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HOLOMORPHIC DIFFERENTIAL FORMS OF HIGHER DEGREE ON
KUGA'S MODULAR VARIETIES

UDC 517.4

V. V. SOKUROV

ABSTRACT. In the paper a canonical isomorphism between the space of cusp forms
SW+2(T) of weight w + 2 with respect to the modular group Γ and the space of
holomorphic differential forms of higher degree on Kuga's modular variety Βγ is con-
structed.

Bibliography: 6 titles.

The main aim of this work is the proof of Theorem 5 (see [6]). The case w = 0 of this
theorem is classical, and the case w = 1 has been proved by Shioda [5]. The latter paper
served as a departure point for the author. At present M. Kifer and I. Skornjakov have
obtained the corresponding results for the Hubert modular group. The author expresses
his gratitude to Ju. I. Manin, in whose seminar this work was done.

§0. Main results

0.1. All algebraic varieties, their morphisms, and differentials to be considered below
are defined over C. Let Β denote a nonsingular projective surface with a canonical
projection Φ: Β —»Δ and a section ο: Δ—>Β. Assume that its general fiber is an elliptic
curve and Δ is a nonsingular projective curve. A point υ G Δ is called a point of
nonsingular type if the fiber Βυ = Φ~\ν) is an elliptic curve. Let Δ' be the set of points of
nonsingular type and B' = B\^ (B restricted over Δ'). Then the nonsingular algebraic
variety

(Bw)'=Bf Χ β ' χ . . . Χ Β'
Δ' Δ' Δ'

w

is defined for any natural number w. The variety (Bw)' has a smooth canonical
projective compactification Bw which is constructed in §3 proceeding from a singular
projective compactification Bw. The construction of Βw is given in §2. The variety Bw

has a canonical projection Φ: Bw —> Δ and is called Kuga's variety [6].
0.2. Let Γ be a subgroup of finite index in SL(2, Z). We will consider pairs (Γ, w), w

being a natural number, such that for odd w one has

In the case (*) a nonsingular projective elliptic surface Br is canonically defined (see §4
of [5]). This is an elliptic surface over ΔΓ, the corresponding modular curve. In the case
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120 V. V. SOKUROV

when the condition (*) does not hold one can construct a certain nonsingular projective
elliptic surface Br over a modular curve ΔΓ with the functional invariant JT = j ° φΓ (see
Lemma 1.5). Here j is the absolute invariant function on SL(2, Z)\ H, and φΓ is the
following canonical projection:

ΔΓ = Γ\7? -+• SL (2, Z)\H.

The nonsingular projective variety Β γ is called Ruga's modular variety.

03. MAIN THEOREM, a) There are canonical isomorphisms

W f\W+l\ ^ Q /p\ TWW+1 /nW *V\ , /-ΤΟ/Ο00 nW+1\ ,-w Q (Γ\

w/iere 5 w + 2 (r) w /Ae j/?flce of T-cusp forms of weight w + 2 (see §2.1 o/[4]).

b)

, Ω"+1) = (w + l)(g-1) + Σ (ν (I,) + ν (ll)) γ

-\- (v(II) + v(lV*)) [ - ^ 1 + (v (III) + ν (Ι1Γ) Γ ^ 1 , »/ w is even;

v &) T

•Οδ^-+ναν·)[ϊ±Β-], iyw»««,

where v(*) is the number of points in Δ of type * (see § 1) and g is the genus of the curve ΔΓ.

To part a) of the theorem corresponds Theorem 5.6, and to part b) Corollary 5.7. •
0.4. Let us describe as a complement to the theorem the homomorphism

which is the required isomorphism in the case (*). Let H' = Η — SL(2, Ζ){η}, η = e2m/3,
and Δ' = Γ \ Η' c ΔΓ. Then there is a canonical isomorphism (see Proposition 5.2 b))

Β?| Δ , cxY X Zw χ ZW\H' χ Cw,

where the group Γ X Zw X Zw (semidirect product) acts on Η' Χ C by the following
rule:

(γ, n, m): (ζ, ζ) t-+ (yz, (cz + d)'1 (ζ + ζ/ι + m)) (0.2)

for n, m Ε Zw = Ζ X · · · Χ Ζ (w factors), ζ Ε /Γ, £ £ C ,

Υ2 = . " + ι> for Ύ = 1 6 r C S L ( 2 , Z ) .
« + rf \c a/

Let Φ Ε (S^+2(T). Then it follows directly from the definition of Φ that the differential
form of degree w + 1
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is holomorphic on H' X Cw ( C = C X · · · X C (w factors); ξ = (f „ . . . , £J) and is
invariant under the action of Γ X Zw X Zw. Consequently, the form (0.3) defines a
holomorphic differential ωφ of degree w + 1 on the open set 5f |Δ, c 2?f. Since Γ Χ Zw

Χ Ζ*4" acts freely, properly, and discretely on the analytic variety H' X Cw, the differential
ωφ is extended to a holomorphic form on Β γ and hence defines the map (0.1).

0.5. REMARKS, a) In this paper w is always assumed to be a natural number. The
corresponding results for w = 0 have not been formulated. The author has not described
them because they are classical.

b) The variety Bw is obtained from* Bw by a resolution of singularities. In §4 the
rationality of these singularities is proved. Therefore any resolution of Βγ serves for
Theorem 0.3. There is always some resolution defined by the results of Hironaka. In §3
we construct a canonical resolution.

§1. Elliptic surfaces

Denote by Δ a nonsingular algebraic curve. Let Β denote a nonsingular algebraic
surface with an elliptic structure. This means that a canonical projection Φ: Β —» Δ and a
section ο: Δ —» Β are defined such that the general fiber of Φ is an elliptic curve.

Let Ε be an open subset of Δ with respect to the C-topology (all topologies considered
in the paper correspond to an analytic structure of varieties). By Β \ Ε we will denote the
analytic space Φ~ '(is). If Ε is a real topological manifold with a boundary in Δ then B\E

will denote the topological manifold with boundary Φ~ι(Ε). Moreover, we will denote
by Bv a geometrical fiber of Φ over a point ν G Δ. The restriction symbol | will be used
also for arbitrary varieties with a projection on Δ.

Before we state the classification theorem on fibers of an elliptic surface we recall the
meaning of the expression

Θνί are different components of the fiber, and μνί are its multiplicities. We assume that
Θϋ>0 is the component containing the point o(v), and that its multiplicity is equal to 1.
Sometimes, if no confusion arises, the index ν in θν, will be dropped. In the sequel we
everywhere assume for the surface Β that the Θ ,̂· are not exceptional curves of the first
kind and the functional invariant J is not constant.

1.1. THEOREM (KODAIRA). The fiber Bv is one of the following types:

Io: Bv = Θο, Θο being a nonsingular elliptic curve;

I,: Bv = Θο, Θο being a rational curve with a node q;

I 2 : Bv = Θο + Θ,, Θο and Θ, being nonsingular rational curves, Θ ο · Θ, = qx + q2,

where qx and q2 are two differential points;

II: Bv = Θο, Θο being a rational curve with a single singular point which is a cusp;

III: Bv = Θο + Θ,, Θο and 0 j being nonsingular rational curves, © 0 - 0 , = 2q;

IV: Bv = Θο + Θ, + Θ2, Θο, Θ, and Θ2 being nonsingular rational curves, Θ ο · Θ, = Θο

Θ2 = Θ, · Θ2 = q.

In the remaining cases all components Θ, are nonsingular rational curves such that two

different components Θ, and Θ7 (/ < j) meet each other at at most one point. Below only

nontrivial intersection indices will be noted.
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h: Βυ= Θ ο + Θ χ + . . . + © ^ (b> 3), (Θο · Θχ) = (Θ, . Θ2) =
. = (Θ6_2 · Θ ^ ) = (Θ6_! · Θο) = 1;

il: ΒΌ= Θ 0 + Θ 1 + Θ 2 + Θ 3 + 2 Θ 4 + . . . + 2© 6 + 4 ( 6 > 0 ) , (Θο · Θ4)
(©ι · ®4) = ( θ 4 · Θ5) = . . . = (© f t+3 · θ 6 + 4 ) = ( Θ 6 + 4 . Θ2) = (Θ 6 + 4 · Θ3) = 1;

1Γ: Βν =-- Θ ο + 2 Θ Χ -f- 3Θ2 + 4Θ3 + 5Θ 4 + 6Θ5 -Η 4Θβ + 3Θ7 + 2Θ8, (Θο · Θχ)
( θ χ · Θ2) = ( θ , · Θ3) = (Θ4 · Θ5) = (Θ6 · Θ6) = ( Θ 6 . Θ7) = (Θ6 · Θ8) = 1;

0 1 1 )

= ( θ , · θ3) = (θ 4 · Θ5) = (θ, · Θ6) .-= (Θ5 · θ7) = 1;
I V : ΒΌ= ©0 + 2©!+ 3Θ2 + 2Θ3 + 2 Θ 4 + Θ 5 + θ β , (θ 0 · Θ1) = (θ 1 · θ2)

= (θ, · Θ3) = (θ, · Θ4) =.(θ, · ΘΒ) = (θ 4 · θ6) = 1. Π

The theorem is a direct corollary of the existence of the section ο and of Theorem 6.2
of [3]. A fiber of type Io will be called nonsingular; other fibers are called singular.
Moreover, a point o £ A will be named by the type of Bv. There exists a finite subset
Σ c Δ which contains all points of singular type. In the sequel we assume furthermore
that J (Σ) η {0, 1, oo } = 0, where J is the functional invariant of B.

In §§2 and 3 projective varieties Bw and Bw (the latter is nonsingular) will be
constructed. Now we will define the surfaces Βl and Bl. Bx is constructed from Β by a
sequence of monoidal transformations centered at points of fibers of types II, III and IV.
In a fiber of type II we make the monoidal transformation centered at the singular point
q. The new fiber over this point is of the form θ 0 + 201? the Θ, being nonsingular
rational curves with Θο · θχ = 2q'. Making the monoidal transformation centered at q',
we obtain a fiber of the form Θο + 2Θ{ + 3Θ2, the Θ, being nonsingular rational curves
with Θο · ©! = 0j · Θ2 = Θο · Θ2 = q". The monoidal transformation centered at q"
defines a surface Βl over a point of type II. In the case of a fiber of type III we first
make the monoidal transformation centered at q, the point of intersection of the
components. Thus we obtain a fiber of the form Θο + Θ, + 2Θ2, the Θ, being nonsingu-
lar rational curves with Θο · ©j = Θ, · Θ2 = Θο · Θ2 = q'. The monoidal transformation
centered at this point defines the surface Βι over a point of type III. For points of type
IV the surface Bl is defined by the monoidal transformation centered at the point of
intersection of the components. Βl has a canonical projection φ1: Β' —> Δ. The proof of
the following proposition follows from the construction of the surface B1.

1.2. PROPOSITION. BX is a nonsingular projectwe surface. A fiber Bx depending on the

type of the point ν has the following form:

If υ is of type lb (b > 0), I£ (b > 0), II*, III* or IV*, then Bx

v = Bv.

In other cases all components Θ, are nonsingular rational curves. Writing only nontrivial

intersection indices, we have, if ν is of type

I I : B5 = ©O + 2 © 1 + 3 © 2 + 6© 3 , (ΘΟ · Θ3) = (Θχ · ©3) = (θ, · ©3) = 1;

Ill: JSi = ©0 + ©1 + 2©2 + 4©3, (Θο · Θ3) = (β1 · Θ3) = (Θ2 · Θ3) = 1;

IV: θ5 = θ ο + θ 1 + θ Β + 3 θ 8 , ( β ο · θ 8 ) = ( θ 1 . θ 8 ) = (θ β .θβ) = 1. Π

The following proposition defines a normal projective surface Bl:

13. PROPOSITION. There exists a unique normal projectwe surface Bl which is obtained

by blowing down connected components of the following curves {the type of the fiber Bx

corresponds to the type of the point v) on Bl:



HOLOMORPHIC DIFFERENTIAL FORMS OF HIGHER DEGREE 123

θ 0 U θ , υ θ 2 U θ 3 in a fiber of type I* (b > 0);

Θο υ ©! υ Θ2 U Θ3 U Θ4 U Θ6 υ Θ7 υ Θ8 in a fiber of type Π*;

Θο υ ©! υ Θ2 υ Θ4 υ Θ5 υ Θ6 υ Θ7 in a fiber of type III*;

Θο υ ©! U Θ3 υ Θ4 υ Θ5 υ %ϊη a fiber of type IV*;

Θο υ Θ, υ Θ2 in fibers of type I I , III, IV. Π

In the notation of [3] (Chapter 8) we have

1.4. COROLLARY, a) For points υ of type Io, I*, II, III, IV, II*, III* or IV* there is an

isomorphism of analytic spaces

B%^C\F, (1.1)

where C is a cyclic group of order κ = max{ ju ,̂}

b) For points υ of type I* (b > 1)

where t is an involution. In both cases Ε denotes a sufficiently small disc centered at the

point v.

PROOF. The construction of Chapter 8, iv, v, of [3] immediately implies the normality

of the analytic spaces C \ F and {t}\ F. Therefore the process of constructing Bl is

inverse to the resolution of singularities (Chapter 8, iii, of [3]) of C \ F and {/} \ F. On

the other hand, the process of blowing down exceptional curves in fibers of type II, III

and IV is inverse to the construction of the surface Bl. •

The local descriptions of the surface Bx directly imply the existence of an analytic,

and by §1.3 also an algebraic projection Φ1 with the following commutative diagram:

where Ψ1 denotes the blowing down of Proposition 1.3.

Let G be the homological invariant of an elliptic surface B. Fix some point w0 Ε Δ' =

Δ - Σ. Let us consider a closed path β on Δ' originating at u0. Then the natural

connection on 2?|Δ, defines a homomorphism of the homology groups

s p:ff 1(BB,,Z)-*:ff 1G3 e i,Z), (1.3)

which corresponds to this path. Fix some negative definite basis ex, e2 in the group

HX(BUQ, Ζ) (that corresponds to the choice of periods ζ G H, 1 of the elliptic curve Z?Uo).

Write the homomorphism sp in the basis ex, e2 as a right action of a matrix Sp G

SL(2, Z). The given matrices define a representation

S:Jt 1 (A')-vSL(2,Z) (1.4)

of the fundamental group Τ7,(Δ') = πχ(Δ', u0). Representation (1.4) uniquely defines the

sheaf G. Each matrix (a

c

 b

d) = Ξβ, where β is a small positive circle centered at some point

ν G Δ, is conjugated in SL(2, Z) to one of the following matrices:

± ( o ι Γ > 0 ) ' ± ( ι ι ) ' ± ( i o j ' ± [ ι ο ) '
The last matrix is determined uniquely by the point ν and is denoted by Av. Av will be

called the normal monodromy form of an elliptic surface in the point υ G Δ. The matrix
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Av determines the type of the point υ (see Table 1), which is a direct corollary of the
construction of Chapter 8 of [3].

Type of a
point υ

Normal
form Av

ι

/I

\0

b

I)

*

-Ql
II

(-13

TABLE

III

{-Vo

1

)

IV

u° -:) c
II*

1 )
m* IV*

The arguments of the beginning of §8 of [3] easily imply the following result.

1.5. LEMMA. For any rational function J Ε C(A) \Co/iA there exists an elliptic surface
Β over Δ with the functional invariant J. •

PROOF OF PROPOSITION 1.3. By Artin's criterion (Theorem 2.9B of [1]) it suffices to
prove the negative definiteness of the matrix ||Θ, · Θ,-H, where the Θ, are connected
components of the blowing down Ψ1. After a suitable permutation of Θ, the intersection
matrix has the following form:

/-2 1.
1 —2,

1

\
ο

0

"•1
•—2
• 1

1

\

1

-2/

n.

The corresponding quadratic form (n > 1)

_ v 2 _ v a _ _ ^ (Xb —Ή Λη 7\ \Λκ

is negative definite. •

§2. Construction of the variety Bw

Let w be some natural number. In this section a projective algebraic variety Bw

equipped with a canonical projection Φ*11: Bw —»Δ is constructed from Β and w. In §§2.1
and 2.2 an analytic construction of Bw and Φ*" is described. Theorem 2.3, using a
noncanonical algebraic construction of Bw, proves the projectivity.

2.1. Let U' be the universal covering of Δ' and z: U' —»Δ' a canonical projection (base
point u0). There is a multi-valued analytic function Z(M) defined on Δ' such that
j(z(u)) = J(u), wherey is the absolute invariant. A choice of a negative definite basis ex,
e2 of the group HX(BUQ, Z) determines the choice of a branch of z(u) at the point w0. Let
z: I/' —» //, « h-» Z(M) be the corresponding single-valued function on U'. Let S be the
representation (1.4), and denote by β: u \-> βΰ, β Ε ττ^Δ'), the action of the fundamen-
tal group on the universal covering U''. Then

/Q~\ az (u) 4- b o /-\
2 (p«) = — v J τ = ύβ2 («),

cz (Μ) -f- ίί

where Ξβ + (a

c

 b

d), β Ε π,(Δ'). For /? Ε 77,(Δ') the analytic function

(2.1)

Μα) =
is defined on i/', for which
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M")
for any β, γ Ε 7Γ,(Δ'). Define an action of the group 6W = Τ7,(Δ') X Zw X Zw (semidirect
product) on the analytic variety ί/' Χ C as follows:

(β, η, m): (S, ζ) ι— (β«, /β («) (ζ + z (κ) Λ + m)), (2.2)

where β £ ττ,(Δ'), η, m GZW, ΰ G U' and f E C . The group @w acts properly, dis-
cretely and without fixed points. Hence the analytic variety

$ ' xCw

is defined, which has a canonical projection Φ*ΊΔ' on Δ' induced by the map (w, ζ) h»
(w). It is easy to prove the existence of the following isomorphism (the horizontal arrow)
with a commutative diagram (Chapter 8, I, of [3]):

>•?

ΙΔ'

XB
Δ'

. χ ...
Δ' Δ

The rest of the construction of Bw consists in a compactification of Bw\x over points of
Σ and an analytic continuation of Φ*"!^.

2.2. Let u,; Ε Σ = {«,,..., ut). Denote by τ a local parameter at the point M, and by Ε
a small disk |τ| < ε on Δ; set Ε' = Ε — ut.

(i) If w, is one of the types Io, I£, II, II*, III, III*, IV or IV*, then the analytic variety F
(see Corollary 1.4 and Chapter 8, ii, iv, of [3]) is an elliptic fibration over a disc
D = {σ Ε C| |σ|κ < ε). Following Kodaira [3], we will denote points of F by [σ, ζ],
where ζ Ε C is considered modulo the lattice Ζ + ζ(σ)Ζ over D. Let Fw be the analytic
variety

= F X
D

XF.
D

We will also denote by [σ, ξ], ξ Ε Cw, the points of Fw. For suitable τ, ζ and σ the action
of the group C has the following form:

where eK = e1™/" is a generator of C and/^σ) is an analytic function from Table 2. The
functions ζ(σ) describe the lattice which defines Fw.

TABLE 2

Fiber type

κ

z (σ)

Α (σ)

/(ο)

Ιο

1

—

1

C

2

—

^

C

II

6

η - η 2 σ 2 Λ

1 - σ 2 ή

Α Ξ Ξ Ι

(mod 3)

-2(σ)-ι

0

II*

6

η-ην
l - o 2 h

Λ Ξ Ξ 2

(mod 3)

(ζ(σ) + 1)~ι

0

III

4

ί + ισ2'1

1 - σ 2 / ι

λ==1

(mod 2)

- ζ (σ)" 1

1

III*

4

ί - Η σ 2 "

1 - σ 2 Λ

(mod 2)

ζ (σ)" 1

1

IV

3

η - ην
1 - σ Λ

Α = 2

(mod 3)

-(2(σ)+1)- ι

0

IV*

3

η - η ν
Ι-σ'1

Α = 1

(mod 3)

ζ (ο)-1

0
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Here h — oidv(J — J(v)) and η = e2vi/3. Formula (2.3) defines also an action of the

group C on Fw in the coordinates [σ, ξ]. C acts on Fw properly, discretely and with a

finite number of fixed points.

Therefore the analytic space BW\E = C \ Fw is normal with a finite number of

singular points. The function σκ, which is regular and invariant on Fw, induces a

projection Φ*Ί £ : BW\E —> E. There exists an isomorphism (the horizontal arrow) with a

commutative diagram:

Β U*. -+B \S\E. ( 2 4 )

Thus a compactification of Bw and an analytic continuation of the map Φ * ^ are

defined over points with finite monodromy.

(ii) If Uj is of type \b, b > 1, then the analytic space

is defined with a canonical projection

Since in this case we also have an analytic isomorphism (2.4), BW\E and Φγν\Ε define a

compactification of BW\A, over points of type lb.

(iii) In the case when the point w, is of type I*, b > 1, we let

= FxF χ . . . χ F .
D D D

The involution / (see Corollary 1.4 and Chapter 8 of [3]) determines an analytic

involution on Fw. Hence the analytic quotient space BW\E = {t}\ Fw is defined.

Moreover, since the projection is an invariant analytic function (equal to_a2 in_the

Kodaira coordinates (σ, w) [3]), a projection Φ*"^ is defined. The pair BW\E, Φγν\Ε

defines a compactification of BW\A, over ut.

2 3 . THEOREM. BW is a projective algebraic variety. In particular, Φ™ is an algebraic

morphism.

REMARK. The varieties Βχ defined in 1.3, 2.1 and 2.2 coincide.

PROOF OF THEOREM 2.3. To each point w, there corresponds a natural number

κ, — max{ /v /}. Let κ0 be the least common multiple of κ , , . . . , /c,, and let d = κλ · · • κ,.

Then an abelian cover Ψ: Δ ^ Δ of degree d, with ά/κ{ ramification points of index

Kj — 1 over the point M, (0 < / < t) and nonramified over Δ' — w0, is defined. The lifting

of invariants Ψ*(/, G) defines an elliptic surface Β over Δ with fibers of type lb (b > 1)

only. Let

Bw=Bx . . . χ β .
'Α 'Δ
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The abelian cover Ψ defines a cover Ψ": Bw —»Bw with the following commutative

diagram:

Bw-+Bw

\ \
Δ -->Δ

Therefore both Βw * C \ Bw and Bw (C being the finite abelian group of the cover Φ")

are projective algebraic varieties. Π

§3. Kuga's variety

In this section a nonsingular projective variety Bw is defined by resolving singularities

of the variety Bw constructed in §2. Bw is called Kuga's variety associated with an elliptic

surface B. The canonical projection Φ": Βw —> Δ is the composition Φ*" ° Ψ™, where Ψ1" is

a resolution of singularities s(Bw) of the variety Bw. By s(9H) we will denote the singular

locus of an algebraic variety or analytic space 9H.

3.1. (i) Let μ and w be natural numbers, μ > 1. There is an action

βμ". ( σ , ζ) ^ (έ?μσ, έ?μΧζ)

of the cyclic group C of order μ on the analytic variety C X Cw, where βμ = e2m/li is a

generator of C. Let

The analytic space 9l£ has one singular point, the orbit of (0, 0). Denote by N™ an

analytic space which is a connected open set containing the point s(?il™) of 91 μ .

(ii) Just as in (i), the action

of the group C on C X C defines an analytic space Ν™μ with one singularity, the orbit

of (0, 0).

(iii) Let w, and w2 be integers, w, > 1 and vv2 > 0. Denote by A',, Yx, . . . , Xw, Yw

and Zj, . . . , ZWi coordinates on the variety C2yV] X C 2 . Then the system of equations

ΧϊΎι = · - · = XW] · rM,i defines an analytic space 9l w " w ' in C 2 w ' X C 2 . A connected

neighborhood of the point (0, 0) in 9lw"M'2 will be denoted by Nw>'w\

The analytic spaces 9ΐ± μ , Νζμ and 9lM'"H'2, Λ/̂ Η'"Η'2 are provided with projections Φ+μ

and Φ"»^ on a neighborhood U c C of the origin, induced by maps σκ, μ\κ and (Xx y1)
K

respectively. Let Μ be an analytic space with a projection Φ: Μ —> Δ. We will say that a

point ςτ Ε Μ is of type ( ± μ , w)f or (w,, w2) if the following commutative diagram is

defined:

Λ ί ς Λ ί

ί/ςΑ

where horizontal arrows are isomorphic imbeddings and q is contained in the image of

the upper arrow, while Ν = Νζμ, Ν = NWl'W2 and Φ = Φ^.μ, Φ = Φ147"*"2 respectively. It

is easy to show that the type of a point is uniquely defined except the case ( — 2, w)f =

(2, w)f. Letting μ = 1 in (i) or (ii) and w{ = 1 or 0 in (iii), we introduce nonsingular types



128 V. V. SOKUROV

of points ( ± 1, w)p (1, νν2), and (0, Wj)^1) The type (0, Wj), = ( ± 1, w)f describes nonsin-

gular points of Μ in which the projection Φ is regular at κ = 1.

3.2. PROPOSITION. Table 3 expresses the dependence of the type of a point of a fiber B™

on the type of point ν Ε Δ.

TABLE 3

Type of a

Type

q

point

of a

SB

v6A

point

υ

ι. π.

(μ,

μ

III,

1*

IV
•

III·',

(-μ,

μ|

IV·

κ

ι, κ

^ ·

(± μ, α>

*

)/. μ κ(κ = 2).

Denote by st(Bw) the reduced variety of singular points of type (wx, w^,·. Let Ψ?\

Β™ -» Bw be the monoidal transformation centered at i i(5y i >). We will say that a point

^ Ε Μ is of normal type if a neighborhood of this point is represented by a neighbor-

hood of the origin in C such that the projection Φ: Μ -»Δ is given by the function

Y"1 · - - Y£", where the «, are positive integers and the y, are coordinates on C^. If each

point of a fiber Mv is normal, we will say that the fiber is of normal type.

3 3 . THEOREM. Φ? resolves singularities of type (w,, H^),. B™ is a projective variety with

fibers of normal type over points of type lb (b > 0). Points of the remaining fibers are of

normal or of finite type ( ± μ , w)f. (The canonical projection Φ)" = Φ" ° Ψ?.)

Let Dv be the reduced fiber of B™ over a point ν Ε Δ. By the monoidal transformation

over the point ν we will mean the monoidal transformation of B™ centered at (κ — \)DV

if ν is of type lb (b > 0), II, III or IV, or the simultaneous monoidal transformation of

B,w centered at Ώυ,.. ., (κ - \)DV if ν is of type I* (b > 0), II*, HI* or IV*. Denote by

Ψ^ the composition of monoidal transformations over all points ν Ε Δ. The last

transformation does not touch fibers of type lb (b > 0). Let Ψ™ = Φ? ° Ψ™ and denote

by Bw the image of this transformation. Bw has a canonical projection Φ* = Φ* ° Ψ*".

3.4. THEOREM. BW is a nonsingular projective variety with each fiber of normal type.

Theorem 3.3 permits us to reduce the investigation of the transformation Ψ " to the

local case; that is, to consider it as being defined on an analytic space Λ^ μ .

Let ((Χ, Υλ,..., Yw), («,: o,: · · · :vj) be coordinates in the space C + 1 X Pw. Then

the regular map

μ μ ' (3.1)
the orbit of (σ, ξχ, . . . , ζα,) t—*• ((α , ζ1} ..., ζα,), (ο :ζ1: . . . : ζα,))

is defined. Let 91 denote the closure of the image of the map (3.1).

3.5. LEMMA, a) (3.1) is a biregular imbedding.

b) 91 is a nonsingular variety.

PROOF, a) The injectivity of (3.1) is obvious, and the regularity of the inverse map

follows from the fact that any branch of the function tfz , z Ε C, is regular on a small

neighborhood of a nonzero point.

('/This is C 2 + 1 with projection Zf, Z t being the first coordinate.
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b) The charts Wo = {ux Φ 0}; Wj; = {vj Φ 0} (1 < j < w) cover 91.

In these charts 91 is given in coordinates X, Vj/ux; Yp ux/vp vjvj (1 < / < w, Ι φ j)

by the equations

(3.2)

(3.3)

Hence 91 is nonsingular. •

By this lemma a birational map

(3.4)

is defined and is inverse to (3.1). Let D be the fiber over the origin for some projection

μ'

3.6. LEMMA. The map (3.4) is extended to a regular one μ\κ which is the monoidal

transformation centered at (κ — X)D.

Consider the following map into the space C w + 1 X ( F T " 1 with coordinates ((X,

Ylt . . . , Yw), (II,: νΙΛ: . . . : U , , J , . · · , («μ-ρ ϋ μ _ Μ : . . . : ϋμ_,^)):

the orbit of (σ, f 1 , . . . , fw) Η * ((σμ, ff, . . . , tf), (σ : ζ^" 1

: . . . : &*), ( 3 . 5 )

. . . , ( σ ^ 1 : ^ : . . . :&,)).

Denote by 91 the closure of the image of the map (3.5) (this will not lead to confusion

with the preceding or the following, since we will always indicate the map to which 91

corresponds).

3.7. LEMMA, a) (3.5) is a biregular imbedding.

b) 91 is a nonsingular variety.

PROOF. It is evident that the open sets {vy Φ 0} (/ < j < w), {ΐ/,-.,υ ·̂ φ 0} (2 < / <

μ — 1) and {μμ_χ φ 0} cover 91. It follows from the relations (/ < η < μ — 1)

which hold for points of the set 91 η {υ^ Φ 0), where 1 < / < w, Ι φ j, that there exists

an inclusion

^ΐ\{ννΦθ}(Ζ Π {On./Φ 0}. (3-6)
ΐ<η<μ-ι

By analogy the relation (1 < k < / — 1)

Vk,f = Uk · - ^ · Υ ι
\ Ui-\ 1

for points of 91 η {«,·_ι Φ 0} implies the inclusion
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η {Uk^o}. (3.7)

Let us introduce the following charts on the variety C"7"1"1 Χ (Ρν ν)μ~1:

η {α*^ο})ηί η {»»./* o>\

Since Wf = J*7, for brevity we denote this chart by ΐνμ. The inclusions (3.6) and (3.7)
imply that 91 is covered by charts Wj (1 < i < μ - 1) and W\ In each chart we
distinguish some subsystem of coordinates and relations which express other coordinates
of points of 91 via the distinguished ones:

( 3 . 8 )

/ ( 2 < ί < μ — 1 ) : Ot.lt//Ut.lt Ut/ut,ft Ομ̂ ,ΐ/Ομ-χ,/,

i-i / V"(.// I "l-x I Wl

, (3.9)
μ-1,// \ "/-Ι / \Vi,j

ί-ι / Vi.iJ uk

Λ—/ / II \ Λ-ί+1 #, / .,
ut \ vn,l __ / ϋμ-ι,/

Vn,J

. V r, /,. ν/ — Y^1-1 / Pt*-W \ Pfe,/ _ νμ-fe-l / ° Λ. Λ, ϋμ-ι,//«μ-ι» ί/ = Λ · , = Λ

Hence 91 is nonsingular. The injectivity of (3.5) is obvious, and the regularity of the
inverse map follows from the fact that the image of the map (3.5) lies in charts W} and

W* with distinguished coordinates (3.8), (3.10) and the branch of the functions yYj and

vX is regular on the corresponding chart. •
By virtue of this lemma a birational map inverse to (3.5)

JV - ^ Τ - μ (3.11)

is defined. Let D be a fiber for some projection Φ^μ·

3.8. LEMMA. The map (3.11) can be extended to a regular one μ\κ which is the
simultaneous monoidal transformation with centers at D, . . . , (κ — \)D.

PROOF OF LEMMAS 3.6 AND 3.8. a) Let us prove first of all that the maps (3.4) and
(3.11) can be extended to regular ones. The local ring of the singular point of the spaces
91^ and 91" μ is generated respectively by the functions

σ · bi · · · <aw '

where /0, . . . , iw are positive integers with /0 + · · · + iw = μ, and by
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σμ, σζ1? . . . , σζ», ζϊ . . . ώ \

where /,, . . . , iw are positive integers with /, + · · · + iw = μ. Therefore it suffices to

check the regularity of these functions on 91. The expression of the functions in charts

covering 91 produced below proves their regularity:

Wo Π JT : σ'· · ζί' ...& = X. Μ 1 ... Ρ ^ ί " ;
«1

^ Π ^ : σ'·

( η \ • w / Γ» \ *

r b i · · · taw = · Χ /»

V/i ^iAv//

li-i / \vi,jj \ ~μ-ι

w . .,
"μ-ι./

Let 91 ' -> 91+ μ be the monoidal transformation corresponding to Lemmas 3.6 and 3.8.

Then 91 ' is the closure of the image of 91+ — D for the following maps relative to

( + , - ) :

the orbit of (σ, ζ) Η-*· (the orbit of (σ, ζ) , ( σ κ : σ 5*' 1 g x : . . . : σ * " 1 ^ ) ) ;

the orbit of (σ, ζ) H - ^ (the orbit of (σ, ζ), ( σ / ( μ + 1 ) : . . . : σ ^ " 1 ·ζ1ι • • · ^ : . . . ) ) ;

where /:, + · · · + Λ^ = μ — /, 1 < / < μ — 1, 0 < / < κ / μ . F r o m the relat ion

(bi · · · boy ) = (bi ) · · · (btiw )

follows the existence of a regular map 91 ' —» 91 for the following commutative diagram:

^ ^ (3.12)

b) All fibers of 91 for the projection σ" = Χκ/μ are of normal type, as follows
obviously from inspection of the charts (3.2), (3.3) and (3.8)—(3.10). Therefore the
functorial properties of monoidal transformations yield the existence of the arrow
inverse to the horizontal one in diagram (3.12). •

PROOF OF THEOREM 3.4. Theorem 3.4 is a direct corollary of Theorem 3.3, Lemmas
3.5-3.8 and the normality of fibers of 91 at the canonical map Χ*/μ (see item b) of the
proof of Lemmas 3.6 and 3.8). •

Let (M/V: O/J: uJJ: vjJ) be coordinates in the space (P 3 )" ·^ ·- 1 )/ 2 (the upper indices i,j

are symmetric). Then we can define the regular map
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Wt(Wt-l)

'Wt χ (F) 2 , ( 3

(Xlt Ylt ..., XWi, YWt, Z l f . . . ) ̂  ( (* i . Y» · . . , Z l f . . . ) , . . . , (Χ,:Υ{:Χ

where 1 < / <j < wx. Let 91 denote the closure of the image of (3.13).

3.9. LEMMA, a) (3.13), being obviously a biregular imbedding, defines a regular extension

of the inverse birational map

JV— -*tArWl'Wt (3.14)

The map (3.14) is the monoidal transformation centered at s(NWl'Wl).

b) 91 is a nonsingular variety.

c) All fibers of 91 for the canonical projection (Xx YX)
K are of normal type.

PROOF OF THEOREM 3.3. Theorem 3.3 is a direct corollary of Proposition 3.2 and

Lemma 3.9. •

In the proof of Lemma 3.9 we may obviously assume that w, = w and w2 = 0. Let

x0 G 91. Define the oriented graph T(x0) whose vertices are integers 1, 2, . . . , w such

that vertices i andy are joined by an edge ij if ujJ ^ O o r vj1' φ 0. An ordered collection

of points ix, . . . , i, G Γ(χ0) is called linearly ordered at the point x0 if ikik+x G F(JC0),

k= 1, . . . , / - 1.

3.10. LEMMA, a) For a point x0 G 91, ij G Γ(Λ:0) and jk G T(x0) imply ik G F(JC0). More

exactly, ifujJ φ 0 and u{k φ 0, then u\* φ 0.

b) For any point JC0 G 91 a linearly ordered collection including all vertices of the graph

T(x0) is defined.

PROOF OF LEMMA 3.9. b) In view of Lemma 3.10, for any point x0 G 91 a linearly

ordered collection consisting of all points 1, 2, . . . , w is defined. By symmetry of the

pairs Xt, Yt on 91 we may assume that the given collection is 1, 2, . . . , w. By virtue of

symmetry within the pair Xt, Y, we will assume that at a point Λ:0 G 91, and hence in its

neighborhood, we have u]1'1 φ 0, where 1 < k < I < w (w^+* x φ 0 by the definition of

linear order at the point x0, and the remaining inequalities hold by Lemma 3.10 a)). Then

local coordinates Xw, ujlx

ui'/u\~u (2 < / < w), v\'2/u];2 are defined in the point x0 of

91. In fact, 91 can be given in the chart Π {«*·' Φ 0} c Nw>-W2 X (p3)lv>(vv>-1)/2 by t h e

following relations:

v«r-v wv \uP-'J
(3.15)

ίο
—Υ \ ι \ V, —V

c) Since the canonical projection is of the form

(3.16)
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in a neighborhood of the point JC0, we have that all fibers are of normal type.
a) Now note that by the monoidal transformation centered at s(9lWl'W2) we mean the

simultaneous monoidal transformation centered at components of 5(9lH'"VV2). Then a)
obviously follows from the explicit equations of the components

where 1 < / < j < w,. •
PROOF OF PROPOSITION 3.2. a) Consider a point υ G Δ'. By the definition of Δ' this

point is of type Io. From §2.1 it directly follows that the fiber B™ = B™ is of nonsingular
type; that is, (0, w),· = (± 1, w)f.

b) Suppose now that the point t> = Μ, £ Σ is one of the types Io, I*, II, II*, III, III*, IV
or IV*. Let/? e Fw, and let CK/IX be the stationary subgroup of this point (see §2.2 (i)).
In a neighborhood of ρ let us introduce coordinates (depending on the type of the point
v):

i0,
 [l- ζ — ζ — Ρ ,

II, Π\ 111, ill*: ζ~~ ( 1 - σ 2 Α ) ( ζ - ρ ) , (3.17)

IV, I V : ζ — ( 1 - σ * ) ( ζ - ρ ) .

The action of the group <7κ/μ takes the following form in the coordinates (3.17):

eT = eVi\ (σ, ζ)»-* (<?μσ, < ζ ) , (3.18)

where + corresponds to types Io, II, III, IV, and — corresponds to types I*, II*, III*,
IV*. Therefore the image of ρ in the quotient space C \ Fw = BW\E is of the form
(±μ, w)j. The proof of (3.18) is a direct calculation using the definition of the action
(2.3) and Table 2.

c) If υ = w, e Σ is of type lb (b > 1), then all points except a finite number (the points
q0, . . . , qb_x of the intersection of components of the fiber, or of the self intersection if
b = 1) are of nonsingular type (0, 1),. The points q( are of type (1, 0),·. Hence the type of
each point of the fiber

JDO
 = Do X · · · Χ Οχ}

W

is a fiber product of types (1, 0), and (0, 1), with projections XXYX and Z, respectively;
that is, of type (H>,, VV2),, and wx + w2 = w. Note that points of (Bv — {q^Y C B™ are of
nonsingular type (0, H>),.

d) Now we analyze the case when t> = M, £ Σ is of type I* {b > 1). F is an elliptic
family over D = {σ G C| |σ|2 < ε) with one singular fiber Fo of type l2b. The involution
/ has four fixed points on F such that at a suitable choice of coordinates (fAj,; see
Chapter 8, v(2), of [3]) the action of t has the following form in a neighborhood of these
points:

t: (σ, ζλ,ν) »-* (—σ, — ζλ,ν)·

Using the definition of BW\E from §2.2 (iii), the case considered above (see b)) and the
fact that κ = 2, we obtain the last column of Table 3. •

PROOF OF LEMMA 3.10. b) For any two points i,j of the graph F(JC0) one of the edges Ij
or ji is defined. Item b) of the lemma is a direct corollary of this property and of item a).
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Item a) will be proved in its second formulation. We have

for the point x 0 e 91. Therefore u]* φ 0. Π

3.11. REMARKS, a) It is easy to verify that the Βι defined in §1 coincides with the one

defined in this section.

b) It is easy to verify also, using local coordinates, that Φ™ has a section ow: Δ -» Bw,

which is induced by the map ΰ \-+ (M, 0) (see §2.1).

§4. Regular differential forms of highest degree on Bw

4.1. DEFINITION. A differential form of degree / which is analytical in all nonsingular

points of an analytic space Μ will be called in this paper a regular differential form of

degree /. Denote by H°r(M, Ω') the space of regular differential forms of degree /. It is

evident that for analytic varieties one has a canonical isomorphism

H°(M, Ω') =5 H°r(M, Ω'). _

Let Ψ: Μ -» Μ be a resolution of singularities of an analytic space M. Then a

canonical monomorphism

Ψ , : H° (Μ,Ω?) -> H°r (M,Qn)

is defined. In the sequel we will assume that Μ and Μ are compact. Let dim Μ =

dim Μ = η. We will say that Μ has only rational singularities if Ψ^ is an isomorphism.

The next result shows that the definition of rationality is independent of the choice of

the resolution Ψ (if such exists).

4.2LPROPOSrnoN. Μ has only rational singularities if and only if

a) M has a compact resolution, and

b) Ι^ω Λ ω < oo for any form ω G H°r(M, Ω") (the integral is improper).

This proposition can be easily deduced from the proof of Theorem 3.1 of [2]. Π

The last proposition will be used by us for Μ = Bw.

43. LEMMA. If ω e H°r(Bw, Qw+l), then JMM Λ ω < oo.

4.4. COROLLARY. BW has only rational singularities; that is, there is a canonical

isomorphism

H° (Bw, Qw+1) i=LH°r{Bw, Qw+1).

PROOF. In view of Proposition 4.2 it suffices to verify a) and b). Assertion b) is Lemma

4.3, proved below; a) is a classical result of Hironaka on the resolution of singularities,

which was proved in our situation in §3. •

4.5. Let us consider an analytic surface W with an analytic function ζ: W —» Η on

which the group β acts properly, discretely and without fixed points. We will assume

additionally that a representation S: § —> SL(2, Z) is given and ζ satisfies the functional

equation (2.1); that is, for any β G 6

cz(u) -\-d
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where Sp = (" J) G SL(2, Z) and u G fP". Then by analogy with §2.1 for any natural w
the action (2.2) of the group Qw = § X Zw X Zw on W" X CT is defined. There are
analytic functions ζ and £,·, where £,: W' X Cw -> C is the projection on the /th factor of
C , 1 < / < w, defined on W X C in a natural way. f, defines the real analytic
functions

4.6. LEMMA. ί/mfer the assumptions of §4.5,
10 W

a) dzA Λ t%i = dzA/\ (<&./+*&./)·
/=1 /=!

For any (/?, n, m) G β* ί/ie following relations hold:

b) φ,Λ,/«)·(ζ-ί)=:/ρ.7 β (ζ-Ι),

c) (β, n, mydz = fldzt

d) (β, π, m)* (d^., + zdl,,/) = /p (dgti/ + zdg,,,).

Since ^w acts properly, discretely and without fixed points on W X C , the analytic
variety gw \ W X Cw is defined.

Let ω be a holomorphic differential form of degree w + 1 on this variety. Then the
lifting ώ of the differential form ω on W X C has the form

where Φ' is a holomorphic function on ff' X C . This differential can be written also in
the form

Λ^ζ/ > (4-1)

where Φ is a meromorphic function on F X C .

4.7. LEMMA. For any element ( β , η, m) G <3W

PROOF. Lemma 4.7 is a direct corollary of the invariance of ώ with respect to §w and
of Lemma 4.6. •

4.8. COROLLARY. Φ in (4.1) can be viewed as a meromorphic function on U'.

PROOF. It suffices to prove that Φ(ΰ, £,) = Φ(ΰ, ζ2) for any ζ„ ζ2 G C and ii G U'. In
fact, by the above corollary, the definition of/̂  and the action of (β, η, m) with β = id
we get

Φ(Μ, ζ ) = Φ ( « , ζ + ζ(Μ)« + /«) (4-2)

for any η, m G Z". Moreover, by the construction of Φ from Φ' (see the lines before
§4.7) it is seen that if Φ(ΰ, ζ) is holomorphic then Φ(ύ, ζ') is holomorphic for all ξ' G C .
This and (4.2) obviously prove the relation Φ(ύ, ξ,) = Φ(«, ζ2)> since ζ(ΰ) G ̂ Γ. Thus Φ
can be viewed as a meromorphic function on U'. •

PROOF OF LEMMA 4.3. First of all we will make the reduction to the case when Β has
singular points only of type lb (b > 1). Consider the elliptic surface Β defined in the
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proof of Theorem 2.3. Then a canonical morphism

( Ψ " ) · : H°r(Bw, Qw+1) -> H°r(Bw, Qw")

is defined. Locally Ψ" is defined in §2.2, and nonsingular points of Βw at which (Ψ™)*ω

is not defined for ω Ε H°r(Bw, tiw+l) are isolated. This is easy to see from the proof of

Proposition 3.2. Since dim Bw > 2, we have (Ψ")*ω G H°r(Bw, ttw+l).

Let us prove that for any point ν G Δ there exists a neighborhood U such that

J ω Λ ω < ο ο , (4.3)

where ω G H°r(Bw, Qw+1). By Proposition 3.2 this is evident for points of type Io.

Let ν G Δ be of type \b (b > 1). In the notation of §2.2, denote by W the universal

covering of E'. We may assume that

W = {z G C | Imz > const > 0}.

By results of Kodaira (see Chapter 8, v, of [3]), for a suitable choice of τ there are

defined:

(a) the action 6 = Ζ: η: ζ Η> ζ + nb,

(b) the representation S: Ζ -• SL(2, Z), « Η fi f ) , and

(c) the function z: W -> Η, ζ: ζ Η> Z,

satisfying the construction of §4.5. Moreover, there is a canonical analytic isomorphism

lxZw xZw\W x C " c - f l " | E M

where the group Ζ X Zw X Z" acts on W X CT as follows:

(k, n, m): (ζ, ζ) Η-* (Ζ + kb,

where A: G Z, n, m G Ζ", z G W and f G Cw. Denote by ώ the lifting to W X Cw of the

differential ω G H°r(Bw, i T + 1 ) restricted to E'. By Corollary 4.8,

ζ/, (4-4)

where Φ is a holomoφhic function on W such that z = ύ. The map

.z^T^e"""", lU^u^e^1 (4-5)

allows us to construct a canonical isomorphism

ZW\E' x(Cy~Bw\E.,

where the group Zw acts on £" x (C*)M> as follows:

n:(x,ux, ..., uw) ^ (τ, Mtt
6n«f . . . , ««,τ6"1"),

where η = {nx, . . . , nw) G Z". Let ώ be the lifting to Ε' Χ (C*)*1* of the differential ω\Ε.

restricted to E'. Then by (4.4), (4.5) and §4.7

1 , ( 4-6>

where F is an analytic function on E'. BW\E contains the analytic sub variety

{zw \ Ε' χ (c*)1") υ (€*)ω
 ~ΕΓ \E. U (C·)";
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in this connection the points of (C*)w are included in the fibers B" and are of regular
type (0, w), = (± 1, w)f. We may take (τ, u) as local coordinates at these points (see
§2.2(ii) and Chapter 8, v, of [3]). Thus F(r) is analytic on E, since ω e H°r(Bw, ttw+l).
This implies that to prove (4.3) it suffices to verify the inequality

C

i
& du. - w dus

Λ Λ Λ Λ Λ

where the integral is taken over some fundamental domain Ue c Ε' Χ (C*)w for the
action of the group Zw (recall that Ε = {|τ| < ε}). The last assertion is nothing more
than an easy exercise in the calculus, if the fundamental domain is taken as

PROOF OF LEMMA 4.6. a) follows from the relations

b) follows from (2.1) and the relation

(β y
cz-{-d

obtained by conjugacy since (a

c

 b

d) £ SL(2, Z).
c) We have

\cz + d

d) By virtue of b) and the relations

Ζ — Ζ 2 — Ζ

we have

(β, Λ, m)· ξ,,, = — (glf/ + m) c + (ξ2>/ + /ζ) d.

Since

we also get

(β, rc, m)* luj = (ii,/ + m) α — (ξ2>/ + η) b.

Hence

(β, η, m)· (dluf 4-2dgat/)

§5. Kuga's modular varieties

The group Γ acts in the standard way on the upper half-plane H:

cz-\- d
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where γ = (a

c J) Ε Γ and ζ Β Η. The quotient space Γ \ Η has a natural compactifica-

tion ΔΓ. The finite set Π = ΔΓ - Γ \ Η of points which are added to obtain the

compactification is called the set of cusp points of ΔΓ. ΔΓ is a nonsingular projective

algebraic curve. It is called the modular curve corresponding to the group Γ. If Γ =

SL(2, Z), then Δ8 Ι^2 Ζ ) = Ρ1, the projective line, and the choice of certain (nonhomoge-

neous) coordinates on this line determines the absolute invariant function j: Δ81^2Ζ)—>C.

Let Γ c Γ" c SL(2, Z) be subgroups of finite index. The natural map of quotient spaces

Γ \ Η -^ Γ'\ Η defines a regular morphism of projective curves

(5.1)

Taking the composition of the map (5.1) for the pair Γ c SL(2, Z) with the absolute

invariant function^', we define the meromorphic function JT on ΔΓ.

5.1. In the case (*) the elliptic modular surface BT over ΔΓ corresponding to the group Γ

is canonically defined (see [5], Definition 4.1). If (*) does not hold, then (noncanonically)

by Lemma 1.5 a certain elliptic surface BT with the functional invariant Jr is defined

over ΔΓ. We will also call the given surface the elliptic modular surface corresponding to

the group Γ. The Kuga variety Βγ associated with the elliptic surface BT will be called

Kuga's modular variety of degree w corresponding to the group Γ. Note that both the given

variety and BT are defined canonically only in the case (*). In the sequel the index Γ is

dropped for simplicity; thus we write Δ instead of ΔΓ, Φ™ instead of Φ", and so on.

We will call a non-cusp point ν G Δ an elliptic point if ν is the orbit of a point ζ G Η

such that the stationary subgroup TJ ±E is nontrivial. In other cases (that is, ν G Δ is

neither a cusp point nor an elliptic point) we say that ν is regular. If ν is an elliptic point

of Δ and ζ G Η is the corresponding point of the orbit, then ζ G SL(2, Z){/, η). We will

say accordingly that the given elliptic point ν is equivalent to / or η.

Let Q = Q υ /oo, and Η = Η u_Q. A continuous extension of the action of SL(2, Z)

is defined on the compactification H. Each cusp point/? G Π has a representative q G Q

which is defined up to the action of Γ (see § 1.3 of [4]). The stationary subgroup Γ^ of the

point q is conjugate with respect to SL(2, Z) to the subgroup generated by (0

 b\) ° r

Co if), b > 0, in the case (*). Therefore in accordance with the above we will say in the

case (*) that a cusp point ν is a point of the first or the second kind. The first assertion of

the following proposition translates the classification of points ν G Δ introduced just

now into the language of types of points (see §1).

5.2. PROPOSITION, a) The notions placed in the columns of Table 4 are equivalent:

TABLE 4

υ 6Δ

regular

Nonsingular of
type (Io) or
type 15

cusp

of type lb, I*
(b > 1)

elliptic
equivalent to i

of type III, HI*

elliptic
equivalent to η

of type II, IV*

In the case (•), Table 4 takes the simpler form 4(*).
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TABLE 4(*)
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regular

nonsingular
type

cusp

1st kind

I 6 ( & > 1 )

2nd kind

ί(6>1)

elliptic

elliptic
equivalent to η

of type IV*

b) In the case (*) //iere is a canonical isomorphism

β£| Δ _ π ~Γ xZw χ ZW\H χ C",

where Γ X Zw X Z w acta according to (0.2).

(5.2)

Let j = j 1 ! + s2 (t' = tx + t2) denote the number of elliptic (cusp) points of Δ, where si

is the number of elliptic points equivalent to η and s2 is the same for / (the given
decomposition is defined in the case (*), and t{ is the number of cusp points of kind /,
/ = 1, 2). By Proposition 5.2c), in the case (*) we have

where p(*) is the number of points of type *. For other types we define tx and t2 by these
equalities. Then, by virtue of §5.2, t' = tl + t2.

53. COROLLARY, a)

sx = v (11) + v (IV*), s 2 = ν (III) + ν (ΟΙ*), ν (1Γ) = ν (IV) = 0.

b) In the case (*)

ν (Γο) = ν (II) = ν (II*) = ν (111) = ν (HI*) - ν (IV) - 0,

tx = ^ ν (I6), *, = 2 ν (h), s = s, = ν (IV*). D

b>i 6>i

In view of §§2.1 and 3 we have an isomorphism B£\A, ~ Qw \ U' X Cw. Then the
function ζ defines the cover

ζ-.Ό'^Η'ςζ H—SL (2, Z) {i, η},

where //' is the image of U' under the map z: U' —> //. From the definition of the
absolute invariant 7 and the functional invariant Jr we immediately obtain the following
commutative diagram of analytic covers:

Δ' \

(5.3)

5.4. DEFINITION. Consider the following space of analytic functions:
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Sw+2 (Γ, Η') = {Φ : Η' -ν C is an analytic function such that | Φ | [g]w+2 = Φ

for any g£ Γ},

where (see §2.1 of [4])

(ΦI fcU) (2) = (detgpV + d)-"-2Φ fez);

the transformation [g]w+2 is correctly defined for any g = (a

c

b

d) G GL + (2, Z) if g # ' c

i/'.
Consider Φ e SW+2(T, H'). This function determines the analytic function Φ: U' X

( 7 -> C: Φ((«, Π) = $(*(")), « Ξ ί/'. Thus the analytic differential form

is defined on U' X C w . By (2.1) and the definition of Φ (see §5.4) we have

Φ (βίΓ) = φ (ζ (β«)) = Φ (5βε (£)) = Φ (ζ (u)) (cz (wT+ d)w+\

Therefore for any element (β, η, m) Ε §w the relation (β, η, ηι)*Φ = fpw~2$ (cf. §4.7)

holds, and by Lemma 4.6 this gives the invariance of the differential ώ φ with respect to

the group §w. The latter allows us to define a canonical homomorphism

• S M ( T , ^ # ) - / r > ( f l f l | A , , r f l ' + 1 ) , Φ » — ω Φ | Δ . , (5.4)

where ω φ | Δ ' is an analytic differential on Βγ\Α, corresponding to ώφ.

5.5. LEMMA. The homomorphism (5.4) is an isomorphism.

5.6. THEOREM, a) ωφ |Δ, is extended to a holomorphic differential form ω φ of degree w + 1

on Kugds modular variety 5 f if and only ί / Φ ε SW+2(T) c SW+2(T, H').

b) In particular, there is a canonical isomorphism

Sw+2 (Γ) ζ? Η9 (Β?, Ω1"41), Φ Η - ω φ . (5.5)

5.7. COROLLARY.

dim Η· (β?, S2*+1) = (w + 1) fe-1) + S (ν (!*) + ν (φ) -|-

+ (v (11) + ν (IV*)) p ± - 2 ] + (ν (ΠΙ) -Ι- ν (111*)) [ ^

// w is even, and

dim H° (fi?f QT+1) = (a; + 1) ( g - 1 ) + g ν (I») -£-
2

// w w 6w/(c/, where g is the genus of the curve ΔΓ.

PROOF. This is a direct corollary of the above theorem, Theorems 2.24, 2.25 of [4] and

Corollary 5.3. Π

PROOF OF THEOREM 5.6. a) Since 2*ΓΊΔ< = Βγ |Δ,, in view of Lemma 5.5 the homomor-

phism (5.4) defines the isomorphism
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Therefore by virtue of Proposition 4.2 it suffices to prove that ωφ |Δ, is extended to a
regular differential on Βγ if and only if Φ G S -̂̂ CT). Then by Lemma 4.3 and the proof
of Theorem 3.1 of [2] it suffices to establish the following equivalence for Φ G
SW+2{T, H'):

ωφ|Δ, Λ ω Φ | Δ , < ° ο (5.6)

(the integral on the right is improper). Obviously

ωφ |Δ, Λ ωΦ |Δ, = j ωφ /\ωφ,

3?Ι Δ , υ

where the integral on the right is taken over a fundamental domain U C U' X C*1 with
respect to the group §w. Let U be a fundamental domain with respect to the group Γ.
Denote by £/, some (one-to-one) lifting of U to U' using ζ from diagram (5.3). Then the
fundamental domain U can be taken as follows:

ϋ = {(α,ζ)\ Μ 6 £/„ ζ/= *!./+*.,/ Γ(κ),ί*./6[0, 1]}.

Then

f ωΦ Λ ω Φ = f |Φ|2<ίζΛΛ dlf/\dz /\/\ άζ,

j d z / \ d z = c \\<$>f {lmz)wdz/\dz,
υ, υ

where c G C* (an easily calculated number independent of Φ). Therefore for the proof of
(5.6) it suffices to establish the following equivalence for Φ G SW+2(T, H'):

Φ 6 Sw+2 (Γ) <H> j | Φ |2 (Im z)a dz Λ dz < oo.

This can easily be deduced from the analyticity of the function Φ on H' and the isolation
of its singularities,

b) Let Δ' D Aj. Then we have the following commutative diagram of analytic covers:

4 \z

Consequently we have the commutative diagram

Q Q

1

where vertical inclusions are "restrictions". This easily implies the canonicity of isomor-
phism (5.5). Π

PROOF OF LEMMA 5.5. It suffices to show that the function Φ: U' —> C satisfying the
equation (see §§4.7, 4.8 and 4.5, where W = U')

β'Φ^-'Φ (5·7)



142 V. V. SOKUROV

coincides with the lifting of a function ψ: Η' -> C on U'. In fact, H' « S~\±E) \ U'.
Therefore it suffices to show that β*Φ = Φ for β £ S ~ '(± E). This immediately follows
from the functional equation (5.7), since S~l(±E) = S~l(E) for even w by the
definition of BT (see [5], Definition 4.1), and condition (*) holds for odd w. •

PROOF OF PROPOSITION 5.2. a) Table 4(*) is a simple corollary of Proposition 4.2 of [5].
Table 4 is deduced from Table 2, using elementary properties of the absolute invariant

j , and also the following property of elliptic surfaces: Bv is of type 1̂  or I* (b > 1) if and
only if J (ν) = σο. For instance, let ν Ε Δ be an elliptic point equivalent to η. Then, since
j(j\) = 0, we have Jr(v) = 0. Hence ν is of one of the types Io, Ι*, Π, Π*, IV or IV*. It is
evident that Io and I* fall away. By virtue of the relation h = 1, h = 1 mod 3, the case
II* falls away from the pair II, II*. By analogy the case IV falls away from the pair IV,
IV* by virtue of the relation h = 1, h = 1 mod 3.

If ν is of type IV* or II, then by Table 2 υ is an elliptic point equivalent to η, since
Z(O) = η.

b) From the definition of the representation S of §4 and Proposition 4.2 from [5] we
obtain by §2.1 an isomorphism

— l X Z XZ \ / 7 X L ,

where H' = Η — SL(2, Ζ){η) and Δ' = Γ\ Η. The given isomorphism extends obvi-
ously to an isomorphism

where Δ' is the set of regular points of Δ and H' is the inverse image of these points
under the natural map Η —> Γ \ Η. Thus it remains to extend this isomorphism by Table
4(*) to points ν which are elliptic and equivalent to η. Let z0 £ Η be a representative of
this point. Then, since Γ2ο is a subgroup of order three and ν is a point of type IV*, we
have

FW~ZW xZw\U xCw,

where U is a neighborhood of the point z0, F
w is defined in §2.2(i), and the action of C

corresponds to the action of some nontrivial element of Γζ on Zw X Zw \ U X C. This
obviously implies the existence of an extension of the isomorphism to (5.2). •
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