Since M
E

has the same support on E as Mov(|M|X E
), F = FE is exactly the fixed divisorial component of

E ∩ Bs |M|X ⊃ SuppFix
(
|M|X E

)
(in general, �= Fix |M

E
|E = (FixM

E
)E = 0 for b-free M!) over the locus where BE is integral,

that is, except over SuppBE , because (E,BE) is Klt. Since the resolution is divisorial, the whole F
is exactly over the integral components of AE and over E ∩Bs |M|X = Bs |M|X E

⊃ Bs |M
E
|E , in

particular, over F (cf. (Sa′F) in Proposition 6.34(4)). Finally, by normal crossings, �A∗
Y +EY �EY

=
�(A∗

E)EY
�.

Now, by Lemma 4.44, (SA′), and Remark 4.34(1) (again because (E,BE) is Klt), we get satu-
ration on Y/T :

|EY + �A∗
Y � + MY | = |MY | + EY + �A∗

Y �,

where |MY | is free on Y . Indeed, EY + �A∗
Y � ≥ 0 and MY is integral; multEY

(EY + �A∗
Y �) = 0.

Hence, by the above surjectivity, on EY∣∣⌈(A∗
E)EY

+
(
M

E

)
EY

⌉∣∣ =
∣∣�(A∗

E)EY
� +

(
M

E

)
EY

∣∣ =
∣∣(M

E

)
EY

∣∣ + �(A∗
E)EY

�,

where |(M
E

)EY
| is free on EY . Moreover, we can add to F exceptional/X Fi over the integral

components of AE, but not over E ∩ Bs |M|X , preserving the mobile part (M
E

)EY
. This gives

A∗
E = AE + F = A′ + F with F,A′ and with M := (M

E
) under the saturation (SA′F), where F

is considered as a b-divisor. Then∣∣⌈(M
E

)
EY

+ F + (A′
E)EY

⌉∣∣ =
∣∣⌈(A∗

E)EY
+

(
M

E

)
EY

⌉∣∣ =
∣∣(M

E

)
EY

∣∣ + F + �(A′
E)EY

�,

which means the saturation (SA′F). �
The proof of the lemma used the invariance under linear equivalence of saturations (SA′) and

(SA′F).
Proposition 9.17 (invariance of saturations). If D ∼ D′/Z, then the C-saturation of D is

linearly equivalent to that of D′. The same holds for R-divisors.
For asymptotic saturation, we can replace each Di by Di ∼ D′

i/Z uniformly (that is, there exists
a rational function a �= 0 on X/T such that each Di = D′

i + (a); cf. linear equivalence of systems
on p. 111). The same holds for similarity of characteristic type of D• (see Remark 4.34(7)); on
truncation by I ′, the index I of asymptotic saturation equals I/ gcd(I, I ′).

Proof. It is enough to verify the divisorial version, when D = DX ∼ D′ = D′
X/Z and C = CX .

Thus, D′ = D + (a).
Indeed,

Mov�D′ + C� = Mov(�D + C� + (a)) = Mov�D + C� + (a) ≤ D + (a) = D′

because the fixed part is invariant under linear equivalence and the mobile part changes by the
principal divisor (a).

For asymptotic saturation, on a sufficiently high model Y/X, we replace j(Di)Xhr
by j(D′

i)Xhr
=

j(Di)Xhr
+ j(a)Xhr

and j(Dj)Xhr
by j(D′

j)Xhr
= j(Dj)Xhr

+ j(a)Xhr
.
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By the above, to prove invariance under similarity, it is enough to consider a truncation D[I′]
• =

I ′DiI′ . Then, by asymptotic C-saturation of D• with index I, we have

Mov
⌈
jD[I′]

i + C
⌉

= Mov�jI ′DiI′ + C� ≤ jI ′DjI′ = jD[I′]
j

for any i, j divisible by I. This means that D[I′]
• is asymptotically C-saturated with the same

index I. In fact, we can replace I by I/ gcd(I, I ′). �
Proof of Proposition 9.15. By Lemma 9.16, we obtain (SA′F), and this then applies, in

particular, to the fixed component of |M|X on E because SuppBE is fixed (cf. Remark 6.41). This
gives (1) by (SSB)n−1(gl) and Proposition 6.34(4). It also gives (2) and (3) by (CCS)n−1(gl) (cf.
Corollary 6.40 for n = 3) because (SA′F) implies (SAT) for D = M by Lemmas 4.44 and 6.36.

Finally, by the construction in the proof of Corollary 6.40, we can assume that each Eu is/E if
E is a surface. �

To secure the saturation (εA′S), we need to strengthen the inductive model.
Lemma 9.18. Let (X/T,B) be a weak log Fano contraction and D be any R-Cartier divisor

on X. Then there exists a boundary B+ ≥ B such that

• (X/T,B+) is again a weak log Fano contraction; and
• A(X,B) ≥ A(X,B+) + εD for any real number 0 < ε 
 1.

Proof. Since (X/T,B) is a weak log Fano contraction, we can find an effective R-Cartier divisor
D′ ∼R −(K + B). Since this is big, we can assume also that there is an effective D+ = ND′ ≥ D
for some real number N > 0. Then, for any 0 < δ 
 1, (X,B+ = B + δD+) is again a weak log
Fano contraction with the required properties. Indeed, A+ = A(X,B+) = A− δD+ by definition.
Thus, for any 0 < ε ≤ δ, we have

A = A+ + δD+ ≥ A+ + εND′ ≥ A+ + εD. �

Corollary 9.19. Under the assumptions of Lemma 9.18, saturation (LCA) implies

(εAS) asymptotic saturation for D• with respect to C = A+ + εD.

Proof. By Lemma 4.44, we need the inequality A ≥ A+ + εD, which we know by
Lemma 9.18. �

Proof of Theorem 9.9. To prove stabilization, we use Proposition 9.13. But before this ap-
plication, we need to construct an appropriate inductive model of (X/T,B). Note that assumptions
(LBF), (MXD), (BED), and (LCA) are birational/T . Thus, they hold on any birational model of
X/T . However, (LCA) is sensitive to changes of the boundary B. This allows us to improve (LCA)
on an inductive model of (X/T,B) as follows.

Let D be an effective Cartier divisor whose support contains the special fibre f−1P of X/T .
We can find such a D in our local case. By Corollary 9.19, we can increase B so that (X/T,B) is
still a weak log Fano contraction (in particular, is still Klt) and (εAS) holds:

(εAS) asymptotic saturation holds for D• with respect to C = A + εD for some ε > 0.

Now we modify our weak log Fano contraction (X/T,B) to an inductive model (X/T,B) that
is projective/T . Such a model exists by Lemma 9.6. All our assumptions are preserved, except
for (LWF), but including (εAS); this follows from monotonicity (1) in Definition 9.3 of inductive
models and Lemma 4.44. After a Q-factorialization, we can assume that X is Q-factorial. This
time (εAS) is preserved since this modification is crepant.

Note that this final modification affects not only the boundary B, but also the contraction X/T
itself. Thus, D in (εAS) is replaced by an effective Cartier b-divisor D that may not be Cartier
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on the new X itself. However, it contains the special fibre f−1P , that is, D ≥ f∗H, where H
is a hypersurface through P . (The latter is a birational invariant of modifications of X/T .) In
particular, D ≥ F for any prime Q-Cartier divisor F on X over P . By Lemma 4.44, we can replace
D by F in (εAS). Taking F = Ec, we get an inductive model that satisfies (εAS) with D = Ec. By
Proposition 9.17, after a truncation, saturation holds with index I = 1.

Moreover, by Addendum 4.44.1, (εA′S) holds for asymptotic saturations with respect to A′+dEc

which are integral over Ec (cf. Example 4.45), for any d < ε. Take C1 = A + εEc > C2 = A+ dEc.
Since multEc A = −1 is integral for the inductive model (X/Z,B), the integral weak property
means that jDi + dEc also has integral multiplicity in Ec. For smaller ε > 0, this holds for all
d ≤ ε.

Now, by Lemma 9.7, after increasing the boundary B, we can assume that (X/T,B) is a purely
log terminal Fano contraction. This gives the required strict inductive model of Proposition 9.13
satisfying (BNF), (εA′S), and (MXC). Now (εA′S) was proved above; also (εAS), without the
integral condition. (BNF) follows from (LBF). (MXC) follows from (MXD).

Fix a linear equivalence E′ ∼ Ec with Ec �⊂ SuppE′. Since the sets F in (BWQ) can be defined
up to bounded addition of a fixed divisor (cf. Remark 6.35(1)) and E′ is fixed, we get (BRE′)
whenever (BWQ) is known. Indeed, for a bounded family of models E of Ec, the divisors (E′

Ec
)E

have bounded support, that is, they add a bounded set (really a single element!) to each element
of F. The sum is included in the log transform of that from Ec whenever E/Ec.

Hence, to use Proposition 9.13, we want to verify (BWQ) after increasing B. This property is
birational, and it results from the following conditions:

(1) Boundedness of the fixed component of each |Mi|X on Ec; that is, the divisorial components
of Bs |Mi|X ∩ Ec form a bounded family F.

(2) In each |Mi Ec
|, a general element has canonically confined singularities on a desirable triple

of (Ec/pt., Bc) for the element (also just bounded if Ec is a surface); and
(3) desirable triples in (2) form a bounded algebraic family.

Thus, by (3), there exists a bounded family of triples (Eu/Tu/pt., Bu,Fu) of the required form
for (Ec/pt., Bc) (cf. Corollary 6.40). On the other hand, by Proposition 9.15, we obtain (1)–(3)
because (X/T,B) is now a strict inductive model with central divisor Ec, and (εAS) for b-divisors
iDi implies (SA′) for the b-divisors Mi ∼ iDi. Indeed, by definition, asymptotic saturation (εAS)
for Di and j = i means the saturation of iDi with respect to A + εEc (see Remark 4.34(5)).
Increasing B again, we can extend Ec to Ec + M for any 0 < ε 
 1, where M ≥ M1 = (M1)X for
a sufficiently general M1, and where Ec + M contains the fibre f−1P . Then, by the invariance of
saturation in Proposition 9.17 and by (LBF), the saturation of iDi with respect to A + εEc + M
implies the same saturation of Mi. The latter implies (SA′) by Addendum 4.44.1 because each Mi

is integral with Bs = Supp(Ec + M) in (BSP) (cf. Example 4.45). Indeed, then, by (BED), for
all Mi, Bs(Mi)X ⊂ SuppM1 ∪ f−1P ⊂ Bs.

In fact, we proved (1)–(3) in a slightly more general setting: we can consider an arbitrary family
of b-free b-divisors M = Mi that satisfy (BSP) and the saturation (SA′).

Before applying Corollary 7.9, note that we can assume that D1 ∼ M1 is sufficiently general.
Otherwise, we can replace D1 by general Dg

1 ∼ D1, that is, by Dg
1 = D1 + (a), where a �= 0 is a

rational function on X/T . Then we replace each Di uniformly by Dg
i = Di + (a) ∼ Di (similarity!).

Thus,
Dg = lim

i→∞
Dg

i = lim
i→∞

Di + (a) = D + (a).

These changes preserve the assumptions of the theorem. (LWF) is not affected. (LBF) continues to
hold because iDg

i = iDi + i(a) ∼ iDi; (LCA) by Proposition 9.17; (MXD) because Dg = D + (a) ≥
Di + (a) = Dg

i ; (BED) because, outside f−1P , each Dg
i = Di + (a) = D + (a) = Dg.
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Finally, we derive (BWQ) from (1)–(3). By Corollary 7.9 with K = Q, a1 = 1, a2 = i, and
D2 = Di, by (BED) which gives a similar condition in Corollary 7.9, and by (1), we obtain that
each restriction (D1 −Di)Ec

up to linear equivalence, and in particular, its fractional components,
has support bounded by some F ∈ F, where F is a bounded set of reduced divisors. Since D1 Ec

is
fixed, this last bound holds for each Di Ec

, and even on each Eu/Tu of our bounded family of triples.
To be complete, we include also E′

Ec
into consideration by definition of mixed restrictions. Hence,

each (Di Ec
)Ei ∈ N(Ei/Ti/pt.,Fi) for a desirable triple (Xi/Ti/pt., Bi,Fi) because, by definition of

such triple, (Mi Ec
)Ei = g∗i Mi, where gi : Ei → Ti/pt. and Mi is nef and big on Ti/pt. In particular,(

Di Ec

)
Ei

∼Q

(
(Mi/i)Ec

)
Ei

= g∗i Mi/i ∼Q 0/Ti

and is nef on Ei/pt.
By (LBF), iDi Ec

∼ Mi Ec
. So, by (2) and Addendum 6.8.2, the descent data of the restrictions

Di Ec
is asymptotically confined with respect to Ac over a sequence of desirable models Ei/Ti for Mi

because Bi is the crepant boundary for Bc as in the definition of desirable triple (Definition 6.9),
that is, A(Ei, Bi) = Ac, and limi→∞ i = ∞. �

Now we can prove stabilization of limi→∞Di Ec
on Ec. It is enough to prove this for a similar

system D• (such as for characteristic systems, cf. Remark 4.34(7)).
Corollary 9.20. Under the assumptions of Theorem 9.9, up to similarity of characteristic

type, the system D• satisfies the theorem with dc,1 = dc = 0.
In addition, we can assume that the new D1 = M1 is sufficiently general ; in particular, D1 ≥ 0.
Proof. By the theorem, there exists a natural number j > 0 such that dc,j = dc. Take

sufficiently general D[j]
1 = Mj ∼ jDj . This data defines the required similarity.

Indeed, as in the proof of Theorem 9.9, we can verify that any similarity with j = 1 preserves
the assumptions of the theorem, and also its conclusions. The same holds for any truncation, that
is, for new Di := D[j]

i = jDij . (LWF) is not affected by the change. (LBF) continues to hold
because iD[j]

i = ijDij ∼ M[j]
i = Mij ; (LCA) by Proposition 9.17; (MXD) because

D[j] = lim
i→∞

D[j]
i = lim

i→∞
jDij = jD ≥ jDij = D[j]

i

for any natural number i; (BED) because each D[j]
i = jDij = jD = D[j] outside f−1P .

Finally, for general Mj, multEc Mj = 0 by (LBF) in Theorem 9.9. Hence, by our choice of j,
dc = dc,1 = multEc Mj = 0. Note that stabilization takes place for exactly the same divisors (but
their indexes may be different and the values of multiplicities in Ec are j times the old ones).

The final assertion of Corollary 9.20 holds by our choice of new D1. �
Corollary 9.21. Under the conditions of Theorem 9.9, assume in addition

(AMN) arithmetic monotonicity: Di ≥ Dj for any j | i; and
(RRF) dc,1 = dc = 0 as in Corollary 9.20.

Then limi→∞Di Ec
stabilizes (that is, = Dj Ec

for some j � 0; compare Remark 9.22(4) below).
More precisely, there exist a natural number N > 0 and a b-free divisor M of Ec such that M

satisfies (birational) saturation with respect to Ac = A(Ec, Bc) (cf. (SAT) and Addendum 6.26.2),
and if N | j, then

• dc,j = dc = 0; and
• jDj Ec

= (j/N)M.

Thus, each Mj Ec
∼ jDj Ec

= (j/N)M.
We also use this corollary in the following generalized form.
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Addendum 9.21.1. Under the assumptions of Theorem 9.9, we can weaken condition (LWF)
to an arbitrary local log pair with K +B R-Cartier, weakening inductive model in the conclusion to
a projective generalized inductive model (Y/T,BY ); that is, purely log terminal in Definition 9.3(2)
is replaced by

(ELT) Ec is an exceptionally log terminal LCS center for (Y,BY ), that is, (Y,BY ) is excep-
tionally log terminal near the general point of Ec, but not Klt (Ec need not be a divisor
on this model);

(GIM) BY ≥ 0, KY + BY is R-Cartier with

−1 = mld(Y,BY , Ec) < a(X,B,Ec),

and is ample/Z = T in a neighborhood U of LCS(Y,BY ) minus the open subset of Klt
points in (Ec, Bc) (see the proof below and compare Conjecture 5.26); and stabilization
of D• with the ample property of the limit holds in the neighborhood U .

We also need to replace (CCS)n−1(gl) by (CCS)∗d or by (FGA)∗d with d = dim Ec (and only the
global case if Ec/P ); we can omit LMMP and (SSB) together. In addition, we need to assume that
SuppBY ⊃ Ec and (BP) holds.

Of course, we assume that D• Eν
c

is well defined : e.g., each Di = 0 over the generic point of Ec

(a generalization of (RRF); see also Fixed restriction 7.2); it is automatic up to similarity if U
intersects Ec or (Ec, Bc) is not Klt.

Addendum 9.21.2. In dimension n ≤ 3, LMMP, (CCS)∗ and (SSB), (BP) for n ≤ 4 are
proved, so they are no longer assumptions.

Remarks 9.22. (1) (AMN) is preserved for any similarity, in the same way as (MXD) of
Theorem 9.9.

(2) Under the assumptions of Theorem 9.9, (AMN) implies (MXD). For this, we need that D•

is bounded by a Cartier divisor (possibly nonzero at Ec). Then, to prove (MXD), we use (LBF) or
(BNF) and Lemma 4.23 (cf. Proposition 4.22).

(3) We can take a truncation of D• such that the corollary holds with N = 1.
(4) We only expect Dj Ec

= D
Ec

and Mj Ec
= jD

Ec
if stabilization holds in a neighborhood of

Ec on some model (cf. Theorem 10.13 below).
(5) In Addendum 9.21.1, (RRF) and, moreover, the assumption that each Di = 0 over the

generic point of Ec do not follow from the other assumptions even up to similarity for D• (cf.
Corollary 9.20).

(6) If dc,j = 0, Dj Ec
is the fixed restriction as in (fx) of Proposition 7.7.

(7) (AMN) and (LBF) imply the stabilization equation Dj = Di = D for certain multiplicities,
namely, for the multiplicities in Ei with centers on X outside (Dj)X �= DX and Bs |Dj |X , and the
bound

Dj ≤ Di ≤ D ≤ (Dj)X

outside (Dj)X �= DX and the non-Q-Cartier points of (Dj)X , if j | i, under the lca saturation for
such j, i, and over �A� ≥ 0 (by Lemmas 10.9 and 4.23, respectively); this holds, in particular,
over Ec outside SuppDX on the inductive model of our corollary. Under (AMN) and (LBF), the
converse on saturation also holds outside Bs |D|X over AX ≤ 0 (cf. Example 4.35).

Lemma 9.23. Let (X/T,B) be an inductive model (possibly generalized as in Addendum 9.21.1
under (BP)) with central divisor Ec (respectively, center centerY W = Ec for a prime b-divisor W
with a(Y,BY ,W ) = −1), and D• be a system of R-b-divisors such that

(BSA) each Di is b-semiample as in Proposition 4.50 (respectively, in Addendum 4.50.3), or
just satisfies (BNF);
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(ASA′) the system D• is asymptotically saturated with respect to C = A′ = A(X,B) + Ec

(respectively, with W instead of Ec); and
(FXR) each dc,i = 0 (see the notation before Theorem 9.9; respectively, each Di = 0 over the

generic point of Ec); in particular, each of the fixed restrictions Di Ec
is well defined.

Then the restricted system D• Ec
satisfies lca saturation over (Eν

c , Bc) (cf. (LCA) in Conjec-
ture 4.39), where Eν

c is the normalization of Ec.
For usual inductive models, Ec = Eν

c is normal.
Proof. Immediate by Proposition 4.50 with Y = Ec. (GLF) and (LCC) follow from properties

of inductive models. (FXR) ensures general position (GNP). Moreover, (BSA) can be replaced by
(BNF) because b-nef is enough for Kawamata–Viehweg vanishing and saturation in the proof of
Proposition 4.50. (Respectively, use Addendum 4.50.3. See the proof of Addendum 9.21.1.) �

Lemma 9.24. Let D• be a system of b-divisors on a log pair (X/Z,B) such that

• either (X,B) is Klt or D• stabilizes over LCS(X,B);
• D• is bounded by a b-divisor and satisfies (AMN), (LBF), and lca saturation over (X,B).

Then, up to a truncation, it converges to a b-divisor.
Thus, (AMN) works in the same way as convexity in Lemma 4.24.
Proof (compare the proof of Lemma 4.24). Up to a similarity preserving all the assumptions

(cf. the end of the proof of Theorem 9.9 and Remark 4.34(7)), we can assume that D1 ≥ 0 by
(LBF), moreover, Mov�D1 + A� ≥ 0 over Klt points not over c(SuppJ), where c is given by D1

with the maximal numerical dimension (over c(SuppJ), D• stabilizes; see (RST) in Corollary 5.21
and the proof of Addendum 5.21.1), and that D• satisfies lca saturation with index I = 1. Hence,
each Di ≥ 0 by (AMN). Since the system is bounded, (AMN) implies that it has a convergent
subsequence. In addition, for any natural numbers i, j, q, and r satisfying i = jq+r, lca saturation
and stabilization imply the estimate

jq

jq + r
Dj ≤ Di.

This implies that the sequence has a limit because it is bounded and has a convergent subse-
quence Dj. Indeed, by lca saturation for Dj and since �rDj +A� ≥ 0 over above Klt points, we get
the required inequality there:

jqDj ≤ qjDj + Mov�rDj + A� ≤ Mov�(jq + r)Dj + A� ≤ (jq + r)Di.

Over c(SuppJ), the above estimate holds by stabilization Di = Dj ≥ 0. �
Proof of Corollary 9.21. First, by (AMN), (MXD), and (RRF), we have dc,i = dc = 0 for

each natural number i. Thus, the fixed restriction Di Ec
is well defined for each i.

Secondly, restriction preserves properties (LBF), (LCA), (MXD), and (AMN) of Theorem 9.9
and the corollary. Now we define the new objects

(X/T,B) := (Ec/pt., Bc), T := pt., D := D
Ec

(if exists),

Di := Di Ec
, Mi := Mi Ec

, and A := Ac = A(Ec, Bc).

Indeed, we get (LBF), (MXD), and (AMN) by the definition of restriction; (AMN) implies (MXD)
by Remark 9.22(2). For (AMN), note that a birational fixed restriction of an effective divisor is
effective.

By Lemma 9.23, (LCA) for D• Ec
on (Ec/pt., Bc) follows from (ASA′) of Lemma 9.23 for the

inductive model in the proof of Theorem 9.9. In turn, (ASA′) follows from (εA′S) of Proposi-
tion 9.13 with d = 0 by (FXR), and (εA′S) itself follows from (LWF) and (LCA) of Theorem 9.9 by
Addendum 4.44.1 and properties (1), (2) in Definition 9.3 of inductive models (cf. Example 4.52).
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By Lemma 9.24 and the bound on D• Ec
(cf. Remark 9.22(2)), up to a truncation, the limit

limi→∞Di Ec
exists and is a candidate for D

Ec
(cf. Remark 9.22(4)).

Now the corollary follows from the solution of the asymptotic descent problem in Addenda 5.12.1
and 5.13.1 for the limit D := limi→∞Di with Di := Di Ec

. (FDS) follows from (MXD) for ef-
fective D•. Asymptotic saturation holds for C = A(Ec, Bc) by (LCA). (LBF) implies (BNF).
A prediction model exists by (CCS)(Ec/pt., Bc), or (CCS)n−1(gl). This can be done exactly as in
the proof of Theorem 6.19(3). The only difference between our current situation and (FGA) is that
we do not have the convexity of Lemma 4.24. (However, in our applications, this is satisfied.) But
this is not at all required for Theorem 6.19(3) and Addendum 5.12.1. We only need (AMN) under
(LCA)! �

Proof of Addendum 9.21.1. This follows by modifying the above arguments as follows.
First, after increasing BY (as in the proof of Lemma 9.7; the required contraction exist due to
[2, Theorem 5.6]), we can assume that (Y/T,BY ) is a generalized Fano contraction. Second,
we replace Ec by its normalization Eν

c (in our application, Ec can be nonnormal) and set A :=
A(Eν

c , Bc), where (LCA) means lca saturation over (Eν
c , Bc). (In general, Eν

c /T := TEν
c
, where

Eν
c → TEν

c
→ f(Ec)ν is the Stein factorization of the normalization Eν

c → f(Ec)ν . If the last map
is not a contraction, we also use Remark 4.40(1).)

Here the main difficulty is adjunction, as we discuss presently. Then we use Corollary 5.23 with
Example 5.25 (cf. also Addendum 5.21.1) instead of Addenda 5.12.1 and 5.13.1 and the proof of
Addendum 6.19.1 instead of the proof of Theorem 6.19(3); stabilization of D• on a neighborhood of
LCS(Eν

c , Bc) follows from stabilization on U of (GIM) (see p. 199). A prediction model now exists
by (CCS)∗(Eν

c /pt., Bc), or (CCS)∗n−1(gl). Indeed, Mi and KEν
c

+ Bc ample in a neighborhood of
the LCS again follow from ampleness on U of (GIM). If Ec is divisorial, we can use Adjunction
Formula 3.1 in [41] and Addendum 4.50.1. If it is not divisorial, we use Addendum 4.50.3 instead
(cf. also Lemma 9.23).

Unfortunately, for nondivisorial adjunction, the divisorial part of the boundary Bdiv = (Bdiv)Eν
c

does not give a good boundary of (Eν
c , BEν

c
); even lca saturation holds with respect to its associated

discrepancy Adiv. Here we have two problems in general:

• KEν
c

+ Bdiv can be non-R-Cartier; and
• adjunction does not hold, even numerically: (K +B)

Eν
c
�≡ KEν

c
+Bdiv/T (in the case under

consideration T = pt.).

As indicated by Kawamata [23, 24], both problems can be solved at one go by introducing a
moduli contribution Bmod to adjunction BEν

c
= Bdiv + Bmod. For example, if B ≥ 0 and (Y,BY )

is exceptionally log terminal near Ec, then Kawamata proved that, on some good model of Eν
c ,

Bmod is nef/T under the technical assumption that SuppBY ⊃ Ec; this holds in our case. If
the nef holds on Eν

c , since (Eν
c /T,Bdiv) is a log Fano map, Bmod is semiample/T with ∼R in the

adjunction. Taking general effective Bmod, we get a log Fano map (Eν
c /T,BEν

c
) with BEν

c
≥ Bdiv

under (BP) over Eν
c . Hence, lca saturation also holds over (Eν

c , BEν
c
). If we cannot use the log Fano

property and (BP) over Eν
c , again on some good model, over which (BP) holds, we can assume

that Bdiv ≥ H, where H is ample/T R-divisor. This holds after increasing BY . Then we can do a
perturbation: BEν

c
:= Bdiv−εH +B′

mod, where B′
mod is a general effective R-divisor ∼R Bmod +εH

that is ample/T , and push down all this to Eν
c (see [2, Theorem 4.9 and Remark 4.10.2]). However,

in this case, to apply Lemma 4.44, we again need to increase BY so that lca saturation also holds
over (Eν

c , Bdiv − εH).
In our case, BY ≥ 0, but it may have log singularities near Ec other than Ec itself. In this

case, we expect that all the above works, and again it is better to use b-concepts, e.g., that
Bmod is b-semiample. (Actually, it is better to consider Bdiv as a b-divisor of boundary type,
but Bmod should be of b-Cartier type, compare [14].) Then, taking the image on Eν

c of a gen-
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eral divisor of this type, we get an R-divisor that is effective up to ∼R, and only has “fixed
locus up to ∼R” but LCS(Eν

c , BEν
c
) is in the closure of LCS(X,B) \ Ec. This is still conjec-

tural.
However, by Kawamata [24], over a log resolution and under our assumption, Bmod is b-nef/T .

Combined with the above perturbation, this is enough under (BP). Here log resolution means a
model where BY = D + B, with D ≥ 0, (X,B) exceptionally log terminal, and the same LCS
center Ec. To construct such a model as a log canonical model over Y , we apply LMMP to a log
resolution with exceptional boundary coefficients

1 > b > 1 − (mld among > 0)

(such exists), except for E below, the same boundary multiplicity for nonexceptional divisors with
boundary multiplicities ≥ 1, and a single multiplicity b = 1 for E with centerY E = Ec and
a(Y,BY , E) = −1. It preserves Y exactly out of the above closure of LCS(X,B) \ Ec. (We can
use the generalized Fano contraction given by the resolution if (FGA)∗ and (CCS)∗ hold with the
Cartier semiample assumption on the LCS instead of ampleness; cf. Conjectures 5.26, 6.14 and
Remark 6.15(9).)

At the end of the proof, we give a more extended explanation when n = dimX = dim Y = 3;
this is enough for 4-fold flips. (In this case, Kawamata proved that the modular part is b-semi-
ample.) Thus, dim Ec ≤ 2. In the current situation, (Eν

c /T,Bc) is a generalized Fano contraction,
usually with worse than log canonical singularities. As above, we apply Corollary 5.23 instead
of Addendum 5.12.1. In addition, we sketch below a proof of the former in this low-dimensional
circumstances. Suppose that E = Eν

c is a surface; then, by Proposition 4.50, together with the
original D•, the new D• := D• E

satisfies lca saturation (LCA). The only novelty is that we now have
essentially negative components of A := A(E,B := Bc) (that is, components with discrepancies
≤ −1). The negative components defined the ideal J = JE (see Example 5.25). Since each jDi is
Cartier on LCS(E,B), saturation is equivalent to the following inclusion (see Example 5.25 and cf.
(JAS) in Corollary 5.21):

(JLC) On any sufficiently high model Ehr/T of E/T that is the identity or contractible in the
neighborhood U := U ∩ E of the LCS, we have

f∗J(�jDi + A�Ehr
) ⊂ h∗OEhr

((jDj)Ehr
),

where f : E → T and h : Ehr → T .

We construct a prediction model (E/T, C = A, F, γ) for the descent problem D = limi→∞Di on a
modification of (E/T,B) to a triple (we assume that E is normal). The modification is contractible
if it does not blow up exceptional divisors over U . However, it can contract divisors: increase U and
contract a complete subvariety in the resulting bigger open set (see below for an example). This
gives (EEF) on any terminal resolution over E \ U . The system D• is bounded by Example 4.21.
Up to similarity, each Di is effective and (Di)U = DU is stable on U . The unstable part is over an
effective divisor F supported in the complement E \U . This gives (UAD) and (LGD) for some real
number γ > 0 (cf. Example 8.21).

In the two-dimensional case, DE is nef = nef/T in codimension 2 (that is, nef over general
complete curves/T in any prime divisor; it is R-Cartier in codimension 2 by stabilization in U)
because this holds for each (Di)E/T . The latter follows from (LBF): each Mi := iDi = Li E

is
b-free/T . Then (SAM) follows from generalized semiampleness (see Ambro [2, Theorem 5.6]): if D
is an R-Cartier divisor on E/T that is Cartier, ample on U/T , and nef/T , then it is semiample/T .
By the rationality of the nef cone for such divisors (variations only over F ; LMMP∗ contracts all
exceptional curves in F ), it is enough to verify this for Q-divisors. This is essentially a consequence
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of the generalized Fano property. For more details, see [2, Theorem 6.2]. To check (SAC), we can
use Proposition 6.26. However, to apply this to approximations, we need more from the triple and
the prediction model: namely, they should be strictly desirable (WAM) for D, as explained below.
If the Kodaira dimension of D is 0, then each Di = 0 and we get the stabilization of D•. If the
Kodaira dimension is 1, then, after a truncation, |Mi|E is a pencil for each i. Its base points are
only at good points, outside U . Resolving these gives a prediction model in a form of a triple
(E/W/T,B,F ) with crepant B, single F , and g : E → W/T given by the pencil. Moreover, each
(Di)E = g∗M for some ample M on W/T . In general, this allows us to improve desirable triples
for M = D (possibly, not b-free) and M = Mi:

(WAM) a desirable triple for M is strict if M is ample on W/T (cf. Definition 6.9); or at
least C · M > 0 on each complete curve in W/T that does not intersect g(SuppJ)
(cf. Remark 6.10(2)).

If U dominates W/P , we get the stabilization from W , induced in turn from U (cf. (RST) in
Corollary 5.21). Otherwise, U and SuppJ do not dominate W ; thus, in the approximation methods
in the proof of Theorem 5.12, for j � 0, we can disregard J in (JLC). This means that

(BFF) for any ample divisor H on W/T , or H that is Cartier in a certain cone of semiample/T
divisors under the weak assumption in (WAM), and any proper subscheme of W
given by an ideal JW , |JW (NH)| is free for N � 0 outside SuppJW and the union
of contractible curves/T , that is, with C · H = 0 and C ∩ SuppJW �= ∅.

We can also use this in general (cf. the proof of Addendum 4.50.2). In our case, JW = g(J),
and the system D• stabilizes in an open set that is bigger than U and includes the above con-
tractible curves. Note that, in both previous cases, we get (SAC) without (CCS) (cf. Exam-
ple 6.24). But we need Example 4.41 with bad singularities. Finally, suppose that D is big;
then, up to a truncation, the same holds for each Di (by the above considerations, (AMN), and
Lemma 6.22(3)).

By saturation, say (LCA) with i = j, and Proposition 6.26, each |Mi|E is free on a terminal
resolution (again up to a truncation). This gives (CCS) and (SAC). The triple is the resolution
(E/E/T,B, F ). However, to apply approximations as in the proof of Theorem 5.12, we need
(WAM) and (BFF) for D; that is, D = DE should be ample/T . If this fails, there is a complete
curve C/T with C · D = 0. If C does not intersect SuppJ , we can contract it because C is
exceptional (as in LMMP∗ with good divisors on the bad singularities [2, Theorem 5.6]). This
gives a birational contraction g : E → W/T . The triple (E/W/T,BT , FW = g(F )) is a generalized
log Fano contraction with the same properties as (E/E/T,B, F ), except possibly for nonterminal
points near F but still Klt.

After a number of contractions of this type, we get (WAM) in the weak form, that is, each C
with C · D = 0 intersects g(SuppJ), where D := DW . Since D ≥ 0, if we take D general on U ,
then C is disjoint from SuppD. Then stabilization holds over C (see Lemma 10.9). We can
increase U to include a neighborhood of g−1C and then contract C (together with all the curves
in the same numerical class, to preserve the algebraic category, but maybe not the generalized
Fano property). In the big case, we now consider E/W that are not the identity (cf. Example 5.27
and the proof of Corollary 6.40). After that, the methods of the proof of Theorem 5.12 apply to
the prediction model (E/T,A, F, γ) with approximations from W/T (cf. Example 5.18 and see the
proof of Corollary 5.21). If Ec is a curve, the same arguments lead to a (rational) pencil of rational
curves on E/Ec that do not intersect the LCS on the surface E with log discrepancy 0 over the
curve. Such a pencil is free, and we can treat it as the cases of Kodaira dimensions 0 and 1 above.
Or we can use Addendum 4.50.3 as above with adjunction on Eν

c [23]. �
Stabilization near Ec needs an opposite technique that we discuss in the next section.
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10. DESTABILIZATION

We find a neighborhood of Ec on a 0-log pair as in Remark 3.30(2), with a certain boundary,
over which the system D• stabilizes. We also work with generalizations of such pairs (cf. (WLF)
versus (GLF) and (PFN)).

Definition 10.1. Let (X/T,B) be a log pair such that

• X/T is a projective contraction;

• K + B ≡ 0/T ;
• (X/T,B) is exceptionally log terminal; and, moreover,

• there exists at most one prime b-divisor Ec with log discrepancy 0 for K + B, and Ec is/P .

If such an Ec exists, we say that (X/T,B) is a 0-exceptional log terminal pair , or 0-elt pair, and
that the b-divisor Ec is central . Otherwise, (X/T,B) is Klt and is just a 0-log pair .

The role of 0-log pairs is based on the following property that we use throughout this section:

• any weakly log canonical model [45, Definition 2.1] of a 0-log pair is a weak log Fano
contraction.

Moreover, then X/T is birational (or just generically finite/T ), it can be perturbed into a Fano
contraction, and each weakly log canonical model is crepant [45, Proposition 2.4].

Example 10.2. Usually a 0-elt pair arises as a complement as follows. Suppose that B =
Bη + ηC such that (X/T,Bη) is a 0-log pair and C ≥ 0 with η = multEc C > 0. Note that in this
situation C ∼R 0/T , and it defines canonically a b-divisor C such that C = CX and C is possibly
b-free over T whenever Bη and η are rational.

A typical example is building a log singularity. Let (X/T,B) be a birational weak log Fano
contraction, that is, such that X/T is birational. Then, after taking a complement as in [41,
предложение 5.5], we can assume that K + Bη ≡ 0/T . Thus, after a contraction, X/T is the
identity. Now we can find the required C ≥ 0 passing through P such that K + Bη + ηC has only
one log discrepancy 0 in Ec for some threshold η > 0, and Ec is/P . This is how we constructed
our inductive model in Lemma 9.6.

To be more precise, we introduce (birational) neighborhoods of Ec on certain special and quite
nice (log) canonical models. They give an induction on the rank of non-Q-factoriality and the
number of seminegative discrepancies (an analogue of the notion of difficulty [40, определение 2.15];
cf. Lemma 10.12 below).

Key 10.3. For given b-free L, we need to construct a birational contraction Y/T and an open
set U in it (in applications, a neighborhood of some subvariety; see Definition 10.11 below) with
an effective R-divisor D =

∑
diEi such that

• di > 0 in U precisely on the prime divisors Ei that are exceptional on T ;
• L +

∑
diEi is nef and even semiample/T in U , where L = LY ; and

• L is free over Y/T .

We call such a model a destabilizing model (destab model) for L, because we can add to it (or to its
multiple) a divisor D on Y that violates (destabilizes) D-saturation (for example, the exceptional
saturation of Example 4.35; see Step 2 of the proof of Theorem 11.1) when D �= 0 or Y/T is
nonsmall (see Caution 10.4). The divisor D is destabilizing , and it defines the b-divisor D = D.

Caution 10.4. The contraction Y/T is not necessarily divisorial.

Example 10.5. (1) If L = LT = 0, we can take Y = T . Slightly more generally, if L = LY

is ample/T and free on Y , we can take any Cartier D on Y that is effective in each exceptional
divisorial component of Y/T (replacing L by a rather high multiple).
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(2) If dimX = 2 and L is a curve passing through P on T , then, for any Q-factorial model Y/T
over which L is free, we can find a Q-divisor D > 0 that converts Y/X to a destab model. Indeed,
we can find a semiample divisor (D + L)/T with Q-Cartier D > 0 (cf. Lemma 11.2). The same
holds over the open set Y \Bs |L|Y if this linear system has a nontrivial mobile component on Y/P .

(3) In some cases in dimension ≥ 3, we cannot construct a divisorial contraction Y/T : e.g., if
X/T is a flopping 0-elt pair and L = LX is its hyperplane section. This means that, in this case,
by Lemma 10.9, we cannot destab L on any divisorial Y/T (compare the proof of Theorem 10.13).

Probably, a destab model does not exists for every L in dimensions ≥ 3. However, in certain
important situations, it exists by LMMP.

Proposition 10.6. Let (X/T,B) be a local weak log Fano contraction with birational contrac-
tion X/T and L be a b-free divisor. Then LMMP in dimension n = dim X implies the existence of
a destab model for L.

The same holds for a purely log terminal model whose reduced part is not exceptional/T ; or if
(X,B) has only log terminal singularities with reduced centers not over P and L is free/T over
X \ f−1P . Or we can assume log terminal singularities and that L is in rather general position,
that is, not passing through the log canonical centers of (X,B) and under LSEPD (see [41, 4.5]
or [27, 2.30]).

We only need flips as noninductive new objects in LMMP under the LSEPD trick [41, 0-сду-
тия 4.5].

However, sometimes very special flips are enough (cf. Example 10.10 and Theorem 10.13 below).
Addendum 10.6.1. If we can construct such a destab model over a neighborhood U on Z/T,

where Z is the model defined by L/T, then destab holds over the neighborhood. The construction
in the proof is log canonical ; thus, it can be done locally/Z.

The proof of the proposition is completely effective.

10.7. Proof of Proposition 10.6. Construction of a destab (destabilizing) model.
(1) Increasing B, we can convert our model into a 0-elt pair as in Example 10.2. Then we can
identify (X = T/T,B = BT ).

(2) We take a log resolution (Y/T,BY ) of (T/T,BT ) such that

• BY = f−1BX +
∑

Ei (a noncrepant boundary!), where f : Y → X = T and the divisors Ei

are exceptional on T ; and
• L = LY is free over Y , in particular, L = L, where L = LY .

In plt and log terminal cases, we can do this without resolving the LCS centers. Then we proceed
as follows:

(2′) We suppose that L > 0 is rather powerful: L ≡ NH/T , where H is Cartier (semiample/T ):
for example, N ≥ 2 dim X +2 is enough. Otherwise, we replace L by a multiple up to ≡/T . Finally,
we get the same multiple for the destab divisor D.

(3) We apply LMMP to (Y/T,BY + L). At each step, we contract an extremal ray R with
R · (KY + BY + L) < 0 by a birational contraction g : Y → Z/T . Note that R · L = 0 by (2′)
and boundedness of negative contractions [44, Theorem]. Thus, modifications only contracting or
blowing up curves C with C ·L = 0 preserve the freedom of L and (2′). Finally, we obtain a model
where KY + BY + L is nef; it is always big because Y/T is birational, or by (2′) again.

(4) Then we make a semiample contraction for KY + BY + L. (By [25, Theorem 3-1-1], for a
Q-boundary BY , this is enough for our application; for the general case, cf. [45, Conjecture 2.6,
Theorem 2.7, and Remark 6.23.5].) We get this because the divisor is always big, because Y/T is
birational, and because, after a perturbation, BY is a Q-divisor (the supporting face for K+BY +L
in the cone NE(Y/T ) is rational polyhedral and acute since, after another perturbation, we can
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put it into the negative part of the cone with respect to K + BY + L and use the Cone Theorem
[25, 4-2-1]). We also need the LSEPD trick [41], and can do it if we secure it. This also preserves
the freedom of L because, by (2′) again, C · (KY + BY + L) = 0 implies C · L = 0 for a curve C.
This is a destab model.

(5) Finally, we take a destab divisor D = lAY (so that D ≤ lA(T,BT )), where l means that we
take log discrepancies. By the definition of log discrepancies,

D =
∑

diDi = KY + BY − g∗(K + B) ≡ KY + BY /T

for g : Y → T because K + B ≡ 0/T for a 0-elt model. Since it is Klt, all the di > 0. The same
holds for a purely log terminal model if its reduced part is not exceptional. For a terminal model
under (2).

D +L ≡ KY +BY +L is ample/T by construction. In particular, it is nef and semiample/T ; in
addition, Addendum 10.6.1 holds over U by ampleness of L/T whenever the model exists/U ; over
Z \ U , the model can be enlarged arbitrarily.

Finally, from LMMP in dimension n, we only need flips. Indeed, the termination is special be-
cause we have pl flips (cf. Example 10.10). Thus, we get it by induction by Special Termination 2.3.
However, at present, the main problem is with flips. The model Y is really over Z/T ; so, if we
have flips for Y/Z over some neighborhood U ⊂ Z, then we can construct a model Y/U and get
the destab divisor over U/T , where ≡/U and now KY + BY is ample/U . Since the model is log
canonical/U , it is unique/U for a given choice of BY by the local uniqueness of the log canonical
model [41, (1.5.1)], and it can be constructed locally/U . �

Lemma 10.8. Let D be an effective R-Cartier divisor/X. For any map f : Y → X, any
point of Y/SuppD and, therefore, any curve C/SuppD are contained in the divisorial subvariety
Suppf ∗D.

Proof. This is well known if D is Cartier. This implies also the Q-Cartier case because any
positive multiple rD with r > 0 ∈ R preserves all the supports. Finally, any R-Cartier D has
a Q-perturbation to the Q-Cartier case preserving the conditions. �

Lemma 10.9. Let D be a b-divisor/X such that

• DX = 0;

• effective: D ≥ 0; and

• nef on general curves/X: on (some) sufficiently high models Y/X, the restriction DY is
nef /X on curves covering the exceptional divisors of Y/X; in particular, DY is nef /X on
such models.

Then D = 0.

Proof. Immediate from the negativity of Lemma 3.22. �
Example–Construction 10.10. If we work in dimension n = dimX and do not yet know

the existence of all flips, it would be very helpful to know in advance what types of flips are needed.
Suppose that we have a 0-lt pair (X/T,B) (that is, replace elt by log terminal in Definition 10.1)
and that B only has reduced exceptional components on T . For example, (X/T,B) may have come
from a purely log terminal Fano contraction by taking a complement. Suppose that L ∼R S =
S +

∑
eiEi/T is b-free and that Z/T is a model for L over T such that

• LSEPD is secured for BZ (the log transform of BT or B) on a model Z/T such that Z is
nonsingular outside BZ ;

• S =
∑

siSi is supported in the reduced part of B, considered as a b-divisor; and

• S ≥ 0 with the Ei exceptional on T .
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Then, over some neighborhood U of SuppSZ , strictly log terminal and extremal (S+−) flips are
sufficient: with BY = S−+S++B′, where (Y/U,BY ) is log terminal, B′ has no reduced components,
S−, S+ �= 0, and their intersections with the extremal ray R satisfy R · S− < 0, R · S+ ≥ 0.

Indeed, in the construction,

BY = g−1BT +
∑

Ei and R · (KY + BY + L) < 0 with L = LY .

Since R/Z, R · L = 0 and R · (KY + BY ) < 0. Thus, the log discrepancy is supported in the
exceptional locus/T :

D = lA(X,B)Y = KY + BY − g∗(K + B) ≡ KY + BY ,

and there exists Ei with R · Ei �= 0. Moreover, R · Ei < 0 since D ≥ 0.
On the other hand,

R · (S +
∑

eiEi) = R · L = 0, where SY = S +
∑

eiEi on Y .

Hence, if R · Ei �= 0 with ei �= 0, then there exists another divisor Ej or a component of S having
opposite intersection with R; both components are in the reduced part of BY because, by our
conditions, SY is supported in the reduced part of BY . (In general, some ei may be 0.) Since R has
a curve over SuppSZ , also R has a curve on SuppSY by Lemma 10.8. Indeed, SY = (SZ)Y = h∗SZ ,
where h : Y → Z/T , because S ∼R L ∼ 0/Z is R-Cartier over Z by the Cartier property of L/Z,
by construction and Lemma 10.9 (cf. Example 7.6). Thus, either some component Ej with ej �= 0
intersects the curve, or a component of S. If this component has nonzero numerical intersection
with R, we get an (S+−) flip by the above. Otherwise, the intersection is = 0, and we again get
an (S+−) flip with S− ≥ Ei.

Definition 10.11. Let (X/T,B) be a 0-log pair and E be a prime b-divisor. A (birational)
Klt neighborhood (Y/T,BY ) of centerY E is a crepant projective model (Y/T,B) that is also a 0-log
pair and is a Zariski neighborhood of centerY E in it.

Lemma 10.12. Under LMMP in dimension n = dim X and for birational X/T, Klt neigh-
borhoods terminate for inclusions.

Proof. On each model, this is a Noetherian property. But there only exist a finite number
of 0-log pair models (the finiteness of minimal models in the big case) [45, Corollary 6.22 and
Remark 6.23.5]. �

We are now ready to establish stabilization in a birational neighborhood of E = Ec.
Theorem 10.13. Under LMMP in dimension ≤ n−1, let (X/T,B) be a log pair, E be a prime

b-divisor over a neighborhood of P, and L• be a system of b-divisors such that

(0LP) (X/T,B) is a birational 0-log pair with dim X = d ≤ n − 1;
(LBF) each Li is b-free; moreover,
(STB) the free restrictions Li E

stabilize over E, and each Li E
= iM, where M = L1 E

is
b-free; and

(RFA) the situation is a restriction of a pl contraction in dimension n, that is, Li is a restriction
of the mobile system for some (RFA)n,d algebra (see Definition 3.47 and the proof
below).

Suppose also that (S+−) flips as in Example 10.10 exist in dimension n. Then there exists a Klt
neighborhood (Y/T,BY ) of centerY E on which all Li with i � 0 are free, ample, and Li/i stabilizes
(over this neighborhood, all Li/i = D, the limit). Thus, after a truncation, this holds for each i > 0,
and the contraction defined by each Li gives this quasiprojective neighborhood.
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Proof. First, we recall and explain (RFA). There exists an extension

(X/T,B) ⊂ (X ′/T ′, B′),

with (X ′/T ′, B′′) a pl contraction of dimension n, X the intersection of the reduced divisor in B′′,
and B′ ≥ B′′. Such a complement always exists preserving (X ′, B′) log terminal, with B′ having
the same reduced part, and we fix it. Then we define B by successive adjunction [41, 3.1]:

(KX′ + B′)
X

= K + B.

We assume also that the system L• is the mobile restriction of a b-free system L′
• (see 7.1), that is,

Li ∼ L′
i X

, where L′
• is the mobile system for the (RFA)n,d(bir) algebra given by the pl contraction.

Equivalently, the mobile system of the restriction for the algebra, where in either case we assume
general position.

Fix some i � 0 and consider the model Z ′/T ′ defined by L′
i. By the construction of the (RFA)

algebra (cf. Example 4.35) and, in particular, by (AMN) for its characteristic system, we can assume
that

L′
i ∼Q S ′ = S′ +

∑
eiEi ≥ 0,

as in Example 10.10. Note also that, since X/T is birational, the model Z/T of X/T for Li is in
SuppS ′

Z′ (and Z is normal by Addendum 4.50.1 and Example 4.52). It is completely contained in
any neighborhood U ′ ⊂ Z ′ of SuppS ′

Z′ . Thus, the destab model/T over Z/T constructed below is
projective/T (complete/T ).

Now, by Addendum 10.6.1 and Example 10.10, for each L′
i, there exists a destab/T ′ model

(Y ′/U ′, B′
Y ′) over some neighborhood U ′ of SuppS ′

Z′ in Z ′ (possibly not complete/T ′). Then, by
exceptional saturation, we can destabilize multiples of L′

i/U
′ over the destab divisor whose support

includes the exceptional divisors/T . By (STB), centerY ′ E does not intersect the destab divisor,
that is, the exceptional divisorial locus of Y ′/T ′ for the log canonical model for (Y ′/U ′, B′ + NL′)
with L′ = (L′

i)Y ′ . Note: centerY ′ E is well defined for a sufficiently high resolution (g′′ : Y ′′ → X ′

that is also regularly dominated over Y ′ by a Hironaka hut and E is a divisor on (g′′)−1X) for a
blowup of E. In particular, centerY ′ E ⊂ X0, where X0 is the birational transform of X on Y ′; and
centerY ′ E = centerX0 E.

After a normalization, this gives the required neighborhood. Indeed, if we apply adjunction of
the subboundary (B′)Y

′
= B(X ′, B′)Y ′ on the normalization of X0, which we also denote by X0 (in

fact, X0 is normal at least in required U ; see the end of the proof), we get the different (divisor)
that is effective outside the exceptional divisors of Y ′/T ′. In particular, the latter holds in a
neighborhood of centerY ′ E = centerX0 E. On the other hand, if we identify X ′ with T ′ as we did
for 0-log pair, we get the adjunction (KX′ + B′)

X
= K + B with effective B. In addition, by the

commutative diagram

X0 −−→ Y ′⏐⏐� ⏐⏐�
T ⊂ T ′

the above adjunction gives the subboundary BX0 = B(X,B)X0 as the adjunction for the sub-
boundary that is effective on a neighborhood U ⊂ U ′ ∩ Z of centerX0 E. The log canonical divisor
KX0 + BX0 is numerically trivial/T . In particular, X0/U is the identity. The discrepancies/U for
(X0, B

X0) are the same as for (X,B). Thus, if we replace the subboundary BX0 by a boundary
B0 ≥ BX0 that is the same where the subboundary is effective, and 0 (or even 1) where it is
negative, we obtain KX0 + B0 that is nef on U , that is, on the closure of each curve in U . If
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KX0 +B0 is not R-Cartier and not log canonical outside U , we can make it so after some projective
modification/X0 outside U , by uniqueness [41, (1.5.1)], as in Addendum 10.6.1. The discrepancies
over U for (X0, B0) are the same as for (X,B). Now we can apply LMMP to (X0/T,B0). The
modification does not affect U because we increase a discrepancy [40, 2.13.3] that is the same as
for (X/T,B) [45, 2.4.2]. However, at the end we obtain a projective 0-log pair of (X/T,B) with
the same discrepancies, that is, a crepant model.

Finally, we can give Li ∼ L′
i X

that is free and ample/T on U for i � 0. Indeed, by Proposi-
tion 10.6, it gives a multiple of NL′

i +D since, in the proposition, the destab D = DY ′ is ample/Z ′

in U ′, and NL′
i is b-free/T ′ with ample descent on Z ′/T ′. Since the neighborhood on Y ′/T ′ is

not divisorial near centerX0 E, it stabilizes (we cannot add exceptional divisors by Lemma 10.9; cf.
Example 10.5(3)). See also Addendum 4.50.1 and Example 4.52. �

Now we can apply Theorem 10.13 to the inductive model in the proof of Theorem 9.9 to get
a complete stabilization. This is the main result of this section.

Corollary 10.14. Assume LMMP and (BP) in dimensions d′ ≤ d = dim X, together with
(CCS)∗d′−1(gl) (or (CCS)d′−1(gl) and (FGA)∗d′−1(gl)) and (SSB)d′−1(gl). Moreover, (CCS)∗d′−1 and
(SSB)d′−1(gl) are known for d′ ≤ 3, so we can omit them as assumptions; (BP) for d′ ≤ 4.

Assume also that (S+−) flips exist in dimension n. Let L• be a mobile system of type
(RFA)n,d(bir) on X/T . Then there exists a 0-log pair (Y/T,BY ) over which each Li with i � 0 is
free and ample, up to a truncation.

This gives a solution for (CCS)n(rfa), (bir) under the assumptions.

Lemma 10.15. Under LMMP in dimension d = dimX,

(0LP) let (X/T,B) be a birational 0-log pair that is projective/T ;

(NBU) let U be a nonempty open subset in X that is incomplete/P ; and

(CMP) let (X/T,B + C) be a complement nonlog canonical (or just non-Klt) 0-log pair with
C = CX such that LCS(X,B+C) is completely contained inside U (cf. Example 10.2).

Then there exists a different complement with a new C such that the new LCS(X,B + C) is not
completely contained in U, but all its LCS centers are in U, and (X,B + C) is log canonical
outside U . Thus, the nonlog canonical part X−∞ of the LCS (see Example 5.25) is inside U, that
is, does not intersect the complement of U . In addition, there is a transient LCS center E such
that (X,B + C) is log canonical in its generic point and E is not completely contained in U . After
a perturbation of C, this E is unique, and is purely log terminal in its generic point and outside U .

Moreover, we can find C+ such that (X/Z,B+C+) is a generalized log Fano contraction (as in
Conjecture 5.26) with the same support of LCS (and LCS centers) and the same purely log terminal
center E. Thus, adjunction on E gives a generalized (possibly nonnormal) log Fano contraction
(E/TE , ω) (cf. Example 5.25), where

• E/TE = f(E) and Eν/TEν are proper contractions, where Eν → TEν → (TE)ν is the Stein
factorization of the normalization map Eν → (TE)ν ;

• (Eν/TEν , BEν ) is a normal generalized log Fano contraction (and the map is/(TE)ν) with
−(KEν + BEν ) ≡ −(K + B + C+)

E
ample/(TE)ν ; and

• JE is the fractional ideal sheaf of the LCS(E,ω) on E, the direct image of that on the
normalization; it is supported in the intersection of E with the closure of LCS(X,B+C+)\E.
In particular, (E,BE) is normal and Klt outside UE = U ∩ E (and (E/TE) = Eν/TEν =
(TE)ν is a contraction where E \ UE is complete/TE).

Addendum 10.15.1. We can also suppose that the transient E is/P .

We can omit LMMP in the lemma (see [2, Theorem 6.6]).
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Proof. We can find a maximal c > 1 such that K + B + cC is log canonical (near) outside U ;
this gives the required new value of C := cC. It exists by (NBU) and Lemma 10.8 because CX =
(CT )X = f∗CT and P ∈ SuppCT . Set X0 = X \ X−∞; that is, this is the open subset of X where
(X,B) is log canonical. Note that X−∞ is completely contained in U .

Indeed, we verify that the generic points of the log canonical centers are in U . Suppose that
there exists such a center E1 outside U , in particular, E1 is completely contained in X0. On the
other hand, by (CMP), c > 1, there is a center En in X−∞. By LMMP, the LCS is connected
(see the proof of Theorem 6.9 in [41]). Hence, we have a chain of LCS centers E1, E2, . . . , En,
with E1 completely contained in X0, E2 in general in X0, and En completely outside, that is,
contained in X−∞. Note that K + B + cC ≡ 0/P on this chain. This is impossible. Now we
consider only d = 3, that is, X is a 3-fold. Then Ei are at most of dimension 2. We check that
each Ei ⊂ X0, which gives a contradiction. If E2 is completely in X0, we can use induction on n.
Thus, suppose that E2 intersects X−∞. If E2 is a curve, then E2/f(E2) = P is complete/P .
Otherwise, we delete E2 from our chain. On the other hand, by adjunction [23] (see also the
proof of Addendum 9.21.1), on the normalization Eν

2 , there is a boundary B2 ≥ 0 such that
KEν

2
+ B2 ≡ 0. In addition, E2 has two points ν(P1) ∈ E1 ∩ E2 and ν(P2) ∈ E2 ∩ X−∞ with

multP1 B2 ≥ 1 and multP2 B2 > 1. This is impossible because deg KE2 ≥ −2. Thus, E2 is a
surface that is in general in X0. Now E2/TE2 = f(E2) is a complete surface or a curve fibration.
Again, adjunction on the normalization gives a boundary B2 ≥ 0 that has a reduced divisor or
log canonical center P1 in E0

2 = E2 ∩ X0 ⊂ Eν
2 and the nonlog canonical center P2 outside. On

the other hand, KE2 + B2 ≡ 0/TE2 , so we have a chain of LCS centers for (Eν
2/TE , B2) as above

(if it is not a contraction/TE2 , make a base change or argue in the connected component of the
fibre Eν

2/TE2 using inverse adjunction). This gives a contradiction by induction on the dimension
of E2.

For d ≥ 4, we can do similarly, by LMMP. We can again use adjunction (see the proof of
Addendum 9.21.1), but it is easier to do this after a reduction (using a log resolution) to the
situation when all Ei are divisorial and the adjunction is divisorial [41, 3.1]. In either case, the
required connectedness is a higher dimensional version of [41, теорема 6.9] and can also be derived
from LMMP. Without LMMP, see [2, Theorem 6.6].

Thus, the new C := cC. After a perturbation of CT = CT , we can get a single transient center E.
Perturbation: there is H ≥ 0 a Q-Cartier divisor on T with P ∈ SuppH such that, on a (sufficiently
high) log resolution g : Y → T of (T,BT + CT + H), g∗H ≥ H ′, where H ′ is ample/T . Then we
can perturb CT and so C = CT : replace by (1− ε)CT + (1− δ)H ′′, where g∗H ′′ ≥ H −H ′ +

∑
eiEi

with 0 < ε, δ, ei 
 1 and each Ei is exceptional/T or is in the support of BT and CT (under the
assumption that CT is rather powerful).

Finally, before taking the complement (that is, assuming C ≥ C ′ ≥ 0, where C ′ is ample/T ),
we can improve (X/T,B + C) to a Fano contraction/T as in Lemma 9.7 (in the non-Q-factorial
case). Again, as in the perturbation, ‖B+ − B‖ should be 
 ‖C‖.

The properties of (E/TE , ω) are standard. Addendum 10.15.1 can be obtained by adding cHX

instead of (c−1)C, where H is quite generic effective Cartier divisor through P on T (cf. the proof
of Lemma 9.6). �

Proof of Corollary 10.14. By definition, the mobile system L• is defined on a log Fano
contraction (X/T,B). Its characteristic system is Di = Li/i. Using complements, we can convert
the pair into a 0-log pair (X/T,B) with a new fixed B [41, предложение 5.5]. It is also a weak log
Fano contraction because X/T is birational. Now applying Corollaries 9.20 and 9.21 to D• gives
the stabilization of D• on some prime b-divisor E = Ec/P , that is, (STB) of Theorem 10.13 for L•;
by Example 10.2, this also gives the first C and C = CX . Indeed, (LWF) holds by construction.
(LBF), (LCA), and (MXD) hold by Corollary 4.53 as for a (FGA) system. In addition, (AMN)
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also holds. Note that any complement preserves (LCA) by Lemma 4.44. (BED) for D• after a
truncation follows from Proposition 4.54 and Theorem 6.19(3),(4) under the assumption (CCS)d−1.
We can replace this last assumption by (CCS)∗d′−1(gl) (or (CCS)d′−1(gl) and (FGA)∗d′−1(gl)) and
(SSB)d′−1(gl) with d′ ≤ d − 1 by induction on dimX = d.

Therefore, by Theorem 10.13, there is a Klt neighborhood (Y/T,BY ) of E on which after
a truncation each Li is ample and free, and Li/i stabilizes. If U is complete/P , we are done
(compare the next corollary). If not, we enlarge the neighborhood. This is eventually complete by
Lemma 10.12 on Noetherian induction. (The final destab D is disjoint from Y .)

Suppose that U is still not complete/P . Thus, it satisfies (NBU). By Noetherian induction,
U �= ∅ (because it includes old centers) and satisfies (CMP). Hence, Lemma 10.15 applied to
(X/T,B) := (Y/T,BY ) with the previous C gives a new transient center E and new C and C+.
Therefore, if D• E

stabilizes/TE or (STB) holds for L• E
, then again by Theorem 10.13, up to a

truncation, we get that each Li is free, ample/T , and D• stabilizes in a Klt neighborhood that
enlarges the old one by a complete center centerX E over T ! (Compare the proof of the theorem.)

Thus, we need to verify (STB) on E. This time we use Addendum 9.21.1 on (X/T,B + C+).
Indeed, all the conditions are satisfied: (LWF) is generalized by (ELT), and (GIM) holds by proper-
ties of the transient center. Note that this also implies needed generalization of (RRF): each Di = 0
over the generic point of E, and the ampleness and stabilization of D• on the LCS inside U . By
Lemma 4.44 and since BY increases at each step of our construction (Lemma 10.15), (LCA) holds
over (Y/T,BY ) again, and we can assume also that SuppB + C+ ⊃ SuppC+ ⊃ E. For required
stabilization (STB), (CCS)∗d′−1(gl) is enough by Addendum 10.15.1.

Above we verified (SSB)d′−1 and (CCS)∗d′−1 for d′ ≤ 3, so we can drop it as an assumption. The
next case d′ = 4 is unknown: that is, (SSB)3 and (CCS)∗3 for a 3-fold E in a 4-fold X are unknown
even without ∗. (BP) see in the proof of Addendum 4.50.3. �

Corollary 10.16. Under the assumptions of Corollary 10.14, the limit D = limi→∞Di of the
characteristic system of any (RFA)n,d(bir) algebra stabilizes. Thus, f.g. for (RFA)n,d(bir) holds
under the assumptions.

Proof. Immediate from the proof of Corollary 10.14 or by Corollary 10.14 itself, Theo-
rem 6.19(3),(4), and Limiting Criterion 4.28. �

Corollary 10.17. Under the assumptions of Corollary 10.14, pl flips exist in dimension n.

Proof. Immediate by Main Lemma 3.43, Corollary 10.16, and Corollary 3.32. �
The next section gets rid of the assumption on the existence of (S+−) flips under (CCS)∗.

11. THE MAIN RESULT

Theorem 11.1. Under LMMP and (BP) in dimension ≤ n− 1, and (CCS)∗d with d ≤ n− 2,
(S+−) flips exist in dimension n. Moreover, when n ≤ 4, we can omit assumption (CCS)∗d; (BP)
when n ≤ 5.

We can also replace (CCS)∗d by (FGA)n−2(bir) and (FGA)∗d(gl).

Lemma 11.2. Let L = L be an ample b-divisor on X/T, and E and E′ be two prime divisors
on X such that E intersects E′ divisorially. Then there is an effective Cartier b-divisor E ′ supported
over E′ that destabilizes L

E
, that is, (Mov(E ′ + NL))

E
> NL

E
.

Proof. Taking hyperplane sections of X/T by L reduces the lemma to the two-dimensional
case, with X a surface. Then we can use Example 10.5(2). The main problem is that E′ may
not be Q-Cartier. This can be resolved by a Q-factorialization and perturbation in exceptional
components to preserve ampleness/T .

In higher dimensions, we take the closure of a family of E ′ constructed in dimension 2. �
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Lemma 11.3. Under LMMP in dimension n, let B be a subboundary on X with dim X =
n ≥ 3 and S be a prime divisor in X such that

• K + S + B is R-Cartier ;

• B has no reduced components;

• the adjunction [41, 3.1] (K + S + B)
Sν is Klt, where Sν is the normalization of S; and

• the negative components of B intersect S only in points.

Then there exists a weak Q-factorialization, that is, a model, projective/X, on which all the di-
visors that are exceptional/X and the divisors that intersect S in a point, including the negative
components of B, do not intersect S.

Remarks 11.4. (1) S is normal outside its intersection points with negative components of B
[41, лемма 3.6] because (X,B) is purely log terminal there (cf. the conditional inverse adjunction
[41, 3.4]).

(2) We expect a more perfect form of the lemma in any dimension n, with the intersections
in codimension ≥ 3 rather than in points (cf. Remark 11.7 at the end of Step 1 in the proof of
Theorem 11.1).

Proof of Lemma 11.3. Take a strictly log terminal resolution of (X,S + B) that we do with
reduced exceptional divisors, intersecting S in a point, and negative components, that is, we set or
change their multiplicities to 1. The reduced components of the resolution do not intersect new S
because the construction gives a log terminal resolution of (S,BS), under the adjunction of original
(X,B), and the resolution of (S,BS) does not have reduced components. �

Proof of Theorem 11.1. Since the flip is strictly log terminal, after slightly decreasing the
other reduced components, we can assume that both S+ and S− are irreducible (cf. Example 10.10).
Thus, the boundary is B + S+ + S− with �B� = 0.

We can suppose that this is a small flip with the exceptional locus of dimension ≤ n − 2.
Moreover, the contraction is birational on S+, S− and on their intersection E = S+∩S−. Indeed, E
contractible contradicts the normal crossing of S+ and S− ([41, следствие 3.8] and the irreducibility
of Example 3.40) because then S+

S− = E is nef/T and exceptional on S−. This last conclusion is
impossible by Negativity 1.1 in [41].

Let L• be the mobile system of a divisorial algebra RX/T D with D ∼ S−, numerically
negative/T . Since the flip is extremal, the algebra defines it if it is f.g. We have a translation t by
Addendum 3.43.1 that corresponds to the inductive sequence with s = t = 2 and single S2 = S−

(cf. Example 3.40 with S1 = S+).
By Proposition 4.42, the system L• is of type (FGA)n(bir) over the pair

(X/T,B + (1 − ε)(S+ + S−))

for 0 < ε 
 1 because

(EXS) L• is exceptionally asymptotically saturated/T .

Unfortunately, we cannot preserve condition (EXS) when restricting, but the (FGA) is preserved
for the birational restrictions of L• on S+, S−, and E by Example 4.45 and Proposition 4.50 (cf.
Example 4.52).

In particular, Li E
is lca saturated. Thus, by our assumption, f.g. in (FGA)n−2(bir) follows from

(CCS)n−2(bir) and Theorem 6.19(3),(4). Thus, the characteristic system of Li E
stabilizes. Since

the translation t is preserved under the restriction, we get f.g. in (FGA) for Li S+ on S+ by Main
Lemma 3.43 with a single element inductive sequence S+ ∩ S− (with possibly nonflipping model;
cf. Corollary 6.44).
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For the same reasons (but without S+) or LMMP, the characteristic system of L• stabilizes over
points (in general) of dimension 1. Thus, Proposition 4.54 applied just to L• gives a stabilization
for the characteristic system of L• over T \ P , with closed P , with (BED) after a truncation.

11.5. Preamble. We also establish below f.g. in (FGA) for Li S− . Thus, by Main Lemma 3.43
again, with a single element inductive sequence S− on X we get f.g. in (FGA) for Li itself and get
the flip on X.

To prove f.g. on S−, we construct a 0-log pair (S−
m/T− = f(S−), B−

S−
m

) over which each Li S−

with i � 0 is free and ample, up to a truncation (cf. Corollary 10.14). This gives (CCS) and f.g.
by Theorem 6.19(3),(4) because we can secure lca saturation for the system L• S− as above.

First, in Step 1 below, we construct a Klt neighborhood Um of E (as Ec but now no longer/P )
on which all Li S− with i � 0 are free, ample, and Li/iS− stabilize (over this neighborhood, all
Li/i = D, the limit). Thus, after a truncation, this holds for each i > 0, and each Li gives this
quasiprojective neighborhood on a contraction given by Li. To compare with Theorem 10.13, now
we cannot use the (S+−) flips.

By Lemma 10.12 and LMMP assumption, neighborhoods Um of this form considered under
inclusions terminate. The maximal Um is complete/T− and is the required 0-log pair.

Finally, in Step 2 we extend each incomplete Um.

Step 1. Take L = Lm for m � 0 for which the restricted linear systems Lm E
and Lm S+

m
are

very semiample and have compatible restrictions

Lm/m
E

= D
E

and Lm/m
S+

m
= D,

that is, they stabilize. This follows from the normality of restricted algebras in Addendum 4.50.1.
Then the linear system of Lm defines a flag of normal varieties Em ⊂ S+

m ⊂ Xm, whereas L = L
for just ample but free L = (L)Xm/T . This can be done by a normalization of the model given by
RX/T L.

However, the birational transform of S− in Xm may still be nonnormal. We denote its normal-
ization by ν : S−

m → Xm. We claim that Um is a neighborhood of Em in S−
m. Note that Em is also

embedded in S−
m by the above normality Addendum 4.50.1.

By (BED) and (EXS), or since L gives the flip over T \ P , the only exceptional divisors Ei of
Xm/T are/P (cf. Lemma 3.19).

In addition, no exceptional Ei/T intersects S+
m divisorially . For otherwise, an effective

exceptional/T b-divisor E ′/E′ = Ei destabilizes L
S+

m
by Lemma 11.2, where E = S+

m. This is
impossible by (EXS) on X and (MXD) on S+

m since L/m
S+

m
= Lm/m

S+
m

= D stabilizes.
In particular, this implies that adjunction for the crepant subboundary BXm on S+

m has an
effective different (as we expect by the stabilization; cf. Addendum 5.12.2). More precisely, by a
perturbation, we convert (X/T,B) into a (fixed) 0-elt pair (X/T,B+) (actually, it is purely log
terminal) with only reduced S+. Thus, S+

m is a 0-log pair for the adjunction (KT + B+
T )

f(S+
m)

on T+ = T+
m = f(S+

m) (which is independent of m and normal). Hence, by adjunction and the
commutative diagram

S+
m ⊂ Xm⏐⏐� ⏐⏐�

T+ ⊂ T

up to codimension 2, that is, for general surface sections of Xm/T (cf. the different in [41, §3]), and
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near S+
m, KXm +B+

Xm
and KS+

m
+B+

S+
m

are log canonical with crepant B+, in particular, birationally
transformed B+ on the nonexceptional/T part. The adjunction can be extended on the whole of S+

m

to a 0-log pair (S+
m/T+, B+

S+
m

) with

KS+
m

+ B+
S+

m
= (KXm + B+

Xm
)

S+
m

;

in particular, the pair is Klt everywhere on S+
m with B+

S+
m

≥ 0 (crepant for (S+, B+
S+)) by [41,

(3.2.2)].
Moreover, every exceptional Ei intersects S+

m in at most one point. Indeed, we can assume
that the subvarieties in S+

m of dimension ≥ 1 in general are weakly Q-factorial for the exceptional
divisors Ei/T ; that is, if the dimension of intersection is ≥ 1, these divisors intersect S+

m divisorially
(in codimension 2 in Xm). Indeed, taking a hyperplane section up to the intersection with Ei by a
point, by Lemma 11.3, we get weakly Q-factorial for divisors Ei on a weak Q-factorialization. Note
that LMMP in the lemma holds under our assumptions of the theorem. On the other hand, by the
numerical and geometric properties of S+ and S−, af(S+) + b(Lm)T is an effective Cartier divisor
on T for some a > 0 and b ≥ 0; b > 0 if R · S+ > 0. Then

(PRS) on any model over T , aS+
m + bL +

∑
eiEi ≡ 0/T and, in particular, locally on Xm,

Cartier with multiplicities ei ≥ 0 (depending on m as L) in exceptional Ei; and by
Lemma 10.8, ei > 0 on Ei/P .

The latter is preserved on restricting to any general hyperplane section. Again by Lemma 10.8,
this is impossible for some curve/Xm (over a point in Xm) on a weak Q-factorialization and, if the
latter is nontrivial, its exceptional curves are on the modification of S+

m, by the connectedness of
the fibre/Xm. Thus, as in the Q-factorial case, the divisorial part always intersects in a divisor if
it intersect in a curve. (In the same way, we could eliminate intersections with S+

m in points if we
knew the existence and termination of n-fold flips! Thus, we expect this near S+

m, and that S−
m is

normal by the argument below. But for now we just disregard such intersections in points.)
Therefore, the exceptional divisors Ei intersect S+

m at most in points. In particular, the negative
components in B+

Xm
intersect S+

m at most in points. The same holds for Em ⊂ S+
m with the adjoint

subboundary B+
E given by the adjunction of a log terminal 0-log pair (T/T,B+−

T ). The pair has two
reduced divisors S+ and S−. The third needed 0-elt pair (X/T,B−) with reduced S− induces the
0-log pair (T−/T−, B−

T−) which corresponds to a Klt Um under construction. We can also assume
that B+− has a substantial nonreduced part, that is, B− = B+− − C for some C > 0.

Now, if we consider Em ⊂ S−
m, by the above, the negative components of the crepant subbound-

ary B+−
Xm

intersect Em in points. Thus, we have an adjunction of (T,B+−
T ) on (S−

m, B+−
S−

m
) with the

negative components in B+−
S−

m
intersecting Em at most in points, and in turn an effective adjunction

of (S−
m, B+−

S−
m

) on (Em, B+−
Em

) with B+−
Em

≥ 0. Hence, again by Lemma 11.3 and the presentation

(PRS), the intersections even in points on S−
m are impossible, and B+−

S−
m

is a boundary near Em.

The same holds for B−
S−

m
on S−

m because, for the same reason, the support of each restriction Ei S−
m

in the sense of Mumford (restricted to the normalization S−
m and defined only divisorially) does

not intersect Em as closed subvarieties. This is a crucial point that gives a neighborhood Um as
the complement to the supports. Indeed, in the neighborhood, B−

S−
m

is a boundary and Ljm/j
Um

stabilizes for all j ≥ 1! This is the boundary by [41, (3.2.2)]. Thus, as at the end in the proof
of Theorem 10.13 (based on the uniqueness in Addendum 10.6.1), we can convert (= embed) Um

into a Klt neighborhood (into a crepant log pair for (T−/T−, B−
T−)). Stabilization holds by the

following:
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Trick 11.6. By (AMN) and (BED) and since the exceptional Ei in Xm are/P , Ljm = jLm +
Em,j , where each Em,j ≥ 0 is b-free (in particular, b-Cartier)/Xm with Supp (Em,j)Xm in a union of
exceptional Ei. Hence, by Proposition 7.7, (fx), we have Supp (Em,j Um

)Um = 0(/Xm) divisorially ,
or (Em,j Um

)Um = 0, and by Lemma 10.9 Em,j Um
= 0. Then Ljm/j

Um
= Lm Um

. This implies the
required stabilization on Um.

Remark 11.7. The proof is essentially higher dimensional: that is, it works better if we
assume n ≥ 4. For n ≤ 2, there are no flips under the small condition. For n = 3, under LMMP in
dimension 3, Lemma 11.3 and (PRS) imply that each Ei is disjoint from Em (cf. Remark 11.4(2))
and we have the same stabilization as in Step 1. However, the existence of 3-fold log flips fol-
lows from (FGA)2(bir) (see the proof of (FGA) in Main Theorem 1.7 at the end of Section 6) or
from [41].

Step 2. Using Lemma 10.15, we can enlarge the neighborhood Um, whenever it is still incom-
plete, by a transient center Et in a crepant model of (T−/T−, B+−

T− ), and establish a stabilization
of the restricted system Ljm/j

Et
as in the proof of Corollary 10.14 by (FGA)∗d or (CCS)∗d with

d = dim Et ≤ n − 2 and the (FGA)∗ property (with singularities) of the restricted system (see
Conjecture 5.26). By Addendum 10.15.1, we need only global (FGA)∗d(gl) or (CCS)∗d(gl). To apply
Addendum 9.21.1 and Lemma 10.15 with Um in a 0-elt (actually 0-plt) model of (T−/T−, B+−

T− ),
we need that (Xm, B+−

Xm
) is log terminal and that B+−

Xm
is a boundary at the generic point of

Em = S+
m∩S−

m, and B+−
S−

m
is a boundary in Um by [41, следствие 3.11] and the first time by Step 1,

because in general E = S+ ∩ S− goes birationally to Em and the exceptional/T prime b-divisors
with log discrepancy 0 are only/generic point of Em (cf. the proof of Theorem 10.13). In the
induction, we use (BP) to secure (FGA)∗ property, and the disjoint property of each Ei S−

jm
from

Ujm below.
Finally, we extend Um to Ujm for j � 0 such that the restricted Ljm/j

Et
reaches stabilization.

Indeed, if Et �⊂ Ujm on S−
jm, then we can make a destabilization as in the proof of Corollary 10.14.

But now we replace Proposition 10.6 by Example 10.5(1) because
∑

eiEi is Cartier and the ei

are positive for Ei/P . This follows from ampleness of L/T (which is, in particular, Cartier) and
because the

∑
eiEi S−

jm
are disjoint from Ejm = S+

jm S−
jm

by Step 1 with m := jm. Indeed, by (PRS)

with m := jm, aS+
jm + bL +

∑
eiEi is Cartier with ei > 0, and ≡ 0/T . This implies also that each

Ei S−
jm

is disjoint from some neighborhood Ujm of Um and Et.

Thus, if we set new m := jm, we can return to Step 2 again. The termination mentioned above
completes the proof. �

Proof of Theorem 6.45. Immediate by Corollary 10.17 and Theorem 11.1. �
Remark 11.8. During the proof of Theorem 6.45, we essentially established that each

(FGA)3(bir) algebra restricted from any exceptionally saturated algebra on a contraction of Exam-
ple 3.40 with dimX ≤ 4 is f.g. In general, this does not imply f.g. of the algebra under restriction.
Perhaps, this affects all (FGA)3(bir) algebras (cf. Remark 4.40(6)).

Similar arguments apply to (FGA)3(bir) if there exists a boundary divisor B+ ≥ B such that
(X/T,B+) is a weak plt Fano, and an effective Cartier divisor aS+ + bL ≡ 0/T for some a > 0,
b ≥ 0, the reduced part S+ �= 0/P of B+, and L = (Di)X with i � 0 up to truncation, since
then (PRS) holds; instead of Lemma 11.2, we can use the more precise Examples 6.25, 10.5(2) and
Addendum 5.12.2. For example, required a and b exist if, as in Theorem 11.1, X/T is extremal,
S+ is nef/T , and L is numerically negative/T .

Proof of (RFA) in Main Theorem 1.7. Immediate by Theorem 6.45 because for n ≤ 4 we
can drop LMMP, (BP), (CCS)∗, and (SSB)(gl). �
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