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THE NONVANISHING THEOREM
UDC 512.7

V. V. SHOKUROV

ABSTRACT. The main result of the paper is a nonvanishing theorem that is a sufficient
condition for nontriviality of the zeroth cohomology group of inverse sheaves. In addition,
applications of this theorem to multidimensional projective geometry are indicated and
problems illuminating further insight into the theory of Mori extremal rays are formulated.

Bibliography: 14 titles.

§0. Terminology and the main result

(0.0) Let ί be a normal projective variety over the complex number field. By a
Q-Cartier divisor we mean an element D e D I V Q X = DivX® Q, where OivX is the
group of Cartier divisors of X; in other words a Q-Cartier divisor is a linear combination
of Cartier divisors with coefficients in Q. The group DivQ X also contains certain Weil
divisors of X, namely those D such that rD e DivA' for some 0 Φ r e Z; for then
D = (l/r)(rD). Recall that a variety X is Q-factorial if every Weil divisor of X is
Q-Cartier in this sense.

Throughout what follows we assume that X is Q-Gorenstein. This means that any
canonical Weil divisor Kx is Q-Cartier; that is, Kx e DivQ X. In addition, we assume
that the singularities of X satisfy the following condition: there exists a resolution
f:Y -* X whose exceptional locus is made up of divisors Ft which are nonsingular and
have normal crossing, and such that in the relation

all the a, are greater than — 1. In §1 we show that the definition of these singularities
does not depend on the resolution / with the stated properties. We will say that a Q-
Gorenstein variety X satisfying the above conditions has routine singularities* Recall that

1980 Mathematics Subject Classification (1985 Revision). Primary 14J10; Secondary 14F12, 14E30, 14J30.

'Translator's note. This notion of routine singularities also appears in the current literature as log-terminal
singularities: if we consider Υ 3 F as a resolution of X in the log category (X is considered as marked with the
empty divisor D Φ 0) then

(KY+F)-r(Kx+D)+^/iot

and the condition a, > - 1 is the usual terminal condition that every exceptional component of / should occur
in Δ with strictly positive multiplicity.
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592 V. V. SHOKUROV

X has canonical (respectively terminal) singularities if all the a, are nonnegative (respec-

tively positive). We remark that from the point of view of linear systems the routine

singularities should perhaps be called canonical, and canonical singularities pluricanoni-

cal.

(0.1) There is a natural intersection theory for Q-divisors. A Q-Cartier divisor D e
DIVQ X is said to be nef if (D • C) > 0 for evey curve C c X. We write « for numerical

equivalence of cycles. To each nef divisor D we associate its numerical dimension

that is, the maximal k such that Dk · C Φ 0 for some /c-cycle C of X. Obviously,

max{0, K(Z>)} < v{D) < n = dim X,

where κ(£>) is the Iitaka D-dimension of X.

Let D be a nef Q-divisor. Then one easily verifies that the following five conditions are

equivalent:

(0.1.1) v(D) = η.

(0.1.2) D" > 0.

(0.1.3) Λ°(ΛΓ, ml>) ~ m" as w -» oo with mD e DivX

(0.1.4) For any ample divisor Η e Div X there exists an m > 0 such that wiZ) ~ Η + M,

where Μ is an effective Cartier divisor (~ denotes linear equivalence).

(0.1.5) K(D) = n.

A nef Q-divisor D satisfying any one these conditions is said to be big.

As in [8], we introduce the "round-up" symbol r "": if χ e R then rx~[ is the smallest

integer > χ (compare the Gauss symbol [x]). The corresponding notion for a Q-divisor

D = Zd,F, is

The key result of the present article is the following theorem.

(0.2) NONVANISHING THEOREM. Let X be a variety with routine singularities, D a nef

Cartier divisor and A = Σί/,ί>, a Q-Cartier divisor on X. Suppose that the following

conditions hold:

(a) The Q-divisor aD + A — Kx is nef and big for some a e Q.

(b) The Z), are prime divisors of X, and are nonsingular, have normal crossings, and lie in

the nonsingular part of Xif dt < 0.

(c) Eachd( > - 1 .

Then for all b » 0,

Η°(Χ,ΘΧ^Ό + ΓΑ^))ΦΟ,

or, in other words, \bD + rA~'\ Φ 0 .

§1 is devoted to the proof of the theorem, and §2 to its applications, which were the

original motivation for the theorem.

§1. Proof of the nonvanishing theorem

We first spend some time on the invariance of the definition of routine singularities. For

this it is enough to check the following assertion:

(1.1) LEMMA. Let X be a nonsingular variety, and A = Li/,/), a Q-divisor such that

(a) df> - 1 , and
(b) the Dj are nonsingular divisors with normal crossings.
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Consider an arbitrary birational morphism f: Υ ~* X; then letting Fj be the exceptional

prime divisors for f, and writing KY = f*Kx + T.ajFj, we get

where d* > — 1; that is,

*KY + f*A =f*Kx+ A

where the divisor A* satisfies (a). Moreover precisely, if J ( > — 1 + δ for all i and some

0 < δ < 1, then df > -1 + δ for allj.

PROOF. The lemma can be checked directly in the case that / is a blow-up with center

contained in an intersection of components D(; moreover, in this case if di > — 1 + δ for

each i, then the new components have df > — 1 + 25. Thus after making a finite number

of such blow-ups we can get to a divisor A* for which the components Ft with d* < 0 are

disjoint. Since by Hironaka's results any morphism / can be dominated by a sequence of

blow-ups, we see that the problem reduces to proving that for any linear system L on X

there exists a resolution / : Υ -» X of the locus of indeterminacy of L satisfying the

statement of the lemma.

By our previous remark, we can assume that the divisors £>, with dt < 0 are disjoint.

The lemma can also easily be checked for a blow-up in any nonsingular center, provided

that the divisors Di with dt < 0 are nonsingular. In order to ensure that the requisite

divisors Z), remain nonsingular, it is enough to carry out blow-ups whose centers are either

contained in Dj with dt < 0 (since such Di are disjoint), or disjoint from all such D,. But

such blow-ups are sufficient to resolve the locus of indeterminacy of any linear system: we

proceed as follows. We throw away the fixed components, then work separately with the

restriction of L to any component D, with dt < 0 to resolve the locus of indeterminacy

and bring the fixed components to normal form; then we use blow-ups with centers in

these fixed components to separate the locus of indeterminacy from the divisors Z>, with

di < 0. After this we resolve the indeterminacy outside such £>,·. Note that all the new

components appearing have d* > 0.

The final assertion of the lemma can be obtained by an easy scrutiny of the abvoe

proof. •

(1.2) LEMMA. Let X be a projective variety, Η an ample divisor and D a nef Q-divisor on

X. Then either

(1.2.1) (H + bD)n -> oo asb-> oo

or

(1.2.2) D$0.

PROOF. Since D is nef, by Kleiman's criterion [5], H'D"~' > 0 for all /; suppose that

(1.2.1) is false. Then the binomial expansion of (H + bD)" gives

HiD"-l = 0 for/ = Ο,Ι, . , . ,η - 1,

and in particular H"'lD = 0. This implies that D Φ 0; for given any curve C, we can

complement it by an effective 1-cycle C to a complete intersection of (n — 1) divisors of

\mH\ for sufficiently large m, that is

C+C'i {mH)"-\
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Thus

(C + C • D)= (mH)"~lD = 0;

now since D is nef, it follows that (C · D) = 0 for all C, so that flSO. •

(1.3) LEMMA. For any natural number η and real k there exists a real constant d such that
for any projective n-fold X, any ample Q-divisor Η on X with H" > d and any general point
χ e X the following holds: for all m » 0 such that mH e DivX, the linear system \mH\
contains a divisor D with multiplicity > mk at x; more precisely, we take χ to be a
nonsingular point, and ask that the total transform of D under the blow-up at χ contain the
exceptional divisor with multiplicity > mk.

PROOF. The exceptional divisor of the blow-up at χ is P"" 1 . Therefore, passing through
χ imposes 1 condition, passing through χ with multiplicity 2 imposes a further η
conditions,..., and passing through χ with multiplicity / imposes a further ('+"72)
conditions. Therefore passing through χ with multiplicity / imposes a total of i'"1"""1)
conditions, which is < /" for / » 0. Hence the required divisor exists provided that
m » 0 and dim|m7/| > m"{k + 1)". Now using Serre vanishing for higher cohomology
and the leading term of the Hirzebruch Riemann-Roch formula we get dim\mH\ > const ·
m"H", where the constant depends only on n. Hence the lemma holds when

const · m"Hn > mn{k + 1)",

or equivalently

H" > (k + 1)"/const = d. •

PROOF OF THEOREM 0.2.

Reduction to the case of a nonsingular X. Consider a resolution /: Υ -» X such that the
proper transforms of the divisors D, and the exceptional divisors are nonsingular with
normal crossings. By Lemma 1.1,

with all d* > - 1 . As above, we write A* for the Q-divisor T.dfFj. Then the divisor

af*D + A* - KY = f*(aD + A - Kx)

is nef and big. On the other hand, if a divisor Fj is not exceptional, then its coefficient df
is the same as the coefficient dt of the divisor D, = /(/·}). Hence normality gives the
implication

\bf*D + ΓΛ*~Ί# 0 =>|Μ) + ΓΛ"1|* 0 .

Thus in the statement of Theorem 0.2, we can assume that X is nonsingular.
Reduction to the case of ample aD + A — Kx. Now suppose that X is a nonsingular

projective variety, Η a very ample divisor on X, and L a nef and big Q-divisor. Then by
(0.1.4),

L = (\/m)H + ΣΡΛ,

where Σ/?, ί] is an effective Q-divisor. Now for any ε > 0 there exist coefficients

0 < qt• •«: ε such that L — !LqiFi is an ample Q-divisor; in fact, we could take qt to be

Ρι/Ν for some large natural number N, since the Q-divisor

NL - Σ Ρ Α S ( N - 1 ) L + L - Z P , F < S ( N - \)L
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is ample by Kleiman's criterion [5]. By blow-ups we can make all of the divisors Ft

nonsingular and with normal crossings, and we will need to include the exceptional

components among the /·); furthermore, we can assume that all the divisors of the previous

construction are included among the /). If we now take L to be the divisor aD + A — Kx,

then we find that for any ε > 0 there exists 0 < Pj«: ε such that the divisor

af*D + A*-Ky- ΣΡ^ = f*(L) - ZPJFJ

is ample. Now we can replace A* by A* - T.pjFp provided that df > -1 + 8, and

0 < Pj. «: 8. Hence in what follows we assume that aD + A - Kx is ample.

The theorem as reformulated will be proved by induction on η - dim X. Formally, the

induction could start at η = 0, when D = A = 0 and \bD + ΓΛΊ| = |0| Φ 0. However,

the case η = 1 is also instructive: if D φ 0 then everything is clear, since degZ> > 0. If

D ψ 0 then the reader can check the assertion independently, or can glance to the end of

the present proof.

We choose a divisor Μ e \m(aD + A - Kx)\ and construct a resolution /: Υ -» X

which has a system {Fj} of nonsingular divisors with normal crossings, and numbers df,
rj- Pj e Q s u c n t n a t

(a) KY+f*A=f*Kx+ Td*Fj with d* > - 1 ;

(b) f*M = L + LrjFj with r, e Ζ, η > 0, and BsL = 0 (that is, \L\ is a linear system

without base points); and

(c) \J*(aD + A - Kx) - ZpjFj is ample, with 0 < p} <s: 8 and df > - 1 + 5.

Condition (a) is always satisfied by Lemma 1.1; (b) can be obtained from Hironaka's

results, and condition (c) can easily be checked for an ample Q-divisor aD + A — Kx

provided that the resolution is achieved using only blow-ups in nonsingular centers, which

is also possible from Hironaka's results.

The method of proof develops the technique of Kawamata [2], Benveniste [1], Reid [8],

and especially the author's first draft [10].

Consider the Q-divisor

Ν = N(b,c)=f*(bD) + l ( - c 0 + df -PJ)FJ - KY

_s cL +f*(bD + A - Kx- cm(aD+A - Kx)) - ΣΡ&

This is an ample divisor for c > 0, b > a and cm < \. We will discuss below the question

of when these inequalities hold, so just assume ampleness for the time being. Then, by the

Kawamata-Viehweg vanishing criterion [3], [12],

H'(X, ΘΧ(
ΓΝ^ + ΚY)) = 0 for / > 0. (*)

For c we will choose

where the minimum is taken over all j with ry > 0. By (a) and (c) of the construction,

c > 0 provided that there exists some j for which η > 0. Furthermore, by small perturba-

tion of the pj, we can assume that the minimum value c = (df + 1 - pj)/rj is achieved

for just one value of j, for example j = 0. Write Β = Fo. Then

Ν + KY = f*(bD)+A - B, (**)

where A = ΣjΦ0djFj and dj = -CTj + df - Pj.
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Let us check that the divisors D* = f*D\B and A* = A\B satisfy the conditions of
Theorem 0.2 on the nonsingular variety B. Indeed, D* is a nef Cartier divisor, and the
Q-divisor

bD* + A*-KB= {f*{bD) +Α-Β-Κγ)\Β = Ν\Β

is ample; moreover, the divisor A* is concentrated on the divisors Fj\B with j Φ 0, which
are nonsingular with normal crossings. It thus remains to check the condition d]> — 1 for
j Φ 0. In fact, if η = 0 then dj = df - pj> - 1 by construction; if η > 0 then for j Φ 0
we have (d* + 1 — />7)Ay > c, and hence

dj= -crj + d*-Pj> - 1 .

Now notice that dim Β = n - 1; therefore, by induction,

H°(B, 6B{bD* + ΓΛ*Π)) Φ 0 for all b » 0.

We consider the restriction exact sequence

0 -> GY{bf*{D) + r i n - B) -> OY{bf*{D) + r i n ) -> 6B(bD* + ΓΛ*"·) -> 0;

since by (**) ΓΛΡ + KY = £>/*(!>) + ΓΛ~Ί - Β, it follows from (*) that

Hl(Y, OY(bf*{D) + r i n - B)) = 0.

Hence the map

H°(Y,0Y(bf*(D) + rA^)) -> H°(B,GB{bD* + rA*^))

is surjective. Thus by what we have seen, H°(Y, GY(bf*(D) + rA'T)) Φ 0; that is,

\bf*(D)+rA^\ Φ 0 forallfc»0.

Now observe that f^A"1 < rA~l; indeed, if Fj is a nonexceptional divisor with j Φ 0,
corresponding to a divisor D,·, then d* = <i, and Jy = — cry + <î  - pj < df — dt, and
thus rdp < Γί/;Λ Using this, as at the beginning of the proof, by the projection formula
and the nonsingularity of X, we get that \bD + ΓΑ~*\ Φ 0 for all b » 0.

To complete the proof, it remains to determine when the inequality cm < \ is satisfied,
the inequalities c > 0 and b > a being trivial. For this it is enough to find a divisor
Μ G \m(aD + A — Kx)\ having multiplicity > 2mn at some general point χ e X. In
fact then c < (l/2w«)((n - 1) + 1 - ρβ < l/2m, and cm < \. According to Lemma
1.3, the required divisor Μ will exist provided that {aD + A - Kx)" -> oo as a -* oo; by
Lemma 1.2, this will always be possible unless D ~ 0. Note that here we have used the
fact that aD + A — Kx is ample for a » 0 .

Now we need to verify the theorem when D « 0. In this case, by the Kawamata-
Viehweg vanishing criterion,

H'{X, 0x{bD + ΓΛπ)) = Η"-'{Χ, ΘΧ{
ΓΚΧ - bD - Λ"1)) = 0

for any J e Z and for all / > 0. Therefore, by the topological invariance of the Euler
characteristic (Riemann-Roch),

h0(X,Ox(bD + rA^)) = X{ex(bD + rA^))

= χ(Θχ(
ΓΑ^) = h°(X, ΘΧ(

ΓΑ^) > 0,

which completes the proof. •
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A posteriori, we get the following result.
(1.4) EFFECTIVE FORM OF NONVANISHING. Under the hypotheses of Theorem 0.2, there

exist at most η integers b > a for which

H°(X,Vx(bD + M"1)) = 0.

In particular, there exists an integer b e [a,ra^ + n] such that

H°(X,6x(bD + rA'1)) Φ0.

PROOF. By what we said at the beginning of the proof of Theorem 0.2, we can assume
that X is nonsingular, and that the divisors Di are nonsingular with normal crossings.
Under these circumstances, by the Kawamata-Viehweg vanishing criterion, we have

H'(X, Gx{bD + rA")) = H'(X, Gx^bD + A - K^ - Kx)) = 0

for all / > 0 and for every integer b ^ a. But then by the Hirzebruch Riemann-Roch
formula, the function

H\X,Ox{bD + ΓΛΊ)) = x(Ox(bD + rA^))

is a polynomial function of degree < η of the integer b > a. By Theorem 0.2, this

polynomial is nontrivial, which completes the proof. •

(1.5) REMARKS, (a) The bound in Theorem 1.4 is sharp. Consider for example X = P " ;

then Kx= - ( « + Y)H, where Η is a hyperplane in P " . Take A = 0, D = H, and

a = —n— j . In this case there are exactly η integers b = — 1, - 2, . . . , - « > —η— \ for

which

H°(X,&x(bD)) = 0,

and the interval [-«,0] contains exactly one integer for which H°(X, 6x(bD)) Φ 0,
namely b = 0.

(b) However, under certain extra conditions on a, there are probably more precise
estimates. For example, if dim X = 2 and a > - 1 then H°(X, Ox(bD + ΓΑ'Ί)) Φ 0 for
every b > a + 1 (see [8], Proposition 1.5).

(1.6) COROLLARY (boundedness of the index of Fano varieties). Let X be a Fano variety
with routine singularities {see (2.3.5)). Then i(X) < dim X + 1; here i(X), the Fano index
of X, is the greatest positive rational number such that (l/i(X))( — Kx) is numerically
equivalent to a big Carder divisor. The fact that i(X) exists follows from (2.3.5).

PROOF. Otherwise \k • (l/i)Kx\ Φ 0 for some k > 1, by (1.4). •
(1.7) REMARKS, (a) Examples are known for which i{X) = dimA'+ 1 and i(X) =

dim X, namely P" and a quadric in p n + 1 respectively; it seems likely that there are no
other examples with i(X) > dim X.

(b) For dim X = 2, the author has checked that the only del Pezzo surfaces with routine
singularities and index > 1 are Ρ 1 Χ Ρ1 and the cone over a rational normal curve (that is,
the surface obtained by contracting the negative section of a rational scroll Fm).

(1.8) COROLLARY ("adjunction terminates"). // X is a variety such that "adjunction
terminates" (that is, \D + mKx\ = 0 for every Cartier divisor D and all m » 0), then the
canonical class Kx is not nef.

PROOF. Suppose that Kx is nef, and let Η be an ample divisor on X. Then by
nonvanishing, \H + mKx\ Φ 0 for all m » 0 for which mKx is a Cartier divisor. •
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(1.9) REMARK. Corollary 1.8 confirms to some extent the conjecture of Iskovskikh that a

variety for which adjunction terminates should be birational to a relative Fano variety in

the class of varieties with terminal singularities.

§2. Applications

The following result is a direct generalization of [8], Theorem 0.0, and of [10],

Proposition 3.1; in essence it goes back to [2], Theorem 2. It could also be interpreted as a

generalization of Kleiman's ampleness criterion [5].

(2.1) CONTRACTION THEOREM.** Let D be a Cartier divisor on a variety X with routine

singularities, and suppose that the Q-divisor D - εΚχ is nef and big for all sufficiently small

rational numbers ε > 0. Then D is stably free; that is, for all m » 0, the linear system \mD\

is free, or Bs(mD) = 0 . Equivalently, there exist a morphism φ: Χ -> Ζ onto a normal

projective variety Ζ such that φ*Θx = Θ7, and an ample invertible sheaf Η e Pic Ζ such that

φ*Η = &X(D).

PROOF. T O avoid repetition, we indicate how to modify the proof of [8], Theorem 0.0,

leading to the proof of our theorem.

(2.2) We first reformulate the theorem in a slightly different form; for this, note first of

all that from the conditions it follows that D is nef and the Q-divisor (1/ε)Ζ) - Κ x is nef

and big for some rational number ε > 0. If we replace l/ε by a positive integer a, we get

the conditions

(2.2.1) D is a nef Cartier divisor, and

(2.2.2) aD — Kx is a nef and big Q-divisor,

which together are equivalent to the hypotheses of Theorem 2.1. By the nonvanishing

theorem there exists an integer m > 0 such that \mD\ Φ 0. From then on we use the

proof of [8], §1, with the following changes:

(2.2.3) Qj > - 1 + δ, with δ > 0;

(2.2.4) 0 < pj:<κ δ.

Moreover, we replace Proposition 1.5 by the nonvanishing theorem. •

We now discuss the properties of the morphism φ of Theorem 2.1.

(2.3) PROPERTIES OF φ.

(2.3.1) &φ*Θχ = 0 for alii > 0, and in particular, χ(Θχ) = χ(Θζ).

(2.3.2) Η·(Ζ, Η' ®'m) = 0 for all m > a and all i > 0.

(2.3.3) RELATIVE ANTICANONICAL MODEL. There exists a decomposition φ = h° g of φ
g — h —

as a composite of morphisms X —> X —> Z, where X is a normal projective variety with routine

singularities, such that g is a birational morphism with Kx = g*Kx, and —Kx is relatively

ample for h, that is, —CKX > 0 for any curve C such that h(C) = pt; if X has only

canonical singularities, then so does X.

(2.3.4) dim Ζ = v(D) = K(D).

(2.3.5) The general fiber Υ = φ x(z) for ζ e Ζ is a Fano variety with routine singulari-

ties; by this we mean that -KY is nef and big. Moreover, Η'(Θγ) = 0 for all i > 0, and

the group scheme Pic Υ is discrete and torsion-free. If X has only canonical {respectively

terminal) singularities, then so does Y.

**Translator's note. The author calls this "stably free theorem" or "theorem on stable freeness", and it also
appears in the literature as "base-point free theorem"; the notion of "stably free" appearing in the theorem is
sometimes called "semi-ample" (mainly by Japanese authors) and also "eventually free". I rather like the idea of
a " theorem on eventual freedom", but "contraction theorem" seems to have become universally accepted.
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PROOF. The fact that the general fiber Υ in (2.3.5) has only routine singularities is

proved by means of the adjunction formula and Bertini's theorem applied to some

resolution of X (compare the proof of [7], Theorem 1.13); the final clause of (2.3.5) is

proved in the same way, as is the fact that — KY is nef and big. The remaining assertions

are all either obvious, or are essentially proved in [8], (1.7). •

(2.4) REMARK. It seems to be true that Ζ is a normal variety with only rational

singularities. If dim X < 3 or if dim Ζ > η - 1 then this is essentially proved in [8], (1.7).

Theorem 2.1 has a series of consequences which are not without interest.

(2.5) COROLLARY. // the canonical class Kx is nef and big—that is, if Kx is nef and

Κχ > 0 (in this case X is said to be a "minimal model of a variety V of general type"

birational to X)—then the linear system \mrKx\ is free for all m » 0, where r is the index of

the Q-divisor Kx, or the canonical index of X. In particular, the pluricanonical ring of X is

finitely generated.

Note that if X has canonical singularities and Kx is nef, then Kx is big if and only if

X is of general type in the ordinary sense. Moreover, a nef and big divisor Kx is ample if

and only if (Kx • C) > 0 for every curve C c l , which generalizes a result of P. Μ. Η.

Wilson.

PROOF. Corollary 2.5 is a direct consequence of the contraction theorem applied to

D — rKx and standard results on projective normality. •

(2.6) COROLLARY. Let Xbe a smooth variety of general type. Then the following conditions

are equivalent:

(a) The pluricanonical ring ®n 0Η°(Χ,ΘΧ(ηΚΧ)) is finitely generated.

(b) There exists a minimal model of X in the sense of (2.5) having canonical singularities.

PROOF, (b) =» (a) follows from (2.5), and (a) => (b) from [7], Proposition 1.2. •

For dim X = η < 3 this result and the previous assertions were established by

Benveniste [1] in the terminal case, and by Kawamata [4] in the nonsingular case.

(2.7) COROLLARY. Let X be a Fano variety with routine singularities; then for any Cartier

divisor D on X, the following conditions are equivalent:

(2.7.1) D is nef.

(2.7.2) D is stably free.

(2.7.3) \mD\ is free for some m > 0.

PROOF. (2.7.1) => (2.7.2) comes from Theorem 2.1. The implications (2.7.2) =» (2.7.3) =>

(2.7.1) are obvious. •

For the other applications we need to recall some terminology which goes back to Mori

[6]. We write

NQ(X)= {Cartierdivisors ® Q } / ~

and

NXX = N£(X) ® R;

we also set

NXX = {1-cyles® R } / ~ .

By definition of numerical equivalence « , the real vector spaces NlX and N1X are

dually paired under the form induced by intersection pairing. The common dimension of

and ΝλX is called the Picardnumber p(X) of X.
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Let Ν Ε = NE(X) c NXX be the Kleiman-Mori cone, which by definition is the closure

of the cone of effective 1-cycles.

(2.8) COROLLARY (compare [11]). Let F be a face of the cone NE(X) entirely contained in

the half-space {z e Ν^Κχ- ζ < 0}. Suppose in addition that there exists a nef element

d e NQ(X) such that dx η NE = F. Then F uniquely determines a morphism φ = contF :

X —> Ζ onto a normal variety Z, such that

(2.8.1) φ*Θχ = Θζ, and

(2.8.2) for any curve C <z X,

= pteZ<=> the numerical class of C belongs to F.

In particular, if F Φ 0 then there exists a curve C c X whose numerical class belongs to

F. The morphism cont F is called the contraction of the face F.

PROOF. We can repeat almost word-for-word the argument of [8], (0.3), replacing the

reference to Theorem 0.0 of [8] by Theorem 2.1 above. •

The most interesting case is when F is a ray. Recall that a ray R c NE is called

extremal if the following implication holds:

a + b e R w i t h a,b <= ~NE => a,b e R.

An extremal ray R is rational if Λ η Nl(X)Q Φ 0, or equivalently, if there exists a 1-cycle

C Φ 0 on X whose numerical class belongs to R. Let us say that an extremal ray R is

acute if the subset {d e NlX\d ± η Ν Ε = R} contains an open subset of NXX.

(2.9) COROLLARY. Let R be an extremal ray which is rational and acute, and generated by

a numerical class C with (Kx · C) < 0. Then the contraction contfl of R is defined.

PROPERTIES OF φ = contR: X -» Z.

(2.9.1) There is an exact sequence

< p * (-C)

0 -» P i c Z - ^ P i c * -> Z;

thus p{Z) = p(X) - 1. In particular if Ζ = pt, then p(X) = 1, and if Ζ is a curve then

p(X) = 2.

(2.9.2) // dim Ζ < dim X then we do not add any essential new information about φ

beyond what was said in (2.3.5).

(2.9.3) The following four conditions are equivalent:

(a) dim Ζ = η;

(b) R is not numerically effective; that is, there exists an effective divisor F with

(FC)<0;

(c) there exists d e N^(X) such that dx η NE = R and d" > 0;

(d) there exists a subvariety Ε of X of dimension =ζ η — 1 such that ψ\χ^Ε is an

isomorphism, and dim<p(£) < d i m £ ; that is, Ε is an exceptional subvariety.

Following Kawamata [2], in this situation we call the corresponding birational contrac-

tion φ = cont R and elementary contraction.

(2.9.4) Suppose now that X is Q-factorial; then there are two types of elementary

contractions:

(A) The exceptional subvariety Ε is an irreducible Weil divisor {and a Q-Cartier divisor,

in view of Q-factoriality). In this case Ζ is again a Q-factorial variety with routine



THE NONVANISHING THEOREM 601

(respectively canonical or terminal) singularities (corresponding to X having canonical or

terminal singularities respectively). The divisor Ε is the exceptional divisor associated to the

ray R.

(B) The exceptional divisor Ε has dimension < η — 2. In this case Ζ is not Q-factorial;

worse still, it is not Q-Gorenstein.

PROOF. We can repeat almost word-for-word the arguments of Kawamata [2], §3,

complementing Corollary 2.8. •

(2.10) OUTLOOK. Let us look again at the morphism φ: Χ -* Ζ of Theorem 2.1. If

dim Ζ < dim X then φ is a fiber space of Fano varieties. Roughly speaking, the geometry

of X reduces in this case to the geometry of Z, the geometry of Fano varieties, and the

geometry of φ. This can be considered to be more or less the good case—although up to

now neither the geometry of del Pezzo fiber spaces (even over P 1), nor the birational

geometry of the quartic 3-fold, a Fano 3-fold, has been satisfactorily studied.

Now we turn to the worse situation when dim Ζ = dim X, so that φ is a birational

morphism. Note first that there is an inclusion φ*: Pic Ζ ·-* PicX, so that the change in

the Picard number can be controlled. Hence we could hope that the geometry of Ζ is

simpler than that of X, and study Ζ instead. However, already in the 3-fold case (n = 3)

there are examples when Ζ not only fails to have routine singularities, but is not even

Q-Gorenstein. Only for nonsingular varieties X of dimension < 3 is it known by Mori's

classification [6] that all elementary contractions lead again to Q-factorial varieties.

There is an entirely natural conjecture that in the general case there should exist a "flip"

or adjoint diagram.

(2.11) ADJOINT DIAGRAM. This should be a commutative diagram

X X+

\ S <P+

Ζ

consisting of

(2.11.1) a normal projective Q-Gorenstein variety X+;

(2.11.2) a rational map ίτφ: Χ -* Χ+ which is an isomorphism except over a subset of

X+ of codimension > 2; and

(2.11.3) a morphism φ + : Χ+-* Ζ such that the canonical class Kx+ is relatively ample

for <p+ and (ψ+)^Θχ+= 07.

(2.12) PROPOSITION (on a platter on one's head). The following conditions are equivalent:

(2.12.1) There exists an adjoint diagram for φ.

(2.12.2) For any ample divisor Η e DivZ and any integer m :» 0 the pluri-adjoint ring

R(X, m<p*H+ Kx) = φ H°(X, 6x{n(m<p*H + Kx)))

is finitely generated.

(2.12.3) For some ample divisor Η e DivZ and any integer m » 0 the pluri-adjoint ring

R(m<p*H + Kx) is finitely generated.

PROOF. (2.12.1) => (2.12.2). By definition of the adjoint diagram,

R(my*H + Kx) = R(mH + Kz) = R(m(y + )* Η + Kx+).
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Now standard arguments with the Kleiman-Mori cone show that the divisor ηι(φ+)*Η +

Κx* is ample for m » 0. Hence the pluricanonical ring on the right-hand side is finitely

generated.

(2.12.2) => (2.12.3) is obvious.

(2.12.3) => (2.12.1). This is a simple modification of the argument of [7], pp. 278-279, or

properly speaking of [7], Lemma 1.6. We need to take X+= ¥io)(R(my*H + Kx)) for

m » 0 in order that there should exist a projective morphism φ + : Χ+^> Ζ. Then the fact

that X+ is Q-Gorenstein will follow from the fact that 6x+{r(m(q> + )*H + Kx+)) = Θχ +

(l)for/-»0. •

The proof has the following consequences:

(2.13) PROPERTIES OF THE ADJOINT TRIANGLE.

(2.13.1) If an adjoint triangle exists for φ, then it is unique.

(2.13.2) // X has only routine (respectively canonical, terminal) singularities, then the

same holds for X+.

(2.13.3) // — Kx is relatively ample for φ, then any "minimal" common resolution W of

XandX+:

W

X X+

has a,+ > a, for all i, where Kw = g*Kx + Σα,/) andKw = h*Kx*+ Σα,+/).

(2.13.4) There exists a surjective map of Weil divisor groups

(tr,,)*: WeilDiv(A') -* WeilDiv(X+)

which induces a map of Q-Cartier divisor groups

if ψ: Χ —* Ζ is the contraction of an extremal ray.

(2.13.5) If moreover φ: X -> Ζ is the contraction of an extremal ray and X is Q-factorial,

then the map

is surjective, and X+ is again Q-factorial.

PROOF. Consider a minimal resolution

W
g/ \ h

X X+

that is, a resolution of the base locus of some linear system a<p*H + bKx which defines

the model X+. Then from the fact that - Kx is relatively ample for φ it follows that

g*{a<p*H + bKx) ~ Λ*(α(φ + )*// + bKx.) + £#·,*; ,

where the Ff are the exceptional divisors of g and h, and all η > 0. Therefore

But bg*(Kx) ~ bKw - LbatFi and bh*(Kx+) ~ bKw - Ebaf Ft. Therefore
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and hence a,+ = a, + (rjb). This proves (2.13.3). If we do not require that —Kx is

relatively ample, then /·,. > 0 and α,+ > at, which gives (2.13.2).

Suppose that φ = contf i, where R is an extremal ray. Suppose that/) e DivgA' is a

Q-Cartier divisor such that (D • R) = 0; then ( t r ^ D = (φ + )*Ό' (see (2.9.1)). If D = Kx

then (tr^,)*^^ = Kr. Again by (2.9.1),

DivQ X = <p*DivQZ 8 Q · ^ .

This establishes the existence of (tr^)*. Now suppose in addition that X is Q-factorial.

Consider an arbitrary common resolution

W

g iS \h

X X+

Then for any D e DivQA'+ we have D = (trv)^g^h*D, so that in this case (tr9)» has a

section (tr )* = g*h*. To prove that X* is Q-factorial it is enough to check the equality

D = (tr ),g,/i'D, where h'D denotes the proper transform of D. The remaining assertions

are trivial. •

(2.14) REMARKS, (a) φ + = id if and only if Ζ is already Q-Gorenstein. This case

generalizes case (A) of elementary contractions (see (2.9.4)); in this case we can just take

tr 9 = φ and φ + = id z . Note also that in this case p(X) > p(Z), provided that Kx is not

trivial relative to φ.

(b) In (2.13.5), either φ is a contraction of type (A), with X+= Ζ and p(X + ) = p(Z) =

p{X) — 1, or φ is a contraction of type (B), and in this case (tr^,)* is an isomorphism, and

p( X) = p(X+). Thus it is not at all obvious that a sequence of extremal modifications has

to terminate after finitely many steps, so that there exists a finite chain of such

modifications

χ ...* χ+...> χ++...* -> χί + n) = γ

such that either (1) KY is nef, or (2) Υ has an extremal contraction cont^: Υ -> Ζ which

is a Fano fiber space, with dim Ζ < dim X (see (2.3.5)).

However, as we can see from the inequalities (2.13.3), the singularities undergo a certain

simplification, which is sufficient to imply this in the 3-dimensional canonical case. More

precisely:

(2.15) DEFINITION. Let X b e a variety with canonical singularities, and let /: Υ -» X be

a resolution of X. Then KY = f*Kx + ΣΛ,·/)·, where the F, are exceptional divisors, and

all α ι > 0. We define the difficulty of X by

d{X)= # { / | f l < < l } .

It is easy to check that d{ X) does not depend on the resolution.

(2.16) COROLLARY. Let X be a Q-factorial variety with canonical singularities, and let

irR: X —» X+ be an extremal modification in a ray R such that the dimension of the

exceptional set of <p+ is not less than dim X - 2. Then either (A) p(X+) = p(X) - 1, or

(B) p(X+) = p(X) butd(X+) < d{X).

In particular, the dichotomy (A) or (B) is always true in the 2-fold canonical case, with no

hypothesis on the exceptional locus, since if the exceptional locus of φ+ has dimension 0 then

φ + = id.



604 V. V. SHOKUROV

PROOF. Case (A) corresponds to an extremal contraction of a divisor. Otherwise, φ + has

an exceptional set Γ of dimension > dim X+- 2, along which X+ must be nonsingular,

by the fact that it has terminal singularities (2.13.3). But then by (2.13.3) again, we get that

on a common resolution, some exceptional component over Γ has a,+ = 1. Hence

d(X+)< d(X). •

(2.17) COROLLARY. If an adjoint diagram always exists in the 3-fold canonical case, then

the sequence of extremal modifications must terminate. •

In conclusion, we remark that if A' is a 3-fold with Q-factorial canonical singularities

such that Κχ is not nef, then there always exists an extremal ray R satisfying the

conditions of Corollary 2.9; see [8] and [9]. The same thing holds for any nonsingular

variety [6].

Thus in the extremological program for the construction of minimal models formulated

explicitly by Reid, and implicitly by Mori [6], there remains at present only one open

problem in the 3-fold case:

(1) the existence of the adjoint diagram (the "flip conjecture").

In case η > 4 two further problems must be added:

(2) the existence of extremal faces ofF (as in (2.8));

(3) the finiteness of a sequence of extremal modifications, and more particularly, finding

bounds on the minimal a,.

ADDED IN PROOF. Towards the end of 1983 an entirely satisfactory solution of problem

(2) was obtained by Kawamata [13], and rather more precisely by Kollar [14]. For the

problem of bounds in (3), D. Markushevich showed that for any Q-Gorenstein singular

3-fold X there always exists components with a, < 1, and V. Danilov checked that the

same holds for tone varieties in any dimensions.
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