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0. I n t r o d u c t i o n  

The purpose of this paper is to demonstrate the power of geometrical methods which allow one to sub- 
stantially improve the log minimal model program (LMMP) for 3-folds. This means that the basic facts such 
as the cone, contraction, flip, termination, and abundance theorems hold under much more general and, per- 
haps, ultimate conditions: 

�9 boundaries are R-divisors and 
�9 singularities are log canonical. 

Of course, we do not pretend to give a direct proof of them, except for the termination theorem. It is only 
a derivation of these facts from the well-known situation where the boundaries are Q-divisors and singularities 
are log terminal [11, 15]. In the latter case, the proofs use essentially cohomological methods: the vanishing 
and nonvanishJng theorems. 

The improvement pursues the standard mathematical goal of being close to the cutting edge, but  it gives 
some new applications as well. The most important of them are the two main theorems in Sec. 6, which 
describe the behavior of log models with respect to their boundaries. In particular, the second of them answers 
in the affirmative regarding [24, Problem 6] in dimension 3 and improves substantially the first a t tempt  [25, 
Relative Model Theorem]. 

Another application presents results on the Kleiman-Mori cone in the critical zone where the log canon- 
ical divisor is trivial. 

As we see in Sec. 6, the core of the methods is based on the standard LMMP with Q-boundaries and log 
terminal singularities and it works in any dimension, except for the log termination, which is given for 3-folds 
in Sec. 5. The log termination for 3-folds in the standard case is credited to Kawamata [10]. 

Other sections contain preparatory and related materials. 

A c k n o w l e d g m e n t .  Some gaps in the first draft were pointed out by T. Hayakawa and S. Mori in Theo- 
rem 3.2, as well by A. Bruno and K. Matsuki in the contraction results (6.16 and 6.16.1). The author would 
like to express thanks to all of them. 
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The geometric objects we work with are either normal complex analytic spaces or normal algebraic va- 
rieties over an algebraically closed base field k of characteristic 0 (even sometimes algebraic spaces). In the 
analytic case the objects X are almost algebraic. This means that X is equipped with a proper morphism 
f:  X -+ S, which in most cases are Moishezon and projective respectively. 

The meromorphicity is considered in the sense of Remmert,  i.e., a meromorphic map f:  X -+ Y of normal 
complex spaces is identified with its graph, which is an analytic subset F f  of the product X • Y, satisfying 
the following conditions: 

(i) F f  is locally irreducible in X x Y, and 
(ii) the natural projection F / ~  X is proper, surjective, and generically one-to-one. 
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Then a bimeromorphic modification X --~ Y is assumed to be an inverfible meromorphic map, invertible in 
the category of meromorphic maps. Thus, the modification can be presented as a Hironaka hut 

W 
f g 

X Y 

where f and g are proper and 1-to-1 over generic points. 

We assume that the reader is aware of the following notation: 

a(D, Cx,  X), the log discrepancy of a log divisor K x  + Cx for a prime divisor D in a modification of X; 

d(D, Cx,  X), the discrepancy of a log divisor Kx  + Cx for a prime divisor D in a modification of X; 

centerx D, the center in X for a prime divisor D in a modification of X; 

Div(X),  the group of Well divisors of X; 

DivK (X) = K | Div(X),  the group of Well K-divisors of X,  where K is a commutative ring (below we 

need only K - R or Q); 
"~A, for a ring A, denotes an A-linear equivalence of A-divisors (see 2.5); 

mult(E,  D, X)  -- multE D, the multiplicity of an R-Cartier divisor D E DivR(X) for a prime divisor E 

in a modification of X.  
We agree to drop some of the variables in discrepancies and multiplicities whenever they axe assumed to 

be fixed, e.g., we write a(D) instead of a(D, Bx ,  X)  if a log variety (X, Bx )  is fixea. 

1. Bi-Divisors, Discrepancies, and Singularities 

Fix a birational (bimeromorphic) class X of an algebraic variety (respectively complex space) X. 

NOW it is time to consider the group Div(X) = 2Piv(X) of (birational or biraeroraorphic respectively, or 
simply) bi-divi, ors of X. This is an Abelian group which is generated by prime Well divisors on the modifi- 
cations of X.  T w o  such prime divisors, e .g,  D C Y and D t C Y', are identified if the induced modification 
y _+ y r  birationally (bimeromorphically) transforms D into D t. In the algebraic case, according to the the- 
ory of valuations [30], these prime divisors are in one-to-one correspondence with Z-valuations of the field of 

rational functions of X.  
Prime divisors generate 2Ply(X) in the following sense. Every divisor D in 2Ply(X) is an integral linear 

combination 

D = E diDi 

with distinct prime divisors Di. "Integral" means that the coefficients dl are integral. The coefficient di is 
called the multiplicity of Oi in D. Note that it should not be confused with the usual multiplicity mult(E,  
D, X)  for R-Cartier divisor D E DivR(X), especially whenever a prime E E Z)iv(X) is exceptional on X. 
Nonetheless, the latter defines an important example of a bi-divisor (see Example 1.1.1 below). 

Let 1" be another modification of X.  Any Weil divisor of Y is a bi-divisor of X or X. Thus we have an 
inclusion Div(Y) C_ ~Div(Y). Moreover, it gives a split 

l)iv(X) = Div(Y) + 8(Y), 

where 8(Y) corresponds to the so-called ezceptional divisors of Y which do not present in Y. In the algebraic 
case an exceptional divisor of Y may be a divisor in a complement Y \ Y. 

In fact, the hi-divisor D as a linear combination is defined if it has such a split for some Y. More precisely, 

let 

D= Dy + yD 
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be the corresponding decomposition, where Dy denotes the part of the linear combination D = ~ diDi with 
the prime divisors Di running in Y, and yD E E(Y) denotes the remainder. Then 

D = E diDi 

is a divisor of 7)iv(X) if Dy is a divisor of Div(Y). 
So, in the algebraic case the divisor D y  E Div(Y) is a finite integral linear combination D r  = ~ diDi, 

where the prime divisors Di lie in Y. "Finite" means that there is only a finite number of multiplicities di ~ O. 
In the analytic case, we assume that the last condition takes place locally. 

If we have two modifications X and Y E %, then the prime Well divisors of Y, but  not of X,  form prime 
(divisorial) components of the exceptional divisor for the modification Y "  --+ X. Here and everywhere we 
identify a prime Weil divisor with its generic point. Since Y is normal, the modification is well defined for the 
Weil divisors and, in particular, for the exceptional divisor. 

Thus for any modification Y of X and  a bi-divisor D E 2)iv(X), the component Dr is a divisor of Y. 
Moreover, we can extend any divisor Dy E Div(Y) to a bi-divisor D by an arbitrary exceptional part  yD. 

The most important invariants of a prime bi-divisor D are its center centerx D in X and discrepancies 
(see Example 1.1.4 below). We would like to remind the reader that if Y -  -+ X is a modification of X and 
D is not exceptional in Y, then centerx D is an irreducible subvariety, being the birational (bimeromorphic) 
transform f(D) (in the analytic case, which is its proper inverse image on the graph l~y and a subsequent 
projection to X).  So, as prime divisors we identify the center with its generic point in the Grothendieck 

sense. 
In the algebraic ease, it may happen that centerx D = 0, e.g., D is in X \ X.  This leads to complications 

in the definition of discrepancies. There are two ways to avoid uncomfortable divisors with centers outside 
of X. First, we may simply require the condition centerx D # 0, whenever we need it [15, log canonical 
models]. We prefer the second way. We restrict our consideration to complete varieties (compact spaces) or 

to an appropriate relative version. 
Fix an algebraic variety (complex space) S as a base. Let X'/S denote a birational (bimeromorphic) class 

(or a category) of proper morphisms f :  X --r S. Here the equivalence is defined by the modifications/S (which 
are the morphisms of the category). Then by a relative group of bi-di~cisors 73iv(X/S) 79iv(X/S), we mean 
a subgroup of 7)iv(X) generated by the prime bi-divisors D with centerx D in S, i.e., it is nonempty in S. 
Note tha~ in the analytic case Div(X/X) = Z)iv(X) by its very definition, bu~ not in the algebraic case. 

For a commutative ring K,  put  

DivK(X/S)  = Z iv(X/S) | K. 

Elements of this group are called (relative Weil) K-bi-divisors. In particular, Divz(X/S) = Z)iv(X/S). The 
most important for us are R-bi-divisors, the elements of 73iv~(X/S). The same terminology is used for divisors 
as well. 

So, every K-bi-divisor is a linear combination D = ~ diDi with multiplicities di E K. As in the case of 

bi-divisors, for any modification Y of X,  we have a split 

7)ivK(X/S) = DivK(Y) + s 

where DivK(Y) = Div(Y) | K,  or D y  = ~ diDi with Di E Div(Y) is assumed to be finite (locally finite). 
tn the algebraic case, according to Hironaka and since k is of characteristic 0, we can describe DivK (X/S)  

as the projective limit of DivK (Y) with nonsingular projective modifications Y --r X/S .  This is the so-called 
foam space of X. The same holds in the analytic case over a neighborhood of a projective subspace in S. 
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1.1. Examples. 

1.1.1. Let D be an R-Cartier divisor of X.  Then we may define its completion in Div(X/S)  as a bi-divisor 

-D = E rniDi, 

where mi = m(Di, D) is the multiplicity of Oi in D. 

The completion may be used in the explanation of a Zariski decomposition. 

1.1.2. Bi-boundaries. A birational (bimeromorphie) boundary or, simply, bi-boundary of X / S  or X / S  is an 

R-bi-divisor B = ~ biDi of X / S  such that 

(i) all bi e [0, 1]; 
(ii) for some modification Y of X and for any Oi exceptional in Y, the multiplicity of Di in B is equal 

to 1. 

In the algebraic case, this means that,  for any modification X E 2(, bi = 0 for the nonexceptional divisors 
Di of X,  and bi - 1 for the exceptional divisors Di of X,  except for a finite set of bi-divisors Di, for which 
bi E [0, 1]. The same holds over a neighborhood of a compact subset of .9 in the analytic case. 

So, replacing X by its modification, we can assume that the bi-divisors Di with bi < 1 are nonexceptional 
in X,  or bi = 1 for the exceptional divisors Di of X.  In this case, the divisor B y  for any other modification 
Y of X coincides with that for the boundary B = B x  in [26]. 

By a log birational class of algebraic varieties (spaces) we mean a pair (X /S ,  B) with a bi-boundary 
B E Dive(X/S) .  It may be considered as a birational class (or category) of log varieties (spaces) or log pairs 
(X/S ,  Bx ) ,  where X / S  E Y(/S. Then the modifications f :  X -  --~ Y are compatible with boundaries, i.e., the 
modified boundary f ( B x )  has the same multiplicities as B y  in all common prime divisors (as bi-divisors) of 
X and Y. Note that B y  = f ( B z )  whenever f - 1  has no exceptional divisors, i.e., whenever f is essentially a 
/ ip. 

1.1.3. Canonical bi-divisors. Another astonishing example is a canonical bi-divisor K in DivR(X/S)  which 
can be defined by any nontrivial rational (meromorphic) differential form of the highest degree. For each 
X E X,  K x  is the canonical divisor defined by the form on X. Thus, it will always be a Z-divisor. 

In the analytic case, it may be defined only locally. For instance, this holds locally/S, when X / S  is 
locally/S Moishezon or projective. 

By a log canonical bi-divisor we mean a shift K + C, where C E 23ivR(X/S). Besides introducing dis- 
crepancies below, we assume that C = B is a boundary. 

1.1.4. Discrepancies. Let K + C be a log bi-divisor of X such that K x  + Cx is R-Cartier. Then 

K + C  = K x  + C x  + R, 

where R = R(C, X) ,  is a relative discrepancy bi-divisor. It is nontrivial only on exceptional prime divisors Di 
of X, and its multiplicity for every such Di is the relative discrepancy rl = r(Di, C, X)  of K x  + Cx  in Di. 

By a discrepancy bi-divisor we will mean that D = D(C, X)  = R(C, X)  - C. Thus K = K x  + Cx + D. 
Its multiplicities di = d(Di, C, X)  = d(Di, Cx,  X )  = ri - ci are Reid's discrepancies for the exceptional 
prime divisors Di of X ,  and di = d(Di ,C,X)  = -c i  is the negative of the multiplicity ci of C in every 
nonexceptional Di of X.  

If we define the log discrepancies in a naive way, ai = a(Di, C, X)  - ~i + 1, then they will not correspond 
to a bi-divisor. The correct approach relies on a normalization depending on X. Namely, let Suppx C be a log 
bi-support of C with respect to X, i.e., a bi-divisor with multiplicity 1 for each Di exceptional on X or with 
ci ~ 0, and multiplicity 0 otherwise. 
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Then a log discrepancy bi-divisor will be A = A ( C , X )  = D ( C , X )  + $ u p p x C .  It has log discrepancies 
ai = a ( D i , C , X )  = a ( D i , C x , X )  as multiplicities, whereas al = d / +  1 for each Di exceptional on X or 
with ci r 0, and multiplicity 0 otherwise. In particular, if C = B is a bi-boundary such that bi = 1 for the 
exceptional bi-divisors Di of X, then ai = di + 1 if Di is exceptional on X ,  ai = 1 - bi if Di is nonexceptional 
and bl ~ 0, and al = 0 otherwise. 

The discrepancies and their bi-divisors are independent of the choice of K. Therefore, even in the analytic 
case, they are well defined because K exists at least locally on X. 

1.2. Def ini t ion.  A pair (X, B x )  or simply X has only log canonical singularities with respect to B, is 

1.2.1. K x  + B x  is R-Cartier, and 
1.2.2. the relative log discrepancy R(B,  X )  is effective. 
The latter means that all ri >_ O. But they are nontrivial only for prime bi-divisors Di exceptional on X. 
On the other hand, for every such Di, the log discrepancy is easily recovered in terms of B and the relative 

discrepancy: 

ai = ri + 1 - bi. 

Thus 1.2.2 is equivalent to 
1.2.3. ai >_ 1 - bi for each Di exceptional on X (cf. [26, p. 101]). 

Moreover, we say that (X,  B x  ) or simply X has only (respectively strictly) log terminal singularities with 
respect to B when (respectively X is Q-factorial, projective/S, and) 
1.2.4. ai > 1 - bi for each D~ of a log resolution for (X, B x  ) exceptional on X (cs [26, p. 101]). 

If (X, B x )  has only log canonical singularities with respect to B, then the log discrepancies ai are well 
defined and are nonnegative, because 1 - bi >_ O. So, (X, B x )  has only log canonical singularities (respectively 
log terminal or strictly log terminal singularities of with respect to B). The only difference from the former is 

in condition 1.2.3 (respectively 1.2.4). 
It may happen that (X, B x  ) will have better singularities such as log terminal, strictly log terminal, etc. 

We would like to modify some of them. 

1.3. Singular i t ies .  Let (X, B x )  be a log pair such that K x  + B x  is R-Cartier in a generic point 7/, i.e., 

in its neighborhood. Fix nonnegative real e. 
1.3.1. We say that (X,  B x )  has only e-log canonical (respectively e-log terminal) singularities in 7/if a(D)>_ e 
for every D (respectively > e for every exceptional D on a log resolution of X) with Supp X D = q. 
1.3.2. We say that (X,  B x )  has only e-canonical (respectively e-terminal) singularities in q if d(D) >_ e 
(respectively > e) for every D (respectively exceptional on X) with Supp X D = r/. 
1.3.3. The singularities of (X, B x )  are only e-log canonical, etc., in codimension d, if they are such for each 
q E X with codimx q = d. Similarly, we may define singularities which are only e-log canonical, etc., in 
codimension > d or somewhere else. Respectively (X, B x )  has only e-log canonical, etc., singularities, if they 
are such for each q E X. The only difficulties may occur in the log terminal case and for e -= 0, where we 
consider some log resolution of X for all given points 7/at once. 

For e -- 0, we say simply tog canonical instead of 0-log canonical, etc. This agrees with the previously 

used terminology [11, 26]. 

We need the following results only in special cases, for which they are easily checked. They will be treated 

in a full generality in [29]. 

1.4. L e m m a .  Let q and 0 be generic point, in X such tha~ 77 is a specialization of O, and K x  + . C x  in 
R-Cartier in 77. Then K x  + C x  is log canonical in O, whenever it is so in r 1. 

1.5. Corol la ry .  I f  I (  x + C x is log canonical in r?, then it i3 so in a neighborhood o f t  l. In particular, C X is 

a subboundary there. 
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1.6. L e m m a  ([23, 1.1]). Suppose that, for a real e > O, K x  + C x  is e-log canonical in a neighborhood o f t  1. 
Then over a neighborhood of X ,  there exists a log resolution f : Y --+ X such that K y  + C y  = f * ( K x  + C x )  
[26, See. 3] is 1 + e-log canonical in codimen~ion > 2. 

1.7. Corol lary.  Under the assumptions of  Lemma 1.6, there ez/sts a finite number o f  bi-divi~ors E / X  with 
a(E, C x  ) < 1 + e and r i i~ a specialization of centerx E.  Moreover, we can drop the lazt restriction whenever 
K x  + C x  is e-log canonical everywhere (and in the analytic case X i~ a neighborhood over a compact set W).  

2. Log Mode l s  

As above, let f:  X -~ S be a proper morphism and B be a bi-boundary of X. 

2.1. Defini t ion.  A birational (bimeromorphic) modification g: Y -+ S E W/S of f is called a (respectively 
weakly) log canonical model of f or W / S with respect to 13 if the following conditions hold: 

(LCS) (Y, By )  has only log canonical singularities with respect to 13; and 
(LCN) K y  + B y  is ample (respectively nef) relative to g. 

Similarly, g is a (respectively strictly) log terminal model of f with respect to 13 when 
(LTS) (]I, B y )  has only (respectively strictly) log terminal singularities with respect to B; and 
(LTN) K y  + B y  is nef relative to g. 

The strictly log terminal case is also referred to as log minimal. 

Note that each type of log model above depends only on the class (W/S ,  23). 
The numerical properties (LCN) and (LTN) of the log models make sense in Definition 2.1 because K y  + 

B y  is R-Cartier by (LCS) and (LTS) respectively. As we know, the latter also implies that K y  q- B y  has 
only log canonical and (strictly) log terminal singularities depending on the type of model. So, ( Y / S ,  B y )  is 
simply a weakly log canonical(respectively log terminal, log minimal,) etc. model, i.e., it has only that type 
of singularities and satisfies (LTN). 

According to [26, 1.5.1 and 1.4.3], a log canonical model is unique and projective (in the analytic case, 
over a neighborhood of any compact subset W C S), if it exists. Indeed, we can assume that b i =  1 for all 
exceptional divisors Di of X. Then the reference works. 

2.2. C o n j e c t u r e  on log m i n i m a l  models .  (Suppose that in the analytic case X is Moishezon over a neigh- 
borhood of a compact ( Moishezon) subspace W C_ S, for instance, quasi-projective). Then for any bi-boundary 
B of X ,  there is a modification g: Y --* S (respectively over a neighborhood U of W C S), which has only 
strictly log terminal singularities for B and one of the following types: 

(LMM) g is a log minimal model with respect to B; 
(LFF) g is a nontrivial fiber space of tog Fano over S (respectively over U). More precisely, there is an 

extremal and non-birational (non-bimeromorphic) contraction f:  Y --+ S' over S (respectively over U) such 
that K y  + B y  is negative on the fibers of f .  

Moreover, we may assume that a log minimal model Y / S  has a resolution in 1.2.4 in which each of a given 
finite set of prime bi-divisors/ S i~ nonexceptional. 

2.3. T h e o r e m  on log m in im a l  mode l s  for 3-folds. For any bi-boundary B of a 3-fold X ,  the conjecture 
on log minimal models holds: 

This is an improved version of [15, Theorem 1.4] where the multiplicities bi are assumed to be rational. 
However, the proof follows along the same line: the LMMP with respect to B (see Sec. 6 below and el. [26; 
15, 2.26]). In particular, for this we need log flips [26] and a log termination, which we discuss later. 

Log Fano fiberings belong to Sarkisov's theory [22, 21, 5], and they are beyond the scope of this arti- 
cle. We will concern ourselves with log terminal and log canonical models. Note that if f has a weakly log 
caaaonical model, then it cannot be a log Fano fibering with respect to the same boundary B even birationally 
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(bimeromorphically). More generally, we check below that the weakly log canonical models of (2d/S, B) have 

the same numerical dimension. 

However, first we need to fix some notions and notation. By a prime cycle C of X / S  we mean a relative 
prime cycle of X over S and denote this by C C_ X /S .  So, C is a proper irreducible subvariety (subspace) of 
X with the image f (C)  = s being a (closed) point of S. In other words, C belongs to a fiber X ,  = f - x s .  We 
say that C is a d-cycle if C is a prime cycle of dimension d. For any R-Cartier divisor D of X and a prime 

d-cycle C, the intersection 

(C.D d) d=f(C.(Oic)d) 

is well-defined, as in the case where d = 1 and C is an irreducible curve. This can be extended to any d-cycles 
(even cycles) of X / S ,  which are finite linear combinations of prime d-cycles (respectively cycles) of X / S .  Note 
that C is a point and (C.D d) = I when d = 0. 

For a modification h: X -  --+ Y of f into g: Y -+ S and a prime cycle C, let h(C) C Y / S  denote the image 
of the generic point of C if h is defined in the latter, and 0 (or 0) otherwise (cf. definition of a birational image 
in [26, p. 97]). This can be extended to a homomorphism h of all cycles. 

Let WLCM(X/S )  = W L C M ( X / S )  denote a subclass in (X/S ,  B) of the weakly log canonical models 

g: Y --+ S with respect to B. 

2.4. P r o p o s i t i o n .  Suppose that WLCM(X/S)  # 0, 4. e., f haa a weakly log canonical model with respect to 
B. Then 

2.4.1. f has no model which has a log Fano fibering as in (LFF) of 2.2; 

2.4.2. the discrepancies di = d(Di, Y) (as well as the relative ones ri = r(Di, Y)) of the bi-divi~ors Di are 
independent of Y / S  E WLCM(X/S ,  B); 

2.4.2'. the log discrepancies ai = a(Di, Y) of the hi-divisors Di are independent of Y / S  E WLCM(X/S ,  B), 
whenever Di is exceptional (or respectively nonexceptional) on Y; 

2.4.3. for any X / S  E Z / S ,  natural d, and cycle C of X / S ,  the intersection number (Ct . (Ky + B y )  d) is 
independent of Y / S  E WLCM(X/S ,  B), where C' denotes birational (bimeromorphic) image of C in Y;  

2.4.4. for any point s E S the numerical dimension 

v (Ky  + By)s  = max {d](C.(gy + By)  a) > 0 for a prime d-cycle C C_ Xs = f - i s }  

is independent o f Y / S  E WLCM(X/S ,  B); 

2.4.5. the dimension v (Ky  + By)s  has the upper semi-continuity property (if X is Moishezon locally/S in 
the analytic case); in particular, this function in s attains the minimum in the generic point of S. 

Thus, we can define the relative numerical log Kodaira dimension of X / S  or 2d/S with respect to B as 
the numerical dimension v (Ky  + By)s  for the generic point s E S when X / S  E WLCM(X/S ,  B) # 0, and 
- o o  otherwise. We denote the dimension by v(X/S,  B) = v(2d/S, B ) .  

Note also that 2.4.3 implies that any two weakly log canonical models of (2d/S, B) are equivalent in the 

sense of Definition 6.1 below. 

Proof .  The following arguments use the negativity of birational contractions [26, 1.1] and are similar to 
that of [26, 1.5]. Since the statements are local, we may assume that S is a neighborhood of its point s. Here 
we prefer also relative log discrepancies. 
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Let g: Y ~ S and g': Y' ~ S be two models of X/S: g is weakly log canonical and g' has only log 
canonical singularities for B. To compare them we consider the Hironaka hut 

W 
h h' 

Y 

g g' 
S 

y '  

where h and h ~ are proper birational (bimeromorphic). Then 

K w  + Bw = h*(Ky + By)  § E r(Di, Y)Di 

and 
KW + Bw = ht*(gy, + By,) + E r(Di,Y')Di, 

where r(Di, Y) and r(Di, Y') are nontrivial only for divisors Di of W which are exceptional for h and h' 
respectively. By the choice of g, all r( Di, Y) and r( Di , y ,)  > O, h*( Ky  + By)  is nef /S,  and h'* ( Ky, + By,) 
is numerically trivial o n / Y ' .  Thus 

E ( r ( D I , Y )  - r(Di,r '))Di = ht*(Ky, + By,) - h*(Ky + By)  

is semi-negative/Y ~ and is effective by [26, 1.1]. (Note that it is better to use the Russian original this time, 
which states that  we need only the nompositivity of D/Z, in [26, 1.1 (ii)], for the effectiveness of D.) 

If g' were a log Fano fibering as in (LFF) of 2.2, then effective ~'](r(Di, Y) - r (Di ,  Y'))D~ = h'*(Ky, + 
By,) - h*(Ky + By)  would be non-negative on rather general curves/S. This gives a contradiction for a 

nontrivial log Fano fibering. 
Suppose now that g, is also a weakly log canonical model. Then by the symmetry of the above arguments, 

7~(r(Di, Y) - r(Di, Yt))Di = 0. This gives 2.4.2 and 2.4.2 t. 
The last implies 2.4.3 since, for any prime d-cycle C C W/S, 

[C: h(C)](h(C).(Ky + By)  d) = (C.h*(Ky + By)  d) 

= (C.(Kw + BW - E riDi)d)' 

where [C: h(C)] = deg (hlc) if d i m h ( C ) =  d, and 0 otherwise. 
Now 2.4.4 is obvious, and 2.4.5 can be obtained by a Noetherian induction. In the analytic case, we may 

replace Y/S  by W/S which is locally projective/S and check the semi-continuity of v(h*(Ky + By))~. This 
follows from the compactness of each connected component of the Hilbert scheme for projective spaces. �9 

Note that •(X/S, B) < d imX/S  = dimXs,  where s 6 S is the generic point. In the case u(X/S, B) = 
dim X / S  we say that f or X / S  has the numerically general type with respect to B. When B is a Q-divisor, 
this coincides with a well-known notion: KX + BX is big over S. 

2.5. Def in i t ion .  An R-divisor D of X / S  is called semi-ample/S if there is a contraction g: X ~ T/S  such 
that D "rt g*H for an ample R-divisor H of T/S,  where "~R denotes R-linear equivalence, i.e., D - g*H is 
an R-linear combination of principal divisors (in the analytic case over a neighborhood of W C S under the 

Moishezon conditions of 2.2). 
Similarly, for any ring A, we may define an A-linear equivalence "A- Since g is 'a contraction, "~A is 

always equivalent to that of locally/S (cf. 6.17). 

Since X / S  is proper, g and H are uniquely defined whenever they exist, i.e., D is semi-ample. More 
precisely, g contracts the curves C of X / S  with (C.D) = O. Note that D is semi-ample only if it is nef. The 

converse does not hold in general. 
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For a nef Q-divisor D, the semi-ampleness implies that its Iitaka dimension equals the numerical one 
which is the abundance [11, 6.1.1]. Moreover, they are equivalent for nef log divisors having only Kawamata 
log terminal singularities [11, 6.1.13]; presumedly, this should be true for log canonical singularities as well. 

2.6. Log seml-ampleness  conjecture. If  ( X / S, B X ) is a weakly log canonical model, then K x + B x is 
semi-ample (over a neighborhood of any compact subset o r s  in the analytic case). The corresponding contrac- 
tion I: X --+ S' / S will be called an Iitaka morphism of ( X /  S, B x ). 

Since the Iitaka morphism I is unique, it is enough to construct r locally/S. Note also the following 
property of the Iitaka morphism. For every s E S, d imS]  = u ( K x  + Bx)s .  In particular, d i m S ' / S  = 

B). 

2.7. Theorem on log s e m i - a m p l e n e s s  for  3-folds. (Suppose that in the analytic case X is Moishezon 
locally/ S. ) A weakly log canonical model (X/S ,  B x ) possesses an Iitaka morphism whenever dim X _< 3. 

When B x  is a Q-divisor, the theorem has been essentially proved by Kawaznata [9] and Miyaoka [17] in 
the case B x  = 0, and then generalized by Font, Keel, McKernan, and Matsuki [12] (cf. [15, 8.4]). In Sec. 6 
we derive Theorem 2.7 from this and investigate moduli of log canonical models depending on B. 

2.8. Coro l l a ry  on  log canon ica l  mode l s  for 3-folds. A 3-fold X / S  with a hi-boundary B has a log 
canonical model if  and only if it has the numerically general type with respect to B (and Moishezon locally/S 
in the analytic case). Moreover, this is equivalent to K x  + B x ,  being big/S when K x  + B x  is a Q-divisor 
having only log canonical singularities for B. 

Proof .  If X / S  has the numerically general type with respect to B, then by Theorem 2.3 and Definition 2.1, 
X / S  has a weakly log canonical model (Y/S,  By) ,  and u(Y/S,  B) = dim Y/S .  So, by Theorem 2.7 we have an 
Iitaka morphism Y --+ S ' / S  which is birational (bimeromorphic) and gives the required log canonical model. 

The converse statement follows directly from definitions. [] 

3. Blow-ups  for  3-Folds 

Let X be a 3-fold neighborhood of a point P with a boundary B x ,  and let A be an effective R-Cartier 
divisor. Suppose that, for 0 < e << 1, B x  - e A  is a boundary and K x  + B x  - e A  is~)urely log terminal. Then 
K x  + B x  is log canonical. By divisors over a neighborhood of P,  we mean hi-divisors with prime components 
having centers passing through P. Fix a finite set of exceptional divisors Ei over a neighborhood of P with 
log discrepancies al = a(Ei, BX,  X) < 1. All these divisors are nonexceptional on a log resolution of X. Of 
course, the resolution may not be sufficiently economical. Theorem 2.3 allows us to improve this. 

3.1. T h e o r e m  on blow-ups .  Under the above assumptions and over a neighborhood of P, there exists a 
blow-up f: Y ~ X such that the divisors Ei are nonexceptional in Y and form the set of all exceptional divisors 
o f f .  Moreover, 

f * ( K x  + B x ) =  K y  + By ,  

Y is Q-factorial, log canonical with respect to B y  = f - l B x  + ~'~(1 - ai)Ei and with the same log discrepancies 
as for K x  § B x .  Respectively, for 0 < e << 1, 

f * ( K x  + B x  - eA) = K y  + B y  - e f * A  

is purely log terminal. 

In the theorem we deliberately identify X with the neighborhood. 
Replacing B x  by B x  - cA, we can assume that K x  + B x  is purely log terminal and, for chosen divisors 

Ei, ai < 1 still. Let us extend B x  to a bi-boundary B such that its multiplicity bi in exceptional Ei is 1 - a i  for 
chosen Ei and 1 otherwise. Note that X itself is a weakly log canonical model of ( X / X ,  B). So, by 2.4 we know 
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discrepancies of any log minimal model. We contend that a log minimal model Y [ X ,  which has a resolution 
with nonexceptional chosen El's, satisfies the requirements. Indeed, b y  2.4.2 ~ and 1.2.4, each such Ei is also 
nonexceptional in Y. All other Ei's, exceptional in X, are exceptional on Y. Otherwise ai = ai - 1 + bi = 
r(Ei, B x ,  X)  = r(Ei,  B y ,  Y) = 0. This contradicts the purely log terminal property of (X,  BX) .  

Unfortunately, this proof uses the existence of log minimal models stated in Theorem 2.3. We know the 
existence of flips [26]. So, the main obstacle is their termination, which has been proved for Q-boundaries 
B by Kawamata [10]. Here we develop another approach, which improves his induction [10, Lemma 6] and 
works as well for R-boundaries. Finally, this gives in Sec. 5 the termination for such boundaries. 

Proof .  Note that  the Q-factorialization of X corresponds in the above arguments to the case where we 
choose an empty set of exceptional divisors. It needs only the special termination [26, 4.1 and 9.I]. Since we 
have a unique required resolution in Theorem 3.1 when X is a surface or over the generic point of any curve 
in X,  we may assume that  P is Q-factorial. 

By [26, 9.1] and induction, it is enough consider the case of a single exceptional divisor E = Ei0. Put  

a ~ aiO. 
Let C be a center of E. Thus C = P or it is a curve through P.  To construct the required blow-up, we 

consider a log resolution f :  Y --+ X of a neighborhood of P,  such that Y / X  is projective, and E is nonex- 
ceptional in Y. As above, we choose the bi-boundary B with x B  = (1 - a)E + r ,  Ei, where Ei denotes 

exceptional in X prime bi-divisors of X / X ,  or with B y  = f - Z B  + (1 a)E + ~ Ei, where the Ei 's  are 
ir 

prime divisors of Y / X  exceptional in X. As we know the corresponding log minimal model gives the required 
blow-up of E. 

We can construct the model using the LMMP [26, general philosophy in Sec. 1; 16] (see also Sec. 5 be- 
low). Since we have log flips [26, 9'3-4], we need only log termination. I contend that  a slight modification 
of the special termination is enough in this case. Indeed, let R be a flipping ray in Y after some extremal 
transformations of Y / X  with respect to K y  + By .  Then its curves intersect ~ Ei,  a reduced part of the 

i~io 
boundary. Otherwise, f is a divisorial blow-down and R has a curve C ' / P  on E which does not intersect 
other Ei 's  with i ~ i0. Since P is Q-factorial, (C t.E) < 0. On the other hand, we can find a nef divisor D 
which is big on E and does not intersect C t. For example, take art inverse image of a hyperplane section of 
the blow-down of R on Y. Thus C = f ( E )  C f (D)  and f ' f  (D) has a positive multiplicity # in E. Then 
0 = ( C ' . f ' f ( D ) )  = (C ' .#E  + D) = #(C ' .E)  < 0 is a contradiction. Therefore, each flipping curve intersects 
the reduced part of the boundary By ,  As has been noted by Kawamata, this is enough for the termination 
in [26, 4.1] (cf. [15, 7.1]). �9 

3.1.1. R e m a r k .  Of course, after Q-factorialization in the proof, we may perturb boundary coefficients and 
assume that they are rational. Then the theorem follows from [10]. However, the above proof is important even 
in this case because it uses the existence of flips and only the special termination (but not like Theorem 3.2 
below). It may be useful in higher dimensions. 

Another application concerns the following theorem. 

3.2. T h e o r e m  ([28, 4.8]). Let P be a 3-fold singular terminal point of X having the index r. Then, for any 
integer 1 < i < r - 1 there exists an exceptional divisor/P with discrepancy i/r.  

Perhaps it is a good idea to use deformation arguments in the proof of this fact. But in general it needs the 
LMMP for 4-folds and an appropriate deformation. Nonetheless, there exists a loophole with a more precise 
realization of the idea in the main case which was assumed in [28, 4.8]. In special cases, it is better to use 
direct calculations. An independent proof, perhaps in the latter style, is given by T. Hayakawa. 
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First, the theorem holds for the main type (1) in Mori's classification [20]. Indeed, this singularity is a 
quotient of type 1/r(a, -a,  1, 0) of a hypersurface xy + F(z r, w) =- 0, where 0 < a < r - 1 and (a, r) = 1. By 
[19] we may assume that P is Q-factorial, which is equivalent to the irreducibility of F.  

The quotient of w = 0 will be a reduced and irreducible Cartier divisor B with P of type 1/kr2(1, bkr-1),  
where k = ord F ,  0 < b < r - 1 and ab -- 1 rood r. According to the inversion of adjunction [26, 9.5], 
K x  + B is purely log terminal in a neighborhood of P (of course, in eodimension > 2). 

By Kawamata [8], there exists an exceptional divisor E / P  with d(E,O) = a(E,B) = 1/r  and 
mult(E, B) - 1. Moreover, the quotient of z = 0 gives a 1-comp]iment B t, i.e., K x  + B + B I is log canonical 
of index 1. So, a(E,B -b B r) = 0, and by Theorem 3.1 we can make a blow up f : Y --4 X such that Y is 
Q-factorial, E is the only exceptional divisor and the exceptional locus of f ,  whereas f * ( K x  -k B -k B I) = 
K y  + f - l ( B  + 13') + Z is log canonical. Moreover, f * ( g x  + B) = K y  + f - l B  + (r - 1)~rE is purely log 
terminal of index r, and the intersection E t~ f -  1B is connected and transversal in the generic points by [26, 
3.10]. We would like to remind the reader that 1/r = a(P, B , X )  is the minimal tog discrepancy in P (see 

Sec. 4 below). 

According to [26, 3.6], f - l B  is normal, and by the adjunction f blows up on B curves with the minimal 
log discrepancy 1/r. Let Q and R be two points o f f - l B  t in E N f - I B .  (They exist and there are exactly two 
of them due to the structure of a 1-complement for Kf-1B q- E l f - l B .  ) We check that they are semi-stable 
with respect to f - i B  + E of type V2(a + a t , - r )  and V2(r - a + ~r, -r) ,  respectively, with a and fl E N. 

It is enough to check that Y and E are nonsingular in a punctured neighborhood of points Q and R. Then 
K y  + f - l B  + E will be log terminal and even purely log terminal in Q and R, whereas f *B  = f - i B  + E is 
Cartier. Thus, by the covering trick the singularities are of type V2(-, - )  [26, 3.9, 3.7]. The invariants are the 
same as for a semi-stable singularity of similar type Vl(r, a; h i , . . . ,  n=) [28, 4.7], because they depend only on 
type 1/kr2(1, bkr - 1) of P E B. (This is a relic of deformation arguments.) Moreover, we may assume that 
nl = . . . .  n= = 1, that is, the discrepancies over Q and R are the same as for Vl(r, a; 1, . . .  , 1). These give 
i/r with 2 _< i < r, because after a Kawamata's blow-up of Q we reduce the problem to the case where Q has 
type V2(a, -r) .  Similarly, we may assume that R has type V2(r-a, -r) .  Therefore, the required discrepancies 
can be obtained by the generalized flower pot [28, 4.5]. 

If Y or E is singular in a punctured neighborhood of points Q or R, say Q, then there is a curve C C 
E \ f - l B  of such singularities through Q. Moreover, if K x  + f - l B  + E is not purely log terminal in Q, then 
there exists an exceptional divisor E '  with centery E t = C and a(E I, f - l B  + E)  = 0. By Theorem 3.1 we 
can blow up E', which contradicts the purely log terminal property of Q for K f - l B  + E[y-IB [26, 3.11]. 

Hence, K x  + f - l B  + E is purely log terminal in Q, and, according to the classification of log canonical 
singularities in dimension 2, E is nonsingular in a punctured neighborhood of a point Q. By [26, 3.9], X is also 
nonsingular in C, because f - l B  + E and E are Cartier in C. This concludes type (1) in Mori's classification. 

In the remaining cases, r < 4. More exactly, types (3), (5), and (6) of Mori's classification [20] are exam- 
ined by Kawamata [8]. In cases (2) and (4), r = 4 and 3 [20], respectively. In these cases we use subsequent 
or other weighted blow-ups. 

Type (2) is the quotient singularity 1/4(1, 3, 2, 1) of a hypersurface x 2 + y2 + F(z, w 2) = 0. As above, 
k = ord F. Then the first blow-up [8, Case 6] is given from a domain of type 1/(k + 2)(k, -4 ,  2, 1) if k --- 1 
mod 4, and of type 1/(k + 2)(-4 ,  k, 2, 1) if k -- 3 mod 4, by 

{(xy 
k/4,y(k+2)/4, zyl/2,wy ~/4) if k -- 1 rood 4, 

(z, y, z, w) ~ (x( k+~-)/4, yx k/4, zz 1/2, wx 1/4) if k -- 3 rood 4. 

Y is given as a quotient of x 2 + y + F(zy 1/2, w2yl/2)y -k/2 = 0 and exceptional E by y = 0 if k - 1 rood 4; 
respectively, the same with x and y interchanged if k -- 3 rood 4. 
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After interchanging coordinates, point Q E Y, corresponding to (0, 0, 0, 0), will be the quotient singular- 
ity of type 1/(k + 2)(2, - 2 , 1 ) ,  and E will be given as the quotient of y2 + G(x, z 2) = 0, where G(x, z 2) is the 
homogeneous component  of F(x ,  z 2) of degree k assuming z with weight 1/2. 

The next blow-up g: Z ~ Y of Q has weights 

w t ( x , V , z ) =  k + 2 ' k + 2 ' k + 2  " 

Then Z has an affine open subset of a quotient type 1/2(1, 1, 1) and the map  g is given by 

(z,U,Z) ~ (:~21(J<§ 

The birational t ransformof  E, denoted again by E, is given by y2 + G(1, z 2) : 0, whereas the new exceptional 
divisor E ~ is given by x = 0. Let R E Z be a point  corresponding to (0, 0, 0). Therefore, in a neighborhood of 
R, g*E = 2k/(k  + 2)E'  + E, g * g y  = g z  - 1/(k + 2)E'  [8, Case 1], and 

1 2k 1 1 
d(E', O, X )  = d(E', O, Y )  + mul t (E ' ,  E, Y)d(E ,  O, X )  = k + 2 + k + 2 4 -- 2 

(cf. calculations in [26, 8.8.4]). 
If G(1,0) # 0, then R ~ E,  and the next blow-up in R gives the next exceptional divisorE" with 

1 11 3 
d(E" ,O ,Z )  = ~ + 2 2  = 7" 

Otherwise the required divisor lies over another affine chart, It can also be found directly: by a different 
first blow-up f: Y ~ X with weights 

(z,v,z,~) ~ { 7 ' - u  '2' ilk 

k 2, 4 '  2 '  i l k  

- 3 rood 4, 

- 1 rood 4, 

Then f is given from a domain of type 
3) i lk_--1 m o d 4 ,  by 

i l k - 3  m o d 4 ,  

i l k - 1  m o d 4 .  

where k = ord F assuming w with weight 3/2 (hinted a t  by Mori). 
1/(k + 2)(k, - 4 ,  2, 3) if k - 3 mod 4, and of type 1/(k + 2)( -4 ,  k, 2, 

{ (zvk/4, v(k+2)/4 , zul/2, wv3/4) 
(~, v, z, w ) .  (~ck+~)/4, y~k/4,z~l/2 ' w~3/4) 

Y is given as a quotient of :r 2 + y + F(zy  1/2, w~y3/2)y - k /2  = 0 and exceptional E by y = 0 if k - 3 rood 4; 
respectively, the same with x and y interchanged if k ~ 1 rood 4. Thus,  as for the Kawamata 's  blow-up 
above, E is reduced, and we can easily calculate that  d = d(E, 0, X)  = 3/4. 

The case (4) with r = 3 can be treated similarly. Here we have a quotient singularity of type 1/3(2, 1, 1, 0) 
of a hypersurface w 2 + F(z ,  y, z) = 0, where 

i 
x + y3 + z 3, or 

r ( x ,  y, z) = x 3 + yz 2 + zG(y,  z) + g ( y ,  z), or 

~3 + v3 + ~a(v, z) + H(v, z) 

with ord G _> 4 and ord H > 6. 
In the case F(x ,  y, z) = x 3 + ya + z 3, the first blow-up [8, Case 4] is given from a domain of type 

1/3(2, 1, 1, O) by 

Y is given as a quotient ofw + x3w + y3 + z 3 and exceptional E by w = 0. Thus, point Q E Y, corresponding 
to (0, 0, 0, 0), will be the quotient singularity of type 1/3(2, 1, 1), and E will be given as the quotient of y3 + z 3. 
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The next weighted blow-up in Q is given from a domain of type 1/2(1,1,1) by 

(z, y, z) ~ (z ~/3, yz 1/3, zzl/3).  

It gives the next exceptional divisor E ~ with mul t (E ~, E,  Y) = 1 and 

1 1 2 
d(V',O,X) = ~ + 1~ = ~. 

In the other two cases, the first blow-up [8, Case 4] is given from a domain U of type 1/2(0, 1, 1, 1) by 

Y is given as a quotient of w 2 + x a + z 2 + xG'(y, z) + Hi(y,  z) = 0 ~f F(x,  y, z) = x 3 + yz  2 + xG(y, z) + H(y,  z), 
and of w 2 + x 3 + y2 + xG'(y, z) + H'(y ,  z)) = 0 if F(x,  y, z) = x 3 + y3 + xG(y, z) + H(y ,  z), with ord G' _> 4 
and ord H ~ > 6, and exceptional E by y = 0. Thus, E is reduced. 

The next weighted blow-up g: Z --+ Y in a point Q E Y, corresponding to (0, 0, 0, 0), has weights 

(," 
wt(x, y, z, w) = ' 2 ' 2 '  " 

It is given from a domain V of type 1/1(0, 0, 0, 0) by 

( x , y , z , w )  ~+ (zz ,  yz~/2,z~/2,wz~/~)  . 

Thus, Z is given as a quotient of w 2 + xaz 2 + 1 + xG~(yz z/2, z 1/2) + H' (yz  I/2, z l / 2 ) z - ~  = 0 if F(x,  y, z) = 
z 3 +yz2+xG(y ,  z )+H(y ,  z), and ofw 2 +x3z 2 +y2 +xG,(yz l /2 ,  z l / 2 )+H, ( y z l / 2 ,  z l / 2 ) z - 1  = 0 if F(x,  y, z) -- 
x 3 + y3 + xG(y, z) -k H(y,  z), whereas the new exceptional divisor E' is given by z -- 0. Let R E Z be a 
point corresponding to (0, 0, 0, 0). Since z[G'(yz ~/2, z 1/2) and H'(yz  1/~, z l /2 )z  -~,  E '  is reduced. As above, 
the birational transform of E is denoted again by E. Then, in a neighborhood of R, d({z = 0}, 0, U) = 
1 + 1/2 + 1/2 + 1 / 2 -  1 = 3/2 or K v  = g*Ku  + 3 /2{z  = 0}, g*Y = Z + {z = 0}, and by the adjunction 
g * K y  = K z  - 1/2E' ,  or d(E', 0, Y) = 1/2 [8, Case 1]. Now g*E = 1/2E'  + E and 

1 11 2 
d(E' ,  0, X) = d(Z ' ,  0, Y) + mult(E' ,  E, Y)d(E,  O, X )  = -~ + 2 3 - 3" 

3.2.1. R e m a r k .  Note that f in the first part of the proof is extremal, because P is Q-factorial. Thus 
it is uniquely defined as a log canonical model. An analytic construction of f gives a Kawamata 's  weighted 
blow-up [8]. More precisely, f is such a blow-up with 0 < a = i < k as above,/3 -- k - i - 1, E rl f - l B  
is an irreducible curve in a neighborhood of which K x  + f - l B  + E is semi-stable [16] and has at most two 
singularities Q and R. 

Theorem 3.2 cannot be improved, 

3.2.2. Example .  For a quotient singularity P of type l / r ( a , - a ,  1), discrepancies of the exceptional 
divisors/P form a set 

UI," l i ~ z,  i _> 1, and i # r}. 

Thus, 1 is mis~ing in this case. 

Indeed, this characterizes such singularities. 

3.3. Coro l la ry .  Let P be a 3-fold singular terminal point of X having the index r. Then, for any integer i >_ 1 
there exists an exceptional divisor/P with discrepancy i / r  except for the case where P is a quotient singularity 
o / t y p e  1 / r ( a , - a ,  1) ~ i * h 0  < a < r - 1, and (a ,~)  = 1. 
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Proof .  If we take subsequent blow-ups of general curves in an exceptional d ivisor /P with discrepancy 
i /r ,  we may find exceptional divisors/P with discrepancies in i / r  + Z. Thus, by Theorem 3.2 it is enough to 
construct an exceptional divisor/P with discrepancy 1. 

Weuse  a covering trick. Let X / X  be the Reid-Wahl canonical covering [26, 2.4.3]. It is a cyclic Galois 
covering of degree r with X having the only terminal Gorenstein singularity P I P .  Suppose that X does not 
belong to the exceptions. Then P is really singular, and, according to Markushevich, we have am exceptional 
divisor ~,//B with d(E, 0, )~) = 1. Then the corresponding exceptional divisor (image bi-divisor) E / P  has 

discrepancy 1 too. 
It is better to handle log discrepancies. By [26, 2.1], for a natural  multiplicity m > 1, 

N 

2 -- a(E, X) = r a(E, X ) - -  m(1 + i/r), 

wherei  > 1. Thus m = 1,i = r, and d ( E , X )  = 1. �9 

3.3.1. R e m a r k .  In the higher-dimensional case, the situation may be more complicated. First, it is possible 
that for a terminal singularity p E X of dimension n _> 4 and of index r, there is no good interval where we 
can predict discrepancies i / r , i  E IN, in exceptional divisors/p, for instance, in the case of n - 2 > i / r  >_ n - 3. 

But this may hold for (n - 3)-terminal singularities. 
As in Corollary 3.3, we can construct an exceptional divisor D/p  with discrepancy d(D) < n - 1 if we 

have such in the Gorenstein case by [24, Problem 5]. Moreover, i fp is not a cyclic quotient (see Example 3.2.2 
above), we should have D with d(D) < n - 2. It will be integer when p is (n - 3)/2-terminal. So, for n --- 3, 
d(D) = 1 ifp is a terminal but not a cyclic quotient. For n = 4, d(D) = 1 or 2 i fp  is a 1/2-terminal but not a 
cyclic quotient, and so on. The latter is conjectured. 

On the other hand, for each toric singularity p, we have D with d(D) < (n - 2)/2 (Borisov). 

3.3.2. R e m a r k .  In general, by a quotient singularity X of dimension n, we mean a finite quotient of a 
smooth neighborhood Y, i.e., there exists a finite Galois morphism Y ~ X. Such singularities are purely log 
terminal, but may not be terminal even for cyclic quotients. We may ask whether this category is closed for 
some partial resolutions, e.g., they have only quotient singularities or a subclass of them. For example, does 
it hold for log crepant blow-ups as in Theorem 3.2? The last holds for toric singularities in any dimension, 
and, in particular, for all quotient singularities in dimension 2. 

In dimension 3, it is not clear even for canonical quotient Gorenstein singularities and their crepant 
blow-ups. Presumedly, in dimension 3 the terminal quotient Gorenstein points are nonsingular (cf. [2, Ques- 
tion 1]). Then all together it gives a crepant resolution for the quotient Gorenstein singularities. Alas, this is 

the Dixon-Harvey-Vafa-Witten conjecture. 

3.4. Coro l la ry .  Let P E X be a 3-fold singularity with a boundarv B.  Let e and N be a positive real and 
natural number, respectively. Suppose that 

(i) B i~ R-Cartier, 
(ii) K x  + B is terminal in eodimension >_ 2, and 

(iii) there exists at most N exceptional divisors/P with discrepancy <_ ~. 

I N + 2 ]  Then each Well Q- Cartier divisor has at most indez j - - - ~  j - 1 in P. 

Proof .  By the monotonicity [26, 1.3.3], we may assume that B = 0 and replace (ii) by 

(ii) ~ P is a terminal singularity of X. 

I N + 2 ]  Then by Kawamata [6, 5.2] we want to check that P has at most index ~ - 1. Kawamata's state- 

ment concerns Q-factorial singularities. However, a covering trick reduces it to Gorenstein canonical singu- 
larities where it follows from the existence of a Q-factorialization. 
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So, if K x  has index r, then by Corollary 3.3 and Example 3.2.2, there exist exceptional divisors Ei with 
discrepancies i/r, i > 1, except for i = r. Therefore, N + I  >_ [r > e r -  1, which gives the required estimation 
of r. �9 

- IN + ~ '1 -  3.4.1. R e m a r k .  We know that r > 1. Thus , ' - ' ~ /  > 2. In particular, this includes that N >__ 1 whenever 

r 
Moreover, for singular P,  r < 1 q- 1/r  unless N = c~. By a construction in the proof of Corollary 3.2.2, 

we have an infinite set of exceptional divisors with discrepancies 1 4- 1/r. 

4. A.c.c. and Semi-Discontinuity of Discrepancies for 3-Folds 

If A is linearly ordered, then the d.c.c. (descending chain condition) is equivalent to the well-ordering. 
In particular, if A C R is a subset of reals with the induced order, then A is well ordered for the oppo- 
site order if and only if it satisfies the a.c.c. (ascending chain condition). Equivalently, it is bounded from 
above and has no condensation points from below. Thus, it looks discontinuous from above, and we say then 
that it is semi-discontinuoua from above [24]. Similarly, if A C R is well-ordered, it will be bounded and 
semi-discontinuous from below. A set of reals will be discontinuous if and only if it is semi-discontinuous from 
both directions. It is finite if and only if it is well ordered in both directions. 

4.1. Examples .  
4.1.1. If A fi R satisfies the d.c.c. (respectively the a.c.c.), then so does arty subset of A. 
4.1.2. I rA C IR satisfies the d.c.c. (respectively the a.c.c.), then 

- A  = { - a  l a E A} 

satisfies the a.c.c. (respectively the d.c.c.). 
4.1.3. If A C R satisfies the d.c.c. (respectively the a.c.c.) and B C [0, +c~) is finite, then, for any natural N 

A N =  E aibi l ai E A and bi E B 
i=1 

satisfies the d.c.c. (respectively the a,c.c.) (cf. [26, 4.9]). 
4.1.4. (Standard) 

P = {1} U { ~ - ~  [ n E Z a n d n  >_ 1} 

satisfies the d.c.c.. 

Let 7? be a generic point of X. Then we define the m.l.d. (minimal log discrepancy) of (X, Cx)  or K x  +Cx 
in r /as  

a(r/, C,X)  = a(r?, C x , X )  = rain { a( Di, C,X)  I Di E 7)iv(X) with centerx Di = 77}. 

It is well defined when C = B is a bi-boundary and X has only log canonical singularities with respect to B, 
or even when Cx = BX is a boundary and (X, B x  ) has only log canonical singularities. A m.l.d, is attained 
on a log resolution. 

Below bl denotes a multiplicity of B x  in a prime divisor of X. 

4.2. Conjecture on discrepancies (of. [24]). Let F G [0, 1] be a well-ordered set ofreah, i.e., it satisfies 
the d.c.c. (for ezample, finite). Then the set of m.l.d. 's 

A(P,n) = { a ( r h B x , X  ) E RIr/of codimension n, and all bi E F} 

(since a(q, Bx ,  X)  is defined and finite, it is assumed that K x  + B x  i3 log canonical in q) satisfies the a.c.c., 
i.e., the semi-discontinuous and bounded from above. 
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The conjecture is proved in dimension two ([1] for rat ional  boundary  coefficients) [29], and  for F = {0} 
in the case of toric varieties [2]. 

4.2.1.  E x a m p l e  ([29]). Let r /be  a generic nonsingular  point of codimension n in X ,  B x  = ~ biDi be a 
boundary  in its neighborhood,  and a = a(r/, B x  ) be the m.l.d, in 77. Then  

(a).  _<n. 
(b) a = n if and only if BX = 0 in 77. 
(c) n - 1 < a < n if and only if mul t ,  7 B x  _< 1. Moreover, a = n - mult~ B x  in this case; it is a t ta ined  in 

the monoidal  t ransform of r/, and only in it if a > n - 1. 

If bi E r as in 4.2, then the set of m:l.d. 's 

A =  {a  E [0,1] n -  I <_ a = n -  E n i b i  with ni E N} C_ A ( F , n ) N  {a _> 1} n - -  

satisfies the a.c.c. (cf. [10, Lemma  3]). Indeed, for bi ~ O, ni are bounded  by 1/% where  7 = min{bi [ bi # 
0 E F}. Thus,  we may  apply 4.1. 

Note that  presumedly [24] the above should hold if K x  + B x  is R-Cart ier  in U and  a > n - 1. It is known 
when n < 3. 

Since a finite union of a.c.c, subsets of R satisfies the a.c.c, too, we get the following results. 

4.3. C o r o l l a r y .  If4.2 holds for natural numbers nl,  . . . ,  nm, then we have the s.c.c, in mixed codimensions, 

i.e., for 

In, particular, if4.2 holds for the natural numbers ~ n, then the a.c.c, takes place in the dimensions < n, 

i.e., for 

An(F)---- {a(rl, B x , X  ) E RI d i m X  _< n, aoud all bi E F}.  

Here we partial ly prove 4.2 for codimension n _< 3 under  one addit ional assumpt ion which is na tura l  in 
applications. 

4.4. P r o p o s i t i o n .  Fix e > O, d <_ 3, and N E N and a well-ordered subset F C [0, 1]. Let A = A(F, d, e, N)  be 
the set of log discrepancies ~ I for KX + B x  in the prime bi-divisors D of X / X  with cen te rx  D of codimen~ion 
d, where (X, B x )  are all such pairs that 

(i) the mult•licities bi of B z  belong to F; 
(ii) log divisor K x  + B x  is R-Cartier; and 

(iii) at most N prime exceptional bi-divisors of X / X  with center of codimension d have log discrepancies 

a i < l + e .  

Then A satisfies the a.c.c., and, moreover, A is finite whenever so is F. 

Moreover ,  

4.4.1.  L e m m a .  If (X, B x  ) satisfies (ii)-(iii) of Proposition 4.4, then the indices in the generic points of 
codimension d _< 3 are bounded for the Q-Cartier Well divisors in such points. 

The bound  depends on e, N,  and d. 
Since the m.l.d. 's under  the above restrictions form a subset of A(F, d, e, N) ,  we ge t  Conjecture  4.2 under  

these restrictions. 

4.5. C o r o l l a r y .  Fixe > O , d < _ 3 a n d N  EN. Thenthesetofm.l .d. 's  

{ a ( ~ , B x , X )  E [0, I] r /of  codimension d, and all b, E r} 

satisfies the a.c.c, whenever we consider only pairs (X, B x  ) which satisfy (i)-(iii) as in Proposition 4.4. 
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4.5.1, Remark.  4.2-4.5 hold for a(~?, Bx ,  X) >_ I without assumptions (i)-(iii) of Proposition 4.4 [29]. 

P r o o f  of  P r o p o s i t i o n  4.4 and  L e m m a  4.4.1. Taking hyperplane sections, we may assume that dim X = 

d < 3 .  
We are taking into consideration only the log discrepancies a(E, Bx )  < I and with centerx E = P being 

a closed point of X and assuming 4.4(iii) for the center P.  Then, by a construction in the proof of Corollary 
3.3 (cf. Remark 3.4.1), KX + Bx  is e-log canonical in P.  Hence according to Corollary 1.5, Kx  + Bx  islog 
canonical in a neighborhood of P .  

We may also assume that X is Q-factorial and even strictly log terminal. For this we replace X by its 
strictly log terminal model of Y with respect to Ky + By. By [26, 1.5.7, Corollary 9.1] it exists and has the 
same log discrepancies/P for a new boundary By which is the Iog transform of Bx  (see also Proposition 2.4). 
According to the classification of log canonical singularities in codimension 2, the Q-factorialization is small 
over a neighborhood of P ,  and also Kx  + Bx  is purely log terminal (and e-log canonical in codimension 2) 
there. Hence, after changing the boundary By we may present the Q-factorialization as an extremal contrac- 
tion negative with respect to a Kawamata log terminal divisor Ky + By.  By the contraction theorem, the 
indices of the Q-Cartier Well divisors are the same on the Q-factorialization. 

Note also that conditions 4.4 (ii)-(iii)will hold automatically on Y. If, for a new model, centery E = P 
is not a closed point, we can use induction on d. 

We prove both statements by induction on 

M = #{ E /P[  a = a(E, Bx)  < 1} < N. 

H M = 0, then A = 9, and 4.4.1 holds by 3.4 for d = 3. For d = 2, X will be nonsingular. 
I f M  > 1, we have an exceptional divisor E/P  with log discrepancy a < 1. Let f :  Y -+ X be a resolution 

of it as in Theorem 3.1 with A = FBx]. Literally, we may apply the theorem when a < 1. In our case, we 
may add to Bx  a small multiple of a Cartier divisor through P which decreases a = 1. 

First, we prove Proposition 4.4. The case d = 1 states that the set of discrepancies 1 - bi satisfies the 
a.c.c. (see Examples 4.1). So, we may assume that d = 2 or 3. 

To calculate a we fix a covering family of curves on E with the generic curve C, and then use the linear 
relation 

a . (E.C) = (Ky + By.C) 

with By. = f - l B x  + E. 
Thus, it is enough to check that (E.C) and (Ky + By.C) belong respectively to a finite and d.c.c, set of 

reals. Note that f is extremal and (E.C) < 0 by the Q-factorial property of P.  
Indeed, it is enough to check that the intersection numbers (E.C), (Di.C) 's  and (Ky.C) belong to a finite 

set of rationals, where the divisors Di form Supp f - l B x .  Indeed, 

(Ky + By.C) = (Ky.C) + (E.C) + ~ bi(Di.C) 

with (Di.C) >_ O. So, by Examples 4.1, these satisfy the d.c.c., because so does F. Moreover, intersections 
(Ky + By.C) form a finite set whenever F does so. 

By induction, the indices of E, Di's, and Ky are bounded. So, we need to check that (E.C), (Di.C) 's  
and (Ky.C)are bounded. Since the a, bi's are in [0, 1] and bounded, we may check this only for (E.C) and 
(Di.C)'s. According to our construction, 

f * (Kx  + Bx)  = Ky  + cE + Z biDi, 

where c = 1 - a is the codiscrepancy in E,  is numerically trivial on E,  and e-log canonical in codimension >__ 2, 
whereas 0 < c < 1 - e. By the extremal property of f ,  all (Di, C) > 0, and (E.C), (Ky + E.C) < 0. On the 
other hand, by [27, Theorem and Remark (3)] there exists a generic curve C such that 0 > (Ky +E.C) > -3, 
So, 0 > (E.C) > - 3 / e  and 0 _< (Di.C) < 3/7 with 7 = min{bi I bi # 0 E F} (or = 1 when F \ {0} = 9). Note 
that 7 is positive according to the d.c.c, property of F (cf. [27, Corollary 1]). 
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Now we are ready to prove 4.4.1. According to the contraction theorem or rationality of P ,  it is enough 
to check that, for the Q-Cartier Well divisors, the multiplicities m = mult(E,  D, X)  have bounded denomi- 
nators. This follows by induction from the finiteness and rationality of (E.C),  because 

rn = -( f - ID.C)/(E.C) .  

In turn, the finiteness has been proved for F = 0, according to the monotonicity [26, 1.3.3] of discrepancies. 
[] 

5. Log M i n i m a l  M o d e l  for  3-Folds 

First, we recall what log termination means (in the analytic case over a projective subset). More gener- 
ally, consider an R-Cartier divisor D. T h e n a  contraction with respect roD or a D-contraction of X/S  is a 
contraction of g: X -+ Y/S  such that - D  is numerically f-ample.  By a modification of X / S  with respect to D 
or by a D-modification of X/S  we mean a flip of a birational (bimeromorphic) D-contraction g with respect 
to D; we also call it a D-flip. It is defined as a modification 

X § X + 

g g+ 
Y 

over S, where g+ is a small contract ion/S for which the modified divisor D + is numerically ample [26, Sac. 
1]. The termination with respect to D or D-termination means that any infinite chain of D-modifications 
stabilizes, i.e., all of these are trivial, except for a finite number of them. Precisely, after a finite number of 
D-modifications of X/S,  either we have only fiber contractions with respect to D or we have a birational 
(bimeromorphic) one which has no D-flip. If D = Kx + BX is a log divisor, we talk about log termination, 
log flips, and so on. In the case of good singularities, we may anticipate the following ultimate form of the 

LMMP. 

5.1. C o n j e c t u r e s  on  t h e  L M M P .  Suppose that X/S  is projective and Kx  + Bx  is log canonical or even 
log canonical with respect to a bi-boundary B. Then 
5.1.1. If Kx + Bx is not n e f / S  (over a compact subset W C_ S in the analytic case), then there exists a 
nontrivial (Kx + Bx)-contraction/S (respectively,/W). As in the MMP we can split this into two problems. 

5.1.1a. (The log cone.) For Kx + Bx,  the negative part NEKX+BX(x/s) of the Kleiman-Mori cone (res- 

pectively, ~--~Kx+Bx (X/S; W)) is locally polyhedral and rational by the next property. 

5.1.1b. (The log contraction.) Any face F of ~--~Kx+Bx (X/S) " .Kx+Bx (respectively of NE " (X/S; W)) can be 

contracted, i.e., there is a contraction contF: X ---+ Y/S (/W) such that for a curve C/S (/W), contFC = pt. 
if and only if the numerical class of C belongs to F.  This is a (Kx + BX)-contraction and is nontrivial 
by Kleiman's criterion. Obviously, this problem may be reduced to the semi-arnpleness (see the proof and 

cf. 6.16). 
5.1.2. The log flips with respect to Kx +Bx exist (cf. 6.13). Moreover, it easy to check that  the flips preserve 
the e-log canonical (c-log terminal and, for the extremal flips, strictly log terminal) property with respect to 
B (cf. [23, 2.13]). In the log terminal case we may also assume that the flipped log minimal models of X/S  
have resolutions in 1.2.4 in which each of a given finite set of prime bi-divisors/S is nonexceptional. 

5.1.3. The log termination holds with respect go Kx + Bx.  With the existence of a projective log resolution 
and 5.1.1 and 5.1.2, this implies that after a finite number of modifications of X/S  (/W) with respect go 
Kx + Bx we obtain either a fiber contraction (a log Fano fibering) of a modified X/S  (/W), or a modified 
X/S  (/W) wiU be a log minimal model ofX/S  (/W) with respect to B. 
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However, some results of the log terminal case and MMP do not hold in such generality. For instance, we 

may have nonrational singularities (cf. [11, 1.3.6]). 

5.2. T h e o r e m .  The conjectures on the LMMP hold in dimension 3, i.e., when dim X < 3. 

As in the MMP for 3-folds [23], we start with the log termination. Indeed, we reduce the log termination 
to that of the terminal case. This is a slight modification of [10], where we replace [8] by a stronger statement, 

namely, by Theorem 3.2. 

P r o o f  o f  5 .1 .3  for 3-folds. 
Step 1. Reduction to the strictly log terminal and extremal flipping ca~e. Let X -  --+ X + b e  a flip of a 

nontrivial contraction g: X -+ Y/S .  According to [26, 9.1], we have a log minimal resolution h: _~ --+ X,  i.e., 
K2, + B2  = h*(Kx + B x )  is strictly log terminal. In the 3-fold strictly log terminal case, we know 5.1.1 

and 5.1.2. Thus, using the LMMP for . ~ / Y  we can decompose the contraction g o h: )C --+ Y into a nonempty 
sequence of nontrivial flips and a contraction .~+ -+ X + which is a minimal log resolution of X + [26, 1.5]. 
This lifts log flips of X into nontrivial sequences of log flips of .~  with a strictly log terminal divisor K 2  + B 2  

(cf. [15, 8.2]). 
Since divisorial modifications decrease the Picard number, we may assume that all modifications are 

flipping. Such modifications in the Q-factorial and 3-fold case are modifications in curves. Also we may assume 
THAT THEY ARE extremal, i.e., of extremal contractions. 

Step 2. Reduction to the e-log canonical case. By a modified version of the special termination [26, 4.1; 
15, 7.1], after a finite number of log flips with respect to K x  + B x  all the next flips do not intersect the 
reduced part [Bx] of the boundary. Thus, if we decrease boundary coefficients in this part  we may assume 
that [Bx~ = 0, i.e., in addition, K x  + B x  is e-log canonical for a positive real r 

Step 3. Reduction to the terminal case in codimension > 2. Let N be a natural number which bounds the 
number of exceptional divisors of X having log discrepancies < 1 + e. By Corollary 1.7, such N exists and 
depends only on (X, B x )  (cf. [23, 2.15]). It fits as well for the next log modifications by [23, 2.13.3]. 

Thus, according to Proposition 4.4, the log discrepancies of K x  + B x  in codimension 2 and 3 for X and 

its log modifications belong to a finite set 

A = A(F, 2, e, N) U A(r ,  3, e, N),  

where r have been fixed in Step 2, F = {hi} consists of the multiplicities of B x  and is finite. (In the analytic 

case, F is finite over a compact set W.) 
Note now that each modification increases the discrepancies and strictly over a modified locus [23, 2.13.3]. 

Therefore, after a finite number of modifications, the next modifications will be performed in curves which do 

not contain log terminal singularities. 
The latter means centers of the exceptional divisors E with a(E, X,  B x )  < 1. By Theorem 3.1, we can 

resolve such singularities and assume that K x  + B x  is terminal in codimension > 2. In particular, new 
X = X will have only (isolated) terminal singularities. Such a transformation h: X -+ X does not touch 
generic points of the flipping curves and has no exceptional divisors over them. Then, as in Step 1, we can 
decompose g o h into a nontrivial sequence of flips and a contraction that is a minimal resolution of X +. 
According to our construction, all flips of .~  are extremal and small, i.e., in curves. Hence, they preserve the 
terminal property in codimension > 2. 

Now we put  ~ = rain {ai = 1 - bi }. That is the m.l.d, for prime divisors of X. Thus r = 1 - b, where 
b = max { bi } = max F is the maximal multiplicity of B x  for these divisors. The corresponding components 

of B x  will be called maximal. 
Step ,~. Reduction to the terminal case. Suppose that a flipped curve has a component C in a prime 

divisor with maximal boundary multiplicity b. Then, by Step 3 and Example 4.2.1, X is nonsingular along 
C and the monoidal transform E(C) in the generic point of C has the m.l.d, a(C, B x )  = a(E(C), B x )  = 
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2 - mul tc  Bx < 2 - b = 1 + e. Since the set of such discrepancies 1 - mu l t c  B x  and the set of exceptional 
divisors with discrepancies < e is finite, this is impossible after a finite number of modifications (see Example 
4.2.1). Thus, we may assume that the maximal prime divisors D/t" do not pass through the flipped curves. 

If a flipped curve C + intersects one such divisor D~ + C X +, then by the extremal property (D/+, C +) > 
0 for each such curve C +. Therefore (Di, C') < 0, where C is a flipping curve and Di is the divisor in X 
corresponding t o  D/+. Each such transformation contracts a curve C on Di. So, after a finite number  of 
modifications we may assume that flipping curves do not intersect the maximal components Di (cf. [26, 4.1]). 
As in Step 2, we can decrease boundary multiplicities to 0 in such components. 

Since we have only a finite set of boundary coefficients, we may finally assume that  Bx = 0. Then, by 
Step 3, K x  is terminal. 

The termination in the last case has been established in [23]. �9 

P r o o f  o f  T h e o r e m  2.3. According to [12, 4.2.1 and 3.2.1; 26, 1.3.5], we have 5.1.1, i.e., the cone and 
contraction Theorem, when K x  + Bx  is strictly log terminal. So, the existence of a log minimal model follows 
directly from this, the established termination and existence of log flips in the strictly log terminal case [26, 

9.4]. 
The existence of an initial strictly log terminal model can be obtained by the Hironaka work (in the 

analytic case we suppose that X is Moishezon over a neighborhood of W). We may also assume that a given 
finite set of prime bi-divisors/S is nonexceptional in the resolution. �9 

6. G e o g r a p h y  o f  Log Mode l s  

6.1. Defini t ions .  Let h: X -  --+ X I be a modification. Recall that a birational transform C'  = h . C  of a 
cycle C is a homomorpkic extension of this for prime cycles. Note that for a prime cycle C, h(C) = 0 whenever 
h is not regular (analytic) in the generic point of C. Cycles C and h.C as well as C'  and h - l . C  ' are called 
corresponding. 

Fix two comparable families {C} and {C'} of curves respectively in X / S  and X' /S ,  i.e., to any curve C 
of the first family corresponds a curve of the second one or 0-cycle, and vice versa. 

Two log pairs (X/S, B) and ( X ' /  S, B') are called (numerically) equivalent with respect to the given fam- 
ilies {C} and {c'} if they have the same signature in the corresponding curves C/S. This means that, for 
every C �9 {C} and C' �9 {C'}, (Kx + B.C) and (K x, + B'.C') are defined, whereas for any pair of corre- 
sponding curves C and Ct, (Kx + B.C) is positive, negative, or 0 if and only if (K X, + B'.C') is positive, 
negative, or 0 respectively. 

We say simply that pairs (X/S, B) and (X'/S, B') are equivalent when both families are maximal, i.e., 
all curves/S. 

By Proposition 2.4, two weakly log canonical models (X/S, Bx)  and (Y/S, By) with the same bi-bound- 
dry B are equivalent. In addition, two weakly log canonical models (X/S, Bx)  and (Y/S, B~.) are equivalent 
if and only if each of them is an equivalent model of another, i.e., (X/S, B~x) and (Y/S, By) are equivalent 
respectively to (X/S, Bx)  and (Y/S,B~.), and weakly log canonical too. The latter is the only nontrivial 
part. This is easy to derive from the log semi-ampleness. Another approach is to use the arguments in the 
proof of 2.4. 

First, we suppose X / S  to be a fixed 3-fold with a fixed finite set of distinct prime divisors Di of X. 
According to [26, 1.3.2], we have a (closed) convex rational polyhedron 

79 = {B = E biDil all bi e [O, 1], and Kx  + B is logcanonical } 

in the cube (~[0, 1]Di. Each model (X/S, B), with t3 �9 79, is identified with its boundary, i.e., point B �9 7 9. 
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Second, we fix a system of extremal rays Rj = R+IGj] C NE(X/S )  (respectively in N--E(X/S; W) in the 
analytic case) which are generated by curves C i. For boundaries B E 7 9, equivalent classes of (X /S ,  B) with 
fixed X and with respect to the curves Gj give a decomposition of 7 9 into convex subsets. 

6.2. First Main Theorem. The given decomposition is rationally polyhedral and locally finite in the interior 
of s f3 79, where s is a rational affine plane. The decomposition is given in f. by hyperplanes ( K x  + B.Cj) = 0 
and mazimal faces. 

Moreover, the set A/" of B E 79, such that ( K x +B.Cy) > 0 for all j ,  is a (closed) convex rational polyhedron 
with finite decomposition into equivalent classes with respect the curves Cj. The faces and the decomposition 
olaf are given in 79 by a finite set of rational hyperplanes (Kx  + B.Cs) = 0 and maximal faces of 79. 

The curves C 1 in the defining equations above may be chosen to be rational, and they generate eztremaI 

rays Rj C N-'EKX+B(X/S; W) (respectively in N-EKx+B(X/S; W) in the analytic case) for some B E 79. 

We need the following elementary geometric fact to reduce the theorem to the 1-dimensional case. 

6.3. L e m m a .  Let V be a finite-dimensional affine space over Q and Hi  an infinite sequence of distinct 
hyperplanes convergeing to a hyperplane H C V | R. The set of rational lines s such that intersections 
pi = s N Hi give a convergent (of course, to s fq H) sequence of distinct points pi E s is everywhere dense. 

In this statement, we may replace Q by any number field K C ~. 

P r o o f - c o m m e n t a r y .  The hyperplanes in an affine space A form a Zariski open subset of a projective space 
(a certain Grassmarmian). If A is defined over reals, this will be a reat affine set. 

The convergence is considered with respect to the real topology in that set. 

Similarly, we consider the set of lines in V | R equipped with the real topology. 

Of course, the statement means that we consider only well-defined pi, i.e., points. More precisely, it 
means that for a given/~ there exist an infinite subsequence Hi, such that  all Pi' = • f3 Hi, are distinct points 
convergent to point p = / :  A H. So, it is enough to prove the statement for an infinite subsequence. 

Suppose that an infinite subsequence Hi, has a common point. According to the above, we may assume 

that all Hi 's have nonempty intersection I = fqHi. The plane I is defined over Q, and the projection from 
I reduces the statement to a lower-dimensional case, because a rational lifting of any rational line under the 

projection possesses the required properties. 
If dim V = 1, s = V satisfies the required properties by our assumption. Thus, by induction we may 

assume that any infinite subsequence Hi, does not have common points. 
In that case, any rational line Z:, such that p = Z: f3 H is a point, satisfies the required properties. Indeed, 

it implies that pi = 1:f3 Hi is a point except for a finite set of indices i. This also means that Hi is not parallel 

t o / :  for the former i. Note that, according to our assumption, points pi coincide only for a finite subset of 

indices i. �9 

P r o o f  o f  T h e o r e m  6.2, w h e n  X is s t r i c t l y  log t e rmina l .  If we have a finite system of curves Cj, then 
hyperplanes Hi,  given by (Kx  + B.Ci) = 0, and maximal faces define the decomposition. This means that 
each equivalent class is given as the intersection of a finite set of these hyperplanes or its half-planes. Since 

each of them is rational, we have the required properties. 
In general, we want to check that Hi has no cluster hyperplanes inside/ :  N 7 ~, i.e., a neighborhood of 

any such point is intersected by a finite set of hyperplanes Hi. Then Lemma 6.3 reduces the proof to the case 

where s is a rational line. 
In that case,/:  f3 79 is a rational segment. We may assume that it is nontrivial. So, one end of the s~gment 

corresponds to a Q-boundary B and the other to a Q-boundary B I = B + A, where A • 0 is a Q-divisor too. 

The log divisors K x  + B, K x  + B' are Q-Cartier. Therefore, there exist natural N such that N ( K x  + 
B ) , N ( K x  + B'), and NA are Cartier. 
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Hyperplanes H i give, in intersection, points pj = B + AjA, where Aj E [0,1] N Q (except for those with 
s which we drop). 

We want to check that B and B t are the only possible cluster points of {pi}. Equivalently, 0 and 1 are 
the only possible cluster points of {A/}. 

Suppose that A E (0,1) is such a cluster point. 

First, we consider the case where A = p/q is rational. Let Bx be the corresponding boundary. Then 
N q ( g x  + B~,) is Cartier and, for any curve C i in every .Fly, ( g x  + B)~.Cj) -- 0 or I ( gx  + B~.Cj) I >_ 1/Nq. 
Note that (Kx  + Ba i .Cj) - 0. Let us take R i such that [Aj - A I ~ 0 and << 1. So, the slope of the linear 
function l(p) = ( g x  + B~,,Ci) is very steep. Thus ( g x  + B.Ci) or ( K x  + B'.Ci) <~. O, which contradicts 
[27, Theorem]. 

Note that R i is contracted because X is strictly log terminal. The latter implies that  strictly (and even 
purely) log terminal K x  Jr B are dense in P [26, 1.3.5]. So, we may choose rational Cj [7] generating Rj. The 
latter satisfies the required properties by the construction. 

Suppose now that A is irrational. Then according to the approximation theorem there exists a rational 
number p/q such that [P/q - A[ < 1/q 2 and q >> 1 [3]. Now we may choose Rj  as above. The slope will be 
bounded from below by a multiple of 1/q (depending only on N). 

The nef property with respect to Ci's is closed and convex. So, we will check only the rationally polyhe- 
dral property. Again, we show that the last statement holds for any / :  N H .  

I f / :  is 1-dimensional, then the latter holds. In that case L: n 7) = [B, B j] is a segment. We know that set 

( D e [B,B'] [ with ( K x  + D.Ci) >_ 0 for all j }  n AZ = 

is rationally polyhedral inside [B, B']. We now check this near edge points, say, near B. Note that (Kx  + 
B.Cj) = 0 or _> 1/N, where N is the index of K x  + B, i.e., N ( K x  + B) is Cartier. Thus, as above, there 
exists 0 < ~ << 1 (depending only on N) such that s n A/" = B or [B, B + ~ ]  C / :  n A/'. In both cases ~: N Af 

is rationally polyhedral near B. 

Thus we can use induction. 
In general, At" is rationally polyhedral inside P,  and by induction each face of P intersects A/" in such a 

polyhedron too. So, the set of rational B is dense in 0(A/'). Here 0 denotes the topological boundary. Since 
and A z axe compact, again by [3] it is enough to check the rationally polyhedral property in a quite large 

neighborhood U of such points B. More precisely, we take 

V = U(B,c) = {B + e ~  I A e V), 

where ~ = c/N with index N of K x  --b B and c = 1/7. 
Passing a certain number of rational hyperplanes through B, we can decompose 7) into a finite set of 

rational convex polyhedra Pi with vertex B. Thus it is enough to show the required properties for each A/'A:Pi. 
Above and below we may replace T ~ by its rational convex polyhedral part. 

So, we assume that B'is a vertex of :P. 
Then we contend that .hf near B is a cone with the same vertex B. Moreover, for 0 < e --- 1/7N, as 

above, s N A/" = B or [B, B q- cA] C s N N for any line through B [27, Theorem]. As we know, this is true for 
rational lines. (The same arguments work for all lines through B.) The Iatter are dense in all. Note that the 
nontrivial segments s N P form a continuous (piecewise linear) family, because P is polyhedral. 

Finally, by induction, a rational hyperplane section s of this cone is a finite rational polyhedron, it is 
given by the intersection of s n P and rational half-hyperplanes (Kx  + B.Ci) >_ O. Locally near B, they cut 
A/" in T' whenever Af n 0"P is a cone over A[ O 0(s  O P). By induction we may assume that  Af ~ 07:'. [] 

6.4. R e m a r k .  We need the strictly log terminal condition only to prove the existence of a contraction 
and because [27, Theorem] needs it. Actually, for the latter fact, we need only the LMMP in the strictly 
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log terminal ease in dimensions < 3 [27, Heuristic arguments]. Moreover, 5.1.1 is sufficient (cf. the proofs of 
Theorem 2.3 in Sec. 5 and Corollary 6.6 below). 

Therefore, if X is strictly log terminal, the last proof works in any dimension. We should take constant 
c = 1 / (2d imX + 1) in the proof(see Remark 6.23.5 below). 

6.5. Example .  Let X be a smooth projective surface with an infinite set of exceptional curves Cj of the first 
kind [4, 4.6.4]. Take its smooth hyperplane section H as a single prime divisor. Then 7 ~ = {AH I A E [0, 1]}. 
The first main theorem states that numbers Aj" = 1/(H.Cj),  such that ( K x  + AyH'Cy) = 0, form a subset of 
(rational) points in [0, 1] with the only possible clusters 0 and 1 in [0, 1]. In our case only 0 is really a cluster. 

Let d be the minimal degree (H.Cy) of the curves 6'3". Then Af = {AH I "~ E [1/d, 1]}. If these Cj's are 
the only exceptional curves of the first kind on X, then, according to the next result, Af corresponds to the 
nef log divisors KX + B with B E 7 ~. 

6.6. Corol la ry .  The set 

Af = { B  E with (Kx + B e )  _> 0 for all curves of X/S} 
forms a convex rational polyhedron cut out by hyperplanes ( K x  + B.Cj)  = O, given by maximal faces of 7 ~ 

and a finite set of rational curves Cy/S, generating extremal rays Rj  C N-EKx+B(x/s; W) (respectively in 

N-gKx+B(X/S; W) in the analytic case) for some B e P. 
The interior points of each of its faces are equivalent, and the decomposition on equivalent classes is finite 

i n N .  

P r o o f  in t h e  s t r i c t l y  log t e r m i n a l  case. This means that there exists a boundary B E 7 ~ such that 
K x  + B is nef and strictly log terminal. In particular, this assumes that A f r  0. Otherwise, Af = 0 _C 7 ~ can 
be given as a finite intersection of half-planes (Kx  + B.Cj) > 0 in T ~, because 5 o is compact. 

Since the strictly log terminal property is open by definition, for the interior points B of Af, K x  + B is 
strictly log terminal too by the convexity of Af and the linearity of the discrepancies with respect to B. 

It is enough to check that Af is defined by curves C j / S  which generate the required extremal rays Rj of 
X / S .  Denote the corresponding subset by A ft. We know that Af _CAf', and want to check =. In the interior 
points B of Af', KX + B is also strictly log terminal. 

Thus, we should check that  if ( K x  + B.Cj) > 0 for all such Ci, then ( K x  + B.C) >_ 0 for any curve C of 
X / S .  The former means that B 6 Af'. It implies the latter by 5.1.1, whenever K x  + B is strictly log terminal 
(see the proof of Theorem 2.3 in Sec. 5) and, in general, because Af is closed. 

Finally, none of the hyperplanes (Kx  + B.C) = 0 crosses a face olAf through its interior points. Thus, 
these points are equivalent. �9 

6.7. R e m a r k .  The equivalent classes over Af are fine unions of interiors for faces of Af. Moreover, in such 
a semi-closure we add only open faces belonging to 07 ~. 

According to Remark 6.4 and [26, Heuristic proof], we get the following results. 

6.8. T h e o r e m .  Let f: X --4 S be a proper morphism of a 3-fold X (Moishezon over a neighborhood of 
a compact subspace W C_ S in the analytic case), and D be an effective [(-divisor in X such that K x  + D is 
R- Cartier and log canonical in the generic points of a subvariety E, consisting of components of the degenerate 

locus 

gxc(f):  = {z E X I g is not finite at x}. 

Then Z is covered by a family of effective 1-cycles {C~}/S  with ( - K x  - D.C~) < 2n (possibly disconnected 
and over a neighborhood o f W  C S in the analytic case), where n = dim E / S  (and even < 2n if K x  + D is 
Kawamata log terminal in the generic points of E and X 7 s E). Moreover, we could assume that the generic 
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1-cycles Ca are curves, i.e., reduced and irreducible, when K x  + D in numerically definite, and the curves Ca 
with ( K x  + D.CA) < 0 (resp. <_ O) are rational. 

6.9. Coro l la ry .  If, in addition, F is an R-Cartier divisor such that K x  + D + F is log canonical in the 
generic point~ Of E,  D + F is effective, and K x  + D is numericalIy semi-negative with respect to f , then E 
is covered by a family (possibly disconnected) of effective 1-cycles {CA} /S  (resp. with the curves as generic 
members when K x  + D + F is numerically definite) with 

(F.CA) > -2n  

(resp. > - 2 n  if K x  + D + F is Kawamata log terminal in the generic points Of E,  and X • E).  

6.I0 .  C o r o l l a r y  ([13], el. also [7]). Let f:  X --+ $ be a projective morphism of a 3-fold X ,  and D be an 
effective R-divisor in X such that K x  + D is R-Cartier, let H be an f-ample R-Cartier divisor and e > O. 
Then the number of extremal contractions contR and corresponding rays R such that K x  + D is 

(*) log canonical in a generic point of the degenerate fibers of contR, 
and such that ( K x  + D + el l .R)  < 0 is finite. 

Thus, the half-cone N E K x + ~  (WgKx+~ W) with a compact subset W C_ S in the analytic 
case) is locally polyhedral when (*) holds for all extremal rays in it, including the existence of the eztremal 
contractions contR. 

6.11. Coro l l a ry  (el. [7, Theorem 2]). For f:  X -+ S and D as in Theorem 6.8, let E be a subvariety, 
consisting of components of 

s  = {z E X [ an irreducible component of a fiber of f through x 

having dimension greater than d = dim X / S } .  

Then E is covered by a family (possibly disconnected) of effective 1-cycles {CA} /S  with ( - K x  - D.CA) < 
2(n - d), where n = dim E / S  (and even < 2(n - d) if K x  + O is Kawamata log terminal in the generic 
points orE). Moreover, we could assume that the generic 1-cycles CA are curves when K x  + D is numerically 
definite, and these curves CA with ( K x  + D.CA) < 0 (resp. < O) are rational. 

6.12. Corol la ry .  If, in addition to Corollary 6.11, F is an R-Cartier divisor such that K x  + D + F is log 
canonical in the generic points Of E,  D + F i~ effective, and K x  + D is numerically semi-negative with respect 
to f ,  then E is covered by a family (possibly disconnected) of effective 1-cycles (curves when K x  + D + F is 
numerically definite) {CA } / S with 

(F.CA) > - d) 

(resp. > - 2 ( n  - d) if K x  + D + F is Kawamata log terminal in the generic points Of E) 

In the above statements 6.8-6.12, we have 0 < d < n < 3. Thus, we get rough boundaries if we replace n 
and d respectively by 3 and 0, i.e., we will have > - 6  (> -6) .  

P r o o f  o f  T h e o r e m  2.7. 
Step 1. Reduction to the strictly log terminal case (with a finite boundary in the analytic case). Since the 

Iitaka fibration is unique, we can localize our problem and suppose that S is a neighborhood of a point. (Then 
in the analytic case the boundary has a finite support in X, i.e., a union of finite divisors.) Denote by Di prime 
divisors in the support of the boundary. 

Note also that, by Theorem 2.3 and Proposition 2.4, we may assume that X / S  is a log minimal model. 
In particular, X is Q-factorial. So, by Corollary 6.6, we have a convex rational polyhedron 

Af = {B = ~ biDi [ all bi E [0, 1], K x  + B is nef and log canonical} 

in the cube (3[0, 1]Di. 
If B is rational, we know the semi-ampleness as an abundance from [12]. 

2690 



Step 2. Reduction to a Q-boundary. If B is not rational, it will be an internal point of a face of A/'. The 
interior points of the face are equivalent. So, they have the same Iitaka morphism I: X -~ Y / S  for the rational 
interior points of the face. I contend that the same holds for other points. Indeed, any other points can be 
presented as a weighted linear combination Y]~ riBi, where ri > 0, Y]~ ri = 1, and Bi are equivalent rational 
boundaries in the given face. By definition, K x  + Bi "~R I*H~, where R-divisors Hi of Y axe numerically 

ample/S. Therefore 

g z  + B = ~ r i ( K x  + Bi)"~R I * ( ~ r i H i ) ,  

and ~ riHi is numerically ample/S.  �9 

P r o o f  o f  5.1.2 for  3-folds (cf. [15, 8.1]). Suppose that f : X  -~ Y / S  is a birational (bimeromorphic) 
contraction. Then the log canonical model of X / Y  is a flip of X / S  with respect to K x  + B x  [26, 1.7]. Now 
we know that for a 3-fold X such a model exists by Corollary 2.8. 

This also proves the following generalization of [26] arid [15, 8.1]. �9 

6.13.  Log Fl ip  T h e o r e m .  Let g:X -+ Y / S  be a birational (bimeromorphic) contraction, and B be a 
boundary such that 

(i) KX + B i~ log canonical, and 
(ii) - ( K x  + B) is nef /S.  

Then the flip of g with respect to K x + B exists. 

P r o o f  o f  5.1.1 for  3-folds. According to Corollary 6.10, the contractible extremal rays R j  with ( K x  + 

B x . R j )  < 0 are discrete in -N--EKX+Bx(X/S). (The analytic case is similar.) 

Thus, it is enough to check that they and N E - ( K x + B x ) ( x / s )  generate NE(X/S) .  

If this is not true, there exists an extremal ray R C N--EKX+SX(x/s) such that R ~ Rj  for all j .  We 

derive a contradiction if we check that it is contractible. 
Indeed, we may choose R in such a way that it has a supporting hyperplane S with S fq NE(X/S)  = R. 
By Kleiman's criterion, there exist an ample and effective R-divisor H and a real r E (0, 1) such that 

K x  + BX + rH is nef and S = (Kx  + B x  + rH) • Moreover, we may assume that B x  + rH is a boundary 
and K x  + B x  + rH is log canonical. Indeed, if H is a Q divisor, we may take H = (1/rn)H t, where H ~ is a 
generic very ample divisor. For an R-divisor H,  we may use a weighted linear combination, as in the proof of 

Theorem 2.7. 
Now by semi-ampleness and Kleiman, we have a nontrivial (Iitaka) contraction g: X -+ Y / S  of R, i.e., R 

is contractible and generated by a curve. �9 

6.14. R e m a r k .  The proof of the LMMP conjectures of 5.1 in dimension n can be based on the LMMP for 
the strictly log terminal singularities and the semi-ampleness in dimension < n. We may even assume that 
the boundaries are rational except for the termination. 

Of these, only 5.1.1 is known for n > 4 [11]. 

P r o o f  o f  t h e  F i r s t  M a i n  T h e o r e m  and  o f  C o r o l l a r y  6.6. Now they are implied by the LMMP in the 

log canonical case and Theorem 6.8. �9 

6.15. C o n t r a c t i o n  T h e o r e m .  Suppose that K x  + B is Kawamata log terminal on a 3-fold X (locally 
Moishezon/S in the analytic case) and nef/S. Let D be an effective and nefR-divisor/S, ~uch that K x  + B is 
numerically trivial on the face F = D • N NE(X/S)  (NNE(X/S; W) respectively). Then F is contractible/S 
(over a neighborhood of W). 

Proof .  Note that K x  + B + rD also defines a supporting hyperplane for F and any r > 0. However, for 
0 < r << 1, Igx + B + rD is log canonical and even Kawamata log terminal. Thus F is contractible by 2.7. 
m 
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In the same manner we prove (see also Corollary 6.18) the following. 

6.16.  Base  Point  Free Theorem.  Suppose that K x  + B is log canonical on a 3-fold X / S  (under the 
Moishezon condition of 2.2 in the analytic case). Let locally/S H be a s e l l s  R-Cartier divisor, such that 
H - ~(Kx + B) in semi-ample/S for some nonnegative real ~. Then H is semi-ample/S. 

6.16.1.  If  K x  + B is Kawamata log terminal, it is enough to suppose that H - ~(Kx  + B) is se l l s  and 
R-linear equivalent to an effective divisor D. The latter holds, for instance, when H - e ( K x  + B) is s e l l s  and 
of a maximal numerical dimension (see Iemma 6.17 below). 

P r o o f .  First, it is a local s ta tement /S.  Next, we may assume that e > 0 and is rational, as well as H - 
e (Kx  + B) ,,,Q D for an effective divisor D (see Lemma 6.17) such that K x  + 13 + D/e is log canonical. So, 
H ,,,Q K x  + B + D/e and the  latter is Semi-ample by 2,7. [] 

6.16.2.  E x a m p l e .  (Cf. 6.18.1.) Under the assumptions of 6.16, suppose that  K x  + B is numerically 
trivial/S. Let D be a semi-ample divisor. Then we may contract exceptional E ' s  in X / S ,  which do not have 
a maximal numerical dimension with respect to D: (E .D dim E) = 0. Just take H = K x  + B + D in Theorem 

6.16. 
Locally/S and in the analytic case, such D is easily constructed for an exceptional sub-locus with the 

I-dimensional complement in its fiber. In particular, if X / S  is small we can contract analytically any of its 
exceptional sub-loci. In this case, NE(X/S;  pL) is simplicial with extremal rays generated by the irreducible 
curves of .7(/pt. 

Further applications of Corollary 6.15 need the following result. 

6.17. L e m m a .  Let D be a herR-Cartier divisor of X / S  (locally Moishezon/S in the analytic case) such 
that D a > 0 on the generic fiber of X / S ,  where d = d imX/S .  Then D is Q-linearly and locally/S equivalent 
to an effective divisor in X .  

Proof .  D has/S the maximal numerical dimension, ff D is a Q-divisor, then the lemma is true due to the 
Riemann-Ro ch-Hirzebruch theorem and vanishings [11, 6.1.2]. 

In general, we use similar arguments. 
First, we assume that X is nonsingular, and that the prime components of Supp D are nonsingular too, 

with normal crossings. 
Second, we also suppose that K x  has no common components with Supp D, and that all multiplicities 

of KX are 4-1. 
Third, we may assume that D has ample prime components with noninteger and even irrational multi- 

plicity. (We need a noninteger rational for a Q-linear equivalence.) 
Fourth, we may assume that S = pt. 
Then by the Kawamata-Viehweg vanishings [11, 1.2.3] 

h~ K x  + [NO]) = x(X,  D) 

for any natural N. More precisely, this is true for a Q-divisor ND. If N D  has irrational coefficients, we can 
change them into rational coefficients, preserving the net and big property of ND,  as well as [ND] itself. This 
is due to the ample component of D with an irrational multiplicity. (If it has a noninteger rational coefficient 
we may take N's  relatively prime to a denominator.) 

Thus, by the Riemann-Roch theorem 

1 NdDd h~ K x  + [ND])  ~ ~ _  _ . 

In particular, [Kx + [ND]] • 0 for U >> 0. 
We contend further that, for N >> 0, 

I[DJI = I FND] - Supp{ND}[ # O, 
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where {ND} = ~ J~Di is the fractional part  of ND. Then ND .~ D' + ~ fiDi >_ O, where D' E I[DJ I, ~ 
means linear equivalence, and by the construction all fi E [0, 1). This proves the lemma. 

Take F -- Supp(Kx +D) .  Thus, it is enough to check that, for N > 0, IKx + [ND] - F  I ~ 0. Moreover, 
we may extend F to a very ample divisor, and then replace it by its linear equivalent divisor which is smooth, 
irreducible (for d > 2), not a component of Supp(Kx + D), and intersects normally Supp(Kx + D). Then 

(Kx  + [ND])IF = KX[F + [N(DIF)]. 

According to the restriction sequence on F,  

h~ K x  + [ND] - F )  >_ h~ K x  + [ N D ] ) -  h~ + [ND])IF ) 

= h~ g x  + [ N O ] ) -  h~ g x [ F  + [N(DIF)] ) 

>_ h~ K x  + [ N D ] ) -  h~ KF + [N(D]F)]) 
1 NdDd 

_ >>0 

for N >> O, because 

1 Nd_I(D[F)d_I. h~ KF + [N(D[F)]) ~ ( d -  1)--'---~ 

Of course, D[F is nef, and we may assume that it is big. �9 

6.18. Corol la ry .  Under the assumptionJ of 6.15, let F be a face of NE(X/S)  (NE(X/S; W) in the ana- 
lytic case), such that K x  + B is numerically trivial on F, and F has a supporting hyperplane H of maximal 
(numerical) dimension, i.e., on the generic fiber o fX /S ,  D a > 0 for a divisor D in H • where d = dimX/S .  
Then F is contractible/S (over a neighborhood of W). 

6.18.1. N-E(X/S) (respectively NE(X/S; W)) is rationally polyhedral in a conical neighborhood o f f  when 
X / S  is projective/S. In particular, the former holds when X / S  i~ quasi-finite (for instance, a modification) 
and projective. 

A conical neighborhood means a neighborhood containing a conical open neighborhood U of F,  i.e., F _C 
U and U is conical (not including 0). Note also that in the nonprojective case we may check nearby F a 
rational polyhedral property but not of the finite type. It may sometimes appear in the projective case, which 
will be discussed elsewhere. 

So, if K x  + B is numerically trivial/S, the dual cone of nef divisors is locally rationally polyhedral be- 
side H a = 0. Sometimes, the "beside" part is empty. For instance, if X has no contractions of birational 
(bimeromorphic) type and KX + B is again numerically trivial/S, then the dual cone is given by the equation 
H d = O. The latter holds for the Abelian 3-folds with B = 0. In higher dimension we should have a similar 
picture. 

Proof .  The statement is essentially local/S. According to the assumptions, there exists an R-divisor D 
such that D is nef, and H - D • i.e., D belongs to the class of linear functions defining H. Thus D d > O, 
and we may choose effective D. So, F is contractible by Corollary 6.15. 

6.18.1 follows from the existence of an effective Cartier D negative on F. Then K x  + eD is also negative 
on F and in a conical neighborhood of F.  �9 

Before the next application of the LMMP, we check the following consequence of the semi-ampleness. 

6.19. L e m m a .  Let (Y/S, By)  be a log pair with a 3-fold Y, having nonnegative Kodaira dimension. Then 
there exists a positive real ti, such that, for any weakly log canonical model X /  S of(Y/S,  By )  and for any curve 
c / s  of x ,  

h = rain { r ex  + Bx .C)  > o I c is c rve of X / S }  

(over a neighborhood of W in the analytic case). So, (KX + Bx.C)  = 0 whenever (KX + Bx .C)  < li. 
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Proof .  By Proposition 2.4, we may fix a weakly log canonical model X / S .  According to the abundance 
theorem, we may replace X / S  by its minimal model, and K x  + B x  by an ample R-divisor H. (As we see 
later, we need only a linear combination below, which exists according to the proof of Theorem 2.7.) 

If H is a Q-divisor, h E N/r, where r is the index of H. 
In general, H is a weighted linear combination of ample Q-divisors, and we take h as the weighted linear 

combination of multiples of h's for the components (see 4.1.3). [] 

F i x a  finite set of prime bi-divisors Di, i E I, of X / S  and consider 

C= {B  = Z b i D i  I allbi E [O,I], a n d b i - ~ 0 o r l f o r i r  

which is essentially the cube (~) [0, 1]Di of boundaries. We say that Di with i E I is chosen. Of course, for 
iEt 

i r [, we assume also that bi = 0 or 1 fixed, and bi -- 0 and 1 for almost all nonexceptional and exceptional 
Di respectively. (Another option is totake any bi E [0, 1] for such Di.) 

The next result gives a positive answer to [24, Problem 6], and improves substantially [25, Relative Model 

Theorem]. 

6.20. Second  M a i n  T h e o r e m .  For a 3-fold X / S  (over a neighborhood of W in the analytic case, and 
under the assump~ionn of 2.2), the set ]t/[ of B E C with nonnegative Kodaira dimension of (X/S,  B) is a 
convex, cloned, rational polyhedron..A4 i~ divided into a finite set of equivalent classes of log minimal models 
which are convex (maybe nonclosed) rational polyhedra. 

6.20.1. R e m a r k .  Theorem 6.6 implies that each equivalent class of .~4 is the interior of a polyhedron in 
the decomposition with a fine union of interiors for some of its faces (cf. Remark 6.7). So, the decomposition 
is also polyhedral in the sense that any face of its polyhedron is its polyhedron. 

Note that the structure of the polyhedra depends on the same for the Kleiman-Mori cones and positions 
of supports of its extremal rays. In some sense locally the decompositions fail to be given by hyperplanes in ~ [  
(of. the first main theorem and the next example) when the supports of extremal rays have points in common. 

Flips in such instances are typically noncommuting. 

6.20.2. E x a m p l e .  Let X / S  be a contraction of two curves Ci and C2 in a surface X such that C1 and C2 
are smooth and rational with 2 2 Ci ,C  2 < 3. 

First, suppose that  C1 and C2 do not have points in common. Then 

C = {Bx  = blC1 + b2C2 I bl, 52 E [0, 1]} 

is divided into four quadrangles by lines 

( Kx  + blCi + bzC2.C1) = 0 and ( K x  + bit1 +b2C2.C2) = O. 

An interior point of each quadrangle corresponds to one of the following models: X, X1 with contracted Ci, 

2"2 with contracted C2, and S = X1,2. 
Suppose now that  (C1.C2) = 1. Then similar equations divide C into four quadrangles, and only one of 

them gives a correct domain, namely 

(Kx  + blCi + b262.C1) > 0 and (Kx  + blC1 + b2C2:C2) > O. 

Indeed, take (bl, b2) such that 

(Kx  + biCi + b2C2.Ci) = 0 and (Kx  + biC1 + b2C2.C2) < O. 

Then it will be in the interior of model S. Indeed, in contraction X2, (Kx2 + biCi.Ci) < 0; the same holds 

in a neighborhood of (bi, b2). 

6.20.3. P r o b l e m .  It is interesting to construct a similar example for two flips. Essentially this means that 
there exists a 3-fold with a small contraction which is Q-factorial, numerically trivial for K x  §  and ample 
for K x  + B x  + eD but not Q-factorial after the flop with respect to - D .  (Cf. [23, 2.13.5; 14, 13.7].) 
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Proof .  The convex property of A4 is a local proper ty /S  and follows from that for divisors having effective 
linearly equivalent multiples. Indeed, if B E C has a nonnegative Kodaira dimension for (X/S, B), then 
Kx + Bx  on a weakly log canonical model has an effective R-linear/S equivalent presentation. This follows 
from the log semi-ampleness and Lemma 6.17. According to the very definition of the log singularities, the 

same holds for K y  + By" on any model Y/X.  
The closed property of t 4  is implied by the open property of B with the negative Kodalra dimension of 

(X/S, B). In that case We have a model (X/S, B) such that all Di with multiplicities bi < 1 are resolved, 
S u p p B x  is log nonsingular' and we have a covering family of curves C/S with (Kx  + Bx.C) < 0 for its 
generic curve. This is derived from the existence of a nontrivial Fano fibering on an appropriate model of 
X / S  by Theorem 2.3. The inequality (Kx  + Bx.C) < 0 is preserved for small perturbations of B E C. 

So, it is enough to check the last statements on the decomposition given by the equivalent classes, Essen- 
tially, it is enough to check finiteness, because the classes are rational polyhedra by Corollary 6.6. Since the 
entire domain is compact, we may do it locally and use induction, as in the proof of the first main theorem 6.6. 

Let B ~ be a fixed boundary with a nonnegative Kodaira dimension, and X / S  be a log minimal model with 

respect to B ~ We may assume that all chosen Di's with a(Di, B ~ X) = 1 - bi (or with r(Di, B ~ X) = O) are 
nonexceptional (cf. Conjecture 2.2 and Theorem 3.1). Moreover, we may discard other chosen Di, preserving 
the variety of the models in a neighborhood of B e. Then all chosen Di's will be nonexceptional in X. Indeed, 
let us start with a log resolution X / S  on which all chosen divisors Di are nonexceptional. Then Kx  + B x  is 

strictly log terminal for every B E C. If Kx  + BOx is nef/S, this is the required model. 
Otherwise, by 5.1.1 we have an extremal contraction X --+ Y /S  with respect to K x  + B~ This holds 

in a neighborhood of B ~ in C. If it contracts a chosen divisor Di we discard it or assume that its boundary 
multiplicity is 1. This gives an orthogonal projection of the cube on its face. By induction on the number 
of chosen divisors, we may assume that the extremal contractions are small. They are not of the fiber type, 

because B ~ has a nonnegative Kodaira dimension. 
Therefore, we replace X / S  by its flip of X/Y .  Then, in the same neighborhood of B ~ K x  + B x  are 

strictly log terminal. Finally, by the termination we get the required model. 
Now we fix an e-neighborhood of B ~ in C where Kx  + Bx  is strictly log terminal. In the sequel we may 

replace C with any subpolyhedr0n. Since C is a polyhedron, this neighborhood will be a polyhedral cone for 
0 < e <:< 1, in particular, it intersects any ray from B ~ by B ~ or by a semi-interval of length r In the lat~er 

case R will be called nontrivial. 
We contend that there exists 0 < e ,(~ 1 such that in any nontrivial ray R from B ~ either the Kodaira 

dimension of every B E B ~ + (0, e)R is negative, or the minimal models for all B E B ~ + (0, e)R are equivalent. 

Here we identify R with its unit vector. 

For this, it is enough to find 0 < e  << 1 such that 

(OP) Kx + BOx is numerically trivial on an extremal ray R'  of NE(X/S) whenever (Kx  + Bx.R' )  < 0 
somewhere in an e-neighborhood of B ~ 

By Lemma 6.19 and Theorem 6.8, we can take e: = he/(6 + h) (in higher dimensions it will be slightly dif- 
ferent). Moreover, we see that e depends only on h, which in turn is independent of the weakly log canon- 
ical model of (X/S, B ~ or direction R. The property OP is preserved for flips of R I on fixed R, because 
(Kx + Bx .R  ~) < 0 on R (except for B ~ in the old e-neighborhood too, and the simultaneous flip in R' 

preserves the log terminality. 
So, let B -- B ~ + r R  with r E (0, e). Suppose that Kx + Bx  is not nef. Then there exists an extremal 

ray R' of NE(X/S) with ( K x  + Bx.R')  < 0. According to the OP, (Kx + B~ ') = O, Kx  + Bx  is strictly 
log terminal, and (Kx  + Bx.R')  < 0 for any r E (0, e). If the corresponding contraction is of the fiber type, 
then all such B will have negative Kodadra dimension. Otherwise it defines a birational contraction. We can 
make a simultaneous flip with respect to all KX + Bx.  Note that it will be a flop with respect to /x 'x  + B ~ 
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As a result, we may obtain a weakly log canonical model for B0, but not a log terminal model. We can repeat 

the same construction for X + (cf. [26, 4.5]). By the termination we get simultaneously either a negative 

Kodaira dimension for the given boundaries B, or a log minimal model. The latter models axe equivalent by 

Corollary 6.6. 
Thus, in an ~-neighborhood of B ~ all boundaries with a nonnegative Kodaira dimension form a cone, as 

well as the equivalent classes. 
By induction, in any section of the cone we have a finite decomposition into the models which give that 

for an e-neighborhood of B ~ By Corollary 6.6. it is rational and polyhedral. [] 

6.21. Coro l l a ry .  The numerical dimension of (X/S ,  B) is a step upper convex function, and it is lower 
semi-continuous with respecg to B on M.  

Proof .  It is constant inside the polyhedra of the decomposition given in Theorem 2.19. 
The semi-continuity follows from 6.20.1, 6.6, and the fact that for any R-Cartier divisor D and d-cycle 

C/S,  the inequality (Dd.C) > 0 is preserved for small perturbations of D. 
The convexity can be derived in the style of Theorem 6.20 due to the convexity of the Iitaka dimension 

for divisors. [] 

6.22. Coro l la ry .  Let ( X /  S, B) be a pair of general type with 3-fold X having a Kawamata log terminal min- 
imal model. Then it has a finite set of the projective weakly log canonical models and their flops. In particular, 
this holds for the log minimal models and their flops. 

Each of them is reconstructed from another by a finite chain of elementary flops. 

By elementary flops we mean blow-ups and blow-downs X --+ Y / S  with relative Picaxd number  1, being 
numerically trivial with respect to the log divisor K x  + B x ,  but not the usual flops. The latter axe decom- 
posable into two elementary small flops. Flops are directed with respect to some divisor. 

6.22.1. P r o b l e m .  Of course in dimension 2, we can prove the theorem for all weakly log canonical models 
and their flops. However, it appears that projectivity is very important for dimension 3 and higher. 

Find a 3-fold of general type having infinitely many complete weakly log canonical models (at least in a 

category of algebraic spaces). 

P roof .  Since (X/S ,  B) has a log canonical model, we may assume that it is X/S .  Let H be its very ample/S 

divisor. 
Now we choose a set of bi-divisors Di. They are, up to the numerical equivalence~S, generators of Weil 

divisors of X / S ,  prime components of B x ,  and exceptional divisors Di of X with ai = a(Di, B, X)  < 1. This 
set is finite by our assumption, Proposition 2.4, and Corollary 1.7. We can assume that  H = ~] hiDi in X, 
where the sum runs over chosen divisors in X and even the multiplicities hi > 0 for every chosen divisor, as 

well as ai > 0 for those Di's. 
We contend that, for chosen Di 's, the classes of equivalent models in a neighborhood of B are in one-to-one 

correspondence with the isomorphism classes of weakly log canonical models of (X/S ,  B). 
We take a neighborhood intersecting only the polyhedra with B in the boundary. Thus, by the very 

definition of them, for B '  in such a neighborhood, the log canonical model Y / S  of (X/S ,  B')  is a weakly log 
canonical model of (X/S ,  B). This gives the required correspondence 

(Y/s, B') (Y/S, B), 

and it is injective on equivalent classes. 
Therefore, we want to check that it is surjective, i.e., any weakly log canonical model Y / S  of (X/S ,  B) is 

a canonical model for B'  in a neighborhood of B. 
First, note that i f H '  is very ample, then, for any 0 < r << I, K y  + B + EH' is (Kawamata) log terminal 

and ample. So, it is a canonical model for B + CH'. The latter makes sense whenever we consider H '  as a 
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bi-divisor and define its multiplicities as for the complete inverse image for the chosen divisors and 0 on the 
other exceptional divisors of Y. 

Then we may find H '  = Y~ aiDi, where the sum runs over chosen divisors nonexceptional in Y and 
ai > 0. Indeed, by the construction we have the same presentation with integer cxi. Now note that  there 
exists a projection g: Y -+ X/S ,  and we may replace H ~ by H' + Ng'H,  where N is any natural number, and 
g*H = ~ hiDi in Y is an effective divisor with positive multiplicities on each Di. 

The last statement is implied by the structure of the polyhedral decomposition (see Remark 6.23.3). 
There exists a more direct approach. Let X/B be the initial model and D be the log birational transform 

of a very ample divisor from the reconstructed model. Then the reconstructed model will be a model for 

B + e H  and0 < e  << 1. 
It can be constructed as follows. First, we make a Q-factorialization of X, which:can be decomposed into 

elementary small blow-ups. Then X will be Q-factorial, and we can apply the LMMP to B + r As in the 
proof of Theorem 2.19, the next extremal modifications will be the usual flops and divisorial contractions 
with respect to Kx  + Bx.  The former are decomposable into two elementary flops, and so are the latter 
themselves. Finally, we decompose an Iitaka contraction into elementary blow-downs. 

The decomposition of regular flops, i.e., contractions, into elementary flops is possible because the relative 
Kleiman-Mori cone for them is polyhedral by Corollary 6.18.1. [] 

6.23. R e m a r k s .  

6.23.1. The generic points B t in a neighborhood of B are s~able in the following sense. Any small variation 
of B / gives the same model. We discuss this concept only in the case of nonnegative Kodaira dimension. 

Then the stability of B implies that B is of general type. The proof of Corollary 6.22 also implies that 
it has only one weakly log minimal model which is simultaneously log canonical and log minimal. Thus it 
is projective, Kawamata  log terminal, and relatively terminal in codimension > 2, i.e., for all exceptional 

divisors Di of such models X/S,  a(Di, B, X) > 1 - bi. 
Every B has such an approximation whenever it has a weakly log canonical model X/S.  Indeed, after the 

replacement of X /S  by a log minimal model, we can replace B by B + e l l ,  where H is very ample on X/S.  
Thus, log minimal models are semi-stable, i.e., stable for a small variation of B. 

6.23.2. From this point of view, all basic morphisms of the LMMP are stable - -  Fano fiberings, flips, and 
divisorial contractions with respect to B - -  in the category of models with strictly log terminal singularities. 
This means that if we have such a morphism X -+ Y/S, then Kx + Bx  is strictly log terminal and it is 
negative with respect to K x  + Bx ,  and this also holds for any small variation of the boundary B. 

According to the termination, even the construction of a log minimal model is stable. 
However, the flops and Iitaka contractions are not stable. We can make them stable by changing the 

boundary which leads to directed flops. 

6.23.3. Thus, the inside points in the maximal polyhedra of A4, in the proof of Corollary 6.22, are stable 
and they give the Q-factorial and log minimal models of (X/S, B). The maximal faces for such polyhedra 
correspond to the elementary flops of such models, i.e., they are contractions with relative Picard number 1. 

Moreover, the log minimal models of (X/S, B) correspond to an open convex maximal subpolyhedron 
and the walls between them correspond to the small elementary contractions of log minimal models. So, each 
log minimal model can be reconstructed from another by the usual flops (in curves). 

Therefore, in dimension 3, the typical new phenomenon is that (X/S, B) has only 10g minimal models as 
Q-factorial projective weakly log canonical, and they are related by flips (cf. [19]). 

In an opposite case which reflects dimension 2, all weakly log canonical models may be Q-factorial. It is 
possible to consider such 3-folds singularities, and this is actually done by V. Nikulin [18]. 

6.23.4. Category of flops. The objects of it are projective weakly log canonical models of (X/S, B) and mor- 
phisms are their regular flops. It may be considered as an order. (We assume that X _> Y whenever we have a 
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regular flop X ~ Y.) If (X/S, B) is of general type, it will be finite with the log canonical model as the least 
element. It is always connected and the nearest elements are related by elementary flops. 

The maximal elements are the log minimal models. 
In Nikulin's case, we have only one maximal element, which is the greatest. 

6.23.5. Everything in this section should work in any dimension if the LMMP holds. Moreover, the LMMP 
is sufficient for Q-boundaries, except for the termination. 
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