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AN ADDENDUM TO THE PAPER "3-FOLD LOG FLIPS"
UDC 512.7

V. V. SHOKUROV

The present paper is written in connection with Kollar's counterexample to Propo-
sition 8.3. After a Z2-covering, this counterexample corresponds to the follow-
ing small blowup. Consider the three-dimensional quadric Ζ = (xy + uv = 0)
on which the generator τ e Z2 acts according to the formula τ: (x, y, u, v) *->
(x, y, -u, -v). This quadric contains four planes, viz.

Vl = (x-v=y + u), V2 = (x + v=y-u = 0);

Consider the small resolution X —> Ζ corresponding to the fundamental subset of
the pencil (Fj, V2) or, which is the same, the monoidal transformation with center
at Τι or T2. Denote by F/ and T\ the proper transforms of F,· and Γ, in X.
The action of τ lifts to X and

Put X = Χ/τ, Si = Τ[/τ, S'2 = T{/x + (F/ + F 2 ' ) / T . Then Kx + S{ is a log
terminal divisor. The intersection S\ η S'2 consists of two curves crossing normally.
Furthermore, X has an isolated singularity of index 2 on 5Ί and a curve of ordinary
double singularities on 5Ί (and a similar curve on S'2). Then all conditions of
Proposition 8.3 are satisfied with the exception of irreducibility of S'2 . However, the
surface S'2 can be replaced by a general element of the linear system l^l passing
through 5Ί Π S'2 (the double points automatically lie in the fundamental subset).

The error in the proof of Proposition 8.3 was almost at the very end and con-
sisted in that in a suitable analytic neighborhood (π ο q)~lS2 has two components
intersecting in a curve (cf. [1, Russian p. 179, English p. 166]). This cover yields nor-
malization of S2 . Furthermore, this is the only possibility. As could be expected,
the corresponding flip X~ —*· X+ yields the double fold on S2 . As a result, Proposi-
tion 8.3 transforms into a statement about properties of the above flip involving the
original conditions (i)-(iii) as well as the following new condition:

(iv) Κ + S\+S2 is numerically trivial in a neighborhood of the contracted curve.

Since in the original paper Proposition 8.3 was used to show that many specific
cases actually do not occur, the new version of this proposition led to numerous
gaps, specifically in the proof of Proposition 8.8. After a minor modification of its
statement and considerable changes in the proof, this last proposition has become
a proposition-reduction, which means that if the assumptions of this proposition
are not satisfied, then there exists a flip. In particular, this is so if </, > 1 for all
exceptional divisors Ej with a,• = 0.
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See [1].
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However in general the sequence of flips is the same as before. Proposition 8.3 is
now deduced from general considerations not using Proposition 8.8.

For the reader's convenience the author decided to publish a new version of the
entire § 8 rather than a list of corrections.*

§ 8. SPECIAL FLIPS O F INDEX 2

8.1. The setup. In this section / : I - » Z is a special nonexceptional contraction
of index 2. This means that there exist a boundary Β and an irreducible surface S
on X such that the following conditions hold:

(8.1.1) Κ + S + Β is log canonical and 2(K + S + B) is linearly equivalent to 0 in
a neighborhood of the contracted curve;

(8.1.2) S1 is negative on the contracted curve;
(8.1.3) Κ + S is purely and strictly log terminal;
(8.1.4) K + S is negative on the contracted curve;
(8.1.5) the restriction (K + S + B)\s is not exceptional in a neighborhood of the

contracted fiber.

According to Proposition 6.12, we can assume that

(8.1.6) The locus of log canonical singularities of Κ + S + Β is contained in S.

In particular, shrinking if necessary the neighborhood of the contracted curve, we
may assume that the irreducible components of Β have multiplicities \ or 0. By
assumption (8.1.3), X is Q-factorial. We also suppose that / is extremal, and the
contracted curve is connected. In the analytic case, all of this holds in a neighborhood
of the flipping curve, that is, with W = pt being the image of the flipping curve, and
hence the flipping curve is irreducible.

8.2. Reduction. It can be assumed that there is exactly one irreducible curve C not
contracted by f, with multiplicity 1 in the boundary of the restricted log divisor
(K + S + B)\s. Furthermore, each connected component of Supp (B\s) lying outside
C and intersecting the locus of log canonical singularities of (K+S+B)\s is contracted
to a point by f.

Proof. Suppose first that there is at least one irreducible curve C not contracted
by / , with multiplicity 1 in the boundary of the log divisor (K + S + B)\s . If Β
intersects S1 in a curve Φ C having multiplicity 1 in the boundary of (.ίΓ+ 5 + 5)1,5
and not contracted by / , then, by the connectedness of the locus of log canonical
singularities of (K + S + B)\s and (8.1.3), we can change the boundary Bs outside
C so that it remains > 0$, and Ks + Bs becomes log terminal and numerically
negative with respect to f\s . Then by Corollary 5.11, g*(K + S)\s will have a 1-
complement for any blowing up g . Hence by the proof of Theorem 5.12, K + S
has a 1-complement, and the flip of / exists by Proposition 6.8. In a similar way
one proves that there exist a 1-complement of Κ + S and a flip of / in the case
when Supp (B\s) has a connected component that is not contained in C, intersects
the locus of log canonical singularities of (K + S + B)\s , and is not exceptional with
respect to / . Hence it remains to carry out the reduction in the case when all curves
having multiplicity 1 in the boundary of the log divisor (K + S + B)\s are contracted
by f.

In the analytic setup, the above arguments prove existence of the required comple-
ment oi K+S in a neighborhood of a flipping ray, since Β is positive on the flipping
curve, and therefore cuts out on S a connected component which is not contracted

*Editofs note. In the translation of [1], §8 was revised to take account of Kollar's counterexample.
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by / and intersects the locus of log canonical singularities of (K + S + B)\s . In the
algebraic setup, the required complement Β can be found on one of the ends of the
given log canonical set, but this complement might behave badly on the other end.
In this case we must reduce to other flips.

Consider a strictly log terminal blowup g: Υ —> X existing in a neighborhood of
the flipping curve by Corollary 5.19. Since g is log crepant, by Corollary 3.16 there
exists a prime divisor Ε exceptional with respect to / such that / ο g(E) — pt.
By (8.1.6) the multiplicity d of Ε in g*S is positive. Put Η = e{g~lS + dE) for
small ε > 0. Since the exceptional divisors for g together with g~lS form a fiber of
g, we can apply Corollary 4.6 to get a new blowup g with a single exceptional divisor
Ε. The required flips are of type III, since Κγ + g~1S+BY is log terminal outside the
reduced part of the boundary coinciding with Supp g*S, and this boundary forms a
fiber of g. From this and by construction it follows that the supports of modified
rays are contained in exceptional divisors other than Ε. Hence the modifications
terminate.

Thus, for the new blowup, (KY + g~'S + E)\E* is numerically trivial and contains
the intersection curve C\ = g~lS Π Ε in the locus of log canonical singularities.
The latter is connected in view of Theorem 6.9 and assumption (8.1.5). Note that by
construction Ky + g~lS is log terminal. But p(Y/Z) = 2 and ΝΕ(Γ/Ζ) has two ex-
tremal rays Ri and R2. We now apply the arguments of the proof of Reduction 7.2.
Suppose that R\ corresponds to the contraction g . Obviously R\ is positive with
respect to g~lB. Next we need to consider modifications of O-contractions for
Η = eg*Β corresponding to R2 • Actually it suffices to consider only the flipping
rays R2 nonpositive with respect to g~lS.

Assume first that R2 is negative with respect to g~lS. If i?2 is positive with
respect to Ε, then the flip of i?2 exists by Corollary 5.20. Moreover, this flip
preserves the log terminality of Κγ + g~lS. If Ε is numerically nonpositive on R2 ,
then g~xB is positive on R2 and the flip exists by Lemma 6.10; the log terminality
of KY + g~lS is again preserved. If the intersection curve C\ is lost as a result of
such flips, then the surfaces g~lS and Ε no longer intersect each other, and we get
a flip by contracting Ε to a point, as in Reduction 7.2.

Finally, if g~lS is numerically trivial on R2, then Ε is negative on R2 and
g~lB is positive on R2. In particular, the support of R2 is contained in Ε. We
may assume that R2 is a flipping ray. If one of the connected components G of
Suppi?2 intersects g~lS, then it is contained in g~lS, and the flip in it exists by
virtue of Lemma 6.10 with S\ = g~lS and S2 = Ε. Otherwise G does not intersect
g~lS and hence it does not intersect C\. For the remaining connected components
Ε can be replaced by S, and g~]B by Β. Then assumptions (8.1.1-2) and (8.1.4)
will hold. (In the analytic case, after passing to a neighborhood of the component
in question the extremality may not be preserved. Then one must construct a flip
corresponding to —B .) By Theorem 6.9, on the normalization Su there is a (possibly
reducible) curve B' such that each connected component of the locus of log canonical
singularities of (K + S + B)\s« intersects B', and no component of B' is contracted
by / . Also by construction Κ + S + Β is log terminal outside the boundary S + B.

Suppose that the flipping component is contracted to a point Ρ. Then on any
weakly log canonical model of / the locus of log canonical singularities of K + S + B
is connected, even over an analytic neighborhood of Ρ. Of course, it always contains
the modified S. Since S is Q-Cartier, connectedness holds for any strictly log
terminal model of / . Moreover, any two surfaces with log discrepancy 0 are blown
up on some strictly log terminal model of / . Hence the locus of log canonical
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singularities of g*(K + S + B) is connected for an arbitrary resolution g over a
neighborhood of Ρ, which implies what we want.

Thus it remains to carry out a reduction in the case of a flip of the component
under consideration. To this end, we perform a strictly log terminal blowing up
g: Υ —• X for Κ + S. This, as well as all its modifications considered in what
follows, is a weakly log canonical model of / . The flip of / can be obtained as a
result of modifications of 0-contractions of / o g with Η = g~' 5—naturally, with
a subsequent contraction of the curves that are numerically trivial with respect to
g~lB. This is possible, since Κ + S + B is log terminal outside the boundary S + B,
which forms a fiber of fog. We claim that the flips required for this satisfy the
reduction (modulo flips that already exist).

Since S and Β form a fiber of fog and the support of a 0-flipping extremal ray
R is positive with respect to g~lB, it is negative with respect to 5" = g~lS or with
respect to a surface Ε exceptional for fog. We localize to connected components
C of Suppi? exactly as in the proof of Reductions 6.4-5. If C" intersects another
such component SY, then the flip exists by Lemma 6.11. Otherwise C c S' and
does not intersect any other component SY . Hence this is a special flip of index 2,
and it exists if it is exceptional. We can thus restrict attention to the case when it
is not exceptional. That means that {Κγ + g-1S + g~lB)\s' is not exceptional in a
neighborhood of C . In the case when 5" = g~lS = SY and {fog)-1 Ρ c g~lS = S'
over a neighborhood of Ρ, (KY + g~lS+g~lB)\s> is numerically trivial on g~{S —»
S" , and therefore the required curve C either joins C with the proper transform
of (v~lf)B', or coincides with this proper transform. Otherwise, since the locus
of log canonical singularities of KY + g~lS + g~lB over Ρ is connected, either
Theorem 6.9 yields the required curve C, or the locus of log canonical singularities
of (KY + g~lS + g~lB) does not coincide with S' in a neighborhood of the flipping
curve C . In the last case the flip exists by Proposition 6.12. D

In the preprint of this paper, the following result was incorrectly stated as nonex-
istence of flips (or of the corresponding configuration). But, as Kollar pointed out to
me, such flipping contractions actually exist.

8.3. Proposition. Let f: X —> Ζ be an extremal contraction of an irreducible curve
C, and let Β = S\ + S2, where Si, S2 are surfaces and C c 5Ί Π S2 • Assume that
the following conditions are satisfied:

(i) S\ and S2 cross normally along C;
(ii) / is special of type (6.6.1) for S = 5Ί ;

(iii) (K + S\ + S2)\Sl \c is not purely log terminal on C at a single point Ρ;
(iv) Κ + Si + S2 is numerically trivial in a neighborhood of the contracted curve.

Then the flip X~ -> X+ of C exists and has the following properties: C c Si is
contracted to a nonsingular point Q of a normal surface S^ . The normalization of
S£ is nonsingular and unibranched over Q. The flipped curve C+ is irreducible, and
the surface Sj" is nonnormal along it. The normalization S^ —> SJ defines a double
cover C* —* C+, and Q is a branch point of this cover. The singularities of X+ along
C+ are canonical of type An, and S1^ z s a Cartier divisor. S+ and S£ cross normally
along C'+ in a neighborhood of Q and {Kx+ + S+ + S^)\s^ - Kg» + C* + C+

'+

furthermore, the curves C* and C'+ cross normally at Q.

Proof. The flip exists by Proposition 2.7. We first describe the properties of / . By
(ii) and Corollary 3.8, 5Ί is normal and irreducible. Taking an analytic neighborhood
of C and replacing / by the contraction of C only, we preserve all the above
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assumptions except for the Q-factoriality of X. However S\ and S2 remain Q-
Cartier divisors. From our assumption it follows that S2 is positive on C. Hence by
(iii), possibly after shrinking the neighborhood of C, the intersection Si r\S2 consists
of two nonsingular irreducible curves C and C intersecting at P. Therefore by (iii),
Corollary 3.10, Lemma 4.2, and our assumption, C = P1 and

(8.3.1) (K + 5, + S2)\Sl \c = KFl + ±Λ + \P2 + Ρ

whereas
S2\Sl = C + cC',

where 0 < c < 1 in view of (i) and (3.2.2). Note that, like S2, the divisor C + cC
is positive on C. Let g: Τ —» 5Ί be a minimal resolution of singularities in a
neighborhood of C. Suppose first that the points P\ and Pi are singular on S\ .
By Corollary 3.10 they are nodes and

g*(C + cC) = g~lC + cg-lC + \EX + \E2 + Σ eiEi,

where El and E2 are exceptional curves over Λ and P2 respectively, E\, ... , En

is a chain of exceptional curves over Ρ, and E\ intersects g~lC. By (3.18.6),
0 < e\ < 1, from which it follows that

0 < (C + cC • C) = (g*(C + cC) · g~lC)

and (g 1C)2 > — 1. Since g ' C is contractible, it is an exceptional curve of the first
kind, i.e. (g~lC)2 = - 1 . But then the curve El LlE2U g~lC is not contractible.
Therefore at least one of the points P,, say Λ , is nonsingular. Then there is a
unique irreducible curve C" with multiplicity 1/2 in the boundary (£2)5, that
crosses normally through P\. In a similar way one checks that if P2 is nonsingular,
then (g~lC)2 > 0, and this again contradicts the contractibility of C. Thus P2 is
singular. Arguing as above, we see that

g*(C + cC) = g~lC + cg-lC + \E2 + Σ^Ε'.

where E2 is an exceptional curve corresponding to P2, E\, ... , En is a chain of
exceptional curves corresponding to P, and E\ intersects g~lC, from which it
follows that

0 < (C + cC · C) = (g*(C + cC) - g-'C)

and (g~lC)2 > -3/2. Hence by contractibility g~xC is an exceptional curve of the
first kind and

L ( ei for η > 1,
2 \c for η = 0.

From this it follows that if η = 0, then Ρ is nonsingular on Si . Furthermore,
by Corollary 3.10 we have c = 1, and the curves C and C cross normally at Ρ.
If η > 1, then by construction (Ei)2 = -m, with m, > 2. Since E2 UE\ U g~lC is
not contractible, we have Wi > 3. By (3.18.7) and the inequality ex > 1/2 we get
m\ = 3, m2 = · • • = mn = 2 and c > 1/2, hence by Corollary 3.10 we again have
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c = 1, that is, in either case 5Ί and £2 cross normally along C. Furthermore,
/ |s , : Si —> S contracts C to a nonsingular point Q e S and Ks + jfls^C") is
canonical at Q. This means that all the log discrepancies of Ks + ^/Is, (C") over Q
are > 1 (so that their discrepancies are > 0). The corresponding terminal blowup is
obtained from Τ after contracting the curves E2 and ^~'C,with C" mapping to
a nonsingular curve. Furthermore, for η > 1 the curve E\ maps onto an exceptional
curve of the first kind having simple tangency with C" ; for η = 0 the image of C"
has simple tangency with the image of C" .

Now we describe the properties of the flip. I claim first that it defines a contraction
of C on S\. By (8.3.1) there is a curve C" with multiplicity 1/2 in the boundary
{Si)Si crossing normally through P\. Hence, since 5Ί and S2 cross normally along
C and C" in a neighborhood of C,

(K + S ^ = KSl + {C"

is log terminal and negative on C. Hence, in a neighborhood of the transformed
curves C\, ... , Cm that land on S^ ,

(Kx+ + S+)\st = Kst + ±C"+ Σ

and is positive, where by the effectivity (3.2.2) all the c, > 0. But by the above
the curves C, are contracted to a nonsingular point Q on S, at which Ks +
(l/2)f\s,(C") is canonical. This is only possible for m = 0. Hence S+ = S.
From this it follows that there are no finite covers π: V —* U of degree / > 2,
where U is an irreducible neighborhood of Q, V is irreducible, and π is ramified
only along curves not lying on S and passing through Q. We also assume that all
these properties are preserved if we restrict π to irreducible analytic neighborhoods
of Q. In fact, by Corollary 2.2, π*(Κυ + S) = Kv + n~lS is purely log terminal, and
hence by Lemma 3.6 π " 1 ^ is normal and the induced finite cover π | π - ι 5 : \J D,; —> S
is unramified outside Q. Hence, since Q is nonsingular on S, π is unramified over
Q, which contradicts the possibility of analytically restricting π while preserving the
irreducibility of V (cf. Corollary 3.7).

Now note that Sj" is an irreducible surface, and the normalization ν: S^" -> 5^
is one-to-one over Q. In fact, otherwise there would exist an analytic neighborhood
of Q in which Sj" has components passing through Q. But this is impossible, since
a Q-Cartier divisor S intersects each of these components along a curve passing
through Q, and these curves are distinct because Κ + S + S^ is log canonical.
However S Π S£ = C'+ is an irreducible curve in a neighborhood of Q. Thus
the point Q can be identified with v~lQ,and C'+ with i / " ' C ' + . The restriction
(Κχ+ + S + S2OI5+" has at most two irreducible curves passing through Q, with
multiplicity 1 in the boundary Ss+*. Suppose first that there are exactly two such
curves, viz. C'+ and C*. Then in a neighborhood of Q

(Kx++ S+)\sr = Ksr + C*

and is log terminal. On the other hand, Κχ+ + S£ has index 1 at all points of a
punctured neighborhood of Q in S, so that by the above it has index 1 at Q itself.
Therefore Ks+»+C* has index 1 at β , and by (3.9.2) the surface S^" is nonsingular
at Q. Since 5 has index 2 along C" + , in a neighborhood of Q it defines a double
cover π: V -> U ramified only along C"+ . Hence, after shrinking the analytic
neighborhood of Q, π " 1 ^ consists of two irreducible components each of which
has nonsingular normalization. Since Kv + n~lS is purely log terminal, there exists
a small strictly log terminal blowing up q: W —» V with connected fiber Μ over Q;
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otherwise arguing as above we get a contradiction with π being ramified over Q. But
this is impossible if the two components of π*S£ intersect in at most points. Indeed,
then (noq)*S£ = (noq)-lS£ is numerically trivial on Μ, and, after shrinking the
analytic neighborhood of Q, it consists of two irreducible components which do not
intersect even along M, because Kv + n~lS + n~lS2 is log canonical. Hence Sj" i s

nonnormal along v(C*), and by the above X+ has a singularity of the required type
along v(C*) . The irreducibility of the flipped curve C + and the fact that it coincides
with v(C*) is easily deduced from the fact that all its components pass through Q
and are contained in S£ . Indeed, if C is such a curve and C 7) v(C*), then on
the normalization S^" it is an exceptional curve passing through Q = C* Π C'+ , and
numerically trivial with respect to {Κχ+ + S + S^ls** = Ks+V + C* + C'+ .

We now suppose that there is no C*, and derive a contradiction. In fact, in that
case in a neighborhood of Q

is log terminal and has index 1. Therefore S^ is a normal surface and Q is a
canonical singularity of S^" . On the other hand, (Kx+ +S+S2)\S+* is log canonical
and equal to Ks+»+C'+ in a neighborhood of Q, but not log terminal at Q. Then by
classification β is a Du Val singularity of type Dn . By (ii) and the original assump-
tion, each flipped curve C + is negative with respect to Sj"; hence it is contained
in S2 . By (ii) again, C+ passes through Q, and by the original assumption C+ is
numerically trivial with respect to (Κχ+ + S + 5^)|5+^. Hence C + is an exceptional
curve of the first kind on the minimal resolution of 5£ . But then a multiple of C+

is movable on S£ , which contradicts to / + : X+ —> Ζ being small. D

The following standard result is useful in simplifying somewhat the induction in
the sequel.

8.4. Reduction. Passing to the analytic case, one can assume that the flipping curve is
irreducible.

Conversely, if there exists an algebraic approximation of the contraction and its
polarization, then one can return to the algebraic case, resolving singularities that are
not log canonical and not Q-factorial outside the flipped curve; however, it seems
that an algebraic approximation need not exist.

Proof. Combine the arguments from the end of proof of Reductions 6.4-5 and Re-
duction 8.2. By Definition 6.1, one can restrict to an algebraic situation and shrink
to an analytic neighborhood. G

8.5. Classification. We classify rays according to two tests:
Is Κ + S + Β log terminal along the curve contracted by / ? Is the contracted

curve contained in Β (more precisely, in Supp Β )?
By (8.1.3) and (8.1.6), negative answers to both tests are impossible. Hence there

are the following possibilities:

(8.5.1) Κ + S + Β is purely log terminal along the curve contracted by / , and Β
does not contain it;

(8.5.2) Κ + S + Β is not log terminal along the curve contracted by / , and Β
contains it;

(8.5.3) Κ + S + Β is purely log terminal along the curve contracted by / , and Β
contains it.
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The reason for the chosen order will be clear from the reductions in the sequel. Of
course, by Reduction 8.2, in each of the above cases it is assumed that there exists
exactly one irreducible curve C not contracted by / , having multiplicity 1 in the
boundary of the log divisor (K + S + B)\s, and intersecting the contracted curve;
furthermore, each connected component of Supp(5 | s ) outside C meeting the locus
of log canonical singularities of (K+S+B)\s is exceptional. In the cases (8.5.1-2),
we also assume that the curve contracted by / is irreducible. In what follows we suc-
cessively reduce (8.5.1) to (8.5.2-3) and exceptional index 2 flips, (8.5.2) to (8.5.3)
and exceptional index 2 flips, and (8.5.3) to exceptional index 2 flips. However, the
contracted curve in (8.5.3) is possibly reducible, and log terminality of Κ + S + Β
along it means log terminality at a general point of each irreducible component. (It
is not hard to verify that the contracted curve in (8.5.3) has at most two irreducible
components.) Our general strategy is as follows. First we choose a good blowing
up g: Υ -* X in the sense of the following definition. A good blowing up g is
an extremal blowing up g having a prime exceptional divisor Ε and satisfying the
following conditions:

(i) g*(K + S + B) = KY + g~lS + g~lB + Ε, i.e. g is log crepant;
(ii) KY + g~lS + Ε is log terminal;

(iii) B\ — g~lSnE = P1 is an irreducible curve, and g~lS and Ε cross normally
along B\;

(iv) (KY + g~lS + g-'B + E)\g-is\Bl = (KY + g~lS + g-'B + E)\E\Bl = KF, +
\P\ + \Pj + Ρ, where Ρ is the unique point on B\ at which KY + g-1S +
g~{B + Ε is not log terminal.

Note that by Corollary 3.8, (iii) follows from (ii) and (8.1.3), although they are of-
ten proved in the opposite order. As in the second half of the proof of Reduction 7.2,
we apply Corollary 4.6 to / ο g with Η = eg*Β . The induction or reduction step
is realized for an extremal ray Ri that is numerically trivial with respect to the
modified g~xS. Here the base of the contraction is replaced by a divisorial blowup,
a modification of the current good blowup. In the analytic case, which is now the
main case of interest for us according to Reduction 8.4, the current W is replaced
by its preimage; here the original W is a point, the image of the flipping curve. It
is assumed that, for such W, f is extremal and X is strictly Q-factorial. (In the
analytic case, extremality of / and Q-factoriality of X are not preserved in general
under shrinking of a neighborhood of the contracted fiber.) Otherwise, the speciality
assumptions will hold.

Note also that W will always be projective and will be contained in the reduced
part of the boundary, since this holds for good blowups and is preserved under
subsequent modifications, because of the positivity of the flipping ray with respect
to Ε. Hence in a neighborhood of W there exists a strictly log terminal blowing
up of Κ + S + Β as in Corollary 5.19. However, in the boundary of the log divisor
Κ + S + Β and its restrictions, we usually write down only the components in a
neighborhood of the new flipping curve. In doing so, Lemmas 8.9-10 will allow us to
stay within the framework of the cases (8.5.1-3). But we cannot avoid allowing the
contracted curve to be reducible in (8.5.3). Overall, this reduction of index 2 special
flips to exceptional flips is carried out at the end of §8 and completes the proof of
Theorems 1.9-10 and Corollary 1.11.

Since we are not in the exceptional case, in the case (8.5.1) the curve contracted by
/ meets C in a point Q\ that is not log terminal for K + S + B or for (K + S + B)\s
in a neighborhood of the contracted curve. By Theorem 6.9, in a neighborhood of the
contracted curve Q\ is the only point at which {K + S+B)\s fails to be log terminal.
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On the other hand, by (iii) and (iv), g cannot be a blowing up of a curve C. Thus g
is a blowing up of the point Q\. In this case, we say that a good blowing up g is an
end blowing up if Ρ is the only possible point on (KY + g~lS + g~lB + E)\E that is
not log terminal on Ε. In the opposite case, by Theorem 6.9 and the assumption that
/ is not exceptional, the reduced part of the boundary of (Κγ + g~lS + g~lB + E)\E

has the form B\ + Bi, where Bi is a curve meeting B\ only in Ρ and containing a
point Qi Φ Ρ that is not log terminal. By the extremality of g, the divisors g~lS
and B\ are ample on Ε. Hence B2 is irreducible and Qi is the only point of Ε
at which (KY + g~lS + g~lΒ + E)\E is not log terminal, except possibly for Ρ. We
say that a good blowing up of Q2 is a middle blowing up; a finite chain of successive
blowings up ending in an end blowing up is stopped. It is convenient to subdivide
case (8.5.2) into two subcases, viz.

(8.5.2) In the conditions of (8.5.2) above, on the curve contracted by f there
is a point Q\ outside C at which (K + S + B)\s is not log terminal.

(8.5.2)* The opposite case.

It is not hard to verify that in the case (8.5.2) (without star) a good blowing up g
blows up Q\ . As above, it is called an end blowing up if Ρ is the only possible point
at which (KY + g~lS + g~lΒ + E)\E is not log terminal on Ε. A middle blowing
up and a stopped chain of blowings up are defined in a similar way.

8.6. Proposition. In the cases (8.5.1-2) there exists a stopped chain of good blowings
up.

Proof. By Corollary 5.19, over a neighborhood of W there exists a strictly log termi-
nal blowing up (see the remark after Proposition 8.8). We now apply Corollary 4.6
to g with Η — g~lB. By (8.1.3), performing modifications of O-contractions we
get the original model X. We claim that the final modification g that yields a
neighborhood of the point Q\ is a good blowing up of Q\.

Suppose first that this modification was a flip. By construction, g~lB is negative
on the flipped curve C and g*B is numerically trivial; hence there is a divisor Ε
exceptional with respect to g and positive on C . Moreover, C is not contained
in any divisor that is exceptional with respect to g, and hence is nonnegative with
respect to all these divisors. On the other hand, C is numerically trivial with respect
to g*S. Hence C" is negative with respect to the divisor g~xS and lies on it. By
construction, Κ γ + g~lS is log terminal, and hence the surface g~^S is normal.
Since C is positive with respect to Ε, the final divisor cuts out a curve of log
canonical singularities of {KY + g~lS + BY)\g-iS and Q\ is also contained in the
locus of log canonical singularities of this divisor. Thus by Theorem 6.9 C" is
a curve of log canonical singularities of (KY + g~lS + BY)\g-iS. But then, since
Κ γ + g~lS + E was log terminal before the flip, it follows that g~lB, hence also Β,
cuts out in a neighborhood of Q\ more than the locus of log canonical singularities
of (K + S + B)\s, which is not possible by definition of the cases (8.5.1-2).

Thus the final modification g yielding a neighborhood of Q\ , is the contraction
of the divisor Ε. Conditions (ii) and (iii) are satisfied by construction, and (i) holds
locally near Qx . Hence by (8.1.5) and (3.2.3) we get that Ε is contracted to the point
Qi . Now it is not difficult to check (iv). By the above, if this is not an end blowing
up, the boundary of g*(K + S + B)\E has two intersecting irreducible components,
viz. Β χ = g~iSf\E and B2. Now on B2 there exists a unique point Qi that is
not log terminal for g*(K + S + B)\E outside B\ . Since in a neighborhood of Q\
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the support of Β intersects S only along the curve of log canonical singularities
of (K + S + B)\s, it follows that g~lB intersects Bx only in P. Hence in a
neighborhood of Qi the support of g~lB intersects Ε only in Bi. Therefore the
final modification g yielding a neighborhood of Qi is again a good blowing up of
Qi. This process terminates because the number of our modifications is finite. D

In the cases (8.5.2)* and (8.5.3) it is convenient to define a natural invariant δ
and then establish the existence of a good blowing up decreasing this invariant. We
start with a slightly more general setup. Let Q be a point in S, and suppose that
the locus of log canonical singularities of Κ + S + Β is contained in S, and Κ + S
is log terminal in a neighborhood of Q. For each exceptional divisor £, we define
the multiplicity d\ of Ei in S by the relation

where Ei is exceptional for the contraction g: Υ —> X. Obviously dj does not
depend on the choice of g.

8.7. Lemma. In a neighborhood of Q the set of exceptional divisors Et with log
discrepancies ai = 0 and multiplicities di < 1 in S is finite.

Here "in a neighborhood of Q " means that the images of Ej contain Q.

Proof. It follows at once from the definition of log discrepancy that the distinguished
exceptional divisors Ei have log discrepancy < 1 for K+B . Thus it suffices to prove
that the set of exceptional divisors with log discrepancy < 1 (that is, discrepancy
< 0) is finite. But by our assumptions Κ + Β is purely log terminal, from which it
follows that all log discrepancies are > e for some positive e. From then on one
can argue as in [25, (l.l)]^ 1) G

Next we define δ by putting

δ ^#{Ει | a,: = 0 and d, < 1},

where we only consider exceptional divisors in a neighborhood of Q, that is over
Q or over an irreducible curve of log canonical singularities of Κ + S + Β passing
through Q. Returning to our setup, in the case (8.5.2)* we take Q to be a general
point of the contracted curve, and in the case (8.5.3) we take Q to be the unique
point on the contracted curve that is not log terminal for Κ + S + Β.

8.8. Proposition-Reduction. In the cases (8.5.2)* and (8.5.3), either there exists a
good blowing up g for which the image of the exceptional divisor Ε contains Q,
a = 0, and d < 1, or there exists a good blowing up g for which the restriction

is purely log terminal outside B\ over Q (in the case (8.5.2)* the point Q is generic).
More precisely, in the case (8.5.2)* the map g blows up the curve contracted by f,
and in the case (8.5.3) the map g blows up the point Q.

The heading "Proposition-Reduction" means that in the case when its statement
is not true the flip / does exist.

As we already observed, in the analytic case we assume that / is extremal and X
is Q-factorial with respect to a projective analytic subspace W c S + L B ] ; then (8.1.6)

(')Here and in what follows all references are to the bibliography in [1].
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holds in a neighborhood of the flipping curve. Hence by Corollary 5.19 there exists
a blowing up of a neighborhood of W which is strictly log terminal for K + S + Β.

Proof. We start with the case (8.5.2)*. Here we claim first that there exists an
exceptional divisor Ε over a curve contracted by / with a = 0 and d < 1. Taking
a general hyperplane section, we reduce the problem to the 2-dimensional situation.
Let Q be a surface singularity, which is log canonical, but not log terminal for
Κ + S + Β, where S is a curve and the support of Β passes through Q. Then over
Q there is an exceptional curve Ε with a, = 0 and d,; < 1. Using Lemma 3.6, it is
not hard to verify that S is irreducible and nonsingular in a neighborhood of Q.

Consider the log terminal blowing up g: Υ -> X of a neighborhood of Q for
K + S + B. The exceptional curves 2s, over Q are numerically trivial with respect to
g*(K + 5 + B) = KY + g~lS + g~lB + ΣΕι•'· Moreover, from the fact that Q E i i s

connected, it follows that the curves £,· = P1 are nonsingular, rational, and together
with g~lS form a chain E\, ... , En, g~lS. If one of the curves Et for i > 2
is an exceptional curve of the first kind, then we can contract it to get a new log
terminal blowing up of Q. Hence we can suppose that g is minimal, in the sense
that Ef < - 2 for i > 2. Then a, = 0 and rf, < 1 for each exceptional curve Et

with / > 2 (cf. Lemma 3.18). Furthermore, the required surface Ε with a = 0
and d < 1 always exists, except in the case when the surfaces S and Suppfi are
nonsingular and have simple tangency at Q. But in this case η = 1 and we take
Ε = E\. Then the restriction

(KY + g-xS + g-lB + E)\E

is purely log terminal outside B\ over the general point Q. Under the assumption
of extremality, it will be shown that this restriction satisfies the conditions in the
definition of good blowing up. In the case when there exists a E with a — 0 and
d < 1, we can apply Corollary 4.6 with Η = Ε and use the fact that g*S forms a
fiber to transform g into an extremal contraction of Ε. It remains to verify that it
is good. By construction, Κγ + g~lS is log terminal. Since on the curve contracted
by / (in its intersection with C), {K + S + B)\s has a unique singularity that is
not log terminal, and Ε is contracted onto this curve, its proper transform yields a
curve Bx c g~lSr\E, Βχ=Ψι such that

(KY + g~lS + g~lB + E)\g-ls\Bl = Krl + \PX + \Pi + P.

This last condition is just property (iv) of good blowings up (cf. (8.5)). It is clear
that condition (i) holds, and (ii) will hold if we take Ε — En . By extremality,
p(Y/Z) = 2 and NE(Y/Z) has two extremal rays. As usual, we denote by i?i the
extremal ray corresponding to the contraction g; it is positive with respect to g~xB.
If Βχ Φ g~lSnE, then (8.5.2)* shows that g~lB does not intersect this curve.
Hence g~lB is numerically nonpositive with respect to R2, and therefore Ε is
positive and g~lS is negative with respect to R2. But then g~lB is numerically
trivial on R2 , and so R2 is a flipping ray whose support contains B\ .

Thus g~lS η Ε = ULi &i > where B\, ... , Bn, g~lC is a chain of curves on
g~lS. Moreover, the curves £, with / > 2 are contracted by g to a point. Hence
their intersection with g~lB is positive, and therefore η — 2. Thus g~lS Π Ε =
5iUi?2 , where B\ and B2 are irreducible. Note that Ρ = ΒιΓ\Β2 is not log terminal
for KY+g~lS+E. Next we check that there is no other such point in a neighborhood
of Ε. Note that the semiampleness of g~lB on Ε is essential for this: g~lB is
numerically trivial with respect to B{ and positive on all the other curves of Ε. In
fact, by Theorem 6.9 and the fact that
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is not purely log terminal at Q — B2 Π g~lC, the locus of log canonical singu-
larities is connected. Furthermore, this locus is made up of a chain of curves
v~xBx ,Ci,...,Cn, v~xB2 ,...,Bm, with g~xB\E, = β+Σ«>3 Μ / , where SuppZ)
does not intersect the locus of log canonical singularities and b, > 0. The last as-
sertion follows from the connectedness of g~xB\E* in view of the semiampleness
and the fact that D does not intersect C, and v~xB2, ... , 5 m -i for m > 3 (here
B2 = v~xB2 for m = 3), since the restriction in question is log canonical. But
g~xB is numerically trivial only on v~xB\. Hence η = 0 and there are no curves
C,. Thus by Proposition 5.13 the points at which Κγ + g~xS + g~xB + Ε is not
purely log terminal on Ε are contained in the support of g~xS + g~lB, which
yields the required assertion. It also follows from this that Ε is normal. The sup-
port of R2 equals B\. The flip in B\ exists and is described in Proposition 8.3.
After the flip, K$ + g~xS+ + E+ fails to be log terminal only along the flipped curve
5+ = v(C*). Now the intersection g~xS+ Π E+ = B1[ is irreducible, and we can
argue as in Reduction 8.2. Then the nontrivial case is that of the flip in a ray that is
numerically trivial with respect to g~lS+ , negative with respect to E+ and positive
with respect to g~xB+ . Thus B% has positive selfintersection on E+v . Note that
by Proposition 8.3, the normalization map E+v —> E+ is one-to-one over B£ , and
so we identify B% with its preimage in the normalization. Again by Proposition 8.3,
B% can be singular only at Q+ = B% Π g~lC+ . Hence B1[ is a curve with selfinter-
section > 0 on the minimal resolution of singularities of E+v , and selfintersection
is > 1 in the case when B% is nonsingular. But

has C* U Β2 as its locus of log canonical singularities in a neighborhood of C*.
Hence Ε is obtained from E+u by the following procedure. First we perform a
minimal strictly log terminal blowing up of

(KY+ + g~lS+ + g~xB+ + E+)\E+,

on E+v . As a result of this, we get a chain (B\ =)C\, ... , Cm, C*, B% in a neigh-
borhood of C*. Here minimality means that Q with / > 2 are not exceptional
curves of the first kind. After that we contract the curves C, with i > 2 and C*.
Hence B2 as well as B% is a curve with selfintersection > 0 on the minimal reso-
lution of Ε, and selfintersection > 1 if Ε is nonsingular at Q in B2. But such
a curve cannot lie in a fiber of the ruling determined on Ε by g, which yields a
contradiction.

We now turn to the case (8.5.3). We first assume that there exists an exceptional
divisor Et over Q or over C with a, = 0 and d, < 1. Flipping log terminal blowing
up for K+S+B and using Corollary 4.6 with Η = ε (Σ άχΕι), where the sum is taken
over d, < 1, and the fact that g*S forms a fiber, we get a simultaneous blowing
up g : 7 - » I of all the Et with a, = 0 and d, < 1 and only such exceptional
divisors. All, since by Corollary 3.8 all exceptional divisors with log discrepancy 0
over a log terminal blowup of Υ lie over the normal crossings of components of the
reduced part of the boundary of g~lS + ̂ 2Et, and using arguments from the proof
of Proposition 6.7 it is not hard to perform an additional subblowing up for which
the Ei with a, = 0 and di < 1 are not exceptional. By construction

KY + g~xS is log terminal, and the surface g~xS is normal. By Theorem 6.9, from
this it follows that the intersection g~lS Π \JEt is a chain of irreducible curves
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B\, ... , Bn, where Bn is the proper transform of C . For Η = g~lS, we get the
original model without involving any curves outside (J £",. Hence S is obtained
from g~lS by contracting Bt = P1 with i < η - 1. We claim that

(8.8.1) (ΚΥ + g~lS + g-'B

where Po = B\ η Βι. Assume the contrary. Then by the definition of case (8.5.3),
B\ has a point Ρ that lies on g~lB and is not log terminal. Suppose that B\ (and
possibly something else) is cut out by Ε = Εχ. Then none of the other Ei pass
through Ρ. By construction the following holds:

(8.8.2) For each exceptional divisor Ei over Ρ or over a curve through Ρ with log
discrepancy a,•• = 0 the multiplicity di of Ei in g~*S + E is greater than 1.

Using Corollary 4.6 we can assume that g is an extremal blowing up of Q pre-
serving (8.8.2). As in the proof of Reduction 8.2, we take Η = s(g~lS + dE). From
(8.8.2) and Lemma 3.18 it follows that in a neighborhood of Ρ the point Ρ is the
only point that is not log terminal for g*(K + S + B) = KY + g~lS + g~lB + Ε,
or equivalents, KY + g~lS + E, KY + g~lS + g~lB, KY + g~lB + Ε are all log
terminal in a neighborhood of Ρ. Moreover, Ρ is Q-factorial, since otherwise the
log terminal blowing up of KY + g~lS + Ε is automatically small, and the proper
transforms of the divisors g~lS, E,and g~lB pass through the fiber curves. But by
Corollary 3.16, this contradicts the log canonical property of KY + g~lS + g~lB+E.

We note that from (8.1.3) and the positivity of multiplicity of Ε in Β it follows
that KY+g~lS is purely log terminal. Hence g-1S is normal. To prove the required
log terminal properties one can use Proposition 5.13. In addition to (8.8.2) we prove
the following claim.

(8.8.3) For each exceptional divisor Et over Ρ with log discrepancy a\ < 1 for
KY + g~lS + E the multiplicity dt of Ej in g~lS + E is greater than 1, except in
the case when there is an exceptional surface Ej with aj — 0 over Ρ such that Ei is
obtained by blowing up a curve of ordinary double points on the extremal blowup Ej,
a\ > a, - 1/2 and dt = (\/2)dj > 1/2.

By monotonicity α, < α· < 1. Hence a, = 0 or 1/2. When a,• = 0, the claim
immediately follows from (8.8.2). To verify it in the case a,· = 1/2 we use a strictly
log terminal blowing up h: W —» Υ for KY + g~lS + g~xB + Ε, the exceptional
divisors Ej of which lie over Ρ. Such a blowing up exists by Corollary 5.19, since
in a neighborhood of Ρ the point Ρ is the only point at which g*(K + S + B) =
KY + g~lS + g~lB + E is not log terminal, and the intersection g~1SnE is normal
along B\ .

This fails only if Supp^~'5 is tangent to Ε in a neighborhood of Ρ. But then,
perturbing g~lB while keeping Ρ e g~lB, we do not change a, = 1/2. (If Ρ
becomes log terminal for KY + g~lS + g~lB + E, then Ρ is a nonsingular point and
all d, > 2.) As before, the log terminal divisor

h*(KY + g~lS + g-xB + E) = Kw + h~lg~lS + h~lg~lB + h~lE + ] £ Ej

has index 2. Since Ρ is Q-factorial, we conclude that h~lP - \JEj and that
Ei lies over one of the exceptional divisors Ej. Suppose first that some Ei with
log discrepancy a,• = 1/2 is contracted to a point P'. Then in a neighborhood of
P' the index of Kw + h-xg-lS + h~xg-lB + h~lE + Σ.Ε] is not equal to 1. By
Corollary 3.8, the point P' lies in the intersection of at most two reduced components
of the boundary h~l g~l S + h~l Ε + Σ Ej; moreover, if it belongs to the intersection
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of two components, then P' is Q-factorial and, according to Corollary 3.7, has index
1 if h~xg~xB passes through P' and index 2 in the opposite case. By (8.8.2),

h*(g~lS + E) = h^g^S + h~xE + Σ djEj,

where dj > 1. Hence d,> 1/2 + 1/2 = 1, since P' lies on at least one of the
exceptional components Ej.

Suppose now that P' lies on only one of the reduced boundary components
Ej. Then we can modify h into an extremal blowing up of E' = Ej preserv-
ing the neighborhood of P' and, in particular, preserving the log terminality of
h*(KY + g~xS + g~lB + E) = Kw + h~xg'xS + h~xg-xB + h~xE + E' in a neigh-
borhood of P'. Since h contracts E' to a point, the reduced part of the boundary
of {Kw + h~xg~xS + h~xg~xB + h~xE + E')\E< consists of two irreducible curves
C, = h~xg-xS Π Ε' and C2 = h~xE r\E'. On the other hand, KY + g~xS + Ε has
a 1-complement 0 in a neighborhood of Ρ such that the log discrepancies of E'
and Ei for KY + g~xS + Ε + 0 are all equal to 0. To show this, one needs to use
the proof of Theorem 5.12 with S = g~xS and Β — (1 - ε)Ε for sufficiently small
ε > 0. Hence the log canonical divisor

h'(Kr + g~xS + E + 0) = Kw + h~xg-xS + h~xE + E' + 0

has index 1, and

{Kw + h-xg-xS + h~xE + E' + 0)\E' =KE + CI + C2 + C3,

where the curve C3 = Α~Ό Π Ε' is also irreducible. Note that the curves C, = P1

intersect pairwise in one point. Since the log discrepancy of Ej is 0, by construction
P' lies on C3 outside C\ and Ci. But then P' is a log terminal point of KE + C\ +
C2+C3, and by Proposition 5.13 the log discrepancy of Kw-\-h-xg~xS+h'xE+E'+0
at Ei is > 1. Hence this case is impossible. We also note that the log discrepancy
of the exceptional divisor Ej on curves distinct from C\ and Ci is equal to 0 only
if it lies over C$. Moreover, if a, = 1/2 and d, < 1, then C3 is an ordinary double
curve, Ej is its blowup, and dj = (l/2)dj > 1/2. This proves (8.8.3) in the case
when Ej with log discrepancy a, = 1/2 is contracted to a curve lying on only one
exceptional surface Ej . This completes the proof of property (8.8.3), since the index
of Kw + h~xg~lS + h~xg~xB + Ιι~χΕ + ΣEj on the intersection curves for reduced
components of the boundary of h~lg~lS + h~xE + 53 Ej is equal to 1.

Next we verify that Υ is nonsingular outside g~xS U Ε in a neighborhood of
Ρ. It is clear that it suffices to consider the singularities along curves C, not lying
on g~xS U Ε and passing through Ρ. As we already know, KY + g~xS + Ε has a
1-complement in a neighborhood of Ρ, and the curves of noncanonical singularities
C, lie in the boundary of the complement. As above, we can construct an extremal
blowing up h: W -+ Υ over one of such curves of an exceptional surface E' with
log discrepancy 0 < a' < 1 for KY + g~xS + Ε, so that

h*{KY + g~xS + E) = KW + h-lg-xS + h~xE + (1 - a')E'.

But then the surfaces A- 'g^ 'S, h~xE, and E' all pass through the fiber curve
h~xP, which contradicts the log terminality of KY + g~xS + Ε in a neighborhood
of Ρ. In the case when the singularities along the curves C, are canonical we can
use the arguments of Proposition 4.3 and the log terminality of KY + g~xS + Ε to
construct a blowing up h of the exceptional divisors over C, with log discrepancy
1 (that is, discrepancy 0), and no others. By monotonicity (1.3.3), there are no
exceptional surfaces over Ρ (cf. (1.5.7)), and h~xP is again a curve, so that the
above arguments yield a contradiction.

We proceed with proving the following claim.
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(8.8.4) If Ρ is an isolated singularity, then the index of Κγ + g~lS + Ε is odd,
and equal to 2m + 1, where m > 2 is a natural number, moreover, there exists
an extremal blowing up h: W —> Υ of the point Ρ with exceptional divisor E'
having multiplicity d' = 1 + l/(2m + 1) in g~lS + Ε, log discrepancy a' = 0 for
KY + g~1S + g~lB + E,and log discrepancy a" = I/(2m + 1) for KY + g~xS + Ε.
Moreover, E' has a singular point P' locally satisfying the same conditions as Ρ,
but with index of Kw + h~lg~lS + h~lE + E' even and equal to 2m.

First of all, we claim that Ρ is a singular point of g~lS. To see this, we observe
that there exists an extremal O-contraction h: Υ —» W of a curve C\ c g~lS Π
Suppg·- 1 ^. This is a O-contraction for Η = eg*Β over Z . In fact, p(Y/Z) =
2 and NE(Y/Z) has two extremal rays Ri and Ri • Let i?i correspond to the
contraction g. It is clear that R\ is nonnegative with respect to g~lB. On the other
hand, by Reduction 8.2 the curve g^STiSupp^" 1/? is exceptional. Hence there is a
curve over Ζ that is negative with respect to g~lB. Thus i?2 is negative with respect
to g~xB. But g*B is numerically trivial on R\ and positive on g~lSr\Suppg~1B.
Hence i?2 is positive on Ε and negative on g~lS, which yields the desired assertion.

Moreover, the contracted curve Bo passes through Ρ. It is not hard to ver-
ify that in the case when Ρ is nonsingular the curve Bo is irreducible, nonsingu-
lar, crosses Βχ normally at a single point Ρ, and is an exceptional curve of the
first kind. Moreover, there is a curve Β_χ passing through Ρ such that B-\ c
g~lS but 5_i <£. Suppg~'5; this curve has multiplicity 1/2 in the boundary of
(KY + g~lS + g~lB + E)\g-\S, and in a neighborhood of Bo this restriction has the
form Kg-iS+Bi + (l/2)Bo + (l/2)B-i. But then Υ has ordinary double points along
β_ι, which contradicts our assumption that Ρ is an isolated singularity. In particu-
lar, from this it follows that Ρ is actually singular and the index of Κγ + g~]S + Ε
is greater than 1. We claim that Ρ is a terminal singularity.

To see this it suffices to verify that α,'+ί/, > 1 for the exceptional divisors is, over
Ρ. This follows immediately from (8.8.3). By the above and [7, (5.2)], the index r
of the point Ρ is greater than 1, hence by Kawamata's theorem in the Appendix
there exists an exceptional divisor £, over Ρ with log discrepancy 1 + 1 /r (that is,
discrepancy 1/r). Hence a\ + d,• = 1 + 1/r. On the other hand, ra\ and rdi are
positive natural numbers. Again by (8.8.3), this is only possible when r = 2m + \ is
odd, a, = 1/2, a\ = (m + I)/(2m + 1), d,• - (m + \)(2m + 1), and the exceptional
divisor Et is obtained by blowing up a curve Cs of quadratic singularities on the
exceptional divisor E' over Ρ with log discrepancy 0 for KY+g~xS+g~lB+E and
d' = 2di = 1 + l/(2m + 1). We may assume that E' is exceptional for the extremal
blowing up h: W —> Υ. Then by construction, and since g~lB passes through Ρ,
the restriction of h*(KY + g~lS + g~lB + E) to E' is numerically trivial and has
the form

where the curves Cx = h~lg-lS η Ε' = Ρ 1 , C2 = h~xE Π Ε' = Ρ 1 , C3 = Ρ 1 , and
C4 = Supph~lg~lB Π Ε' are irreducible. Since W has ordinary double points along
C3, the log discrepancy of E' for KY + g~lS + Ε is of the form

a ' = 1 - 2 ( 1 - a ' ) = — i — - .v ' ; 2m + 1
Hence

h*(KY + g~lS + E) ^

However, by [7, (5.2)], the index of this divisor divides 2m + 1. Hence, arguing
as in the proof of Lemma 4.2 and Corollary 3.10, we see that this index is equal
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to 2m + 1, W is nonsingular along C\ and Ci, and the crossings along C\ =
h~l g~l S C\ E' and Ci — h~iE ΠΕ' are normal at generic points. Then by the same
arguments the unique intersection point Q' = C\ Π C2 is nonsingular on A" 1 ^" 1 ^
and h~lE. Hence by Corollaries 3.7-8 W is nonsingular, and h~lg~lS, h~lE,
and E' cross normally at Q'. In particular, E' is nonsingular in a neighborhood
of Q'. Again by [7, (5.2)], the index of g~lS and Ε divides 2m + 1. Hence the
multiplicities of E' in g~lS and in Ε do not exceed 1. From this and the fact
that the boundary h^g'^S + h~1E + E' has normal crossings at the point Q' we
deduce that C\ and C2 cannot be exceptional curves of the first kind on the minimal
resolution of singularities of h~lg~lS and h~lE, respectively.

Now we turn to the surface E' and show that there is a singular point of E' on
C2. Indeed, if it were not so, then C2 = P1 and all the singularities of W in a
neighborhood of the point P' — C2 η C$ would lie on the curve C3, which crosses
C2 normally, since C2 is ample and hence also meets C\ and C4. Then from
the fact that E' is nonsingular in a neighborhood of P' it follows that the divisor
Kw+h~lE+E' has index 2; hence (Kw+h~lE+E')\h-\E , which in a neighborhood
of P' is of the form Kh-\E + C2, also has index 2. Since P' is log terminal, it is
an ordinary double point on h~xE. On the other hand, the restriction

h~lE

is numerically trivial on C2, from which it follows that C2 is a nonsingular rational
curve with selfintersection -(m +1) on the minimal resolution of h~xE, that is, the
blowup of the ordinary double point P'. In the same way, since the divisor

h*g~lS\h-1E = (h-lg-lS + dsE%-lE = dsC2 + h-lBt

is numerically trivial on C2, we can compute the multiplicity ds of E' in g~lS;
it turns out that ds = 2/(2m + 1). But then the multiplicity of E' in Ε is equal to

Therefore ^ r C \ + h~yB\ is numerically trivial on C\. But the restriction

ΐΛ-'β-'S
2m „ . , _ , „

is also numerically trivial on C\, and hence the canonical divisor Λ^-ι^-ι^ is nu-
merically trivial on C\ . Here C\ is not an exceptional curve of the first kind on
the minimal resolution of h~lg~lS. From this it follows that C\ is a nonsingular
rational curve with selfintersection -2 on the minimal resolution of A" 1 ^" 1 ^, and
on C\ there is at most one singular point, which is resolved by a chain of nonsingular
rational (—2)-curves. Thus Ρ is a Du Val singularity of type A2m on g~1S. But by
the above, on g~lS there is an exceptional curve lying in g^'S Π Suppg^'i? and
numerically trivial on the restriction (KY + g~lS + g~lB + E)\g->s , whose bound-
ary in a neighborhood of Ρ is Β ι + j(g~1S Π Suppg~'£). From this we deduce
that Bo = g^ 'SnSuppg" 1 ! ? is an irreducible curve, and on the minimal resolution
of singularities of g~]S it is a nonsingular rational (-2)- or (-l)-curve passing
through a unique singular point Ρ of the surface g~lS.

In the first case the contraction of Bo transforms Ρ into a Du Val singularity of
type D2m+\. From this it follows that on the minimal resolution of the point Q of
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the surface 5 the curve g(B0) = S Π Supp5 is not an exceptional curve of the first
kind. But this is impossible since Β is positive on the flipping curve 5 Π Supp Β. In
the second case m = 1, the preimage h~lB0 does not pass through the singularity of
A-'g"1,? on C\ and crosses C\ normally at a single point. Hence by the numerical
triviality of KY + g~lS + g~iB + E on Bo its restriction to g~lS in a neighborhood
of Bo is of the form Kg-,s + Bi + (l/2)B0 + (l/2)5_i, where 2?_i is a nonsingular
curve crossing Bo normally at a single point Φ Ρ; Υ has ordinary double points
along B-\. Hence BQ is contracted to a nonsingular point terminal for the image
of Kg-iS + (l/2)5_i. But then (8.8.4) holds except that m = 1 and a subsequent
point P' need not exist. This case will be excluded later, so that for the moment we
assume that m>2.

Therefore Ci has a singular point P', again coinciding with C2 Π C3 . Since C2
is ample on the surface E' and has a unique singularity on this surface, it becomes
a nonsingular rational curve with nonnegative selfintersection on the minimal resolu-
tion of singularities of E'. Now applying Theorem 6.9 to the minimal resolution of
the singularity P' of the surface E' one can show that the selfintersection index is
equal to 0 and P' is a unique singularity of E' of the simplest possible type, that
is, E' is a cone with vertex P' over the nonsingular rational curve C\.

Note also that the curves C3 and C4 intersect C\ in distinct points Pi and
Pi respectively. Hence, arguing as above, we see that P\ is an ordinary double
point of h~ig~lS, the selfintersection of the curve C\ on the minimal resolution
of h~lg~lS is — (m + I), the selfintersection of C-χ on the minimal resolution of
h~lE is - 2 , and P' is a Du Val singularity of type Aim-1 · It follows that the index
of Kw + h~lE + E' in a neighborhood of P' coincides with that of the restriction
(Kw + h~lE + E')\h-\E = Kh-\E + h~lB\ and is equal to 2m. (Furthermore, one
can show that Ρ is a quotient singularity of type jm+T^ > ~^ > 1) ·)

We check that P' satisfies (8.8.2). Indeed, otherwise there exists an exceptional
divisor £, over P' with a, = 0 for Kw + h~xg~lΒ + h~lΕ + Ε' and multiplicity
dj in h~lE + E' at most 1. Then is, is exceptional over Ρ with a, = 0 for
KY + g~*S + g~lB + Ε and multiplicity dt<\ + I/(2m + 1) in

h*(g-lS + E) = h-lg-lS + h~1E + E'+ 2 J E'

and in g~lS + Ε. But since g~{S + Ε has index 2m + 1 at Ρ, it follows that
d, < 1, which contradicts (8.8.2). However, we may lose the existence of a contracted
curve in the intersection g~lS Π Supp g " 1 5 , which is important for choosing the
component on which the singularity P' appears when m > 2.

(8.8.5) If Ρ is a nonisolatedsingularity, then the index of KY + g~~lS + E is even and
is equal to 4m+2 for a natural number m > 1. Furthermore, there exists an extremal
blowing up h: W —> Υ of the point Ρ with exceptional divisor E' having multiplicity
d' = 1 + 4^5 ' " S~lS + Ε and log discrepancy a' = 0 for KY + g~xS + g~lB + E.
Moreover, on E' there is a singular point P' locally satisfying the same conditions as
P, but with the index of Kw + Λ" 1 ^" 1 ^ + h~lE + E' odd and equal to Am + 1.

The only possibility for a curve of singularities through Ρ is the curve of ordinary
double points on g~1S + E; then Κγ + g~lS + E is log terminal and has index 2 at
a generic point of such a curve. Thus the index of KY + g~'S + Ε is even, and there
is a double cover π: Ϋ —> Υ in a neighborhood of Ρ ramified only in such curves.

Next we check that the proper transforms π " 1 ^ " 1 ^ , n~xg~lB and π~ιΕ pre-
serve the previous properties in a neighborhood of the point π~ιΡ. Under lifting
by π the log terminality of KY + g~lS + E is preserved outside Ρ by construction,
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and at Ρ by Corollary 2.2. Thus, as above, by (1.3.3) and Corollary 2.2 applied to
g~lS + g~lB + E, we get that π~χΡ is Q-factorial, and n~lg~lS and π~ιΕ are
irreducible and normal in a neighborhood of π~ιΡ. By the proof of Corollary 2.2,
the log discrepancy a, of the exceptional divisor Et over Ε ι for Υ and over π~[Ρ
in Kf + n~lg~lS + n~lg~lB + π~ιΕ is equal to 0 only if the log discrepancy of £,
for Κγ + g~lS + g~lB + E vanishes. This implies that property (8.8.2) is preserved.
Hence, by (8.8.4), π~ιΡ is a terminal point of odd index 2w + 1 and the index of
KY + g~lS + E is of the form Am + 2. If m = 0, then KY + g~lS + Ε and its
restriction (KY + g~lS + E)\g-iS both have index 2. More precisely, if g~lS does
not contain a curve of singularities of Υ, then Ρ is an ordinary double point on
g~lS and, as above, we see that in a neighborhood of Ρ

(Kr + g~lS + g~lB + E)\g-ls = Kg->s + Br + \BQ,

where the curve BQ C g~lS Π Suppg- 12? generates a flipping extremal ray (which
was denoted by i?2 i n the above). The (-2)-curve resolving Ρ on g~lS has log
discrepancy 1 for Kg-iS + B\ + \Bo. Thus, upon resolving Ρ, we arrive at a
contradiction in the same way as in proving that Ρ is singular in (8.8.4). Therefore
the point Ρ e g~lS is nonsingular, it is contained in a curve i?_i of ordinary double
points, and in a neighborhood of Ρ we have

{Κγ + g Λ + g B + £,)\g-,s = Kg-is + B\ + 2#o + 2-Ο-1 »

where Bo = g~xS Π Suppg~'Z? = |/?2| is an irreducible curve. Note that g~lS is
nonsingular in a neighborhood of Bo , #o is an exceptional curve of the first kind,
and the restriction (KY + g~lS)\g-\s = Kg-\S + \B-\ is numerically negative on Bo,
since J8O and 5_i cross normally at a unique point Ρ.

We proceed with proving that the flip exists in this case. First we verify that the
intersection g~lS Π Ε = B\ U · · • U Bn is irreducible. All the 5, with ι < η are
contracted to Q, and are therefore positive with respect to g~lB. Hence η < 2.
Suppose that η = 2. The curve Bo is the support of the next extremal ray R2 •
Moreover, the surfaces g~lS and g~xB are negative, and Ε is positive on Bo •
Hence the flip in Bo exists by Corollary 5.20. One can show that it has all the
properties described in Proposition 8.3. To see this it suffices to recall that the image
of Kg~iS + \B-\ under the contraction of Bo is log terminal. In particular, the
only point of g~lS+ at which B^ can be singular is Q = 5J1" Π Β%. But now
g~lB+ is numerically trivial on Bf , from which it follows that it is extremal. This
means that B+ is the support of the next extremal ray. Hence Ε is positive on it.
The intersection of g~lS+ and E+ along B^ is normal by Proposition 8.3. As in
Proposition 8.3, we deduce from this using Lemma 3.18 that B^ is movable, which
yields a contradiction. Thus the intersection B\ — g~lS η Ε is irreducible.

Suppose now that g(E) = C. Then g identifies g~xS with S. Furthermore, by
Proposition 3.9 and (8.1.4) we have

. i _ ^ η

where η is the index of Κ + S along C. Hence η = 1 and, in a neighborhood of
Bo, X has only ordinary double points along g{B-\). Furthermore, the index of
Κ + S is equal to 2. Therefore there is a purely log terminal complement of Κ + S
of index 2 in a neighborhood of Bo, and the flip of / exists by Proposition 2.9.

The case g{E) — Q is similar. Arguing as above, we get

(g*(K + S) · Bo) = (Kg-is + ^ - = - ! c + i * _ , + a'Bx • fi0) = a' - i < 0,
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from which it follows that a' < 1/2 . But B\ is not an exceptional curve of the first
kind on the minimal blowup Ε, and

Kg-iS + ?-j±C + \B_, + a'Bx = g*

From this it follows that B\ is a (-2)-curve on the minimal blowup Ε, that X is
nonsingular along C, and PQ = B\ Π g~xC is a canonical singularity of type An .
Hence in a neighborhood of g(Bo) on S there is a purely log terminal complement
of Ks + (l/2)g(B-\) of index 2. According to the proof of Theorem 5.12, to extend
this complement to X for K+S, it suffices to have a resolution F - » I with normal
crossings SY' which is minimal over S. For this we need to use a partial resolution
of g and extend it. Since Υ has ordinary double singularity along B_\, resolving
it does not change g~xS. Thus it suffices to find such a resolution for PQ. NOW
Po, just as Ρ, is a Q-factorial point. Furthermore, by Corollary 3.7, it is a quotient
singularity of index η .

If Po is not an isolated singularity, then the curve of singularities C lies on
E. Moreover, X has a canonical singularity of type An< with n'\n. Performing
resolutions of C as described in Proposition 4.3, we again preserve the minimality
assumption and reduce the resolution to isolated singularities of the same type; the
blown up surfaces arising under these resolutions are irreducible. In the case when
Po is isolated it is a terminal singularity of type ^(k, -k, 1), an economical blowing
up of which yields the required resolution. This can also be deduced by induction
on η from the theorem in the Appendix. Thus m > 1. Hence by (8.8.4) there
exists an extremal blowing up h: W —> Ϋ with exceptional divisor E' such that the
multiplicity of E' in n~lg~lS+n~1E is given by d' = 1 + j ^ y , the log discrepancy
a' for Kf + π " " 1 ^ " 1 ^ + n~lg~lB + π~ιΕ vanishes, and the log discrepancy for
ΚΫ + n~lg~lS + π~ιΕ is given by a" = J ^ T · By (8.8.2), from this it follows that
the ramification index of π at E' is equal to 1.

Suppose that E' c Ϋ lies over E' c Υ, which is an irreducible exceptional surface
over Ρ. Then the log discrepancy of E' for KY + g~lS + g~xB + Ε is equal to
0. Let h: W —> Υ be the extremal blowing up of E'. Using Theorem 6.9, it is
not hard to verify that Kw + E' is purely log terminal. Hence, arguing as in the
proof of Proposition 8.3, from Corollary 2.2 and Corollary 3.8 we deduce that π
is unramified everywhere over E', and hence also over Ρ provided that π~ι(Ε')
is reducible. Therefore the surface Ε' = π~ιΕ' is irreducible, i.e. the covering
involution corresponding to the double cover π acts regularly on the extremal blowing
up h. Since h and h are extremal, the curves C\ = n~lh~lg~lS ΠΕ' and C2 —
n-xh~xEnE' are irreducible and lie over Ci = h~xg~xSC\E' and C2 = h~xEr\E'
respectively. On the other hand, by the proof of (8.8.4) there exists a curve C, for
which

{ΚΫ + n-xh~xg-xS + n~lh-xg-xB + n-lh~lE + Ε')\έ,\ύ. = KCi + Q+\Pi + \Pi,

where

P2 = n

or

p2 = %-xh~xE Π Supp n-xh'xg-xB Π Ε'.
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From this it follows that π is ramified along the curve C,, and by the purity
theorem W is singular along the corresponding curve Cj. Since π is unramified
along E', the log discrepancy of E' for KY + g~lS + Ε is equal to j ^ . By
construction and [7, (5.2)], the index of KY + g~lS + Ε divides 4m+ 2, and hence,
arguing as in the proof of Lemma 4.2, we conclude that W has an ordinary double
point along C,. The exceptional divisor corresponding to this singularity has log
discrepancy 0 for KY+g~lS+g~lB+E, log discrepancy -^^ for KY + g~xS+E,
and multiplicity 1 + ^ ^ m 8~lS + Ε.

Denote by h the extremal blowing up of this divisor. Arguing as in (8.8.4), we
conclude that the curves C\ = h~lg~lSnE' and C2 = h~lEnE' are irreducible and
that the above crossings are normal at their generic points. Furthermore, the curves
C\ and C2 are not exceptional curves of the first kind on the surfaces h~lg~lS and
h~lE respectively. Suppose first that / = 2 above. Then by the proof of (8.8.4) the
multiplicity of the previous E' in Ε is equal to ^ τ > hence the multiplicity of the
current E' in Ε is equal to | ^ ± j . Then, arguing as in (8.8.4), one can show that
C\ will be a (-2)-curve on the minimal blowing up, g~lS does not contain a curve
of double points of Υ, and C\ passes through a unique singularity, viz. a Du Val
singularity of type A4m on h~lg~lS. This contradicts the fact that, according to
the proof of (8.8.4), for m > 2 the surface g~lS contains a curve of double points
5 - 1 .

Thus i — 1. By the previous arguments the multiplicity of the current E' in
g~lS is equal to £^±5 , Ε does not contain a curve of double points of Υ, Ρ is a
Du Val singularity of type A4m+i on Ε, C2 is a (-2)-curve on the minimal blowup
of h~lE, and C2 passes through a unique singularity P' of the surface h~lE, viz.
a Du Val singularity of type A4m . On the other hand, by construction we have

(KY + h-'g-'S + h~lg-lB + h-xE + E%-ls\Cl =KCl+P + \PX

where SuppTi" 1/?" 1^" 1^ passes through Ρι,Άαά Pi is nonsingular on h~lg~lS.
But h~lg~lS must contain the double point curve h~lB-\. It is clear that P\ =
C\C\h~lB-\ is a nonsingular point of h~l g~l S. Hence /z^g-'S1 is nonsingular in
a neighborhood of C\ and C\ = P1 is a curve with selfintersection -(2m + 1). On
the other hand, by nonsingularity of h~lg~lS, in a neighborhood of C\ the surface
E' has P\ as an ordinary double point and E' does not have double points along
curves on W. Hence P' is an isolated singularity. But P' is a Du Val singularity of
type A4m • From this it follows that the index of Kw + h~lE + E' in a neighborhood
of P' is the same as that of the restriction (Kw + h~lE + E')\h-iE = Kh-iE + h~xB\
and is equal to 4m + 1. As in the proof of (8.8.4), in what follows we check that P'
satisfies (8.8.2).

Now it follows from (8.8.4-5) that in (8.8.4) the index of P' is of the form
4m' + 2, hence the index of Ρ is of the form 4m' + 3 with m' > 1. Hence the
case (8.8.5) is impossible altogether, from which it follows that the case (8.8.4) is
also impossible. All this holds with a possible exception of one case that we have not
yet considered, viz. m = 1 in (8.8.4). We will show that in this case the flip exists,
or reduces to the same type (8.5.3) with dj > 1 for a,• = 0. For this we need the
following two lemmas, also used in the proof of main results for preserving the type
of flips at subsequent inductive steps.

8.9. Lemma. Let S be a normal projective surface with boundary Β, and let C\, C2
be (possibly reducible) contracted curves such that:

(i)



AN ADDENDUM TO THE PAPER "3-FOLD LOG FLIPS" 547

(ii) [B\ = B\ + B2, where B\ and B2 are irreducible,
(iii) B\ > 0 ;
(iv) the curve B2 becomes ample after contracting the curve C2;
(v) Ci does not intersect Βγ;

(vi) the point Ρ = Β\ Π B2 is the only point of B\ at which Κ + Β is not purely
log terminal;

(vii) the components of C2 intersect B\ and B2 at Ρ.
Then either C\ does not intersect B2 or Ρ is the only point of B2 at which K + B

is not purely log terminal.

By Theorem 6.9 the singularities of S are rational, and remain so after con-
tracting C2. Hence ampleness in (iv) coincides with numerical positivity by the
Nakai-Moishezon criterion (cf. [8, 6-1-15 (2)]).

Proof. Suppose that C\ intersects B2. Then, combining standard arguments of
the theory of extremal rays for the contraction of C\ with (i), one can find an
irreducible contractible curve C c C\ intersecting B2. Hence without changing the
assumptions we can restrict to the case when C\ is irreducible and intersects B2 . By
(i), (ii), and Theorem 6.9, the locus of log canonical singularities οι K + B coincides
with Βχ U B2. Suppose now that there exists an irreducible component C" c C2

intersecting Ci . Then by Corollary 3.16 and the log canonical assumption on K + B
the curve C" has multiplicity 0 in Β. Hence by (i) C" is an exceptional curve of
the first kind on the minimal resolution of S. As in Proposition 8.3, it is easy to
verify that Bx = P1 and

{K + Bx + B2)\Bl = Kr, + IP, + \P2 + P.

Now let g: Τ —» S be a strictly log terminal blowing up of K + B which is minimal
over P. Then g~lC" does not intersect g~lBi, but crosses normally at Q a
component that is exceptional over Ρ and has multiplicity 1 in the boundary Βτ •
Therefore g*(K+B) has only canonical singularities on g~lC" outside the point Q.
It follows that C\ also has multiplicity 0 in Β and is an exceptional curve of the first
kind on the minimal resolution of S, since it intersects B2 . Then on the minimal
resolution Τ a suitable multiple of the total preimage of the curve g~l(Ci U C") is
movable. But g~l(C\ U C") is disjoint from g~lBx , and its intersection with Βτ
is not mapped to Ρ. Hence g~lB\ is exceptional. Arguing as in Proposition 8.3,
we see that from (iii) it follows that exactly one of the points P, is nonsingular.

Suppose that P\ is the nonsingular point. Then there is an irreducible curve B^
crossing normally through Pi and having multiplicity 1/2 in the boundary Β . By
the above C" does not intersect B$. Also each irreducible component of C2 does
not intersect B3, since it passes through Ρ. Hence by (iv) #3 meets B2. Moreover,
it is not hard to verify that g~x{Cx U C") is disjoint from g~x{B\ U B3) .Arguing as
above, we derive from this that g~l(B}) is exceptional. But g~'(5 3) intersects the
locus of log canonical singularities of (By + Β2)τ at two points, which contradicts
Lemma 5.7. Thus we have proved that all irreducible components of C2 are disjoint
from C\. Contracting C2 one can assume that C2 = 0 ; then assumption (iv) means
that B2 is ample. By (iii) NE(5) has an extremal ray R that is positive with respect
to B{. If the corresponding contraction contracts a curve, then by ampleness of B2

and Lemma 5.7 it intersects B\ and B2 at Ρ. Hence one can take this last curve
as C2, and then contract it. The contractions decrease the Picard number of S.
Hence after a finite number of such contractions we may assume that the extremal
contraction Cont* is not birational. Since C\ is disjoint from Bx, Cont« must be
a contraction onto a curve, and the curves B\ and B2 are not contained in its fibers.
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Now from Theorem 6.9 it follows that Ρ is the only point of Bj. at which Κ + Β
is not purely log terminal. D

8.10. Lemma. Let f: S —> Τ be a birational map of normal projective surfaces,
and D an effective ample divisor on S such that DT is irreducible. Then DT is
numerically positive.
Proof. Consider a resolution of indeterminacies of / , for example a Hironaka hut

V
U

τ.
Since D is ample, its support is connected, and since S is normal, its preimage
U C, is connected on U. We claim that g({J Q) Φ pt. Indeed, otherwise there exist
a, > 0 such that

for all irreducible components C,. In particular

0 < (Σ aMQ) ·Ο) = (Σ aiQ • h*D) = (£, <nQ · £ bjCj) < 0,

since D — Y^bjCj , where bj > 0 for at least one j ; this is a contradiction. From
the claim and the irreducibility of DT (that is, irreducibility of SuppZ>r), we infer
that DT = g{\JCi) and all the curves that are exceptional with respect to h and do
not intersect U C, are exceptional for g. Thus

where all c, > 0. If J? is a curve on Τ disjoint from DT , then g~lB is disjoint from
U C,, and h° g~lB is disjoint from the support of D. Therefore h ο g~lB = pt,
and by the above this is impossible. It remains to verify that DT is positive. Indeed,
otherwise g*Dr is numerically nonpositive on all the curves Cy, which yields a
contradiction:

0 < (Σ cMQ) · D) = (Σ CiQ · h*D) = (Σ CiQ · Σ bjCj) < 0. G

We proceed with the proof of Proposition 8.8. Thus we return to the case m = 1
in (8.8.4). By what we have already proved, there exists an extremal blowing up of a
surface E' over Ρ with a — 0 for which (8.8.1) holds. However E' has multiplicity
2/3 in g~xS and in Ε, and hence multiplicity (2/3)(l +d) in S, where d < 1 is
the multiplicity of Ε in S. By assumption we have 1 < (2/3)(1 +d) < 4/3, so that
d> 1/2.

Consider now an extremal blowing up g: Υ -> X of the new surface Ε = E'.
We check that it is good. As above, first we show that g~lS Π Ε consists of at most
two irreducible curves 5, and that if g~lS Π Ε — B\ υ Βι, then / has a flip. In
view of the equality Η = g*B, to do this one should first perform a flip in the
proper transforms of the flipping curves of / . By definition of the current type,
these coincide with the intersection g~xS Π g~lB, and g~lB is negative on them.
Hence Ε is positive on them and g~lS is negative. A flip in them does not interfere
with the log terminal property of KY + g~lS + Ε outside Po = Β ι η Β2, which is
established as above. From this it follows that Ε and its modifications are normal.
(There are at most two such flips, and they modify at most two curves.)
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The flipped curves do not intersect B^. After this one must perform the flip in
B\ described in Proposition 8.3, since Ε is positive on B\ . The modified surface
E+ is nonnormal along the flipped curve B+ = v{C*). Now the intersection B% =
g~lS+C\E+ is irreducible. As before we are interested in the subsequent extremal and
flipping ray if2, which is numerically trivial with respect to g~lS+, positive with
respect to g~xB+ , and negative with respect to E+ . According to Theorem 6.9, if
some connected component of the support of R2 intersects the locus of log canonical
singularities of

{KY+ + g-lS+ + g-lB+ + E+)\E»

outside C*, then it intersects an (irreducible) curve C** such that the above locus
of log canonical singularities is represented in the form C*U5 2

+ U C**. However,
arguing as in the treatment of the case (8.5.2)*, we see that by Proposition 8.3 the
curve Β2 has at most one singular point, which can only be at Q+ = Bj Π g~lC+ .
It has selfintersection > 0 on the minimal resolution, and even > 1 in the singular
case. Performing partial resolutions at Q+ that are log crepant for

(KY+ + g~lS+ + g~xB+ + E+)\E»

until B% becomes a 0-curve, we arrive at a contradiction with Theorem 6.9 for the
contraction along the modified B2 . Hence, again by Theorem 6.9, the components
of the support of R2 can have log canonical singularities of

only in C * . Moreover, if (KY+ + g~xS+ + g~lB+ + E+)\E+v is purely log terminal
outside B^ in a neighborhood of C*, then its divisors with log discrepancy zero for
Κγ+ + g~xS+ + g~lB+ + E+ lie over the generic point of 5+ . Hence by Proposi-
tion 8.3, after perturbing the surface g~xS with base locus in the support of R2 we
arrive at a purely log terminal divisor in a neighborhood of C*. By the above, the
restricted log divisor on E+u does not have log canonical singularities outside C*.
Hence after perturbing we get a flip of type IV. Thus in this case a flip of / exists.
Hence from now on we may assume that (KY+ + g~lS+ + g~xB+ + E+)\E+« has a
point Q' e C* outside B$ that is not purely log terminal. We claim that this is
impossible. By Theorem 6.9 again, (KY+ + g~lS+ + g~lB+ + E+)\E+» does not have
nontrivial log crepant resolutions with modified 0-curve B^ • But such a resolution
is trivial only when Q+ is nonsingular on E+v , and in a neighborhood of Q+

(KY+ + g~lS+ + g~lB+ + E+)\E» - KE» + B2

+ + \D,

where D is an irreducible curve that is simply tangent to B^ at Q+ , and B% has
selfintersection 1 on E+v. We observe that in a neighborhood of Q+ we have
Ε = E+ = E+u. The curve D is cut out normally by g~lB, and B2 by g~lS.
Therefore by Corollary 3.7, Q = B2 η g~lC is nonsingular on Υ.

Thus the surface E+v is nonsingular on B% , the selfintersection of 2?^ is equal
to 1, and

{KY+ + g'lS+ + g~xB+ + E+)\E» = KE» + C* + B+ + D'

has a point Q' e C* that is not purely log terminal; here D' > \D and D is
an irreducible curve tangent to B^ at Q+. Thus B£ determines a contraction
h: E+" -» P 2 such that h{B+) and A(5+) are lines and h(D') = h(D) is a conic
tangent to these lines. The mapping h contracts all curves that do not intersect
B$ . In particular, all the flipped curves are contracted, since the last flip modifies Ε
into E+v in divisors with log discrepancy zero over C* for KE+» + C* + B^ , and
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the flipped curves only intersect the final component B\ of the log terminal blowup
of Q'. In the above conditions and notations, we contract all the curves flipped
before B\. Then the original Ε is obtained as a result of the procedure described
in (8.5.2)* above. We have to perform a minimal log terminal blowing up of Q'
for KE+" + C* + B£ + D' and then contract C* along with all the blown up curves
Bt apart from the end one B\ . We claim that they are preserved at the point of
tangency Q" = h{Q') = h(B+) Π h{D).

Indeed, all the curves C, contracted by h intersect B\ on the log terminal blowup,
without touching the other components of the blowup. Otherwise C, would be an
exceptional curve of the first kind on a subsequent minimal resolution of E+v . Since
KE+« + C*+B2+D' is numerically trivial and the minimal blowing up is log crepant,
this curve would not intersect B\ and the modified D'. Hence its modification
on Ε passes through Po and does not intersect the modified D' > g~lB\E. But
this contradicts the ampleness of g~lB on Ε. Thus we have established what we
needed, and we see that a minimal log terminal blowing up of Q consists of a single
curve. By the same arguments, C* must be an exceptional curve of the first kind on
such a blowing up. Hence Po is nonsingular on Ε, and by Corollary 3.7, also on
X. Thus Po is a canonical singularity of g~lS. Its type on g~lS is known from
the proof of Proposition 8.3, from which it follows that Po is also nonsingular on
g~ S. From this and the fact that the multiplicity of Ε in S is greater than 1 it
follows that the same holds for the multiplicity in S of all divisors with a, = 0 over
a neighborhood of Q e X, which contradicts the construction of Ε.

Thus the intersection B\ = g~lSr\E is irreducible. Then, as in the case (8.5.2)*,
the log terminality of Κγ + g~lS + Ε follows from the ampleness of g~lB on Ε.
Thus g is a good blowing up. In the case when

is purely log terminal outside B\, we get what we want. Incidentally, then the flip
of / exists for the following reasons. By Theorem 6.9 and the ampleness of g~lS
on Ε, it remains to consider the case when the locus of log canonical singularities
of the above restriction coincides with Bx U C , where C is an irreducible curve on
Ε intersecting B\ at Q = By η g~lC. We reduce this case to flips of type (8.5.3)
with di > 1 for a,• = 0. Since Η = g*B, to do this we should first perform a flip in
the proper transforms of the curves of the flip of / . As before, a flip in them does
not change Κγ + g~lS + Ε being log terminal. From this it follows that Ε and its
modification are normal. (In the case under consideration there exists exactly one
such flip.) The flipped curves do not intersect C .

As usual, we are interested in the subsequent extremal flipping ray R2, which
is numerically trivial with respect to g~lS, positive with respect to g~lB, and
negative with respect to E. Now g~xB intersects B^ only in Q. If the restriction
(KY+g~lS+g~iB+E)\E is purely log terminal outside By, then, up to connectedness
of the flipping curves, the required flip is exceptional and of index 2, and therefore
exists. Hence we can assume that this restriction has a point Q' e C outside Bx that
is not purely log terminal. Since the modified g~xB is positive on R\ and R2 , it is
ample on Ε. By Lemma 8.10, after contracting all the components of Supp g~lB\E

other than C , it transforms C into an ample curve. Hence by Lemma 8.9 the
support of R2 coincides with the contracted curves, and so the flip of R2 is again
of type (8.5.3). It remains to verify that di > 1 for all / such that a, = 0 over a
neighborhood of Q'. Suppose that this is not so, and reduce it to (8.8.1). To this
end, we observe that by construction on Ε there is an irreducible curve C3 of double
points of Υ passing through Q' and not touched by the flips. Hence by the above
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there exists a flip of R2, and hence of / , or an extremal blowing up h: W —> Υ of
a surface E' with multiplicity d' < 1 in Ε and α = 0 for ΛΓ + S + 2?. Moreover,
it lies over Q' or over the generic point of C and satisfies (8.8.1). The flips do not
touch this blowing up, and hence it can be constructed for the original g. However
in the case under consideration

(KY + g~xS + g~lB + E)\E = KE + BI + C' + ±C3 + ±C 4 ,

where C4 = isnSuppg" 1 /?, as well as C3, passes through Q'. Furthermore, /z~'C4

is irreducible and movable on h~lE. This can be deduced from the existence of a
1-complement of KY + g~xS+E in a neighborhood of Ε with log discrepancy 0 for
E' (compare with the proof of (8.8.3)). Hence h~xC^ and the curve h~xC-$ that does
not meet it define a ruling of h~xE, since h~lC^ is not exceptional by Theorem 6.9.
This ruling is induced by a contraction on W mapping the surface h~lE onto a
curve, possibly after a flip in h~xC. The last flip is involved only when E' lies over
Q' and intersects h~lE in two curves, one of which lies in a fiber of the ruling. This
yields the relation d = (1 +dd')/n , where d is the multiplicity of Ε in S, dd' is
the multiplicity of E' in S, and the integer η = -(h~xE)· [h~xCn) is positive. For
η — 1 we have dd' = d - 1 < 4/3 — 1 < 1, which yields (8.8.1) after contracting
h~xE to a curve as before. But if η > 2, then d = (1 + dd')/n < (1 + d)/2, since
d' < 1. Therefore d < 1. This final contradiction completes our treatment of the
case (8.8.4) for m = 1; more precisely, it reduces this case to flips of type (8.5.3)
with dj > 1 for a, = 0 over a neighborhood of Q whose existence is discussed
below.

Thus (8.8.2) does not hold if the index of KY + g~lS + Ε is not less than 4, and
the existence of flipping curves then does not play any role if we do not care about
the choice of component on which the new singularity P' appears. They are only
required in treating cases with indices < 3.

Thus, returning to the beginning of the proof, we have checked (8.8.1) modulo the
existence of flips of type (8.5.3) with d, > 1, which yields an extremal blowing up
g satisfying the conditions (i) and (iv) in the definition of a good blowing up. To
verify the other properties of a good blowing up, we first restrict ourselves to the case
g{E) = Q. Recall that, as before, the multiplicity d of Ε in S does not exceed
1. As above, the intersection g~lS Π Ε consists of at most two irreducible curves
Bi. We show that if g~lS Π Ε = B\ U B2 , then either / has a flip or it reduces to
a flip of type (8.5.3) with di > 1 for all Et over Q with a,• = 0. For this, as in
the treatment of the case (8.8.4) with m — 1, we make the following reduction. The
divisor KY + g~lS + Ε is log terminal outside Po = B\ η Β2 , Υ is nonsingular at
Po, Q = B2n g~lC, and the surface Ε is normal and nonsingular along the curve
B2, which has selfintersection 2. The last assertion follows from the fact that the
1-curve B% is obtained from B2 by performing a single blowing up at Po. The
surface g~lS is also nonsingular along B2.

Suppose that the selfintersection of B2 on g~xS is equal to -n . Then the mul-
tiplicity d of the surface Ε can be computed as follows:

0 = (g~xS + dE · Bi) = (g~xS · B2) + d(E · B2)

= (Bi + B2 • B2)E + d(Bi + B2

so that d = 3/(« — 1) and η > 4, since in the case under consideration d < 1.
Furthermore, by the above Ε is the only surface over g(Q) = Q with multiplicity
< 1 in S and a = 0. However the surface E' obtained by performing the standard
monoidal transformation with center at B\ has multiplicity 1 + d in S and a = 0.
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The same is true for the similarly defined surface E" over B2 . All other surfaces over
Qe X with a = 0 have multiplicity > 1 + d in S. We observe that the monoidal
transformation with center at PQ (resp. at Q) gives a surface with multiplicity \+d,
but with a = 1 (resp. a = 1/2).

Now consider the extremal blowing up g'\ Y' —> X of the divisor E'. This divisor
intersects g'~lS along a single curve B\ c Υ', the transform of the corresponding
curve in Υ. This can be proved just as the corresponding assertion in the case (8.8.4)
with m = 1. Thus the intersection B\ = g'~lSC\E' is irreducible. Moreover, the
point Q = B\ π g'~lC is a point of type A\ on g'~xS resolved by the curve B2

with selfintersection -n < - 4 . By construction the crossing is normal along Βχ.
Then as before we check that KY, + g'~lS + E' is log terminal, and verify the other
properties of good blowing up. If the locus of log terminal singularities of

is reduced to B\, then we are done.
Thus it remains to deal with the case when the locus of log canonical singularities

of (Κγ> + g'~lS + g'~lB + E')\E< contains another curve C" . Furthermore, arguing
as before, we can assume that there exists a point Q e C" outside B\ that is not
purely log terminal. We claim that all J, > 1 for components over Q' with a,• = 0.
In fact, if Y' is nonsingular along C , then over Q = C Π g'~lC there is a surface
Ε with a = 0 for Κ + S + Β and multiplicity < 1 in g'~lS + E'. To see this
we note that Κγ< + g'~[S + Ε has index η > 4 at Q e Υ', and one can perturb
g'~lB preserving Q as the only point that is not log terminal in a neighborhood of
Q. The multiplicity of Ε in S equals its multiplicity in g'~lS + (1 + d)E', which
equals a + b{\ + d) < 1 + d, where 0 < a < 1 is the multiplicity of Ε in g'~xS,
and 0 < b < 1 is that of Ε in E', so that 0 < a + b < 1 is the multiplicity of
Ε in g'~lS + E'. Thus the surface in question is bimeromorphic to Ε, and its
multiplicity in S is equal to d. Blowing up this surface, we obtain a curve B2 in
the intersection of this blowup with the blowup of g'~lS, and over this curve there
is a surface Φ Ε' also lying over Qe X with a = 0 and multiplicity 1 + d, hence
bimeromorphic to E". Therefore all the multiplicities for (1 + d)E' over Q are
greater than 1 + d, from which it follows that dt > 1 for all / such that a, = 0
over Q'.

Now assume that Y' is singular along C. By the same arguments this is a
singularity of type A\, and it is resolved by Ε. Furthermore, E" lies over Q e Υ',
or more precisely over a curve in the preimage of Q for an extremal resolution of
Ε. This completes the treatment of the cases when the intersection g~lS η Ε is
reducible. Otherwise g satisfies (iii), which implies (ii) since g~lB is ample on Ε.
Thus g is a good blowing up, modulo reduction to those cases in Proposition 8.8
for which d, > 1 for a, = 0 over Q for each exceptional divisor Et over Q.

The case when g(E) = C, (8.8.1) holds, and the multiplicity d of the divisor
Ε in S does not exceed 1 is also of the above type. In this case we carry out the
reduction to flips of type (8.5.3) with dj > 1 for a, = 0 over a neighborhood of Q.
By (8.8.1) we have g{Bx) = Q e X. Furthermore, from Theorem 6.9 and the fact
that g~]B is ample with respect to g we deduce that the intersection g~lS Π Ε
consists of two irreducible curves B\ and B2 over a neighborhood of Q e X.
Moreover, we have g(B2) = C. Then we check that KY + g~lS + E is log terminal
outside Po = B{ η B2 . This implies that Ε is normal. Note that the curves D <z Υ
over Q lie on Ε and intersect g~lB, and thus do not pass through Po except for
D = B\ . The contraction of a curve D Φ Βχ does not violate (8.8.1) and does not
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change the singularity of PQ on Ε. Hence PQ either is nonsingular on Ε or is an
ordinary double point of Ε.

In the first case Υ is also nonsingular at PQ · We check that the same holds in the
second case. To this end we observe that for our choice of Η = g*B, first come flips
in the proper transforms of curves of the flip of / . Flips in these do not touch 5 2 >
and in particular PQ. After these comes the flip in Βχ described in Proposition 8.3.
By the proof of Proposition 8.3, PQ either is nonsingular on g~lS or has index > 3;
in the last case the index of Κγ + g~lS is also > 3. But the degree of a cover of
Ε ramified only in PQ does not exceed 2. This yields the required nonsingularity.
Thus Ε is the only surface over a neighborhood of g(Q) — Q with multiplicity
d < 1 and a = 0. Moreover, the multiplicity of other divisors with a = 0 is not
less than 1 + d, and this value over Q e X is attained only for Ε', the monoidal
transform of Βχ. As above, we consider the blowing up g': Y' —> X of the divisor
E' and verify that it intersects g'~lS along a single curve Β ι, a modification of the
curve with the same name. By construction this crossing is normal along B\. Next
we verify the log terminal property of Κγ> + g'~lS + E' and the other properties of
a good blowing up. If the locus of log terminal singularities of

coincides with By, then we are done. As before, it remains to consider the case when
the locus of log canonical singularities of (Ky + g'~lS + g'~xB + E')\E< contains
another curve C . Furthermore, as before, we can assume that there exists a point
Q' e C outside Bi that is not purely log terminal. But then all dt > 0 for a, = 0
over a neighborhood of Q'. For otherwise there would exist a surface over Q' or
over the general point of C with d\ < 1 and a, = 0. Hence it lies over Q and its
multiplicity in S does not exceed 1 + d if a = 0, which is impossible.

This completes the reduction of Proposition 8.8 to flips of type (8.5.3) with dj > 1
for a, = 0 over a neighborhood of Q in the cases when the required good blowing
up does not exist. It remains to establish the existence of the flip of / in these
exceptional cases. For them there exists a minimal multiplicity d in S for a = 0
over a neighborhood of Q. By assumption, d > 1 . On the other hand, d < 2,
since Suppi? touches S along C, and there is a surface over the general point
of C with d = 2 and a = 0. There exist only a finite number of surfaces Ε
over a neighborhood of Q with a = 0 and a given multiplicity d. They are all
blown up by a log terminal blowing up of Κ + S + Β. Hence, as above, we can
choose an extremal blowing up g of such a surface Ε satisfying (8.8.1) or (8.8.2)
for Ρ e B\ C g~lS Π Ε. To this end we observe that g~lS and Ε cross normally
along B\ and the other components of g~lS Π Ε, for otherwise by (3.18.6) over a
general point of B\ there would exist a surface E' with a = 0 having multiplicity
a + b < 1 in g~lS + E, where 0 < a, b are the multiplicities of E' in g~lS and Ε
respectively. Hence the multiplicity of E' in g~lS + dE, equal to the multiplicity
in S, is a + bd < (a + b)d < d, which contradicts the choice of d.

Next we show that the case (8.8.2) is only possible if Ρ is an isolated singularity of
Υ from (8.8.4) with m = 1 . But this case again reduces to flips of type (8.5.3) with
di > 1 for a, = 0 over a neighborhood of Q. Indeed, the multiplicity d' := | ( 1 +d)
of the new surface E', like d itself, does not exceed 2, from which it follows that
for η = 1 we have dd' = d - 1 < 2 - 1 = 1, which again contradicts the choice
of d. However now Q is contained in the curve of double singularities C3, which
reduces the existence of the required flips to the case when g satisfies (8.8.1).

Assume first that g{E) = Q. As before, the intersection g~xSnE consists of
at most two irreducible curves Bt. We show that if g~lS Π Ε = Βχ U B2 , then the
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flip of / exists. To this end, as in the similar case with d < 1, we reduce to the
following setup. The divisor Κγ + g~lS + Ε is log terminal outside PQ = B\ Π B2 .
Υ is nonsingular at PQ and Q = B2 Π g~lC, the surfaces Ε and g~lS are normal
and nonsingular on the curve B2 having selfintersection 2 on Ε and - 3 = -n on
g-1S. The last assertion follows from d = 3/(« - 1) and η — 3, since 1 < d < 2.
From this it also follows that d = 3/2. We also note that the selfintersection index
of the curve B\ on the minimal resolution of Ε does not exceed 0, since B2 crosses
Β ι normally at a single point PQ . On the other hand, by the ampleness of g~lS on
Ε we have

0 < (g~lS · Bx) = (Β1+Β·Β1)Ε = (5i · BX)E + 1.

Hence {Bx · B\)E — 0 and Ε is nonsingular on B\. Otherwise Ε would have a
unique ordinary double point, say Pi , and the selfintersection of B\ on the mini-
mal resolution of Ε would be equal to 0 or - 1 . Hence, depending on the case,
(g~lS-Bi) = 1, 3/2, or 1/2. Furthermore,

0 = (g~lS + \E · Bi) = (g~lS - Bx) + \{E · B{),

and thus {E · B\) = - 2 / 3 , - 1 , and -1/3 respectively. The fractional cases are
impossible, since PQ is a nonsingular point of g~lS, and g~lS has at most one
ordinary double point on B\ (viz. P\). Therefore B\ has an ordinary double point
Pi on Ε, B\ has selfintersection 0 on the minimal resolution of Ε, and g~lS is
nonsingular on B\ U B2 = g~lS Π Ε. Moreover, B\ is a (-2)-curve and B2 is a
(—3)-curve.

Through the point P\ on g~lS there passes the curve of double points J9_i.
From this it follows that the curve Bo = g~lS D Suppg"1/? is irreducible, has a
unique singularity Q' (not over Q e X) of type A\, resolved by a (—3)-curve,
and is an exceptional curve of the first kind on the minimal resolution of g~lS.
But in this case Κ + S has a purely log terminal complement of index 2, and
hence the flip of / exists. To see this we observe that, by Proposition 5.13 and
Corollary 5.19, K + S + 2B is strictly log terminal at Q' and has index 3; one half
of its 1-complement at Q gives the required index 2 complement. Furthermore,
Κ + S has index 2 at Q e X, since Ε is a quadratic cone with vertex P\ and
g*{K + S) = KY + g^S + (l/2)£ .

Next we consider the case when g{E) = Q and B\ — g~lS Π Ε is irreducible.
Then, arguing as above, we check that g is good. We can also assume that the locus
of log canonical singularities of

(Kr + g-'S + g-'B + E)^

contains another curve C. But then Q = Β ι Π g~lC is at worst an isolated sin-
gularity of Υ. In view of the choice of d and (3.18.4), neither g~lS nor Ε
contain curves of singularities of Υ through Q. The fact that there are no other
curves of singularities through Q follows as before from the log canonical property
of KY + g~lS + g~lB + Ε. Moreover, if we perturb g~lB in a neighborhood of
Q (while fixing Q € g~lB), then Q will satisfy (8.8.2). Otherwise, arguing as in
the proof of the fact that g~*S crosses Ε normally along Βχ, we can find a surface
over Q with a = 0 and multiplicity < d in S, which contradicts the choice of
d. Thus (8.8.2) holds, so that β is a singularity of type (8.8.4) with m = 1 or
m = 0. If m = 1, then, choosing g~xB as above, we get a log canonical singularity
of (g ο h)*(K + S + B) on a curve of double points C3 c E'. Hence the surface
resolving C3 has a = 0, and its multiplicity in g~lS + Ε is equal to 2/3 < 1 and
< d for S. Therefore m = 0 and Q is nonsingular. In this case, blowing up the
points Pi if necessary, we can construct an exceptional 2-complement.
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We now turn to the final case g(E) = C. Then d — 2. As before, g satisfies
(8.8.1). Furthermore, as in the similar case above with d < 1, we check that the
intersection g~xSC\E consists of two irreducible curves B\ and B2 over a neigh-
borhood of Q G X. Moreover, g{B\) = Q and #(#2) = C · Then we check that
KY + g~lS + Ε is log terminal outside Pa = Β ι Π B2 and Ε is normal. Again PQ
is nonsingular on X and on g~lS, and is either nonsingular or an ordinary double
point of Ε. This time the latter case is impossible since (g~lB ·D) = 1/2, where
D is a general fiber of the surface Ε over C, and (g~'5 · B\) > 1/2. Hence
(g~lB • B\) = 1/2 and the curve B\ is numerically equivalent to D. In particular

~ = (E-D) = (E- Bi) = (B1 • B^g-is + (B2 · ΒΟ,-.s - (*i · Bi)g-ls + 1,

and thus (B\ 'Bi)g-iS - -3/2. Therefore g~lS has a unique ordinary double point
on B\, say Pi . Then By is a (-2)-curve on the minimal resolution of g~*S. By
the same arguments {B\ · B\)E — 0, from which it follows that Ε is nonsingular
on B\ and B\ is a complete fiber of Ε over C. Moreover, P\ is contained in
the curve of double points of Υ. Hence Κ + S has index 1 at Q e X, since
g*(K + S) = KY + g~lS has index 1 on B\. On the other hand, the curve Bo =
g~xS Π Suppg"1!? is irreducible, does not meet the singularities of g~{S, and is
an exceptional curve of the first kind on g~lS crossing normally the curve 5_i of
double points. Thus the index of Κ + S in a neighborhood of the flipping curve
g(B0) is equal to 2, and (K + S · g(B0)) — -1/2. Hence one half of the general
hyperplane section of B\ gives a purely log terminal complement of index 2 and
the flip exists by Proposition 2.9. D

Proof of Theorems 1.9-10 and Corollary 1.11. According to Reductions 6.4-5, Re-
duction 7.6, and Propositions 6.7-8, it suffices to establish the existence of nonexcep-
tional flips of index 2. By Reduction 8.2, Proposition 8.3, and Reduction 8.4, we can
restrict ourselves to flips of type (8.5.1-3). In what follows we denote by h: Υ -+ X
the good blowing up of Propositions 8.6 and 8.8, Ε the unique exceptional divisor
of h , and B\ = g~lS Π Ε = Ρ1 the irreducible curve of property (iii) in 8.5. Since
h is extremal, we have p(Y/Z) = 2 and NE(Y/X) has two extremal rays Ri and
R2 . From now on we proceed as in Reductions 7.2 and 8.2. In particular, we assume
that R\ corresponds to the contraction g. The flips of R2 are considered separately
depending on their type.

We start with type (8.5.1). Suppose first that Bo c g~{S, the preimage of the
flipping curve, does not pass through Ρ = B{ η g~xC. Then by construction Bo is
irreducible and is not contained in g~lB . Hence R2 is nonnegative with respect to
g~lB, positive with respect to Ε, and negative with respect to g~xS. Therefore
the support of R2 coincides with BQ , since B\ is contained in R\ .

Note that the flip in Bo exists by Corollary 5.20. Since KY + g~lS + g~lB + E is
log terminal in a neighborhood of -So > the flip transforms the curve BQ into a curve
BQ on the modified surface Ε preserving the index 2 or 1 and the log terminal
property of the divisor on Ε in a neighborhood of B£. It is not hard to check
that the transformed curve B£ intersects the modified B\ and is irreducible. The
subsequent ray R2 can be negative with respect to g~lS only when it is generated
by the modified B{ = g~lS η Ε and thus is negative with respect to Ε. As in
Reduction 7.2, in this case the flip of / exists. Thus, except for the case of a
divisorial contraction, it remains to consider the case when the next flipping curve
C\ lies on Ε and does not intersect B{. Furthermore, in this case B\ > 0. Since
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C\ is numerically trivial with respect to g~xS, it must be negative with respect to
Ε and positive with respect to g~lB .

If the restriction (KY + g~xS + g~xB + E)\E is log terminal in a neighborhood
of the support of R2, then the flip of R2 exists by Corollary 7.3, since it is an ex-
ceptional flip of index 2 for each connected component of the flipping curve. (In
the analytic case, passing to connected components while preserving the assumptions
that the contraction is extremal and the space is Q-factorial can be carried out either
by blowing up the base outside a fixed fiber or by localizing as in the proof of Re-
ductions 6.4-5.) Otherwise by Theorem 6.9 Ε contains a curve B2 intersecting the
support of R2

 m a unique point Q at which (KY + g~lS + g~xB + E)\E is not log
terminal, and the reduced part of the boundary of the most recent restriction has the
form B\ + B2. The curves B\ and B2 intersect in a unique point Ρ, and since B\
is ample on the original Ε, it follows that B2 is irreducible. But after flipping, the
curve B2 is numerically effective and numerically trivial only on B£ . Since Bx is
ample on the original Ε, after contracting any of the irreducible components of C\
we get that B2 is ample. By Lemma 8.9 the flipped curve is contracted as a whole,
hence it is irreducible. Consequently a flip in Ci again has type (8.5.1), and exists
by Proposition 8.6 because the number of good blowings up has decreased.

We now proceed to the case when BQ passes through Ρ. Then the extremal ray
R2 generated by BQ is positive with respect to Ε and g~xB, but negative with
respect to g~xS. The flip in BQ exists by Corollary 5.20, the flipped curve B£ lies
in the intersection of the modified Ε Π Suppg-'i?, and Β ι = Ε Π g~xS. Again
it suffices to consider the case when the flipping curve C\ is on Ε and does not
intersect g~xS. If the locus of log canonical singularities of the modified restriction
(Κγ + g~xS + g~xB + E)\E is disjoint from C\, then the flip exists and is of type IV
by Proposition 5.13. Otherwise, by Theorem 6.9, B£ is irreducible and is contained
in the reduced part of the boundary of the most recent restriction.

On the other hand, before the flip the divisor g~xB\E was ample, and its support
intersected B\ only in P. Hence the support of the modified g~xB\E is contained
in C\ and is a contractible curve. After its contraction, by Lemma 8.10 the curve
2?o" becomes numerically ample and by Lemma 8.9 the image of C\ must be trivial,
that is, the support of the modified g~lB\E must coincide with C\ . If the divisor
Κγ + g~lS + g~xB + Ε is log terminal along all components of C\, we arrive at
a flip of type (8.5.3); otherwise Cx is irreducible and defines a flip of type (8.5.2).
This completes the reduction in the case (8.5.1).

Consider now the case (8.5.2) proper, when the good blowing up g has an ex-
ceptional divisor Ε over a point. By construction, the proper transform of Bo, the
curve contracted by / , generates R2. Thus R2 is positive with respect to Ε and
negative with respect to g~xS. Hence the flip of BQ exists by Corollary 5.20.

After the flip the curve g~lS η Ε may become reducible. However this is only
possible when g~~lB is numerically negative on Bo. By our choice of Η = g*B,
KY + g~xS remains log terminal. Moreover, the flipped curves on g~lS lie in the
intersection with Ε. As in the proof of Proposition 8.8, the intersection g~lS Π Ε
contains at most two curves, viz. B\ and a flipped curve B2. In particular, B2 is
exceptional on Ev . Now B\ becomes the support of the subsequent extremal ray,
which is numerically trivial with respect to g~xB, positive with respect to Ε, and
negative with respect to g~lS. From this it follows that g~xB is positive on all the
remaining curves of Ε. As in the proof of Proposition 8.8, using this one can verify
the log terminality of KY + g~xS + Ε in a neighborhood of Ε, except at the point
p0 = B\ η B2 . Hence Ε is normal. The flip in Bx is described in Proposition 8.3.



AN ADDENDUM TO THE PAPER "3-FOLD LOG FLIPS" 557

Arguments from the proof of Proposition 8.8 in the case (8.5.2)* allow us to show
either that the flip of / exists, or that B2 is numerically effective on the minimal
resolution of Ε. But the last case is impossible, since J52 is exceptional on Ε. Thus
we can assume that the intersection g~lS Π Ε = Bl is again irreducible. The log
terminal property of KY + g~{S + Ε is preserved if g~lB is numerically effective
on Bo; otherwise it can be deduced from the ampleness of g~lB on the modified
E.

Thus again the new flipping curve C\ is contained in Ε and does not intersect
g~lS. If the singularities of the restriction (KY+g~lS+g~lB+E)\E are log terminal
on Ci, then, as before, the flip exists by Corollary 7.3. Otherwise by Theorem 6.9
there exists an irreducible curve B2 contained together with B\ in the boundary of
(Κγ + g~lS + g~lB + E)\E after modification and intersecting B\ in P . We claim
that B2 is contained in the support of the new ray Rl, that is, B2 is obtained after
flipping Bo. Indeed, otherwise all the components of the flipped curve B£ would
intersect Βγ at a single point Ρ. After contracting B£ we return to the situation
before flipping, when the curve B2 = Supp g~lS Π Ε is ample on Ε. Therefore by
Lemma 8.9 there is no Ci. Thus B2 is contained in B£ , the remainder of B£ is
contracted to a point Ρ, and its components intersect B\ and B2 only at Ρ.

Since Κ γ + Ε is log terminal, the surface Ε is normal. By Theorem 6.9 and
Lemma 8.9, after blowing down the support of g~lB\E outside B2 we see that C\
coincides with the given contracted curve. By Lemma 8.10, B2 becomes ample after
blowing down C\ and the components of B£ other than B2 . (The components of
g~1B\E other than B2 are contained in C\, since they do not intersect B\ and are
numerically trivial on g~lS.) If the support of g~1B\E outside B2 contains a curve
along which KY + g~lS + g~lB + Ε has singularities that are not log terminal, then
it coincides with it, and the contraction of the curve in question has type (8.5.2).
Furthermore, in the case (8.5.2) proper, Proposition 8.6 shows that the number of
good blowings up is decreased and the flip exists by induction. In the opposite case
we get a reduction to type (8.5.2)*. Type (8.5.3) arises if KY +g~lS+ g~lB+ E is
log terminal along C\ .

In the case (8.5.2)*, the ray R2 that is negative with respect to g~lS at the
first step leads to a flip in B\ and separates the surfaces Ε and g~lS. After this
the contraction of Ε to a point gives a flip of / . Thus the case that is essential
for us is when the flipping curve C\ lies in Ε and does not intersect g~lS. As
above, we need only consider the case when C\ passes through a point at which
the restriction (KY + g~lS + g~lB + E)\E is not log terminal. Then the fiber B2

of the ruled surface Ε over Ρ = B\ η g~lC is irreducible and is contained in the
boundary of (KY + g-lS+g~lB+E)\E . Since g~lB is positive on Ri and i? 2 ,r t is
positive on E, and after contracting all components of Suppg^'i?!^ except B2 the
curve B2 becomes ample. Thus again by Lemma 8.9, Q coincides with the given
contracted curve. If C\ contains a curve from the locus of log canonical singularities
of Κγ + g~lS + g~l Β + Ε, then it coincides with it, and the contraction of the given
curve is of type (8.5.2)*. Here by our choice of good blowing up in Proposition 8.8,
δ decreases. Indeed, the exceptional divisors of Et over C\ have log discrepancy 0
for Κγ + g~x S + g'1 Β + Ε precisely when a,•• = 0, and the multiplicity of Ej in
Ε is equal to its multiplicity in g~lS + Ε, and is not less than its multiplicity in
g~lS + dE = g*S. This yields strict monotonicity for δ . In the remaining case we
get a reduction to type (8.5.3).

In case (8.5.3), we first perform flips in curves of the intersection EnS\xppg~lB.
These curves intersect B{ in points Pi and P2 where KY + g~lS + g~lB + E is log
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terminal. Hence after such flips the intersection B\ = g~iSf)E remains irreducible.
However now g~xB intersects B\ only in a point Ρ = Β\ Π g~xC which is possibly
not log terminal, and the curve B\ becomes the only curve on g~xS over Ζ in a
neighborhood of the flipping fiber. Again it remains to consider the case when the
subsequent flipping curve C\ lies on Ε and does not intersect g~xS. As before,
we need only consider the case when C\ passes through a point Q at which the
restriction (KY + g~xS + g~xB + E)\E is not log terminal. Then there exists an
irreducible curve Βι ψ Β\ such that B\ + B% is the reduced part of the boundary
of the restriction and Q' e B^. Since g~xB is positive on R\ and Ri, it is ample
on Ε. By Lemma 8.10, after blowing down the components of Supp g~lB\E other
than 2?2 we transform Bi into an ample curve. Thus, again by Lemma 8.9, C\
coincides with the given contracted curve. But by construction C\ is not contained
in the locus of log canonical singularities of KY + g~lS + g~lB + Ε. Furthermore,
by our choice of good blowing up in Proposition 8.8, δ decreases. More precisely,
δ' for Q' is less than δ . D
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