3-FOLD LOG FLIPS

This article has been downloaded from IOPscience. Please scroll down to see the full text article. 1993 Russian Acad. Sci. Izv. Math. 4095
(http://iopscience.iop.org/1468-4810/40/1/A04)
View the table of contents for this issue, or go to the journal homepage for more

Download details:
IP Address: 195.37.209.182
The article was downloaded on 19/09/2010 at 20:19

Please note that terms and conditions apply.

3-FOLD LOG FLIPS*

UDC 512.7

V. V. SHOKUROV

Abstract

We prove that 3 -fold \log flips exist. We deduce the existence of log canonical and \mathbb{Q}-factorial log terminal models, as well as a positive answer to the inversion problem for \log canonical and \log terminal adjunction.

Contents

§0.

§1. Singularities and models
§2. The covering trick
§3. Adjunction of log divisors
§4. Two terminations
§5. Complementary log divisors
§6. Special flips
§7. Exceptional special flips
§8. Index 2 special flips
§9. Applications
Appendix by Y. Kawamata: The minimal discrepancy
of a 3 -fold terminal singularity
§10. Commentary by M. Reid
Bibliography
§0.
Let X be a normal algebraic (or analytic) 3-fold with a marked \mathbb{Q}-divisor $B=B_{X}$ (the boundary of X); we write $K=K_{X}$, and consider the \log canonical divisor $K+B$ as in Kawamata-Matsuda-Matsuki [8]. Suppose that $f: X \rightarrow Z$ is a birational contraction of X such that $K+B$ is numerically nonpositive relative to f. A flip of f is a birational (or bimeromorphic) modification

where f^{+}is a small birational contraction whose modified \log canonical divisor $K_{X^{+}}+B^{+}$is numerically positive relative to f^{+}; it is known (see [25] (2.13), and [8], 5-1-11) that the flip $\operatorname{tr} f$ is unique if it exists.

[^0]Theorem. The flip of f exists if $\lfloor B\rfloor=0$ and $K+B$ is log terminal.
Corollary. Let $f: X \rightarrow Z$ be a projective morphism of algebraic (or analytic) 3-folds, and suppose that $\lfloor B\rfloor=0$ and $K+B$ is log terminal. Then for every extremal face R of the Kleiman-Mori cone $\overline{\mathrm{NE}}(X / Z)$ (in the analytic case, of $\overline{\mathrm{NE}}(X / Z$; W), where $W \subset Z$ is compact) contained in the halfspace $K+B<0$, the contraction morphism cont_{R} associated with R is either a fiber space of log Fanos over a base of dimension ≤ 2, or has a flip tr_{R} (respectively, the same statement over a neighborhood of W).

The proof of the theorem, or more precisely of the equivalent Theorem 1.9 , consists of a series of reductions. First of all, in $\S 6$, the construction of the flip reduces to the special case, which is classified according to its complementary index. This classification is similar, and in fact closely related to, Brieskorn's classification of \log terminal surface singularities (see [2] and [4]). Index 1 special flips exist, and correspond to the flops or 0 -flips of [7], (6.1), or [11], (6.6). Next, in $\S 7$, we construct exceptional index 2 flips, and carry out a reduction of the existence of the remaining exceptional flips of index 3,4 , and 6 to the case of special flips of index 1 or 2 . The proof is completed by the reduction in $\S 8$ of special index 2 flips to exceptional index 2 flips. Here a significant role is played by a result of Kawamata on the minimal discrepancy of a terminal 3 -fold singularity; this proof is given in the Appendix kindly provided by Professor Kawamata. Furthermore, as we will see in the proof, a flip can be decomposed as a composite of resolutions of singularities, birational contractions given by the eventual freedom theorem and the contraction theorem ([8], 3-1-2 and 3-2-1), and flips of types I-IV, defined in §2. We note also that the proof does not use Mori's flips ([16], (0.2.5)) in the case $B=0$ when K itself is terminal, and so gives a new approach to proving the existence of Mori's flips. In addition to the definitions and related general facts, the introductory $\S 1$ contains a statement of the main results proved in $\S \S 6-8$; applications of these are given in $\S 9$. The main technique is contained in $\S \S 2-5$.

This research has been supported in part by the Taniguchi Foundation, the Max Planck Gesellschaft, the NSF, the Deutsche Forschungsgemeinschaft SFB 170, and the Hironaka and Kajima funds. This paper was completed during a stay at the Institute for Advanced Studies, Princeton, and I would like to thank the I. A. S. for hospitality and support.

§1. Singularities and models

We generally use the terminology and notation of [8], [25] and [26]. The geometric objects we work with are either normal complex analytic spaces or normal algebraic varieties over a base field k of characteristic 0 . The first is the analytic case, the second the algebraic case. For example, a morphism is either a holomorphic or a regular map; and a modification is assumed to be bimeromorphic in the analytic case, and birational in the algebraic case.

A contraction is a proper morphism $f: X \rightarrow Y$ with $f_{*} \mathscr{O}_{X}=\mathscr{O}_{Y}$, and is projective if f is. If $f: X \rightarrow Y$ is a contraction between varieties of the same dimension, that is, $\operatorname{dim} X=\operatorname{dim} Y$, then f is one-to-one at the generic point, and is a modification; such an f is a birational contraction or blowdown when Y is viewed as constructed from X, or an extraction or blowup when X is viewed as constructed from Y (see (10.8.4) for notes on terminology). An extraction or birational contraction whose exceptional set has codimension ≥ 2 is small.

We write $\rho(X / Y)$ (or $\rho(X / Y ; W)$ in the analytic case) for the relative Picard number of f (respectively, of f over a compact analytic subset $W \subset Y$). As a rule, in the analytic case, we work infinitesimally over suitable neighborhoods of W,
even when we do not say so explicitly; W is often projective, the fiber of a projective morphism, having tubular neighborhoods over Stein domains. (This condition is a particular case of weakly 1 -complete in the sense of [18], (0.4); it means in particular that Serre vanishing can be used e.g. in the proof of Corollary 5.19 below.) An extraction or birational contraction f is extremal (over W) if $\rho(X / Y)=1$ (respectively $\rho(X / Y ; W)=1)$.

A divisor is usually understood as an \mathbb{R}-Weil divisor $D=\sum d_{i} D_{i}$, with D_{i} distinct prime Weil divisors on X and $d_{i} \in \mathbb{R}$, called the multiplicity of D_{i} in D. This terminology will be generalized later to include the multiplicity of D at prime divisors of an extraction $Y \rightarrow X$; see just before Lemma 8.7, and (10.8.5). We say that D is a \mathbb{Q}-divisor (respectively, an integral divisor) if $d_{i} \in \mathbb{Q}$ (or $d_{i} \in \mathbb{Z}$) for all D_{i}. Note that a \mathbb{Q}-divisor is \mathbb{Q}-Cartier if and only if it is \mathbb{R}-Cartier. More-or-less by definition, \mathbb{R}-Cartier divisors with support in a finite union $\cup D_{i}$ form a vector subspace defined over \mathbb{Q} of the space $\oplus \mathbb{R} D_{i}$ of all divisors supported in $\cup D_{i}$ (in the analytic case, in a neighborhood of any compact subset of X).
1.1. Negativity of a birational contraction. Let $f: X \rightarrow Z$ be a birational contraction and D an \mathbb{R}-Cartier divisor. Suppose that
(i) f contracts all components of D with negative multiplicities;
(ii) D is numerically nonpositive relative to f; and for each D_{i}, either D_{i} has multiplicity 0 in D, or D is not numerically 0 over the general point of $f\left(D_{i}\right)$.

Then D is effective. Moreover, for each D_{i} either $D=0$ in a neighborhood of the general fiber of $f: D_{i} \rightarrow f\left(D_{i}\right)$ or $d_{i}>0$.
Proof (compare [Pagoda], (0.14)). First of all, passing to a general hyperplane section (that is, a general element of a very ample linear system) and using induction on the dimension of X reduces 1.1 to the assertion over a fixed point $P \in Z$; that is, after replacing Z by a suitable neighborhood of P if necessary, we can assume that all the components D with $d_{i}<0$ are contracted to P. It is enough to prove the assertion on some blowup of X. Since the assertion is local over Z, we can also assume that X has an effective divisor E contracted by f that is numerically nonpositive and not numerically 0 over P; for example, we could take E to be the difference $f^{*} H-f^{-1} H$, where H is a general hyperplane section through P. (Throughout the paper, f or f^{-1} applied to a divisor denotes its birational image or birational transform, never the set-theoretic image, see below and (10.8.3).)

Using resolution of the base locus by Hironaka, we can assume that $\left|f^{-1} H\right|$ is a free linear system, which guarantees that $E=f^{*} H-f^{-1} H$ is numerically nonpositive. E is not numerically trivial over P since $\left|f^{-1} H\right|$ intersects $f^{-1} P$; it follows, of course, that $\operatorname{Supp} E \supset f^{-1} P$. If there exists a prime divisor D_{i} contracted to P and with negative multiplicity d_{i} in D, then there is a minimal value of $\varepsilon>0$ such that $D+\varepsilon E$ is an effective divisor satisfying the assumptions (i) and (ii); if $D=\sum d_{i} D_{i}$ and $E=\sum e_{i} D_{i}$ where all $e_{i}>0$, then $\varepsilon=\min \left\{-d_{i} / e_{i} \mid d_{i}<0\right\}$, and some $d_{i}<0$ by assumption. Then since ε is minimal, by (i) there is an exceptional divisor over P with multiplicity 0 in $D+\varepsilon E$. But $f^{-1} P$ is connected since Z is normal. Now $D+\varepsilon E$ is effective and numerically nonpositive over P, so this is only possible if $D+\varepsilon E=0$ in a neighborhood of $f^{-1} P$, hence is numerically 0 . By the choice of E and since $\varepsilon>0$, this contradicts (ii). Hence D is effective. By the same argument the multiplicity $d_{i}>0$ if D is nontrivial on D_{i}. Q.E.D.

We write B_{X} or simply B to denote a divisor $B=\sum b_{i} D_{i}$ with $0 \leq b_{i} \leq 1$, called the boundary of X. A reduced divisor B, with all $b_{i}=0$ or 1 , is of this form. The divisor $S=\lfloor B\rfloor$ is the reduced part of the boundary; the reduced divisor Supp $B=\lceil B\rceil$ is identified with the support of the boundary. B is viewed as an
extra structure added to X except where stated otherwise. The log canonical and log terminal conditions discussed below are restrictions not just on the singularities of X, but also on those of the boundary B. Boundaries are generalized to subboundaries in $\S 3$ by dropping the restriction $b_{i} \geq 0$.

Consider a correspondence between X and Y, that is, a partially defined, possibly multivalued, map $f: X \rightarrow Y$, and a prime divisor D_{i} on X. The image of D_{i} under f is the divisor $f\left(D_{i}\right)=\sum P_{i j}$, where $P_{i j}$ are the divisorial components of the image under f of the generic point of D_{i}. This map extends to a homomorphism of divisors

$$
D=\sum d_{i} D_{i} \mapsto f(D)=\sum d_{i} f\left(D_{i}\right)
$$

$f(D)$ is the image of D. For a modification f, we usually call this the birational transform of D. A divisor D whose image is 0 is contracted or blown down by f, or is exceptional for f, but we sometimes also say that D is extracted or blown $u p$ by f. A contracting modification f is a modification such that f^{-1} does not contract any divisors; an extraction or birational contraction is of this kind. Similarly, a modification f is small if neither f nor f^{-1} contracts any divisors; small contractions and small extractions are of this nature.

The modified boundary B_{Y} of a boundary B of X under a modification $f: X$ $\rightarrow Y$ can be defined in various ways even under the restrictions $0 \leq b_{i} \leq 1$. One usually takes B_{Y} to be the birational transform $f(B)$, although we could also take a divisor of the form

$$
B_{Y}=f(B)+\sum e_{i} E_{i},
$$

where E_{i} are divisors on Y contracted by f^{-1} and all the multiplicities satisfy $0 \leq e_{i} \leq 1$. In what follows B_{Y} will denote this divisor with $e_{i}=1$ for each i; this is the log birational transform, see (10.3.2).

We write K_{X} or simply K for a canonical divisor of X. A \log divisor is a sum of the form $K+D$, where D is arbitrary. However, we are mainly interested in log divisors of the form $K+B$, where B is a boundary, assumed to be log canonical unless otherwise stated. This means in particular that $K+B$ is an \mathbb{R}-Cartier divisor, and hence its pullback $g^{*}(K+B)$ by any morphism $g: Y \rightarrow X$ is defined. If g is an extraction, and K_{Y} a suitable canonical divisor of Y, the pullback $g^{*}(K+B)$ on Y only differs from $K_{Y}+B_{Y}$ at exceptional components, that is,

$$
K_{Y}+B_{Y}=g^{*}\left(K_{X}+B\right)+\sum a_{i} E_{i}
$$

Each a_{i} is real, and is independent of the model Y, as long as E_{i} appears as a divisor on it; we call it the \log discrepancy of $K+B$ at E_{i}. It is independent of the choice of the canonical divisor K_{X}, since although the divisors K_{X} and K_{Y} are only defined up to linear equivalence, they can be intrinsically compared across a birational modification: there is an intrinsic identification of the sheaves $\mathscr{O}_{X}\left(m K_{X}\right) \cong \mathscr{\sigma}_{Y}\left(m K_{Y}\right)$ outside the exceptional sets. The log discrepancy coefficient a_{i} of $K+B$ at E_{i} is $1+$ its ordinary discrepancy. (') For nonexceptional prime divisors D_{i}, it is natural to define the \log discrepancy by the relation $a_{i}=1-b_{i}$, and the discrepancy to be $-b_{i}$. Thus for a \log canonical divisor $K+B$, the \log discrepancy of all blown up divisors is ≥ 0. Moreover, it is enough to verify this

[^1]inequality for exceptional divisors E_{i} of a resolution of singularities g on which the irreducible components of $\left\lceil B_{Y}\right\rceil$ are nonsingular and cross normally.

The divisor $K+B$ is log terminal if $a_{i}>0$ for every exceptional divisor of one such resolution; $K+B$ is strictly log terminal if in addition X is \mathbb{Q}-factorial. The definition of \log canonical and \log terminal given here is somewhat wider than that of [8], 0-2-10, and in particular we do not assume that the b_{i} are rational, or the inequality $b_{i}<1$ in the log terminal case (compare [8], 0-2-10, (i) and (ii)). This leads to an asymmetry between the given notions: for a \log terminal $K+B$ we do not always have all $a_{i}>0$, even for the exceptional divisors of the resolution indicated above (compare [8], 0-2-12). However, if all the exceptional divisors have $a_{i}>0$ then $K+B$ is purely \log terminal. This holds for \log terminal $K+B$ precisely when on the normal crossing resolution the birational transforms of the irreducible components of the reduced part of the boundary do not intersect, which happens in particular if the reduced part of the boundary is irreducible or empty. Purely log terminal is Kawamata's notion of log terminal (compare [8], 0-2-10, (i)), except for the rationality of b_{i}; the Utah seminar ([Utah], (2.13)) uses the terminology

$$
\begin{aligned}
\lfloor B\rfloor=0 \text { and purely } \log \text { terminal } & =\text { Kawamata log terminal }, \\
\text { strictly } \log \text { terminal } & =\mathbb{Q} \text {-factorial and log terminal. } .
\end{aligned}
$$

Example. To understand what's going on here, calculate the log discrepancy for the blowup of $P \in B \subset X$, where P is a node of a curve B on a nonsingular surface X. This X with B is (strictly) log terminal but not purely \log terminal. This problem goes back to Iitaka around 1975: $B \subset X$ has infinitely many different log minimal models over P, and one needs to refine the definition to minimal minimal models.

Weakly log terminal is here understood as in [8], 0-2-10, (ii), although we do not assume that the boundary B is a \mathbb{Q}-divisor. Strictly log terminal is obviously stronger than weakly log terminal.

For adjunction, the following weakened version of weakly log terminal is important. The divisorial notion of log terminal is obtained when the exceptional set appearing in its definition is assumed to be divisorial. In this case, the reduced components of $g^{-1}(\lfloor B\rfloor)$ do not have any double or higher order crossing on the exceptional set of g. Say that $f: E \rightarrow X$ maps at general points to normal crossing of $\lfloor B\rfloor$ if $f(E) \subset X$ is defined at its generic point by components of $\lfloor B\rfloor$ crossing normally; the image in codimension k is given by intersection of k components. Thus \log terminal is divisorial if and only if the exceptional divisors with log discrepancy 0 map at general points to normal crossing of reduced components of $\lfloor B\rfloor$, and the exceptional set does not lie over general points of normal crossings. In particular, if X is a 3-fold, for the divisorial log terminal property, exceptional divisors with \log discrepancy 0 lie over double or triple normal crossings. Note that if X is not \mathbb{Q} factorial, it can happen that two reduced components of $\lfloor B\rfloor$ can intersect in a point only, and then for $K+B$ to be divisorially \log terminal, the log discrepancy over such a point must be >0. Since strictly log terminal is stronger than divisorially log terminal, if it holds then exceptional divisors with log discrepancy 0 lie over normal crossings of $\lfloor B\rfloor$ and they only occur for $\lfloor B\rfloor$, as we will prove in Corollary 3.8.
1.2. Example. If X is nonsingular and if the irreducible components of $\lceil B\rceil$ are nonsingular and cross normally, then $K+B$ is strictly log terminal.

1.3. Properties of \log divisors.

(1.3.1) Convexity. The set of boundaries B for which $K+B$ is \log canonical (respectively nef, numerically positive or ample) is convex.
(1.3.2) Rational polyhedral. The set of boundaries B with support in a finite union $\cup D_{i}$ for which $K+B$ is \log canonical is a rational convex polyhedron in $\bigoplus \mathbb{R} D_{i}$ (in the analytic case, in a neighborhood of any compact subset $W \subset X$).
(1.3.3) Monotonicity. If $B \geq B^{\prime}$ are such that $K+B$ is \log canonical (or \log terminal) and $K+B^{\prime}$ is \mathbb{R}-Cartier (automatic if X is \mathbb{Q}-factorial), then $K+B^{\prime}$ is also \log canonical (respectively \log terminal). Moreover, the \log discrepancies of $K+B$ and $K+B^{\prime}$ at an exceptional component E_{i} satisfy $a_{i}^{\prime} \geq a_{i}$, and $a_{i}^{\prime}>a_{i}$ if E_{i} lies over the locus where $B>B^{\prime}$, that is, if E_{i} is contracted into the support of $B-B^{\prime}$.
(1.3.4) Stability. If B and B^{\prime} are boundaries such that B^{\prime} has support in $\operatorname{Supp} B, K+B$ is \log terminal, $K+B^{\prime}$ is \mathbb{R}-Cartier (automatic if X is \mathbb{Q}-factorial), and B^{\prime} is close to B, then $K+B^{\prime}$ is also \log terminal (in the analytic case, in a neighborhood of a compact subset $W \subset X$). If in addition $K+B$ is purely \log terminal and B^{\prime} has support in a finite union $\bigcup D_{i}$ then $K+B^{\prime}$ is also purely \log terminal.
(1.3.5) Rational approximation. The set of rational boundaries B is dense among all boundaries for which $K+B$ is \log canonical (in the analytic case, in a neighborhood of a compact subset $W \subset X$). If X is \mathbb{Q}-factorial, the set of rational boundaries B with $\lfloor B\rfloor=0$ is dense among all boundaries for which $K+B$ is log terminal.

Here, except where stated otherwise, log terminal can be taken to be any of the notions introduced above, and distance between divisors is measured coefficient-bycoefficient.

Proof. (1.3.1) and (1.3.3-4) come directly from the definitions. By Example 1.2, (1.3.2) holds if the D_{i} are nonsingular and cross normally; the polyhedron will be the cube $0 \leq b_{i} \leq 1$. In general, consider a resolution $g: Y \rightarrow X$ on which E_{i} and $g^{-1} D_{i}$ are nonsingular and cross normally; the set of exceptional divisors E_{i} is finite (in the analytic case, in a neighborhood of $W \subset X$). The inclusion g^{*} of \mathbb{R}-Cartier divisors of X extends in the numerical sense to divisors D such that $g^{-1} D+\sum d_{i} E_{i}$ is numerically 0 relative to g for some real d_{i}. The d_{i} with this property are uniquely determined, as follows from negativity of a contraction, 1.1. Defining the numerical \log canonical property of $K+B$ for g, it is not hard to check the rationality of the corresponding convex polyhedron in $\bigoplus \mathbb{R} D_{i}$. This polyhedron is the image under the rational projection $D \mapsto g(D)$ of the analogous polyhedron in $\left(\bigoplus \mathbb{R} g^{-1} D_{i}\right) \oplus\left(\oplus \mathbb{R} E_{i}\right)$, cut out in the polyhedron $\left\{D=\sum d_{i} D_{i}+\sum e_{i} E_{i} \mid 0 \leq d_{i} \leq 1\right.$ and $\left.e_{i} \leq 1\right\}$ by the relations $\left(K_{Y}+D\right) \cdot C=0$ for all curves C contracted by g. But the divisors $D=\sum d_{i} D_{i}$ for which $K+D$ is \mathbb{R}-Cartier form an affine linear subspace of $\bigoplus \mathbb{R} D_{i}$ defined over \mathbb{Q}. Intersecting the polyhedron with this gives what we want.

Without the assumption $\lfloor B\rfloor=0$, (1.3.5) follows from (1.3.2) and (1.3.4) in the \log canonical (log terminal) case. When X is \mathbb{Q}-factorial and $\lfloor B\rfloor=0$, it is obvious. Q.E.D.

A proper morphism $f: X \rightarrow Z$ is log canonical, or X is a log canonical model over Z, if $K+B$ is \log canonical and numerically ample relative to f. The morphism $f: X \rightarrow Z$ is log terminal, or a log minimal model over Z, if $K+B$ is \log terminal and $K+B$ is nef relative to f. And f is strictly log terminal, or a strict log minimal model over Z, if in addition $K+B$ is strictly \log terminal and f is projective. Here an \mathbb{R}-Cartier divisor D is numerically ample if it is ample in the
sense of Kleiman [10] (in the analytic case, in a neighborhood of any compact subset $Z \subset X$), and nef (respectively numerically positive, numerically negative, numerically nonpositive, numerically 0) if $D \cdot \Gamma \geq 0$ (respectively $D \cdot \Gamma>0,<0, \leq 0,=0$) for every curve Γ of X / Z. Here curves of X / Z means curves of X contracted to points in Z, that is, $\Gamma \subset X$ is contained in a fiber of f. The vector space $N_{1}(X / Z)$ is the \mathbb{R}-vector subspace of $N_{1}(X)$ spanned by such curves, see [8]. For \mathbb{Q}-Cartier divisors, numerical ampleness of f is equivalent to ampleness in the usual sense (in the analytic case, in a neighborhood of any compact subset $Z \subset X$) by [10]. If f is a small contraction and X a 3-fold, then the fibers of f are curves (possibly reducible), and f is numerically ample if and only if it is numerically positive.

There are two absolute cases. If f is a map to a point then X is \log canonical (respectively log terminal, strictly log terminal). If f is the identity, then to say that f is \log canonical (respectively log terminal, strictly log terminal) just means that $K+B$ has log canonical (respectively log terminal, strictly log terminal) singularities.

1.4. Properties of morphisms.

(1.4.1) Convexity. The set of boundaries B for which f is log canonical is convex.
(1.4.2) Rational approximation. The set of rational boundaries B is dense in all boundaries for which f is log canonical (in the analytic case, over a neighborhood of any compact subset $W \subset X$).
(1.4.3) Projectivity. If f is log canonical then it is projective (in the analytic case, over a neighborhood of any compact subset $W \subset X$).

Under our assumptions B is rational if and only if $K+B$ is \mathbb{Q}-Cartier. Thus in the study of log canonical morphisms f, we can manage with only \mathbb{Q}-divisors B and $K+B$ (compare [8], 0-3-10).

Proof. (1.4.1) follows from (1.3.1), (1.4.2) from (1.3.2), and (1.4.3) from (1.4.2) and [10]. Q.E.D.

A modification of a proper morphism $f: X \rightarrow Z$ to a proper morphism $g: Y \rightarrow Z$ is a commutative diagram

with $t: X \rightarrow Y$ a modification; we say that g is a model of f. Obviously a model of a birational contraction is again a birational contraction. A log canonical (respectively log terminal, strictly log terminal) model of a proper morphism $f: X \rightarrow$ Z (with $K+B$ not necessarily log canonical, or indeed \mathbb{R}-Cartier) is a modification $g: Y \rightarrow Z$ of f such that g is log canonical (respectively log terminal, strictly log terminal), and the log discrepancy coefficients a_{i} of $K_{Y}+B_{Y}$ satisfy

$$
a_{i} \geq 1-b_{i} \quad\left(\text { respectively } a_{i}>1-b_{i}\right)
$$

for all divisors $D_{i} \subset X$ that are exceptional with respect to t.
Note once again the two absolute cases: if f is the identity morphism, then a log canonical (respectively log terminal, strictly \log terminal) model $g: Y \rightarrow X$ of f is a relative log canonical (respectively log terminal, strictly log terminal) model of X for $K+B$ (compare [20], (6.3)); this is a partial resolution of the noncanonical singularities that leaves $K+B$ nef relative to g. If Z is a point, then a \log canonical model (respectively strictly log terminal model) Y is projective.

1.5. Properties of \log models.

(1.5.1) Well defined. A log canonical model is unique if it exists.
(1.5.2) Log birational invariance. If no component $D_{i} \subset X$ is contracted on a model $g: Y \rightarrow Z$, that is, the D_{i} also appear as divisors on Y, then the \log canonical (respectively \log terminal, strictly \log terminal) model f for $K+B$ coincides with the corresponding model of the modification g for $K_{Y}+B_{Y}$.
(1.5.3) Characterization as Proj. If $K+B$ is \log canonical, \mathbb{Q}-Cartier and g is the log canonical model of f, then $\mathscr{R}(f, K+B)=\bigoplus_{n \geq 0} f_{*} \mathscr{O}_{X}(n(K+B))$ is a finitely generated sheaf of graded $\mathscr{\sigma}_{Z}$-algebras, and

$$
Y=\operatorname{Proj} \mathscr{R}(f, K+B)
$$

(in the analytic case, the same over any compact subset of Z).
(1.5.4) Equivariance. A birational selfmap of X that lies over a biregular automorphism of Z and maps each generic point of B to B induces a regular automorphism of the \log canonical model g of $K+B$ (holomorphic automorphism in the analytic case).
(1.5.5) Behavior in codimension 1 . If $K+B$ is \log canonical, then the modification t to the log canonical model g is contracting; a modification to a log terminal model is not necessarily contracting, but the \log discrepancy of $K+B$ does not exceed the corresponding log discrepancy for $K_{Y}+B_{Y}$.
(1.5.6) Discrepancies decrease. If f is a birational contraction, and $K+B$ is \log canonical and numerically nonpositive relative to f, then the log canonical model g is a small contraction. Moreover, the \log discrepancies of $K+B$ do not exceed the corresponding log discrepancies for $K_{Y}+B_{Y}$, and are strictly smaller for divisors lying over the union of the fibers of f where $K+B$ is not numerically 0 . If in addition $K+B$ is (purely) \log terminal and numerically negative relative to f, then the \log canonical model g is in addition (purely) log terminal. (Compare [25], 2.13.3.)
(1.5.7) Let $f: Y \rightarrow X$ be a weakly log canonical model of X for $K+B$, that is, an extraction such that $K_{Y}+B_{Y}$ is log canonical on Y and nef relative to f. Then

$$
f^{*}(K+B)=K_{Y}+B_{Y}+\sum d_{i} E_{i}
$$

with $d_{i} \geq 0$ for all the exceptional divisors E_{i} of f. Moreover, all $d_{i}=0$ if and only if $K+B$ is log canonical. f is the identity if and only if f and $K+B$ are both \log canonical. f is small and purely \log terminal if $K+B$ is purely \log terminal. f is the identity if $K+B$ is purely \log terminal and X is \mathbb{Q}-factorial, that is, $K+B$ is purely and strictly \log terminal.

In view of the fact that the log canonical model of f is well defined, it can be constructed locally over neighborhoods of points of Z. Note that if in the formula (1.5.7) we take the sum of exceptional divisors E_{i} over to the left, we get a result that is the exact opposite of the definition of \log canonical: all $a_{i}=-d_{i} \leq 0$. An extraction with all $d_{i}=0$ is log crepant (compare [20], (2.12)).

Proof. (1.5.2) holds by definition, (1.5.3) is well known (putting together (1.5.2) and [8], 0-3-12), and (1.5.1) follows from (1.5.3) by taking a nonsingular model of f according to (1.5.2) and (1.4.2). (1.5.4) follows from (1.5.1). (1.5.5-6) are proved
as in [25], (2.13), using a Hironaka hut

here W is nonsingular, so that $f^{\prime}: W \rightarrow X$ and $g^{\prime}: W \rightarrow Y$ are resolutions. (The Russian usage domik Hironaka is traditional, domik = little house, hut.) In the analytic case, the same over a neighborhood of a compact subset of Z. If g is \log canonical, $g^{\prime *}\left(K_{Y}+B_{Y}\right)$ is nef relative to $g \circ g^{\prime}=f \circ f^{\prime}$ and f^{\prime}. Thus the difference $\Delta=f^{\prime *}(K+B)-g^{\prime *}\left(K_{Y}+B_{Y}\right)$ is nonpositive relative to f^{\prime} and its support is contained in divisors that are exceptional for both f^{\prime} and g^{\prime}. If E_{i} is exceptional for g^{\prime} but not for f^{\prime}, its multiplicity in Δ is $b_{i}-1+a_{i}$, which is ≥ 0 by definition of the \log canonical model, where a_{i} is the \log discrepancy in E_{i} of $K_{Y}+B_{Y}$. By negativity of a contraction, 1.1, Δ is an effective divisor. Moreover, if E_{i} is exceptional for f^{\prime} but not for g^{\prime}, then Δ or $-\Delta$ has maximal numerical Kodaira dimension on E_{i}, is not numerically 0 over the generic point of $f^{\prime} E_{i}$, and its multiplicity $1-a_{i}-1=-a_{i}$ at E_{i} is >0 by negativity of a contraction, 1.1 ; here a_{i} is the \log discrepancy of $K+B$ at E_{i}. This is impossible, and the modification t is contracting. The \log discrepancy of $K_{Y}+B_{Y}$ at a prime divisor $D \subset W$ is greater than the corresponding \log discrepancy of $K+B$ by the multiplicity of Δ at D, since $B_{W} \leq\left(B_{Y}\right)_{W}$.

In (1.5.6), $g^{\prime *}\left(K_{Y}+B_{Y}\right)$ is nef relative to $g \circ g^{\prime}=f \circ f^{\prime}$. Hence the difference $\Delta=f^{\prime *}(K+B)-g^{\prime *}\left(K_{Y}+B_{Y}\right)$ is nonpositive relative to f^{\prime}, and is supported in divisors that are exceptional for f^{\prime} or g^{\prime}. As above, it is effective on divisors E_{i} that are exceptional for g^{\prime} but not for f^{\prime}. Again by negativity of a contraction 1.1, the difference is effective and does not involve the E_{i} that are not exceptional for f^{\prime} and g^{\prime}. If the image $g^{\prime}\left(E_{i}\right)$ is exceptional for g then also $f^{\prime}\left(E_{i}\right)$ is an exceptional divisor for f. This is impossible by negativity of a contraction, 1.1 , and since Δ is not numerically 0 over the general point of $g \circ g^{\prime} E_{i}$. Therefore g is small.

The multiplicity of Δ at D is 0 only if Δ is trivial over the general point of $f \circ f^{\prime} D$, that is, $f^{\prime} D$ is not contained in the union V of fibers of f on which $K+B$ is not numerically 0 . Thus by what we have said, the log discrepancies of $K+B$ are less than the corresponding log discrepancies of $K_{Y}+B_{Y}$ for divisors over V. If $K+B$ is \log terminal and numerically negative relative to f then the points of indeterminacy of t land in V, which in this case is the union of positive dimensional fibers of f, and t is an isomorphism outside this set. Hence, outside V, we can take as resolution g^{\prime} a suitable resolution of X as in the definition of log terminal and resolve its indeterminacy over V. Finally, the relation of (1.5.7) follows immediately from the definition of the extraction f and negativity of a contraction, 1.1, and the remaining assertions of (1.5.7) also follow easily from this. Q.E.D.
[8], 0-4-5, states the conjecture that log terminal models exist in the general case. To construct the log canonical model from a log terminal model $g: Y \rightarrow Z$ one must contract the curves $\Gamma \subset Y$ with $\left(K_{Y}+B_{Y}\right) \cdot \Gamma=0$; when the boundary B_{Y} is a \mathbb{Q}-divisor, the existence of this model is equivalent to the conjectured abundance of $K_{Y}+B_{Y}$ (see [8], 6-1-14).

There is a general philosophy-Mori theory, or the theory of extremal rays-of how to go about constructing a log terminal model of a projective morphism $f: X \rightarrow$ Z over Z (in the analytic case, over a neighborhood of any compact projective
subvariety of Z). First, $\left({ }^{2}\right)$ resolving the singularities of X and of the boundary B to a nonsingular variety and a divisor with normal crossings, we can assume that f is projective and $K+B$ strictly \log terminal by (1.5.2). By the theorem on the cone ([8], (4-2-1), or [18], (4.12), in the analytic case), if there exists a curve Γ of X / Z (that is, $\Gamma \subset X$ is contained in a fiber of f) on which $K+B$ is negative, then the Kleiman-Mori cone $\overline{\mathrm{NE}}(X / Z)$ has a locally polyhedral extremal ray R with $(K+B) R<0$. By the contraction theorem ([8], (4-2-1), or [18], (4.12), in the analytic case), there exists a contraction cont ${ }_{R}: X \rightarrow Y$ of R over Z. (In applying these theorems, if it is not already so, we first perturb B slightly to make it a \mathbb{Q}-divisor.) If cont_{R} is not birational it is a nontrivial fiber space of log Fanos, and the minimal model program comes to a stop.

Otherwise cont ${ }_{R}$ is a birational contraction. Then one carries out a modification $t: X \rightarrow X^{+}$from X to X^{+}over Z; the modification will be simply $X^{+}=Y$ if cont $_{R}$ is a divisorial contraction. Otherwise, it will be a flip $X^{+} \rightarrow Y$ over Z, if this exists (see Lemma 1.7). As is well known (see [25], (2.13)), the modification $t: X \rightarrow X^{+}$does not decrease the log discrepancies of $K+B$, and for a divisorial contraction of E_{i} the \log discrepancy increases: $a_{i}^{+}>1-b_{i}$. Hence by (1.5.5), the \log terminal (log canonical) models of X and X^{+}over Z coincide. However, $K^{+}+B^{+}$is again strictly log terminal, f^{+}is projective, and one conjectures that X^{+}is simpler than X in some measurable respect, which means that any sequence of such modifications eventually terminates. Hence as a result of a sequence of modifications, f either becomes a nontrivial fiber space of log Fanos, or becomes a log terminal morphism. Therefore the problematic ingredients of this construction are the existence and termination of flips. On the other hand, starting from a terminal model f, by the theorem on eventual freedom of [8], 3-1-2, we get a log canonical model when B is a \mathbb{Q}-divisor with $\lfloor B\rfloor=0$ and $K+B$ is big relative to f; big relative to f means that the restriction of $K+B$ to a general fiber of f has Kodaira dimension equal to the dimension.

LSEPD divisors. The trouble with the above general philosophy is that, in the procedure we have just described, even if we start with no reduced boundary components, these may appear at the time of the initial resolution, and may not be contracted by subsequent modifications. However, we now introduce a systematic method of decreasing B, while preserving the intersection number of $K+B$ with all curves of X / Z and preserving rationality, under an extra condition. Let $f: X \rightarrow Z$ be a contraction and $K+B$ a \log divisor on X. We say that B is the support of an effective principal divisor locally over Z or is an LSEPD divisor if in a neighborhood of any connected component of B there exists an effective Cartier divisor D on X which is f^{*} of a principal divisor on Z, and such that

$$
\lfloor B\rfloor \leq \operatorname{Supp} D \leq\lceil B\rceil=\operatorname{Supp} B
$$

The point is that locally over Z, which is sufficient for the construction of the log canonical model, D contains all the reduced components of B with $b_{i}=1$, and all the components of D are contained in B, so that perturbing the boundary from B to $B-\varepsilon D$ with $0<\varepsilon \ll 1$ leaves it effective, but pokes out the reduced components. $\left({ }^{3}\right)$ Moreover, by what we have said, the condition on D can be weakened to numerically

[^2]0 relative to f, even if f is weakly \log canonical, that is, $K+B$ is nef relative to f, B is a \mathbb{Q}-divisor, and $K+B$ is big relative to f (compare (1.5.7)). In this case we say that B is numerically LSEPD.

Returning to the general philosophy, we note that the whole picture is somewhat simplified if we assume that f is finite over a general point of Z, for example, a birational contraction. First of all, this ensures that the final model of f will be a strictly \log terminal birational contraction, and not a fiber space of \log Fanos. Secondly, any \mathbb{Q}-Cartier divisor on X, and in particular $K+B$, will be big relative to f. Hence under the given assumption, in the process of constructing the log canonical model, it is natural to assume that the original f has boundary B that is an LSEPD \mathbb{Q}-divisor. Moreover, if f is strictly \log terminal, it is enough to assume that B is numerically LSEPD; when f is extremal, this holds if and only if $\operatorname{Supp} B$ either has only components that are numerically 0 relative to f, or has both components that are negative and components that are positive relative to f. Thirdly, if X is nonsingular outside B, then LSEPD divisors are preserved both by the initial resolution of singularities and by subsequent modifications. Moreover, in (4.5), we perfect our general philosophy so that, in order to be able to construct a \log canonical model from a strictly log terminal model, it will be sufficient to know that on the original model X (whose boundary B is not necessarily a \mathbb{Q}-divisor) there exists an LSEPD divisor B^{\prime} with $\lfloor B\rfloor \leq B^{\prime} \leq\lceil B\rceil$, such that $K+B$ is \log terminal outside B^{\prime}. Thus the task remaining is to achieve a strictly \log terminal model of f, and by the above discussion, we must succeed in the construction and the termination of flips. For a surface X, flips and their termination are OK, so that we get the next result.
1.6. Example. If $f: X \rightarrow Z$ is a morphism of a surface X, finite over the general point of Z, then there exists a strictly \log terminal model of f, even if $K+B$ is not \log canonical; respectively, there exists a log canonical model of f provided that B passes through all points at which $K+B$ is not \log terminal. In this case, the birational contraction to a log canonical model can be transformed to the numerically negative case using negativity of a contraction, 1.1, and then its existence can be proved using the contraction theorem ([8], 3-2-1). In particular, X has a strictly log terminal model; respectively, a log canonical model provided that B passes through all the points at which $K+B$ is not \log terminal. From this and from (1.5.7), in the 2-dimensional case any notion of \log terminal is always strict; since, quite generally, for a purely \log terminal $K+B$ a strictly \log terminal model is small, but for surfaces is the identity. By [8], 1-3-6, this follows anyway from the rationality of weakly \log terminal singularities, which in the surface case is equivalent to log terminal. Note also that a strictly log terminal model, or a model as a fiber space of \log Fanos exists for any projective morphism $f: X \rightarrow Z$ from a surface. (The material here is all elementary and well known. It's an exercise to understand all this in terms of collections of curves on surfaces and Zariski decomposition of a log divisor $K+B$ on the resolution; compare [Kawamata].)

According to Lemma 1.7 below, the previous considerations can also be used to construct the flips themselves, provided that termination is known, and that in constructing a flip we need only flips of a simpler type. We only note here that a flip of a birational contraction f with respect to D (where in general D is an \mathbb{R}-divisor of

[^3]$X)$ is defined as a modification

where f^{+}is a small contraction for which the modified divisor $D^{+}=\operatorname{tr} f(D)$ is numerically ample. (Modified divisor D^{+}means the birational transform; it moves under linear equivalence if D does.) A flip is obviously unique if it exists. For this reason it follows that it is equivariant: that is, automorphisms of X / Z preserving D act biregularly on X^{+}.

In applications, D is usually negative, and even antiample relative to f, and the contraction f itself is small and even extremal. In the case of an extremal and projective f, D is negative relative to f if and only it is antiample, and the flip does not depend on the choice of such D if Y has rational singularities, and is also extremal if X is \mathbb{Q}-factorial. If $f=\operatorname{cont}_{R}$ is a small contraction of an extremal ray, then f or R or the curves contracted by f are flipping, and otherwise divisorial. However, when X is not \mathbb{Q}-factorial, a flip of a divisorial contraction may differ from it, that is, it may not be regular (see [25], (2.11) and (2.9) and [8], 5-1-6): if the contracted divisor is not \mathbb{Q}-Cartier then K_{Z} is not \mathbb{Q}-Cartier, and a flip is needed to return to the inductive category. Thus the above extension to any birational contraction of the notion of flip is quite natural.
1.7. Lemma. Let $f: X \rightarrow Z$ be a birational contraction such that $K+B$ is numerically nonpositive relative to f; then a log canonical model of f is a flip with respect to $K+B$, and conversely. A flip or log canonical model of f is also a \log canonical model of Z for $K_{Z}+f(B)$.
Proof. (${ }^{4}$) If $g: Y \rightarrow X$ is a \log canonical model of f then by (1.5.6) and by definition g is a small contraction, with $K+B$ numerically ample relative to g, that is, g is a flip of f. The converse follows from standard properties of flips (see [25], 2.13 and the properties of \log flips in $\S 1.12$, below). The case of a log canonical model is treated similarly. Q.E.D.
1.8. Example (Tsunoda). Suppose that $f: X \rightarrow Z$ is a projective birational contraction of an algebraic (or analytic) 3 -fold X, and that the boundary B is semistable relative to f. This means that B is linearly 0 relative to f and has a projective resolution of singularities $g: Y \rightarrow X$ such that $g^{*} B=g^{-1} B+\sum E_{i}$, which is the sum of nonsingular prime divisors with normal crossings, where $\sum E_{i}$ is the exceptional set of f. The minimal number d of exceptional divisors of such a resolution is the depth of B. I assert the existence of a flip of f with respect to a numerically nonpositive $K+B$ when the exceptional set of f is contained in B. By Lemma 1.7, this coincides with the log canonical model of f. Composing with the above resolution, we can assume that X is nonsingular, and the boundary B is linearly 0 relative to f, reduced, and consists of nonsingular prime divisors with normal crossings. It is enough to construct a strictly log terminal model of f. The existence of flips of extremal rays with $K+B$ negative is known in this case by [23], Theorem 1, or [7],

[^4](10.1). Moreover, the semistability of B is preserved by such flips, and its depth increases by at most 1 under a divisorial contraction, and decreases under a flip (see [26], (9.1), and [28]). Hence termination holds and the log terminal model of f exists. If we discard B, termination also follows by termination in the terminal case for K (see [25], (2.17)).

The main theorem of $\S 0$ is equivalent to the following result.
1.9. Main Theorem. Let $f: X \rightarrow Z$ be a birational contraction of an algebraic (or analytic) 3-fold X; suppose that $K+B$ is \log terminal outside B and nonpositive relative to f, and that the boundary of B is LSEPD. Then the flip of f exists.
Proof of equivalence. By the uniqueness of a flip, we can restrict to the local situation. If f is the birational contraction of the theorem of $\S 0$ and H a hyperplane section containing $f(\operatorname{Supp} B)$, then by stability (1.3.4), for small rational $\varepsilon>0$ the \log divisor $K+B+\varepsilon f^{*} H$ satisfies all the requirements of Theorem 1.9. For the converse, subtracting off a multiple of the principal divisor provided by the LSEPD assumption ensures that $\lfloor B\rfloor=0$, and by monotonicity (1.3.3) makes $K+B \log$ terminal. Q.E.D.

The proof of Theorem 1.9 and Theorem 1.10 below makes up the bulk of this paper; this is obtained first in a jumbled form in $\S 6$, and then, in an organised form, in $\$ \S 6-8$ after reducing to special flips.
1.10. Theorem. A small proper morphism $f: X \rightarrow Z$ of an algebraic (or analytic) 3-fold X that is finite over the general point of Z has a strictly log terminal model for $K+B$ (in the analytic case, over a neighborhood of a projective subset $W \subset Z$), even if X is not \mathbb{Q}-factorial and $K+B$ not log canonical.

In the analytic case, over a neighborhood of W also means that the strictly log terminal property of the model is preserved on shrinking the neighborhood of W.
1.11. Corollary. A small proper morphism $f: X \rightarrow Z$ of an algebraic (or analytic) 3-fold X that is finite over a general point of Z has a log canonical model for $K+B$, even if X is not \mathbb{Q}-factorial and $K+B$ is not \log canonical, provided that B is LSEPD, and $K+B$ is log terminal outside the principal divisor provided by the LSEPD assumption.

The final condition is satisfied, for example, if the boundary B is LSEPD and $K+B$ is \log terminal outside B. If we apply Theorem 1.10 and Corollary 1.11 to the identity morphism id_{X} then we get respectively the \log canonical and \log terminal model of X for $K+B$ (see $\S 9$). Moreover, the local divisor D supports a fiber relative to id_{X}, or, as we will also say, simply is a fiber, when locally there is an effective Cartier divisor D^{\prime} having the same support, $\operatorname{Supp} D^{\prime}=\operatorname{Supp} D$. This holds, for example, if D is effective and \mathbb{Q}-Cartier, and by rational approximation, even when it is \mathbb{R}-Cartier. Note that the corollary holds for the boundary B, as soon as Theorem 1.10 is established for it (see the proof in $\S 4$). From this we get the following proof.
Proof of the corollary of $\S 0$. The cone $\overline{\mathrm{NE}}(X / Z)$ (respectively $\overline{\mathrm{NE}}(X / Z ; W)$) is locally polyhedral in the region $K+B<0$, by [13], (5.4). The contraction cont ${ }_{R}$ then exists by [8], 3-1-2 (in the analytic case we can use the arguments of [18], (5.8)), rational approximation (1.3.5), and stability (1.3.4) of purely log terminal divisors. It is known that cont_{R} is either a nontrivial fiber space of \log Fanos or is birational, that is, a birational contraction. In the final case, the flip exists by the theorem of §0. Q.E.D.

To conclude $\S 1$ we give some facts that will be needed later.
1.12. Properties of \log flips. Let $g^{+}: X^{+} \rightarrow Y$ be a flip over Z of a birational contraction $g: X \rightarrow Y$ with respect to the divisor $K+B$. Then $K^{+}+B^{+}$is \log canonical if $K+B$ is numerically nonpositive relative to g. Respectively, $K^{+}+B^{+}$ is divisorially \log terminal if $K+B$ is divisorially \log terminal, and the exceptional locus of g does not contain any generic points of normal crossing of $\lfloor B\rfloor$ (compare the paragraph before Example 1.2). Moreover, if in addition $K+B$ is \log terminal, respectively purely or weakly \log terminal, and negative relative to g then
(1.12.1) $D^{+}=K^{+}+B^{+}$is \log terminal, respectively purely or weakly \log terminal.
(1.12.2) If a \mathbb{Q}-Cartier divisor D is numerically 0 relative to g, then $D^{+}=$ $\operatorname{tr} f(D)$ is a \mathbb{Q}-Cartier divisor, numerically 0 relative to g^{+}and having the same index as D (in the analytic case, over a neighborhood of any compact subset of Z).
(1.12.3) X^{+}is projective over Z (in the analytic case, over a neighborhood of any compact subset of Z) if X is projective over Z and g is extremal.
(1.12.4) If X is \mathbb{Q}-factorial and g is extremal then X^{+}is \mathbb{Q}-factorial; if in addition g is small then g^{+}is extremal. Moreover,

$$
\rho\left(X^{+} / Z\right)= \begin{cases}\rho(X / Z)-1 & \text { if } g \text { is a divisorial contraction } \\ \rho(X / Z) & \text { if } g \text { is a small contraction }\end{cases}
$$

(in the analytic case, $\rho\left(X^{+} / Z ; W\right)=\rho(X / Z ; W)-1$ or $\rho\left(X^{+} / Z ; W\right)=$ $\rho(X / Z ; W))$.
Proof. This is either known, or can be obtained by modifying [25] and [8] (see also the properties of log models in $\S 1.5$ together with Lemma 1.7). Note that in the 3fold case, the condition that the exceptional locus of g does not contain any generic points of normal crossing of $\lfloor B\rfloor$ is satisfied if it does not contain any triple points, double curves or prime components of $\lfloor B\rfloor$. Q.E.D.

§2. The covering trick

Let $f: \widetilde{X} \rightarrow X$ be a quasifinite morphism between normal varieties. A prime Weil divisor D on X defines an integral effective divisor $f^{*} D=\sum m_{i} E_{i}$ with E_{i} prime. $\quad f^{*} D$ is meaningful, since D is Cartier in codimension 1 , where f is a finite extension of DVRs. This a "birational transform" construction; in terms of divisorial sheaves, $\mathscr{\sigma}_{\widetilde{X}}\left(f^{*} D\right)$ is the double dual $\mathscr{\sigma}_{\widetilde{X}}\left(f^{*} D\right)=\left(f^{*}\left(\mathscr{O}_{X}(D)\right)\right)^{* *}$.

The coefficient $m_{i}=\operatorname{mult}_{E_{i}}(f)$ is the multiplicity of f at (or along) E_{i}. The number $r_{i}=r_{E_{i}}(f)=m_{i}-1$ is the ramification index of f along E_{i}. Divisors with positive ramification indices are called ramification divisors of f; these form the support of the ramification divisor $R=\sum r_{E}(f) E$, and the reduced divisor

$$
R_{\mathrm{red}}=\sum_{r_{E}(f)>0} E
$$

is the ramification locus of f.

2.1. The pullback formula.

$$
K_{\tilde{X}}+f^{-1} D=f^{*}\left(K_{X}+D\right)+\sum_{i} \sum_{f\left(E_{j}\right)=D_{i}}\left(1-d_{i}\right) r_{j} E_{j}
$$

for any Weil divisor $D=\sum d_{i} D_{i}$ on X, where $f^{-1} D=\sum d_{i} f^{-1} D_{i}$ and $f^{-1} D_{i}$ are the reduced divisors $\sum E_{j}$ obtained as the set-theoretic inverse image of $\operatorname{Supp} D_{i}$.

Proof. The relation

$$
f^{*} D=\sum_{i} \sum_{f\left(E_{j}\right)=D_{i}} d_{i} m_{j} E_{j}
$$

reduces the verification to the particular case when $D=0$. Then the pullback formula becomes a higher-dimensional analog of the Hurwitz formula for canonical divisors [27], $K_{\tilde{X}}=f^{*} K_{X}+R$, where R is the ramification divisor of f. By the same argument, it is also equivalent to the \log analog of the Hurwitz formula $K_{\tilde{X}}+f^{-1} B=f^{*}\left(K_{X}+B\right)$ when B is a reduced divisor containing the ramification locus $f\left(R_{\mathrm{red}}\right) \subset X$. Q.E.D.
Remark. Grothendieck duality provides a less pedestrian definition of R and proof of (2.1): since $f_{*} \omega_{\tilde{X}}=\operatorname{Hom}_{\mathscr{\theta}_{X}}\left(\mathcal{O}_{\tilde{X}}, \omega_{X}\right)$, there is an intrinsic evaluation homomorphism $f_{*} \omega_{\tilde{X}} \rightarrow \omega_{X}$, hence an intrinsic homomorphism $J: \omega_{\tilde{X}} \rightarrow f^{*} \omega_{X}$, extending the map $\Omega_{\tilde{X}}^{n} \rightarrow f^{*} \Omega_{X}^{n}$ defined on the nonsingular locus by the determinant of the Jacobian matrix; $\operatorname{div}(J)$ is the ramification divisor.

The pullback formula can also be conveniently expressed in the form $K_{\tilde{X}}+B_{\tilde{X}}=$ $f^{*}(K+B)$, where

$$
\begin{aligned}
B_{\widetilde{X}} & =f^{-1} B-\sum_{i} \sum_{f\left(E_{j}\right)=D_{i}}\left(1-b_{i}\right) r_{j} E_{j} \\
& =\sum_{i} \sum_{f\left(E_{j}\right)=D_{i}}\left(b_{i} m_{j}-r_{j}\right) E_{j} .
\end{aligned}
$$

Here $B=D=\sum b_{i} D_{i}$ is a boundary of X. The inequality $b_{i} m_{j}-r_{j} \leq 1$ follows from $b_{i} \leq 1$. Hence to ensure that $B_{\widetilde{X}}$ is a boundary of \widetilde{X}, we need only the inequality $b_{i} m_{j}-r_{j} \geq 0$, or equivalently

$$
\begin{equation*}
b_{i} \geq \frac{r_{j}}{m_{j}}=\frac{m_{j}-1}{m_{j}} . \tag{2.1.1}
\end{equation*}
$$

2.2. Corollary. For a finite morphism f, the divisor $K_{\tilde{X}}+B_{\tilde{X}}$ is log canonical (respectively purely log terminal) if and only if $K+B$ is.
Proof (compare [Pagoda], (1.9)). First of all, I claim that $K+B$ is an \mathbb{R}-Cartier divisor if and only if its pullback $K_{\tilde{X}}+B_{\tilde{X}}=f^{*}\left(K_{X}+B\right)$ is. This follows from the fact that the pullback f^{*} and pushforward f_{*} by a finite morphism f preserve \mathbb{R}-Cartier divisors, since the composite $f_{*} \circ f^{*}$ multiplies divisors by $\operatorname{deg} f$.

The pullback of a finite morphism f by a birational contraction $g: Y \rightarrow X$ fits in a commutative diagram

where \tilde{f} is again a finite morphism, and \tilde{g} a birational contraction. I can assume by the above that $K+B$ and $K_{\tilde{X}}+B_{\widetilde{X}}$ are \mathbb{R}-Cartier divisors. By the final version of the pullback formula and the definition of the \log discrepancies a_{i}, we have

$$
\begin{aligned}
K_{\widetilde{Y}}+B_{\widetilde{Y}} & =\tilde{f}^{*}\left(K_{Y}+B_{Y}\right)=\tilde{f}^{*}\left(g^{*}(K+B)+\sum a_{i} E_{i}\right) \\
& =\tilde{g}^{*}\left(K_{\tilde{X}}+B_{\widetilde{X}}\right)+\sum a_{i} \tilde{f}^{*}\left(E_{i}\right) .
\end{aligned}
$$

Thus the \log discrepancy \tilde{a}_{j} of a prime divisor E_{j} contracted by \tilde{g} can be computed by the \log discrepancy a_{i} of $D_{i}=\widetilde{f}\left(E_{j}\right)$:

$$
\tilde{a}_{j}=a_{i} m_{j}
$$

where m_{j} is the multiplicity of \tilde{f} at E_{j}. Hence the inequalities $\widetilde{a}_{j} \geq 0$ and $a_{i} \geq 0$ (or $\tilde{a}_{j}>0$ and $a_{i}>0$) are equivalent. It only remains to check that each divisor contracted by \tilde{X} appears as an exceptional divisor of \widetilde{g} for a suitable g. Q.E.D.

2.3. Construction of cyclic cover. Let D be a primitive principal divisor on X.

 Then for any natural n there is a finite cyclic cover $f: \widetilde{X} \rightarrow X$ of degree n (a Galois cover with Galois group $\mathbb{Z} /(n))$ such that the pullback $f^{*} D$ is divisible by n as a principal divisor. Indeed, $D=\operatorname{div}(\varphi)$ is the divisor of a function φ. Here primitive means that D is not divisible by $m \geq 2$ as a principal divisor, which implies that the polynomial $x^{n}-\varphi$ is irreducible over the function field $\mathscr{R}(X)$ (respectively, the meromorphic function field $\mathscr{M}(X)$ in the analytic case). For f we can take the normalization of X in the finite extension $\mathscr{R}(\sqrt[n]{\varphi})$. (See [14]; in the analytic case, the normalization of X in a finite extension \mathscr{L} of $\mathscr{M}(X)$ is a finite holomorphic map $f: \widetilde{X} \rightarrow X$ such that for every Stein open U of X the ring $\Gamma\left(f^{-1} U, \mathscr{O}_{\tilde{X}}\right)$ is the integral closure of $\Gamma\left(U, \mathscr{O}_{X}\right)$ in $\mathscr{L} \otimes_{\mathscr{M}}(X) \mathscr{M}(U)$, where $\mathscr{M}(U)$ is the field of meromorphic functions on U.) The name comes from the fact that \widetilde{X} is the normalization of the graph $\Gamma_{\psi} \subset X \times \mathbb{P}^{1}$ of the function $\psi=$ $\sqrt[n]{\varphi}$, a many-valued function on X that becomes single-valued on \tilde{X}. Locally, the normalization is uniquely defined by D. By definition $f^{*} D=\operatorname{div}\left(f^{*} \varphi\right)=\operatorname{div}\left(\psi^{n}\right)=$ $n \operatorname{div}(\psi)$. The irreducibility of \widetilde{X} comes from the irreducibility of $x^{n}-\varphi$ over \mathscr{R}. By construction f is ramified only over components D_{i} of $D=\sum d_{i} D_{i}$ and has ramification multiplicity$$
m_{i}=\operatorname{mult}_{D_{i}}(f)=\frac{n}{\operatorname{hcf}\left(d_{i}, n\right)}
$$

along D_{i}. The cover f is called taking the nth root of D. Of especial interest is the case when $n=\operatorname{lcm}\left(d_{i}\right)$ (in order for the l.c.m. to exist in the analytic case, we must assume that D is finite, which holds in a neighborhood of any compact subset of X). In this case $m_{i}=n /\left|d_{i}\right|$ for $d_{i} \neq 0$, hence

$$
\frac{1}{n} f^{*} D=\sum \operatorname{Sgn}\left(d_{i}\right) f^{-1} D_{i}
$$

In particular, if D is effective then $(1 / n) f^{*} D$ is a principal reduced divisor.

2.4. Examples of cyclic covers.

(2.4.1) Suppose that $K+B$ is a \log divisor, not necessarily log canonical, with boundary B of index n such that $n(K+B) \sim 0$ is linearly 0 on X. The corresponding finite cyclic cover $f: \widetilde{X} \rightarrow X$ of degree n is ramified only over the components D_{i} of B, and $b_{i}=k_{i} / m_{i}$ is a proper fraction, with $k_{i} \leq m_{i}$ and m_{i} the multiplicity of f at D_{i}. Indeed,

$$
\operatorname{mult}_{D_{i}}(f)=\frac{n}{\operatorname{hcf}\left(n k_{i} / m_{i}, n\right)}=\frac{n m_{i}}{\operatorname{hcf}\left(n k_{i}, n m_{i}\right)}=\frac{m_{i}}{\operatorname{hcf}\left(k_{i}, m_{i}\right)}=m_{i}
$$

By (2.1.1), $B_{\widetilde{X}}$ is a boundary if and only if $b_{i}=1$ or $\left(m_{i}-1\right) / m_{i}$ for some natural number m_{i}, and the boundary $B_{\widetilde{X}}=f^{-1}\lfloor B\rfloor$ is reduced in this case. This f is the index 1 cover of the log divisor $K+B$. By Corollary 2.2, for such covers the divisor $K_{\widetilde{X}}+B_{\widetilde{X}}$ is \log canonical (or purely \log terminal) if and only if the same holds for $K+B$. However, by construction $K_{\tilde{X}}+B_{\tilde{X}}$ has index 1. The divisor $K+B$ is purely \log terminal and $b_{i}=\left(m_{i}-1\right) / m_{i}$ if and only if $B_{\widetilde{X}}=0$ and $K_{\widetilde{X}}$ is canonical. The following two particular cases are of special interest.
(2.4.2) Suppose that $K+B$ is a \log canonical divisor of index 2 for which $2(K+B)$ is linearly 0 . Then $B_{\tilde{X}}=f^{-1}\lfloor B\rfloor$ is a boundary and $K_{\tilde{X}}+B_{\tilde{X}}$ is \log canonical of index 1 . If moreover $K+B$ is \log terminal and $\lfloor B\rfloor=0$ then $B_{\tilde{x}}=0$ and $K_{\tilde{X}}$ is canonical, that is, in this case \tilde{X} is Gorenstein with canonical singularities.
(2.4.3) Suppose that X is \mathbb{Q}-Gorenstein, $B=0$, and K has index n. Then a cyclic cover $f: \widetilde{U} \rightarrow U$ is defined over a suitable neighborhood U of any point of \widetilde{X}, known as the index 1 cover (see [20], (1.9)). Here f is etale in codimension 1 , and K_{U} is log canonical or log terminal if and only if $K_{\widetilde{U}}$ is. But by construction $K_{\widetilde{U}}$ has index 1 and $K_{\widetilde{U}}$ is log terminal if and only if it is canonical, or by [8], $0-2-16$, if and only if it is rational and Gorenstein. In particular this allows us to reduce the study of log terminal singularities to the case of canonical singularities of index 1. This approach to the study of singularities, introduced by M. Reid ([20], (1.9)) and independently by J. Wahl, is called the covering trick.
(2.4.4) Suppose now that $f: X \rightarrow Z$ is a proper morphism, and the boundary B is a reduced LSEPD divisor, that is, locally over Z, there is an effective primitive principal divisor $D=\sum d_{i} D_{i}$ with support B. Then according to the construction, locally over Z there is a finite cyclic cover $\pi: \widetilde{X} \rightarrow X$ of degree $n=1 \mathrm{~cm}\left\{d_{i}\right\}$, ramified only over components of B, and such that, locally over $Z, \pi^{-1} B$ is a reduced principal divisor. By Corollary 2.2 , under such a cover the log canonical (or purely \log terminal) property of $K+B$ is preserved and the index of $K_{\tilde{X}}+\pi^{-1} B=$ $\pi^{*}(K+B)$ divides that of $K+B$.

The covering trick is also used in the construction of flips (see [7], (8.5), and [16], (0.4.4)). Its use is based essentially on the equivariance of flips. Let $\tilde{f}: \tilde{X} \rightarrow X$ be a finite cover and $g: X \rightarrow Z$ a birational contraction. Then in the category of normal varieties or complex spaces, \widetilde{f} is obtained as the pullback

of a finite cover $f: \tilde{Z} \rightarrow Z$, the normalization of Z in a finite extension $\widetilde{\mathscr{R}} / \mathscr{R}$, where \mathscr{R} and $\widetilde{\mathscr{R}}$ are the rational (meromorphic) function fields of X and \widetilde{X} respectively. Note that the rational (meromorphic) function field of Z or any other modification of X is just \mathscr{R}. The pullback \tilde{g} is also a birational contraction, and is small if g is.
2.5. Lemma. The flip of g with respect to a divisor D exists if and only if the flip of the birational contraction \widetilde{g} with respect to $\widetilde{f}^{*} D$ exists.
Proof. Suppose first that a flip $t: X \rightarrow X^{+}$exists. Then it has a pullback

where $\tilde{f}^{+}: \tilde{X}^{+} \rightarrow X^{+}$is the normalization of X^{+}in the function field $\tilde{\mathscr{R}}$. Let $\tilde{g}^{+}: \widetilde{X}^{+} \rightarrow \tilde{Z}$ be the pullback of the birational contraction $g^{+}: X^{+} \rightarrow Z$. Since \tilde{Z} is finite over Z and \widetilde{X}^{+}finite over X^{+}, it follows that \widetilde{g}^{+}is a small contraction,
and $\left(\tilde{f}^{*} D\right)^{+}=\left(\tilde{f}^{+}\right)^{*} D^{+}$is ample relative to \tilde{g}^{+}. Hence \tilde{t} is a flip of \tilde{g} with respect to $\widetilde{f}{ }^{*} D$.

Conversely, suppose that a flip \tilde{t} is given. By the above, after normalizing \tilde{f} in the sense of Galois theory, which corresponds to the normal closure of $\overline{\mathscr{R}} / \mathscr{R}$, we can assume that \tilde{f} is a Galois cover with Galois group G. Then the divisor $\tilde{f}^{*} D$ is invariant under G. Hence by equivariance of the flip \tilde{t}, G acts biregularly (in the analytic case, biholomorphically) on \widetilde{X}^{+}, and the diagram

$$
\begin{array}{rlr}
\tilde{X} & \xrightarrow{\tilde{t}} \tilde{X}^{+} \\
\tilde{f} \downarrow & \\
X &
\end{array}
$$

can be completed to a pullback (2.5.1), where $\tilde{f}^{+}: \widetilde{X}^{+} \rightarrow X^{+}=\widetilde{X}^{+} / G$ is obtained by taking the quotient by the action of G. It is not hard to check that the modification X^{+}obtained in this way is the flip with respect to D. Q.E.D.
2.6. Proposition. Flip of Type I. Suppose that X is a 3-fold, $f: X \rightarrow Z$ a birational contraction, and $K+B$ a log divisor such that
(i) $K+B$ is nonpositive relative to f;
(ii) the boundary B is a reduced LSEPD divisor and contains the exceptional of f;
(iii) X is nonsingular outside B.

Then the flip of f relative to $K+B$ exists.
By the eventual freedom theorem ([8], 3-1-2), in order to ensure that the boundary is LSEPD, both here and in Propositions 2.7-8 below, it is enough to assume it is numerically LSEPD.

Proof. Since the construction of a flip is local in nature, we can restrict to a neighborhood of a fiber of f, and by the above, after contracting curves on which $K+B$ is numerically 0 if necessary, we can assume that the birational contraction f is projective with $K+B$ antiample relative to f (compare [25], Proposition 2.3). By the semistable reduction theorem (see [9], and [Shokurov]), after possibly shrinking X to a suitable neighborhood of the contracted fiber, there exists a finite cover $g: \widetilde{X} \rightarrow X$, ramified only over B, on which the boundary $g^{-1} B$ is semistable (as in Example 1.8). Hence by Corollary 2.2, $K_{\tilde{X}}+g^{-1} B=g^{*}(K+B)$ is \log canonical, and by (i) is nonpositive relative to the pulled-back contraction $\tilde{f}: \tilde{X} \rightarrow \tilde{Z}$. Then by Example 1.8 there exists a flip of \tilde{f} with respect to $\tilde{g}^{*}(K+B)$, so that descending by Lemma 2.5 we get the required flip of f. Q.E.D.
2.7. Proposition. Flip of Type II. Suppose that X is a 3-fold, $f: X \rightarrow Z$ a birational contraction, and $K+B$ a log divisor such that
(i) $K+B$ is numerically 0 relative to f;
(ii) the boundary B is a reduced LSEPD divisor,
(iii) X has log terminal singularities outside B.

Then the flip of f relative to any \mathbb{Q}-divisor exists.
Proof. Again we can restrict to a neighborhood of a fiber of f. By the theorem on eventual freedom and (i)-(iii) it follows that $K+B$ is linearly 0 relative to f, that is, $K+B$ descends relative to f as a \mathbb{Q}-Cartier divisor. Thus it is enough to consider the case that f is the identity. By (2.4.1), (2.4.3) outside B, and Lemma 2.5 , the assertion reduces to the case that $K+B$ has index 1 ; then in (iii), log terminal
is replaced by canonical singularities outside B. In the same way, by (2.4.4) we can also assume that B is a reduced Cartier divisor. Then K is Gorenstein and has canonical singularities by monotonicity (1.3.3). Hence the required flip exists by Kawamata ([7], (6.1)) or Kollár's version ([11], (6.6)). Q.E.D.
2.8. Proposition. Flip of Type III. Suppose that X is a 3-fold, $f: X \rightarrow Z$ a birational contraction, and $K+B$ a log divisor such that
(i) $K+B$ has index 2 ;
(ii) the reduced part of the boundary $S=\lfloor B\rfloor$ is $L S E P D$;
(iii) $K+B$ is numerically 0 relative to \bar{f};
(iv) $K+B$ has log terminal singularities outside $S=\lfloor B\rfloor$.

Then the flip of f relative to any \mathbb{Q}-divisor exists.
Proof. As in the preceding proof we can restrict to the local assertion and assume that f is the identity and $K+B$ has index 1 or 2 . By Proposition 2.7, I need only consider the case of index 2 . Then by (2.4.2) and Lemma 2.5, after making a double cover, the existence of the required flip again reduces to a flip of Type II. Here under the conditions (ii) and (iv) the reduced part of the boundary $S=\lfloor B\rfloor$ is replaced by the full boundary B, and \log terminal in (iv) by canonical outside B. Q.E.D.
2.9. Proposition. Flip of Type IV. Suppose that X is a 3-fold, $f: X \rightarrow Z$ a birational contraction, and $K+B$ a log divisor such that
(i) $K+B$ is purely log terminal and of index 2 ;
(ii) $K+B$ is numerically 0 relative to f;
(iii) the components of $\lfloor B\rfloor$ are not exceptional relative to f.

Then the flip of f relative to any \mathbb{Q}-divisor exists.
Proof. As above, we can restrict to the local assertion and assume that f is the identity. To prove that $K+B$ descends as a \mathbb{Q}-Cartier divisor we must apply the eventual freedom theorem of [8], 3-1-2, having first, as a preliminary step, made a extension of the boundary B by adding to it $\varepsilon f^{*} H$ for some small $\varepsilon>0$, where H is a hyperplane section such that $B+f^{*} H$ is an LSEPD divisor. To construct H, we take a general hyperplane section H^{\prime} of Z through $f(\lfloor B\rfloor)$. Then it is enough to take H to be a general hyperplane section through $H^{\prime}-f(\lfloor B\rfloor)$.

If $S=\lfloor B\rfloor$ has a reduced component, it can be replaced in the boundary B by the divisor $\frac{1}{2} D$, where D is a general element of the linear system $|2 S|$. Indeed, for any fixed resolution $g: Y \rightarrow X$,

$$
g^{*}\left(\frac{1}{2} D-S\right)=g^{-1}\left(\frac{1}{2} D-S\right)-\sum e_{i} E_{i}
$$

where all $e_{i} \geq 0$, since every function in $\mathscr{O}(2 S)$, possibly after adding a constant, does not have a 0 along the exceptional divisors E_{i}. Hence the log discrepancy of $K+B$ with the new boundary differs by a contribution e_{i} at E_{i}, and is again >0. Now D is reduced by Bertini's theorem, and hence the new \log divisor $K+B$ is purely \log terminal and $\lfloor B\rfloor=0$. Since $2(K+B)$ is linearly 0 , the existence of the flip again reduces by Example 2.4.2 to [7], (6.1), or to [11], (6.6). Q.E.D.

The construction of flips of type IV may at first sight seem to be a inessential generalization of Kawamata's sufficient condition ([7], §8) for the existence of flips. However, these flips plays an important role in what follows.

§3. AdJunction of log divisors

Consider a prime Weil divisor $S \subset X$ and its normalization $\nu: S^{\nu} \rightarrow S \subset X$. For an arbitrary divisor D on X whose support does not contain S, the restriction
$D_{\mid S^{\nu}}=\nu^{*} D$ can be defined as a divisor on S^{ν} as follows. Taking general hypersurface sections reduces the definition to the case when X is a surface; let $f: Y \rightarrow X$ be a resolution of singularities of X, which also resolves the singularities of S, and hence normalizes S. Then the numerical pullback of D is defined (following Mumford) by $f^{*} D=f^{-1} D+E$, where E is the exceptional \mathbb{Q}-divisor for f determined by $f^{*} D \cdot E_{i}=\left(f^{-1} D+E\right) \cdot E_{i}=0$ for all exceptional curves $E_{i}\left(f^{-1} D\right.$ is the birational transform). The existence and uniqueness of E follows from the fact that the intersection matrix $\left\{E_{i} E_{j}\right\}$ is negative definite; this also implies that E is effective if D is (by negativity of a contraction, 1.1).

By construction, the normalization ν can be identified with f on $S^{\nu}=f^{-1} S$. Hence it is natural to set $D_{\mid S^{\nu}}=f^{*} D_{\mid S^{\nu}}$. It is easy to check that the map ${ }_{\mid S^{\nu}}=\nu^{*}$ is well defined, and is a partially defined homomorphism of Weil divisors of X to those of S^{ν}, and on \mathbb{R}-Cartier divisor is the \mathbb{R}-linear extension of the pullback of Cartier divisors under ν. In the case of \log divisors, we have the pullback $f^{*}(K+S+D)=$ $K_{Y}+S^{\nu}+D^{\prime}$, where $D^{\prime}=f^{-1} D+E$ is defined by the equations $\left(K_{Y}+S^{\nu}+D^{\prime}\right) \cdot E_{i}=0$ on the exceptional components E_{i}. We call the restriction $D_{\mid S^{\nu}}^{\prime}$ the different of D on S^{ν}, and denote it by $D_{S^{\nu}}$. One can check that the different does not depend on the choice of the canonical divisor K or on the choice of the resolution f, and that its definition extends naturally to higher dimensions. (${ }^{5}$)
3.1. Adjunction formula. If S is not contained in $\operatorname{Supp} D$, then

$$
K_{S^{\nu}}+D_{S^{v}}=(K+S+D)_{\mid S^{\nu}}
$$

for a suitable canonical divisor $K_{S^{\nu}}$. In the general case, this should be understood as equality of linear equivalence classes: (See (10.6).)
Proof. Again it is enough to prove the formula for surfaces. But then, by the adjunction formula in the nonsingular case and the construction just discussed,

$$
\begin{aligned}
K_{S^{\nu}}+D_{S^{\nu}} & =\left(K_{Y}+S^{\nu}+D^{\prime}\right)_{\mid S^{\nu}} \\
& =f^{*}(K+S+D)_{\mid S^{\nu}}=(K+S+D)_{\mid S^{\nu}} . \text { Q.E.D. }
\end{aligned}
$$

Differents have certain remarkable properties when $D=B$ is a boundary, or a divisor of the following more general type. A subboundary is a divisor $D=\sum d_{i} D_{i}$ with $d_{i} \leq 1$; thus effective subboundaries are boundaries. If we write the definition of \log discrepancy for a birational contraction $f: Y \rightarrow X$ in the form

$$
f^{*}(K+B)=K_{Y}+B^{Y},
$$

where $B^{Y}=B_{Y}-\sum a_{i} E_{i}$, then the condition $a_{i} \geq 0$ for $K+B$ to be log canonical means that B^{Y} is a subboundary. Similarly, a \log divisor $K+D$ is log canonical if it is \mathbb{R}-Cartier and for any extraction f the divisor D^{Y} defined in the same way is a subboundary. In particular, D itself is a subboundary. One sees easily that it is sufficient that this condition should hold for a resolution of singularities of f on which all the exceptional divisors E_{i} and irreducible components of $f^{-1} D$ are nonsingular and cross normally. If for one such resolution D^{Y} is a subboundary, and has multiplicities <1 for all exceptional divisors of f, then $K+D$ is log terminal. In a similar way, we transfer to the case of subboundary the definitions of strictly, purely, weakly and divisorially log terminal. By what we have said, for genuine boundaries the given definitions are equivalent to the usual notions of \log canonical. \log terminal and the various flavors of \log terminal. Note also the following obvious

[^5]fact: if $K+D$ is \mathbb{R}-Cartier, then for any extraction $f, K+D$ is \log canonical if and only if $K_{Y}+D^{Y}$ is.

3.2. Properties of the different.

(3.2.1) Semiadditivity. $D_{S^{\nu}}=0_{S^{\nu}}+D_{\mid S^{\nu}}$.
(3.2.2) Effectivity. $D_{S^{\nu}} \geq 0$ if $D \geq 0$.
(3.2.3) Log canonical (divisorially log terminal). If $K+S+D$ is \log canonical (divisorially \log terminal) then the divisor $K_{S^{\nu}}+D_{S^{\nu}}$ is also \log canonical (respectively divisorially \log terminal). If moreover D is a boundary, then $D_{S^{\nu}}$ is also a boundary. If moreover D is a boundary and $K+S+D$ is purely \log terminal, then $D_{S^{\nu}}$ is a boundary and $K_{S^{\nu}}+D_{S^{\nu}}$ is purely log terminal with $\left\lfloor D_{S^{\nu}}\right\rfloor=0$.

Note that when X is a 3 -fold (3.2.3) holds for weakly and strictly \log terminal, since by Example 1.6 all the flavors of log terminal coincide on a surface. For purely log terminal $K+S+D(3.2 .2-3)$ together with the necessary definitions generalize to the case that S is a reduced, but possibly reducible divisor (compare Lemma 3.6).

Proof. All the assertions are local, and the first two reduce to the surface case. By the additivity of f^{*} we get

$$
f^{*}(K+S+D)=f^{*}(K+S)+f^{*} D=K_{Y}+S^{\nu}+0^{\prime}+f^{*} D
$$

(where 0^{\prime} is defined as in the paragraph before adjunction formula 3.1 by $\left.f^{*}(K+S)=K_{Y}+S^{\nu}+0^{\prime}\right)$, hence

$$
D_{S^{\nu}}=0_{\mid S^{\nu}}^{\prime}+f^{*} D_{\mid S^{\nu}}=0_{S^{\nu}}+D_{\mid S^{\nu}}
$$

Hence it is enough to prove effectivity (3.2.2) for $D=0$. If we take f to be a minimal resolution of singularities of X and S, then $0^{\prime} \geq 0$ by negativity of a contraction, 1.1 , since $K_{Y}+S^{\nu}$ is nef on exceptional curves of this resolution. Indeed, for (-1)-curves E_{i} we have $K_{Y} E_{i}=-1$ and $S^{\nu} E_{i} \geq 2$, and for the other exceptional curves $K_{Y} E_{i} \geq 0$.

We have to check the final property in complete generality. By the adjunction formula $K_{S^{\nu}}+D_{S^{\nu}}$ is an \mathbb{R}-Cartier divisor on S^{ν}. To compute the log discrepancies, consider the resolution of singularities $f: Y \rightarrow X$ from the definition of $K+S+D$ \log canonical (respectively divisorially \log terminal). In particular, $f^{-1} S$ is then nonsingular, so that we have the commutative diagram

where $g: f^{-1} S \rightarrow S^{\nu}$ is a resolution of singularities of S^{ν}. By definition of a log canonical divisor,

$$
K_{Y}+(S+D)^{Y}=f^{*}(K+S+D)
$$

where $(S+D)^{Y}$ is a subboundary (and in the log terminal case its multiplicities for the exceptional components of f are <1). By the adjunction formula

$$
\begin{aligned}
& K_{f^{-1} S}+\left((S+D)^{Y}-f^{-1} S\right)_{\mid f^{-1} S}=f^{*}(K+S+D) \mid f^{-1} S \\
& \quad=g^{*}(K+S+D) \mid S^{\nu}=g^{*}\left(K_{S^{\nu}}+D_{S^{\nu}}\right) .
\end{aligned}
$$

Thus

$$
D_{S^{\nu}}=g\left(\left((S+D)^{Y}-f^{-1} S\right) \mid f^{-1} S\right) \quad \text { and } \quad\left(D_{S^{\nu}}\right)^{f^{-1} S}=\left((S+D)^{Y}-f^{-1} S\right)_{\mid f^{-1} S}
$$

But $f^{-1} S$ appears in $(S+D)^{Y}$ with multiplicity 1. Hence by the preceding relation we have

$$
K_{f^{-1} S}+\left(D_{S^{\nu}}\right)^{f^{-1} S}=g^{*}\left(K_{S^{\nu}}+D_{S^{\nu}}\right)
$$

where $\left(D_{S^{\nu}}\right)^{f^{-1} S}$ is a subboundary: all its multiplicities are ≤ 1 (and, in the log terminal case, <1 for the multiplicities of the intersections with exceptional divisors for f, and moreover these intersections contain all the exceptional set of $f^{-1} S$ over S^{ν} and after an additional blowup the intersection of the exceptional set of $f^{-1} S$ becomes divisorial over S^{ν}), by normal crossings of $f^{-1} S$ with the components of the divisor $(S+D)^{Y}-f^{-1} S$. But this is the definition of $K_{S^{\nu}}+D_{S^{\nu}}$ being \log canonical (respectively, divisorially log terminal). It remains only to note that the fact that the components of $\left(D_{S^{\nu}}\right)^{f^{-1} S}$ and of the exceptional divisors of the form $E_{i} \mid f^{-1} S$ are nonsingular, and that they cross normally, follows from the same requirements for the resolution f. The remaining assertions now follow from (3.2.2). Q.E.D.

The following stands out among the standard problems concerning log models:
3.3. Inversion of adjunction (inversion of the \log canonical and \log terminal properties). Does the implication (3.2.3) between the log canonical (respectively log terminal) conditions for $K+S+D$ and $K_{S^{\nu}}+D_{S^{\nu}}$ have a converse?

Let $D=\sum d_{i} D_{i}$ be an effective divisor with $S \not \subset \operatorname{Supp} D$ such that
(i) $K+S+D$ is \mathbb{R}-Cartier;
(ii) $K_{S^{\nu}}+D_{S^{\nu}}$ is \log canonical (respectively \log terminal and $\left\lfloor D_{S^{\nu}}\right\rfloor=0$, or divisorially log terminal and normal crossings of reduced components of $D_{S^{v}}$ extend generically in a neighborhood of S).

The problem of inversion of adjunction asks whether (i) and (ii) imply that $K+$ $S+D$ is \log canonical (respectively purely log terminal and $\lfloor D\rfloor=0$, or divisorially \log terminal) in a neighborhood of S, and in particular $S+D$ is a boundary.

Here the condition on extending normal crossings of $D_{S^{\nu}}$ in the third case of (ii) means the following: whenever $\cap D_{i}^{\prime} \subset S^{\nu}$ is a generically normal intersection of k reduced components $D_{i}^{\prime} \leq D_{S^{\nu}}$, then we require that in a neighborhood of S, there exist k reduced divisors $D_{i} \leq D$ extending the D_{i}^{\prime} and having normal crossing with S :

$$
D_{i}^{\prime}=D_{i} \mid S^{\nu} \quad \text { and } \quad \bigcap D_{i}^{\prime}=S \cap \bigcap D_{i}
$$

with generic normal crossings at general points, which includes the normality of S at the given general points. In particular, this includes the requirement that each component of $D_{S^{\nu}}$ with multiplicity 1 is generically the normal intersection of S and a component of $\lfloor D\rfloor$. Note that the inversion problem is certainly false in the \log terminal version if we do not assume the above restriction (see Corollary 3.16 , and Examples 3.5 and 3.17).

Our results on this problem for 3-folds are contained in Proposition 5.13 and Corollary 9.5.
3.4. Conditional inversion of adjunction. Suppose that, in addition to the assumptions of $3.3, X$ locally has a weakly \log canonical model for $K+S+B$ in a neighborhood of any point of S, where $B=\sum \min \left\{1, d_{i}\right\} D_{i}$ (for any boundary B). Then the inversion problem 3.3 of the log canonical (respectively log terminal) conditions has a positive answer for $K+S+D$ (for any D).

Proof. The required assertion is local. Hence in the arguments that follow we can restrict to a neighborhood of a point $P \in S$. Take the boundary $B=\sum \min \left\{1, d_{i}\right\} D_{i}$. Then by the assumptions, there exists a weakly \log canonical model $f: Y \rightarrow X$ for $K+S+B$. By (1.5.7), negativity of a contraction, 1.1, and the numerical nonpositivity relative to f in a neighborhood of $f^{-1} P$, we get that

$$
E=(S+D)^{Y}-(S+B)_{Y}=f^{*}(K+S+D)-\left(K_{Y}+f^{-1} S+B_{Y}\right)
$$

is effective. Moreover, either it is zero, or some exceptional divisor E meeting $f^{-1} P$ appears in it with positive multiplicity. In the first case, $K+S+D \log$ canonical in a neighborhood of P follows from $K_{Y}+f^{-1} S+B_{Y} \log$ canonical.

The second case is impossible. We prove this below using an almost obvious property of the different (see Corollary 3.11 and the end of the proof after it). On the way, we establish other properties of the different that we need in our subsequent treatment.
3.5. Example. Let $P \in X$ be a surface singularity, $P \in S \subset X$ a curve through P, and suppose that $f: Y \rightarrow X$ is a resolution of $P \in X$ having a unique exceptional curve $E \cong \mathbb{P}^{1}$ with $m=-E^{2}$ that intersects $f^{-1} S$ normally in one point. Then $P \in$ S is a nonsingular point, the divisor $K_{X}+S$ is \log terminal at P, and the different 0_{S} at P has multiplicity $(m-1) / m$. If moreover there is another nonsingular curve S^{\prime} through P whose birational transform $f^{-1} S^{\prime}$ meets E transversally in one point and is disjoint from $f^{-1} S$, then $K+S+S^{\prime}$ is log canonical at $P, S_{S}^{\prime}=1$, and by (3.16) below $K+S+S^{\prime}$ is log terminal only if $m=1$. In the example just described,

$$
\left(P \in S+S^{\prime} \subset X\right) \cong\left(0 \in(x y=0) \subset \mathbb{A}^{2}\right) /(\mathbb{Z} / m)
$$

where \mathbb{Z} / m acts by $x, y \mapsto \varepsilon x, \varepsilon y$, with ε a primitive m th root of 1 .
In the general case we have a similar result.
3.6. Lemma. If $K+B$ is purely log terminal, then the reduced part of the boundary $\lfloor B\rfloor$ is normal. In particular, there are no selfintersections and the connected components of $\lfloor B\rfloor$ are irreducible.
Proof. Let $f: Y \rightarrow X$ be the resolution of singularities of X from the definition of $K+B \log$ terminal. Then f is proper,

$$
-f^{*}(K+B)=-K_{Y}-B_{Y}+\sum a_{i} E_{i}
$$

is big relative to f, and all the components of the fractional divisors $\left\{-f^{*}(K+B)\right\}=\left\{-B_{Y}+\sum a_{i} E_{i}\right\}$ cross normally. Hence by the Kawamata-Viehweg vanishing theorem ([8], 1-2-3),

$$
\begin{aligned}
R^{1} f_{*} \mathscr{O}_{Y}\left(-f^{-1}(\lfloor B\rfloor)+E\right) & =R^{1} f_{*} \mathscr{O}_{Y}\left(\left\lceil-B_{Y}+\sum a_{i} E_{i}\right\rceil\right) \\
& =R^{1} f_{*} \mathscr{O}_{Y}\left(K_{Y}+\left\lceil-f^{*}(K+B)\right\rceil\right)=0,
\end{aligned}
$$

where E is an effective divisor, and the first equality holds by the \log terminal assumption: all $a_{i}>0$. Note that by the pure \log terminal assumption the irreducible components of $f^{-1}(\lfloor B\rfloor)$ are disjoint. Now applying the direct image functor f_{*} to the short exact sequence

$$
0 \rightarrow \mathscr{O}_{Y}\left(-f^{-1}(\lfloor B\rfloor)+E\right) \rightarrow \mathscr{O}_{Y}(E) \rightarrow \mathscr{O}_{f^{-1}(\lfloor B\rfloor)}\left(E_{\mid f^{-1}(\lfloor B\rfloor)}\right) \rightarrow 0
$$

gives

$$
0 \rightarrow f_{*} \mathscr{O}_{Y}\left(-f^{-1}(\lfloor B\rfloor)+E\right) \rightarrow f_{*} \mathscr{O}_{Y}(E) \rightarrow f_{*} \mathscr{O}_{f^{-1}(\lfloor B\rfloor)}\left(E_{\mid f^{-1}(\lfloor B\rfloor)}\right) \rightarrow 0
$$

By normal crossings and (3.2.3) the multiplicities of $\{B\}_{[B]^{\nu}}$ are equal to appropriate multiplicities of the subboundary $B^{Y}=B_{Y}-\sum a_{i} E_{i}$, and by (3.2.2) are ≥ 0. In other words, $a_{i} \leq 1$ when $E_{i \mid f^{-1}(\lfloor B\rfloor)}$ is not exceptional on $f^{-1}(\lfloor B\rfloor)$. Hence the support of the divisor E and its restriction $E_{\mid \mathcal{F}^{-1}(\lfloor B\rfloor)}$ are exceptional for f. From this by negativity of a contraction, 1.1, it follows that for any open subset $U \subset X$ we have

$$
\begin{aligned}
\Gamma\left(f^{-1} U, \mathscr{O}_{Y}\left(-f^{-1}(\lfloor B\rfloor)+E\right)\right) & =\Gamma\left(f^{-1} U, \mathscr{O}_{Y}\left(-f^{-1}(\lfloor B\rfloor)\right) ;\right. \\
\Gamma\left(f^{-1} U, \mathscr{O}_{Y}(E)\right. & =\Gamma\left(f^{-1} U, \mathscr{O}_{Y}\right) ;
\end{aligned}
$$

and

$$
\left.\Gamma\left(f^{-1}(\lfloor B\rfloor) \cap f^{-1} U, \mathscr{O}_{f^{-1}([B\rfloor)}\left(E_{\mid f^{-1}(\lfloor B\rfloor)}\right)\right)=\Gamma\left(f^{-1}(\lfloor B\rfloor) \cap f^{-1} U, \mathscr{O}_{f^{-1}([B\rfloor)}\right)\right)
$$

Thus we can omit E in the final exact sequence, to get the exact sequence

$$
0 \rightarrow \mathscr{O}_{X}(-S) \rightarrow \mathscr{O}_{X} \rightarrow f_{*} \mathscr{O}_{f^{-1}([B])} \rightarrow 0 .
$$

Hence $\mathscr{O}_{S}=f_{*} \mathscr{O}_{f^{-1} S}$, that is, the irreducible components of S are normal and disjoint. In the analytic case by [18], (3.6), the arguments we have given work over a neighborhood of any point X, which is enough to verify what we want. Q.E.D.
3.7. Corollary. If $K+S+B$ is strictly \log terminal, and S in a neighborhood of P is nonsingular and does not pass through codimension 2 singular points of X, then the index of S at P is 1 and $P \in X$ is nonsingular.
Proof. By monotonicity (1.3.3) we can assume that $K+S$ is purely log terminal, and it is enough to check that the index of S at P is 1. In the opposite case, by (2.4.4) there is a finite cover $\pi: Y \rightarrow X$ ramified over P and unramified in codimension 1 near P on S. Moreover, $K_{Y}+\pi^{-1} S$ is purely log terminal, so that by Lemma 3.6, $\pi^{-1} S$ is normal. Then since $P \in S$ nonsingular, the cover π is locally trivial in the analytic sense over P on S, and is hence unramified over P on X. Q.E.D.
3.8. Corollary. If $K+B$ is divisorially log terminal and all the irreducible components of B are \mathbb{Q}-Cartier, then these components are normal and cross normally. In particular this holds if $K+B$ is strictly log terminal.

The condition that a divisor has normal crossing includes that its components are normal varieties (or analytic spaces) and cross normally at generic points of intersection of k components. Hence by the corollary, exceptional divisors with log discrepancy 0 lie over the intersections of the reduced part of the boundary. For example, in the 3 -fold case components with $0 \log$ discrepancy coefficients for $K+B$ lie over triple points and double curves of $\lfloor B\rfloor$; in the final case it is assumed that the image of the exceptional divisor is a component of such a double curve. From this it follows that the restriction of $K+B$ to a reduced component is purely \log terminal outside triple points (in the higher-dimensional case, outside triple and higher order crossings).
Proof. By monotonicity (1.3.3) and Lemma 3.6 we get that the irreducible components S of the reduced part of the boundary B are normal. By (3.2.3) the restriction $(K+B)_{\mid S}$ is divisorially log terminal, and by the proof of (3.2.3) generic normal crossings extend in a neighborhood of S. Hence to do an induction on the dimension, it is enough to check that $S_{\mid S}^{\prime}$ is normal for every irreducible component $S^{\prime} \neq S$ of the reduced part of the boundary B; we can restrict ourselves to a boundary with just two such components $\lfloor B\rfloor=S+S^{\prime}$. In this case, since generic normal crossings
extend in a neighborhood of S, the log divisor $(K+B)_{\mid S}$ is purely \log terminal and the reduced part of its boundary coincides with $S \cap S^{\prime}$. Hence by Lemma 3.6 this intersection is normal and its connected components are disjoint. Q.E.D.

We say that $K+B$ is log terminal in codimension 2 if it is \log terminal along any codimension 2 subvariety $W \subset X$ (in the analytic case, analytic subspace). Here and in what follows, along means at the generic point.
3.9. Proposition (Properties of the different). Suppose that $K+S+B$ is \log terminal in codimension 2. Then
(3.9.1) for a prime divisor $P \subset S$ the multiplicity of P in the different 0_{S} is of the form $(m-1) / m$, where m is a natural number, the index of $K+S$ along P;
(3.9.2) X is nonsingular along P if and only if $m=1$;
(3.9.3) the index of any integral divisor along P divides m.

By Example 1.6 and Corollary $3.8, S$ is normal at a codimension 1 point P. Thus $S=S^{\nu}$ along P.
Remark. The proposition is elementary, since at a general point of P, by the classification of surface log canonical singularities [Kawamata], $S \subset X$ is transversally ($x=$ $0) \subset \mathbb{A}^{2}$ divided by the action of \mathbb{Z} / m by $(x, y) \mapsto\left(\varepsilon x, \varepsilon^{a} y\right)$ with $\operatorname{hcf}(m, a)=1$. What follows is contained in a more explicit form in Hirzebruch's continued fractions treatment of these quotient singularities, see for example [Oda], (1.6), and [Utah], §3. Compare (5.2.3) below.
Proof. All the assertions are local, and taking general hypersurface sections reduces them to the case of X a surface. Let $f: Y \rightarrow X$ be a minimal resolution of singularities in a neighborhood of $P \in S \subset X$. By Example 1.6, and monotonicity (1.3.3), since S is irreducible, $K+S$ is purely \log terminal, so that

$$
K_{Y}+f^{-1} S+\sum E_{i}=f^{*}(K+S)+\sum a_{i} E_{i}
$$

where E_{i} are the exceptional curves and all $a_{i}>0$. It is not hard to check that in this case, the curves $f^{-1} S$ and E_{i} are nonsingular, cross normally, and form a chain $f^{-1} S, E_{1}, \ldots, E_{n}$, and $E_{i} \cong \mathbb{P}^{1}$ (see [7], (9.8)). That is,

$$
f^{-1} S \cdot E_{1}=E_{1} \cdot E_{2}=\cdots=E_{n-1} \cdot E_{n}=1
$$

and all other intersection numbers of $f^{-1} S$ and E_{i} are 0 . Thus the multiplicity of P in 0_{S} equals $1-a_{i}$, and we must check that $a_{1}=1 / \mathrm{m}$. Note now that

$$
\left(K_{Y}+f^{-1} S+\sum_{i=1}^{n} E_{i}\right) \cdot E_{j}= \begin{cases}0 & \text { if } 1 \leq j \leq n-1 \\ -1 & \text { if } j=n\end{cases}
$$

Thus the a_{i} can be found by solving the system of linear equations

$$
\left.\begin{array}{rl}
a_{1} E_{1}^{2}+a_{2} & =0 \\
a_{1}+a_{2} E_{2}^{2}+a_{3} & =0 \\
\vdots \\
a_{n-2}+a_{n-1} E_{n-1}^{2}+a_{n} & =0 \\
a_{n-1}+a_{n} E_{n}^{2} & =-1
\end{array}\right\}
$$

Successively expressing $a_{2}, a_{3}, \ldots, a_{n}$ in terms of a_{1} from the first $n-1$ equations, we get that $a_{i}=k_{i} a_{1}$ with integers k_{i}. Then from the final equation $k_{n-1} a_{1}+$
$k_{n} a_{1} E_{n}^{2}=-1$ we get that $a_{1}=1 / m$ with m the integer $m=-k_{n-1}-k_{n} E_{n}{ }^{2}$, hence $a_{i}=k_{i} / m$ (taking $k_{1}=1$). All $a_{i}>0$, and m and k_{i} are natural numbers. Thus m is the smallest natural number for which all the products $m a_{i}$ are integers. It follows from this by [8], 3-2-1, that m is the index of $K+S$ at P.

Since the resolution f is minimal, K_{Y} is nef relative to f, from which by negativity of a contraction 1.1 it follows that all $a_{i}<1$ (see [15], Part 2, and compare Lemma 3.18). Hence if $m=1$ then all the a_{i} are natural, and this is only possible for $n=0$, that is if $P \in S \subset X$ is a nonsingular point of S and of X. The converse follows from the adjunction formula in the nonsingular case, and this proves (3.9.2). The proof of the final assertion can be reduced by the covering trick (2.4.1) to $m=1$, when all integral divisors in a neighborhood of P are Cartier. Q.E.D.

The next result follows at once from (3.9.1) and (3.9.3).
3.10. Corollary. If $K+S$ is log terminal in codimension 2 and $D=\sum d_{i} D_{i}$, then the multiplicity of the different D_{S} at a prime divisor P is given by

$$
p=\frac{m-1}{m}+\sum \frac{k_{i}}{m} d_{i}
$$

where the sum runs over irreducible components D_{i} containing P, and k_{i} are natural numbers such that $D_{i \mid S}$ has multiplicity k_{i} / m at P.

If $K+S+B$ is purely \log terminal, then by (3.2.3) we have the inequality

$$
0 \leq \frac{m-1}{m}+\sum \frac{k_{i}}{m} d_{i}<1
$$

3.11. Corollary. If $K+S+B$ is \log canonical in codimension 2 and $B=\sum b_{i} D_{i}$, then the multiplicity p of the different of B_{S} at a prime divisor P increases compared to the multiplicity b_{i} of an irreducible boundary component D_{i} through P; that is, $b_{i} \leq p$. In particular, if the reduced part of the boundary B passes through P then P is a reduced component of the boundary of B_{S}, and there is a unique prime component of the support of B passing through P.
Proof. We can obviously restrict to the case $b_{i}>0$. Then by monotonicity (1.3.3), property (1.5.7) of an extraction and the existence of a strictly \log terminal model along P for $K+S$ (Example 1.6), we get a purely log terminal model of $K+S$ along P. Hence by Corollary 3.10,

$$
p \geq \frac{m-1}{m}+b_{i} \frac{k_{i}}{m} \geq b_{i} \frac{m-1}{m}+b_{i} \frac{1}{m}=b_{i} . \quad \text { Q.E.D. }
$$

Conclusion of proof of 3.4. In the second case, the support of E is nonempty and by construction is contained in the reduced part of B_{Y}. Moreover $f^{-1} S$ intersects the connected fiber $f^{-1} P$, and it intersects E because E is numerically nonpositive relative to f. The intersection $f^{-1} S \cap \operatorname{Supp} E$ contains a divisor Q on $f^{-1} S$; this is obvious if E is \mathbb{Q}-Cartier, and in the general case one can use rational approximation to arrange that E is \mathbb{Q}-Cartier without changing the support (see just before (1.1)). By Corollary 3.11, the multiplicity of the boundary $\left(B_{Y}\right)_{f^{-i} S}$ along Q is 1 . But then the restriction

$$
\left.\begin{array}{rl}
\left(K_{Y}+f^{-1} S+B_{Y}+E\right)_{\mid f^{-1}} S^{\nu} & =\left(K_{Y}+(S+D)^{Y}\right) \mid f^{-1} S^{\nu} \\
& =f^{*}(K+S+D)_{\mid f^{-1}} S^{\nu}
\end{array}\right)=f_{S}^{*}\left(K_{S^{\nu}}+D_{S^{\nu}}\right)=K_{f^{-1} S^{\nu}}+\left(D_{S^{\nu}}\right)^{f^{-1} S^{\nu}} \text {. }
$$

is not \log canonical, at least along Q, where $f_{S}: f^{-1} S^{\nu} \rightarrow S^{\nu}$ is the map of the normalizations induced by the restriction $f_{\mid f^{-1} S}$. More precisely, $\left(D_{S^{v}}\right)^{f^{-1} S^{\nu}}$ is
not a boundary, since its multiplicity at Q is >1. Thus we get a contradiction to $K_{S^{\nu}}+D_{S^{v}} \log$ canonical. In the case when $K_{S^{\nu}}+D_{S^{\nu}}$ is divisorially log terminal, the divisor $K+S+D$ is at least \log canonical.

If the image M of an exceptional divisor with \log discrepancy 0 passes through P and the log discrepancy over its intersection with S (more precisely, over $\nu^{-1}(M \cap S)$ for $K_{S^{\nu}}+D_{S^{v}}$ in a neighborhood of P) is >0, then by the above $K+S+D+\varepsilon H$ is \log canonical for a general hypersurface through M in a neighborhood of P, because $K_{S^{v}}+(D+\varepsilon H)_{S^{v}}$ is \log terminal. This contradicts the choice of M and H. Hence there is an exceptional divisor for S^{ν} with image M^{\prime} in $\nu^{-1}(M \cap S)$ that passes through P and has \log discrepancy 0 for $K_{S^{v}}+D_{S^{v}}$. Then since the final divisor is divisorially log terminal, since normal crossings extend, and $K+S+D$ is \log canonical, it follows that the boundary $S+D$ is normal at general points of M^{\prime} and the exceptional $0 \log$ discrepancies of $K+S+D$ near these general points lie only over normal crossings, that is, M lands in one of them locally. This proves that $K+S+D$ is divisorially \log terminal. The same arguments work assuming that $K_{S^{u}}+D_{S^{v}}$ is log terminal and $\left\lfloor D_{S^{v}}\right\rfloor=0$. Moreover, in the final case there are no normal crossings, apart from the trivial S, so that $\lfloor D\rfloor=0$ near S. Q.E.D.

We get the next result from conditional inversion 3.4, Example 1.6 and Corollary 3.11 :

3.12. Corollary. The inversion problem 3.3 holds for surfaces.

3.13. Weak inversion of adjunction. In addition to the assumptions of 3.3, suppose that X is \mathbb{Q}-factorial. Then $S+D$ is a boundary in a neighborhood of S; moreover, in the case when $K_{S^{v}}+D_{S^{v}}$ is log terminal and $\left\lfloor D_{S^{v}}\right\rfloor=0$, we have $\lfloor D\rfloor=0$, as follows obviously from Corollary 3.12.
3.14. Definition. In the study of \log divisors $K+D$, an important role is played by the locus of log canonical singularities $\operatorname{LCS}(K+D)$, the union of the images of all divisors with \log discrepancy ≤ 0, that is, the union of components of D with multiplicities ≥ 1 and the images of exceptional divisors with log discrepancy ≤ 0. If X is nonsingular and the support of D consists of nonsingular divisors crossing normally, then $\operatorname{LCS}(K+D)$ is the union of components of D with multiplicities ≥ 1. It is easy to deduce from this that $\operatorname{LCS}(K+D)$ is always a closed subvariety of X (or analytic subspace in the analytic case). $\operatorname{LCS}(K+D)=\varnothing$ for an effective divisor D if and only if $\lfloor D\rfloor=0$ and $K+D$ is purely log terminal.
3.15. Corollary. If D is effective, but $K+S+D$ possibly not log canonical, then the locus of log canonical singularities of $K_{S^{v}}+D_{S^{v}}$ contains the prime divisors P whose image $\nu(P)$ is contained in the support of $\lfloor D\rfloor \cap S$. If moreover X is \mathbb{Q}-factorial then $\operatorname{LCS}\left(K_{S^{v}}+D_{S^{v}}\right)$ contains $\nu^{-1}(\lfloor D\rfloor \cap S)$.
Proof. If the multiplicity of $D_{S^{v}}$ at P is ≤ 1 then the assertion follows along P from Corollaries 3.12 and 3.11. In the opposite case the statement is obvious. Q.E.D.
3.16. Corollary. If D is an effective divisor, then $K+S+D$ is \log canonical in codimension 2 in a neighborhood of S if and only if the different $D_{S^{v}}$ is a boundary; $K+S+D$ is log terminal in codimension 2 in a neighborhood of S if and only in addition every reduced irreducible component P of $D_{S^{\nu}}$ lies on a unique prime component D_{i} of D, and the intersection $S \cap D_{i}$ is normal along P.
Proof. This follows from (3.2.3) and from Corollaries 3.12 and 3.11. To verify that S and D_{i} cross normally along P if $K+S+D$ is log terminal we have to use the fact that it is strictly log terminal in codimension 2 , together with Corollary 3.8. Q.E.D.

From now until the end of $\S 3, X$ is a surface.
3.17. Example. The inversion of adjunction 3.3, proved in Corollary 3.12 in dimension 2 , is useful for checking \log canonical and \log terminal. If the surface X and a curve $S \subset X$ are both nonsingular, then $K+S+B$ is \log canonical (purely log terminal) in a neighborhood of a point $P \in S$ if and only if $(S \cdot B)_{P} \leq 1$ (respectively $\left.(S \cdot B)_{P}<1\right)$, where $(\cdot)_{P}$ is the local intersection number at P. Indeed, by Proposition 3.9 and (3.2.1), in a neighborhood of P

$$
K_{S}+B_{S}=K_{S}+0_{S}+B_{\mid S}=K_{S}+(S \cdot B)_{P}
$$

For example if $B=b D$ with $b \geq 0$, and D is a nonsingular curve having simple tangency to S at P, then $K+B$ is \log canonical (log terminal) in a neighborhood of P if and only if $b \leq 1 / 2$ (respectively $<1 / 2$) ; but by Corollary 3.16 it is not log terminal if $b=1 / 2$.
3.18. Lemma. Suppose that S and S^{\prime} are curves through a point $P \in X$, and that $K+S+S^{\prime}$ is log canonical at P. Then in a neighborhood of P :
(3.18.1) S and S^{\prime} are irreducible and nonsingular.

On a minimal resolution of singularities $f: Y \rightarrow X$, the following hold:
(3.18.2) $\quad f^{-1} S, E_{1}, \ldots, E_{n}, f^{-1} S^{\prime}$ is a chain of nonsingular curves, with $E_{i} \cong$ \mathbb{P}^{1} exceptional curves of f.
(3.18.3) The \log discrepancy coefficients of E_{i} for $K+S+S^{\prime}$ are all equal to 0 ; for $K+S$ they are all contained in $(0,1) \cap \mathbb{Q}$, and for K either they are all contained in $(0,1) \cap \mathbb{Q}$, or $P \in X$ is a Du Val singularity of type A_{n} for some $n \geq 0$, and all are equal to 1 (that is, the (genuine) discrepancy is 0 , the log discrepancy 1).

If $f^{*} S=f^{-1} S+\sum e_{i} E_{i}$ then $e_{i} \in(0,1) \cap \mathbb{Q}$.
(3.18.5) If the index of $K+S$ equals m and $e_{1}=(m-1) / m$ then $m=n+1$ and all the E_{i} are (-2 -curves, that is, $P \in X$ is a Du Val singularity of type A_{n}.
(3.18.6) If $f^{*}\left(S+S^{\prime}\right)=f^{-1} S+f^{-1} S^{\prime}+\sum e_{i}^{\prime} E_{i}$ then either all $e_{i}^{\prime} \in(0,1)$, or they are all equal to 1 and $P \in X$ is a Du Val singularity of type A_{n}.
(3.18.7) Suppose that we set

$$
f^{*}\left(S+c S^{\prime}\right)=f^{-1} S+c f^{-1} S^{\prime}+\sum e_{i}^{\prime \prime} E_{i}
$$

for some $0<c \leq 1$; then $e_{1}^{\prime \prime}>1 / 2$ and $E_{1}{ }^{2} \leq-3$ is only possible in the case when $E_{1}^{2}=-3, E_{2}^{2}=\cdots=E_{n}^{2}=-2$ and $c>1 / 2$.

Note that $K+S+S^{\prime} \log$ canonical implies that

$$
\left(S+S^{\prime} \subset X\right) \cong\left((x y=0) \subset \mathbb{A}^{2}\right) /(\mathbb{Z} / m)
$$

where \mathbb{Z} / m acts diagonally (see [Kawamata]).
Proof. All the assertions except for (3.18.4-7) are well known ([7], (9.6)), and can also be deduced easily using the general technique of §1 (Example 1.6). Note that f is \log terminal and is a minimal model of $K+S+S^{\prime}$. Here minimal means that any other \log terminal extraction factors through it. (3.18.4-6) follow from (3.18.3) using the \log crepant components of (1.5.7), after possibly interchanging S and S^{\prime}. It follows from the assertion (3.18.7) that the log discrepancy of K on contracting E_{1} is less than $1 / 2$, and hence $E_{1}^{2}=-3$. If $E_{2}^{2}=\cdots=E_{i}^{2}=-2$ and $E_{i+1}^{2} \leq-3$ then $K_{Y}+(1 / 2)\left(E_{1}+\cdots+E_{i+1}\right)$ is nef on E_{1}, \ldots, E_{n}, which is impossible for
$e_{1}^{\prime \prime}>1 / 2$. Hence $E_{1}^{2}=-3, E_{2}^{2}=\cdots=E_{n}^{2}=-2$ and by the same argument $c>1 / 2$. Q.E.D.

§4. Two terminations

Except where otherwise stated, X is a 3-fold throughout the remainder of the paper.
4.1. Theorem on special termination. Let $f: X \rightarrow Z$ be a projective morphism; we consider a chain of successive modifications of $f: X \rightarrow Z$ in extremal rays with $(K+B) R<0$. Assume that X is \mathbb{Q}-factorial and the support of every flipping ray R of the chain lies in the reduced part of the boundary $\lfloor B\rfloor$. Then the chain terminates (in the analytic case, over a neighborhood of any compact subspace of Z).

Here the support $\operatorname{Supp} R$ of an extremal ray R is the exceptional subvariety (or analytic subspace) of cont_{R}, that is, the union of curves C with $\operatorname{cont}_{R} C=p t$.

4.2. Lemma. Suppose that

$$
b_{i}=\frac{n_{i}-1}{n_{i}}+\sum_{j} \frac{k_{i j}}{n_{i}} d_{j}<1,
$$

where n_{i} and $k_{i j}$ are natural numbers, d_{j} is a finite (ordered) set of numbers in the interval $(0,1)$, and

$$
p=\frac{m-1}{m}+\sum_{i} \frac{l_{i}}{m} b_{i}<1
$$

with natural numbers m and l_{i}. Then substituting the b_{i} gives an expression of the same type for p in terms of the d_{j}.
Proof. If $n_{i}=1$ for all i with $l_{i} \geq 1$ then this is obvious:

$$
p=\frac{m-1}{m}+\sum_{j} \frac{\sum_{i} l_{i} k_{i j}}{m} d_{j} .
$$

Otherwise, there exists a unique i_{0} such that $n_{i_{0}} \geq 2$ and $l_{i_{0}} \geq 1$, for if there were 2 or more then

$$
p \geq \frac{m-1}{m}+\frac{1}{m}\left(\frac{1}{2}+\frac{1}{2}\right)=1
$$

Now $l_{i_{0}}=1$ for the same reason, since if $l_{i_{0}} \geq 2$ then

$$
p \geq \frac{m-1}{m}+\frac{2}{m} \times \frac{1}{2}=1 .
$$

Hence

$$
\begin{aligned}
p & =\frac{m-1}{m}+\frac{1}{m}\left(\frac{n_{i_{0}}-1}{n_{i_{0}}}+\sum_{j} \frac{k_{i_{0} j}}{n_{i_{0}}} d_{j}\right)+\sum_{i \neq i_{0}} \frac{l_{i}}{m}\left(\sum_{j} k_{i j} d_{j}\right) \\
& =\frac{n_{i_{0}} m-1}{n_{i_{0}} m}+\sum_{j} \frac{k_{i_{0} j}+\sum_{i \neq i_{0}} n_{i_{0}} l_{i} k_{i j}}{n_{i_{0}} m} d_{j} . \quad \text { Q.E.D. }
\end{aligned}
$$

Proof of Theorem 4.1. In the analytic case, since f is projective, we can shrink Z to a neighborhood of a compact set in such a way that the relative Picard number $\rho(f)=\rho(X / Z)$ is finite. For the proof below, we also need to know that there are only finitely many components of the boundary and their intersections relative to f.

As usual (see [8], 5-1), since a divisorial extremal contraction reduces the relative Picard number $\rho(f)$ by 1 , we can restrict ourselves to a chain consisting of flips only. Note that by the projectivity of f (and by choice of Z in the analytic case), we can also assume that the reduced boundary $\lfloor B\rfloor$ has only finitely many irreducible components S, and restricts to only finitely many irreducible curves on each S, or, more precisely, on the normalization S^{ν} in the locus of \log canonical singularities of the restriction $(K+B) \mid S^{\nu}$. After a flip in a ray R with $(K+B) R<0$, the assumption that $K+B$ is \log canonical implies that the modified $K+B$ is purely log terminal along the flipped curves (since discrepancies decrease, see (1.5.6) and Lemma 1.7, [25], (2.13.3), or [8], 5-1-11 (3)).

Hence if as a result of a flip one such curve again lands on a component S of the reduced part of the boundary $\lfloor B\rfloor$, then by Corollary 3.11 and (3.2.3), it does not lie in the locus of log canonical singularities of the modified log divisor $(K+B) \mid S^{\nu}$. Therefore the number of irreducible components of $\operatorname{LCS}(K+B) \mid S^{\nu}$ does not increase under modifications, and decreases if one of the flipping curves happens to be contained in it. Hence we can restrict to the case that the supports of flipping rays are not contained in $\operatorname{LCS}(K+B) \mid S^{\nu}$. By the same arguments, $(K+B) \mid S^{\nu}$ is purely log terminal after a modification in a neighborhood of a flipped curve. But there are only a finite number of points at which $(K+B) \mid S^{\nu}$ is not \log terminal, and we can suppose that $(K+B) \mid S^{\nu}$ is \log terminal at the points P of intersection of $\operatorname{LCS}(K+B)_{\mid S^{\nu}}$ with the support of flipping rays. Moreover, in a neighborhood of such a point P, the set $\operatorname{LCS}(K+B) \mid S^{\nu}$ will be a nonsingular curve C, and from two applications of Corollary 3.10 on the coefficients of the different, by Lemma 4.2 , the multiplicity of P in the boundary appearing in the adjunction formula for $(K+B)_{\left|S^{\nu}\right| C}$ is of the form

$$
p=\frac{m-1}{m}+\sum_{i} \frac{l_{i}}{m} b_{i},
$$

with m and l_{i} natural numbers; recall that b_{i} are the multiplicities of the boundary B. We can again assume that the set of points P with $p>0$ is finite, and it's exactly through these points that the flipping curves are allowed to pass. In fact, p decreases under flips, since on the original model it decreases on contracting a curve Γ with $(K+B) \mid S^{\nu} \cdot \Gamma<0$; and on the flipped model, p does not increase on extracting a curve Γ^{+}with $(K+B) \mid S^{\nu} \cdot \Gamma^{+} \geq 0$. By the purely \log terminal condition $p<1$, and obviously, there are only a finite number of possible decreases of p under flips in curves through P. Thus we can suppose that the flipped curves are disjoint from $\operatorname{LCS}(K+B) \mid S^{\nu}$. It is not hard to verify that the number Hell of curves (including nonexceptional curves) $\left({ }^{6}\right)$ not lying in the locus of canonical singularities, and not contracted to it, and having log discrepancy <1 (compare Lemma 8.7 below) is finite. By the proof of (3.2.3) this number $\operatorname{Hell}(X$ with $B)$, rather like the difficulty of the log terminal case ([25], Definition 2.15), does not increase under flips, since the log discrepancy coefficients of $(K+B) \mid S^{\nu}$ do not decrease, by standard assertions (see (1.5.6) and Lemma 1.7, [25], (2.13.3), or [8], 5-1-11 (3)), and similarly the multiplicities of the boundary of $(K+B) \mid S^{\nu}$ do not

[^6]increase. Thus the multiplicities of the boundary b_{i} of $(K+B)_{\mid} \mid S^{\nu}$ can take only a finite number of standard values
$$
b=\frac{m-1}{m}+\sum_{i} \frac{l_{i}}{m} b_{i}
$$

New multiplicities of this kind can only arise when some flipped curves again land on S; then their log discrepancy for $(K+B)_{\mid S^{\nu}}$ increases. Hence in proving termination we can assume that after each flip the flipped curves lie outside the modified $\lfloor B\rfloor$. Hence the termination follows from the boundedness of the relative Picard number $\rho\left(f_{\mid S^{\nu}}\right)$. Q.E.D.

From the termination just proved we get the following result.
4.3. Proposition. Let X be a normal algebraic (or analytic) 3-fold, and suppose that the \log divisor $K+B$ and the boundary B are such that
(i) $K+B$ is possibly not log canonical;
(ii) the boundary B is a reduced LSEPD divisor (in the analytic case in a neighborhood of a projective subspace $W \subset X)$;
(iii) X has canonical singularities (respectively is nonsingular) outside B.

Then in a neighborhood of B (in the analytic case, over a neighborhood of W) there exists a log canonical (respectively strictly log terminal) model $f: Y \rightarrow X$ of X for $K+B$.
Proof. Recall that a \log canonical model of X for $K+B$ is a log canonical model $f: Y \rightarrow X$ of the identity morphism of X for $K+B$ (see (1.4-5) above for definitions and properties). As the first approximation to such a model, take a projective resolution of singularities $f: Y \rightarrow X$ (in the analytic case, in a neighborhood of W), such that all the exceptional divisors E_{i} that contract to B, and all the irreducible components of $f^{-1} B$, are nonsingular and cross normally. Shrinking X if necessary to a neighborhood of B, we can assume by the classification of canonical surface singularities that the exceptional divisors not contracted by f to B are contracted by f along a ruling to curves, outside $f^{-1} B$.

First, we establish the existence of a strictly log terminal model of f for $K_{Y}+$ $f^{-1} B+\sum E_{i}$, where the sum runs only over the exceptional divisors over B; we can omit the exceptional divisors contracted to curves outside B from the boundary by assumption (iii). The existence of this model is proved according to the general ideology explained in $\S 1$ after 1.5. Since $K_{Y}+f^{-1} B+\sum E_{i}$ is strictly log terminal, if $K_{Y}+f^{-1} B+\sum E_{i}$ is nef relative to f then f will itself be the required model. Otherwise, by the theorem on the cone and the contraction theorem ([8], 4-2-1 and 3-2-1) there is an extremal contraction $g: Y \rightarrow Z$ over X, with $K_{Y}+f^{-1} B+\sum E_{i}$ negative relative to g; it is birational since f is. If g is a divisorial contraction then $K_{Z}+g\left(f^{-1} B+\sum E_{i}\right)$ is again strictly \log terminal, and the modification f is projective by the Properties of \log flips, 1.12 .

Now write Y for Z and $f: Y \rightarrow X$ for its contraction to X. For flipping contractions g we do the same thing. Thus using termination 4.1 , we eventually get to the model we want provided that flips exist and their curves lie in the boundary. Now note that by induction on the number of transformations one can check that the exceptional divisors for f outside $f^{-1} B$ are nonsingular ruled surfaces, and that the flipping curves of extremal rays lie over B. In the same way, our modifications leave Y nonsingular outside the boundary. Indeed, the boundary $f^{-1} B+\sum E_{i}$ lies over B and by (ii) is an LSEPD divisor relative to f, hence also relative to g. Thus flipping curves always lie on the boundary, both before and after flipping, and it is enough
to check that nonsingularity is preserved by a contraction g of a surface to a curve outside the boundary. But by the classification of extremal contractions of surfaces in the terminal case, and by induction, such a contracted surface is nonsingular outside $f^{-1} B$, ruled with fibers negative with respect to K_{Y} and not intersecting the boundary, and contracts to a set that is nonsingular outside the boundary.

Suppose now that g is a small contraction over X, on which $K_{Y}+f^{-1} B+\sum E_{i}$ is negative. Since the boundary $f^{-1} B+\sum E_{i}$ is a reduced LSEPD divisor over g, and X is nonsingular outside it, the flip exists by Proposition 2.6.

By the theorem on eventual freedom ([8], 3-1-2) and by (ii), since the model f is strictly \log terminal, we get the required \log canonical model by contracting curves Γ over X with $\left(K_{Y}+f^{-1} B+\sum E_{i}\right) \cdot \Gamma=0$. Indeed, by (iii) the boundary of this model contains all the exceptional divisors. In particular, the exceptional divisors with multiplicity 0 in the boundary contract outside the boundary to curves of canonical singularities. Note that if X has no singularities outside B then we can choose f such that all its exceptional divisors lie over B, which allows us to construct a strictly \log terminal model of X for $K+B$. Q.E.D.
4.4. Corollary. Suppose that $K+S+B$ is such that
(i) $K+S+B$ is \mathbb{R}-Cartier but a priori not log canonical;
(ii) the boundary $S+B$ is a reduced LSEPD divisor, for example is \mathbb{Q}-Cartier;
(iii) S is an irreducible surface on which $K_{S^{\nu}}+B_{S^{\nu}}$ is log canonical;
(iv) X has canonical singularities outside $S+B$.

Then $K+S+B$ is \log canonical in a neighborhood of S.
This is a first particular case of Problem 3.3 on the inversion of the log canonical condition, which we prove for 3 -folds (see Proposition 5.13 and Corollary 9.5 below).
Proof. The result is local, so we can restrict to a neighborhood of some point S. But then by Proposition 4.3 there exists a log canonical model of X for $K+S+B$. Hence what we want follows from conditional inversion, 3.4. Q.E.D.

We now upgrade somewhat the philosophy of $\S 1$. As a preliminary step, we add something to the boundary to make it an LSEPD divisor relative to f. Next we construct a \log terminal model for the increased boundary. Then we modify this model by reducing the additions to the boundary (see Example 4.7 and the proof of reductions $6.4-5$). For this termination 4.1 is sufficient. Hence the main difficulties here are concerned with the construction of flips, and in particular with flips of 0 contractions arising when the additions to the boundary are reduced.
4.5. 0-contractions (flops). Let $f: X \rightarrow Z$ be a projective morphism that is finite over the general point of Z (in the analytic case we require that there exists a big Cartier divisor on Z in a neighborhood of a compact subset $W \subset Z$; this holds, for example, if Z is a Stein space or W is projective). Suppose that f and the boundary $B+H$ satisfy
(4.5.1) $\quad H$ is an effective divisor possibly having components in common with B.
(4.5.2) There exists an LSEPD divisor D relative to f with $\lfloor B+H\rfloor \leq D \leq$ $\lceil B+H\rceil$.
(4.5.3) $\quad K+B$ is strictly \log terminal (in the analytic case, over a neighborhood of W).
(4.5.4) For some ε with $0<\varepsilon \leq 1$ the divisor $K+B+\varepsilon H$ is \log canonical.
(4.5.5) $K+B+\varepsilon H$ is nef relative to f.

Here we do not have to assume that X is 3 -dimensional. An extremal 0 -contraction over Z is an extremal contraction $g: X \rightarrow Y$ over Z such that
(4.5.6) there exists ε^{\prime} with $0<\varepsilon^{\prime} \leq \varepsilon$ for which $K+B+\varepsilon^{\prime} H$ is nef relative to f and numerically 0 relative to g.
(4.5.7) $\quad K+B$ is numerically negative relative to g.

Under assumptions (4.5.1-5) I claim that either $K+B$ is nef relative to f, or there exists a 0 -contraction (either way, in the analytic case, over a neighborhood of W). Moreover, a modification of 0 -contractions relative to $K+B$ (if it exists) preserves all the assumptions (4.5.1-5). Hence if for a fixed ε_{0} with $\varepsilon \geq \varepsilon_{0} \geq 0$ we know that small 0 -contractions with $\varepsilon \geq \varepsilon^{\prime}>\varepsilon_{0}$ can be flipped relative to $K+B$, and that chains of such flips terminate, then eventually we get a strictly log terminal model f for $K+B+\varepsilon_{0} H$ when $\varepsilon>\varepsilon_{0}$ or the initial divisor $K+B+\varepsilon_{0} H$ is \log terminal, and a \log canonical model for $K+B+\varepsilon_{0} H$ when $\varepsilon_{0}>0$, or for $\varepsilon_{0}=0$ when (4.5.2) holds with $H=0$.

Proof. Every Cartier divisor on X is big after adding divisors pulled back from Z if necessary, and has effective multiples. Because f is finite over the general point of Z, this statement is equivalent to the existence of a big Cartier divisor on Z. This always holds in the algebraic case (and by assumption in the analytic case).

Suppose that $K+B$ is numerically negative on some curve over Z. Then we can choose a minimal $\varepsilon>0$ for which all the assumptions (4.5.1-5) hold. Then by the Kleiman ampleness criterion [10], $(K+B+\varepsilon H)^{\perp}$ is a supporting hyperplane of the Kleiman-Mori cone $\overline{\mathrm{NE}}(X / Z)$ (in the analytic case, $\overline{\mathrm{NE}}(X / Z ; W)$, and similarly below). I claim that it is rational polyhedral in a neighborhood of the face $M=$ $(K+B+\varepsilon H)^{\perp} \cap \overline{\mathrm{NE}}(X / Z)$. This means that M is spanned by a finite set $\left\{R_{i}\right\}$ of extremal rays, the whole cone $\overline{\mathrm{NE}}(X / Z)$ is spanned by M together with the complement of some neighborhood of M, and there exists a Cartier divisor D which is negative on $M \backslash 0$ and such that

$$
\overline{\mathrm{NE}}^{D}(X / Z)=\{v \in \overline{\mathrm{NE}}(X / Z) \mid D v<0\}
$$

is a neighborhood of M. Indeed, we can assume by the previous argument that D is effective. The sets $\overline{\mathrm{NE}}{ }^{K+B+\varepsilon H+\delta D}(X / Z)$ for any $\delta>0$ are also neighborhoods of M. If $K+B+\varepsilon H+\delta D$ were strictly \log terminal, then the theorem on the cone ([8], 4-2-1) would imply our assertion that $\overline{\mathrm{NE}}(X / Z)$ is polyhedral near M. But by (4.5.2-4) we can reduce the multiplicities of the boundary to get $B^{\prime}<B+\varepsilon H$ such that $K+B^{\prime}$ is strictly \log terminal, $\left\lfloor B^{\prime}\right\rfloor=0$, and the intersection number of $K+B+\varepsilon H+\delta D$ with curves over Z is preserved, that is,

$$
(K+B+\varepsilon H+\delta D) \cdot v=\left(K+B^{\prime}+\delta D\right) \cdot v \quad \text { for all } v \in N_{1}(X / Z)
$$

Hence if we replace $K+B+\varepsilon H+\delta D$ by $K+B^{\prime}+\delta D$ for small δ, by the fact that D is effective and by stability (1.3.4), we get what we want. Note that $K+B+\varepsilon^{\prime} H$ strictly \log terminal for all $0<\varepsilon^{\prime}<\varepsilon$ is equivalent to conditions (4.5.3-4). By the choice of ε and by the polyhedral property of $M \neq 0$ just proved, there exists an extremal ray R in a neighborhood of M, and therefore in M, on which $K+B+\varepsilon^{\prime} H$ is negative, but $(K+B+\varepsilon H) R=0$, since R is in M. It follows that $H R>0$ and $(K+B) R<0$. This ray defines the required 0 -contraction because f is finite over the general point of Z.

A modification in a 0 -contraction relative to $K+B$ preserves assumptions (4.5.12) obviously, and preserves (4.5.3-5) and the projectivity of f by the standard
properties of flips 1.12 ; as the new ε we take ε^{\prime}. Note also that if the divisor $H \neq 0$ then it is not contracted by a 0 -contraction since it is nef with respect to it, and hence it remains $\neq 0$ under our modifications. Hence if these modifications with $\varepsilon^{\prime}>\varepsilon_{0}$ terminate, then decreasing ε down to ε_{0}, by (4.5.3) we eventually get a strictly \log terminal model of f for $K+B+\varepsilon_{0} H$. Then for $\varepsilon_{0}>0$, by the polyhedral result just proved and the contraction theorem ([8], 3-2-1) we get a log canonical model of f for $K+B+\varepsilon_{0} H$. It is obtained by contracting the face M. By the same arguments all \mathbb{R}-Cartier divisors numerically 0 on M, and in particular $K+B+\varepsilon_{0} H$, descend to this model. When $\varepsilon_{0}=0$, we need to use the additional condition and again the same arguments with $H=0$. Q.E.D.

From now on X is again a 3 -fold.
Proof of Corollary 1.11. First of all, a log canonical model can be constructed locally. Hence we can assume that B is an LSEPD divisor such that the principal Cartier divisor D with $\lfloor B\rfloor \leq D \leq\lceil B\rceil$ contains the locus of log canonical singularities of $K+B$. Consider a strictly log terminal model $g: Y \rightarrow X$. By (1.5.5), and since $K+B$ is obviously purely \log terminal outside D, the contraction g fails to be small only over D. Thus D_{Y} is an LSEPD divisor for g and $\left\lfloor B_{Y}\right\rfloor \leq \operatorname{Supp} D_{Y} \leq\left\lceil B_{Y}\right\rceil$. By the arguments at the end of the preceding proof and the finiteness of g over the general point of Z we get the contraction to the log canonical model of f. Q.E.D.
4.6. Corollary. Under the assumptions (4.5.1-5), for fixed $\varepsilon \geq \varepsilon_{0} \geq 0$, the existence of flips of small 0 -contractions with $\varepsilon \geq \varepsilon^{\prime}>\varepsilon_{0}$ and the fact that the curves contracted by these lie on the reduced part of the boundary of B imply that there exists (1) a strictly log terminal model of f for $K+B+\varepsilon_{0} H$ when $\varepsilon>\varepsilon_{0}$ or the original divisor $K+B+\varepsilon H$ is \log terminal, and (2) a log canonical model for $K+B+\varepsilon_{0} H$ when $\varepsilon_{0}>0$ or when $\varepsilon_{0}=0$ and (4.5.2) holds with $H=0$.
Proof. Direct from 4.5 and termination 4.1. Q.E.D.
4.7. Example. Suppose that the boundary B is a reduced LSEPD divisor, but $K+B$ is not necessarily \log canonical. Then to construct the log canonical model of X for $K+B$ in a neighborhood of B we complement the boundary to $B+H$ in a neighborhood of a fixed point $P \in B$ by adding a reduced Cartier divisor H such that X is nonsingular outside $B+H$ and $B+H$ is LSEPD in a neighborhood of P. For H we can take a general hyperplane through P and through the curves of singularities of X near P. By Proposition 4.3 there is a strictly \log terminal model $f: Y \rightarrow X$ for $K+B+H$. We can apply Corollary 4.6 to the birational contraction f and to the \log divisor $K_{Y}+f^{-1} B+f^{-1} H+\sum E_{i}$, where E_{i} are exceptional for f. Here for H we take $f^{-1} H$, and for B we take the remainder of the boundary $f^{-1} B+\sum E_{i}$. (Of course, there are big Cartier divisors on X in a neighborhood of P.) Since X is nonsingular outside $B+H$, all exceptional divisors of f lie over $B+H$. Hence the boundary $f^{-1} B+f^{-1} H+\sum E_{i}$ is LSEPD for f, since the same hold for $B+H$. The remaining assumptions of 4.5 are satisfied by the fact that f is strictly \log terminal for $K_{Y}+f^{-1} B+f^{-1} H+\sum E_{i}$, with $\varepsilon=1$.

Take $\varepsilon_{0}=0$. Shrinking the neighborhood of P we can assume that all the exceptional divisors E_{i} that contract to curves have irreducible fibers (in fact, by Corollary 3.8, nonsingular fibers) outside $f^{-1} P$, relative to the contraction induced by f. Hence the curves of small 0 -contractions lie on the reduced part of the boundary $f^{-1} B+\sum E_{i}$ over P, which is LSEPD for f. Moreover, since the intersection of such curves with $f^{-1} H$ is positive and H is Cartier, some exceptional surface $E_{i_{0}}$ has negative intersection with them. But $f^{-1} B+\sum E_{i}$ is also LSEPD for f,
and hence $f^{-1} B$ or one of the exceptional surfaces over B intersects them nonnegatively (positively if $f\left(E_{i_{0}}\right) \subset B$). (Moreover, positively by Corollary 3.8, since $f^{-1} B+f^{-1} H+\sum E_{i}$ is strictly \log terminal.)

Thus we need to establish the existence of flips in the case that $K+B$ is strictly log terminal and negative relative to a small extremal contraction, and the boundary B is reduced and has two irreducible components, intersecting the contracted curves, one numerically negative and the other nonnegative relative to the contraction. In what follows, in Corollary 5.15 we will establish the existence of such flips. Thus according to the previous corollary we get a strict log terminal model $f: Y \rightarrow X$ for $K+B$ in a neighborhood of P. If in addition $K+B$ has \log terminal singularities outside B, then it is purely \log terminal outside B, and by (1.5.7) all exceptional surfaces of f lie over B. Thus the reduced boundary of $K_{Y}+f^{-1} B+\sum E_{i}$ is an LSEPD divisor, hence by Corollary 4.6, X has a \log canonical model for $K+B$ in a neighborhood of P.
4.8. Definition. A limiting chain of length n is an ordered set of real numbers $0<d_{1}, d_{2}, \ldots, d_{n}<1$, for which there exist natural numbers $n_{i} \neq 0$ and $k_{i j}$ such that
(4.8.1) $\sum p_{i}=1$ or 2 , where

$$
\begin{equation*}
p_{i}=\left(n_{i}-1\right) / n_{i}+\sum_{j} k_{i j} d_{j} / n_{j}<1, \text { and } \tag{4.8.2}
\end{equation*}
$$

(4.8.3) for each $j=1, \ldots, n$ at least one $k_{i j} \neq 0$.

See Definition 6.1 and Proposition 6.2 for an explanation of the term limiting chain. We can introduce a partial order on such limiting chains:

$$
\left\{d_{j}\right\}_{j=1, \ldots, n} \geq\left\{d_{j}^{\prime}\right\}_{j=1, \ldots, m} \Longleftrightarrow\left\{\begin{array}{c}
n<m \text { or } n=m \text { and } \\
d_{j} \geq d_{j}^{\prime} \text { for } j=1, \ldots, n
\end{array}\right.
$$

4.9. Second termination (Chicago Lemma). Limiting chains satisfy the a.c.c. with respect to this partial order.
Proof. Consider an increasing sequence of limiting chains d_{j}^{l} for $l=1, \ldots$ of length n_{l}. Note that when n_{l} decreases the sequence increases. Hence, restricting to a subsequence if necessary, we can assume that all chains have the same length $n_{l}=n$. But then all the d_{j}^{l} are bounded below by a positive constant min d_{j}^{l}, which implies that nonzero numbers of the form

$$
p_{i}^{l}=\frac{n_{i}^{l}-1}{n_{i}^{l}}+\sum_{j} \frac{k_{i j}^{l}}{n_{i}^{l}} d_{j}^{l}
$$

are bounded from below by a positive constant, and hence by (4.8.1) are finite in number.

This finite number is universal: the number of nonzero p_{i}^{l} is bounded by a universal constant independent of l. Hence, once more restricting to a subsequence if necessary, and renumbering as appropriate, we can assume that there are always exactly m nonzero p_{i}^{l} :

$$
1>p_{1}^{l}, p_{2}^{l}, \ldots, p_{m}^{l}>0
$$

I claim that each sequence $p_{i}^{1}, p_{i}^{2}, \ldots$ does not have a decreasing subsequence. Indeed, if there is such a subsequence, then it is bounded by a constant <1. Hence by (4.8.2) in it the n_{i}^{l} are bounded, and hence restricting to a subsequence we can assume that they are constant: $n_{i}^{l}=n_{i}$. Thus the fact that the d_{j}^{l} are bounded from below by a positive constant implies that the natural numbers $k_{i j}^{l}$ are bounded and
finite independently of l. Again restricting to a subsequence we can assume the $k_{i j}^{l}$ are constant: $k_{i j}^{l}=k_{i j}$. But then the p_{i}^{l} decrease, which contradicts the fact that $d_{j}^{1} \leq d_{j}^{2} \leq \cdots$ is nondecreasing. Moreover, it follows by the same argument that p_{i}^{l} has a constant subsequence if and only if, possibly after passing to a suitable subsequence d_{j}^{l}, we get $n_{i}^{l}=n_{i}, k_{i j}^{l}=k_{i j}$ and $d_{j}^{l}=d_{j}$ for $k_{i j} \neq 0$. Thus restricting to a subsequence d_{j}^{l} we can assume that all sequences p_{i}^{l} are monotonically nondecreasing, and by (4.8.3), one of them is increasing. But this contradicts the finiteness of values of the sum $\sum p_{i}^{l}=1$ or 2 from (4.8.1). Q.E.D.

§5. COMPLEMENTARY LOG DIVISORS

In this section X is first arbitrary, then a surface, and towards the end a \mathbb{Q}-factorial 3-fold. Except where stated otherwise, we write a subboundary in the form $S+D$ to distinguish its reduced part:

$$
S=\sum_{d_{i}=1} D_{i} \quad \text { and } \quad D=\sum_{d_{i}<1} d_{i} D_{i}
$$

5.1. Definition (n-complement). A log divisor $K+S+D$, not necessarily \log canonical, is n-complementary for a natural number n if there exists a Weil divisor D^{+} such that

$$
\begin{align*}
& D^{+} \geq S+(1 / n)\lfloor(n+1) D\rfloor \tag{5.1.1}\\
& K+D^{+} \text {is } \log \text { canonical; } \tag{5.1.2}\\
& n\left(K+D^{+}\right) \text {is linearly } 0
\end{align*}
$$

In particular, D^{+}is then a subboundary, $K+D^{+}$has index n and $n D^{+}$is an integral divisor. The condition (5.1.1) says that $\bar{D}=n D^{+}-n S-\lfloor(n+1) D\rfloor$ is an effective divisor; this is an n-complement or simply complement of $K+S+D$. By (5.1.3), $\bar{D} \in\lfloor-n K-n S-\lfloor(n+1) D\rfloor \mid$, so that $K+S+D$ is n-complementary if and only if there exists $\bar{D} \in|-n K-n S-\lfloor(n+1) D\rfloor|$ such that

$$
K+D^{+}=K+S+(1 / n)(\lfloor(n+1) D\rfloor+\bar{D})
$$

is \log canonical, where $D^{+}=S+(1 / n)(\lfloor(n+1) D\rfloor+\bar{D})$. The case we are ultimately interested in is when the subboundary $S+B$ is a boundary. Then by (5.1.1), B^{+}is also a boundary.

5.2. Examples.

(5.2.1) On $\mathbb{P}^{\mathbf{1}}$, consider a nonpositive divisor $K+B$ with $\lfloor B\rfloor=0$, that is,

$$
B=\sum_{i \geq 1} b_{i} P_{i}, \quad \text { with } 0 \leq b_{i}<1 \text { and } \sum b_{i} \leq 2
$$

where P_{i} are distinct points of \mathbb{P}^{1}. Then $K+B$ is $1-, 2-, 3$-, 4 - or 6-complementary.

Moreover, if we assume in addition that $b_{1} \geq b_{2} \geq \cdots$, then

$$
\begin{array}{r}
K+B \text { is not } \\
\text { 1-complementary }
\end{array} \quad \Longleftrightarrow \quad b_{1}, b_{2}, b_{3} \geq \frac{1}{2}
$$

$$
K+B \text { is not } 1 \text {-or } \quad \Longleftrightarrow \quad b_{1}, b_{2} \geq \frac{2}{3} \text { and } b_{3} \geq \frac{1}{2},
$$

$$
\text { 2-complementary } \Longleftrightarrow \quad \text { or } b_{1}=\frac{2}{3}, b_{2}=b_{3}=\frac{1}{2} \text { and } b_{4}=\frac{1}{3}
$$

$K+B$ is not $1-, 2-\quad \Longleftrightarrow \quad b_{1} \geq \frac{3}{4}, b_{2} \geq \frac{2}{3}$ and $b_{3} \geq \frac{1}{2}$,
or 3-complementary $\Longleftrightarrow \quad$ or $b_{1}=\frac{2}{3}, b_{2}=b_{3}=\frac{1}{2}$ and $b_{4}=\frac{1}{3}$;
$K+B$ is not $1-, 2-$,
3 - or 4-complementary $\quad \Longleftrightarrow \quad b_{1} \geq \frac{4}{5}, b_{2} \geq \frac{2}{3}$ and $b_{3} \geq \frac{1}{2}$.
Of course, a general element $\bar{B} \in|-n K-\lfloor(n+1) B\rfloor|$ will always do as an $n-$ complement, provided that this linear system is free and $\lfloor B\rfloor=0$. But on $\mathbb{P}^{\mathbf{1}}$, the linear system $|D|$ of an integral divisor D is free if and only if it has $\operatorname{deg} D \geq$ 0 . Hence in our example, a divisor $K+B$ is n-complementary if and only if $\operatorname{deg}((K+(1 / n)\lfloor(n+1) B\rfloor) \leq 0$, or equivalently,

$$
\operatorname{deg}\lfloor(n+1) B\rfloor=\sum_{i}\left\lfloor(n+1) b_{i}\right\rfloor \leq 2 n
$$

For example, $K+B$ fails to be 1 -complementary if and only if $\sum\left\lfloor 2 b_{i}\right\rfloor>2$, that is, b_{1}, b_{2}, and $b_{3} \geq 1 / 2$. The subsequent more precise statements are proved similarly case-by-case, and finally we prove that $K+B$ is 6 -complementary if $b_{1} \geq 4 / 5$, $b_{2} \geq 2 / 3$ and $b_{3} \geq 1 / 2$. (Recall that $\sum b_{i} \leq 2$.) It is not hard to deduce from what we have said that if $K+B$ is n-complementary but not 1 -or 2 -complementary then the boundary of the n-complement of $K+B$ does not have reduced components for $n=3,4$ or 6 , that is, $\left\lfloor B^{+}\right\rfloor=0$.

Note that the special case $(2 / 3,1 / 2,1 / 2,1 / 3)$ does not occur if $K+B$ is numerically negative, or equivalently $\sum b_{i}<2$.
(5.2.2) Although we usually assume that X is irreducible, we relax this requirement in the following example, which will occur in the proof of Theorem 5.6 below. Suppose that X is a connected, possibly reducible or incomplete curve with nodes (ordinary double points). The log canonical divisor $K+B$ is then taken to be the nonsingular canonical divisor K (that is, the Cartier divisor corresponding to the dualizing sheaf) plus a nonsingular boundary $B=\sum b_{i} P_{i}$. The nonsingularity of the divisor means that its support is contained in the nonsingular part of X, and \log canonical is defined by the inequalities $0 \leq b_{i} \leq 1$, which is the same as the definition of boundary. However, we assume more, namely that

$$
\lfloor B\rfloor=0, \quad \text { that is, } \quad 0 \leq b_{i}<1,
$$

and that $K+B$ is numerically nonpositive on each irreducible component of a connected complete algebraic subvariety (or analytic subspace) $S \subset X$. Then $K+B$ is 1-, 2-, 3-, 4- or 6-complementary in a neighborhood of S, and is 1- or 2 complementary if X is singular, in particular if it has more than one irreducible component. More precisely, if $S=X$ is a curve of arithmetic genus 1 , an "elliptic curve", then $K+B$ numerically nonpositive implies that X is a "wheel", and $B=0$ so that K is 1 -complementary. In the opposite case, S is a chain of \mathbb{P}^{1} s. If $S=p t$. then the chain is empty and $K+B$ is 1 -complementary.

The case when $S=X$ is a chain of a single element \mathbb{P}^{l} in a neighborhood of S was treated in (5.2.1). If the chain has two or more curves, or one curve and
$S \neq X$ in a neighborhood of S, then again by numerical nonpositivity of $K+B$ the boundary B is concentrated on the two end curves S of the chain when $S=X$, and possibly on one of the two end curves when $S \neq X$; corresponding to this the boundary B breaks up into a sum $B=B^{\prime}+B^{\prime \prime}=\sum_{i \geq 1} b_{i}^{\prime} P_{i}^{\prime}+\sum_{i \geq 1} b_{i}^{\prime \prime} P_{i}^{\prime \prime}$ or $B=B^{\prime}=\sum_{i \geq 1} b_{i}^{\prime} P_{i}^{\prime}$, where P_{i}^{\prime} and $P_{i}^{\prime \prime}$ are points of the end curves. In this case $K+B$ is $1-$ or 2 -complementary, and if we suppose that $b_{1}^{\prime} \geq b_{2}^{\prime} \geq \cdots$ and $b_{1}^{\prime \prime} \geq b_{2}^{\prime \prime} \geq \cdots$ then $K+B$ fails to be 1 -complementary if and only if $b_{1}^{\prime}=b_{2}^{\prime}=1 / 2$ and $b_{1}^{\prime \prime}=b_{2}^{\prime \prime}=1 / 2$. In particular, $K+B$ is 1 -complementary if one of the extreme components is missing, or if $K+B$ is negative on one of them.
(5.2.3) Surface quotient singularities. It is well known (see for example [6], (1.9)) that an isolated surface singularity $P \in X$ is log terminal if and only if it is a quotient singularity \mathbb{C}^{2} / G with $G \subset G L(2, \mathbb{C})$. Then K is $1-, 2-, 3-$, 4- or 6complementary. Moreover, except for the canonical surface singularities which have 0 as complement,

K is not 1-complementary	\Leftrightarrow	$P \in X$ has graph $D_{n}, E_{6}, E_{7} \text { or } E_{8}$
K is not 1 - or 2-complementary	\Longleftrightarrow	$\begin{aligned} & P \in X \text { has graph } \\ & E_{6}, E_{7} \text { or } E_{8} \end{aligned}$
K is not 1 -, 2 - or 3-complementary	\Leftrightarrow	$P \in X$ has graph E_{7} or E_{8}
K is not $1-, 2-, 3-$ or 4-complementary	\Leftrightarrow	$P \in X$ has graph E_{8}

The singularities having the exceptional graphs E_{6}, E_{7} and E_{8} have been extensively treated [15]. According to Brieskorn's classification (see [2], [4], and [Utah], Chapter 3) the minimal resolution of a surface quotient singularity has exceptional curves $E_{i} \cong \mathbb{P}^{1}$ crossing normally, and the graph of the resolution is one of A_{n}, D_{n}, E_{6}, E_{7} or E_{8}; it is marked with the selfintersection numbers $E_{i}{ }^{2} \leq-2$. In the analytic case, the required assertions comes from this and a case-by-case analysis.

For example, in type A_{n} the exceptional set of the minimal resolution $f: Y \rightarrow X$ is a chain E_{1}, \ldots, E_{n} of $\mathbb{P}^{1} \mathrm{~s}$ with normal crossings, and it can be complemented by two curves S and S^{\prime} that cross the two extreme curves E_{1} and E_{n} normally (see Proposition 3.9 above and the remark following it). By the adjunction formula the Cartier divisor $K_{Y}+S+S^{\prime}+\sum E_{i}$ is numerically 0 relative to f, and also linearly 0 since \log terminal singularities are rational. Hence the pushdown $f\left(S+S^{\prime}\right)$ is a 1 -complement in a neighborhood of a singularity of type A_{n}. The remaining cases can be analyzed in a similar way, and the algebraic case reduces to the analytic case by standard cohomological arguments. By Corollary 5.9 below, the classification of log canonical surface singularities with boundaries in terms of complements does not become more complicated.
(5.2.4) (Alekseev, Shokurov, Reid [1], [21], [24]). The canonical divisor K of a \mathbb{Q}-Fano variety with log terminal singularities of index n is n-complementary if X has Fano index $m / n>\operatorname{dim} X-2$ (or $=1$ for 3 -folds). $\left(^{7}\right.$) Let H be the ample generator of Pic $X, H^{\prime} \in|m H|$ a general element, and set $0^{+}=(1 / n) H^{\prime}$. (In the case of a 3 -folds with rational Gorenstein singularities, choose a general element $0^{+} \in\left|-K_{X}\right|$.) From [1] one deduces that for $m \geq 2$ the linear system $|m H|$ is

[^7]free, and for $m=1$ the Fano index is $>\operatorname{dim} X-2$ only for surfaces. Furthermore, choosing an n-complement in this way gives a log terminal $K+0^{+}$(canonical for the 1 -complement in the 3 -fold case). In this case we say that K is strongly n complementary.
(5.2.5) (Reid [22], (6.4)). K is strongly 1 -complementary in a neighborhood of any 3-dimensional terminal singularity.
(5.2.6) (Mori). [12], (7.1), says that for an analytic 3-fold with terminal singularities, K is strongly 1 -complementary $\left({ }^{8}\right)$ in a neighborhood of an irreducible curve of a flipping extremal ray R with $K R<0$.
(5.2.7) (Mori, Morrison and Morrison [17]). K is not always strongly 1- or 2complementary in a neighborhood of a 4 -fold terminal singularity (or even an isolated quotient singularity by a cyclic group of prime order p). Is K 1- or 2complementary? If not, for what n does an n-complement exist?

We start with some general facts coming more-or-less from the definitions.
5.3. Lemma. If D^{\prime} is a subboundary and $K+D^{\prime}$ is n-complementary, then $D^{\prime} \geq D$ implies that $K+D$ is n-complementary.
Proof. Set $D^{+}=D^{\prime+}$. Q.E.D.
5.4. Lemma. For a birational contraction $f: X \rightarrow Y$

$$
K+D \text { n-complementary } \quad \Longrightarrow \quad K_{Y}+f(D) n \text {-complementary. }
$$

Proof. Set $f(D)^{+}=f\left(D^{+}\right)$. Q.E.D.
5.5. Proposition. Suppose
(i) $K+S+D$ is log canonical and a \mathbb{Q}-divisor (or log terminal and X is \mathbb{Q} factorial);
(ii) $f: X \rightarrow Z$ is a birational contraction such that $K+S+D$ is numerically antiample relative to f.

Then $K+S+D$ is n-complementary in a neighborhood of any fiber of f.
Proof. Since D is a \mathbb{Q}-divisor, by the Kleiman ampleness criterion [10] there exists a natural number n such that $-n(K+S+D)$ is very ample relative to f. In this case as n-complement we can take a general hyperplane section

$$
\bar{D} \in|-n K-n S-\lfloor(n+1) D\rfloor|=|-n(K+S+D)| .
$$

Adding a general \bar{D} preserves the condition that $K+S+(1 / n)\lfloor(n+1) D\rfloor=K+S+D$ is log canonical, and a fortiori, so does adding $(1 / n) \bar{D}$. The case when $K+S+$ D is \log terminal and X is \mathbb{Q}-factorial can be reduced using stability (1.3.4) and Lemma 5.3 to the preceding case after increasing slightly the multiplicities of the subboundary D to make them rational numbers. Q.E.D.

For surfaces we have a more exhaustive and precise result.
5.6. Theorem. Let $f: X \rightarrow Z$ be a birational contraction of a surface X, and D a subboundary such that
(i) f contracts all the curves with negative multiplicities in D;
(ii) $K+D$ is numerically nonpositive relative to f;
(iii) $K+D$ is \log canonical.

[^8]Then $K+D$ is 1-, 2-, 3-, 4- or 6-complementary in a neighborhood of any fiber of f. More precisely, if $K+D$ is not 1 - or 2 -complementary, then $K+D$ is either 3-, 4- or 6-complementary in such a way that for any log terminal extraction $Y \rightarrow X$ there is a unique irreducible component of D^{+Y} which is reduced, and it is exceptional on Z. (The notation D^{+Y} was introduced after adjunction formula 3.1.)

A complement, or more generally a \log divisor $K+D$, is exceptional if for any extraction $Y \rightarrow X$, there is at most one irreducible component of D_{Y} which is reduced. Thus the 3 -, 4 - or 6 -complements of the theorem are exceptional. In the exceptional types E_{6}, E_{7} and E_{8} of Example (5.2.3), K has an exceptional complement.

Proof. Fix a fiber $f^{-1} P$ for $P \in Z$. Adding to $K+D$ an effective and numerically nonpositive divisor, for example $f^{*} H$ for a general hyperplane section H through P, we can arrange that $K+D$ is actually log canonical. This means that there exists an extraction $Y \rightarrow X$ for which D^{Y} has a reduced component that intersects the inverse image of the fiber. Then by Lemma 5.3, the required complement reduces to the same type of complement for the new subboundary. On the other hand, by Lemma 5.4, the theorem reduces to the case that the surface X is nonsingular, the support of the subboundary D consists of nonsingular irreducible curves crossing normally. By the above, we can also suppose that D has a reduced component intersecting the fiber. We now write the subboundary $S+D$ according to our convention, where S is reduced and intersects the fiber, and $\lfloor D\rfloor \leq 0$. Then assumptions (ii) and (iii) of the theorem take the form
(ii') $K+S+D$ is numerically nonpositive relative to f;
(iii') $K+S+D$ is \log canonical.
Using the following assertion we can suppose that S is connected in a neighborhood of the fibers.
5.7. Connectedness Lemma. Let D be a divisor on a surface X and $f: X \rightarrow Z$ a birational contraction such that
(i) f contracts the components of D with negative multiplicities;
(ii) $K+D$ is numerically nonpositive relative to f.

Then the locus of log canonical singularities of $K+D$ is connected in a neighborhood of any fiber of f.

To prove the lemma and Theorem 5.6, we need a further result.
5.8. Nonnegativity Lemma. Let X be a nonsingular surface, $S \subset X$ a nonsingular curve, and D a numerically contractible divisor such that $K+S+D$ is numerically nonpositive on its support. Then S intersects only components of D with nonnegative multiplicities.
Proof. A curve D is numerically contractible if it is complete (compact in the analytic case) and its components have negative definite intersection matrix; a divisor is numerically contractible if its support is contained in a numerically contractible curve. Discarding the effective part of the divisor D, we can assume that the multiplicities of D are all negative. If now $D \neq 0$ then by negative definiteness there exist an irreducible curve $E \subset \operatorname{Supp} D$ with $D E>0$. It follows from this that $(K+S) E<0$. Hence E is a (-1)-curve, and S is disjoint from E. Let $g: X \rightarrow Y$ be the contraction of E. Then after substituting $S \mapsto g(S)$ and $D \mapsto g(D)$, the log divisor $K_{Y}+g(S)+g(D)$ satisfies the previous conditions. However, the number of components of D has decreased. After a number of such contractions, $D=0$, when the conclusion of the lemma is obvious. Q.E.D.

Proof of Lemma 5.7. Suppose that $Y \rightarrow X$ is a resolution of singularities on which the support of D^{Y} consists of nonsingular curves crossing normally. Then the locus of \log canonical singularities of $K+D^{Y}$ is the union of components with multiplicities ≥ 1, and its image is the locus of \log canonical singularities of $K+D$. Hence verifying the lemma reduces to the case that X is a nonsingular surface and Supp D consists of nonsingular curves crossing normally. We can also suppose that this set of curves contains exceptional curves. We can combine the components of a fiber into an effective divisor F which is numerically negative on the fiber. Suppose that there is a minimal $\varepsilon>0$ for which the locus of \log canonical singularities of $K+D+\varepsilon F$ has fewer connected components than that of $K+D$. Then $D+\varepsilon F$ has a reduced chain $\sum_{i=1}^{n} E_{i}$ of irreducible curves contained in the fiber with multiplicities 1 , whose ends intersect the curves E_{0} and E_{n+1} with multiplicities ≥ 1. By construction $K+D+\varepsilon F$ is numerically negative on the curves of the chain. Using the preceding lemma it is easy to check that the components of $K+D+\varepsilon F$ with negative multiplicities do not intersect the chain. Note for this that a curve made up of such components is numerically contractible, since by (i) it is contained in a fiber. Consequently, the log divisor $K+E_{0}+E_{1}+\cdots+E_{n}+E_{n+1}$ is negative on the curves of the chain, and in particular on E_{1}, hence $\operatorname{deg} K_{E_{1}}=\left(K+E_{1}\right) \cdot E_{1}<-2$. This is of course impossible. Hence no such ε can exist, and by connectedness of the fiber this is only possible if the locus of log canonical singularities of $K+D$ is connected in a neighborhood of the fiber. Q.E.D.

We return to the proof of Theorem 5.6. Note that according to the assumptions on the support of $S+D$ the components of S are nonsingular and cross normally, and hence S is a curve with nodes (ordinary double points). By Lemmas 5.7-8 S is connected in a neighborhood of a fiber, and does not intersect components of D with negative multiplicities. To prepare to apply the Kawamata-Viehweg vanishing theorem, we make D into a \mathbb{Q}-divisor, of course without losing our assumptions. Indeed, if the multiplicity d_{i} of D_{i} is irrational and D_{i} is not contracted by f, then it can be reduced to d_{i}^{\prime} in such a way that $\left\lfloor(n+1) d_{i}^{\prime}\right\rfloor=\left\lfloor(n+1) d_{i}\right\rfloor$ for each of $n=1,2,3,4$ or 6 . If D_{i} is contracted by f and $K+S+D$ is numerically negative relative to f then we do the same. The remaining D_{i} are numerically contractible and $K+S+D$ is numerically 0 on them, so that we deduce that their multiplicities are rational. Hence the Kawamata-Viehweg vanishing theorem applies to $-(n+1)(K+S+D)$, giving

$$
\begin{aligned}
& R^{1} f_{*} \mathscr{O}_{X}(-n K-(n+1) S-\lfloor(n+1) D\rfloor) \\
& \quad=R^{1} f_{*} \mathscr{O}_{X}(K+\lceil-(n+1)(K+S+D)\rceil)=0
\end{aligned}
$$

Thus in a suitable neighborhood of the fiber under study, the linear system

$$
|-n K-n S-\lfloor(n+1) D\rfloor|
$$

cuts out a complete linear system on S. By the assumption that the support has normal crossings, D does not pass through singularities of S. Therefore by nonsingularity of X, and possibly after a suitable choice of canonical divisor K, we can assume that the support of $K+S+D$, and hence also that of $-n K-n S-\lfloor(n+1) D\rfloor$, does not contain the curve S, and meets it in nonsingular points. Hence their restrictions

$$
K_{S}+D_{\mid S} \quad \text { and } \quad-n K_{S}-\lfloor(n+1) D\rfloor_{\mid S}
$$

to S are nonsingular. Since only the effective part of D meets $S, D_{\mid S}$ is effective. Again by normal crossings $\left\lfloor D_{\mid S}\right\rfloor=\lfloor D\rfloor{ }_{\mid S}=0$, and by (ii), $K_{S}+D_{\mid S}$ is numerically
nonpositive on the intersection of the fiber $f^{-1} P$ with S. This set is connected, since S is connected in a neighborhood of $f^{-1} P$. Thus by Example (5.2.2) we see that for $n=1,2,3,4$ or 6 there exists an n-complement

$$
\overline{D_{\mid S}} \in I-n K_{S}-\left\lfloor(n+1) D_{\mid S}\right\rfloor\left|=\left|-n K_{S}-\lfloor(n+1) D\rfloor_{\mid S}\right| .\right.
$$

Since $|-n K-n S-\lfloor(n+1) D\rfloor|$ restricts surjectively to S, it contains an effective divisor \bar{D} which restricts to this: $(\bar{D})_{\mid S}=\overline{D_{\mid S}}$, and hence the restriction

$$
(K+S+(1 / n)(\lfloor(n+1) D\rfloor+\bar{D}))_{\mid S}=K_{S}+(1 / n)\left(\left\lfloor(n+1) D_{\mid S}\right\rfloor+\overline{D_{\mid S}}\right)
$$

is log canonical. Hence by inversion of adjunction 3.12 (compare Example 3.17), $K+D^{+}$is \log canonical in a neighborhood of S for the effective divisor $D^{+}=$ $S+(1 / n)(\lfloor(n+1) D\rfloor+\bar{D})$. I claim that this gives the necessary n-complement. It remains to check that $K+D^{+}$is \log canonical. If not, by the preceding lemma on connectedness and the fact that $K+D^{+}$is log canonical in a neighborhood of S, but not \log canonical in a neighborhood of the fiber, it follows that there exists an irreducible curve C that is contained in the fiber, passes through a point that is not log canonical for $K+D^{+}$, is contained in D^{+}with multiplicity 1 , and intersects some component D^{+}with multiplicity 1 at another point. But this is not possible, since $K+D^{+}$numerically 0 on C implies that $C=\mathbb{P}^{1}$ and $\left(K+D^{+}\right)_{\mid C}=K_{\mathrm{P}^{1}}+D^{\prime}$, where by the nonnegativity lemma $D^{\prime}=\left(D^{+}-C\right)_{\mid C}$ is an effective divisor having two points with multiplicities respectively >1 by Corollary 3.12 and ≥ 1 by Corollary 3.15 . This contradicts $K_{\mathrm{Pl}}+D^{\prime}$ numerically 0 , since $\operatorname{deg} K_{\mathrm{P} 1}=-2$. (Compare the end of the proof of the connectedness lemma.)

In conclusion we note that by (5.2.2), the 3-, 4 - or 6 -complements obtained in our construction occur only when the curve $S=\mathbb{P}^{1}$ is exceptional relative to f, and the boundary $\left(K+D^{+}\right)_{\mid S}=K_{S}+(1 / n)\left(\left\lfloor(n+1) D_{\mid S} \mid+\bar{D}_{\mid S}\right)\right.$ has no reduced components. Hence by Corollary 3.12, in a neighborhood of S the log divisor $K+D^{+}$is purely \log terminal and has a unique irreducible components S, hence by Lemma 5.7 it follows that the complements obtained are exceptional. Q.E.D.
5.9. Corollary. On a surface, $K+B$ is 1-, 2-, 3-, 4- or 6-complementary in a neighborhood of any point. In particular the same holds for K in a neighborhood of any \log canonical surface singularity.
5.10. Corollary. At a log canonical, but not log terminal, surface singularity, the canonical divisor K has index 1, 2, 3, 4 or 6 .
5.11. Corollary. Add to the assumptions of Theorem 5.6 the following: the existence of a reduced component of D meeting the fiber but not contained in it; to (ii) we add the condition that $K+D$ is numerically negative on the fiber, and to (iii) the condition that $K+D$ is log terminal. Then $K_{Y}+D^{Y}$ is 1-complementary in a neighborhood of the inverse image of the given fiber for any resolution $f: Y \rightarrow X$.
Proof. As in the proof of the theorem we can assume that X is nonsingular and that the components of D are nonsingular and cross normally; moreover, we can preserve the preceding assumptions by increasing D slightly on the blown up curves. Then S, the reduced part of the divisor D, is a curve with nodes, is connected in a neighborhood of the fiber by Lemma 5.7, and by assumption is not contained in the fiber. By Lemma 5.8 and assumption (i) of Theorem 5.6, D is a boundary in a neighborhood of S. As we see from the end of the proof of the theorem, $K+D$ is
n-complementary if the restriction $(K+B)_{\mid S}$ is. But $(K+B)_{\mid S}$ is 1-complementary by (5.2.2), if we slightly increase the components of $D-S$. Q.E.D.

From now on in this section, and in the remainder of the paper, X is a \mathbb{Q}-factorial 3-fold.
5.12. Theorem. Let $f: X \rightarrow Z$ be a small contraction of X with boundary $S+B$, and suppose that
(i) $K+S+B$ is \log terminal;
(ii) $K+S+B$ is numerically nonpositive relative to f;
(iii) S is reduced and irreducible;
(iv) $\lfloor B\rfloor=0$.

Then $K+S+B$ is 1-, 2-, 3-, 4- or 6-complementary in a neighborhood of any fiber of f lying on S. More precisely, if $K+S+B$ is not 1- or 2-complementary then $K+S+B$ has an exceptional 3-, 4- or 6-complement.

Here $K+B^{+}$is exceptional if $\left(K+B^{+}\right)_{\mid S}$ is exceptional (see the paragraph following Theorem 5.6).

Proof. Since X is \mathbb{Q}-factorial, by stability (1.3.4) we can perturb the irrational multiplicities of B to arrange that B is a \mathbb{Q}-divisor, while preserving all the conditions (i)-(iv) and $\lfloor(n+1) B\rfloor$ for $n=1,2,3,4$ or 6 . Fix the fiber $f^{-1} P$ over $P \in Z$, and consider a resolution of singularities $g: Y \rightarrow Z$ such that the exceptional divisors and all irreducible components of $g^{-1}(K+S+B)$ are nonsingular and cross normally. By assumption and because Z is normal, the fiber $f^{-1} P$ under study is a connected curve (or a point) lying over S. This curve on S is also contracted by f. Moreover, since S is normal (see Corollary 3.8), there is a commutative square

$$
\begin{array}{cc}
S & \subset X \\
f_{T} \downarrow & \\
\downarrow f \\
T & \rightarrow Z
\end{array}
$$

where T is a normal surface and f_{T} the contraction induced by f. The resolution g defines a similar square

$$
\begin{aligned}
g^{-1} S & \subset Y \\
g_{r} \downarrow & \downarrow f \circ g \\
T & \rightarrow Z
\end{aligned}
$$

where $g_{T}=f_{T} \circ\left(g_{\mid g^{-1} S}\right)$ is a resolution of singularities of the normal surface T. Hence $(f \circ g)^{-1} P \cap g^{-1} S=\left(g_{\mid g^{-1} S}\right)^{-1} f^{-1} P$ is a connected fiber contracted by g_{T}. Consider on Y the \log divisor $K_{Y}+g^{-1} S+D$ with the subboundary $g^{-1} S+D=(S+B)^{Y}$, or in other words, with $f^{*}(K+S+B)=K_{Y}+g^{-1} S+D$. Since $K+S+B$ is purely \log terminal, the divisor D is not only a subboundary, but its multiplicities are all <1. By normal crossing $D_{g^{-1} S}=D_{\mid g^{-1} S}$ is also a subboundary with multiplicities <1. Furthermore, the \log divisor

$$
\begin{aligned}
K_{g^{-1} S}+D_{g^{-1} S} & =\left(K_{Y}+g^{-1} S+D\right)\left|g^{-1} S=f^{*}(K+S+B)\right| g^{-1} S \\
& =\left(g_{\mid g^{-1} S}\right)^{*}(K+S+B) \mid S=\left(g_{\mid g^{-1} S}\right)^{*}\left(K_{S}+B_{S}\right)
\end{aligned}
$$

is \log terminal, has no reduced boundary components and is numerically nonpositive relative to g_{T}. By (3.2.2) and since B is effective, $g_{\mid g^{-1} S}$, hence also g_{T}, contracts
the components of $D_{g^{-1} S}$ with negative multiplicities. Thus the birational contraction g_{T} and the subboundary $D_{g^{-1} S}$ satisfy the conditions of Theorem 5.6. Hence the log divisor $K_{g^{-1} S}+D_{g^{-1} S}$ is 1-, 2-, 3-, 4- or 6-complementary; its complement $\overline{D_{g-1 S}}$ is an element of the linear system $\left|-n K_{g^{-1} S}-\left\lfloor(n+1) D_{g^{-1} S}\right\rfloor\right|$. Now note that $-\left(K_{Y}+g^{-1} S+D\right)$ is a \mathbb{Q}-divisor that is nef and big relative to the contraction $f \circ g$. Hence by the Kawamata-Viehweg vanishing theorem

$$
\begin{aligned}
& R^{1}(f \circ g)_{*} \mathscr{O}_{Y}\left(-n K_{Y}-(n+1) g^{-1} S-\lfloor(n+1) D\rfloor\right) \\
& \quad=R^{1}(f \circ g)_{*} \mathscr{O}_{Y}\left(K_{Y}+\left\lceil-(n+1)\left(K_{Y}+g^{-1} S+D\right)\right]\right)=0
\end{aligned}
$$

Hence $\left|-n K_{Y}-n g^{-1} S-\lfloor(n+1) D\rfloor\right|$ on Y cuts out the complete linear system $\left|-n K_{g^{-1} S}-\left\lfloor(n+1) D_{g^{-1} S}\right\rfloor\right|$ on the surface $g^{-1} S$ in a suitable neighborhood of the fiber $(f \circ g)^{-1} P$. Here $\left\lfloor(n+1) D_{g^{-1} S}\right\rfloor=\lfloor(n+1) D\rfloor \mid g^{-1} S$ holds by normal crossings. Thus there is a divisor $\bar{D} \in\left|-n K_{Y}-n g^{-1} S-\lfloor(n+1) D\rfloor\right|$ with $(\bar{D}) \mid g^{-1} S=$ $\overline{D_{g^{-1} S}}$. I claim that $g(\bar{D})$ is an n-complement of $K+S+B$. To check this, introduce the divisor $D^{+}=g^{-1} S+(1 / n)(\lfloor(n+1) D\rfloor+\bar{D})$. Then by construction, D^{+} satisfies (5.1.1) and (5.1.3), but instead of (5.1.2) we only know that the restriction

$$
\left(K_{Y}+D^{+}\right\rangle \left\lvert\, g^{-1} S=K_{g^{-1} S}+\frac{1}{n}\left(\left\lfloor(n+1) D_{g^{-1} S}\right\rfloor+\overline{D_{g^{-1} S}}\right)\right.
$$

is \log canonical. Since being linearly 0 is preserved under birational contractions, $B^{+}=g\left(D^{+}\right)=S+(1 / n)(\lfloor(n+1) B\rfloor+g(\bar{D}))$ also satisfies (5.1.1) and (5.1.3), but instead of (5.1.2) we only know that the restriction $\left(K+B^{+}\right)_{S}=K_{S}+B_{S}^{+}$is log canonical. Indeed,

$$
\left(g_{\mid g^{-1} S}\right)^{*}\left(K_{S}+B_{S}^{+}\right)=g^{*}\left(K+B^{+}\right)\left|g^{-1} S=\left(K_{Y}+D^{+}\right)\right| g^{-1} S
$$

is \log canonical. Hence it remains to check that $K+B^{+}$is \log canonical. For this, in addition to the restriction $\left(K+B^{+}\right) \mid S=K_{S}+B_{S}^{+}$being log canonical, we need the effectiveness

$$
B^{+}-S=g\left(D^{+}\right)-S=\frac{1}{n}(\lfloor(n+1) B\rfloor+g(\bar{D})) \geq \frac{1}{n}(\lfloor(n+1) B\rfloor) \geq 0 .
$$

For $n=1, K+B^{+}$log canonical follows from Corollary 4.4. Indeed, by (i) the log divisor $K+B^{+}$has only \log terminal singularities outside B^{+}, and in fact canonical singularities, since it has index 1 . For $n \geq 2$ we need the following more general case of inversion of adjunction 3.3.
5.13. Proposition. The inversion problem 3.3 is true for 3 -folds under the present assumption that X is \mathbb{Q}-factorial.

One can deduce from Proposition 5.13 that if S_{t} is a deformation of surface singularities $P_{t} \in S_{t}$ and P_{0} is a log canonical (log terminal) singularity of S_{0} and the total space of the deformation is \mathbb{Q}-Gorenstein, then $P_{t} \in S_{t}$ are log canonical singularities (respectively log terminal singularities) for t close to 0 (compare [3]). By inversion of ajunction 3.3, this holds (conjecturally) in any dimension and with boundaries. Moreover log canonical singularities (respectively log terminal singularities) can be treated as singularities of Kodaira dimension 0 (respectively $-\infty$), which leads to the conjecture on the upper semicontinuity of the Kodaira dimension of singularities under deformations (as in Ishii [5], for example).

For the proof of Proposition 5.13 we use the following result, which has essentially already been proved.
5.14. Lemma. Suppose given a log divisor $K+S+B$ and a contraction $f: X \rightarrow Z$ that is small in a neighborhood of some fiber $f^{-1} P$, such that
(i) $K+S+B$ is log terminal;
(ii) $K+S+B$ is numerically negative relative to f;
(iii) $\lfloor B\rfloor=0$;
(iv) S is reduced;
(v) S has two irreducible components meeting $f^{-1} P$, one nef and one numerically nonpositive relative to f.

Then $K+S+B$ is 1-complementary in a neighborhood of $f^{-1} P$.
Note that in (v) a component of S having nonzero intersection number with the fiber $f^{-1} P$ simply intersects it, and a component that is numerically 0 on $f^{-1} P$ and intersects it must contain it.

Proof. By (v), S has an irreducible component S^{-}which is nonpositive relative to f. Since X is \mathbb{Q}-factorial, by (i) S^{-}is a normal surface, and by connectedness the whole contracted fiber of f is contained in it. If we slightly reduce the multiplicity of the components $S^{\prime}=S-S^{-}$then the new \log divisor $K+S^{-}+B^{\prime}$ satisfies all the conditions of Theorem 5.12 and $S^{\prime}+B \geq B^{\prime}$. By (3.2.3) and (i), $K_{S^{-}}+\left(S^{\prime}+B\right)_{S^{-}}$ is \log canonical (even log terminal), and by (ii) it is numerically negative relative to the induced birational contraction of the fiber. From (v) and Corollary 3.11, it follows that there exists a reduced component $\left(S^{\prime}+B\right)_{S^{-}}$intersecting the fiber, but not contained in it. The log divisor $K_{S^{-}}+\left(S^{\prime}+B\right)_{S^{-}}$satisfies the assumptions of Corollary 5.11. Thus $K_{T}+\left(S^{\prime}+B\right)_{S^{-}}^{T}$ is 1-complementary for an arbitrary extraction $g: T \rightarrow S^{-}$. In particular, this holds for the resolution of singularities $g_{\mid g^{-1} S^{-}}$of the proof of Theorem 5.12. But the inequality $S^{\prime}+B \geq B^{\prime}$ implies that

$$
\left(S^{\prime}+B\right)_{S^{-}}^{g^{-1}} S^{-} \geq\left(B^{\prime}\right)_{S^{-}}^{g^{-1} S^{-}}=D_{\mid g^{-1} S^{-}}
$$

where D is the divisor defined by $g^{*}\left(K+S^{-}+B^{\prime}\right)=K_{Y}+g^{-1} S^{-}+D$. Thus by Lemma 5.3,

$$
K_{g^{-1} S^{-}}+D_{g^{-1} S^{-}}=\left(K_{Y}+g^{-1} S^{-}+D\right) \mid g^{-1} S^{-}
$$

has a 1 -complement, hence by the part of the proof of Theorem 5.12 already established $K+S^{-}+B^{\prime}$ is 1 -complementary. But slightly decreasing the multiplicities of the components of S^{\prime} gives $\left\lfloor 2 B^{\prime}\right\rfloor=S^{\prime}+\lfloor 2 B\rfloor$, and hence by (5.1.1) $K+S+B$ is also 1-complementary. Q.E.D.
5.15. Corollary. If in addition to the assumptions of Lemma $5.14 f$ is an extremal birational contraction, $B=0$ and S has an irreducible component that is numerically negative relative to f, then a flip of f exists in a neighborhood of the indicated fiber. Proof. By the preceding lemma, in a neighborhood of the fiber there is a reduced boundary B^{+}such that $K+B^{+}$is a \log canonical divisor of index 1 , and $K+B^{+}$ is numerically 0 relative to f. Hence $B^{+}>S$, and B^{+}is reduced and has a component intersecting the fiber positively. On the other hand, by assumption there exists a component of S intersecting the fiber negatively. Hence B^{+}is an LSEPD divisor for f is a neighborhood of the exceptional fiber. It follows from (i) that $K+B^{+}$has \log terminal singularities outside B^{+}. Hence by Proposition 2.7 there exists a flip of type II. Q.E.D.
5.16. Corollary. If the boundary B is reduced and $K+B$ is not necessarily \log canonical (nor log terminal outside B), then in a neighborhood of any point $P \in B$
there exists a strictly log terminal model (respectively a log canonical model) X of $K+B$, even in the case that X is not \mathbb{Q}-factorial, but B is LSEPD.
Proof. By Example 4.7, it is enough to have flips of small extremal contractions under the assumption that X is \mathbb{Q}-factorial, $K+B$ is strictly log terminal and negative relative to f, B is reduced and has both components that are numerically negative and positive relative to f. But such flips exist by Corollary 5.15. Q.E.D.

Now we can strengthen the flip of type I.
5.17. Corollary. Suppose that X is a 3 -fold, not necessarily \mathbb{Q}-factorial, and the log divisor $K+B$ and the birational contraction $f: X \rightarrow Z$ are such that
(i) $K+B$ is nonpositive relative to f;
(ii) the boundary B is a reduced LSEPD divisor for f containing the exceptional set of f;
(iii) $K+B$ is \log terminal outside B.

Then there exists a flip of f relative to $K+B$.
Proof. Decreasing B and applying the theorem on eventual freedom ([8], 3-1-2), we can check that $f(B)$ is a reduced LSEPD. By (ii) $K_{Z}+f(B)$ is log terminal outside $f(B)$. The existence of a flip is a local fact. Hence we can restrict to a neighborhood of a nontrivial connected fiber $f^{-1} P$ with $P \in Z$. By Corollary 5.16, in a neighborhood of P there is a \log canonical model of Z for $K_{Z}+f(B)$. According to Lemma 1.7 this gives us the required flip of f. Q.E.D.
5.18. Corollary. If, in addition to the assumptions of Lemma 5.14, the birational contraction f is extremal, then f has a flip in a neighborhood of the indicated fiber.
Proof. We start from the fact that if S has an irreducible component numerically negative for f then it is normal by Corollary 3.8, since $K+S+B$ is strictly log terminal. Then S cannot have a component that is numerically 0 relative to f and which intersects the fiber. Indeed, otherwise this component would intersect the first curve outside the birational contraction, which by Corollary 3.16 contradicts $K+S+B \log$ terminal. Hence by (v) S has a component that is positive relative to f. Therefore since f is extremal, in such a situation B^{+}is numerically LSEPD for f, and hence LSEPD for f, since $K+S+B$ is strictly log terminal. But $K+B^{+}$ is \log terminal outside B^{+}. Thus the flip of type II exists by Proposition 2.7.

Thus we can suppose that all the components of S are nef relative to f. Moreover, by (v) S has a component containing a fiber and numerically 0 on it. Again, since $K+S+B$ is log terminal and by Corollary 3.16 , this is only possible if the remaining components of S in a neighborhood of the fiber intersect it positively. In particular, by (v) there is a component of S that is positive relative to f. If B^{+} has a component which is negative relative to f then once more B^{+}is an LSEPD divisor, and there exists a flip of type II by Proposition 2.7. In the opposite case all components of B^{+}are nef relative to f. Then discarding components of B^{+} intersecting the fiber of f positively, we arrive at the flip of Corollary 5.17. Q.E.D.
5.19. Corollary. If $K+B$ is a log divisor, not necessarily \log canonical, then in a neighborhood of $\lfloor B\rfloor$, there exists a strictly log terminal model of X for $K+B$, even if X is not \mathbb{Q}-factorial, but B is \mathbb{R}-Cartier and $\lfloor B\rfloor$ is an LSEPD divisor. Under the same assumptions, if $K+B$ is log terminal outside $\lceil B\rceil$ then a log canonical model exists. In the analytic case, the same conclusions hold in a neighborhood of a projective subspace $W \subset\lfloor B\rfloor$.
Proof. The boundary B can be increased by adding an effective divisor H (in the analytic case, in a neighborhood of W) in such a way that the new boundary $B+H$
is reduced, Cartier, and X is nonsingular outside $B+H$. As $B+H$ we can take a sufficiently general hyperplane section passing through the singularities outside the support of the boundary B and through the support of B. The reducibility of such a divisor follows from Bertini's theorem, since for $m \gg 0$, the linear system $\left|D+m H-\sum C_{i}\right|$ on the projective closure of X has base locus $\cup C_{i}$ union the singularities of X (respectively, in a neighborhood of W), where D is an integral Weil divisor, H the hyperplane section and C_{i} irreducible closed subvarieties of codimension ≥ 2. This follows easily from the sheaf-theoretic description of linear systems and the Serre vanishing theorem (in the analytic situation, by [18], 0.4, in a suitable neighborhood of W).

From this point on, one can work as in Example 4.7. Applying Proposition 4.3 to $K+B+H$, we get a strictly \log terminal extraction of f in a neighborhood of $\lfloor B\rfloor$ (in the analytic case, in a neighborhood of W), such that the whole boundary $f^{-1} B+f^{-1} H+\sum E_{i}$ is an LSEPD divisor for f, since it is contracted to the Cartier boundary $B+H$. Note also that H is \mathbb{R}-Cartier, since by assumption B is \mathbb{R} Cartier. In the construction of the log terminal model of Example 4.7 we need to replace B by its reduced part $\lfloor B\rfloor$. The existence of flips can be checked locally over Z, and it follows by Corollary 5.18. However, to construct the log canonical model, the arguments of Example 4.7 are also good enough. Q.E.D.

Proof of Proposition 5.13. By inversion of adjunction 3.4, and the fact that X is \mathbb{Q}-factorial, this follows from Corollary 5.19. Q.E.D.

Conclusion of the proof of Theorem 5.12. We apply Proposition 5.13 with $D=B^{+}-$ S. Note that in the case we consider S is normal, that is, $S^{\nu}=S$. The final assertion of the theorem follows from the fact that if $K+S+B$ does not have a 1- or 2-complement, then neither does $K_{g^{-1} S}+D_{g^{-1} S}$. But then by Theorem 5.6, $K_{g^{-1} S}+D_{g^{-1} S}$ has an exceptional 3-, 4- or 6-complement. According to the proof and definition, the same holds for $K+S+B$. Q.E.D.

We have the following variant of flips of types I and II.
5.20. Corollary. Let $f: X \rightarrow Z$ be an extremal contraction and $K+B$ a log divisor such that
(i) $K+B$ is log terminal outside the support of the boundary $\lceil B\rceil$;
(ii) $K+B$ is numerically 0 relative to f;
(iii) the reduced part of the boundary $\lfloor B\rfloor$ has two irreducible components that are numerically negative and positive relative to f.

Then there exists a flip of f with respect to any divisor.
Proof. Let S^{+}be the component that is positive on the contracted curve. Since f is extremal, there is a unique nontrivial flip, and by (ii) and Lemma 1.7 it can be constructed as a log canonical model for $K+B-S^{+}$over Z. Thus we can also restrict to the case of a connected curve contracted by f to a point P. Hence by Corollary 5.19 there exists a strictly log terminal extraction $g: Y \rightarrow X$. By (1.5.7) $g^{*}(K+B)=K_{Y}+B_{Y}$, and by construction this is strictly \log terminal. Hence by (ii) $h=f \circ g$ is a strictly \log terminal model of Z for $K_{Z}+f(B)$. By (iii) $f(\lfloor B\rfloor)=\lfloor f(B)\rfloor$ is LSEPD. But the reduced part of the boundary B_{Y} lies over $\lfloor f(B)\rfloor$ by (i), and hence is an LSEPD divisor for h. Moreover, we can apply Corollary 4.6 to $f=h, H=h^{-1} f\left(S^{+}\right)$for $\varepsilon=1$ and $\varepsilon_{0}<1$ close to 1. Again by (iii) it remains to check the existence of flips of small 0 -contractions h over Z such that the reduced part of the boundary B_{Y} has irreducible components H and S that are respectively positive and negative relative to f. Note that, decreasing
H slightly, $K_{Y}+B_{Y}$ becomes negative relative to h and \log terminal. Hence by Theorem 5.12 we deduce that for $\beta<1$ and close to 1 , the log divisor $K_{Y}+\beta B_{Y}$ is 1 - or 2 -complementary. Exceptional complements drop out by construction in the proof of Theorem 5.6, since S and H are preserved in a complement. In the case of a 1 -complement, there exists a flip of type II. The case of a 2-complement reduces our corollary to the situation when the following additional condition holds:
(iv) $2(K+B)$ is linearly 0 in a neighborhood of the contracted curve.

Then $2\left(K_{Y}+B_{Y}\right)$ is also linearly 0 relative to g, which by Proposition 1.12 is preserved under modifications in 0-contractions. Then the required flips are of type III. The condition (iv) holds because, by construction, $K_{Y}+B_{Y}$ becomes log terminal on decreasing the multiplicity of H in the boundary B_{Y}. Q.E.D.

§6. Special flips

The convention of $\S 5$ is no longer in force here: when writing $K+S+B$, we do not necessarily assume $\lfloor B\rfloor \leq 0$.
6.1. Definition. A small projective birational contraction f of a connected curve is limiting for a \log canonical divisor $K+S+B$ if the following conditions (6.1.1-5) hold:
(6.1.1) $K+S$ is strictly \log terminal;
(6.1.2) S is an irreducible surface that intersects the contracted curve and is nonpositive relative to f;
(6.1.3) every irreducible component of the fractional part $\{B\}$ is negative relative to f;
(6.1.4) the \log divisor $K+S+B$ is negative relative to f;
(6.1.5) in a neighborhood of the contracted curve, $K+S+B^{\prime}$ is not log canonical for any $B^{\prime}>B$ with the same support as B.
f is special if in addition f is extremal (in the analytic case, both (6.1.1) and the extremal property are preserved on shrinking to a neighborhood of the contracted curve, that is, over $W=p t$., the image of the exceptional curve for f, so in particular the fiber is irreducible), and
(6.1.6) $\quad B$ is integral, that is, $\{B\}=0$;
(6.1.7) $\quad K+S+B$ is strictly \log terminal.

The significance of this assortment of conditions should become clear from Proposition 6.2 and the proof of Reductions $6.4-5$. The corresponding flips will be called limiting and special. Note that (6.1.5) follows automatically from (6.1.6), since if B is integral, increasing its multiplicities must either change the support or violate the boundary condition $b_{i} \leq 1$.
6.2. Proposition. If f is a limiting contraction then the multiplicities $b_{i} \in(0,1)$ of B form a limiting chain (see Definition 4.8) of length equal to the number of irreducible components of B with fractional multiplicities.

Note that if there are coincidences between the multiplicities b_{i} of different prime divisors D_{i}, these can be viewed as a single multiplicity for their sum, which is a reduced but reducible divisor. Then Proposition 6.2 remains valid. In particular, we can take the distinct multiplicities b_{i} as a limiting chain, and we do this in our reduction below.
6.3. Lemma. Let $P \in X$ be a point of a surface X at which $K+B$ is not \log terminal, and suppose that in a neighborhood of P, the multiplicities b_{i} of irreducible and nonreduced components of B can be written

$$
b_{i}=\frac{n_{i}-1}{n_{i}}+\sum_{j} \frac{k_{i j}}{n_{i}} d_{j},
$$

where $n_{i}, k_{i j}$ are natural numbers, and d_{j} is a finite ordered set of numbers from the interval $(0,1)$. Then for some i, the d_{j} with $k_{i j} \neq 0$ form a limiting chain.
Proof. Let $f: Y \rightarrow X$ be a \log terminal model of the surface singularity $P \in X$ (see Example 1.6). By assumption its fiber is nonempty, and by Lemma 5.7 it is a connected curve of S. Since P is log canonical, by (1.5.7) the log terminal divisor

$$
K_{Y}+S+f^{-1} B=f^{*}(K+B)
$$

is numerically 0 relative to f. If the chain d_{i} is empty then it is limiting by definition. Otherwise B has an irreducible component through P with multiplicity $b_{i} \in(0,1)$. Its birational transform meets the fiber over P. From this and from Corollary 3.16 one deduces easily that the reduced part of the boundary $S+f^{-1} B$ is a chain of curves in a neighborhood of the fiber, and its contracted irreducible components are copies of \mathbb{P}^{1}. Here the birational transforms of irreducible components of B with $b_{i} \in(0,1)$ can only intersect its ends, that are contracted to P. (Under our assumptions there is at most one end not contracted by f, and this can only be the birational transform of the unique reduced irreducible component of the boundary B through P.) For each of the contracted ends \mathbb{P}^{1}, we deduce by adjunction, the \log terminal assumption on $K_{Y}+S+f^{-1} B$, and Corollaries 3.16 and 3.10 that

$$
K_{\mathbb{P}^{\prime}}+\left(S+f^{-1} B\right)_{\mathbb{P}^{\prime}}=\delta I+\sum p_{h} P_{h}
$$

where $\delta=0$ or 1 , and is 1 only at a point I of intersection of the component \mathbb{P}^{1} with another component S, and

$$
p_{h}=\frac{m_{h}-1}{m_{h}}+\sum_{i} \frac{l_{h i}}{m_{h}} b_{i}<1
$$

with $m_{h}, l_{h i}$ natural numbers. By Lemma 4.2, substituting for the b_{i} in terms of d_{j} gives a similar expression for the p_{h} as a sum of the d_{j}. Note that $\sum p_{h}=1$ or 2 , where the sum runs over all contracted ends, and each d_{j} with $k_{i j} \neq 0$ for some i necessarily appears with nonzero coefficient in some p_{h}. Q.E.D.
Proof of Proposition 6.2. First of all, (6.1.2) and the connectedness of the contracted curve imply that the contracted curve is contained in S. The surface S itself is normal by (6.1.1), and by (3.2.3) the restriction $K_{S}+B_{S}$ is log canonical. If $K_{S}+B_{S}$ is \log terminal and $\left\lfloor B_{S}\right\rfloor=0$ in a neighborhood of the contracted curve, then these properties are preserved on slightly increasing B, and by Proposition 5.13 the log canonical property of $K+S+B$ is preserved, which is impossible by assumption (6.1.5). Thus the locus of \log canonical singularities $M=\operatorname{LCS}\left(K_{S}+B_{S}\right)$ is nonempty in a neighborhood of the curve, and by Lemma 5.7 is connected.

Suppose first that M contains one of the irreducible contracted curves C. Then by (6.1.3), every irreducible component of B with multiplicity $b_{i} \in(0,1)$ passes through C. For a general hyperplane section H the divisor $K+H+S+B$ is \log canonical in a neighborhood of the contracted curve, and $K+H+S+\lfloor B\rfloor$ is strictly \log terminal. In particular, H is a normal surface. According to Corollary 3.10 , the multiplicities of the boundary $(S+B)_{H}$ of the log canonical divisor $K_{H}+(S+B)_{H}$
have only multiplicities of the form $d_{i}=b_{j}$ in a neighborhood of the intersection $C \cap H$. By Corollary 3.16, when $\{B\} \neq 0, K_{H}+(S+B)_{H}$ is not \log terminal at the points of $C \cap H$, since in this case $K+S+B$ and $K+H+S+B$ are not log terminal along C. Moreover, b_{j} coincides with some $d_{i}<1$ in a neighborhood of $C \cap H$. Thus the chain b_{j} is limiting by Lemma 6.3. In the case $\{B\}=0$ the chain b_{j} is empty and limiting by definition. Hence we also assume below that $\{B\} \neq 0$.

Thus it remains to consider the case that M intersects the contracted curve in a unique point P. By (6.1.3) every irreducible surface in B with fractional multiplicity passes through P. By Corollary 3.10, in a neighborhood of P the multiplicities of the boundary B_{S} have the form

$$
d_{i}=\frac{n_{i}-1}{n_{i}}+\sum_{j} \frac{k_{i j}}{n_{i}} b_{j}
$$

Now the multiplicities of the contracted curves of the boundary are <1 and every b_{j} occurs in each of them. If at P the restriction $K_{S}+B_{S}$ is not \log terminal, then again by Lemma 6.3 the chain b_{j} is limiting. On the other hand, if at P the restriction $K_{S}+B_{S}$ is \log terminal, then in a neighborhood of P, the set M is a nonsingular irreducible curve through P. Moreover, if an irreducible component of B with fractional multiplicity does not contain M then one can increase its multiplicity while preserving the log canonical property of $K_{S}+B_{S}$, and hence also of $K+S+B$. This is impossible by (6.1.5). Hence in the case that $K_{S}+B_{S}$ is \log terminal, in a neighborhood of P, every irreducible component of B with fractional multiplicity must pass through M. Hence just as in the first case considered it follows that the chain b_{i} is limiting. Q.E.D.
6.4. Reduction. Theorem 1.9 is implied by the existence of special flips, and even by the existence of special flips of the types (6.6.1-2) below.
6.5. Reduction. Theorem 1.10 and Corollary 1.11 are implied by the existence of special flips, and even by the existence of special flips of the types (6.6.1-2) below.
Proof of Reductions 6.4-5. By Lemma 1.7, to construct the flip of f with respect to $K+B$ it is enough to construct a log canonical model of Z for $K_{Z}+f(B)$; then the conclusions of Corollary 1.11 will be satisfied. Moreover, according to the proof of this corollary in $\S 4$, it is sufficient to construct a strictly log terminal model of f. Thus Reduction 6.4 reduces to Reduction 6.5 ,]and more precisely, to the reduction concerning Theorem 1.10.

We now turn to constructing a strictly \log terminal model of f in Reduction 6.5; we add a reduced divisor H to the boundary B (in the analytic case, in a neighborhood of W) to get a boundary $B+H$ with the properties that X and the components of B are nonsingular and cross normally, $\lfloor B\rfloor+H$ is a Cartier divisor and is principal locally over Z (that is, f^{*} of a Cartier divisor on Z), and $K+B$ is \log terminal outside H. For H we can take a general element of the linear system $\left|m f^{*} A-\lfloor B\rfloor-f^{-1} C\right|$ with $m \gg 0$, where A is an ample divisor on Z, and C is the image in Z of the curves contracted by f, the singularities of X and the irreducible components of the support of B, their nonnormal intersections and the points at which $K+B$ is not \log terminal. Since f is small and finite over the general point of Z, both C and $f^{-1} C$ are at most 1-dimensional algebraic subsets (in the analytic case, analytic subsets) and the base locus of the linear system is exactly $f^{-1} C$ (compare the proof of Corollary 5.19). To prove this, using Zariski's main theorem (that is, the Stein factorization), we can contract the exceptional curves of f and suppose that f is finite. Then X is quasiprojective (in the analytic case, is 1 -complete in a neighborhood of $f^{-1} W$, see [18], (0.1)).

Therefore by Bertini's theorem, H is reduced and nonsingular and the components of $H+B$ cross normally outside $f^{-1} C,\lfloor B\rfloor+H$ is principal locally over Z, and $K+B+H$ is \log terminal. Now take a resolution of singularities $g: Y \rightarrow X$ with exceptional set only over $f^{-1} C$, and such that the composite morphism $f \circ g: Y \rightarrow$ $X \rightarrow Z$ is projective and finite over the general point, and all the components of $B_{Y}+g^{-1} H$ are nonsingular and cross normally, in particular $K_{Y}+B_{Y}+g^{-1} H$ is strictly \log terminal. First of all, by the philosophy of $\S 1$ over Z (in the analytic case, over a neighborhood of W) we construct a strictly log terminal model of $f \circ g$ for $K_{Y}+B_{Y}+g^{-1} H$. Next we apply Corollary 4.6 to this model, with the modified $g^{-1} H$ for $H, \varepsilon=1$ and $\varepsilon_{0}=0$. For this we note that $\left\lfloor B_{Y}\right\rfloor+g^{-1} H$ is LSEPD for $f \circ g$, since by construction it has the same support as the effective Cartier divisor $g^{*}(\lfloor B\rfloor+H) \sim(f \circ g)^{*} m A$. By Proposition 1.12, this property is preserved under modifications of $g^{*}(\lfloor B\rfloor+H)$ over Z.

Therefore in both constructions flipping curves are contained in the reduced part of the boundary-in the second, since a modification of $g^{-1} H$ is a reduced component of a modification of $g^{*}(\lfloor B\rfloor+H)$ and is positive relative to a 0-contraction. Thus the construction of a strictly \log terminal model of f for $K+B$ over Z reduces to the construction of flips of small extremal contractions, for which, after discarding fractional components of the modified boundary B_{Y} not negative relative to such birational contractions, conditions (6.1.1-4) are satisfied modulo the connectedness of the flipping curve. On the contrary, (6.1.5) does not hold since $K_{Y}+B_{Y}$ is strictly log terminal and, by stability (1.3.4), when there are fractional components of the modified boundary B_{Y} that are negative relative to such birational contractions.

Increasing equal multiplicities equally we get a limiting contraction, the boundary of which has a chain of distinct fractional multiplicities that is limiting by Proposition 6.2 and is $>$ the same chain for B. Here, in the algebraic case, we need to take a neighborhood of a connected component of the birational contraction, to ensure that its exceptional curve is connected and that the log divisor with the new boundary will be log canonical; in the analytic case, we can localize to replace the given birational contraction by the contraction of only one connected component; under this we may lose projectivity of $f \circ g,(f \circ g)^{-1} W$ is as a rule not a flipping curve and Y is \mathbb{Q}-factorial only after shrinking neighborhoods of $(f \circ g)^{-1} W$.

The conclusion is that constructing a log terminal model of f for $K+B$ reduces either to finding special flips, or limiting flips with chains of distinct fractional multiplicities of the new boundary $>$ the same chain for B. In particular, this localizes the problem of finding \log terminal models.

Thus Reductions 6.4-5 are reduced to the existence of limiting extremal flips. It now remains to reduce the existence of limiting extremal flips to the existence of special flips. For this, consider an extremal limiting contraction f that is not special. Then immediately from the definition, we get that B either contains a component that is numerically negative relative to f, or in the case of reduced B the contraction f becomes special after discarding certain components that are nef relative to f. From this and from the extremal property of f it follows that in a neighborhood of the contracted curve there exists a reduced divisor H for which $B+H$ is LSEPD for f, with the relatively principal divisor of the form $d H+\sum d_{i} D_{i}$, where $\operatorname{Supp} B=\left\{D_{i}\right\}$. Moreover, we can assume that $K+B+\varepsilon H$ is log canonical and nef relative to f for some ε with $1 \geq \varepsilon>0$. As H we can take a number of general elements of a very ample linear system relative to f. By the \mathbb{Q}-factorial assumption on X and Corollary 5.19 , in a neighborhood of a contracted curve there exists a strictly \log terminal extraction $g: Y \rightarrow X$ for $K+B+\varepsilon H$. By (1.5.7) this
is \log crepant, that is,

$$
g^{*}(K+B+\varepsilon H)=K_{Y}+B_{Y}+\varepsilon g^{-1} H
$$

and it follows from this that f o g is a strictly \log terminal extraction of Z for $K_{Z}+f(B+\varepsilon H)$ (in the analytic case, over a neighborhood of W). But by (6.1.1) X has purely \log terminal singularities outside $B+H$. Therefore, again by (1.5.7) the exceptional divisors of g lie over $B+H$ and $B_{Y}+\varepsilon g^{-1} H$ is LSEPD for $f \circ g$ with the components of $g^{-1} H$ having equal multiplicities in the principal divisor. Thus applying Corollary 4.6 as above with H the modified $g^{-1} H$ and $\varepsilon \gg \varepsilon_{0}>0$, we get the required flip as the log canonical model of f. In this we need to construct either special flips or limiting flips with chains of distinct fractional multiplicities of the new boundary $>$ the same chains for B.

Now use the notation of Definition 6.1. By second termination 4.9 everything reduces to special flips for which the chain of fractional multiplicities is maximal, or equivalently, empty: $\{B\}=0$ and $S+B$ reduced. In the analytic case, on shrinking the neighborhood of the contracted curve E we can lose \mathbb{Q}-factoriality of X and extremality of f. We can avoid this unpleasantness when $S+B$ is LSEPD for f and the flip exists by Corollary 5.17. In the opposite case, discarding irreducible components of B that are numerically positive relative to f, we can assume that $S+B$ has an irreducible component that is numerically negative relative to f. Hence we only need to consider special flips for which all irreducible components of $S+B$ are numerically negative relative to f (compare the proof of Corollary 5.18). By Corollary 3.16, since we are in the 3-fold case, there are just the following two possibilities.

6.6. Types of special flips.

(6.6.1) $B=0$ and S is an irreducible surface negative relative to f.
(6.6.2) $S+B=S_{1}+S_{2}$ is the sum of two irreducible surfaces S_{1} and S_{2} negative relative to f.

Thus the assertions of reductions $6.4-5$ reduce to the existence of special flips of these two types. For type (6.6.1), by (1.5.7), and since for suitable H and $0<$ $\varepsilon<1$ as above both $K+S$ and $K+S+\varepsilon H$ are purely log terminal, the strictly \log terminal extraction $g: Y \rightarrow X$ of neighborhoods of the contracted curve E is small and purely \log terminal. It follows from this, and from Kawamata's result on the finiteness of $\sigma(X, E)$ (see [7], 1.12, and [19], 3.4), that there exists a small extraction $g: Y \rightarrow X$ for which Y is \mathbb{Q}-factorial for any analytic shrinking of the neighborhood of the curve $g^{-1} E$. Hence according to the preceding construction, the flips occurring in it satisfy the requirements of speciality for any shrinking of the neighborhood of the contracted curve, and in particular are extremal in the analytic sense in a neighborhood of the contracted curve, and this curve is irreducible.

For type (6.6.2), by Corollary 3.8 the curve $E=S_{1} \cap S_{2}$ is irreducible and S_{1} and S_{2} cross normally along it. Hence by (3.2.3) the restriction of $K+S$ to S_{1} is purely \log terminal and a strictly \log terminal extraction g of any neighborhood of E for $K+S_{1}$ is the identity. In fact by (1.5.7) it is small and \log crepant for $K+S$. Moreover, the exceptional curves over E land in the surfaces $g^{-1} S_{1}$ and $g^{-1} S_{2}$, which is not possible by the purely \log terminal property of the restriction discussed above. Once g is the identity in a neighborhood of E, strict \log terminal and extremal are preserved by shrinking to a neighborhood of E. Similar arguments could be carried out for analytic restrictions of any special flips, not only types (6.6.12). Q.E.D.

By Theorem 5.12, the special flips of (6.6.1) have 1-, 2-, 3-, 4- or 6-complement; and moreover, if a 1 - or 2 -complement does not exist, the 3 -, 4 - or 6 -complement is exceptional. Such birational contractions and their flips will be called special flips (respectively exceptional special flips) of index $n=1,2,3,4$ or 6 if $K+S$ has an n-complement (respectively exceptional n-complement). For a special flip of index n the log divisor $K+0^{+}$has index n and will be written in the form $K+S+B$, where $B=0^{+}-S$ is the n-complement. In distinction to these, the flips of types I-IV of $\S 2$ can be called the basic types; as we will establish, every log flip can be decomposed in terms of these, resolution of singularities and birational contractions. All the flips used up to now are of this kind; in the course of this, we have shown that the basic flips of types I-III are sufficient. The next result is a typical example of the construction of flips in terms of extractions and contractions.
6.7. Proposition. Flips of type (6.6.2) exist.

Proof. Since $K+S_{1}+S_{2}$ is strictly log terminal, by Corollary 3.8 the surfaces S_{1} and S_{2} are normal and cross normally along an irreducible curve C. By (3.2.3) the restrictions $K_{S_{1}}+\left(S_{2}\right)_{S_{1}}$ and $K_{S_{2}}+\left(S_{1}\right)_{S_{2}}$ are log terminal and exceptional on S_{1} and S_{2} respectively. More precisely, C is the unique reduced component of the boundaries $\left(S_{1}\right)_{S_{2}}$ and $\left(S_{2}\right)_{S_{1}}$. By the adjunction formula and the proof of (3.2.3) it follows that the restrictions of $K_{S_{1}}+\left(S_{2}\right)_{S_{1}}$ and $K_{S_{2}}+\left(S_{1}\right)_{S_{2}}$ to C coincide and determine a \log terminal divisor $K_{C}+\sum p_{i} P_{i}$ with $p_{i}<1$, which is negative on C. In particular $C=\mathbb{P}^{1}$. By (3.2.2) and Proposition 3.9 the index of C at each point P_{i} is a natural number m_{i} such that $\left(m_{i}-1\right) / m_{i} \leq p_{i}$. Therefore, there exists a natural number m depending only on the multiplicities p_{i} such that the index of C on S_{1} divides m. For example, it's enough to take $m=n$! where $(n-1) / n \geq p_{i}$ for all i. Since m is universal, the same holds for C on S_{2}. Hence the negative constants $\left(C^{2}\right)_{S_{1}},\left(C^{2}\right)_{S_{2}}$ and their sum

$$
\sigma_{12}=\left(S_{1}+S_{2}\right) \cdot C=\left(C^{2}\right)_{S_{1}}+\left(C^{2}\right)_{S_{2}}
$$

are rational numbers with denominators dividing m.
I now claim that in a neighborhood of C there is a strictly log terminal extraction $g: Y \rightarrow X$ with a unique exceptional divisor S_{3}, and such that S_{3} contracts to C and g is the standard blowup of the ideal I_{C} of C above the generic point of C. First of all, there is a projective extraction g which at the generic point of C is the blowup of the ideal I_{C}, and such that the exceptional divisors of g, together with the inverse images $g^{-1} S_{1}$ and $g^{-1} S_{2}$, are nonsingular and cross normally. Next, acting according to the philosophy of $\S 1$, we get a log terminal model of g for $K_{Y}+\left(S_{1}+S_{2}\right)_{Y}$. Since Supp $g^{*}\left(S_{1}+S_{2}\right) \leq\left(S_{1}+S_{2}\right)_{Y}$ and is LSEPD for g, we can apply termination 4.1. Flips exist by Corollaries 5.17 or 5.15 (when there is a component of ($\left.S_{1}+S_{2}\right)_{Y}$ not lying over $S_{1}+S_{2}$ and negative on the flipping rays). Write S_{3} for the exceptional surface over C; then since the general fiber of $S_{3} \rightarrow C$ is a \mathbb{P}^{1} meeting S_{1} and S_{2}, that is $\left(K_{Y}+S_{1}+S_{2}+S_{3}\right) \mathbb{P}^{1}=0 \geq 0$, it follows that S_{3} is not contracted back down to C during this process. It can't contract to a point since we're working over X.

By (1.5.7), g is log crepant, and by construction g contracts one irreducible surface S_{3} to C. Since $K+S_{1}+S_{2}$ restricted to either of S_{1} or S_{2} is exceptional, the restriction of $K_{Y}+\left(S_{1}+S_{2}\right)_{Y}=g^{*}\left(K+S_{1}+S_{2}\right)$ to either of $g^{-1} S_{1}$ or $g^{-1} S_{2}$ is exceptional. Hence the surfaces $g^{-1} S_{1}$ and $g^{-1} S_{2}$ cut out on S_{3} two disjoint irreducible curves C_{1} and C_{2} respectively that map isomorphically to C under g. Since Y is \mathbb{Q}-factorial, the curves C_{1} and C_{2} intersect only the irreducible components S_{3} and S_{1} or S_{2} (the components of the reduced divisor $\left.\left(S_{1}+S_{2}\right)_{Y}\right)$.

Moreover, since $K+S_{1}+S_{2}$ is divisorially log terminal, the boundary $\left(S_{1}+S_{2}\right)_{Y}$ has no other components, that is, $\left(S_{1}+S_{2}\right)_{Y}=g^{-1} S_{1}+g^{-1} S_{2}+S_{3}$. In addition, since

$$
K_{Y}+\left(S_{1}+S_{2}\right)_{Y}=K_{Y}+g^{-1} S_{1}+g^{-1} S_{2}+S_{3}
$$

is strictly \log terminal, the surfaces $g^{-1} S_{1}, g^{-1} S_{2}$, and S_{3} are normal, and since X is \mathbb{Q}-factorial the contraction g is extremal. In particular, the surface S_{3} is ruled relative to g. Hence the relative Picard number of the composite $f \circ g: Y \rightarrow X \rightarrow Z$ is equal to 2 , where $f: X \rightarrow Z$ is the contraction of C. Therefore the KleimanMori cone $\overline{\mathrm{NE}}(Y / Z)$ is spanned by two extremal $\left({ }^{9}\right)$ rays R_{1} and R_{2}.

Suppose that $R_{1}=\mathbb{R}^{+}[F]$ is spanned by a curve F contracted by g. By construction

$$
K_{Y}+g^{-1} S_{1}+g^{-1} S_{2}+S_{3}=g^{*}\left(K+S_{1}+S_{2}\right)
$$

is numerically nonpositive relative to $f \circ g, 0$ on R_{1}, and negative on some curve not contracted by g. Hence the other extremal ray R_{2} is spanned by an irreducible curve $C^{\prime} \subset S_{3}$ not contracted by g and negative for $K_{Y}+g^{-1} S_{1}+g^{-1} S_{2}+S_{3}$. If neither C_{1} nor C_{2} generates R_{2} then there is a decomposition $C_{1} \equiv a F+b C^{\prime}$ up to numerical equivalence with positive rational numbers a and b. But this gives a contradiction:

$$
0=g^{-1} S_{2} \cdot C_{1}=a g^{-1} S_{2} \cdot F+b g^{-1} S_{2} \cdot C^{\prime}>0
$$

Thus for definiteness we can assume $C^{\prime}=C_{2}$. Then by the preceding relation, either $a=0$ and $g^{-1} S_{2} \cdot C_{2}=\left(C_{2}^{2}\right)_{S_{3}}=0$ or $a>0$ and $g^{-1} S_{2} \cdot C_{2}=\left(C_{2}^{2}\right)_{S_{3}}<0$. In the first case the ray R_{2} specifies a divisorial contraction $h: Y \rightarrow W$ of the surface S_{3} to a curve (transversal to the contraction g). I claim that the modification $h \circ g^{-1}: X \rightarrow W$ is a flip of the contraction f. Indeed, by construction $h \circ g^{-1}$ is a small modification and $h \circ g^{-1}\left(S_{2}\right)$ is positive on the flipped curve $h\left(S_{3}\right)$.

The second case, when R_{2} defines a small contraction, reduces to the first by the following arguments. The contraction g induces an isomorphism on $g^{-1} S_{2}$, under which, by the adjunction formula, the restriction of $K_{C}+\sum p_{i} P_{i}$ is identified with the restriction of the \log divisor $K_{Y}+g^{-1} S_{1}+g^{-1} S_{2}+S_{3}$ on C_{2}. Hence by the argument of the first paragraph of the proof, the 3 negative rational numbers

$$
\begin{gathered}
S_{3} \cdot C_{2}=\left(C_{2}^{2}\right)_{g^{-1} S_{2}}=\left(C^{2}\right)_{S_{2}}, \quad\left(C_{2}^{2}\right)_{S_{3}}=g^{-1} S_{2} \cdot C_{2} \\
\sigma_{23}=\left(g^{-1} S_{2}+S_{3}\right) \cdot C_{2}=g^{*} S_{2} \cdot C_{2}=S_{2} \cdot C=\left(C^{2}\right)_{S_{1}}>\sigma_{12}
\end{gathered}
$$

have denominators dividing m. Hence R_{2} defines a small contraction of the original type with smaller invariant σ. Since the denominator is bounded we can use induction on σ. Thus we can suppose that the curve of R_{2} can be flipped $h: Y \rightarrow W$. But the flip h does not destroy the curve C_{1}. Thus under this flip the negativity of the intersection of C_{1} with $K_{Y}+g^{-1} S_{1}+g^{-1} S_{2}+S_{3}$ is preserved. Therefore by (1.12.4) the cone $\overline{\mathrm{NE}}(W / Z)$ is also generated by two extremal rays R_{3} and R_{4}.

Suppose that R_{3} is generated by the flipped curve C_{3} (possibly reduced), which is the locus of indeterminacy of h^{-1}, and R_{4} is generated by a curve $C_{4} \subset h\left(S_{3}\right)$ that is negative against $K_{W}+\left(S_{1}+S_{2}\right)_{W}$. Since $g^{-1} S_{2} \cap S_{3}=C_{2}$ and W is \mathbb{Q} factorial, the surfaces $h\left(S_{3}\right)$ and $h \circ g^{-1} S_{2}$ can only intersect along the curve C_{3}. But this is also impossible by (1.12.1), Corollary 3.16 and the fact ([8], 5-1-11) that \log discrepancies decrease over C_{3}. Thus $h \circ g^{-1} S_{2}$ is numerically 0 on $h\left(S_{3}\right)$. But $h \circ g^{-1} S_{2} \cdot C_{3}>0$, more-or-less by definition of flip. Hence R_{4} defines a divisorial contraction $l: W \rightarrow V$ of the surface $h\left(S_{3}\right)$ to a point, and $l \circ h \circ g^{-1} S_{2}$ is positive
$\left({ }^{9}\right)$ A priori, quasiextremal rays: see my commentary (10.8.2).
against the curve $l\left(C_{3}\right)$. It is not hard to check that the composite $l \circ h \circ g^{-1}: X \rightarrow V$ gives the flip of f. Q.E.D.

6.8. Proposition. Index 1 special flips exist.

Proof. By definition, in this case there is a complement of $K+S$, that is, a reduced divisor B such that $K+S+B$ is \log canonical and linearly 0 in a neighborhood of the contracted curve. Since $K+S$ is negative on the contraction, B is positive. Now the contraction is extremal, S is negative and B positive on the contracted curve, and hence the boundary $S+B$ is LSEPD. Thus the required flip is of type II and exists by Proposition 2.7. Q.E.D.

Lemma 5.7 does not hold for arbitrary birational contractions. However, from it we deduce the following closely related fact.
6.9. Theorem. Let $f: X \rightarrow Z$ be a contraction of a surface X such that the \log divisor $K+B$ is numerically 0 relative to f. Then the locus of log canonical singularities in a neighborhood of any fiber is connected except for the following case: f is not birational, the locus of log canonical singularities of $K+B$ has two connected components, and $K+B$ is exceptional in a neighborhood of either of these.
Proof. By Lemma 5.7, we can assume that f is not birational, that is, Z is a curve or a point. Let $g: Y \rightarrow X$ be a strictly log terminal extraction. Since X is normal and the fibers of f are connected, the fibers of $f \circ g$ are also connected, and for $P \in Z$ the loci of \log canonical singularities $\operatorname{LCS}(K+B) \subset X$ and $\operatorname{LCS}\left(K_{Y}+B_{Y}\right) \subset Y$ have the same number of components in a neighborhood of corresponding fibers $f^{-1} P$ and $(f \circ g)^{-1} P$ for $P \in Z$. Since $K_{Y}+B_{Y}=g^{*}(K+B)$ is log crepant, it is numerically 0 relative to $f \circ g$. Thus we can assume that the original $K+B$ is \log terminal. Then the number of connected components of $\operatorname{LCS}(K+B)$ equals the number of connected components of the reduced part of the boundary $D=\lfloor B\rfloor$.

It is enough to consider the case that $D \neq 0$ and D is not connected in a neighborhood of the fiber $f^{-1} P$. Then there is a curve that is exceptional for f and negative relative to $K+\{B\}=K+B-D$. By the theorem on the cone there is an extremal contraction $g: X \rightarrow Y$ over Z relative to which $K+\{B\}$ is negative. If g is birational then it contracts an irreducible curve, and, by Lemma 5.7, the locus of \log canonical singularities of $K+B$ in a neighborhood of the curve is connected. Hence the number of connected components of the locus of log canonical singularities is the same for $K+B$ and $K_{Y}+g(B)$. All the assumptions of the proposition are preserved, and $K+B \log$ terminal is replaced by $K+\{B\} \log$ terminal, which is equivalent to saying that no connected component of $\operatorname{LCS}(K+B)$ is an isolated point. In view of this, we can suppose that after a number of such contractions we arrive at a contraction g to a curve or point.

Note that in this case, when Z is a curve, in the preceding contractions in a neighborhood of $f^{-1} P$ we may have contracted an irreducible curve Γ intersecting D but not contained in D. Obviously the ray generated by Γ is extremal, and contracting it preserves log terminal singularities. Therefore in this case, the final extremal contraction g is just f. Thus the reduced part of the original boundary B does not contain curves exceptional for f, that is, the log terminal extraction is the identity and $K+B$ is \log terminal in a neighborhood of the fiber $f^{-1} P$. However, in counting the number of connected components of $\operatorname{LCS}(K+B)$ we can assume that f is extremal, that is, the fiber $f^{-1} P$ is an irreducible curve. The number of connected components of the locus of log canonical singularities in this case does not exceed the number of reduced components of the boundary $K+B$ over a general point of Z. From this we easily get what we want. The assertion that $K+B$ is
exceptional follows from $K+B$ log terminal in a neighborhood of the fiber.
Now suppose that $Z=p t$. By construction, the number of connected components of $\operatorname{LCS}(K+B)$ equals the number of connected components of D. If g is a contraction to a point, then since it is extremal, X has Picard number 1 and D has only one connected component. If g is a contraction to a curve Y, then X has relative Picard number 1 , that is, all fibers of g are irreducible. By construction D is positive against the general fiber of g. It follows that D is connected or consists of at most two connected components D_{1} and D_{2}. In this case D_{i} are irreducible curves not contracted to points by g. By what we proved above for the contraction f to a curve, $K+B$ is \log terminal in a neighborhood of each component D_{i}. The assertion that $K+B$ is exceptional near D_{1} or D_{2} follows from this. Q.E.D.

We strengthen Proposition 6.7 for a further reduction.
6.10. Lemma. Suppose that $f: X \rightarrow Z$ is an extremal birational contraction with boundary $B=S_{1}+S_{2}$ satisfying
(i) $K+B$ is \log terminal outside B;
(ii) $K+B$ is negative against the contracted curves;
(iii) $K+S_{1}$ is log terminal;
(iv) the surfaces S_{1} and S_{2} intersect all contracted curves and are nonpositive on them.

Then there exists a flip of f relative to any divisor.
Proof. Since f is extremal there is at most one nontrivial flip, namely the flip relative to $K+B$. We can assumed that the contracted curve is connected, and that each of the surfaces S_{i} is irreducible in a neighborhood of the contracted curve (compare the proof of reductions $6.4-5$). According to Corollary 5.17 we can also suppose that one of the surfaces S_{i} is numerically negative relative to f. By Corollary $3.8, S_{1}$ is a normal surface. The restriction $(K+B){ }_{\mid S_{1}}$ is negative and log canonical on the contracted curve lying on S_{1}, by (ii) and (iv). Suppose first that this restriction is not exceptional in a neighborhood of the contracted curve. Then it has a 1 - or 2 -complement, hence by Theorem 5.12 we deduce that the same holds for $K+\varepsilon B$ with $\varepsilon<1$ and close to 1 .

In the 1-complementary case this leads to a flip of type II. However, by (5.2.2), the 2-complementary case can only happen if the intersection of the surfaces S_{i} is an irreducible curve C, and it is the whole of the contracted fiber. Hence S_{i} is negative against C. Furthermore, C is the locus of \log canonical singularities of the restriction in a neighborhood of this curve, and by Corollary 3.16 the further restriction $(K+B)\left|S_{1}\right| C^{\nu}=K_{C^{\nu}}+\sum p_{i} P_{i}$ has one multiplicity p_{i} equal to 1 . Since $K_{C^{\nu}}+\sum p_{i} P_{i}$ is negative, the curve C is rational and all the remaining $p_{i}<1$. But then by Proposition 3.9 and Lemma 4.2, after renumbering if necessary, $p_{1}=1$ and $p_{2}=(m-1) / m$ with $m \geq 1$, and all the remaining $p_{i}=0$. Now using Theorem 5.12 it is not hard to construct a surface S_{3} in a neighborhood of the point $\nu\left(P_{2}\right)$ passing through $\nu\left(P_{2}\right)$ and providing a 1 -complement. Then on some analytic neighborhood of C the divisor $K+B+S_{3}$ is log canonical and numerically 0 relative to f. Thus the flip f is again of type II.

It remains to consider the case that the restriction $(K+B) \mid S_{1}$ is exceptional. Then by (iv) the surfaces S_{i} again intersect in a unique irreducible curve C forming a fiber of f, and $(K+B)_{\mid S_{1}}$ is purely \log terminal in a neighborhood of C. Both surfaces S_{i} are negative against C. The proof of the existence of the required flip is analogous to and based on Proposition 6.7. Indeed, if $K+B$ is \log terminal along C then Proposition 5.13 implies that $K+B$ is \log terminal in a neighborhood of the
contracted curve, and hence the flip exists by Proposition 6.7. In the general case, by Corollary 5.19 we can use the existence of a strictly log terminal model $g: Y \rightarrow X$. By Proposition 5.13 again, the exceptional surfaces with log discrepancy 0 are contracted to C. Thus all the exceptional surfaces of g lie over C, and the existence of the flip can be proved by induction on the number of them. For this we find an extremal extraction g of C whose exceptional surface $E=g^{-1} C$ has log discrepancy 0 , the \log canonical divisor $K_{Y}+B_{Y}=g^{*}(K+B)$ can only have singularities that are not \log terminal along the curve $E \cap f^{-1} S_{2}$, and in a neighborhood of this curve the restriction $\left(K_{Y}+B_{Y}\right)_{\mid E}$ is exceptional. This extraction is the final contraction obtained when constructing the model of X in a neighborhood of C, starting from a strictly \log terminal model for $H=g^{-1} S_{2}$ and $\varepsilon=1$. The flip occurring here is of type II, since the boundary B is LSEPD for g. By the assumption that the restriction $(K+B)_{S_{1}}$ is exceptional, the surfaces $g^{-1} S_{1}$ and $g^{-1} S_{2}$ are disjoint.

On the other hand, by construction, on subtracting $g^{-1} S_{2}$ from the boundary of the log divisor $K_{Y}+B_{Y}$ it becomes log terminal. Hence the singularities of $K_{Y}+B_{Y}$ that are not \log terminal are contained in $g^{-1} S_{2}$. In particular, $K_{Y}+B_{Y}$ is \log terminal in a neighborhood of $E \cap g^{-1} S_{1}$. Again by the exceptional assumption, the restrictions, $\left(K_{Y}+B_{Y}\right)_{\mid g^{-1} S_{1}}$ and $\left(K_{Y}+B_{Y}\right)_{\mid E}$ are exceptional in a neighborhood of $E \cap g^{-1} S_{1}$. But then, by Theorem 6.9 for the birational contraction g, the restriction $\left(K_{Y}+B_{Y}\right)_{\mid E}$ is exceptional in a neighborhood of $E \cap g^{-1} S_{2}$. From then on we can argue as in Proposition 6.7; in this process, we use Proposition 6.7 if the support of an extremal ray R with $\left(K_{Y}+B_{Y}\right) R<0$ is $E \cap g^{-1} S_{1}$, or induction if it is $E \cap g^{-1} S_{2}$. Q.E.D.
6.11. Lemma. Suppose that $f: X \rightarrow Z$ is an extremal birational contraction, and the boundary $S+B$ satisfies
(i) $K+S+B$ is log terminal outside $S+\lceil B\rceil$;
(ii) $K+S+B$ is numerically 0 on the contracted curves;
(iii) $K+S$ is log terminal;
(iv) the surface S is negative on the contracted curve;
(v) $S+B$ is LSEPD for f;
(vi) B has a reduced component that intersects all the contracted curves.

Then there exists a flip of f with respect to any divisor.
Proof. If the reduced component S^{\prime} in (vi) is nonpositive, then first discard the fractional components of B, which are not negative by Corollary 3.16 and the log canonical property of $K+S+B$ on the contracted curve; then by (v) we get the flip of Lemma 6.10. If S^{\prime} is positive on the contracted curve, then the flip exists by Corollary 5.20. Q.E.D.
6.12. Proposition. Special flips of type (6.6.1) exist if $K+S$ is n-complementary in such a way that the complemented log divisor $K+S+B$ has locus of \log canonical singularities strictly bigger than S in a neighborhood of the contracted curve.
Proof. Suppose that the locus of \log canonical singularities of $K+S+B$ is bigger than S in a neighborhood of the contracted curve. If there is a surface S^{\prime} of singularities outside S, then it must occur as a reduced component of B intersecting the contracted curves. Thus in this case the flip exists by Lemma 6.11. Note that $S+B$ is LSEPD, by (6.1.4) with $B=0$ and by (6.6.1).

It remains to consider the case that there is only a curve of log canonical singularities outside S. Suppose that $g: Y \rightarrow X$ is a strictly log terminal extraction in a neighborhood of the flipping curve, which exists by Corollary 5.19. Define the
multiplicities d_{i} from the relation $g^{*} B=g^{-1} B+\sum d_{i} D_{i}$. Then by log discrepancy, $g^{*}(K+S+B)=K_{Y}+(S+B)_{Y}$, and by assumption there exists an exceptional prime component $E=E_{i}$ with multiplicity 1 of the boundary $(S+B)_{Y}$ over the general point of the curve of \log canonical singularities of $K+S+B$ outside S intersecting the flipping curve. Set $D=g^{-1} B+d E$ where $d=d_{i}$ is the multiplicity defined above. To construct an extremal extraction that blows up only the curve of log canonical singularities of $K+S+B$, we use Corollary 4.6 with $f=g$ and $H=\varepsilon D$ with a sufficiently small positive ε and $\varepsilon_{0}=\varepsilon-0$ very close to ε.

Note that the divisor $g^{*} B$ is numerically 0 relative to g and is $\geq D$. Hence the supports of all flipping 0 -contractions are contained in the reduced part of the boundary $(S+B)_{Y}$ and lie over S (this last, possibly after shrinking the neighborhood of the flipping curve). They exist by Lemma 6.11, since one of the reduced components of the boundary $\neq E$ and is negative by construction relative to the flipping contraction, and another reduced component is nonpositive, since S is \mathbb{R}-Cartier. By termination 4.1 and the connectedness of the fiber over the point of intersection with the curve of singularities, we eventually contract all the exceptional surfaces except for E. We again denote this birational contraction by g; it is extremal. Hence the relative Picard number of the composite $f \circ g$ equals 2 , and the Kleiman-Mori cone $\overline{\mathrm{NE}}(Y / Z)$ has two extremal rays R_{1} and R_{2}.

Suppose that the first of these R_{1} corresponds to the contraction g. Now $D=$ $g^{*} B=g^{-1} B+d E$ and this divisor is numerically 0 relative to g. But by (6.1.4) with $B=0$ and by definition of complement, B is positive relative to f. Hence the second extremal ray R_{2} is positive against D. Note that R_{2} is a flipping ray, since the composite $f \circ g$ contracts only one surface E and a curve. More precisely, it lies in the fiber $(f \circ g)^{-1} P$, where P is the image of the curve contracted by f. Both this fiber and $f^{-1} P$ are connected. Therefore some component of the fiber C is not contained in E but intersects it, which implies that R_{2} is positive relative to E. Since $S+B$ is LSEPD for f, also $g^{-1} S+D$ is LSEPD for the composite $f \circ g$, in the sense that $a g^{-1} S+b D$ is locally principal for $f \circ g$ for suitable a, b. Thus R_{2} is negative relative to $g^{-1} S$ and the flip of R_{2} exists by Lemma 6.11.

From this step on, we seek an extremal 0-contraction on which the modified D is relatively positive. Write R_{1} for the new flipped ray; then the new ray R_{2} remains negative against the modified $g^{-1} S$. (Here we use new and modified to avoid introducing more notation: modified divisors are birational transforms; the new (pseudo-) extremal ray R_{1} is the flipped curve, whereas the new R_{2} is the ray that arises automatically because $\rho=2$, so $\overline{\mathrm{NE}}$ is a wedge in the plane; R_{2} is not obtained from the old rays in any predictable way.) The flip again exists by Lemma 6.11 as long as the modified E is positive against R_{2}. If, however, after such flips we arrive at a case when $E R_{2}=0$, then E is numerically nonpositive on all curves contracted by $f \circ g$. Indeed, by the preceding flip, R_{1} is negative against the modified E. On the other hand, the connectedness of the fiber $(f \circ g)^{-1} P$ is preserved by flips, and hence $(f \circ g)^{-1} P$ is entirely contained in $E .\left({ }^{10}\right)$ Thus the flip again exists by Lemma 6.11, and it remains to consider the case that $E R_{2}<0$. This flip again exists by Lemma 6.11. After it, R_{1} becomes positive against E; but then R_{2} will again be negative against E and the flip again exists by Lemma 6.11. Indeed, E has a curve on Z with $Z E<0$. Thus in conclusion we get that D is numerically nonpositive and nontrivial relative to the modification $f \circ g$. By Corollary 4.6 the corresponding log canonical model on subtracting D contracts E and gives the flip we want. Q.E.D.

[^9]
§7. Exceptional special flips

7.1. The set-up. In this section $f: X \rightarrow Z$ is a special exceptional contraction of index $n=2,3,4$ or 6 . This means that there exist a boundary B and an irreducible surface S on X such that
(7.1.1) $K+S+B$ is \log canonical and $n(K+S+B)$ is linearly 0 in a neighborhood of the contracted curve;
(7.1.2) S is negative on the contracted curve;
(7.1.3) $K+S$ is purely and strictly \log terminal;
(7.1.4) $K+S$ is negative on the contracted curve;
(7.1.5) the restriction $(K+S+B)_{\mid S}$ is exceptional in a neighborhood of the contracted fiber.

This final requirement is well defined, since the surface S is normal by Corollary 3.8 and (7.1.3). Recall (see the paragraph after Theorem 5.6) that by exceptional we mean that the restriction of $(K+S+B) \mid S$ has at most one divisor with log discrepancy 0 in a neighborhood of the contracted fiber. (${ }^{11}$) For a nonexceptional divisor, this is equivalent to saying it has multiplicity 1 in the boundary B_{S}. By (7.1.3) X is \mathbb{Q}-factorial. Such a contraction f is assumed to be extremal, and the contracted curve is connected.

According to Proposition 6.12, we can restrict to the case when the following holds:
(7.1.6) The \log canonical singularities of $K+S+B$ are contained in S.

We have already noted above that B is positive on the contracted curve. By (7.1.1), $K+S+B$ has index n. Thus by (7.1.6) the multiplicities of the components of B are k / n for natural numbers $k<n$. If in addition B has a decomposition $B=B_{1}+\cdots+B_{i}$ with effective divisors B_{i} for $1 \leq i \leq t$ which are nef on the contracted curve and intersect it, with multiplicities of the irreducible components B_{i} equal to k / n for natural numbers $k<n$, then t is called the type of this contraction, and of the corresponding flip. Since f is extremal, the B_{i} are either positive on the contracted curve, or numerically 0 on it, and by connectedness must then contain it. Thus each exceptional contraction and flip has type at least $t=1$. However, some flips may have higher type.
7.2. Reduction. The existence of exceptional special flips of index n and type t follows from the existence of the same kind of flips in the case that $K+S+B$ is purely log terminal in a neighborhood of S.

Thus in this case $K+S$ is strongly complementary (see (5.2.4)).
Proof. Let $g: Y \rightarrow X$ be a strictly \log terminal extraction of X, which exists by Corollary 5.19. Since S is \log crepant all the exceptional divisors E_{i} of g have \log discrepancy 0 , and by (7.1.6) and Corollary 3.16, $g E_{i} \subset S$. By connectedness of the exceptional set, (7.1.5) and Theorem 6.9 it follows that the exceptional irreducible surfaces E_{i} for $1 \leq i \leq m$ form a chain. We deduce that, numbering the components appropriately, the final component E_{m} intersects $g^{-1} S$ in an irreducible curve, and only intersects one exceptional surface E_{m-1} (when $m>1$, of course); and E_{i} does

[^10]not intersect $g^{-1} S$ for $m>i>1$, and intersects the two exceptional surfaces E_{i+1} and E_{i-1} in irreducible curves.

It is not hard to check that the original model X is obtained by successive modifications by 0 -contractions for $H=g^{-1} B$ and $\varepsilon=1>\varepsilon_{0}$. I claim that for suitable choice of the extraction g, the sequence of transformations forms a chain of successive contractions of the divisors E_{1}, \ldots, E_{m} in that order; moreover, the same holds for all $Y_{(l)}$ in the chain from Y down to X. (All the surfaces of the chain E_{1}, \ldots, E_{m} are contracted to a point or to a curve, according as to whether the locus of log canonical singularities of the restriction $(K+S+B){ }_{\mid S}$ is a point or curve.) To verify this, consider an intermediate contraction g, and suppose that it has the same properties as the original X, replacing the strictly log terminal assumption on $g^{*}(K+S+B)=K_{Y}+g^{-1} S+B_{Y}$ by \log canonical, and $K_{Y}+g^{-1} S+\sum E_{i}=K_{Y}+S_{Y} \log$ terminal, since the modified $g^{-1} B$ are positive relative to the preceding 0 -contractions.

We also suppose that there is a unique point or irreducible curve where $K_{Y}+$ $g^{-1} S+B_{Y}$ is not \log terminal, and it lies on the final exceptional component E_{l}, or on $E_{m+1}:=S$ when there are no exceptional components left. More precisely, the surfaces $g^{-1} S, E_{m}, \ldots, E_{l}$ form a chain, and there is a sequence of extractions of divisors E_{I-1}, \ldots, E_{1} that extend it to a strictly \log terminal model. For $l=m+1$, since $Y=X$ is \mathbb{Q}-factorial, this gives the assertion we want. When $l \leq m$, there exists a 0-contraction $h: Y \rightarrow W$ on which $g^{-1} B$ is positive. If h is divisorial and contracts a surface E_{i} with $l+1 \leq i \leq m$ from the middle of the chain, then E_{i} contains two disjoint curves $E_{i-1} \cap E_{i}$ and $E_{i} \cap E_{i+1}$.

Hence since h is extremal, in this case h is a contraction to a curve. Since the general fiber of h on E_{i} intersects $g^{-1} B$ positively, both curves of intersection are blown down to points. But then they have negative intersection with E_{i}, and intersection number 0 with E_{i-1}, E_{i+1}; this contradicts the fact that $g^{-1} S, E_{1}$, \ldots, E_{l} supports an effective principal divisor locally over the \mathbb{Q}-factorial variety X. Hence h can only contract the extreme component E_{l}, which allows us to extend the proof by induction on l. If on the other hand h is a small contraction then again, since X is \mathbb{Q}-factorial and $g^{-1} B$ is positive relative to h, there is an exceptional divisor E_{i} that is negative relative to h. In particular, the curves contracted by h are contained in E_{i}. By the same argument, either a neighboring exceptional divisor $E_{i \pm 1}$ or the divisor $g^{-1} S$ is positive on h. Hence by Lemma 5.7, it follows for the restriction $\left(K_{Y}+g^{-1} S+B_{Y}\right)_{\mid E_{l}}$ for $i=l$ that $K_{Y}+g^{-1} S+B_{Y}$ is log terminal in a neighborhood of the curve contracted by h. The flip of h exists by Corollary 5.15 or Corollary 5.20. Since the curves of intersection with neighboring components are not contracted by h, by properties 1.12 the flip preserves the log terminal property of $K_{Y}+g^{-1} S+B_{Y}$ in a neighborhood of the curve contracted by h. Here as before a point or curve at which $K_{Y}+g^{-1} S+B_{Y}$ is not \log terminal is resolved by the extremal extractions of divisors E_{l-1}, \ldots, E_{1}. Thus by termination 4.1 we finally get the case $l=m+1$, with $g=\mathrm{id}_{X}$.

Now we prove the existence of the flip f by induction on m. Note that for $m=0$ the model g is the identity, $K+S+B$ is log terminal in a neighborhood of the contracted curve, and is purely \log terminal by irreducibility of S; and f has a flip by the reduction assumption. For $m \geq 1$ consider the contraction g of the final surface E_{m}. Then apply Corollary 4.6 for the contraction $f \circ g, H=\varepsilon g^{*} B$ with small $\varepsilon>0$ and $\varepsilon_{0}<\varepsilon$ close to ε, that is, $\varepsilon_{0}=\varepsilon-0$. By construction, on subtracting H from $K_{Y}+g^{-1} S+B_{Y}$ it becomes purely \log terminal, numerically nonpositive and nontrivial relative to $f \circ g$, so by (1.5.6) the corresponding log canonical model
$f \circ g$ is small. Moreover, by the same arguments, since the modified locus over Z is connected and H is numerically nonzero on it, the model of $f \circ g$ is also small.

From the fact that f is extremal and X is \mathbb{Q}-factorial, it's not hard to see that these models coincide with the flip of f. In particular, by properties 1.12 these models of $f \circ g$ are extremal over Z, strictly \log terminal, and it is sufficient to construct the \log terminal model. But $f \circ g$ has relative Picard number 2 , and this is decreased by 1 under a divisorial contraction. In the final case we get a flip immediately, since the modified $g^{*} B$ is positive relative to such a divisorial contraction.

Thus to construct the \log terminal model of $f \circ g$ it is enough to be able to construct flips up to the first divisorial contraction or termination. On making flips we preserve the previous notation for Y, referring occasionally to the modified or flipped situation when this is meant, as explained at the end of $\S 6$. The KleimanMori cone $\overline{\mathrm{NE}}(Y / Z)$ always has two pseudoextremal rays R_{1} and R_{2}. Suppose that R_{1} is the ray corresponding to the contraction g, and R_{2} the subsequent ray that requires flipping. If R_{2} has positive intersection with the modified $g^{*} B$, it corresponds to the next flip in the chain. If at some step $g^{-1} S$ is nonnegative against R_{2}, then also $E_{m} R_{2}<0$ and $g^{-1} B R_{2}>0$. Indeed, $S+B$ is LSEPD for f, that is there exist $a, b>0$ such that $a S+b B$ is f^{*} of a principal divisor; in this sense $g^{*} S+g^{*} B$ is LSEPD for $f \circ g$ and for its modifications. By construction $g^{*} B$ is numerically positive, and $g^{*} S$ is negative on the new flipping ray. Hence we get the above assertion, that is, the supports of $g^{*} S$ and $g^{*} B$ are respectively $g^{-1} S+E_{m}$ and $g^{-1} B+E_{m}$.

Hence if at some step $g^{-1} S$ becomes positive against R_{2}, then the flip of R_{2} exists by Corollary 5.20. After the flip, the flipped ray R_{1} has negative intersection with $g^{-1} S$, so that $g^{-1} S R_{2}>0$. But the general curve on E_{m} over Z has nonnegative intersection with $g^{-1} S$, hence R_{2} is nonnegative against $g^{-1} S$, and can only be numerically 0 against $g^{-1} S$ if R_{2} is divisorial. Hence the flip again exists, and termination is guaranteed by termination 4.1 on discarding $g^{-1} B$. If at some step $g^{-1} S R_{2}=0$, then provided that the flip exists, the previous arguments give the existence of subsequent transformations and their termination. Usually exactly at this point the proof of the existence of the flip presents the essential difficulty, and is provided here by the reduction assumption. Thus modulo this flip, it remains to find flips which are negative for $g^{-1} S$, since their termination is guaranteed by termination 4.1 after discarding H. By the above, we also do not need to consider divisorial modifications of R_{2}.

Thus start with a ray R_{2} on the initial Y which is positive relative to $g^{*} B$. By assumption, its contraction $h: Y \rightarrow W$ over Z is small and $g^{-1} S$ is negative relative to h, so that the curve contracted by h is contained in $g^{-1} S$. If moreover E_{m} is positive relative to h, then, because the curve on $g^{-1} S$ contracted by $f \circ$ g is connected, it follows that the curve contracted by h is not contained in the intersection $g^{-1} S \cap E_{m}$. In this case, the flip exists by Corollary 5.20 and preserves the \log terminal property of $K_{Y}+g^{-1} S+B_{Y}$ in a neighborhood of $g^{-1} S$. It contracts a curve on $g^{-1} S$ outside the intersection $g^{-1} S \cap E_{m}$, and the flipped ray R_{1} has negative intersection with the modified E_{m}.

As a result of such flips we arrive at the following dichotomy: either R_{2} has intersection number 0 with the modified $g^{-1} S$, or it has negative intersection number with both the modified $g^{-1} S$ and E_{m}. In the second case, $E_{m} R_{2}=0$ is impossible by the exceptional assumption (7.1.5), and the flip exists by Lemma 6.11. Again by the exceptional assumption (7.1.5), a flip in R_{2} performs a contraction of curves on
$g^{-1} S$ over Z, and the resulting modified surfaces $g^{-1} S$ and E_{m} are disjoint. In particular, the flipped ray R_{1} has positive intersection with the modified surfaces $g^{-1} S$ and E_{m}, and the new ray R_{2} has intersection number 0 with the modified $g^{-1} S$. Hence the next contraction is the divisorial contraction of the modified E_{m} to a point, which gives the flip f.

In the first case of the above dichotomy, $g^{-1} S R_{2}=0$, and as we already know, $E_{m} R_{2}<0$ and $g^{-1} B R_{2}>0$. We also assume that the corresponding contraction h is small. By the exceptional assumption (7.1.5), the restriction of the modified $\left(K_{Y}+g^{-1} S+B_{Y}\right)_{\mid E_{m}}$ is exceptional in a neighborhood of the modified $g^{-1} S$. It follows from this that the curve contracted by h does not intersect $g^{-1} S$. Because the current situation has been obtained by flips in rays intersecting E_{m} positively, the flipped curves lie on the modified E_{m}, and the modified $K_{Y}+g^{-1} S+B_{Y}$ has locus of \log canonical singularities in a neighborhood of the curve contracted by h equal to the modified E_{m}. By Lemma 5.7, the singularities that are not log terminal are not spoilt by the preceding flips. Hence the contraction h, modulo connectedness of the fibers, is exceptional and of the same index n, with the modified E_{m} instead of S. And the possible point or curve of singularities that are not \log terminal is resolved by fewer than m extremal extractions. Hence the flip exists by the inductive assumption.

Note that h also has type t, since the modified B_{i} in the decomposition $B=$ $B_{1}+\cdots+B_{t}$ corresponding to the given type t are positive on R_{2}; indeed, if B_{i} is positive on a contracted curve, then the modified $g^{*} S$ and $g^{*} B_{i}$ are LSEPD over Z (in the sense that $a g^{*} S+b g^{*} B_{i}$ is locally principal over Z), and the modified $g^{*} S$ and E_{m} are negative on R_{2}. If B_{i} is numerically 0 on the contracted curve, then it also contains the modified $g^{*} B_{i}$ that is numerically 0 on R_{2} with a positive multiplicity of E_{m}, and hence since $E_{m} R_{2}<0$, we deduce that the modified $g^{-1} B_{i}$ is positive on R_{2}. We can carry out a localization to make the fibers connected, as in the proof of Reductions 6.4-5; here the index, the type and the log terminal property of $K+S+B$ are preserved. Q.E.D.

7.3. Corollary. Index 2 exceptional special flips exist.

Proof. By Reduction 7.2 we need only consider flips for which $K+S+B$ is purely log terminal, and these are flips of type IV from Proposition 2.9. Q.E.D.
7.4. Proposition. Suppose that $K+S+B$ is purely log terminal. Then in a neighborhood of a contracted curve we have the following.
(7.4.1) For $n=3$ either $K+S$ has a 1- or 2-complement, or $K+S+B$ has a 4 -complement of type ≥ 2.
(7.4.2) For $n=4$ either $K+S$ has a 1-, 2- or 3-complement, or $K+S+B$ has a 6 -complement of type ≥ 2.
(7.4.3) For $n=4$ and $t \geq 2$ either $K+S$ has a 1-or 2-complement, or $K+S+B$ has a 4 -complement of type $\geq t+1$.
(7.4.4) For $n=4$ and $t \geq 4, K+S$ has a 1 - or 2 -complement.
(7.4.5) For $n=6, K+S$ has a 1-, 2-, 3- or 4-complement.
(7.4.6) For $n=6$ and $t \geq 2$ either $K+S$ has a 1-, 2- or 3-complement, or $K+S+B$ has a 6 -complement of type $\geq t+1$.
(7.4.7) For $n=6$ and $t \geq 3, K+S$ has a 1-, 2- or 3-complement.

Proof. The assumptions of Theorem 5.12 are satisfied. Hence by its proof it is enough to prove the corresponding assertion for the restrictions. For this we introduce the
following changes to the notation: X will be a surface $S, f: X \rightarrow Z$ a contraction of a connected curve, $K+B^{\prime}$ will denote the restriction $(K+S) \mid S$ and $K+B$ the restriction $(K+S+B)_{\mid S}$. Note that $K+B$ has index n. By (3.2.3) and the assumption that $K+B$ is purely \log terminal, all the b_{i} satisfy $0 \leq b_{i}<1$, and by Corollary 3.10 are of the form

$$
\begin{equation*}
b_{i}=\frac{n_{i}-1}{n_{i}}+\sum_{j} \frac{k_{i j}}{n_{i}} d_{j} \tag{7.4.8}
\end{equation*}
$$

where $n_{i}, k_{i j}$ and $n d_{j}$ are natural numbers. Here d_{i} are our previous boundary multiplicities, and b_{i} are multiplicities of the boundary B. The corresponding multiplicities of B^{\prime} are of the form

$$
b_{i}^{\prime}=\frac{n_{i}-1}{n_{i}}
$$

Since $K+B$ has index n, all $b_{i}=k_{i} / n$, where $0 \leq k_{i} \leq n-1$. Let $g: Y \rightarrow X$ be an extraction over an exceptional curve for f. Then in a neighborhood of its inverse image the corresponding assertions means that $K_{Y}+B^{\prime} Y$ is m-complementary for $K+S$ and $K_{Y}+B^{Y}$ for $K+S+B$. Since $K+B$ is numerically 0 relative to f, by Lemma 5.4 we can restrict ourselves for $K+B$ to the case that f is the identity contraction, identifying X and Z, and the contracted curve of f is replaced by a point $P \in Z$. Since the original 3 -fold is \mathbb{Q}-factorial and the contracted curve f has nonempty intersection with every component B_{i}, by definition of the type t we get a new interpretation of it: there are at least t components of the boundary passing through P with nonzero product $k_{i j} d_{j} \neq 0$.

The existence of the required complement gives the next result.
7.5. Lemma. Under the preceding restrictions and notations, the following hold in a neighborhood of the inverse image of P :
(7.5.1) For $n=3$ either $K_{Y}+B^{\prime Y}$ has a 1-or 2-complement, or $K_{Y}+B^{Y}$ has a 4-complement.
(7.5.2) For $n=4$ either $K_{Y}+B^{\prime Y}$ has a 1-, 2- or 3-complement, or $K_{Y}+B^{Y}$ has a 6-complement.
(7.5.3) For $n=4$ and $t \geq 2$ either $K_{Y}+B^{Y}$ has a 1- or 2-complement, or $K_{Y}+B^{Y}$ has a nontrivial 4-complement.
(7.5.4) For $n=4$ and $t \geq 4, K_{Y}+B^{\prime Y}$ has a 1-or 2-complement.
(7.5.5) For $n=6, K_{Y}+B^{\prime Y}$ has a 1-, 2-, 3- or 4-complement.
(7.5.6) For $n=6$ and $t \geq 2$ either $K_{Y}+B^{\prime Y}$ has a 1-, 2- or 3-complement, or $K_{Y}+B^{Y}$ has a nontrivial 6-complement.
(7.5.7) For $n=6$ and $t \geq 3, K_{Y}+B^{Y}$ has a 1-, 2- or 3-complement.

Proof. We use the arguments of the proof of Theorem 5.6. In the case of a log divisor $K+B$, for this we increase the boundary B to $B^{\prime \prime}$ in such a way that in a neighborhood of P the new divisor $K_{Z}+B^{\prime \prime}$ is actually \log canonical. Note that the monotonicity $B^{\prime}<B$ on the original X implies the monotonicity $B^{\prime Y}<B^{Y}<B^{\prime \prime Y}$. In particular, for 1- or 2-complementary $K_{Y}+B^{\prime \prime Y}$ by Lemma 5.3 the same holds for $K_{Y}+B^{\prime Y}$. Hence by the proof of Theorem 5.6 we can restrict to the case that $K_{Z}+B^{\prime \prime}$ is exceptional and the unique irreducible curve with \log discrepancy 0 is exceptional.

Now for $K+B$, let $f: X \rightarrow Z$ be the blowup of this curve C. We identify the divisor B with its birational transform under f. By the fact that $K_{Z}+B$ is purely \log terminal, and $K_{Z}+B^{\prime \prime}$ log canonical and exceptional, the divisor $K+C+B$ is purely \log terminal and negative relative to f. By Lemma 5.4, for the assertion about $K_{Y}+B^{Y}$ we can restrict to extractions of g that factor through f. Again by the arguments of the proof of Theorem 5.6 , to deduce that $K_{Y}+B^{Y}$ is m-complementary it is sufficient to prove that its restriction

$$
(K+C+B)_{\mid C}=K_{C}+\sum p_{i} P_{i}
$$

is m-complementary. Since $K+C+B$ is purely \log terminal, the curve C is nonsingular; and since the restriction of $K+C+B$ is negative, and the boundary $\sum p_{i} P_{i}$ is effective, $C=\mathbb{P}^{1}, 0 \leq p_{i}<1$ and $\sum p_{i}<2$. In this set-up there is also defined a divisor $B^{\prime} \leq B$ in which all curves except C appear with multiplicities $b_{i}^{\prime}=\left(n_{i}-1\right) / n_{i}$ and C with multiplicity 0 . By monotonicity (1.3.3), $K+B^{\prime}+C$ is purely \log terminal, and hence by Corollary 3.10 and the proof of Lemma 4.2 it follows that

$$
\left(K+C+B^{\prime}\right)_{\mid C}=K_{C}+\sum q_{i} P_{i}
$$

with $q_{i}=\left(m_{i}-1\right) / m_{i} \leq p_{i}$, where $m_{i}=l_{i} n_{i}, l_{i}$ is the index of $K+C$ in P_{i}, and not more that one curve of the boundary B^{\prime} with multiplicity $b_{i}^{\prime}>0$ passes through P_{i}. However, for the original boundary B^{\prime}, if the restriction $K_{C}+\sum q_{i} P_{i}$ is m-complementary it does not follow that $K_{Y}+B^{\prime Y}$ is m-complementary, since because $K+B^{\prime}$ is negative relative to f for the original boundary one can reduce the new boundary $B^{\prime Y}$ on some components. To cure this, replace first X for $K+B^{\prime}$ by the minimal resolution X^{\prime} of X for B, that is, we blow up on X the unique curve C if it is exceptional for X, and take $X^{\prime}=X$ otherwise; write B^{\prime} for the previous B^{\prime} outside C. We hope that there will not be too much confusion in what follows caused by one notation X for two different surfaces, depending on the log divisor.

Now the boundary B^{\prime} is the image of the boundary B^{\prime} on X^{\prime}. Similarly on X^{\prime} there is defined a boundary $B \geq B^{\prime}$ outside C with image B on X. By construction the \log divisor $K_{X^{\prime}}+C+B$ is exceptional, nef and numerically nontrivial on each connected fiber of X^{\prime} / X. Hence by monotonicity $K_{X^{\prime}}+C+B^{\prime}$ is exceptional, but possibly positive on some curves of X^{\prime} / X. Also by construction, on X^{\prime} there is a boundary $B^{\prime \prime}>B>B^{\prime}$ such that $K_{X^{\prime}}+C+B^{\prime \prime}$ is exceptional and numerically nonpositive over X. I claim that B^{\prime} on X^{\prime} can be increased so that $K_{X^{\prime}}+C+B^{\prime}$ will be numerically nonpositive on X with multiplicities $>b_{i}^{\prime}$ only for curves that are numerically 0 over X, and is exceptional as before. As a first approximation it is enough to increase B^{\prime} to $B^{\prime \prime}$ for curves of X^{\prime} over X. In doing this some multiplicities $>b_{i}^{\prime}$ may occur for curves that are not numerically 0 over X. But these multiplicities can be decreased, preserving the exceptional property and the numerical nonpositivity of $K_{X^{\prime}}+C+B^{\prime}$ over X. Hence the minimal boundary $\geq B^{\prime}$ with the final properties gives what we want.

Note that in the case $K_{Y}+B^{\prime Y}$, by Lemmas $5.3-5.4$ it is enough to find the required m-complements of $K_{Y}+\left(C+B^{\prime}\right)^{Y}$ for resolutions over X^{\prime}. Moreover, we can after contracting curves that are numerically trivial over X for $K_{X^{\prime}}+C+B^{\prime}$ assume that B^{\prime} does not increase, that is, has the same multiplicities b_{i}^{\prime}, and that $K_{X^{\prime}}+C+B^{\prime}$ is numerically negative over X. Hence the existence of the required m-complements follows from the m-complements of the boundary

$$
\left(K_{X^{\prime}}+C+B^{\prime}\right)_{\mid C}=K_{C}+\sum q_{i}^{\prime} P_{i}
$$

with $q_{i}^{\prime}=\left(m_{i}^{\prime}-1\right) / m_{i}^{\prime} \geq q_{i}$, where $m_{i}^{\prime}=l_{i}^{\prime} n_{i}^{\prime}, l_{i}^{\prime}$ is the index of $K_{X^{\prime}}+C$ at P_{i}, and not more that one curve of the boundary B^{\prime} with multiplicity $b_{i}^{\prime}>0$ passes through P_{i}. Here the curves C on X and X^{\prime} are identified, and the equality $q_{i}^{\prime}=q_{i}$ is only possible if there is no curve of X^{\prime} / X over P_{i}. By construction $K_{X^{\prime}}+C+B$ is exceptional, nef and numerically nontrivial on each connected fiber of X^{\prime} / X. Hence $p_{i} \geq q_{i}^{\prime} \geq q_{i}$ and the first equality is only possible if there are no curve of X^{\prime} / X over P_{i} and $p_{i}=q_{i}^{\prime}=q_{i}$, that is, there are no components of the boundary B through P_{i}. Choose the numbering such that $q_{1}^{\prime} \geq q_{2}^{\prime} \geq \cdots$, or equivalently $m_{1}^{\prime} \geq m_{2}^{\prime} \geq \cdots$. By the above, $0 \leq q_{i} \leq q_{i}^{\prime} \leq p_{i}<1$ and $\sum q_{i} \leq \sum q_{i}^{\prime} \leq \sum p_{i}<2$. Suppose now that $K_{Y}+B^{\prime Y}$ and hence also $K_{C}+\sum q_{i}^{\prime} P_{i}$ does not have a 1-or 2-complement. Then by $(5.2 .1) 3 \leq m_{1}^{\prime} \leq 5, m_{2}^{\prime}=3, m_{3}^{\prime}=2$ and $m_{i}^{\prime}=1$ for $i \geq 4$. Hence

$$
\sum_{i \geq 4} p_{i}<2-p_{1}-p_{2}-p_{3} \leq 2-q_{1}^{\prime}-q_{2}^{\prime}-q_{3}^{\prime} \leq 2-2 \times \frac{2}{3}-\frac{1}{2}=\frac{1}{6}
$$

But for $i \geq 4$ we have $l_{i}^{\prime}=n_{i}^{\prime}=1$ for all curves through P_{i} and by (7.4.8)

$$
b_{i^{\prime}}=\sum_{j} k_{i^{\prime} j} d_{j} \quad \text { satisfies } \quad \begin{cases}\text { either } & b_{i^{\prime}}=0 \\ \text { or } & b_{i^{\prime}} \geq \frac{1}{n} \geq \frac{1}{6}\end{cases}
$$

and hence $p_{i}=q_{i}=q_{i}^{\prime}=0$ for $i \geq 4$. Hence for $i \geq 4$ there are no curves of X^{\prime} / X over P_{i}, and both the boundaries B and B^{\prime} on X and X^{\prime} can only intersect C in the points P_{1}, P_{2}, P_{3}. If there is a curve of X^{\prime} / X over P_{3} then $p_{3}>q_{3}^{\prime}=1 / 2>q_{3}$, hence $m_{3}=1$, and by (7.4.8) $p_{3}=k / n \geq 2 / 3$ and $\sum p_{i} \geq$ $q_{1}^{\prime}+q_{2}^{\prime}+p_{3} \geq 3 \times(2 / 3)=2$, which contradicts the inequality $\sum p_{i}<2$. Thus the curves of X^{\prime} / X can only lie over P_{1} or P_{2}. Consider now the case that there are just no such curves, that is, $X^{\prime}=X$, all $q_{i}^{\prime}=q_{i}$ and $m_{i}^{\prime}=m_{i}$. Then, again by (7.4.8) and Corollary 3.10,

$$
p_{1}=q_{1}+\frac{1}{l_{1}} \sum b_{i}=\frac{m_{1}-1}{m_{1}}+\frac{k_{1}}{m_{1} n}
$$

where the sum consists of multiplicities of the boundary B in a neighborhood of P_{1}, possibly with repetitions, and $k_{1} \geq 0$. In a similar way we get integers $k_{2}, k_{3} \geq 0$ such that

$$
p_{2}=q_{2}+\frac{k_{2}}{3 n}=\frac{2}{3}+\frac{k_{2}}{3 n} \quad \text { and } \quad p_{3}=q_{3}+\frac{k_{3}}{2 n}=\frac{1}{2}+\frac{k_{3}}{2 n}
$$

Here, by the above interpretation of type, $k_{1}+k_{2}+k_{3} \geq t$. Hence and from preceding inequalities one easily finds the possible nontrivial values of p_{i} and q_{i} in terms of n and t (see Table 1). Together with (5.2.1), this completes the proof of the current case. For example, for $n=3$, according to the first two lines, $K_{Y}+B^{Y}$ has a 4-complement, and by the last 5 lines $K_{Y}+B^{\prime Y}$ has a 3-complement.

We consider below only the new cases, when $X^{\prime} \neq X$. There are not so many of these and they give what we want. Using the previous arguments and relations it is not hard to show that for $n=3$ there is just one new case $p_{1}=7 / 9, p_{2}=2 / 3$, $p_{3}=1 / 2$ with $t=1$ and $m_{1}^{\prime}=4, m_{1}=3, m_{2}^{\prime}=m_{2}=3, m_{3}^{\prime}=m_{3}=2$. For $n=4$ the additional cases are listed in Table 2.

Here $p_{3}=q_{3}=q_{3}^{\prime}=1 / 2$ and we assume that $m_{1} \geq m_{2}$ when $m_{1}^{\prime}=m_{2}^{\prime}=3$. For $n=6$ we can restrict to the case that $K_{Y}+B^{\prime Y}$, hence also $K_{C}+\sum q_{i}^{\prime} P_{i}$ are not 1 -, 2 - or 3 -complementary, that is, $m_{1}^{\prime} \geq 4$. Here there is just one new case: $p_{1}=7 / 9, p_{2}=2 / 3, p_{3}=1 / 2$ with $1 \leq t \leq 2$ and $m_{1}^{\prime}=4, m_{1}=3, m_{2}^{\prime}=m_{2}=3$, $m_{3}^{\prime}=m_{3}=2$. Q.E.D.

Table 1

n	t	q_{1}	q_{2}	q_{3}	p_{1}	p_{2}	p_{3}
3	1	$2 / 3$	$2 / 3$	$1 / 2$	$7 / 9$	$2 / 3$	$1 / 2$
		$2 / 3$	$2 / 3$	$1 / 2$	$2 / 3$	$7 / 9$	$1 / 2$
4	1	$2 / 3$	$2 / 3$	$1 / 2$	$3 / 4$	$2 / 3$	$1 / 2$
		$2 / 3$	$2 / 3$	$1 / 2$	$2 / 3$	$3 / 4$	$1 / 2$
		$2 / 3$	$2 / 3$	$1 / 2$	$2 / 3$	$2 / 3$	$5 / 8$
		$3 / 4$	$2 / 3$	$1 / 2$	$13 / 16$	$2 / 3$	$1 / 2$
		$2 / 3$	$2 / 3$	$1 / 2$	$13 / 18$	$2 / 3$	$1 / 2$
		$2 / 3$	$2 / 3$	$1 / 2$	$2 / 3$	$13 / 18$	$1 / 2$
		$2 / 3$	$2 / 3$	$1 / 2$	$2 / 3$	$2 / 3$	$7 / 12$
		$2 / 3$	$2 / 3$	$1 / 2$	$13 / 18$	$13 / 18$	$1 / 2$
		$2 / 3$	$2 / 3$	$1 / 2$	$2 / 3$	$7 / 9$	$1 / 2$
		$2 / 3$	$2 / 3$	$1 / 2$	$7 / 9$	$2 / 3$	$1 / 2$
		$2 / 3$	$2 / 3$	$1 / 2$	$13 / 18$	$2 / 3$	$7 / 12$
		$2 / 3$	$2 / 3$	$1 / 2$	$2 / 3$	$13 / 18$	$7 / 12$
		$3 / 4$	$2 / 3$	$1 / 2$	$19 / 24$	$2 / 3$	$1 / 2$
		$3 / 4$	$2 / 3$	$1 / 2$	$3 / 4$	$13 / 18$	$1 / 2$
		$2 / 3$	$2 / 3$	$1 / 2$	$13 / 18$	$13 / 18$	$1 / 2$
		$2 / 3$	$2 / 3$	$1 / 2$	$7 / 9$	$2 / 3$	$1 / 2$
6	2	$2 / 3$	$2 / 3$	$1 / 2$	$2 / 3$	$7 / 9$	$1 / 2$
		$2 / 3$	$2 / 3$	$1 / 2$	$13 / 18$	$2 / 3$	$7 / 12$
		$2 / 3$	$2 / 3$	$1 / 2$	$2 / 3$	$13 / 18$	$7 / 12$

Table 2

$\leq t \leq$	m_{1}^{\prime}	m_{1}	m_{2}^{\prime}	m_{2}	p_{1}	p_{2}	p_{3}	
1	3	3	3	3	1	$2 / 3$	$3 / 4$	$1 / 2$
1	2	3	3	3	2	$2 / 3$	$3 / 4$	$1 / 2$
1	1	5	4	3	3	$13 / 16$	$2 / 3$	$1 / 2$

Conclusion of proof of Proposition 7.4. It remains to verify the assertions concerning types. For example, for $n=3$, a 4 -complement for $K+S+B$ has type ≥ 2. Indeed, we can take $B_{1}=(3 / 4) B$, since checking coefficient by coefficient shows that $B_{1} \leq(1 / 4)\lfloor 5 B\rfloor$. Similarly for $n=4$ we can take $B_{1}=(2 / 3) B$ as part of a 6 -complement. For $n=4$, a nontrivial 4-complement of type t for $K+S+B$ has type $\geq t+1$; nontrivial means that it has $B^{+}>B$. Hence $B_{t+1}=B^{+}-B \neq 0$ and is numerically 0 relative to f, intersects the exceptional locus of f and extends the decomposition by types to B. The arguments for $n=6$ are similar. Q.E.D.
7.6. Reduction. The existence of exceptional special flips follows from the existence of nonexceptional index 2 special flips.
Proof. Reduction 7.2 reduces the construction of exceptional special flips to similar flips with purely \log terminal complement $K+S+B$ of the same index and type. From there by Proposition 7.4 we can either decrease the index n, or increase the index n and at the same time increase t. This finally reduces the problem to the
construction of special flips of index 1 or 2 . For example from the case $n=3$ increasing the index can only lead to $n=4$ and $t \geq 2$, and from this case can only lead to $n=1$ or 2 with $t \geq 4$. Special flips of index 1 exist by Proposition 6.8, and exceptional index 2 special flips by Corollary 7.3. Q.E.D.

§8. Index 2 special flips

8.1. The set-up. In this section $f: X \rightarrow Z$ is a special nonexceptional contraction of index 2 . This means that there exist a boundary B and an irreducible surface S on X such that
(8.1.1) $K+S+B$ is \log canonical and $2(K+S+B)$ is linearly 0 in a neighborhood of the contracted curve;
(8.1.2) S is negative on the contracted curve;
(8.1.3) $K+S$ is purely and strictly \log terminal;
(8.1.4) $K+S$ is negative on the contracted curve;
(8.1.5) the restriction $(K+S+B)_{\mid S}$ is not exceptional in a neighborhood of the contracted fiber.

According to Proposition 6.12, we can assume that the following holds:
(8.1.6) The locus of log canonical singularities of $K+S+B$ is contained in S.

In particular, after shrinking the neighborhood of the contracted curve if necessary, the irreducible components of B have multiplicities $1 / 2$ or 0 . By assumption (8.1.3), X is \mathbb{Q}-factorial. We also suppose that f is extremal, and the contracted curve is connected. In the analytic case, all of this holds in a neighborhood of the flipping curve, that is, with $W=p t$., the image of the flipping curve, and hence the flipping curve is irreducible.
8.2. Reduction. We can assume that there is exactly one irreducible curve C not contracted by f, with multiplicity 1 in the boundary of the restricted log divisor $(K+S+B) \mid S$, and every connected component of $\operatorname{Supp}\left(B_{\mid S}\right)$ outside C and intersecting the locus of log canonical singularities of $(K+S+B) \mid S$ is contracted to a point by f.
Proof. Suppose first that there is at least one irreducible curve C not contracted by f with multiplicity 1 in the boundary of the \log divisor $(K+S+B) \mid S$. If B intersects S in a curve $\neq C$ having multiplicity 1 in the boundary of $(K+S+B)_{\mid S}$ and not contracted by f, then, since the locus of log canonical singularities of $(K+S+B){ }_{\mid S}$ is connected and by (8.1.3), we can change the boundary B_{S} outside C such that it remains $\geq 0_{S}$, and $K_{S}+B_{S}$ becomes \log terminal and numerically negative relative to $f_{\mid S}$. Then by Corollary 5.11, $g^{*}(K+S)_{\mid S}$ will have a 1 -complement on any extraction g. Hence by the proof of Theorem $5.12, K+S$ has a 1 -complement and the flip of f exists by Proposition 6.8. In a similar way one proves that there exist a 1 -complement of $K+S$ and a flip of f when there is a connected component of $\operatorname{Supp}\left(B_{\mid S}\right)$ not contained in C intersecting the locus of log canonical singularities of $(K+S+B){ }_{\mid S}$ and not exceptional relative to f. Hence it remains to carry out the reduction in the case that all curves with multiplicity 1 in the boundary of the log divisor $(K+S+B) \mid S$ are contracted by f.

In the analytic set-up, the above arguments prove the existence of the required complement of $K+S$ in a neighborhood of a flipping ray, since B is positive on the flipping curve, and therefore cuts out on S a connected component which is not contracted by f, and intersects the locus of \log canonical singularities of $(K+S+B)_{\mid S}$. In the algebraic set-up, the locus of log canonical singularities $L C S\left((K+S+B)_{\mid S}\right)$ forms a chain of curves on the log terminal resolution, and the required complement B can be found on one end of this chain, but this complement might behave badly on the other. In this case we must reduce to other flips.

Consider a strictly log terminal extraction $g: Y \rightarrow X$, which exists in a neighborhood of the flipping curve by Corollary 5.19. Since g is log crepant, by Corollary 3.16 there is an exceptional prime divisor E for f such that $f \circ g(E)=p t$. By (8.1.6) the multiplicity d of E in $g^{*} S$ is positive. Set $H=\varepsilon\left(g^{-1} S+d E\right)$ for small $\varepsilon>0$. Since the exceptional divisors for g together with $g^{-1} S$ are LSEPD for g, we can apply Corollary 4.6 to get a new extraction g with a single exceptional divisor E. The required flip is of type III, since $K_{Y}+g^{-1} S+B_{Y}$ is log terminal outside the reduced part of the boundary, which equals Supp $g^{*} S$, and is LSEPD for g. From this and by construction it follows that the support of the modified rays are contained in the exceptional divisors other than E. Hence the modifications terminate.

Thus for the new extraction $\left(K_{Y}+g^{-1} S+E\right) \mid E^{\nu}$ is numerically 0 and contains the curve of intersection $C_{1}=g^{-1} S \cap E$ in the locus of \log canonical singularities. The latter is connected by Theorem 6.9 and from the nonexceptional assumption (8.1.5). Note that by construction $K_{Y}+g^{-1} S$ is \log terminal. But $\rho(Y / Z)=2$ and $\overline{\mathrm{NE}}(Y / Z)$ has two extremal rays R_{1} and R_{2}. We now apply the arguments of the proof of reduction 7.2. Suppose that R_{1} corresponds to the contraction g. Obviously $g^{-1} B R_{1}>0$. From now on, we need to consider modifications of 0 contractions for $H=\varepsilon g^{*} B$ corresponding to R_{2}; we need only consider flipping rays R_{2} with $g^{-1} S R_{2} \leq 0$.

Assume first that $g^{-1} S R_{2}<0$. If $E R_{2}>0$ then the flip of R_{2} exists by Corollary 5.20. Moreover, it preserves the log terminal property of $K_{Y}+g^{-1} S$. If $E R_{2} \leq 0$ then $g^{-1} B R_{2}>0$ and the flip exists by Lemma 6.10; it again preserves the log terminal property of $K_{Y}+g^{-1} S$. If the curve of intersection C_{1} is lost as a result of such flips then the surfaces $g^{-1} S$ and E no longer meet, and we get a flip by contracting E to a point, as in reduction 7.2.

Finally, if $g^{-1} S R_{2}=0$ then $E R_{2}<0$ and $g^{-1} B R_{2}>0$. In particular, the support of R_{2} is contained in E. We can assume that R_{2} is a flipping ray. If one of the connected components G of Supp R_{2} intersects $g^{-1} S$, then it is contained in $g^{-1} S$, and the flip in it exists by Lemma 6.10 with $S_{1}=g^{-1} S$ and $S_{2}=E$. In the opposite case G is disjoint from $g^{-1} S$, and hence from C_{1}. For the remaining connected components we can replace E by S and $g^{-1} B$ by B. Then assumptions (8.1.1-2) and (8.1.4) will hold. (In the analytic case, after passing to a neighborhood of the component in question we may lose the extremal assumption. Then we must construct a flip with respect to $-B$.) By Theorem 6.9 on the normalization S^{ν} there is a curve B^{\prime} (possibly reduced) such that every connected component of the locus of log canonical singularities of $(K+S+B)_{\mid S^{\nu}}$ intersects B^{\prime} and no component of B^{\prime} is contracted by f. Also by construction $K+S+B$ is log terminal outside the boundary $S+B$.

Suppose that the flipping component is contracted to a point P. Then on any weakly \log canonical model of f the locus of log canonical singularities of $K+$
$S+B$ is connected, even over an analytic neighborhood of P. Of course, it always contains the modified S. Since S is \mathbb{Q}-Cartier, connectedness holds for any strictly log terminal model of f. Moreover, any two surfaces with log discrepancy 0 are extracted on some strictly \log terminal model of f. Hence the locus of \log canonical singularities of $g^{*}(K+S+B)$ is connected for any resolution g over a neighborhood of P, which implies what we want.

Thus it remains to carry out a reduction in the case of a flip of the component under consideration. For this, we do a strictly log terminal extraction $g: Y \rightarrow X$ for $K+S$. This, as well as all its modifications considered in what follows, is a weakly log canonical model of f. The flip of f can be obtained as a result of modifications of 0 -contractions of $f \circ g$ with $H=g^{-1} B$-of course, with successive contraction of curves on which $g^{-1} B$ is numerically 0 . This is possible, since $K+S+B$ is log terminal outside the boundary $S+B$, which is LSEPD for $f \circ g$. I claim that the flips required for this satisfy the reduction (modulo flips that already exist).

Since $S+B$ is LSEPD for $f \circ g$ and the support of a 0 -flipping extremal ray R is positive against $g^{-1} B$, it is negative against $S^{\prime}=g^{-1} S$ or against a surface E that is exceptional for $f \circ g$. We localize to connected components C^{\prime} of $\operatorname{Supp} R$ exactly as in the proof of reductions $6.4-5$. If C^{\prime} intersects another similar component S_{Y} then the flip exists by Lemma 6.11. In the opposite case $C^{\prime} \subset S^{\prime}$, and does not intersect any other component S_{Y}. Hence this is an index 2 special flip, and it exists if it is exceptional. We can thus restrict attention to the case that it is not exceptional; in other words, that $\left(K_{Y}+g^{-1} S+g^{-1} B\right)_{\mid S^{\prime}}$ is not exceptional in a neighborhood of C^{\prime}. In the case $S^{\prime}=g^{-1} S=S_{Y}$ and $(f \circ g)^{-1} P \subset g^{-1} S=S^{\prime}$ over a neighborhood of P, since the extraction $g^{-1} S \rightarrow S^{\nu}$ is numerically 0 with respect to $\left(K_{Y}+g^{-1} S+g^{-1} B\right)_{\mid S}$, the required curve C either connects C^{\prime} and the birational inverse image of $\left(\nu^{-1} f\right) B^{\prime}$, or is equal to the birational inverse image of $\left(\nu^{-1} f\right) B^{\prime}$. In the opposite case, by connectedness of the locus of \log canonical singularities of $K_{Y}+g^{-1} S+g^{-1} B$ over P and Theorem 6.9 , we get the required curve C, or the $\operatorname{LCS}\left(K_{Y}+g^{-1} S+g^{-1} B\right) \neq S^{\prime}$ in a neighborhood of the flipping curve C^{\prime}. In the final case the flip exists by Proposition 6.12. Q.E.D.

In the preprint of this paper, the following result was incorrectly stated as the nonexistence of certain rays (or of the corresponding configurations of flipping contractions). But, as pointed out by Kollár, these flipping contractions actually exist.
8.3. Proposition. Let $f: X \rightarrow Z$ be an extremal contraction of an irreducible curve C, and $B=S_{1}+S_{2}$, where S_{1}, S_{2} are surfaces and $C \subset S_{1} \cap S_{2}$ is the exceptional curve for f. Assume that
(i) S_{1} and S_{2} cross normally along C;
(ii) f is special of type (6.6.1) with $S=S_{1}$;
(iii) $\left(K+S_{1}+S_{2}\right)\left|S_{1}\right| C$ is not purely \log terminal on C at one point P.
(iv) $K+S_{1}+S_{2}$ is numerically 0 in a neighborhood of the contracted curve.

Then the flip $X \rightarrow X^{+}$of C exists, and has the following properties. $C \subset S_{1}$ is contracted to a nonsingular point Q of a normal surface S_{1}^{+}. Moreover, the normalization of S_{2}^{+}is nonsingular and single-branched over Q. The flipped curve C^{+}is irreducible, and the surface S_{2}^{+}is nonnormal along it. The normalization $S_{2}^{+\nu} \rightarrow S_{2}^{+}$defines a double cover $C^{*} \rightarrow C^{+}$, of which Q is one branch point. The singularities of X^{+}along C^{+}are canonical of type A_{n}, and S_{2}^{+}is Cartier. The intersection $C^{+}=S_{1}^{+} \cap S_{2}^{+}$is normal along $C^{\prime+}$ in a neighborhood of Q and
$\left(K_{X^{+}}+S_{1}^{+}+S_{2}^{+}\right)_{S_{2}^{+\nu}}=K_{S_{2}^{+\nu}}+C^{*}+C^{\prime+} ;$ the curves C^{*} and $C^{\prime+}$ intersect normally at Q.
Proof. The flip exists by Proposition 2.7. We first describe the properties of f. By (ii) and Corollary 3.8, S_{1} is normal and irreducible. Taking an analytic neighborhood of C and replacing f by the contraction of C only, we preserve all the above assumptions except for the \mathbb{Q}-factoriality of X. However, S_{1} and S_{2} remain \mathbb{Q} Cartier. By our assumption it follows that $S_{2} C>0$. Hence by (iii), possibly after shrinking the neighborhood of C, the intersection $S_{1} \cap S_{2}$ consists of 2 nonsingular irreducible curves C and C^{\prime} intersecting in P. Hence by (iii), Corollary 3.10, Lemma 4.2 and our assumption, $C=\mathbb{P}^{1}$, and

$$
\begin{equation*}
\left(K+S_{1}+S_{2}\right)_{\left|S_{1}\right| C}=K_{P}+\frac{1}{2} P_{1}+\frac{1}{2} P_{2}+P \tag{8.3.1}
\end{equation*}
$$

whereas

$$
S_{2} \mid S_{1}=C+c C^{\prime}
$$

with $0<c \leq 1$ by (i) and (3.2.2). Note that $\left(\left(C+c C^{\prime}\right) \cdot C\right)_{S_{1}}=S_{2} C>0$. Let $g: T \rightarrow S_{1}$ be a minimal resolution of singularities in a neighborhood of C. Suppose first that the points P_{1} and P_{2} are singular on S_{1}. By Corollary 3.10 they are nodes and

$$
g^{*}\left(C+c C^{\prime}\right)=g^{-1} C+c g^{-1} C^{\prime}+\frac{1}{2} E^{1}+\frac{1}{2} E^{2}+\sum e_{i} E_{i}
$$

where E^{1} and E^{2} are exceptional curves over P_{1} and P_{2} respectively, E_{1}, \ldots, E_{n} is a chain of exceptional curves lying over P, and E_{1} intersects $g^{-1} C$. By (3.18.6) $0<e_{1} \leq 1$, hence

$$
\begin{aligned}
0<\left(C+c C^{\prime}\right) \cdot C & =\left(g^{*}\left(C+c C^{\prime}\right)\right) \cdot g^{-1} C \\
& =\left(g^{-1} C\right)^{2}+\frac{1}{2}+\frac{1}{2}+ \begin{cases}e_{1} & \text { if } n \geq 1 \\
c & \text { if } n=0\end{cases} \\
& \leq\left(g^{-1} C\right)^{2}+2
\end{aligned}
$$

and $\left(g^{-1} C\right)^{2} \geq-1$. Therefore, since $g^{-1} C$ is contractible, it is a (-1)-curve, that is $\left(g^{-1} C\right)^{2}=-1$. But then the curve $E^{1} \cup E^{2} \cup g^{-1} C$ is not contractible. Therefore at least one of the points P_{i}, say P_{1}, is nonsingular. Then there is a unique irreducible curve $C^{\prime \prime}$ with multiplicity $1 / 2$ in the boundary $\left(S_{2}\right)_{S_{1}}$ that passes transversally through P_{1}. In a similar way one checks that if P_{2} is nonsingular then $\left(g^{-1} C\right)^{2} \geq 0$, and this again contradicts the contractibility of C. Hence P_{2} is singular. Hence arguing as before,

$$
g^{*}\left(C+c C^{\prime}\right)=g^{-1} C+c g^{-1} C^{\prime}+\frac{1}{2} E^{2}+\sum e_{i} E_{i}
$$

where E^{2} is an exceptional curve of P_{2}, and E_{1}, \ldots, E_{n} a chain of exceptional curves over P; and E_{1} intersects $g^{-1} C$, hence

$$
\begin{aligned}
0<\left(C+c C^{\prime}\right) \cdot C & =\left(g^{*}\left(C+c C^{\prime}\right)\right) \cdot g^{-1} C \\
& =\left(g^{-1} C\right)^{2}+\frac{1}{2}+ \begin{cases}e_{1} & \text { if } n \geq 1 \\
c & \text { if } n=0\end{cases} \\
& \leq\left(g^{-1} C\right)^{2}+\frac{3}{2},
\end{aligned}
$$

and $\left(g^{-1} C\right)^{2}>-(3 / 2)$. Hence by contractibility $g^{-1} C$ is again a (-1)-curve, and

$$
\frac{1}{2}< \begin{cases}e_{1} & \text { if } n \geq 1 \\ c & \text { if } n=0\end{cases}
$$

Thus if $n=0$ we get that P is nonsingular on S_{1}, by Corollary 3.10 that $c=1$, and the curves C and C^{\prime} cross normally at P. If $n \geq 1$ then by construction
$\left(E_{i}\right)^{2}=-m_{i}$ with $m_{i} \geq 2$. Since $E^{2} \cup E_{1} \cup g^{-1} C$ is not contractible, $m_{1} \geq 3$. By (3.18.7) and the inequality $e_{1}>1 / 2$, we get $m_{1}=3, m_{2}=\cdots=m_{n}=2$ and $c>1 / 2$, hence by Corollary 3.10 again $c=1$, that is, in either case S_{1} and S_{2} cross normally along C^{\prime}. Furthermore $f_{\mid S_{1}}: S_{1} \rightarrow S$ contracts C to a nonsingular point $Q \in S$ and $K_{S}+(1 / 2) f_{\mid S_{1}}\left(C^{\prime \prime}\right)$ is canonical at Q. This means that all the log discrepancies of $K_{S}+(1 / 2) f_{\mid S_{1}}\left(C^{\prime \prime}\right)$ over Q are ≥ 1 (so that their discrepancies are ≥ 0). The corresponding terminal extraction is obtained from T after contracting the curves E^{2} and $g^{-1} C$, with $C^{\prime \prime}$ mapping to a nonsingular curve and for $n \geq 1$ the curve E_{1} maps to a (-1)-curve having simple tangency with $C^{\prime \prime}$; for $n=0$ the image of C^{\prime} has simple tangency with $C^{\prime \prime}$.

Now we describe the properties of the flip. I claim first that it defines a contraction of C on S_{1}. By (8.3.1) there is a curve $C^{\prime \prime}$ with multiplicity $1 / 2$ in the boundary $\left(S_{2}\right)_{S_{1}}$ passing transversally through P_{1}. Hence, since S_{1} and S_{2} cross normally along C and C^{\prime} in a neighborhood of C,

$$
\left(K+S_{1}\right)_{\mid S_{1}}=K_{S_{1}}+\frac{1}{2} C^{\prime \prime}
$$

is \log terminal and negative on C. Hence in a neighborhood of the transformed curves C_{1}, \ldots, C_{m} that land on S_{1}^{+},

$$
\left(K_{X^{+}}+S_{1}^{+}\right)_{\mid S_{1}^{+}}=K_{S_{1}^{+}}+\frac{1}{2} C^{\prime \prime+}+\sum c_{i} C_{i}
$$

and is positive, where by the effectiveness (3.2.2) all the $c_{i} \geq 0$. But by the above the curves C_{i} contract to a nonsingular point Q on S, at which $K_{S}+(1 / 2) f_{\mid S_{1}}\left(C^{\prime \prime}\right)$ is canonical. This is only possible for $m=0$.

Hence $S_{1}^{+}=S$. It follows from this that there do not exist finite covers $\pi: V \rightarrow U$ of degree $l \geq 2$, where U is an irreducible neighborhood of Q, V is irreducible, and π is ramified only along curves not lying on S and passing through Q. We also assume that all these properties are preserved on restricting π over irreducible analytic neighborhoods of Q. Indeed, according to Corollary $2.2, \pi^{*}\left(K_{U}+S\right)=$ $K_{V}+\pi^{-1} S$ is purely \log terminal, and hence by Lemma $3.6 \pi^{-1} S$ is normal and the induced finite cover $\pi_{\mid \pi^{-1} S}: \bigcup D_{i} \rightarrow S$ is unramified outside Q. Hence since $Q \in S$ is nonsingular, π is unramified over Q, which contradicts the possibility of analytic restriction π while preserving the irreducibility of V (compare Corollary 3.7).

Now note that S_{2}^{+}is an irreducible surface, and the normalization $\nu: S_{2}^{+\nu} \rightarrow S_{2}^{+}$ is one-to-one over Q. For otherwise there exists an analytic neighborhood of Q in which S_{2}^{+}has components through Q. This is not possible, since a \mathbb{Q}-Cartier divisor S intersects each of these components along a curve through Q, and these curves are distinct because $K+S+S_{2}^{+}$is log canonical. However $S \cap S_{2}^{+}=C^{++}$is an irreducible curve in a neighborhood of Q. Thus the point Q can be identified with $\nu^{-1} Q$, and $C^{\prime+}$ with $\nu^{-1} C^{\prime+}$. The restriction $\left(K_{X^{+}}+S+\left.S_{2}^{+}\right|_{\mid S_{2}^{+\nu}}\right.$ has at most two irreducible curves with multiplicity 1 in the boundary $S_{S_{2}^{+\nu}}$ through Q. Suppose there are just two such curves, $C^{\prime+}$ and some other curve C^{*}. (We will prove later that C^{*} is the same curve as in Proposition 8.3.) Then in a neighborhood of Q

$$
\left.\left(K_{X^{+}}+S_{2}^{+}\right)\right|_{2} ^{+\nu}=K_{S_{2}^{+\nu}}+C^{*},
$$

and is \log terminal.
On the other hand, $K_{X^{+}}+S_{2}^{+}$has index 1 at all points of a punctured neighborhood of $Q \in S$, so that, by what we have just seen, it has index 1 at Q. Therefore $K_{S_{2}^{+\nu}}+C^{*}$ has index 1 at Q, and by (3.9.2), $S_{2}^{+\nu}$ is a nonsingular surface at Q.

Since S has index 2 along $C^{\prime \prime+}$, it defines a double cover $\pi: V \rightarrow U$ in a neighborhood of Q, ramified only in $C^{\prime \prime+}$. Hence after shrinking the analytic neighborhood of $Q, \pi^{-1} S_{2}^{+}$consists of two irreducible components each of which has nonsingular normalization. Since $K_{V}+\pi^{-1} S$ is purely \log terminal it has a small strictly \log terminal extraction $q: W \rightarrow V$ with connected fiber M over Q, otherwise as before we get a contradiction from π unramified over Q. But this is impossible if the two components of $\pi^{*} S_{2}^{+}$intersect in at most points. Indeed, then $(\pi \circ q)^{*} S_{2}^{+}=(\pi \circ q)^{-1} S_{2}^{+}$ is numerically 0 on M, and after shrinking to an analytic neighborhood of Q, it consists of two irreducible components which do not intersect even along M, because $K_{V}+\pi^{-1} S+\pi^{-1} S_{2}^{+}$is \log canonical. Hence S_{2}^{+}is nonnormal along $\nu\left(C^{*}\right)$ and by the above X^{+}has a singularity along $\nu\left(C^{*}\right)$ of the required type. The irreducibility of the flipped curve C^{+}and the fact that it coincides with $\nu\left(C^{*}\right)$ is easily deduced from the fact that all its components pass through Q and are contained in S_{2}^{+}; indeed, suppose that C^{\prime} is a component of C^{+}with $C^{\prime} \not \supset \nu\left(C^{*}\right)$. Then on the normalization $S_{2}^{+\nu}$ it is an exceptional curve passing through $Q=C^{*} \cap C^{\prime+}$, and numerically 0 against $\left(K_{X^{+}}+S+S_{2}^{+}\right){ }_{\mid S_{2}^{+\nu}}=K_{S_{2}^{+\nu}}+C^{*}+C^{\prime+}$.

We now suppose that there is no C^{*}, and derive a contradiction. Then in a neighborhood of Q

$$
\left(K_{X^{+}}+S_{2}^{+}\right)_{S_{2}^{+\nu}}=K_{S_{2}^{+\nu}}
$$

is log terminal and of index 1 . Therefore $S_{2}^{+\nu}$ is a normal surface and $Q \in S_{2}^{+\nu}$ is a canonical singularity. On the other hand $\left(K_{X^{+}}+S+S_{2}^{+}\right){ }_{\mid S_{2}^{+\nu}}$ is log canonical and equal to $K_{S_{2}^{+\nu}}+C^{\prime+}$ in a neighborhood of Q, but not \log terminal at Q. Then by classification, Q is a Du Val singularity of type D_{n}. By (ii) and the original assumption each flipped curve C^{+}is negative for S_{2}^{+}, and hence contained in S_{2}^{+}. By (ii) again, C^{+}passes through Q, and by the original assumption the divisor $\left(K_{X^{+}}+S+S_{2}^{+}\right)_{\mid S_{2}^{+\nu}}$ is numerically 0 against C^{+}. Hence C^{+}is a (-1)-curve on the minimal resolution of S_{2}^{+}. But then a multiple of C^{+}moves on S_{2}^{+}, which contradicts $f^{+}: X^{+} \rightarrow Z$ small. Q.E.D.

The following standard result is useful in simplifying somewhat the induction in the sequel.
8.4. Reduction. At the expense of passing to the analytic case, we can assume that the flipping curve is irreducible.

In the reverse direction, we can try to return to the algebraic case by algebraic approximation of the contraction and its polarization, afterwards resolving the singularities that are not \log canonical and not \mathbb{Q}-factorial outside the flipped curve; however, algebraic approximation is probably not always possible.

Proof. Combine the arguments of the end of the proof of Reductions 6.4-5 and Reduction 8.2. By Definition 6.1 one can restrict to an algebraic situation and shrink to an analytic neighborhood. Q.E.D.
8.5. Classification of rays. We classify rays according to two tests: is $K+S+B$ log terminal along the curve contracted by f ? and is the contracted curve contained in B (more precisely, in Supp B) ? By (8.1.3) and (8.1.6) negative answers to both tests are not possible. Hence the possible cases are as follows:
(8.5.1) $K+S+B$ is purely log terminal along the curve contracted by f, and B does not contain it;
(8.5.2) $K+S+B$ is not \log terminal along the curve contracted by f, and B contains it;
(8.5.3) $K+S+B$ is purely log terminal along the curve contracted by f, and B contains it.

The reason for the chosen order will be clear from the reductions of the sequel. Of course, by Reduction 8.2, in each of the indicated cases it is assumed that there exists exactly one irreducible curve C not contracted by f with multiplicity 1 in the boundary of the log divisor $(K+S+B){ }_{\mid S}$ intersecting the contracted curve; each connected component of $\operatorname{Supp}\left(B_{\mid S}\right)$ outside C meeting the locus of log canonical singularities of $(K+S+B)_{\mid S}$ is exceptional; and in cases (8.5.1-2), the curve contracted by f is irreducible.

In what follows we successively reduce case (8.5.1) to (8.5.2-3) and exceptional index 2 flips, (8.5.2) to (8.5.3) and exceptional index 2 flips, and (8.5.3) to exceptional index 2 flips. However, the contracted curve in (8.5.3) is possibly reducible, and $K+S+B \log$ terminal along it means log terminal at the general point of each irreducible component. (It is not hard to check that the contracted curve in (8.5.3) has at most two irreducible components.)

Our general strategy is to choose a good extraction in the sense of the following definition. A good extraction g is an extremal extraction $g: Y \rightarrow X$ having irreducible exceptional divisor E, and having the following properties:
(i) $g^{*}(K+S+B)=K_{Y}+g^{-1} S+g^{-1} B+E$, that is, g is log crepant;
(ii) $K_{Y}+g^{-1} S+E$ is \log terminal;
(iii) $B_{1}=g^{-1} S \cap E=\mathbb{P}^{1}$ is an irreducible curve, and $g^{-1} S$ and E cross normally along it;
(iv) we have

$$
\begin{aligned}
\left(K_{Y}+g^{-1} S+g^{-1} B+E\right)\left|g^{-1} S\right| B_{1} & =\left(K_{Y}+g^{-1} S+g^{-1} B+E\right)_{|E| B_{1}} \\
& =K_{\mathbb{P}^{1}}+\frac{1}{2} P_{1}+\frac{1}{2} P_{2}+P
\end{aligned}
$$

where P is the unique point on B_{1} at which $K_{Y}+g^{-1} S+g^{-1} B+E$ is not \log terminal.

Note that by Corollary 3.8, (iii) follows from (ii) and (8.1.3), although they are often proved in the opposite order.

The existence of a good extraction will be provided in cases (8.5.1-2) by Propositions 8.6 and 8.8 , and in case (8.5.3) by Proposition 8.8. After this, as in the second half of the proof of Reduction 7.2 , we apply Corollary 4.6 to $f \circ g$ with $H=\varepsilon g^{*} B$. The inductive or reduction step is realized for an extremal ray R_{2} that is numerically 0 against the modified $g^{-1} S$. Here the base of the contraction changes by a divisorial extraction, a modification of the current good extraction. In the analytic case, which by Reduction 8.4 is now the main case of interest for us, the current W is replaced by its inverse image; here the original W is a point, the image of the flipping curve. The notions of f extremal and X strictly \mathbb{Q}-factorial are assumed over such a W. (In the analytic casé, f extremal and $X \mathbb{Q}$-factorial are not preserved in general on shrinking the neighborhood of the contracted fiber.) As for the rest, the speciality assumptions (8.1.1-6) will hold.

Note also that W will always be projective and contained in the reduced part of the boundary, since this holds for the good extraction and is preserved on subsequent modifications, because the flipping ray is positive against E. Hence in a neighborhood of W there exists a strictly \log terminal extraction of $K+S+B$ as in Corollary 5.19. However, in the boundary of the \log divisor $K+S+B$ and its restrictions, we usually only write the components in a neighborhood of the new flipping
curve. In doing so, Lemmas $8.9-10$ will allow us to remain within the framework of cases (8.5.1-3). But we can't avoid allowing the contracted curve to be reducible in (8.5.3). In the overall strategy, the given reduction of index 2 special flips to exceptional flips is carried out at the end of $\S 8$, and completes the proof of Theorems 1.9-10 and Corollary 1.11.

Since we are not in the exceptional case, in case (8.5.1) the curve contracted by f intersects C in a singular point Q_{1} that is not \log terminal for $K+S+B$ or for $(K+S+B)_{\mid S}$ in a neighborhood of the contracted curve; by Theorem 6.9, Q_{1} is the unique point in a neighborhood of the contracted curve where $(K+S+B)_{\mid S}$ fails to be log terminal. On the other hand, by (iii) and (iv), g cannot be an extraction of a curve C. Thus g is an extraction of a point Q_{1}. In this case, we say that a good extraction g is an end extraction if P is the unique possible point on E where $\left(K_{Y}+g^{-1} S+g^{-1} B+E\right)_{\mid E}$ is not log terminal. In the opposite case, by Theorem 6.9 and the assumption that f is not exceptional, the reduced part of the boundary of $\left(K_{Y}+g^{-1} S+g^{-1} B+E\right)_{\mid E}$ is of the form $B_{1}+B_{2}$, where B_{2} is a curve intersecting B_{1} only in P and containing a point $Q_{2} \neq P$ where $\left(K_{Y}+g^{-1} S+g^{-1} B+E\right) \mid E$ is not \log terminal. By the extremal property of g the divisors $g^{-1} S$ and B_{1} are ample on E. Hence B_{2} is irreducible and Q_{2} is the unique point of E where $\left(K_{Y}+g^{-1} S+g^{-1} B+E\right)_{\mid E}$ is not log terminal, except possibly for P. We say that a good extraction of Q_{2} is a middle extraction; a finite chain of successive extractions ending in an end extraction is stopped. It is convenient to subdivide case (8.5.2) in two:
(8.5.2), unstarred. As in (8.5.2) above, and on the curve contracted by f there is a point $Q_{1} \notin C$ that is not \log terminal for $(K+S+B){ }_{\mid S}$.
(8.5.2*) The opposite case.

It is not hard to check that, in case (8.5.2), unstarred, a good extraction g blows up Q_{1}. As before, it is an end extraction if P is the unique possible point of E where $\left(K_{Y}+g^{-1} S+g^{-1} B+E\right)_{\mid E}$ is not \log terminal. A middle extraction and a stopped chain of extractions are defined similarly.
8.6. Proposition. In cases (8.5.1-2) there exists a stopped chain of good extractions.

Proof. By Corollary 5.19 there exists a strictly log terminal extraction over a neighborhood of W (see the remark after Proposition 8.8). We now apply Corollary 4.6 to g with $H=g^{-1} B$; by (8.1.3) we get the original model X as a result of modifications of 0 -contractions. I claim that the final modification g that gives back the neighborhood of the point Q_{1} is a good extraction of Q_{1}. Suppose first that this modification was a flip. (For the first step, this is not possible a priori, since we start with some extraction $Y=Y_{0} \rightarrow X$, and in the chain, $Y_{i} \rightarrow Y_{i+1}$ is specified by a ray of $\overline{\mathrm{NE}}\left(Y_{i} / X\right)$, so each $Y_{i} \rightarrow X$ is a morphism. But the point of the argument is that it also works inductively for Q_{2}, etc.) By construction $g^{-1} B$ is negative on the flipped curve C^{\prime}, and $g^{*} B$ is numerically 0 , so there is an exceptional divisor E for g with $E C^{\prime}>0$. Moreover, C^{\prime} is not contained on any divisor exceptional for g, and is hence nonnegative against either of them. But C^{\prime} is numerically trivial against $g^{*} S$. Hence C^{\prime} is negative against the divisor $g^{-1} S$ and lies on it. By construction $K_{Y}+g^{-1} S$ is log terminal, and hence the surface $g^{-1} S$ is normal. Since $E C^{\prime}>0$, the final divisor cuts out a curve of log canonical singularities of $\left(K_{Y}+g^{-1} S+B_{Y}\right)_{\mid g^{-1} S}$ and Q_{1} is also contained in the locus of log
canonical singularities of this divisor. Thus by Theorem $6.9 C^{\prime}$ will be a curve of log canonical singularities of $\left(K_{Y}+g^{-1} S+B_{Y}\right)_{\mid g^{-1} S}$. But then because $K_{Y}+g^{-1} S+E$ was \log terminal before the flip, it follows that $g^{-1} B$, hence also B, cuts out locally in a neighborhood of Q_{1} more than the locus of \log canonical singularities of $(K+S+B)_{\mid S}$, which is not possible by definition of cases (8.5.1-2).

Thus the final modification, giving the extraction of Q_{1}, is the contraction of the divisor E. (ii) and (iii) hold by construction, and (i) holds locally in a neighborhood of Q_{1}. Hence by (8.1.5) and (3.2.3) we get that E is contracted to the point Q_{1}. Now it is not difficult to check (iv). By the above, if this extraction is not an end extraction, the boundary of $g^{*}(K+S+B) \mid E$ has two intersecting irreducible components $B_{1}=g^{-1} S \cap E$ and B_{2}. Now on B_{2} there exists a unique point Q_{2} outside B_{1} where $g^{*}(K+S+B) \mid E$ is not log terminal. Since in a neighborhood of Q_{1} the support of B intersects S only in the curve of \log canonical singularities of $(K+S+B) \mid S$, it follows that $g^{-1} B$ intersects B_{1} only in P. Thus in a neighborhood of Q_{2} the support of $g^{-1} B$ intersects E only in B_{2}. Hence the final modification g giving the neighborhood of Q_{2} is again a good extraction of Q_{2}. This process terminates because the number of our modifications is finite. Q.E.D.

In cases (8.5.2*) and (8.5.3) it is convenient to define a natural invariant δ and then establish the existence of a good extraction by decreasing this invariant. We start in a slightly more general set-up. Let $Q \in S$ be a point and suppose that the locus of \log canonical singularities of $K+S+B$ is contained in S, and $K+S$ is \log terminal in a neighborhood of Q. For each exceptional divisor E_{i}, define the multiplicity d_{i} of E_{i} in S by

$$
g^{*}(S)=g^{-1} S+\sum d_{i} E_{i},
$$

where E_{i} is exceptional for the contraction $g: Y \rightarrow X$. Obviously d_{i} does not depend on the choice of g.
8.7. Lemma. In a neighborhood of Q the set of exceptional divisors E_{i} with \log discrepancy $a_{i}=0$ and multiplicity $d_{i} \leq 1$ in S is finite.

Here "in a neighborhood of Q " means that the birational transform of E_{i} passes through Q.
Proof. It follows at once from the definition of log discrepancy that the distinguished exceptional divisors E_{i} have \log discrepancy ≤ 1 for $K+B$. Thus it is enough to prove that the set of exceptional divisor with log discrepancy ≤ 1 (that is, discrepancy ≤ 0) is finite. But by assumption $K+B$ is purely \log terminal, so that it follows that all \log discrepancies are $\geq \varepsilon$ for some positive ε. From then on one argues as in [25], (1.1). Q.E.D.

Now define δ by

$$
\delta=\#\left\{E_{i} \mid a_{i}=0 \text { and } d_{i} \leq 1\right\},
$$

where we consider only exceptional divisors in a neighborhood of Q, that is, over Q or over an irreducible curve of \log canonical singularities of $K+S+B$ through Q. Returning to our set-up, we take Q in (8.5.2*) to be a general point of the contracted curve, and in (8.5.3) Q to be the unique point on the contracted curve that is not \log terminal for $K+S+B$.
8.8. Proposition-Reduction. In the two cases (8.5.2*) and (8.5.3), either the flip itself exists, or we get a good extraction as follows.

Case (8.5.2*). There exists a good extraction g of the curve contracted by f such that either the image of the exceptional divisor E passes through $Q, a=0$ and $d \leq 1$, or the restriction $\left(K_{Y}+g^{-1} S+g^{-1} B+E\right){ }_{\mid E}$ is purely log terminal outside B_{1} over Q (where Q is the generic point of the curve contracted by f).

Case (8.5.3). There exists a good extraction g of Q such that either $a=0$ and $d \leq 1$, or the restriction $\left(K_{Y}+g^{-1} S+g^{-1} B+E\right) \mid E$ is purely log terminal outside B_{1}.

The heading Proposition-Reduction means that we aim throughout the proof either to construct a good extraction with the stated property, or to prove that the flip exists for some other reason.

As already remarked above, in the analytic case we assume that f is extremal and \mathbb{Q}-factorial with respect to a projective analytic subspace $W \subset S+\lfloor B\rfloor$; then (8.1.6) holds in a neighborhood of the flipping curve. Hence by Corollary 5.19 there is a strictly \log terminal extraction of a neighborhood of W for $K+S+B$.
Proof. We start with the case $\left(8.5 .2^{*}\right)$. Here I claim first that there exists an exceptional divisor E over a curve contracted by f with $a=0$ and $d \leq 1$. Taking a general hyperplane section, we reduce the problem to the 2-dimensional situation. Let Q be a surface singularity, at which $K+S+B$ is \log canonical but not \log terminal, where S is a curve and the support of B passes through Q. Then over Q there is an exceptional curve E with $a_{i}=0$ and $d_{i} \leq 1$. Using Lemma 3.6, it is not hard to check that S is irreducible and nonsingular in a neighborhood of Q. Consider the log terminal extraction $g: Y \rightarrow X$ of a neighborhood of Q for $K+S+B$. The exceptional curves E_{i} over Q are numerically 0 against the divisor $g^{*}(K+S+B)=K_{Y}+g^{-1} S+g^{-1} B+\sum E_{i}$. Moreover, from the fact that $\cup E_{i}$ is connected, it follows that the curves $E_{i}=\mathbb{P}^{1}$ are nonsingular, rational and together with $g^{-1} S$ form a chain $E_{1}, \ldots E_{n}, g^{-1} S$. If one of the curves E_{i} for $i \geq 2$ is a (-1)-curve then we can contract it and again get a \log terminal extraction of Q. Hence we can suppose that g is minimal, in the sense that $E_{i}^{2} \leq-2$ for $i \geq 2$. Then $a_{i}=0$ and $d_{i} \leq 1$ for every exceptional curve E_{i} with $i \geq 2$ (compare Lemma 3.18).

Furthermore, the required surface E with $a=0$ and $d \leq 1$ always exists, except in the case that the surfaces S and $\operatorname{Supp} B$ are nonsingular and simply tangent along Q. But in this case $n=1$ and we take $E=E_{1}$. Then the restriction $\left(K_{Y}+g^{-1} S+g^{-1} B+E\right)_{\mid E}$ is purely log terminal outside B_{1} over Q, of course viewed as the general point. The good extraction property in the proposition for it will be established below, assuming that g is extremal.

In the case when there exists E with $a=0$ and $d \leq 1$ we apply Corollary 4.6 with $H=E$; using the fact that $g^{*} S$ is LSEPD, we can modify g to be an extremal contraction of E. It remains to check that it is good. $K_{Y}+g^{-1} S$ is \log terminal by construction. Since on the curve contracted by f (in its intersection with C), $(K+S+B)_{\mid S}$ has a unique singularity that is not \log terminal, and E is contracted to this curve, its birational transform gives a curve $B_{1} \subset g^{-1} S \cap E$ with $B_{1}=\mathbb{P}^{1}$ and

$$
\left(K_{Y}+g^{-1} S+g^{-1} B+E\right)\left|g^{-1} S\right| B_{1}=K_{\mathrm{P} I}+\frac{1}{2} P_{1}+\frac{1}{2} P_{2}+P .
$$

This is property (iv) of a good extraction in 8.5. (i) holds obviously, and (ii) will hold if we take E_{n} as above. Since f and g are extremal, $\rho(Y / Z)=2$ and $\overline{\mathrm{NE}}(Y / Z)$ has two extremal rays. As usual, suppose that R_{1} is the ray corresponding to the contraction g; then $g^{-1} B R_{1}>0$. If the curve $B_{1} \neq g^{-1} S \cap E$ then by
(8.5.2*) $g^{-1} B$ is disjoint from it. Hence $g^{-1} B R_{2} \leq 0$, and therefore $E R_{2}>0$ and $g^{-1} S R_{2}<0$. But then $g^{-1} B R_{2}=0$, and now R_{2} is a flipping ray whose support contains B_{1}.

Thus $g^{-1} S \cap E=\bigcup_{i=1}^{n} B_{i}$, where $B_{1}, \ldots, B_{n}, g^{-1} C$ is a chain of curves on $g^{-1} S$. Moreover, the curves B_{i} with $i \geq 2$ are contracted by g to a point. Hence their intersection with $g^{-1} B$ is positive, and therefore $n=2$. Thus $g^{-1} S \cap E=$ $B_{1} \cup B_{2}$, where B_{1} and B_{2} are irreducible. Note that $P=B_{1} \cap B_{2}$ is not \log terminal for $K_{Y}+g^{-1} S+E$. Let us check that there is no other such point in a neighborhood of E. Note that the semiampleness of $g^{-1} B$ on E is important for this: $g^{-1} B$ is numerically 0 against B_{1}, and positive against all the other curves of E. Indeed by Theorem 6.9 and the fact that

$$
\left(K_{Y}+g^{-1} S+g^{-1} B+E\right)_{\mid E^{\nu}}
$$

is not purely \log terminal at $Q=B_{2} \cap g^{-1} C$, the locus of \log canonical singularities is connected. Here it is a chain of curves $\nu^{-1} B_{1}, C_{1}, \ldots, C_{n}, \nu^{-!} B_{2}, \ldots, B_{m}$, with $g^{-1} B_{\mid E^{\nu}}=D+\sum_{i \geq 3} b_{i} B_{i}$, where Supp D is outside the locus of \log canonical singularities and $b_{i}>0$. The final assertion follows from the connectedness of $g^{-1} B_{\mid E^{\nu}}$ by semiampleness and the fact that D does not intersect C_{i} and $\nu^{-1} B_{2}, \ldots, B_{m-1}$ for $m \geq 3$ (we write $B_{2}=\nu^{-1} B_{2}$ if $m=3$), since the restriction in question is log canonical. But $g^{-1} B$ is numerically 0 on $\nu^{-1} B_{1}$ only. Hence $n=0$ and there are no curves C_{i}. Thus by Proposition 5.13, the points at which $K_{Y}+g^{-1} S+g^{-1} B+E$ is not purely \log terminal on E are contained in the support of $g^{-1} S+g^{-1} B$, and this gives what we want. It also follows from this that E is normal.

The support of R_{2} equals B_{1}. The flip in B_{1} exists and is described in Proposition 8.3. After the flip, $K_{Y}^{+}+g^{-1} S^{+}+E^{+}$fails to be log terminal only along the flipped curve $B_{1}^{+}=\nu\left(C^{*}\right)$. Now the intersection $g^{-1} S^{+} \cap E^{+}=B_{2}^{+}$is irreducible, and we can argue as in Reduction 8.2. Then the nontrivial case is the flip in a ray that is numerically 0 against $g^{-1} S^{+}$, negative against E^{+}and positive against $g^{-1} B^{+}$. Thus B_{2}^{+}has positive selfintersection on $E^{+\nu}$. Note that by Proposition 8.3, the normalization map $E^{+\nu} \rightarrow E^{+}$is one-to-one over B_{2}^{+}, and we can hence identify B_{2}^{+}with its inverse image in $E^{+\nu}$. Again by Proposition 8.3, on $B_{2}^{+}, E^{+\nu}$ can only be singular at $Q^{+}=B_{2}^{+} \cap g^{-1} C^{+}$. Hence B_{2}^{+}is a curve with selfintersection ≥ 0 on the minimal resolution of singularities of $E^{+\nu}$, and selfintersection ≥ 1 in the case that $E^{+\nu}$ is nonsingular on B_{2}^{+}. But

$$
\begin{equation*}
\left(K_{Y^{+}}+g^{-1} S^{+}+g^{-1} B^{+}+E^{+}\right)_{\mid E^{+\nu}} \tag{1}
\end{equation*}
$$

has $C^{*} \cup B_{2}^{+}$as its locus of \log canonical singularities in a neighborhood of C^{*}.
Hence E is obtained from $E^{+\nu}$ by the following procedure. Start by performing on $E^{+\nu}$ a minimal strictly \log terminal extraction of the restricted \log divisor (1). As a result of this, we get a chain $B_{1}=C_{1}, \ldots, C_{m}, C^{*}, B_{2}^{+}$in a neighborhood of C^{*}. Here by minimal we mean that C_{i} with $i \geq 2$ are not (-1)-curves. Then we contract the curves C_{i} with $i \geq 2$ and C^{*}. Hence B_{2}, just as B_{2}^{+}, is a curve with selfintersection ≥ 0 on the minimal resolution of E, and selfintersection ≥ 1 if E is nonsingular at Q in B_{2}. But such a curve cannot be contained in a fiber of the ruling determined on E by g, which is a contradiction.

We now proceed to case (8.5.3). We first assume that there exists an exceptional divisor E_{i} over Q or over C with $a_{i}=0$ and $d_{i} \leq 1$. Flipping log terminal extractions for $K+S+B$ and using Corollary 4.6 with $H=\varepsilon\left(\sum d_{i} E_{i}\right)$, where the sum runs over $d_{i} \leq 1$, and using the fact that $g^{*} S$ is LSEPD, we get an extraction
$g: Y \rightarrow X$ which pulls out all the E_{i} with a_{i} and $d_{i} \leq 1$, and no other exceptional divisor. All, since by Corollary 3.8 all exceptional divisors with log discrepancy 0 over a log terminal extraction of Y lie over the normal crossings of components of the reduced part of the boundary of $g^{-1} S+\sum E_{i}$, and by arguments used in the proof of Proposition 6.7, it is not hard to carry out addition subextractions for which the E_{i} with $a_{i}=0$ and $d_{i} \leq 1$ are not exceptional.

By construction

$$
g^{*}(K+S+B)=K_{Y}+g^{-1} S+g^{-1} B+\sum E_{i}
$$

$K_{Y}+g^{-1} S$ is \log terminal and $g^{-1} S$ is a normal surface. From this also, by Theorem 6.9, the intersection $g^{-1} S \cap \bigcup E_{i}$ is a chain of irreducible curves B_{1}, \ldots, B_{n}, where B_{n} is the birational transform of C. Setting $H=g^{-1} S$, we get the original model without contracting any curves outside $\bigcup E_{i}$. Hence S is obtained from $g^{-1} S$ by contracting $B_{i}=\mathbb{P}^{\mathbf{1}}$ with $i \leq n-1$.
(8.8.1) I claim that

$$
\left(K_{Y}+g^{-1} S+g^{-1} B+\sum E_{i}\right)_{\left|g^{-1} S\right| B_{1}}=K_{\mathbb{P}^{1}}+\frac{1}{2} P_{1}+\frac{1}{2} P_{2}+P_{0}
$$

where $P_{0}=B_{1} \cap B_{2}$.
For this, assume the contrary. Then by definition of case (8.5.3), B_{1} has a point P lying on $g^{-1} B$ at which $(K+X+B)_{\mid S}$ is not \log terminal. Suppose that B_{1} (and possibly something else) is cut out by $E=E_{1}$. Then none of the other E_{i} pass through P. By construction the following holds:
(8.8.2) For every exceptional divisor E_{i} over P or over a curve through P with \log discrepancy $a_{i}=0$ the multiplicity d_{i} of E_{i} in $g^{-1} S+E$ satisfies $d_{i}>1$.

Using Corollary 4.6 we can assume that g is an extremal extraction of Q preserving (8.8.2). As in the proof of Reduction 8.2, we take $H=\varepsilon\left(g^{-1} S+d E\right)$. From the stated properties and Lemma 3.18 it follows that in a neighborhood of P the point P is the unique point at which $g^{*}(K+S+B)=K_{Y}+g^{-1} S+g^{-1} B+E$ is not \log terminal, or equivalently, all three of

$$
K_{Y}+g^{-1} S+E, \quad K_{Y}+g^{-1} S+g^{-1} B, \quad K_{Y}+g^{-1} B+E
$$

are also \log terminal in a neighborhood of P. Moreover, P is then \mathbb{Q}-factorial, since otherwise the log terminal extraction of $K_{Y}+g^{-1} S+E$ is automatically small, and the birational transforms of the 3 divisors $g^{-1} S, E$ and $g^{-1} B$ all contain the fiber curves; but by Corollary 3.16, this contradict the log canonical property of $K_{Y}+g^{-1} S+g^{-1} B+E$.

We note that $K_{Y}+g^{-1} S$ purely \log terminal follows from (8.1.3) and the fact that a multiple of E is positive in B. Thus $g^{-1} S$ is normal. The remaining \log terminal properties required can be proved using Proposition 5.13.

We now check the following addendum to (8.8.2):
(8.8.3) For every exceptional divisor E_{i} over P with \log discrepancy $a_{i}^{\prime} \leq 1$ for $K_{Y}+g^{-1} S+E$ the multiplicity d_{i} of E_{i} in $g^{-1} S+E$ satisfies $d_{i}>1$, except for the case that there is an exceptional surface E_{j} with $a_{j}=0$ over P such that E_{i} can be obtained by blowing up a curve of ordinary double points on the extremal extraction $E_{j}, a_{i}^{\prime}>a_{i}=1 / 2$ and $d_{i}=(1 / 2) d_{j}>1 / 2$.

By monotonicity $a_{i}<a_{i}^{\prime} \leq 1$. Hence $a_{i}=0$ or $1 / 2$. When $a_{i}=0$, the result follows at once from (8.8.2). To verify it in the case $a_{i}=1 / 2$ we use a strictly log
terminal extraction $h: W \rightarrow Y$ for $K_{Y}+g^{-1} S+g^{-1} B+E$, the exceptional divisors E_{j} of which lie over P. Such a model exists by Corollary 5.19 , since P is the unique point in a neighborhood of P where $g^{*}(K+S+B)=K_{Y}+g^{-1} S+g^{-1} B+E$ is not \log terminal, and the intersection $g^{-1} S \cap E$ is normal along B_{1}. This fails only if Supp $g^{-1} B$ is tangent to E in a neighborhood of P. But then perturbing $g^{-1} B$ while keeping $P \in g^{-1} B$ does not change $a_{i}=1 / 2$. (If P becomes log terminal for $K_{Y}+g^{-1} S+g^{-1} B+E$, then P is a nonsingular point and all $d_{i} \geq 2$.)

As before, the log terminal divisor

$$
h^{*}\left(K_{Y}+g^{-1} S+g^{-1} B+E\right)=K_{W}+h^{-1} g^{-1} S+h^{-1} g^{-1} B+h^{-1} E+\sum E_{j}
$$

has index 2 . Since P is \mathbb{Q}-factorial it follows that $h^{-1} P=\bigcup E_{j}$ and that E_{i} lies over one of the exceptional divisors E_{j}. Suppose first that E_{i} with \log discrepancy $a_{i}=1 / 2$ is contracted to a point P^{\prime}. Then $K_{W}+h^{-1} g^{-1} S+h^{-1} g^{-1} B+h^{-1} E+$ $\sum E_{j}$ has index >1 in a neighborhood of P^{\prime}. By Corollary $3.8 P^{\prime}$ is in the intersection of at most two irreducible components of the boundary $h^{-1} g^{-1} S+$ $h^{-1} E+\sum E_{j}$; moreover, if it lands on the intersection of two components then P^{\prime} is \mathbb{Q}-factorial and by Corollary 3.7 has index 1 if $h^{-1} g^{-1} B$ passes through P^{\prime}, or index 2 otherwise. By (8.8.2),

$$
h^{*}\left(g^{-1} S+E\right)=h^{-1} g^{-1} S+h^{-1} E+\sum d_{j} E_{j}, \quad \text { where } d_{j}>1 .
$$

Hence $d_{i}>1 / 2+1 / 2=1$, since P^{\prime} lies on at least one of the exceptional components E_{j}.

Suppose now that P^{\prime} lies on only one of the reduced boundary components E_{j}. Then we can modify h into an extremal extraction of $E^{\prime}=E_{j}$ preserving the neighborhood of P^{\prime} and, in particular, preserving the \log terminal property of

$$
h^{*}\left(K_{Y}+g^{-1} S+g^{-1} B+E\right)=K_{W}+h^{-1} g^{-1} S+h^{-1} g^{-1} B+h^{-1} E+E^{\prime}
$$

in a neighborhood of P^{\prime}. Since h contracts E^{\prime} to a point, the reduced part of the boundary of ($\left.K_{W}+h^{-1} g^{-1} S+h^{-1} g^{-1} B+h^{-1} E+E^{\prime}\right) \mid E^{\prime}$ consists of two irreducible curves $C_{1}=h^{-1} g^{-1} S \cap E^{\prime}$ and $C_{2}=h^{-1} E \cap E^{\prime}$. On the other hand, $K_{Y}+g^{-1} S+E$ has a 1-complement $\overline{0}$ in a neighborhood of P, such that the log discrepancies of E^{\prime} and E_{i} for $K_{Y}+g^{-1} S+E+\overline{0}$ are all 0 . For this, we need to use the proof of Theorem 5.12 with $S=g^{-1} S$ and $B=(1-\varepsilon) E$ for sufficiently small $\varepsilon>0$. Hence the \log canonical divisor

$$
h^{*}\left(K_{Y}+g^{-1} S+E+\overline{0}\right)=K_{W}+h^{-1} g^{-1} S+h^{-1} E+E^{\prime}+\overline{0}
$$

has index 1 , and $\left(K_{W}+h^{-1} g^{-1} S+h^{-1} E+E^{\prime}+\overline{0}\right)_{\mid E^{\prime}}=K_{E}+C_{1}+C_{2}+C_{3}$, where the curve $C_{3}=h^{-1} \overline{0} \cap E^{\prime}$ is also irreducible. Note that the curves $C_{i}=\mathbb{P}^{1}$ intersect pairwise in one point. Since the log discrepancy of E_{i} is 0 , by construction P^{\prime} lies on C_{3} outside C_{1} and C_{2}. But then P^{\prime} is a log terminal point of $K_{E}+C_{1}+C_{2}+C_{3}$ and by Proposition 5.13 the log discrepancy of $K_{W}+h^{-1} g^{-1} S+h^{-1} E+E^{\prime}+\overline{0}$ at E_{i} is ≥ 1. Hence this case is impossible.

Note also that the \log discrepancy of E_{i} on curves $\neq C_{1}$ or C_{2} is 0 only if it lies over C_{3}. Moreover, if $a_{i}=1 / 2$ and $d_{i} \leq 1$ then W has ordinary double points along C_{3}, and E_{i} is its extraction and $d_{i}=(1 / 2) d_{j}>1 / 2$. This verifies (8.8.3) in the case that E_{i} with \log discrepancy $a_{i}=1 / 2$ is contracted to a curve lying on only one exceptional surface E_{j}. This completes the proof of property (8.8.3), since the index of $K_{W}+h^{-1} g^{-1} S+h^{-1} g^{-1} B+h^{-1} E+\sum E_{j}$ on the curves of intersection of irreducible components of the boundary of $h^{-1} g^{-1} S+h^{-1} E+\sum E_{j}$ equals 1 .

Now we verify that Y is nonsingular outside $g^{-1} S \cup E$ in a neighborhood of P. Obviously we need only consider the singularities along curves C_{i} not lying on $g^{-1} S \cup E$ and passing through P. As we already know, $K_{Y}+g^{-1} S+E$ has a 1complement in a neighborhood of P and the curves of noncanonical singularities of C_{i} land on the boundary of the complement. As above, we can construct an extremal extraction $h: W \rightarrow Y$ over one such curve of an exceptional surface E^{\prime} with \log discrepancy $0<a^{\prime}<1$ for $K_{Y}+g^{-1} S+E$, that is,

$$
h^{*}\left(K_{Y}+g^{-1} S+E\right)=K_{W}+h^{-1} g^{-1} S+h^{-1} E+\left(1-a^{\prime}\right) E^{\prime} .
$$

But then the 3 surfaces $h^{-1} g^{-1} S, h^{-1} E$ and E^{\prime} all pass through the fiber curve $h^{-1} P$, which contradicts the \log canonical property of $K_{Y}+g^{-1} S+E$ in a neighborhood of P. In the case of canonical singularities along the curves C_{i} we can use the arguments of Proposition 4.3 and the log terminal property of $K_{Y}+g^{-1} S+E$ to construct an extraction h of the exceptional divisors over C_{i} with log discrepancy 1 (that is, discrepancy 0), and no others. By monotonicity (1.3.3), there are no exceptional surfaces over P (compare (1.5.7)) and $h^{-1} P$ is again a curve, and the same arguments as before give a contradiction.

We now verify the following assertion:
(8.8.4) If F is an isolated singularity then the index of $K_{Y}+g^{-1} S+E$ is odd, and equal to $2 m+1$, where $m \geq 2$ is a natural number; moreover, there exists an extremal extraction $h: W \rightarrow Y$ of P with exceptional divisor E^{\prime} of multiplicity d^{\prime} in $g^{-1} S+E$ given by $d^{\prime}=1+(1 /(2 m+1))$, \log discrepancy $a^{\prime}=0$ for $K_{Y}+g^{-1} S+$ $g^{-1} B+E$ and log discrepancy $a^{\prime \prime}=1 /(2 m+1)$ for $K_{Y}+g^{-1} S+E$. Moreover, E^{\prime} has a singular point P^{\prime} locally satisfying the same conditions as P, but with $K_{W}+h^{-1} g^{-1} S+h^{-1} E+E^{\prime}$ of even index $2 m$.

First of all, I claim that P is a singular point of $g^{-1} S$. For this, note that there is an extremal 0-contraction $h: Y \rightarrow W$ of a curve $C_{1} \subset g^{-1} S \cap \operatorname{Supp} g^{-1} B$. This is a 0 -contraction for $H=\varepsilon g^{*} B$ over Z. Indeed, $\rho(Y / Z)=2$ and $\overline{\mathrm{NE}}(Y / Z)$ has two extremal rays R_{1} and R_{2}. Suppose that R_{1} corresponds to the contraction g. Obviously R_{1} is nef against $g^{-1} B$. On the other hand by Reduction 8.2 the curve $g^{-1} S \cap \operatorname{Supp} g^{-1} B$ is exceptional. Hence there is a curve over Z that is negative against $g^{-1} B$. Thus $g^{-1} B R_{2}<0$. But $g^{*} B$ is numerically 0 on R_{1} and is positive against $g^{-1} S \cap$ Supp $g^{-1} B$. Hence $E R_{2}>0$ and $g^{-1} S R_{2}<0$, which gives what we want. Moreover, the contracted curve B_{0} passes through P. It is not hard to check that when P is nonsingular the curve B_{0} is irreducible, nonsingular, crosses B_{1} normally only at P and is a (-1)-curve. Moreover, there is a curve B_{-1} through P with $B_{-1} \subset g^{-1} S$ but $B_{-1} \not \subset \operatorname{Supp} g^{-1} B$, with multiplicity $1 / 2$ in the boundary of ($\left.K_{Y}+g^{-1} S+g^{-1} B+E\right) \mid g^{-1} S$, and its restriction in a neighborhood of B_{0} is of the form $K_{g^{-1} S}+B_{1}+(1 / 2) B_{0}+(1 / 2) B_{-1}$. But then Y has ordinary double points along B_{-1}, which contradicts our assumption that P is an isolated singularity. From this it follows in particular that P is actually singular and $K_{Y}+g^{-1} S+E$ has index >1.

I claim that P is a terminal singularity. For this it is enough to check that $a_{i}^{\prime}+d_{i}>$ 1 for the exceptional divisors E_{i} over P. This follows directly from (8.8.3). By the above and [7], (5.2), the index r of the singular point P is >1, hence by Kawamata's theorem (given in the Appendix) there is an exceptional divisor E_{i} over P of \log discrepancy $1+1 / r$ (that is, discrepancy $1 / r)$. Hence $a_{i}^{\prime}+d_{i}=1+1 / r$. On the other hand $r a_{i}^{\prime}$ and $r d_{i}$ are positive natural numbers. Again by (8.8.3) this is only possible when $r=2 m+1$ is odd, $a_{i}=1 / 2, a_{i}^{\prime}=d_{i}=(m+1) /(2 m+1)$, and the exceptional divisor of E_{i} is obtained by blowing up a curve C_{3} of quadratic
singularities on the exceptional divisor E^{\prime} over P with \log discrepancy 0 for $K_{Y}+$ $g^{-1} S+g^{-1} B+E$ and $d^{\prime}=2 d_{i}=1+1 /(2 m+1)$. We can assume that E^{\prime} is exceptional for the extremal extraction $h: W \rightarrow Y$. Then by construction, and since $g^{-1} B$ passes through P, the restriction to E^{\prime} of $h^{*}\left(K_{Y}+g^{-1} S+g^{-1} B+E\right)$ is numerically 0 and of the form

$$
K_{E^{\prime}}+C_{1}+C_{2}+\frac{1}{2} C_{3}+\frac{1}{2} C_{4},
$$

where the curves $C_{1}=h^{-1} g^{-1} S \cap E^{\prime}=\mathbb{P}^{1}, C_{2}=h^{-1} E \cap E^{\prime}=\mathbb{P}^{1}, C_{3}=\mathbb{P}^{1}$ and $C_{4}=\operatorname{Supp} h^{-1} g^{-1} B \cap E^{\prime}$ are irreducible. Since W has ordinary double points along C_{3}, the log discrepancy of E^{\prime} for $K_{Y}+g^{-1} S+E$ is of the form $a^{\prime}=1-2\left(1-a_{i}^{\prime}\right)=$ $1 /(2 m+1)$. Hence

$$
h^{*}\left(K_{Y}+g^{-1} S+E\right)=K_{W}+h^{-1} g^{-1} S+h^{-1} E+\frac{2 m}{2 m+1} E^{\prime} .
$$

However, by [7,] (5.2), this divisor has index dividing $2 m+1$. Hence by the arguments of Lemma 4.2 and Corollary 3.10, it equals $2 m+1, W$ is nonsingular along C_{1} and C_{2}, and the crossings along $C_{1}=h^{-1} g^{-1} S \cap E^{\prime}, C_{2}=h^{-1} E \cap E^{\prime}$ are normal at generic points. Then by the same arguments the unique point of intersection $Q^{\prime}=C_{1} \cap C_{2}$ is nonsingular on $h^{-1} g^{-1} S$ and $h^{-1} E$. Hence by Corollaries 3.7-8, W is nonsingular, and $h^{-1} g^{-1} S$ and $h^{-1} E$ and E^{\prime} cross normally at Q^{\prime}. In particular E^{\prime} is nonsingular in a neighborhood of Q^{\prime}. Again by [7], (5.2). the index of $g^{-1} S$ and E divides $2 m+1$. Hence the multiplicities of E^{\prime} in $g^{-1} S$ and in E are both ≤ 1. From this and from the fact that the boundary $h^{-1} g^{-1} S+h^{-1} E+E^{\prime}$ has normal crossings at Q^{\prime} we deduce that C_{1} (respectively C_{2}) cannot be a (-1)-curve on the minimal resolution of singularities of $h^{-1} g^{-1} S$ (respectively $h^{-1} E$).

Now we turn to the surface E^{\prime} and prove that there is a singular point of E^{\prime} on C_{2}. Indeed, if not, then $C_{2}=\mathbb{P}^{1}$ and all the singularities of W in a neighborhood of $P^{\prime}=C_{2} \cap C_{3}$ lie on the curve C_{3}, which crosses C_{2} normally, since C_{2} is ample and hence also meets C_{1} and C_{4}. Then from the fact that E^{\prime} is nonsingular in a neighborhood of P^{\prime}, the divisor $K_{W}+h^{-1} E+E^{\prime}$ has index 2, and therefore the restriction $\left(K_{W}+h^{-1} E+E^{\prime}\right) \mid h^{-1} E$, which in a neighborhood of P^{\prime} is of the form $K_{h^{-1} E}+C_{2}$, also has index 2 . Thus since P^{\prime} is log terminal, it is an ordinary double point on $h^{-1} E$. On the other hand, the restriction

$$
\begin{aligned}
& h^{*}\left(K_{Y}+g^{-1} S+E\right)_{\mid h^{-1}} E \\
& \quad=\left(K_{W}+h^{-1} g^{-1} S+h^{-1} E+\frac{2 m}{2 m+1} E^{\prime}\right)_{\mid h^{-1} E} \\
& \quad=K_{h^{-1} E}+\frac{2 m}{2 m+1} C_{2}+h^{-1} B_{1}
\end{aligned}
$$

is numerically 0 on C_{2}, hence C_{2} is a nonsingular rational curve with selfintersection $-(m+1)$ on the minimal resolution of $h^{-1} E$, that is, the blowup of the ordinary double point P^{\prime}. In the same way, since the divisor

$$
h^{*} g^{-1} S_{\mid h^{-1} E}=\left(h^{-1} g^{-1} S+d_{S} E^{\prime}\right) \mid h^{-1} E=d_{S} C_{2}+h^{-1} B_{1}
$$

is numerically 0 on C_{2}, we can calculate the multiplicity $d_{S}=2 /(2 m+1)$ of E^{\prime} in $g^{-1} S$. But then the multiplicity of E^{\prime} in E is $2 m /(2 m+1)$. Therefore
$(2 m /(2 m+1)) C_{1}+h^{-1} B_{1}$ is numerically 0 against C_{1}. But the restriction

$$
\begin{aligned}
h^{*}\left(K_{Y}\right. & \left.+g^{-1} S+E\right)_{\mid h^{-1} g^{-1} S} \\
& =\left(K_{W}+h^{-1} g^{-1} S+h^{-1} E+\frac{2 m}{2 m+1} E^{\prime}\right)_{\mid h^{-1} g^{-1} S} \\
& =K_{h^{-1} g^{-1} S}+\frac{2 m}{2 m+1} C_{1}+h^{-1} B_{1}
\end{aligned}
$$

is also numerically 0 against C_{1}, and hence the canonical divisor $K_{h^{-1} g^{-1} S}$ is numerically 0 against C_{1}. Here C_{1} is not a (-1)-curve on the minimal resolution of singularities of $h^{-1} g^{-1} S$. Hence it follows that C_{1} will be a nonsingular rational curve with selfintersection -2 on the minimal resolution of singularities of $h^{-1} g^{-1} S$, and on C_{1} there is at most one singular point, which is resolved by a chain of nonsingular rational (-2)-curves. Thus $P \in g^{-1} S$ is a Du Val singularity of type $A_{2 m}$. But by what we have said $g^{-1} S$ has an exceptional curve lying in $g^{-1} S \cap \operatorname{Supp} g^{-1} B$ and numerically 0 against the restriction ($\left.K_{Y}+g^{-1} S+g^{-1} B+E\right) \mid g^{-1} S$, whose boundary in a neighborhood of P is $B_{1}+(1 / 2)\left(g^{-1} S \cap \operatorname{Supp} g^{-1} B\right)$. From this we deduce that $B_{0}=g^{-1} S \cap \operatorname{Supp} g^{-1} B$ is an irreducible curve, and on the minimal resolution of singularities of $g^{-1} S$ is a nonsingular rational (-2)-curve or (-1)-curve passing through a unique singularity P of $g^{-1} S$.

In the first case the contraction of B_{0} transforms P into a Du Val singularity of type $D_{2 m+1}$. It follows from this that on the minimal resolution of $Q \in S$ the curve $g\left(B_{0}\right)=S \cap \operatorname{Supp} B$ will not be a (-1)-curve. But this is not possible, since B is positive on the flipping curve $S \cap \operatorname{Supp} B$. In the second case $m=1$, the inverse image $h^{-1} B_{0}$ does not pass through the singularity of $h^{-1} g^{-1} S$ on C_{1} and crosses C_{1} normally at one point. Hence since $K_{Y}+g^{-1} S+g^{-1} B+E$ is numerically 0 against B_{0}, its restriction to $g^{-1} S$ in a neighborhood of B_{0} is of the form $K_{g^{-1} S}+B_{1}+(1 / 2) B_{0}+(1 / 2) B_{-1}$, where B_{-1} is a nonsingular curve that crosses B_{0} normally at one point distinct from $P ; Y$ has an ordinary double point along B_{-1}. Hence B_{0} contracts to a nonsingular point which is terminal for the image of $K_{g^{-1} S}+(1 / 2) B_{-1}$.

But then (8.8.4) holds except for the case $m=1$, when there may be no subsequent point P^{\prime}. This case will be excluded later, so that for the moment we assume that $m \geq 2$. Therefore C_{2} has a singular point P^{\prime}, again coinciding with $C_{2} \cap C_{3}$. Since C_{2} on the surface E^{\prime} is ample and has a unique singularity on E^{\prime}, it becomes a nonsingular rational curve with nonnegative selfintersection on the minimal resolution of singularities of E^{\prime}. Now applying Theorem 6.9 to the minimal resolution of the singularity $P^{\prime} \in E^{\prime}$, one can prove that the selfintersection number is 0 , and P^{\prime} is the unique singularity of E^{\prime}, and is an ordinary cone point, that is, E^{\prime} is a cone with vertex P^{\prime} over the nonsingular rational curve C_{1}. Note also that C_{3} and C_{4} intersect C_{1} in distinct points P_{1} and P_{2} respectively.

Hence, as above, we get that P_{1} is an ordinary double point of $h^{-1} g^{-1} S$, the selfintersection of C_{1} on the minimal resolution of $h^{-1} g^{-1} S$ is $-(m+1)$, the selfintersection of C_{2} on the minimal resolution of $h^{-1} E$ is -2 , and P^{\prime} is a Du Val singularity of type $A_{2 m-1}$. It follows that the index of $K_{W}+h^{-1} E+E^{\prime}$ in a neighborhood of P^{\prime} concides with that of the restriction $\left(K_{W}+h^{-1} E+E^{\prime}\right){ }_{\mid} h^{-1} E=$ $K_{h^{-1} E}+h^{-1} B_{1}$ and is $2 m$. (One can check moreover that P is a quotient singularity of type $\frac{1}{2 m+1}(2,-2,1)$.)

We verify that P^{\prime} satisfies (8.8.2). Indeed, otherwise there is an exceptional divisor E_{i} over P^{\prime} with $a_{i}=0$ for $K_{W}+h^{-1} g^{-1} B+h^{-1} E+E^{\prime}$ and multiplicity d_{i} in
$h^{-1} E+E^{\prime}$ satisfying $d_{i} \leq 1$. Then E_{i} is exceptional over P with $a_{i}=0$ for $K_{Y}+$ $g^{-1} S+g^{-1} B+E$, and multiplicity $d_{i}<1+1 /(2 m+1)$ in $h^{*}\left(g^{-1} S+E\right)=h^{-1} g^{-1} S+$ $h^{-1} E+E^{\prime}+(1 /(2 m+1)) E^{\prime}$ and in $g^{-1} S+E$. But since $g^{-1} S+E$ has index $2 m+1$ at P, it follows that $d_{i} \leq 1$, which contradicts (8.8.2). However, we may possibly lose the existence of a contracted curve in the intersection $g^{-1} S \cap \operatorname{Supp} g^{-1} B$, which was important in distinguishing the component on which the singularity P^{\prime} appeared when $m \geq 2$.
(8.8.5) If P is a nonisolated singularity, then the index of $K_{Y}+g^{-1} S+E$ is even, equal to $4 m+2$ for a natural number $m \geq 1$, and there exists an extremal extraction $h: W \rightarrow Y$ of P with exceptional divisor E^{\prime} having multiplicity $d^{\prime}=1+1 /(4 m+2)$ in $g^{-1} S+E$ and \log discrepancy $a^{\prime}=0$ for $K_{Y}+g^{-1} S+g^{-1} B+E$. Moreover, on E^{\prime} there is a singular point P^{\prime} locally satisfying the same assumptions as P but with the index of $K_{W}+h^{-1} g^{-1} S+h^{-1} E+E^{\prime}$ odd and equal to $4 m+1$.

The only possibility for a curve of singularities through P is a curve Γ of ordinary double points on $g^{-1} S+E$; then $K_{Y}+g^{-1} S+E$ is log terminal and has index 2 at the general point of Γ. Thus the index of $K_{Y}+g^{-1} S+E$ is even, and there is a double cover $\pi: \widetilde{Y} \rightarrow Y$ in a neighborhood of P ramified only in such curves Γ.

Let's check that the birational transforms $\pi^{-1} g^{-1} S, \pi^{-1} g^{-1} B$ and $\pi^{-1} E$ preserve the previous properties in a neighborhood of $\pi^{-1} P$. On lifting by π the \log terminal property of $K_{Y}+g^{-1} S+E$ is preserved outside P by construction, and at P by Corollary 2.2. Thus, as above, by (1.3.3) and Corollary 2.2 applied to $g^{-1} S+g^{-1} B+E$, we get that $\pi^{-1} P$ is \mathbb{Q}-factorial, and $\pi^{-1} g^{-1} S$ and $\pi^{-1} E$ are irreducible and normal in a neighborhood of $\pi^{-1} \underset{\sim}{P}$. By the proof of Corollary 2.2 the \log discrepancy \tilde{a}_{i} of the exceptional divisor \widetilde{E}_{i} over E_{i} for Y and over $\pi^{-1} P$ in $K_{\tilde{Y}}+\pi^{-1} g^{-1} S+\pi^{-1} g^{-1} B+\pi^{-1} E$ is 0 only if E_{i} for $K_{Y}+g^{-1} S+g^{-1} B+E$ has \log discrepancy 0 . This implies that property (8.8.2) is preserved. Hence by (8.8.4) $\pi^{-1} P$ is a terminal point of odd index $2 m+1$ and the index of $K_{Y}+$ $g^{-1} S+E$ is of the form $4 m+2$. If $m=0$ then $K_{Y}+g^{-1} S+E$ and its restriction $\left(K_{Y}+g^{-1} S+E\right)_{\mid g^{-1} S}$ both have index 2 . More precisely, if $g^{-1} S$ does not contain a curve of singularities of Y then $P \in g^{-1} S$ is an ordinary double point and, as above, in a neighborhood of P we get

$$
\left(K_{Y}+g^{-1} S+g^{-1} B+E\right) \left\lvert\, g^{-1} S=K_{g^{-1} S}+B_{1}+\frac{1}{2} B_{0}\right.
$$

where the curve $B_{0} \subset g^{-1} S \cap \operatorname{Supp} g^{-1} B$ generates a flipping extremal ray (denoted R_{2} in the above). The (-2)-curve resolving $P \in g^{-1} S$ has \log discrepancy 1 for $K_{g-1 S}+B_{1}+(1 / 2) B_{0}$. Thus on resolving P, we arrive at a contradiction, in the same way as when proving that P is singular in (8.8.4). Therefore the point $P \in g^{-1} S$ is nonsingular, it lies on a curve B_{-1} of ordinary double points, and in a neighborhood of P

$$
\left(K_{Y}+g^{-1} S+g^{-1} B+E\right)_{\mid g^{-1} S}=K_{g^{-1} S}+B_{1}+\frac{1}{2} B_{0}+\frac{1}{2} B_{-1}
$$

where $B_{0}=g^{-1} S \cap \operatorname{Supp} g^{-1} B=\left|R_{2}\right|$ is an irreducible curve. Note that $g^{-1} S$ is nonsingular in a neighborhood of B_{0}, B_{0} is a (-1)-curve, and the restriction $\left(K_{Y}+g^{-1} S\right) \mid g^{-1} S^{ \pm} K_{g^{-1} S}+(1 / 2) B_{-1}$ is numerically negative on B_{0}, since B_{0} and B_{-1} intersect only in P, and normally there.

Let us prove that the flip exists in this case. We check first that the intersection $g^{-1} S \cap E=B_{1} \cup \cdots \cup B_{n}$ is irreducible. All the B_{i} with $i<n$ are contracted to Q, and are hence positive against $g^{-1} B$. Hence $n \leq 2$. Suppose that $n=2$. The
curve B_{0} is the support of the next extremal ray R_{2}. Moreover, the surfaces $g^{-1} S$ and $g^{-1} B$ are negative, and E is positive against B_{0}. Hence the flip in B_{0} exists by Corollary 5.20 . We can prove that it satisfies the properties of Proposition 8.3. For this it is sufficient that the image of $K_{g^{-1} S}+(1 / 2) B_{-1}$ under the contraction of B_{0} is \log terminal, which we know. In particular, the only point of $g^{-1} S^{+}$at which B_{1}^{+}can be singular is $Q^{\prime}=B_{1}^{+} \cap B_{2}^{+}$. But now $g^{-1} B^{+}$is numerically 0 on B_{1}^{+}, from which it follows that it is extremal. Therefore B_{1}^{+}is the support of the next extremal ray. Hence E is positive on it. The intersection of $g^{-1} S^{+}$and E^{+}along B_{1}^{+}is normal by Proposition 8.3. As in Proposition 8.3, we deduce from this using Lemma 3.18 that B_{1}^{+}moves, which gives a contradiction.

Thus the intersection $B_{1}=g^{-1} S \cap E$ is irreducible. Suppose now that $g(E)=C$. Then g identifies $g^{-1} S$ and S. Here by Proposition 3.9 and (8.1.4) we have

$$
(K+S) \cdot B_{0}=\left(K_{S}+\frac{n-1}{n} C+\frac{1}{2} B_{-1}\right) \cdot B_{0}=\frac{n-1}{n}-\frac{1}{2}<0
$$

where n is the index of $K+S$ along C. Hence $n=1$ and X has in a neighborhood of B_{0} only ordinary double points along $g\left(B_{-1}\right)$, and $K+S$ has index 2 . Therefore there is a purely \log terminal complement of $K+S$ of index 2 in a neighborhood of B_{0}, and the flip of f exists by Proposition 2.9.

The case $g(E)=Q$ is similar. Arguing as above, we have

$$
\left(g^{*}(K+S)\right) \cdot B_{0}=\left(K_{g^{-1} S}+\frac{n-1}{n} C+\frac{1}{2} B_{-1}+a^{\prime} B_{1}\right) \cdot B_{0}=a^{\prime}-\frac{1}{2}<0
$$

so that $a^{\prime}<1 / 2$. But B_{1} is not a (-1)-curve on the minimal extraction E, and

$$
K_{g^{-1} S}+\frac{n-1}{n} C+\frac{1}{2} B_{-1}+a^{\prime} B_{1}=g^{*}\left(K_{S}+\frac{n-1}{n} C+\frac{1}{2} B_{-1}\right)
$$

It follows from this that B_{1} is a (-2)-curve on the minimal extraction E, that X is nonsingular along C, and $P_{0}=B_{1} \cap g^{-1} C$ is a canonical singularity of type A_{n}. Hence in a neighborhood of $g\left(B_{0}\right)$ on S there is a purely log terminal complement of $K_{S}+(1 / 2) g\left(B_{-1}\right)$ of index 2 . To extend this to X for $K+S$, by the proof of Theorem 5.12 , it is enough to have a resolution $Y^{\prime} \rightarrow X$ with normal crossings $S_{Y^{\prime}}$ minimal over S. For this we need to use a partial resolution of g and extend it. Since Y has ordinary double points along B_{-1}, resolving it does not change $g^{-1} S$. Thus it is sufficient to find a similar resolution of P_{0}. Now P_{0}, just as P, is a \mathbb{Q}-factorial point. Furthermore, by Corollary 3.7 , it is a quotient singularity of index n. If P_{0} is not an isolated singularity, then the curve C^{\prime} of singularities lies on E. Moreover, X has a canonical singularity of type $A_{n^{\prime}}$ with $n^{\prime} \mid n$. Performing the resolution of C^{\prime} as in Proposition 4.3, we again preserve the minimal assumption and reduce the resolution to the isolated singularities of the same type; the surfaces extracted in this will be irreducible. In the case that P_{0} is isolated it will be a terminal quotient singularity of type $\frac{1}{n}(k,-k, 1)$, the economic resolution of which gives what we want. This can also be deduced by induction on n from the theorem of the Appendix.

Thus, $m \geq 1$. Hence by (8.8.4) there exists an extremal extraction $\tilde{h}: \widetilde{W} \rightarrow \widetilde{Y}$ with exceptional divisor \widetilde{E}^{\prime} having
multiplicity \tilde{d}^{\prime} in $\pi^{-1} g^{-1} S+\pi^{-1} E$ given by $\tilde{d}^{\prime}=1+1 /(2 m+1)$,
log discrepancy \tilde{a}^{\prime} for $K_{\tilde{Y}}+\pi^{-1} g^{-1} S+\pi^{-1} g^{-1} B+\pi^{-1} E$ given by $\tilde{a}^{\prime}=0$,
\log discrepancy $\tilde{a}^{\prime \prime}$ for $K_{\widetilde{Y}}+\pi^{-1} g^{-1} S+\pi^{-1} E$ given by $\tilde{a}^{\prime \prime}=1 /(2 m+1)$.

Therefore by (8.8.2) the ramification index of π at \widetilde{E}^{\prime} equals 1 . Suppose that $\widetilde{E}^{\prime} \subset \tilde{Y}$ lies over $E^{\prime} \subset Y$, which is an irreducible exceptional surface over P. Then the \log discrepancy of E^{\prime} for $K_{Y}+g^{-1} S+g^{-1} B+E$ equals 0 . Let $h: W \rightarrow Y$ be the extremal contraction of E^{\prime}. Using Theorem 6.9 , it is not hard to verify that $K_{W}+E^{\prime}$ is purely \log terminal. Hence, as in the proof of Proposition 8.3, if $\pi^{-1} E^{\prime}$ is reducible then we deduce from Corollary 2.2 and Corollary 3.8 that π is unramified everywhere over E^{\prime}, and hence also over P. Therefore $\widetilde{E}^{\prime}=\pi^{-1} E^{\prime}$ is irreducible, that is, the covering involution of the double cover π acts biregularly on the extremal extraction \widetilde{h}. Since h and \widetilde{h} are extremal, the curves $\widetilde{C}_{1}=\pi^{-1} h^{-1} g^{-1} S \cap \widetilde{E}^{\prime}$ and $\widetilde{C}_{2}=\pi^{-1} h^{-1} E \cap \tilde{E}^{\prime}$ are irreducible and lie over $C_{1}=h^{-1} g^{-1} S \cap E^{\prime}$ and $C_{2}=h^{-1} E \cap E^{\prime}$. On the other hand, by the proof of (8.8.4) there exists a curve \widetilde{C}_{i} for which

$$
\begin{aligned}
\left(K_{\widetilde{Y}}\right. & \left.+\pi^{-1} h^{-1} g^{-1} S+\pi^{-1} h^{-1} g^{-1} B+\pi^{-1} h^{-1} E+\widetilde{E}^{\prime}\right)\left|\widetilde{E}^{\prime}\right| \widetilde{C}_{i} \\
& =K_{\widetilde{C}_{i}}+\widetilde{Q}+\frac{1}{2} \widetilde{P}_{1}+\frac{1}{2} \widetilde{P}_{2}
\end{aligned}
$$

where $\widetilde{Q}=\pi^{-1} h^{-1} g^{-1} S \cap \pi^{-1} h^{-1} E \cap \widetilde{E}^{\prime}$, and

$$
\widetilde{P}_{2}=\pi^{-1} h^{-1} g^{-1} S \cap \text { Supp } \pi^{-1} h^{-1} g^{-1} B \cap \widetilde{E}^{\prime}
$$

or

$$
\widetilde{P}_{2}=\pi^{-1} h^{-1} E \cap \operatorname{Supp} \pi^{-1} h^{-1} g^{-1} B \cap \tilde{E}^{\prime} .
$$

This implies that π is ramified along the curve \widetilde{C}_{i} and by the purity theorem W is singular along the corresponding curve C_{i}. Since π is unramified along \widetilde{E}^{\prime} the \log discrepancy of E^{\prime} for $K_{Y}+g^{-1} S+E$ is $1 /(2 m+1)$. By construction and [7], (5.2), the index of $K_{Y}+g^{-1} S+E$ divides $4 m+2$, and hence arguing as in the proof of Lemma 4.2 we get that W has an ordinary double point along C_{i}. The corresponding exceptional divisor extracted out of this singularity has \log discrepancy 0 for $K_{Y}+g^{-1} S+g^{-1} B+E$, log discrepancy $1 /(4 m+2)$ for $K_{Y}+g^{-1} S+E$, and multiplicity $1+1 /(4 m+2)$ in $g^{-1} S+E$.

Now write h for its extremal extraction. Arguing as in (8.8.4), we get from this that the curves $C_{1}=h^{-1} g^{-1} S \cap E^{\prime}$ and $C_{2}=h^{-1} E \cap E^{\prime}$ are irreducible and that these intersections are normal crossings at their general points. Also the curves C_{1} and C_{2} on the respective surfaces $h^{-1} g^{-1} S$ and $h^{-1} E$ are not (-1)-curves. Suppose first that $i=2$ above. Then by the proof of (8.8.4) the multiplicity of the previous E^{\prime} in E equals $2 m /(2 m+1)$, hence the multiplicity of the current E^{\prime} in E equals $(4 m+1) /(4 m+2)$. Then arguing as in (8.8.4) we can check that C_{1} will be a (-2)curve on the minimal resolution, $g^{-1} S$ does not have a curve of double points of Y, and C_{1} passes through a unique singularity, a Du Val singularity of type $A_{4 m}$ on $h^{-1} g^{-1} S$. This contradicts that $g^{-1} S$ contains a curve of double points B_{-1}, in view of the argument of (8.8.4) for $m \geq 2$. Thus $i=1$. By the previous arguments the multiplicity of the current E^{\prime} in $g^{-1} S$ equals $(4 m+1) /(4 m+2), E$ does not have a curve of double points of Y, P is a Du Val singularity of type $A_{4 m+1}$ on E, C_{2} is a (-2)-curve on the minimal extraction of $h^{-1} E$, and C_{2} has a unique singularity P^{\prime} of the surface $h^{-1} E$, a Du Val singularity of type $A_{4 m}$. On the other hand, by construction

$$
\left(K_{Y}+h^{-1} g^{-1} S+h^{-1} g^{-1} B+h^{-1} E+E^{\prime}\right)\left|h^{-1} S\right| C_{1}=K_{C_{1}}+P+\frac{1}{2} P_{1}+\frac{1}{2} P_{2},
$$

where Supp $\pi^{-1} h^{-1} g^{-1} B$ passes through P_{2}, and P_{2} is nonsingular on $h^{-1} g^{-1} S$. But $h^{-1} g^{-1} S$ must contain the curve of double point $h^{-1} B_{-1}$.

Obviously $P_{1}=C_{1} \cap h^{-1} B_{-1}$ is a nonsingular point of $h^{-1} g^{-1} S$. Hence $h^{-1} g^{-1} S$ is nonsingular in a neighborhood of C_{1} and $C_{1}=\mathbb{P}^{1}$ is a curve with selfintersection $-(2 m+1)$. On the other hand, in a neighborhood of C_{1}, by nonsingularity of $h^{-1} g^{-1} S$, the surface E^{\prime} has P_{1} as an ordinary double point, and E^{\prime} does not have double points along curves of W. Hence P^{\prime} is an isolated singularity. But P^{\prime} is a Du Val singularity of type $A_{4 m}$. It follows from this that the index of $K_{W}+h^{-1} E+E^{\prime}$ in a neighborhood of P^{\prime} is the same as that of the restriction $\left(K_{W}+h^{-1} E+E^{\prime}\right){ }_{h^{-1} E}=K_{h^{-1} E}+h^{-1} B_{1}$, equal to $4 m+1$. From then on, as in the proof of (8.8.4) we verify that P^{\prime} satisfies (8.8.2).

Now it follows from (8.8.4-5) that in (8.8.4) the index of P^{\prime} is of the form $4 m^{\prime}+2$, hence that of P is of the form $4 m^{\prime}+3$ with $m^{\prime} \geq 1$. Hence the case (8.8.5) is impossible altogether, from which it follows that (8.8.4) is impossible. This is now all proved, except for the one case not yet considered, that of $m=1$ in (8.8.4). We will prove that in this case the flip exists, or reduces to the same type (8.5.3) with $d_{i}>1$ for $a_{i}=0$.

For this we need the following two lemmas, that are also needed below in the proof of the main results, where they are used to preserve the type of flips in subsequent inductive steps.
8.9. Lemma. Let S be a normal projective surface with boundary B, and C_{1}, C_{2} contractible (possibly reducible) curves such that
(i) $2(K+B) \sim 0$;
(ii) $\lfloor B\rfloor=B_{1}+B_{2}$, where B_{1} and B_{2} are irreducible;
(iii) $B_{1}^{2}>0$ (with B_{1} as in (ii));
(iv) B_{2} becomes ample after contracting C_{2};
(v) C_{1} is disjoint from B_{1};
(vi) the point $P=B_{1} \cap B_{2}$ is the unique point of B_{1} where $K+B$ is not purely log terminal;
(vii) the components of C_{2} intersect B_{1} and B_{2} in P.

Then either C_{1} is disjoint from B_{2}, or P is the unique point of B_{2} at which $K+B$ is not purely log terminal.

By Theorem 6.9, the singularities of S are rational, and remain so after contracting C_{2}. Hence the ampleness in (iv) coincides with numerical positivity by the NakanoMoishezon criterion (compare [8], 6-1-15 (2)).

Proof. Suppose that C_{1} intersects B_{2}. Then using standard arguments of the theory of extremal rays for the contraction of C_{1}, together with (i), we can find an irreducible contractible curve $C^{\prime} \subset C_{1}$ intersecting B_{2}. Hence without changing the assumptions we can restrict to the case that C_{1} is irreducible and intersects B_{2}. By (i), (ii) and Theorem 6.9, the locus of \log canonical singularities of $K+B$ is just $B_{1} \cup B_{2}$. Suppose now that there exists an irreducible component $C^{\prime \prime} \subset C_{2}$ intersecting C_{1}. Then by Corollary 3.16 and the \log canonical assumption on $K+B$ the curve $C^{\prime \prime}$ has multiplicity 0 in B. Hence by (i) $C^{\prime \prime}$ is a (-1)-curve on the minimal resolution of S. As in Proposition 8.3 it is easy to check that $B_{1}=\mathbb{P}^{1}$ and that

$$
\left(K+B_{1}+B_{2}\right)_{\mid B_{1}}=K_{\mathbb{P}^{1}}+\frac{1}{2} P_{1}+\frac{1}{2} P_{2}+P
$$

Now let $g: T \rightarrow S$ be a strictly \log terminal model of $K+B$, minimal over P. Then $g^{-1} C^{\prime \prime}$ does not intersect $g^{-1} B_{1}$, but crosses normally at Q a component with multiplicity 1 in the boundary B_{T} that is exceptional over P. Therefore
$g^{*}(K+B)$ has only canonical singularities on $g^{-1} C^{\prime \prime}$ outside Q. It follows that C_{1} also has multiplicity 0 in B and is a (-1)-curve on the minimal resolution of S, since it intersects B_{2}. Then on the minimal resolution T a multiple of the total inverse image of the curve $g^{-1}\left(C_{1} \cup C^{\prime \prime}\right)$ is mobile. But $g^{-1}\left(C_{1} \cup C^{\prime \prime}\right)$ is disjoint from $g^{-1} B_{1}$ and its intersection with B_{T} does not lie over P only. Hence $g^{-1} B_{1}$ is exceptional. From now on, arguing as in Proposition 8.3, we get from (iii) that exactly one of the points P_{i} is nonsingular.

Suppose that P_{1} is nonsingular. Then there is an irreducible curve B_{3} with multiplicity $1 / 2$ in the boundary B passing through P_{1}. By what we have said $C^{\prime \prime}$ does not intersect B_{3}. Also each irreducible component of C_{2} does not intersect B_{3}, since it passes through P. Hence by (iv) B_{3} intersects B_{2}. Moreoveor, it is not hard to check that $g^{-1}\left(C_{1} \cup C^{\prime \prime}\right)$ is disjoint from $g^{-1}\left(B_{1} \cup B_{3}\right)$. Thus arguing as above, we get that $g^{-1} B_{3}$ is exceptional. But $g^{-1} B_{3}$ intersects the locus of \log canonical singularities of $\left(B_{1}+B_{2}\right)_{T}$ at 2 points, which contradicts the connectedness lemma, Lemma 5.7. Thus we have proved that every irreducible component of C_{2} does not intersect C_{1}. Contracting C_{2} we can assume that $C_{2}=\varnothing$, when assumption (iv) means that B_{2} is ample. By (iii) $\overline{\mathrm{NE}} S$ has an extremal ray R that is positive against B_{1}. If cont ${ }_{R}$ contracts a curve, then by ampleness of B_{2} and Lemma 5.7 it intersects B_{1} and B_{2} at P. Hence we can take this last curve as C_{2}, and then contract. The contraction decreases the Picard number $\rho(S)$. Hence after a finite number of such contractions we can assume that the extremal contraction cont $_{R}$ is not birational. Since C_{1} does not intersect B_{1}, cont ${ }_{R}$ must be a morphism to a curve, and B_{1}, B_{2} are not contained in its fibers. Then by Theorem 6.9, P is the unique point of B_{2} at which $K+B$ is not purely \log terminal. Q.E.D.
8.10. Lemma. Let $f: S \rightarrow T$ be a birational map of normal projective surfaces, D an effective ample divisor on S such that D_{T} is irreducible. (Here D_{T} is the log birational transform as in $\S 1$ and in (10.3.2), that is, all the blown up curve are contained in it with multiplicity 1.) Then D_{T} is numerically positive.
Proof. Consider a resolution of indeterminacies of f, for example a Hironaka hut

Since D is ample Supp D is connected, and because S is normal its inverse image $\bigcup C_{i}$ on U is connected. I claim that $g\left(\bigcup C_{i}\right) \neq p t$. Indeed, otherwise there exist $a_{i}>0$ such that

$$
\left(\sum a_{i} C_{i}\right) \cdot C_{j}<0
$$

for every irreducible component C_{j}. In particular

$$
0 \leq\left(\sum a_{i} h\left(C_{i}\right)\right) \cdot D=\left(\sum a_{i} C_{i}\right) \cdot h^{*} D=\left(\sum a_{i} C_{i}\right) \cdot\left(\sum b_{j} C_{j}\right)<0
$$

since $h^{*} D=\sum b_{j} C_{j}$ with $b_{j} \geq 0$ and at least one $b_{j}>0$; this is a contradiction. From the claim, because D_{T} is assumed to be irreducible (that is, $\operatorname{Supp} D_{T}$ is irreducible), we get that $D_{T}=g\left(\bigcup C_{i}\right)$, and all the exceptional curves of h not intersecting $\cup C_{i}$ are exceptional for g. Thus

$$
g^{*} D_{T}=\sum c_{i} C_{i}
$$

where all $c_{i}>0$. If B is a curve on T disjoint from D_{T}, then $g^{-1} B$ is disjoint from $\cup C_{i}$ and $h \circ g^{-1} B$ is disjoint from Supp D. Therefore $h \circ g^{-1} B=p t$., and
by what we said above this is impossible. It remains to check that $D_{T}^{2}>0$. Indeed, otherwise $g^{*} D_{T} \cdot C_{j} \leq 0$ for all curves C_{j}, which gives a contradiction:

$$
0<\left(\sum c_{i} h\left(C_{i}\right)\right) \cdot D=\left(\sum c_{i} C_{i}\right) \cdot h^{*} D=\left(\sum c_{i} C_{i}\right) \cdot\left(\sum b_{j} C_{j}\right) \leq 0 . \quad \text { Q.E.D. }
$$

Proof of Proposition 8.8, continued. Thus we return to the case (8.8.4) with $m=1$. By what we have already proved, there exists an extremal extraction of a surface E^{\prime} over P with $a=0$ for which (8.8.1) holds. However, E^{\prime} has multiplicity $2 / 3$ in $g^{-1} S$ and in E, and hence multiplicity $(2 / 3)(1+d)$ in S, where $d \leq 1$ is the multiplicity of E in S. By assumption we have $1<(2 / 3)(1+d) \leq 4 / 3$, so that $d>1 / 2$.

Consider now an extremal extraction $g: Y \rightarrow X$ of the new surface $E=E^{\prime}$. We check that it is a good extraction (see 8.5 for the definition). One checks first, exactly as before, $\left({ }^{12}\right)$ that the intersection $g^{-1} S \cap E$ consists of at most two irreducible curves B_{i}; and that if $g^{-1} S \cap E=B_{1} \cup B_{2}$, then f has a flip. For this, in view of $H=g^{*} B$, we should first carry out a flip in the birational transform of curves of the flip of f. By definition of the current type, these coincide with the intersection $g^{-1} S \cap g^{-1} B$, and $g^{-1} B$ is negative on them. Hence E is positive on them and $g^{-1} S$ negative. A flip in them does not change the \log terminal property of $K_{Y}+$ $g^{-1} S+E$ outside $P_{0}=B_{1} \cap B_{2}$, which is established as before. From this it follows that E and its modification are normal. (There are at most two such flips, and they modify at most two curves.) The flipped curves do not intersect B_{2}. After this one must carry out the flip in B_{1} described in Proposition 8.3 , since E is positive on B_{1}. The modified surface E^{+}is nonnormal along the flipped curve $B_{1}^{+}=\nu\left(C^{*}\right) \cdot\left({ }^{13}\right)$ Now the intersection $B_{2}^{+}=g^{-1} S^{+} \cap E^{+}$is irreducible. As before we are interested in the subsequent extremal and flipping ray R_{2}, which is numerically 0 against $g^{-1} S^{+}$, positive against $g^{-1} B^{+}$and negative against E^{+}.

According to Theorem 6.9 , if some connected component of the support of R_{2} intersects the locus of log canonical singularities of the log divisor

$$
\begin{equation*}
\left(K_{Y^{+}}+g^{-1} S^{+}+g^{-1} B^{+}+E^{+}\right)_{E^{+\nu}} \tag{2}
\end{equation*}
$$

and does not intersect C^{*}, then it intersects an (irreducible) curve $C^{* *}$ in such a way that

$$
\operatorname{LCS}\left(\left(K_{Y^{+}}+g^{-1} S^{+}+g^{-1} B^{+}+E^{+}\right)_{\mid E^{+\nu}}\right)=C^{*} \cup B_{2}^{+} \cup C^{* *}
$$

However, as in the treatment of the case (8.5.2*), by Proposition 8.3, the curve B_{2}^{+}has at most one singular point at $Q^{+}=B_{2}^{+} \cap g^{-1} C^{+}$. It has selfintersection ≥ 0 on the minimal resolution of singularities, and even ≥ 1 in the singular case. Performing partial resolutions at Q^{+}that are log crepant for the restricted log divisor (2) until B_{2}^{+}becomes a 0 -curve, we get a contradiction to Theorem 6.9 for the contraction along the modified B_{2}^{+}. Hence by Theorem 6.9 again, components of the support of R_{2} can only have log canonical singularities of the restricted log divisor (2) only in C^{*}. Moreover, if the restricted \log divisor (2) is purely \log terminal outside B_{2}^{+}in a neighborhood of C^{*} then its divisors with \log discrepancy 0 for $K_{Y^{+}}+g^{-1} S^{+}+g^{-1} B^{+}+E^{+}$lie over the general point of B_{1}^{+}. Hence by Proposition 8.3, after perturbing the surface $g^{-1} S$ with base locus in the support of R_{2} we arrive at a purely \log terminal divisor near C^{*}. By the above, the restricted

[^11]\log divisor (2) on $E^{+\nu}$ does not have log canonical singularities outside C^{*}. Hence after perturbing we get a flip of type IV. Thus in this case a flip of f exists.

Hence from now on we can assume that the restricted log divisor (2) has a point $Q^{\prime} \in C^{*}$ outside B_{2}^{+}that is not purely \log terminal. We show that this is impossible. By Theorem 6.9 again, the \log divisor (2) does not have nontrivial \log crepant resolutions with modified 0 -curve B_{2}^{+}. But it is only trivial when Q^{+}is nonsingular on $E^{+\nu}$, and near Q^{+},

$$
\left(K_{Y^{+}}+g^{-1} S^{+}+g^{-1} B^{+}+E^{+}\right)_{\mid E^{+\nu}}=K_{E^{+\nu}}+B_{2}^{+}+\frac{1}{2} D
$$

where D is an irreducible curve that is simply tangent to B_{2}^{+}at Q^{+}, and B_{2}^{+}has selfintersection on $E^{+\nu}$ equal to 1 . Note that in a neighborhood of Q^{+}there is an identification $E=E^{+}=E^{+\nu}$. The curve D is cut out transversally by $g^{-1} B$, and B_{2} by $g^{-1} S$. Therefore by Corollary 3.7, $Q=B_{2} \cap g^{-1} C$ is nonsingular on Y.

Thus the surface $E^{+\nu}$ is nonsingular on B_{2}^{+}, the selfintersection of B_{2}^{+}equals 1 , and

$$
\left(K_{Y^{+}}+g^{-1} S^{+}+g^{-1} B^{+}+E^{+}\right)_{\mid E^{+\nu}}=K_{E^{+\nu}}+C^{*}+B_{2}^{+}+D^{\prime}
$$

has a point $Q^{\prime} \in C^{*}$ that is not purely \log terminal; here $D^{\prime} \geq(1 / 2) D$, and D is an irreducible curve tangent to B_{2}^{+}at Q^{+}. Thus B_{2}^{+}determines a contraction $h: E^{+\nu} \rightarrow \mathbb{P}^{2}$, in such a way that $h\left(B_{1}^{+}\right)$and $h\left(B_{2}^{+}\right)$are lines, and $h\left(D^{\prime}\right)=h(D)$ is a conic touching these lines. h contracts all curves of $E^{+\nu}$ not intersecting B_{2}^{+}. In particular all the flipped curves are contracted, since the last flip modifies E into $E^{+\nu}$ in divisors with \log discrepancy 0 over C^{*} for $K_{E^{+\nu}}+C^{*}+B_{2}^{+}$, and the indicated curves only intersect the final component B_{1} of the \log terminal extraction of Q^{\prime}. Preserving all the conditions and notations we have mentionned, we contract all the flipped curves before B_{1}.

Then the original E is obtained as a result of the procedure described in (8.5.2*) above. We have to make a minimal log terminal extraction of Q^{\prime} for $K_{E^{+\nu}}+C^{*}+B_{2}^{+}+$ D^{\prime}, and then contract C^{*} and all the extracted curves B_{i} apart from the end one B_{1}. I claim that they are preserved at the point of tangency $Q^{\prime \prime}=h\left(Q^{\prime}\right)=h\left(B_{1}^{+}\right) \cap h(D)$. Indeed, all the curves C_{i} contracted by h intersect B_{1} on the log terminal extraction, without touching the other components of the extraction. Otherwise C_{i} would be a (-1)-curve on a subsequent minimal resolution of $E^{+\nu}$. Since $K_{E^{+\nu}}+C^{*}+B_{2}^{+}+D^{\prime}$ is numerically 0 and the minimal extraction is log crepant it does not intersect B_{1} and the modified D^{\prime}. Hence its modification on E passes through P_{0} and does not intersect the modified $D^{\prime} \geq g^{-1} B_{\mid E}$. This last conclusion contradicts $g^{-1} B$ ample on E. Thus we have established what we needed, and we see that a minimal log terminal extraction of Q^{\prime} consists of a single curve. By the same arguments C^{*} must be a (-1)-curve on such an extraction. Hence P_{0} is nonsingular on E, and by Corollary 3.7, also on X. Hence P_{0} is a canonical singularity of $g^{-1} S$. Its type on $g^{-1} S$ is known from the proof of Proposition 8.3, and from this P_{0} is also nonsingular on $g^{-1} S$. Hence, and from the fact that E has multiplicity in S greater than 1 , it follows that the same-holds for the multiplicity in S of all divisors with $a_{i}=0$ over a neighborhood of $Q \in X$, which contradicts the construction of E.

Thus the intersection $B_{1}=g^{-1} S \cap E$ is irreducible. Then, as in the case (8.5.2*), $K_{Y}+g^{-1} S+E \log$ terminal follows from the ampleness of $g^{-1} B$ on E. Thus g is a good extraction. In this case, when

$$
\begin{equation*}
\left(K_{Y}+g^{-1} S+g^{-1} B+E\right) \mid E \tag{3}
\end{equation*}
$$

is purely \log terminal outside D_{1}, we get what we want. In fact then the flip of f exists for the following reasons. By Theorem 6.9 and the ampleness of $g^{-1} S$ on E,
the remaining case is when the locus of \log canonical singularities of the restricted \log divisor (3) is equal to $B_{1} \cup C^{\prime}$, where C^{\prime} is an irreducible curve on E intersecting B_{1} in $Q=B_{1} \cap g^{-1} C$. We reduce this case to flips of type (8.5.3) with $d_{i}>1$ for all $a_{i}=0$.

For this, in view of $H=g^{*} B$ we should first carry out a flip in the birational transform of curves of the flip of f. As before, a flip in them does not change $K_{Y}+g^{-1} S+E \log$ terminal. From this it follows that E and its modification are normal. (In the case under consideration there is exactly one such flip.) The flipped curves do not intersect C^{\prime}. As usual we are interested in the subsequent extremal flipping ray R_{2}, which is numerically 0 against $g^{-1} S$, positive against $g^{-1} B$ and negative against E. Now $g^{-1} B$ intersects B_{1} only in Q. If the restricted log divisor (3) is purely \log terminal outside B_{1} then the required flip is exceptional (up to the connectedness of the flipping curves) and of index 2 , and therefore exists. Hence we can assume that the restricted \log divisor (3) has a point $Q^{\prime} \in C^{\prime}$ outside B_{1} that is not purely \log terminal. Since the modified $g^{-1} B$ is positive on R_{1} and R_{2}, it is ample on E. By Lemma 8.10, after the birational contraction of the components of $\operatorname{Supp}\left(g^{-1} B_{\mid E}\right)$ other than C^{\prime}, it transforms C^{\prime} into an ample curve. Hence by Lemma 8.9 the support of R_{2} equals the contracted curves, and hence the flip of R_{2} is again of type (8.5.3).

It remains to check that $d_{i}>1$ for all $a_{i}=0$ over a neighborhood of Q^{\prime}. We suppose the contrary, and show that (8.81) holds. For this, note that, by construction, on E we have an irreducible curve C_{3} of double points of Y that passes through Q^{\prime}, and is not contracted by flips. Thus by what we have already proved, there exists a flip of R_{2}, and hence of f, or an extremal extraction $h: W \rightarrow Y$ of a surface E^{\prime} with multiplicity $d^{\prime} \leq 1$ in E and $a=0$ for $K+S+B$. Moreover, it lies over Q^{\prime} or over the general point of C^{\prime} and satisfies (8.8.1). The flips do not touch these extractions, and hence they can be constructed for the original g. However, in the case under consideration,

$$
\left(K_{Y}+g^{-1} S+g^{-1} B+E\right) \left\lvert\, E=K_{E}+B_{1}+C^{\prime}+\frac{1}{2} C_{3}+\frac{1}{2} C_{4}\right.
$$

where both $C_{4}=E \cap \operatorname{Supp} g^{-1} B$ and C_{3} pass through Q^{\prime}. Here $h^{-1} C_{4}$ is irreducible and moves on $h^{-1} E$. This can be deduced from the existence of a 1 -complement of $K_{Y}+g^{-1} S+E$ in a neighborhood of E with log discrepancy 0 for E^{\prime} (compare the proof of (8.8.3)). Hence $h^{-1} C_{4}$ and the curve $h^{-1} C_{3}$ that does not meet it define a ruling on $h^{-1} E$, since $h^{-1} C_{3}$ is not exceptional by Theorem 6.9. This ruling is induced by a birational contraction of W contracting the surface $h^{-1} E$ to a curve, possibly after a flip in $h^{-1} C^{\prime}$. This last flip takes place only when E^{\prime} lies over Q^{\prime} and intersects $h^{-1} E$ in two curves, one of which belongs to a fiber of the ruling. This implies the relation $d=(1 / n)\left(1+d d^{\prime}\right)$ where d is the multiplicity of E in $S, d d^{\prime}$ that of E^{\prime} in S, and $n=-\left(h^{-1} E\right) \cdot\left(h^{-1} C_{4}\right)>0$ is an integer. When $n=1$ we have $d d^{\prime}=d-1 \leq 4 / 3-1<1$, which gives (8.8.1) after contracting E to a curve as before. But if $n \geq 2$ then $d=(1 / n)\left(1+d d^{\prime}\right) \leq(1 / 2)(1+d)$, since $d^{\prime} \leq 1$. Therefore $d \leq 1$. This final contradiction finishes our treatment of the case (8.8.4) with $m=1$; more precisely, it reduces this case to flips (8.5.3) with $d_{i}>1$ for all $a_{i}=0$ over a neighborhood of Q. The existence of these flips is discussed in what follows.

Thus (8.8.2) does not hold if the index of $K_{Y}+g^{-1} S+E$ is ≥ 4, and the existence of flipping curves then does not play any role if we do not worry about the choice of the component on which the new singularity P^{\prime} appears. They are only required in treating cases with index ≤ 3.

Thus, returning to the start of the proof, we have checked (8.8.1) modulo the existence of flips of type (8.5.3) with $d_{i}>1$ for all $a_{i}=0$, which gives an extremal extraction g satisfying (i) and (iv) of a good extraction (see 8.5). To check the other properties of a good extraction we first restrict ourselves to the case $g(E)=$ Q. Recall that, as before, the multiplicity d of E in S is ≤ 1. As above, the intersection $g^{-1} S \cap E$ consists of at most two irreducible curves B_{i}. We show that if $g^{-1} S \cap E=B_{1} \cup B_{2}$ then either f has a flip or it reduces to a flip of type (8.5.3) with $d_{i}>1$ for all E_{i} over Q with $a_{i}=0$.

For this, as in the treatment of the case (8.8.4) with $m=1$ we reduce things to the following. The divisor $K_{Y}+g^{-1} S+E$ is log terminal outside $P_{0}=B_{1} \cap B_{2}$, Y is nonsingular at P_{0} and $Q=B_{2} \cap g^{-1} C$, the surface E is normal, nonsingular along the curve B_{2}, which has selfintersection $\left(B_{2}{ }^{2}\right)_{E}=2$. This follows since the +1 -curve B_{2}^{+}is obtained by one blowup of B_{2} at P_{0} (a standard blowup). The surface $g^{-1} S$ is also nonsingular along B_{2}. Suppose that the selfintersection of B_{2} on $g^{-1} S$ is $\left(B_{2}^{2}\right)_{g^{-1} S}=-n$. Then we can calculate the multiplicity of E in S from

$$
\begin{aligned}
0 & =\left(g^{-1} S+d E\right) \cdot B_{2}=\left(g^{-1} S\right) \cdot B_{2}+d E \cdot B_{2} \\
& =\left(\left(B_{1}+B_{2}\right) \cdot B_{2}\right)_{E}+d\left(\left(B_{1}+B_{2}\right) \cdot B_{2}\right)_{g^{-1} S}=3-d(n-1),
\end{aligned}
$$

hence $d=3 /(n-1)$, and $n \geq 4$, since $d \leq 1$ under the current case assumption. Also by the above, E is the unique surface over $g(Q)=Q$ with multiplicity ≤ 1 in S and $a=0$. However, the surface E^{\prime}, the standard blowup of B_{1}, has multiplicity $1+d$ in S and $a=0$, and the same for the surface $E^{\prime \prime}$, the standard blowup of B_{2}. Every other surface over $Q \in X$ with $a=0$ has multiplicity $>1+d$ in S; note that the standard blowup of P_{0} gives a surface with multiplicity $1+d$ in S, but with $a=1$, and the standard blowup of $Q \in Y$ gives a surface with multiplicity $1+d$ in S, but with $a=1 / 2$.

Now consider the extremal extraction $g^{\prime}: Y^{\prime} \rightarrow X$ of the divisor E^{\prime}. It intersects $g^{\prime-1} S$ only in the single curve $B_{1} \subset Y^{\prime}$, the birational transform of the curve $B_{1} \subset Y$ of the same name. This is proved just as the corresponding assertion in the case (8.8.4) with $m=1$. Thus the intersection $B_{1}=g^{\prime-1} S \cap E^{\prime}$ is irreducible. Moreover, $Q=B_{1} \cap g^{\prime-1} C$ is a point of type A_{1} on $g^{\prime-1} S$ resolved by a curve B_{2} with selfintersection $-n \leq-4$. By construction the intersection is normal along B_{1}. Then as before we check that $K_{Y^{\prime}}+g^{\prime-1} S+E^{\prime}$ is \log terminal, and the other properties of a good extraction. We get what we want if

$$
\begin{equation*}
\left(K_{Y^{\prime}}+g^{\prime-1} S+g^{\prime-1} B+E^{\prime}\right) \mid E^{\prime} \tag{4}
\end{equation*}
$$

has B_{1} as a curve of \log terminal singularities.
Thus it remains to deal with the case that the locus of log canonical singularities of the \log divisor (4) contains another curve C^{\prime}. Just as before, we can moreover assume that the \log divisor (4) is not purely \log terminal at a point $Q^{\prime} \in C^{\prime}$ outside B_{1}. I assert that all $d_{i}>1$ for components over Q^{\prime} with $a_{i}=0$. Indeed, if Y^{\prime} is nonsingular along C^{\prime} then over $Q=C^{\prime} \cap g^{\prime-1} C$ there is a surface E with $a=0$ for $K+S+B$, and multiplicity ≤ 1 in $g^{\prime-1} S+E^{\prime}$. For this we need to remark that $K_{Y^{\prime}}+g^{\prime-1} S+E$ has index ≥ 4 at $Q \in Y^{\prime}$, and we can perturb $g^{\prime-1} B$ to preserve Q not \log terminal, while $K_{Y^{\prime}}+g^{\prime-1} S+E$ is \log terminal on a punctured neighborhood of Q. The multiplicity of E in S equals its multiplicity in $g^{\prime-1} S+(1+d) E^{\prime}$, which equals $a+b(1+d)<1+d$, where $0<a<1$ is the multiplicity of E in $g^{-1} S$, and $0<b<1$ that of E in E^{\prime}, so that $0<a+b \leq 1$ is the multiplicity of E in $g^{\prime-1} S+E^{\prime}$. Thus the surface in question is bimeromorphic to E and has
multiplicity d in S. Extracting it gives a curve B_{2} in the intersection of the blowup with the blowup of $g^{\prime-1} S$, and over this there is a surface $\neq E^{\prime}$ also lying over $Q \in X$ with $a=0$ and multiplicity $1+d$, hence bimeromorphic to $E^{\prime \prime}$. Hence all the multiplicities for $(1+d) E^{\prime}$ over Q^{\prime} are $>1+d$, hence $d_{i}>1$ for $a_{i}=0$ over Q^{\prime}.

Now assume that Y^{\prime} is singular along C^{\prime}. By the same arguments this is a singularity of type A_{1}, and it is resolved by E. Here $E^{\prime \prime}$ lies over $Q \in Y^{\prime}$, or more precisely over the curve in the inverse image of Q for an extremal resolution of E. This completes the treatment of the cases when the intersection $g^{-1} S \cap E$ is reducible. In the contrary case g satisfies (iii), which implies (ii) by the fact that $g^{-1} B$ is ample on E. Thus g is a good extraction, modulo the reduction to the cases with $d_{i}>1$ for $a_{i}=0$ over Q.

The following case also reduces to these cases, when $g(E)=C,(8.8 .1)$ holds and E has multiplicity $d \leq 1$ in S. We now carry out the reduction to flips of type (8.5.3) with $d_{i}>1$ for all $a_{i}=0$ over a neighborhood of Q. By (8.8.1) $g\left(B_{1}\right)=Q \in X$. Further, from Theorem 6.9 and the fact that $g^{-1} B$ is ample relative to g we deduce that the intersection $g^{-1} S \cap E=B_{1} \cup B_{2}$ consists of two irreducible curves B_{1} and B_{2} over a neighborhood of $Q \in X$. Here $g\left(B_{2}\right)=C$. Then we check that $K_{Y}+g^{-1} S+E$ is \log terminal outside $P_{0}=B_{1} \cap B_{2}$. This implies that E is normal. Note that the curves $D \subset Y$ over Q lie on E and intersect $g^{-1} B$, and thus do not pass through P_{0} except for $D=B_{1}$. The contraction of a curve $D \neq B_{1}$ does not violate (8.8.1) and does not change the singularity of P_{0} on E. Hence P_{0} either is nonsingular on E or is an ordinary double point of E. In the first case Y is also nonsingular at P_{0}. We check that the same also holds in the second case. For this note that under our choice $H=g^{*} B$, first come flips in the birational transforms of curves of the flip of f. Flips in these do not destroy B_{2}, nor, in particular, P_{0}. After these comes the flip in B_{1} as described in Proposition 8.3. By the proof of Proposition 8.3, P_{0} either is nonsingular on $g^{-1} S$ or has index ≥ 3, so that the index of $K_{Y}+g^{-1} S$ is also ≥ 3 in the second case. But a cover of E ramified only in P_{0} has degree ≤ 2. The required nonsingularity follows from this.

Hence E is the unique surface over a neighborhood of $g(Q)=Q$ with multiplicity $d \leq 1$ in S and $a=0$. Moreover, the multiplicity of other divisors over a neighborhood of Q with $a=0$ is at least $1+d$, and this minimum value is only achieved by E^{\prime}, the first blowup of B_{1}. From now on, as before, we consider an extraction $g^{\prime}: Y^{\prime} \rightarrow X$ of the divisor E^{\prime} and verify that it intersects $g^{\prime-1} S$ in the single curve B_{1} only, the birational transform of the curve with the same name. By construction the intersection of E^{\prime} and $g^{\prime-1} S$ is normal along B_{1}. Then we verify the \log terminal property of $K_{Y^{\prime}}+g^{\prime-1} S+E^{\prime}$ and the other properties of a good extraction. We get what we need if

$$
\begin{equation*}
\left(K_{Y^{\prime}}+g^{\prime-1} S+g^{\prime-1} B+E^{\prime}\right) \mid E^{\prime} \tag{5}
\end{equation*}
$$

has \log terminal singularities along B_{1}.
As before, it remains to treat the case that the locus of log canonical singularities of the \log divisor (5) has another curve component C^{\prime}. Morever, as before, we can assume that there exists a point $Q^{\prime} \in C^{\prime}$ outside B_{1} at which the restricted \log divisor (5) is not purely \log terminal. But then $d_{i}>0$ for all a_{i} over a neighborhood of Q^{\prime}. For otherwise there exists a surface over Q^{\prime} or over the general point of C^{\prime} with $d_{i} \leq 1$ and $a_{i}=0$. Hence it lies over Q and its multiplicity in S is $\leq 1+d$ if $a=0$, which is impossible.

This completes the reduction of Proposition 8.8 to flips of type (8.5.3) with $d_{i}>$ 1 for all $a_{i}=0$ over a neighborhood of Q in the cases that the required good
extraction does not exist. It remains to establish the existence of the flip of f in these exceptional cases.

For them there exists a surface E over a neighborhood of Q with $a=0$ and having minimal multiplicity d in S; by assumption $d>1$. On the other hand $d \leq 2$, since $\operatorname{Supp} B$ touches S along C, and there is a surface over the general point of C with $d=2$ and $a=0$. Also, there exist only a finite number of surfaces E over a neighborhood of Q with $a=0$ and with the given multiplicity d in S. They are all extracted by a log terminal extraction of $K+S+B$. Hence, as before, we can choose an extremal extraction g of one such surface E satisfying (8.8.1) or (8.8.2) for $P \in B_{1} \subset g^{-1} S \cap E$. For this, note that $g^{-1} S$ and E cross normally along B_{1} and along the other components of $g^{-1} S \cap E$; for otherwise by (3.18.6) over a general point of B_{1} there would be a surface E^{\prime} with $a=0$ having multiplicity $a+b \leq 1$ in $g^{-1} S+E$, where $0<a, b$ are the multiplicities of E^{\prime} in $g^{-1} S$ and E respectively. Hence the multiplicity of E^{\prime} in $g^{-1} S+d E$, equal to its multiplicity in S, is $a+b d<(a+b) d \leq d$, which contradicts the choice of d.

Next we establish that case (8.8.2) is only possible if P is an isolated singularity of Y from (8.8.4) with $m=1$. But this case again reduces to flips of type (8.5.3) with $d_{i}>1$ for all $a_{i}=0$ over a neighborhood of Q. Indeed, the multiplicity $d^{\prime}:=(2 / 3)(1+d)$ of the new surface E^{\prime} satisfies $d^{\prime} \leq 2$, like d itself, hence if $n=1$ then $d d^{\prime}=d-1 \leq 2-1=1$, which again contradicts the choice of d. However, now Q has a curve C_{3} of double points passing through it, and hence we have reduced the existence of the required flips to the case that g satisfies (8.8.1).

Assume first that $g(E)=Q$. As before, the intersection $g^{-1} S \cap E$ consists of at most 2 irreducible curves B_{i}. We show that if $g^{-1} S \cap E=B_{1} \cup B_{2}$ then the flip of f exists. For this, as in the treatment of the similar case with $d \leq 1$ we reduce to the following set-up. The divisor $K_{Y}+g^{-1} S+E$ is log terminal outside $P_{0}=B_{1} \cap B_{2}, Y$ is nonsingular at P_{0} and at $Q=B_{2} \cap g^{-1} C$, the surfaces E and $g^{-1} S$ are normal, nonsingular on B_{2}, and B_{2} has selfintersection $\left(B_{2}^{2}\right)_{E}=2$ on E and $\left(B_{2}{ }^{2}\right)_{g^{-1} S}=-3=-n$. The last assertion follows because $d=3 /(n-1)$ and $n=3$, since $1<d \leq 2$, so that $d=3 / 2$. Note also that B_{1} has selfintersection ≤ 0 on the minimal resolution of E, since B_{2} intersects B_{1} transversally and only at the single point P_{0}. On the other hand, by the ampleness of $g^{-1} S$ on E we have

$$
0<\left(g^{-1} S\right) \cdot B_{1}=\left(\left(B_{1}+B_{2}\right) \cdot B_{1}\right)_{E}=\left(B_{1}^{2}\right)_{E}+1
$$

Hence $\left(B_{1}^{2}\right)_{E}=0$ and E is everywhere nonsingular on B_{1}. Otherwise E has a unique ordinary double point, P_{1} say, and B_{1} has selfintersection 0 or -1 on the minimal resolution of E. Hence $\left(g^{-1} S\right) \cdot B_{1}=1,3 / 2$ or $1 / 2$ in the 3 cases. Moreover

$$
0=\left(g^{-1} S+\frac{3}{2} E\right) \cdot B_{1}=\left(g^{-1} S\right) \cdot B_{1}+\frac{3}{2} E B_{1}
$$

and thus $E B_{1}=-2 / 3,-1$ or $-1 / 3$ in the 3 cases. The fractional cases are not possible, since P_{0} is a nonsingular point of $g^{-1} S$, and $g^{-1} S$ can have at most one ordinary double point P_{1} on B_{1}. Therefore B_{1} has an ordinary double point P_{1} on E, and B_{1} has selfintersection 0 on the minimal resolution of E, and $g^{-1} S$ is nonsingular on $B_{1} \cup B_{2}=g^{-1} S \cap E$. Moreover B_{1} is a (-2)-curve and B_{2} a (-3)-curve. There is curve of double points B_{-1} through the point P_{1} on $g^{-1} S$. It follows from this that $B_{0}=g^{-1} S \cap \operatorname{Supp} g^{-1} B$ is irreducible, has a unique singularity Q^{\prime} (not over $Q \in X$) of type A_{1}, resolved by a (-3)-curve, and is a (-1)-curve on the minimal resolution of $g^{-1} S$. But in this case $K+S$ has a purely \log terminal complement of index 2 , and hence the flip of f exists. Note for this that by Proposition 5.13 and Corollary $5.19, K+S+2 B$ is strictly \log terminal at
Q^{\prime} and has index 3 ; one half of its 1 -complement at Q^{\prime} gives the required index 2-complement. Furthermore, $K+S$ has index 2 at $Q \in X$, since E is a quadratic cone with vertex at P_{1} and $g^{*}(K+S)=K_{Y}+g^{-1} S+(1 / 2) E$.

Now consider the case that $g(E)=Q$ and $g^{-1} S \cap E=B_{1}$ is irreducible. Then as above we check that g is a good extraction. Thus we can assume that the locus of \log canonical singularities of

$$
\left(K_{Y}+g^{-1} S+g^{-1} B+E\right) \mid E
$$

contains another curve C^{\prime}. But then $Q=B_{1} \cap g^{-1} C$ is at worst an isolated singularity of Y. Neither $g^{-1} S$ nor E contain curves of singularities of Y through Q by choice of d and by (3.18.4). The fact that there are no other curves of singularities through Q follows as before from $K_{Y}+g^{-1} S+g^{-1} B+E \log$ canonical. Moreover, if we perturb $g^{-1} B$ in a neighborhood of Q, while fixing $Q \in g^{-1} B$, then Q will satisfy (8.8.2). In the opposite case, arguing as in the proof that $g^{-1} S$ and E cross normally along B_{1}, we get a surface over Q with $a=0$ and with multiplicity $<d$ in S, which contradicts the choice of d. Thus (8.8.2) holds, so that Q is a singularity of (8.8.4) with $m=1$ or $m=0$. Then if $m=1$, with the previous choice of $g^{-1} B$ we get that the locus of \log canonical singularities of $(g \circ h)^{*}(K+S+B)$ contains a curve $C_{3} \subset E^{\prime}$ of double points. Hence the surface resolving C_{3} has $a=0$ and its multiplicity in $g^{-1} S+E$ equals $2 / 3$, which is <1 and $<d$ for S. Therefore $m=0$ and Q is nonsingular. In this case we can construct an exceptional 2-complement, blowing up the points P_{i} if necessary.

We proceed to the final case $g(E)=C$. Then $d=2$. As before, g satisfies (8.8.1). Further, as in the similar case above with $d \leq 1$, we check that the intersection $g^{-1} S \cap E=B_{1} \cup B_{2}$ consists of two irreducible curves over a neighborhood of $Q \in X$. Here $g\left(B_{1}\right)=Q$ and $g\left(B_{2}\right)=C$. Then we check that $K_{Y}+g^{-1} S+E$ is \log terminal outside $P_{0}=B_{1} \cap B_{2}$ and E is normal. Again P_{0} is nonsingular on X and on $g^{-1} S$, and is either nonsingular on E, or is an ordinary double point of E. The latter case is impossible this time, since the general fiber D of the surface E over C satisfies $\left(g^{-1} B\right) \cdot D=1 / 2$ and $\left(g^{-1} B\right) \cdot B_{1} \geq 1 / 2$. Hence $\left(g^{-1} B\right) \cdot B_{1}=1 / 2$ and the curve B_{1} is numerically equivalent to D. In particular

$$
-\frac{1}{2}=E D=E B_{1}=\left(B_{1}^{2}\right)_{g^{-1} S}+\left(B_{2} B_{1}\right)_{g^{-1} S}=\left(B_{1}^{2}\right)_{g^{-1} S}+1,
$$

and thus $\left(B_{1}{ }^{2}\right)_{g^{-1} S}=-3 / 2$. Therefore $g^{-1} S$ has just one ordinary quadratic singularity on B_{1}, say P_{1}. Then B_{1} is a (-2)-curve on the minimal resolution of $g^{-1} S$. By the same arguments $\left(B_{1}^{2}\right)_{E}=0$, so that E is nonsingular on B_{1} and B_{1} is a complete fiber of E over C. Moreover, there is a curve of double points of Y through P_{1}. Hence $K+S$ has index 1 at $Q \in X$, since $g^{*}(K+S)=K_{Y}+g^{-1} S$ has index 1 on B_{1}. On the other hand, the curve $B_{0}=g^{-1} S \cap \operatorname{Supp} g^{-1} B$ is irreducible, does not pass through singularities of $g^{-1} S$, and is a (-1)-curve on $g^{-1} S$ intersecting the curve B_{-1} of double points transversally. Thus the index of $K+S$ in a neighborhood of the flipping curve $g\left(B_{0}\right)$ equals 2 , and $(K+S) \cdot g\left(B_{0}\right)=-1 / 2$. Hence one half of the general hyperplane section of B_{1} gives a purely log terminal complement of index 2 and the flip exists by Proposition 2.9. This completes the proof of Proposition-Reduction 8.8. Q.E.D.

Proof of Theorems 1.9-10 and Corollary 1.11. According to reductions 6.4-5, reduction 7.6 and Propositions 6.7-8 it is enough to establish the existence of nonexceptional index 2 flips. By reduction 8.2, Proposition 8.3 and reduction 8.4, we can restrict ourselves to flips of type (8.5.1-3). In what follows $h: Y \rightarrow X$ denotes the good extraction of Propositions 8.6 and $8.8, E$ the unique exceptional divisor of h
and $B_{1}=g^{-1} S \cap E=\mathbb{P}^{1}$ the irreducible curve of property (iii) in 8.5. Since h is extremal we have $\rho(Y / Z)=2$ and $\overline{\mathrm{NE}}(Y / Z)$ has two extremal rays R_{1} and R_{2}, with cont $R_{R_{1}}=h$. The proof continues from this point as in Reductions 7.2 and 8.2. The flips of R_{2} are considered separately depending on their types.

We start with type (8.5.1). Suppose first that $B_{0} \subset g^{-1} S$, the inverse image of the flipping curve, does not pass through $P=B_{1} \cap g^{-1} C$. Then by construction B_{0} is irreducible and not contained in $g^{-1} B$. Hence $g^{-1} B R_{2} \leq 0, E R_{2}>0$ and $g^{-1} S R_{2}<0$. Therefore the support of R_{2} coincides with B_{0}, since $B_{1} \in R_{1}$. Note that the flip in B_{0} exists by Corollary 5.20. (Contracting or flipping a ray of $\overline{\mathrm{NE}}(Y / Z)$ of course preserves the morphism to Z.) Here since $K_{Y}+g^{-1} S+g^{-1} B+E$ is log terminal in a neighborhood of B_{0}, the flip throws B_{0} over into a curve B_{0}^{+}lying on the modified surface E, and preserves the index 2 or index 1 and \log terminal property of the given divisor on E in a neighborhood of B_{0}^{+}. It is not hard to check that the transformed curve B_{0}^{+}intersects the modified B_{1} and is irreducible. The subsequent ray R_{2} can be negative against $g^{-1} S$ only when it is generated by the modified $B_{1}=g^{-1} S \cap E$ and is hence negative against E. As in reduction 7.2, in this case the flip of f exists. Thus, except for the case of a divisorial contraction, it remains to deal with the case that the next flipping curve C_{1} lies on E and does not intersect B_{1}. Here $B_{1}^{2}>0$.

Since C_{1} is numerically 0 against $g^{-1} S$, it must be negative against E and positive against $g^{-1} B$. If the restriction $\left(K_{Y}+g^{-1} S+g^{-1} B+E\right)_{\mid E}$ is log terminal in a neighborhood of the support of R_{2}, the flip of R_{2} exists by Corollary 7.3, since it is an exceptional flip of index 2 for every connected component of the flipping curve. (In the analytic case, passing to connected components while preserving the assumptions that the contraction is extremal and the space is \mathbb{Q}-factorial can be carried out either by changing the base by an extraction outside a fixed fiber or by localizing as in the proof of reductions $6.4-5$.) In the opposite case, by Theorem 6.9, E contains a curve B_{2} that intersects the support of R_{2} in a unique point Q at which $\left(K_{Y}+g^{-1} S+g^{-1} B+E\right)_{\mid E}$ is not \log terminal, and the reduced part of the boundary of the most recent restriction is of the form $B_{1}+B_{2}$.

The curves B_{1} and B_{2} intersect in a unique point P, hence since B_{1} is ample on the original E, it follows that B_{2} is irreducible. But after flipping, the curve B_{2} is nef and numerically 0 only on B_{0}^{+}. After contracting any of the irreducible components of C_{1}, since B_{1} is ample on the original E, we get that B_{2} is ample. By Lemma 8.9 the flipped curve is totally contracted, that it, it is irreducible. Consequently a flip in C_{1} again has type (8.5.1), and exists by Proposition 8.6 because the number of good extractions has decreased.

We now proceed to the case that B_{0} passes through P. Then the extremal ray R_{2} generated by B_{0} is positive against E and $g^{-1} B$, but negative against $g^{-1} S$. The flip in B_{0} exists by Corollary 5.20 and the flipped curve B_{0}^{+}lies in the intersection of the modified $E \cap \operatorname{Supp} g^{-1} B$, and $B_{1}=E \cap g^{-1} S$. Again it is enough to consider the case that the flipping curve C_{1} is on E and does not intersect $g^{-1} S$. If the locus of \log canonical singularities of the restriction $\left(K_{Y}+g^{-1} S+g^{-1} B+E\right)_{\mid E}$ is disjoint from C_{1} then the flip exists and is of type IV by Proposition 5.13. Otherwise, by Theorem 6.9, B_{0}^{+}is irreducible and is contained in the reduced part of the boundary of the most recent restriction.

On the other hand, the divisor $g^{-1} B_{\mid E}$ was ample before the flip, and its support intersects B_{1} only in P. Hence the support of the modified $g^{-1} B_{\mid E}$ is contained in C_{1} and is a contractible curve. After its contraction, by Lemma 8.10 the curve
B_{0}^{+}becomes numerically ample and by Lemma 8.9 the image of C_{1} must be 0 , that is, the support of the modified $g^{-1} B_{\mid E}$ is exactly C_{1}. If the divisor $K_{Y}+g^{-1} S+$ $g^{-1} B+E$ is \log terminal along every component of C_{1}, we arrive at a flip of type (8.5.3); otherwise C_{1} is irreducible and defines a flip of type (8.5.2). This completes the reduction in case (8.5.1).

Consider now the unstarred case (8.5.2), when the good extraction g has an exceptional divisor over a point. By construction, in this case, the birational transform of B_{0}, the curve contracted by f, generates R_{2}. Thus R_{2} satisfies $E R_{2}>0$ and $g^{-1} S R_{2}<0$. Hence the flip of B_{0} exists by Corollary 5.20 .

After the flip the curve $g^{-1} S \cap E$ may be reducible. However, this can only happen when $g^{-1} B$ is numerically negative against B_{0}. By our choice $H=g^{*} B$, $K_{Y}+g^{-1} S$ remains log terminal. Moreover the flipped curves on $g^{-1} S$ land in the intersection with E. As in the proof of Proposition 8.8, the intersection $g^{-1} S \cap E$ has at most two curves, B_{1} and a flipped curve B_{2}. In particular, B_{2} is exceptional on E^{ν}. Now B_{1} becomes the support of the subsequent extremal ray, which is numerically 0 against $g^{-1} B$, positive against E and negative against $g^{-1} S$. It follows that $g^{-1} B$ is positive on all the remaining curves of E. As in the proof of Proposition 8.8 , using this one can verify that $K_{Y}+g^{-1} S+E$ is \log terminal in a neighborhood of E except at the point $P_{0}=B_{1} \cap B_{2}$. Hence E is normal.

We carry out the flip in B_{1} described in Proposition 8.3. The arguments from the proof of Proposition 8.8 in the case ($8.5 .2^{*}$) allow us to prove either that the flip of f exists, or that B_{2} is nef on the minimal resolution of E. But the last case is impossible since B_{2} is exceptional on E. Hence we can assume that the intersection $g^{-1} S \cap E=B_{1}$ is irreducible. The \log terminal property of $K_{Y}+g^{-1} S+E$ continues to hold on $g^{-1} B$, which is nef on B_{0}, as follows since otherwise $g^{-1} B$ is ample on the modified E.

Thus, again the new flipping curve C_{1} is contained in E and does not intersect $g^{-1} S$. If the restriction $\left(K_{Y}+g^{-1} S+g^{-1} B+E\right) \mid E$ has log terminal singularities along C_{1} then the flip exists by Corollary 7.3 as above. Otherwise by Theorem 6.9 there exists an irreducible curve B_{2} that is contained together with B_{1} in the boundary of $\left(K_{Y}+g^{-1} S+g^{-1} B+E\right)_{\mid E}$ after modification and intersecting B_{1} in P. I claim that B_{2} is contained in the support of the new ray R_{1}, that is, the ray obtained after flipping B_{0}. For otherwise all the components of the flipped curve B_{0}^{+}would intersect B_{1} only at P. After contracting B_{0}^{+}we return to the situation before flipping, when the curve $B_{2}=\operatorname{Supp} g^{-1} S \cap E$ is ample on E. Therefore by Lemma 8.9 there is no C_{1}. Thus B_{2} is contained in B_{0}^{+}, the remainder of B_{0}^{+}is contracted to a point P and its components intersect B_{1} and B_{2} only at P. The surface E is normal, because $K_{Y}+E$ is log terminal.

By Theorem 6.9 and Lemma 8.9, after contracting the support of $g^{-1} B_{\mid E}$ outside B_{2} we get that C_{1} coincides with the given contracted curve. By Lemma 8.10, B_{2} becomes ample after contracting C_{1} and the components of B_{0}^{+}other than B_{2}. (The components of $g^{-1} B_{\mid E}$ other than B_{2} are contained in C_{1}, since they do not intersect B_{1} and are numerically 0 on $g^{-1} S$.) If the support of $g^{-1} B_{\mid E}$ outside B_{2} contains a curve along which $K_{Y}+g^{-1} S+g^{-1} B+E$ does not have log terminal singularities, then it coincides with it, and the contraction of the curve in question has type (8.5.2). Here in the unstarred case (8.5.2), by Proposition 8.6, the number of good extractions is decreased and the flip exists by induction. In the opposite case we get a reduction to type (8.5.2*). Type (8.5.3) arises if $K_{Y}+g^{-1} S+g^{-1} B+E$ is \log terminal along C_{1}.

In case (8.5.2*), the ray R_{2} with $g^{-1} S R_{2}<0$ leads at the first step to a flip in B_{1} and separates the surfaces E and $g^{-1} S$. After this the contraction of E to a point gives a flip of f. Thus the case that is essential for us is when the flipping curve C_{1} is contained in E and disjoint from $g^{-1} S$. As above, we need only consider the case that C_{1} passes through a point at which the restriction $\left(K_{Y}+g^{-1} S+g^{-1} B+E\right) \mid E$ is not \log terminal. Then the fiber B_{2} of the ruled surface E over $P=B_{1} \cap g^{-1} C$ is irreducible and contained in the boundary of $\left(K_{Y}+g^{-1} S+g^{-1} B+E\right){ }_{\mid E}$. Since $g^{-1} B$ is positive against R_{1} and R_{2} it is positive on E, and by contracting the components of Supp $g^{-1} B_{\mid E}$ other than B_{2} we transform B_{2} into an ample curve.

Thus again by Lemma $8.9, C_{1}$ coincides with the given contracted curve. If C_{1} contains a curve of the locus of \log canonical singularities of $K_{Y}+g^{-1} S+g^{-1} B+E$ then it is equal to it, and the contraction of the given curve is of type (8.5.2*). Here by choice of a good extraction in Proposition 8.8, δ decreases. Indeed, the exceptional divisors of E_{i} over C_{1} have log discrepancy 0 for $K_{Y}+g^{-1} S+g^{-1} B+E$ precisely when $a_{i}=0$, and the multiplicity of E_{i} in E equals its multiplicity in $g^{-1} S+E$, and is greater than or equal to its multiplicity in $g^{-1} S+d E=g^{*} S$. This gives strict monotonicity for δ. In the remaining cases we get a reduction to type (8.5.3).

In case (8.5.3), we first perform flips in curves of the intersection $E \cap \operatorname{Supp} g^{-1} B$. These curves intersect B_{1} in points P_{1} and P_{2} that are log terminal for $K_{Y}+g^{-1} S+$ $g^{-1} B+E$. Hence after such flips the intersection $B_{1}=g^{-1} S \cap E$ remains irreducible. However, now $g^{-1} B$ only intersects B_{1} in a point $P=B_{1} \cap g^{-1} C$ which is possibly not \log terminal, and the curve B_{1} becomes the unique curve on $g^{-1} S$ over Z in a neighborhood of the flipping fiber. Again it remains to deal with the case that the subsequent flipping curve C_{1} is contained in E and is disjoint from $g^{-1} S$. As before, we need only consider the case that C_{1} passes through a point Q^{\prime} at which the restriction $\left(K_{Y}+g^{-1} S+g^{-1} B+E\right)_{\mid E}$ is not log terminal. Then there exists an irreducible curve $B_{2} \neq B_{1}$ such that $B_{1}+B_{2}$ is the reduced part of the boundary of the restriction and $Q^{\prime} \in B_{2}$. Since $g^{-1} B$ is positive against R_{1} and R_{2}, it is ample on E.

By Lemma 8.10, after contracting the components of $\operatorname{Supp} g^{-1} B_{\mid E}$ other than B_{2} we transform B_{2} into an ample curve. Thus again by Lemma $8.9 \quad C_{1}$ coincides with the given contracted curve. But by construction C_{1} is not contained in the locus of \log canonical singularities of $K_{Y}+g^{-1} S+g^{-1} B+E$. Here by our choice of the good extraction in Proposition 8.8, δ decreases, or more precisely δ^{\prime} for Q^{\prime} is less than δ. Q.E.D.

§9. Applications

We give here some consequences of the main results.
9.1. Corollary. An algebraic (or analytic) 3-fold X has a strictly log terminal model $f: Y \rightarrow X$ for $K+B$ (in the analytic case, in a neighborhood of a projective subspace $W \subset X$), even if X is not \mathbb{Q}-factorial and $K+B$ is not log canonical. Moreover, there exists such a model $f: Y \rightarrow X$ that is nontrivial only over the points of X at which X is not \mathbb{Q}-factorial or $K+B$ is not log terminal. (In the analytic case, we should include in the non-log-terminal locus the singular curves of irreducible and reduced components B in a neighborhood of W.)
Proof. The singular locus of X and of components of B, together with the nonnormal crossings of components of B, form a closed algebraic (or analytic) subset of
dimension ≤ 1, so that the same holds for the locus M of points at which $K+B$ is not log terminal. Hence through M (in the analytic case, in a neighborhood of W) we can choose a general hyperplane section H such that, outside $M, K+B+H$ is log terminal and $H+\lceil B\rceil$ has normal crossings. After this, the proof of reductions $6.4-5$ is applicable. However, now flips exist by (1.3.5) and the corollary in $\S 0$, and the \log terminal model satisfies the properties we want. By (1.5.7), it is enough to verify this for the strictly, but not purely, log terminal points of $K+B$. Since $K+B$ is divisorially \log terminal, these are either triple points, or points on double curves. Now H does not pass through triple points or contain double curves. But the log terminal extraction over a point of a double curve is the identity, since by Corollary 3.8 the log discrepancy of $K+B$ over such a point is >0. Q.E.D.

The next result follows from this in the same way that Corollary 1.11 follows from Theorem 1.10.
9.2. Corollary. An algebraic (or analytic) 3-fold X has a log canonical model for $K+B$, even if X is not \mathbb{Q}-factorial and $K+B$ not \log canonical, provided that $K+B$ is log terminal outside B and B locally supports a Cartier divisor.

The last clause means that B is LSEPD for id_{X}. If $K+B$ is numerically negative relative to f, Theorem 1.10 can be strengthened:
9.3. Corollary. Let $f: X \rightarrow Z$ be a contraction of an algebraic (or analytic) 3-fold X, and suppose that $K+B$ is log terminal and numerically negative relative to f. Then the flip of f exists.
Proof. By Corollary 9.1, and the fact that \log terminal singularities are \mathbb{Q}-factorial in codimension 2 , there exists a strictly \log terminal extraction $g: Y \rightarrow Z$ for $K_{Z}+f(B)$, that blows up only the image of the exceptional set M for f in a neighborhood of M. As in (1.5.6) one can check that because $K+B$ is negative relative to f, the \log discrepancies of $K_{Y}+f(B)_{Y}$ are positive over M. In particular g is small over M and is \log terminal. Thus it remains to contract a finite number of curves over M on which $K_{Y}+f(B)_{Y}$ is numerically 0 . These obviously span an extremal face of $\overline{N E}(Y / Z)$. But by the above, in a neighborhood of the connected fibers of g containing those curves, it is not hard to find an effective Cartier divisor D such that $K_{Y}+f(B)_{Y}+\varepsilon D$ is \log terminal for small $\varepsilon>0$ and is negative on the whole fiber. On localizing around a fiber one may lose the strictly log terminal property, but weakly \log terminal is preserved. Hence by [8], 3-2-1, and rational approximation (1.3.5), these curves are contractible; by the same arguments, $K_{Y}+f(B)_{Y}$ pushes down as a \log terminal divisor (compare the proofs of (1.3.2) and 4.5). Q.E.D.
9.4. Corollary. Let $f: X \rightarrow Z$ be a projective morphism of algebraic 3-folds (or analytic spaces), and suppose that $K+B$ is weakly \log terminal. Then every extremal face R of the Kleiman-Mori cone $\overline{\mathrm{NE}}(Y / Z)$ (in the analytic case, $\overline{\mathrm{NE}}(Y / Z ; W$), where W is a compact subset of Z) on which $K+B$ is negative defines either a nontrivial fiber space cont $_{R}$ of log Fanos, or a flip tr_{R} of the contractions cont ${ }_{R}$ (respectively, over a neighborhood of W).

The proof is similar to that of the corollary in $\S 0$, replacing the theorem of $\S 0$ by Corollary 9.3. The contraction cont ${ }_{R}$ exists by [8], 3-2-1, and rational approximation (1.3.5).

The conditions that $K+B$ is weakly \log terminal and X projective over Z is preserved under flips (in the analytic case, over a neighborhood of W). Hence the termination of flips would either give a nontrivial fiber space cont ${ }_{R}$ of \log Fanos,
or a \log terminal model of f (in the analytic case, over a neighborhood of W). However, termination remains a conjecture. (${ }^{14}$)

Corollary 9.1 and Inversion 3.4 give the following result:
9.5. Corollary. Problem 3.3 on the inversion of adjunction has an affirmative solution in dimension 3.

Appendix by Y. Kawamata: The minimal discrepancy OF A 3-FOLD TERMINAL SINGULARITY

Theorem. Let (X, P) be a 3-dimensional terminal singularity of index $r>1$, and $\mu: Y \rightarrow X$ a resolution of singularities. Write E_{j} for the exceptional divisors, with $1 \leq j \leq t$, and set

$$
K_{Y}=\mu^{*} K_{X}+\sum_{j=1}^{t} d_{j} E_{j}
$$

Then $d_{j}=1 / r$ for some j, and hence $\min \left\{d_{j}\right\}=1 / r$.
Proof. (${ }^{15}$) It is enough to construct some partial resolution $\nu: X^{\prime} \rightarrow X$ where X^{\prime} is a normal variety having an exceptional divisor E of discrepancy $1 / r$, in other words, such that

$$
K_{X^{\prime}}=\nu^{*} K_{X}+\frac{1}{r} E+\text { other components. }
$$

For this, we use Mori's classification of terminal singularities ([Mori] or [22], (6.1)); up to local analytic isomorphism, (X, P) is the singularity at the origin of a hypersurface $X:(\varphi=0) \subset W=\mathbb{C}^{4} / G$ in a quotient of \mathbb{C}^{4} by $G=\mathbb{Z} /(r)$. The quotient W is of type $\frac{1}{r}(a, b, c, d)$ if a generator of G acts on \mathbb{C}^{4} by

$$
(x, y, z, w) \mapsto\left(\zeta^{a} x, \zeta^{b} y, \zeta^{c} z, \zeta^{d} w\right)
$$

where ζ is a primitive r th root of 1 . The hypersurface X is defined by a semiinvariant $\varphi(x, y, z, w)$. We prove the result separately in the following six cases.

Case 1. W is of type $\frac{1}{r}(a,-a, 0,1)$ and $\varphi=x y+f\left(z, w^{r}\right)$, where $0<a \leq r$ are coprime integers. Give z and w weights $\mathrm{wt}(z, w)=(1,1 / r)$, and write $k=$ ord f; we consider the weighted blow-up $\sigma: W^{\prime} \rightarrow W$ with weights

$$
\mathrm{wt}(x, y, z, w)=(a / r+i, k-i-a / r, 1,1 / r)
$$

for an arbitrary fixed i with $0 \leq i<k$. Then W^{\prime} has an affine open subset U, where U is a quotient of \mathbb{C}^{4} of type

$$
\frac{1}{a+i r}(-r,(k-i) r-a, r, 1)
$$

and σ is the map given on U by

$$
(x, y, z, w) \mapsto\left(x^{a / r+i}, x^{k-i-a / r} y, x z, x^{1 / r} w\right)
$$

On U, the birational transform X^{\prime} of X is defined by $y+f\left(x z+x w^{r}\right) x^{-k}=0$, the exceptional divisor F of σ by $x=0$, and $E=X^{\prime} \cap F$ is reduced. Set $K_{W^{\prime}}=\sigma^{*} K_{W}+\alpha F, \sigma^{*} X=X^{\prime}+\beta F$ and $K_{X^{\prime}}=\nu^{*} K_{X}+d E$, where $\nu=\sigma_{\mid X^{\prime}}$. Then

$$
\alpha=(a / r+i)+(k-i-a / r)+1+1 / r-1=k+1 / r,
$$

[^12]and $\beta=k$, so that E is the required component with discrepancy $d=\alpha-\beta=$ $1 / r$. In this case it can be proved that X^{\prime} has only terminal singularities and E is irreducible. The calculation in all the other cases is similar.

Case 2. W is of type $\frac{1}{2}(1,0,1,1)$ and $\varphi=x^{2}+y^{2}+f(z, w)$. Suppose ord $f=2 k$, and take the weighted blow-up $\sigma: W^{\prime} \rightarrow W$ with weights

$$
\mathbf{w t}(x, y, z, t)= \begin{cases}\left(\frac{k}{2}, \frac{k+1}{2}, \frac{1}{2}, \frac{1}{2}\right) & \text { if } k \text { is odd } \\ \left(\frac{k+1}{2}, \frac{k}{2}, \frac{1}{2}, \frac{1}{2}\right) & \text { if } k \text { is even }\end{cases}
$$

Then W^{\prime} has an affine open set U of type $\frac{1}{k+1}(k,-2,1,1)$ if k is odd or of type $\frac{1}{k+1}(-2, k, 1,1)$ if k is even, and σ is the map

$$
(x, y, z, w) \mapsto \begin{cases}\left(x y^{k / 2}, y^{(k+1) / 2}, y^{1 / 2} z, y^{1 / 2} w\right) & \text { if } k \text { is odd } \\ \left(x^{(k+1) / 2}, x^{k / 2} y, x^{1 / 2} z, x^{1 / 2} w\right) & \text { if } k \text { is even }\end{cases}
$$

Here X^{\prime} is given on U by $x^{2}+y+f\left(y^{1 / 2} z, y^{1 / 2} w\right) y^{-k}=0$, and the exceptional divisor F by $y=0$ if k is odd (respectively, the same with x and y interchanged if k is even), and $E=X^{\prime} \cap F$ is reduced. Since $\alpha=k+1 / 2$ and $\beta=k$ we have $d=1 / 2$.

Case 3. W is of type $\frac{1}{2}(1,1,0,1)$ and $\varphi=w^{2}+f(x, y, z)$, with ord $f=3$; we take σ with weights

$$
\mathrm{wt}(x, y, z, t)=(1 / 2,1 / 2,1,3 / 2) .
$$

Then the open set U has type $\frac{1}{3}(1,1,2,-2)$, and σ is given by

$$
(x, y, z, w) \mapsto\left(x w^{1 / 2}, y w^{1 / 2}, z w, w^{3 / 2}\right)
$$

X^{\prime} and F are respectively given by $w+f\left(x w^{1 / 2}+y w^{1 / 2}, z w\right) w^{-2}=0$ and $w=0$. Thus E has a reduced irreducible component E_{1}. If we set $K_{X^{\prime}}=\nu^{*} K_{X}+d E_{1}+$ other components, then $\alpha=5 / 2, \beta=2$, hence $d=1 / 2$.

Case 4. W is of type $\frac{1}{3}(1,2,2,0)$ and $\varphi=w^{2}+f(x, y, z)$, where ord $f=3$; moreover, if we write $f=f_{3}+$ higher order terms, then $f_{3}=x^{3}+y^{3}+z^{3}$ or $x^{3}+y z^{2}$ or $x^{3}+y^{3}$. In the first case (respectively, the remaining cases) we take σ with weights

$$
\mathrm{wt}(x, y, z, t)=(2 / 3,1 / 3,1 / 3,1) \quad(\text { respectively }(2 / 3,4 / 3,1 / 3,1)
$$

Then U has type $\frac{1}{3}(2,1,1,0)$, and σ is given by

$$
(x, y, z, w) \mapsto\left(x w^{2 / 3}, y w^{1 / 3}, z w^{1 / 3}, w\right)
$$

$$
\text { (respectively }\left(x w^{2 / 3}, y w^{4 / 3}, z w^{1 / 3}, w\right) \text {) }
$$

Then in the three cases, X^{\prime} is given by $w+x^{3} w+y^{3}+z^{3}+\cdots$ or by $1+x^{3}+y z^{2}+\cdots$ or by $1+x^{3}+y^{3} w^{2}+\cdots$, while F is given by $w=0$. So F is reduced, $\alpha=4 / 3$, $\beta=1$ (respectively $\alpha=7 / 3$ and $\beta=2$), and $d=1 / 3$.

Case 5. W is of type $\frac{1}{2}(0,1,1,1)$ and $\varphi=w^{2}+x^{3}+x f(y, z)+g(y, z)$, where ord $f \geq 4$ and ord $g=4$. Write $g=g_{4}+$ higher order terms; if g_{4} is a square we can assume that $g_{4}=y^{4}$ or $y^{2} z^{2}$. If g_{4} is not a square (respectively, is a square), we take σ with weights

$$
\mathrm{wt}(x, y, z, w)=(1,1 / 2,1 / 2,3 / 2) \quad(\text { respectively }(1,3 / 2,1 / 2,3 / 2))
$$

Then U has type $\frac{1}{2}(0,1,1,1)$, and σ is given by

$$
\begin{aligned}
& (x, y, z, w) \mapsto\left(x, x^{1 / 2} y, x^{1 / 2} z, x^{3 / 2} w\right) \\
& \quad\left(\text { respectively }\left(x, x^{3 / 2} y, x^{1 / 2} z, x^{3 / 2} w\right)\right)
\end{aligned}
$$

X^{\prime} is given by $x w^{2}+x+f\left(x^{1 / 2} y, x^{1 / 2} z\right) x^{-1}+g\left(x^{1 / 2} y, x^{1 / 2} z\right) x^{-2}=0$ (respectively $\left.w^{2}+1+f\left(x^{3 / 2} y, x^{1 / 2} z\right) x^{-2}+g\left(x^{3 / 2} y, x^{1 / 2} z\right) x^{-3}=0\right)$ and F by $x=0$. So F is reduced, $\alpha=5 / 2$ and $\beta=2$ (respectively $\alpha=7 / 2$ and $\beta=3$), hence $d=1 / 2$.

Case 6. W is of type $\frac{1}{4}(1,3,2,1)$ and $\varphi=x^{2}+y^{2}+f\left(z, w^{2}\right)$. Give z and w weights $\mathrm{wt}(z, w)=(1,1 / 2)$, and suppose ord $f=k$; then take σ with weights

$$
\mathrm{wt}(x, y, z, t)= \begin{cases}\left(\frac{k}{4}, \frac{k+2}{4}, \frac{1}{2}, \frac{1}{4}\right) & \text { if } k \equiv 1 \bmod 4, \\ \left(\frac{k+2}{4}, \frac{k}{4}, \frac{1}{2}, \frac{1}{4}\right) & \text { if } k \equiv 3 \bmod 4 .\end{cases}
$$

Then U is of type $\frac{1}{k+2}(k,-4,2,1)$ if $k \equiv 1 \bmod 4\left(\right.$ respectively $\frac{1}{k+2}(-4, k, 2,1)$ if $k \equiv 3 \bmod 4$), and σ is given by

$$
(x, y, z, w) \mapsto \begin{cases}\left(x y^{k / 4}, y^{(k+2) / 4}, y^{1 / 2} z, y^{1 / 4} w\right) & \text { if } k \equiv 1 \bmod 4 \\ \left(x^{(k+2) / 4}, x^{k / 4} y, x^{1 / 2} z, x^{1 / 4} w\right) & \text { if } k \equiv 3 \bmod 4\end{cases}
$$

X^{\prime} is given by $x^{2}+y+f\left(y^{1 / 2} z, y^{1 / 2} w^{2}\right) y^{-k / 2}$ and F by $y=0$ if $k \equiv 1 \bmod 4$ (respectively the same with x and y interchanged if $k \equiv 3 \bmod 4$). Thus E is reduced, $\alpha=(2 k+1) / 4$ and $\beta=k / 2$, hence $d=1 / 4$. Q.E.D.

§10. Commentary by M. Reid

Nothing is easier than for a man to translate, or copy, or compose a plausible discourse of some pages in technical terms, whereby he shall make a shew of saying somewhat, although neither the reader nor himself understand one tittle of it. (${ }^{16}$)
10.1. General review of contents of paper. The paper proposes a program for constructing 3-fold flips (including Mori's flips) and log flips, and claims to carry it out. The rough idea is an inductive approach along the following lines: suppose $f: X \rightarrow Z$ is a flipping contraction, with exceptional curve C. We attempt to construct a partial resolution $Y \rightarrow X$ that either blows up one point on the flipping curve, or blows up C at the general point, and such that the composite $Y \rightarrow Z$ has $\rho(Y / Z)=2$, and $\overline{\mathrm{NE}}(Y / Z)$ has two extremal rays (or log rays) $R_{\text {old }}$ and $R_{\text {new }}$. One of these gives the old contraction to X, and $R_{\text {new }}$, if it exists and is divisorial, gives the new contraction to the flipped X^{+}. Then $X \rightarrow X^{+}$is the flip.

In carrying out this construction, we need to use auxiliary flips for two purposes:
(1) To establish the model Y : Start from a more-or-less arbitrary resolution of singularities $\widetilde{X} \rightarrow X$ that includes either a blowup of a point of C or a blowup of C itself, then proceed to climb down from \widetilde{X} to the controlled model Y by the minimal model program.
(2) To deal with the possibility that $R_{\text {new }}$ is not a divisorial contraction.

In order for this to provide a proof of the existence of flips, we need to know that the auxiliary flips can be done. This might be achieved in one of two ways: either (a) by induction, because we can assert that the auxiliary flipping contractions are simpler than $f: X \rightarrow Z$ (for example, some invariant is smaller); or (b) because we know the auxiliary flipping contractions from some other point of view, for example, as fibers of semistable families of surfaces, for which the epic theorem of Tsunoda-Shokurov-Kawamata-Mori (see [7], [23], and [28]) is applicable.

Shokurov's attempt at this in the 3 -fold case is extremely serious, and it seems to me almost certain that it is correct and complete (after all, he is the master of the

[^13]spaghetti proof), although the presentation cannot exactly be described as attractive. The Utah seminar [Utah] seems to guarantee the results (at least in general terms) up to the middle of $\S 8$. It seems at least possible to me that we may eventually fully understand the inductive workings of Mori theory, and that we will then be able to make this program work purely by induction, maybe even in higher dimensions when the more concrete approach in terms of classifying singularities seems doomed.

In addition to his main theorems, Shokurov introduces several important new ideas, including
(1) the LSEPD trick (see before Example 1.6, (10.5) below, and compare [Utah], Definition 2.30);
(2) the ideas of $\S 5$ on complements of a log divisor and the $1-, 2-, 3-, 4$ - and 6 complements that are characteristic to dimensions 2 and 3 (compare [Utah], §19);
(3) the insight in $\S 4$ that invariants of \log canonical singularities and varieties such as discrepancy, index and so on have "spectral" properties such as a.c.c. (see [Utah], Theorem 1.32, for a discussion);
(4) the ideas and results on "inverting adjunction" of Problem 3.3.

Shokurov's theorem on log flips already has very substantial applications in the literature, most notably Kawamata's solution of the abundance conjecture ([Kawamata 2] and [Utah], Chapters 10-15).
10.2. The Utah seminar. A preprint of this translation was circulated as a Warwick and Utah preprint in May 1991, and formed the basis for the second Utah summer seminar on Mori theory, August 1991. A number of corrections by participants in the seminar have been included in the final edition of the translation. Most importantly, the seminar discovered the mistake in the preprint version of Proposition 8.3. The book of the seminar [Utah] works out (and straightens out) practically all the ideas of results of this paper.

It is clear that the Utah book represents a very major step in Mori theory, and 3-fold geometry more generally. However, I find regrettable their attitude towards the mistake in $\S 8$ of the preprint, which they try to make out as a terminal crash. It is not hard to point to similar mistakes in the papers and preprints of several of the top specialists in the subject. If Shokurov's patch (in 7 or 8 pages) of Proposition 8.3 turns out to be correct, then it is surprising that a truly joint effort of 30 seminar participants failed to look for it or to find it. It was a traditional complaint of Soviet mathematicians (Arnol'd and Shafarevich were outstanding specimens) that their work would be implicitly rubbished by Westerners working under infinitely better conditions, and I would like to echo the sentiment in this case.
10.3. The log category. This section is an appendix to (1.1). The genuine, that is, nonlog category of classification theory has varieties X, birational morphisms $f: X \rightarrow Y$, a notion of resolution, birational transform of divisors; then canonical divisors K_{X}, discrepancy $K_{Y}=K_{X}+\Delta_{f}$ (in essence the Jacobian determinant of f); and of course other ingredients such as irregularity $H^{1}\left(X, \mathscr{O}_{X}\right)$, which we're not dealing in at present. The moral backbone of the theory is that invariants such as irregularity $H^{1}\left(X, \mathscr{O}_{X}\right)$ and the plurigenera are biregular invariants of X, and are birational invariants when restricted to varieties with canonical singularities.

The \log category was developed by Iitaka in the 1970s. This deals with pairs X with B, where B is a divisor (usually reduced); and the intention is to study differentials with \log poles along B. The basic starting point of the theory is Grothendieck and Deligne's theory of Hodge structures; Deligne proves that if X with B is non-
singular with normal crossings, then the \log de Rham complex $\Omega^{\circ}{ }_{X}(\log B)$ of differential forms on X with \log poles along B defines a Hodge theory that is a biregular invariant of $X \backslash B$. Starting from this, Iitaka went on to discuss \log plurigenera $H^{0}\left(m\left(K_{X}+B\right)\right), \log$ irregularity, etc. as "proper birational" invariants of X with B; this means that in addition to being biregular invariant of the "open" variety $X \backslash B$, they are also invariant under some operations that change $X \backslash B$ by blowups or blowdowns without losing exceptional divisors. More recently, log varieties have achieved prominence in classification theory as a kind of intermediate step between dimension n and $n+1$.

It is most unfortunate that Iitaka's students, Fujita, Kawamata and others, while making formidable technical extensions of this notion, have lost sight of the simplicity of Iitaka's original conception. If you are faithful to the original guiding principles, and regard the \log category as part of primeval creation, then there is practically no argument about the correct \log generalisation of the notions of the genuine category, and all the fine points about when multiplicity 1 is allowed are just irrelevant. In fact the only substantial argument is whether to extend the category of log varieties to allow nonnormal varieties with ordinary double points in codimension 1 , to which the whole apparatus of differentials with log poles extends very naturally, and with many compatibilities, for example, invariance under log normalisation and under restriction to a component. This is the semilog category of the Utah seminar, [Utah], Chapter 12.
(10.3.1) Definition. A \log variety X with B is a normal variety X with a \mathbb{Q}-Weil divisor B with multiplicities $0 \leq b_{i} \leq 1$.

The initial case is that all $b_{i}=1$, but one might reduce a value of b_{i}, if we are absolutely certain that no \log pluricanonical differential $\in H^{0}\left(X,\left(\Omega^{1}(\log B)\right)^{\otimes m}\right)$ will ever have a higher order pole along B_{i}. This is Kawamata's approach to minimal models of \log surfaces [Kawamata], when you have to reduce the b_{i} in a Zariski decomposition, at the same time as contracting certain (-1)-curves, to get $K_{X}+B$ nef on a log surface.
(10.3.2) Definition. A \log morphism $f: X$ with $B_{X} \rightarrow Y$ with B_{Y} is a morphism $f: X \rightarrow Y$ such that $f\left(B_{X}\right) \subset B_{Y}$. It is log proper if f is proper and B_{X} contains the set-theoretic inverse image $f^{-1}\left(B_{Y}\right)$, and all exceptional divisors of f (including those not mapping anywhere near B_{Y}) with multiplicity 1 . If $f: X \rightarrow Y$ and B_{Y} are given, there's a unique B_{X} that fits the bill, the log birational transform
 divisor on Y, the log birational transform of D on Y is the birational transform (see (10.8.3) below) plus all the exceptional divisors of f with multiplicity 1 .

The exceptional components of f must be included in B_{X} in order to ensure that $f: X \backslash B_{X} \cong Y \backslash B_{Y}$, so that invariants of X with B and Y with B_{Y} defined by \log differentials in codimension 1 coincide.
(10.3.3) Definition. X with B is log nonsingular if X is nonsingular and $\operatorname{Supp} B$ is a divisor with (local) normal crossings. $f: X$ with $B_{X} \rightarrow Y$ with B_{Y} is a \log resolution of Y with B_{Y} if X with B is \log nonsingular and f is \log proper.
(10.3.4) Exercise. Find your own definition of \log discrepancy, log canonical and log terminal singularities, and check that they agree with those of $\S 1$ (compare [8]).

Log canonical and log terminal surface singularities were completely classified in [Kawamata] (although the definition was not explicitly known until around 1981,
possibly first occurring in work of S. Tsunoda). It's an exercise to prove from first principles that a log terminal surface singularity $P \in S$ with $B=0$ is a quotient singularity (several different proofs are possible). Thus the codimension 2 behaviour of \log varieties with \log canonical singularities is completely known.
(10.3.5) There are important respects in which the log category is simpler to work in than the genuine category. The behaviour under cyclic covers is an obvious case. Another case is the toric description of plurigenera and \log plurigenera of hypersurfaces singularities: if f is a polynomial that is nondegenerate for its Newton polygon Newton (f), then the \log plurigenera of the hypersurface singularity ($f=0$) are given in the simplest possible way in terms of the interior of Newton (f), whereas the genuine plurigenera are very much more subtle (see [22], Remark 4.14). I have repeatedly failed to impress the importance of this point on singularity theorists.
10.4. Eventual freedom. A point that requires care is the correct statement of Kawamata's eventual freedom theorem for log varieties; in some quarters, it's been taken for granted for almost 10 years that the log version is false as stated, and that to get a good statement requires mutilating the log category by imposing restrictions of the form $b_{i}<1$. (This is the source of an incredible lot of mess in the theory, for example all the different technical flavours of log terminal.) In reality, you just have to give the right statement of what "log big" means, and the theorem goes through exactly as in the case of the genuine category of varieties.

I explain. Recall Zariski's famous counterexample to finite generation: a nonsingular rational surface S, an elliptic curve $E \sim-K_{S}$ with $E^{2}=-1$, and a divisor class L on S such that L is nef and big, $L E=0$, but $L_{\mid E}$ is a nontorsion divisor of degree 0 (for example, this arises by blowing up $k \geq 10$ general points P_{i} on a plane cubic E_{0}, and considering plane curves of degree $k \geq 10$ having these as triple points). Then $|m L|$ has scheme-theoretic base locus E for every $m \gg 0$, so that $R(S, L)$ is not finitely generated; or again, E is contractible in the category of analytic spaces, but not projectively contractible. If you think the log version of eventual freedom is

$$
L \text { nef and } L-\varepsilon\left(K_{S}+E\right) \text { nef and big } \quad \Longrightarrow \quad L \text { is eventually free },
$$

then of course Zariski's example is a counterexample, since L is nef and big and $K_{S}+E=0$. What's really going on here is that L is numerically 0 on a boundary component E with $K_{E}=\left(K_{S}+E\right)_{\mid E}=0$ of (log) Kodaira dimension ≥ 0; to make further progress with this particular L involves the \log classification theory of E. In other words, minimal model theory (which should only involve K not nef, and the aim is to exploit the vanishing of cohomology groups) has got mixed up with classification theory (K nef, the point is to prove that cohomology groups do not vanish). In other words, you must stay away from $b_{i}=1$ if you intend to restrict $K+E$ to a nonexceptional component E of B on which L is numerically 0 and hope to be able to continue to use Kawamata-Viehweg vanishing.

Thus define log big to mean that $L^{k} \Gamma>0$ for every k-dimensional stratum $\Gamma=$ $B_{1} \cap \cdots \cap B_{n-k} \subset X$ of the \log divisor with $b_{1}=\cdots=b_{n-k}=1$. Then eventual freedom can be stated and proved in exactly the same form as in the genuine case. Shokurov's LSEPD trick of subtracting a relatively principal divisor is one way of reducing this to the standard Kawamata result.
10.5. LSEPD. If $f: X \rightarrow Z$ is a proper morphism, and B a boundary on X, the notion here is LSEPD, that is, B supports a principal divisor locally over Z (or
relative to f). That is, for any point $z \in Z$ there is a rational (respectively meromorphic) function h on Z defined locally at z such that one connected component of the principal divisor $f^{*}(\operatorname{div} h)$ contains $\lfloor B\rfloor$ and is contained in Supp B. In other words, this means that there exists a divisor B^{\prime} whose support contains all the components with $b_{i}=1$ and is contained in $\operatorname{Supp} B$ and which is a fiber relative to f : there exists a morphism $Z \rightarrow C$ of Z to a curve such that B^{\prime} equals a union of fibers of the composite $X \rightarrow C$. Working locally over Z, which is enough for the construction of the log canonical model, this is equivalent to the existence of an effective Cartier divisor D with $\operatorname{Supp} D=\operatorname{Supp} B^{\prime}$, that is, linearly 0 relative to f, that is, principal on X (locally over Z). Moreover, by what we have said, we can replace linearly 0 with numerically 0 relative to f, even when f is weakly \log canonical, that is, $K+B$ is nef relative to f (compare (1.5.7)), B is a \mathbb{Q}-divisor and $K+B$ is big relative to f.
10.6. Shokurov's different. The different is well known (without the name). By the adjunction formula 3.1 , it measures the failure of the \mathbb{Q}-divisor adjunction formula $(K+S)_{\mid S}-K_{S}$ for a prime divisor S arising from S passing through codimension 2 terminal singularities (transverse surface quotient singularities). For example, consider the adjunction formula for a line generator of the ordinary quadratic cone in \mathbb{P}^{3}.
3.1 of the Russian says assume $S \not \subset \operatorname{Supp}(K+S+D)$, which is illiterate; for example, it could mean that $K+S+D$ is linearly equivalent to a divisor not containing S. But the Grothendieck duality adjunction formula $\omega_{S}=\mathscr{E} x t_{\mathscr{\theta}_{X}}^{1}\left(\mathscr{O}_{S}, \omega_{X}\right)$ gives an exact sequence

$$
0 \rightarrow \omega_{X} \rightarrow \mathscr{H} \text { om }_{\varrho_{X}}\left(\mathscr{F}_{X, S}, \omega_{X}\right) \rightarrow \omega_{S} \rightarrow 0
$$

that coincides with the Poincare residue $\omega_{X}(S) \rightarrow \omega_{S}$ in codimension 1 , so that $K_{S^{\nu}}, K_{S}$ and $\left(K_{X}+S\right)_{S^{\nu}}$ can be intrinsically compared.

For a technically more sophisticated treatment of the different, see [Utah], Chapter 16.
10.7. Comment on Reduction 8.4. The final remark on algebraic approximation seems to me to be nonsense: an analytic flipping singularity is more-or-less isolated (quotient singularities have no moduli), so analytically equivalent to an algebraic singularity. The analytic flipping contraction over it is projective. Complete any-oldhow to a projective variety and resolve singularities with a couple of B52 loads of blowups. Then the algebraic situation is \mathbb{Q}-factorial, nonsingular outside a codimension 2 locus of transverse quotient singularities, and the single contracted curve is an extremal ray of a projective variety. What's the problem? (Response from Shokurov: The problem is to give the complete proof.)

10.8. A treatise on terminology.

(10.8.1) To hyphenate or not to hyphenate? The expressions log differentials, log terminal singularities, and so on' are etymologically logarithmic differentials, that is, differentials with log poles, or logarithmically terminal singularities; (Iitaka's original papers are full of logarithmic irregularity, logarithmic Albanese map, log of general type, etc., all written out in full). Therefore the word \log stands either for an adjective or for an adverb, and in neither case is it grammatical or desirable to hyphenate it or join it as a single word. So there!
(10.8.2) Pseudoextremal rays. Shokurov and others sometimes use extremal rays only in the sense of convex body theory, so that the rays are only boundaries of the
cone, not necessarily extremal rays in the sense of Mori theory. A pseudoextremal ray R_{2} is not a priori rational or spanned by curves, although this will be the case whenever $(K+D) R_{2}<0$ against a \log canonical divisor $K+D$ by the \log version of the theorem on the cone. Without some such assumption, I don't think anything useful can be said about it.
(10.8.3) Birational transform. If $f: X \rightarrow Y$ is birational and D a Weil divisor on X, there is a well-defined divisor obtained as the Zariski closure of the divisorial part of the image $f_{0}\left(D_{0}\right)$, where $f_{0}: X_{0} \rightarrow Y$ is the biggest morphism in f (compare the section after (1.1)). This is traditionally called proper transform by Russians and in my papers, for example, and strict transform by people in resolution of singularities, for example, although there is no logic in either term. I propose birational transform as self-documenting terminology, and use this throughout the translation.

When $f: Y \rightarrow X$ is a birational morphism, and D an effective divisor of X, Shokurov writes $f^{-1} D$ for the birational transform of D, meaning that he takes f^{-1} of the generic points of D (where of course f^{-1} is well defined). By definition $f^{-1} D$ is an effective divisor without any exceptional terms, so it's nothing to do with the set-theoretic inverse image f^{-1}, sets D, which contains all exceptional divisors. More logical notation would be $g^{1} D$ to mean the forward image under a rational map g of D as a codimension 1 cycle, so $f^{-1,1} D$ or $\left(f^{-1}\right)^{1} D$ for the birational inverse image.
(10.8.4) Blowup or extraction. It's traditional to think of a birational map $f: Y$ $\rightarrow X$ either as a birational contraction (of something on Y, for example a divisor or an extremal ray) or as a partial resolution (of something on X, for example singularities or indeterminacies of a rational map). Another traditional name for the same object is a model (for example, the relative minimal or canonical model $f: Y \rightarrow X$ of a singularity X). It seems to me to be wrong to call the last type of construction a blowup of X, since it is not usually constructed as a blowup of a sheaf of ideals I in the sense of Grothendieck and Hironaka, and even if it happens to be so (every projective birational morphism is a blowup of some sheaf of ideals), there may be no sensible way of saying what I is, or of proving that it makes sense, in terms of X. In surface singularities, it is traditional to make a partial resolution which extracts (or "pulls out") a subset of the curves of the minimal resolution. Therefore I launch extraction as a bottomup counterpart to birational contraction, and may God bless all who sail in her. (Actually, Shokurov deliberately uses the pair of words "blowup" or "blowdown" (Russian razdutie and sdutie from dut', to blow) to mean a birational morphism $f: X \rightarrow Z$ viewed bottom-up or top-down, so my translation is deliberately going against his clearly expressed preference.)
(10.8.5) Multiplicities d_{i} of a divisor $D=\sum d_{i} D_{i}$. The Russian has coefficients throughout, but the same word is used later in the extraordinary circumlocution coefficient of taking part in divisors such as $g^{-1} D+E$ on an extraction $g: Y \rightarrow X$, so multiplicity is a better term. Multiplicities d_{i} are often opposed to discrepancy coefficients a_{i}.
(10.8.6) Exceptional. The key notion of exceptional complement (ray, flip, etc.) is defined in Theorem 5.6 and the following paragraph (involving only one component with \log discrepancy 0). Unfortunately, exceptional divisor for f seems also to be used in the Russian preprint in the ordinary meaning of divisor contracted by a birational map f. It is possible that the context makes clear (in the author's mind) which is intended, but with the limited time available for the translation, I may not always have succeeded in untangling it.

Bibliography

1. V. A. Alexeev [Alekseev], Theorems about good divisors on log Fano varieties (case of index $r>n-2$), Algebraic Geometry (Proc. US-USSR Sympos., Chicago, 1989), Lecture Notes in Math., vol. 1479, Springer-Verlag, Berlin, 1991, pp. 1-9.
2. Egbert Brieskorn, Rationale Singularitäten komplexer Flächen, Invent. Math 4 (1968), 336-358.
3. H. Esnault and E. Viehweg, Two-dimensional quotient singularities deform to quotient singularities, Math. Ann. 271 (1988), 439-449.
4. A. I. Iliev, Log-terminal singularities of algebraic surfaces, Vestnik Moskov. Univ. Ser. I Mat. Mekh. 1986, no. 3, 38-44; English transl. in Moscow Univ. Bull. 41 (1986).
5. S. Ishii, The asymptotic behaviour of plurigenera for a normal isolated singularity, Math. Ann. 286 (1990), 803-812.
6. Y. Kawamata, The cone of curves of algebraic varieties, Ann. of Math. (2) 119 (1984), 603-633.
7. __, Crepant blowing-up of 3-dimensional canonical singularities and its application to the degeneration of surfaces, Ann. of Math. (2) 127 (1988), 93-163.
8. Y. Kawamata, K. Matsuda and K. Matsuki, Introduction to the minimal model program, Proc. Sympos. Algebraic Geometry (Sendai, 1985), Adv. Studies in Pure Math., vol. 10, Kinokuniya, Tokyo, and North-Holland, Amsterdam, 1987, pp. 283-360.
9. G. Kempf, F. Knudsen, D. Mumford, and B. Saint-Donat, Toroidal embeddings. I, Lecture Notes in Math., vol. 339, Springer-Verlag, Berlin, 1973.
10. S. Kleiman, Towards a numerical theory of ampleness, Ann. of Math. (2) 84 (1966), 293-344.
11. J. Kollár, Flops, Nagoya Math. J. 113 (1989), 15-36.
12. _, Minimal models of algebraic threefolds: Mori's program, Séminaire Bourbaki (1988-89), Astérisque, vol. 177-178, Soc. Math. France, Paris, 1989, pp. 303-326.
13. __, Cone theorems and bug-eyed covers, J. Algebraic Geom. 1 (1992), 293-323.
14. J. S. Milne, Etale cohomology, Princeton Univ. Press, Princeton, NJ, 1980.
15. M. Miyanishi and S. Tsunoda, Open algebraic surfaces with Kodaira dimension $-\infty$, Algebraic Geometry (Bowdoin, 1985), Proc. Sympos. Pure Math., vol. 46, part 1, Amer. Math. Soc., Providence, RI, 1987, pp. 435-450.
16. S. Mori, Flip theorem and the existence of minimal models for 3-folds, J. Amer. Math. Soc. 1 (1988), 117-253.
17. S. Mori, D. Morrison, and I. Morrison, On four-dimensional terminal quotient singularities, Math. Comp. 51 (1988), 769-786.
18. N. Nakayama, The lower semicontinuity of the plurigenera of complex varieties, Proc. Sympos. Algebraic Geometry (Sendai, 1985), Adv. Studies in Pure Math., vol. 10, Kinokuniya, Tokyo, and North-Holland, Amsterdam, 1987, pp. 551-590.
19.
20. M. Reid, Canonical 3-folds, Journées de Géométrie Algébrique (Angers, 1978; A. Beauville, editor), Sijthoff \& Noordhoff, Alphen aan den Rijn, 1980, pp. 273-310.
21. _, Projective morphisms according to Kawamata, preprint, Univ. of Warwick, Coventry, 1983.
22._,_, Young person's guide to canonical singularities, Algebraic Geometry (Bowdoin, 1985), Proc. Sympos. Pure Math., vol. 46, part 1, Amer. Math. Soc., Providence, RI, 1987, pp. 345-414.
22. S. Tsunoda, Degenerations of surfaces, Proc. Sympos. Algebraic Geometry (Sendai, 1985), Adv. Studies in Pure Math., vol. 10, Kinokuniya, Tokyo, and North-Holland, Amsterdam, 1987, pp. 755-764.
23. V. V. Shokurov, Smoothness of the general anticanonical divisor on a Fano 3-fold, Izv. Akad. Nauk SSSR Ser. Mat. 43 (1979), 430-441; English transl. in Math. USSR Izv. 14 (1980), 395-405.
24. __, The nonvanishing theorem, Izv. Akad. Nauk SSSR Ser. Mat. 49 (1985), 635-651; English transl. in Math. USSR Izv. 26 (1986), 591-604.
25. \quad, Numerical geometry of algebraic varieties, Proc. Internat. Congr. Math. (Berkeley, 1986), vol. 1, Amer. Math. Soc., Providence, RI, 1988, pp. 672-681.
26. , Riemann surfaces and algebraic curves, Itogi Nauki i Tekhniki: Sovremennye Problemy Mat.: Fundamental'nye Napravleniya, vol. 23, VINITI, Moscow, 1988, pp. 20-171; English transl. in Encyclopaedia of Math. Sci., vol. 23 (Algebraic Geometry, I), Springer-Verlag, Berlin, 1991.
27. __, Semistable 3-fold flips, preprint, Johns Hopkins Univ., Baltimore, MD, 1992.

References added in Translation:

[Kawamata] Y. Kawamata, On the classification of open algebraic surfaces, Algebraic Geometry (Copenhagen 1978), Lecture Notes in Math., vol. 732, Springer-Verlag, Berlin, 1979, pp. 215-233.
[Kawamata2] __, Abundance theorem for minimal threefolds, Invent. Math. 108 (1992), 229-246.
[Kawamata3] __, Log canonical models of algebraic 3-folds, Internat. J. Math. 3 (1992), 351-357.
[Kawamata4] __, Termination of log flips for algebraic 3-folds, Internat. J. Math. (to appear).
[Kollár-Mori] J. Kollár and S. Mori, Classification of three-dimensional flips, J. Amer. Math. Soc. 5 (1992), 533-703.
[Mori] S. Mori, On 3-dimensional terminal singularities, Nagoya Math. J. 98 (1985), 43-66.
[Oda] T. Oda, Geometry of convex bodies, Springer-Verlag, Berlin, 1988.
[Pagoda] M. Reid, Minimal models of canonical 3-folds, Algebraic Varieties and Analytic Varieties (Tokyo, 1981), Adv. Studies in Pure Math., vol. 1, Kinokuniya, Tokyo, and North-Holland, Amsterdam, 1983, pp. 131-180.
[Utah] J. Kollár et al., Flips and abundance for algebraic threefolds, (Proc. Serm., Utah, 1991), Astérisque, Soc. Math. de France, Paris, (to appear). [Also available as a Univ. of Utah preprint, 1992.]

Received 4/JUNE/91
Translated by M. REID

[^0]: 1991 Mathematics Subject Classification. Primary 14E05, 14E35, $14 J 30$.
 *Editor's note. The present translation includes the author's substantially corrected version of $\S 8$, a section $\S 10$ of translator's comments, and a number of other minor corrections and additions. A number of the translator's footnotes have been moved into the main text with the author's permission. All the remaining footnotes are by the translator.

[^1]: (1) The intention here is: if $B_{X}=0$, and every divisor in sight is \mathbb{Q}-Cartier, you can compare K_{Y} and K_{X} and get the (genuine) discrepancy, canonical etc. Even when $B_{X}=0$ it still makes sense to work in the \log category, define the log birational transform of $0=B_{X}$ to be $B_{Y}=\left(g^{-1}\right)^{1, \log _{(0)}}=\sum E_{i}$, and define the log discrepancy by $K_{Y}+B_{Y}=g^{*}\left(K_{X}+B\right)+\sum a_{i} E_{i}$. Then the statement in the text is true; if $B \neq 0$ the birational transform of B has multiplicity 0 at each E_{i}, so one could also fix up a category of "birational pairs" in which it holds (Iitaka did this kind of thing around 1980).

[^2]: $\left.{ }^{(2}\right)$ In Utahn dialect, this is called "running the MMP" (minimal model program, [Utah], 2.26).
 $\left({ }^{3}\right)$ I have slightly edited this section. See my commentary (10.4) for a brief explanation of the special role played in the log category by the reduced boundary components (with $b_{i}=1$) and the condition $\lfloor B\rfloor=0$ (that is, no $b_{i}=1$ are allowed) in the Kawamata-Shokurov technique. As explained there, the LSEPD device Shokurov introduces in this section extends the Kawamata technique to the reduced case in important cases, e.g., the theorem on eventual freedom for nef and log big divisors. Shokurov

[^3]: calls this property supports a fiber relative to f, and later allows this to degenerate to forms a fiber; his equivalent definition is that there exists a boundary B^{\prime} with $\lfloor B\rfloor \leq B^{\prime} \leq \operatorname{Supp} B$ such that each connected component of B^{\prime} equals the support of a fiber of a composite morphism (not necessarily proper) $X \rightarrow Z \rightarrow C$ of X to a curve. Compare [Utah], Definition 2.30.

[^4]: $\left({ }^{4}\right)$ Explanation: The alternative to f being a divisorial contraction is that $\operatorname{cont}_{R}: X \rightarrow Y$ is a small or flipping contraction over Z; then R is a flipping ray. The required modification is a relative \log canonical model $X^{+} \rightarrow Y$ of Y; if this exists, the results of Proposition 1.5 are applicable to it, so that by (1.5.6), $X^{+} \rightarrow Y$, if it exists, is a small extraction. Then $t: X \rightarrow X^{+}$is a flip over Z; in the 3 -fold case, cont ${ }_{R}: X \rightarrow Y$ contracts a curve Γ (possibly reducible), the flipping curve of R, and $X^{+} \rightarrow Y$ extracts a curve Γ^{+}, the flipped curve, so that the modification $t: X \rightarrow X^{+}$just replaces the neighborhood of a flipping curve $\Gamma \subset X$ by that of a flipped curve $\Gamma^{+} \subset X^{+}$.

[^5]: $\left(^{5}\right)$ See 10.6. and [Utah], Chapter 19.

[^6]: ${ }^{(6)}$ Exercise: Find a better name for the number $\operatorname{Hell}(X$ with $B)$. I wrote Hello referring to the famous computer program of that name, and Shokurov modified it referring to the works of Dante Alighieri (1265-1321); neither is particularly logical.

[^7]: $\left.{ }^{7}\right)$ Here $n=$ index of singularities, so $-n K_{X}$ is Cartier, and $-n K_{X}=m H$; the Fano index is m / n.

[^8]: ${ }^{(8)}$ Either 1 - or 2 -complementary in [16]. Mori and Kollár have proved 1-complementary ([MoriKollár], Theorem 1.7), but the proof is very indirect.

[^9]: ($\left.{ }^{10}\right) E \cdot(f \circ g)^{-1} P=0$ and $E \cap(f \circ g)^{-1} P \neq \varnothing$, therefore $(f \circ g)^{-1} P \subset E$.

[^10]: ${ }^{(11)}$ Set $(K+S+B)_{\mid S}=K_{S}+A$. Then $K_{S}+A$ is log canonical, and by the exceptional assumption, either $K_{S}+A$ is purely \log terminal and A has 1 reduced component, or $\lfloor A\rfloor=0$ and there is at most one exceptional divisor with $a_{i}=0$.

[^11]: $\left({ }^{12}\right)$ Compare 1 page after the start of the proof of Proposition 8.8, and the start of the proof of (8.8.5). The same argument is referred to several times in the rest of $\S 8$.
 $\left.{ }^{13}\right) C^{*}$ was introduced in the statement of Proposition-Reduction 8.8.

[^12]: ${ }^{(14)}$ See [Kawamata3, 4] and [Utah], Theorems 6.10-11 and 6.15, for more recent information.
 ${ }^{15}$) According to the Kollár, a student of Mori has proved that the discrepancies take all the values $\{1 / r, 2 / r, \ldots,(r-1) / r\}$. (See also [28], 4.8).

[^13]: $\left({ }^{16}\right)$ George Berkeley, Bishop of Cloyne, "A defence of free-thinking in mathematics" (1735), in his Works, Vol. IV, T. Nelson, London, 1951, p. 140.

