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H3B. Ακαα. HayK CCCP Math. USSR Izvestija
Cep. MaTeM. TOM 44(1980), Bun. 3 Vol. 16(1981), No. 3

SHIMURA INTEGRALS OF CUSP FORMS
UDC 517.4

V. V. SOKUROV

ABSTRACT. This paper studies integrals of the form /Ι, 0 0 Φ ζ λ dz on the upper half-plane,
where α is a rational number, 0 < k < w is integral, and Φ is a cusp form of weight w + 2
with respect to some modular group Γ c SL(2, Z). The main result is that if Γ is a
congruence subgroup and Φ is an eigenvector of all the Hecke operators, then all these
integrals are representable as linear combinations of two complex numbers with coeffi-
cients in some field of algebraic numbers.

Bibliography: 13 titles. Figures: 11.

This paper completes the proof, begun in [12] and [13], of a series of results on the

periods of cusp forms, Kuga varieties, and modular symbols, which were announced in

[10] and [11]. The author expresses his gratitude to Ju. I. Manin, in whose seminar this

work was completed.

§0. Main results

Integrals on the upper half-plane of the form

i'OO

<$zkdz, (0.1)

where the parameter α is a rational number, 0 < k < w is an integer and Φ is a cusp

form of weight w + 2 for some modular group Γ c SL(2, Z), are called Shimura

integrals. The goal of this paper is to study the Shimura integrals of a cusp form Φ for

some congruence subgroup which are of weight > 2 and are eigenvectors of all Hecke

operators.

0.1. Our notation for the theory of modular forms agrees with that of [8]. Recall that in

[8] Γ' denotes the congruence subgroup

Γ = \(a b\ <= SL (2, Z) | a e= &, b = 0 mod (/), c = 0 mod (yV)J. , (0.2)

where TV is a natural number, ί is a positive divisor of N, and i) is a subgroup of

(Z/NZ)*. The Hecke operators T'{n)w+1 (see §3.5 of [8]) act on the space SW+2(T') of

cusp forms for Γ' of weight w + 2.

The main result of this paper is the following theorem.
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604 V. V. SOKUROV

0.2. THEOREM ON PERIODS. Let Φ e= SW+2(J") be an eigenvector of all the Hecke

operators:

7 ν (η) 1 Β + ! φ=λ,Φ.

Then

dimK( 2 Κ. \ \
\ aSQ a

where Κ denotes the field of algebraic numbers Q(A,, λ2, . . . ).

Further, essentially equivalent, variants of this theorem are given in Theorems 5.2 and

5.4 of §5.

First of all we indicate the geometric interpretation of Shimura integrals. This

construction will be made for any modular group Γ c SL(2, Z). The condition

-Ε (Ζ Γ, (*)

which was required in [11] in order to simplify the construction, is not obligatory here. A

natural restriction on the pair (Γ, w) is that examined in [10]: w is a natural number and

is even if (*) does not hold (otherwise the integrals (0.1) and the forms are trivial). In [12]

we constructed, from the pair (Γ, w), a nonsingular projective variety Βγ over the field of

complex numbers. This variety is called a Kuga modular variety. It projects naturally

onto the modular curve ΔΓ = Γ \ Η:

The fiber of the Kuga variety Βγ over a general point of the base ΔΓ is the wth power of

an elliptic curve. The set of cusps of the modular curve Δ will be denoted by Π. The

Shimura integrals are interpreted as integrals of holomorphic forms of highest weight

over the relative cycles of the pair (Βγ, θ^Ιπ). where B™\n = (ΦΗ')~1(Π) is the restriction

of B™ to Π (see the beginning of §1 in [12]).

An algebro-geometric interpretation of cusp forms is given by the canonical isomor-

phism

(0.3)

defined in [12] (see §0.3 of [12], and for the case w = 1 see Shioda [9], Theorem 6.1).

Integrals of the type (0.1) are interpreted, via (0.3), as integrals of the holomorphic

form ω φ corresponding to Φ £ 5Ή>+2(̂ ) o v e r a relative cycle on B^ of dimension w + 1

whose boundary lies over a pair of cusps of Δ. Of course it would be more natural to

integrate over absolute cycles of B£, as in the case of abelian integrals, but then most of

the integrals of type (0.1) would not be included in this set-up. The use of absolute cycles

allows one to obtain arbitrary Shimura integrals, but it has its defects, which will be

indicated below.

Let us describe in more detail the interpretation of the Shimura integrals in the case of

an effective action of the group Γ on the upper half-plane 77 = { z e C | I m z > 0 } (that

is, Ε & Γ). This effectiveness condition is satisfied, for example, by T(N), the principal

congruence subgroup of SL(2, Z) of level Ν (see §1.6 of [8]) when Ν > 3. The set of



SHIMURA INTEGRALS OF CUSP FORMS 605

general points (a Zariski-open subset) of the Kuga modular variety B™ has the following
evident description. Denote by H' the set Η - SL(2, Ζ){η}, η = e2vi/3. On the analytic
manifold H' X Cw we have a free, proper, and discrete action of the group Γ Χ Ζ ' Χ Ζ"
(semidirect product) given by

(γ, n, m): (ζ, ζ) ~- (yz, (cz + df1 (ζ + zn + m)),

n, m<==Zw=Zx •·· xZ, ze f f ' , CeC a > = Cx · · · C,

(0.4)
az+b

cz -f- d

where γ = (" b

d) e Γ c SL(2, Z). Then there is an analytic isomorphism

where Δ' = Γ \ Η' c ΔΓ (see the start of the proof of 5.2.6 in [12]). For the interpretation
we describe a cycle such that if we integrate over it the differential form ωφ correspond-
ing to the cusp form Φ e SW+2(T), we get integrals on the upper half-plane of the form

β w

j Φ [J {nLz + mi) dz, (0.5)
i = i

where n = («,, ...,«„,) and m = (w,, . . . , mw) are integral vectors and α, β E Q = Q
U (oo, the set of rational numbers with an infinity adjoined. Let αβ be a path joining α
to β on H' and approaching the cusps a and β vertically (Q is considered as the set of
points compactifying Η to Η = Η υ Q). Over each point z e Int αβ we consider the
cell

{f e C | Vi = 1, . . . , w 3/,. e[0, 1] c R such that £, = /,(*«, + m,)}.

The closure of the symmetrized union of these cells defines the desired relative cycle on
Βγ with boundaries over the cusps of Δ that correspond to α and β. The homology class
of the given cycle does not depend on the choice of the admissible path α/ϊ in
Hw+i(sr> ΒΓ\Σ' Q)> where Σ = Δ - Δ'. This homology class equals GRlw{a, β, n, m}T.
The map

GRllW : Η, (Δ, Π, (R&Qf) -* H^ (J3r, Sr | 2, Q)

is the restriction of the geometric realization mapping ([13], §3) to the subspace
//,(Δ, Π, (Λ,Φ,Ο,Γ) c //((Δ, Σ, ^ZQ) (see [13], 2.5a and (3.3)). {α, β, n, m)T is a
modular symbol (see 1.2).

The following proposition (for a proof see §1) gives a geometric interpretation of
integrals of type (0.5) and, therefore, of the integrals (0.1).

03. PROPOSITION (on Shimura integrals).

w

> 2 (ncz + mi)dz = f ω φ .

This proposition enables us to transfer the study of the integrals (0.1) to the geometry
of the Kuga modular variety Βγ. One of the questions investigated is to determine how
completely the Eichler-Shimura relations describe the periods of cusp forms.
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Let / = Γ \ SL(2, Z) be the set of right cosets. By the periods of the cusp form Φ we
mean the following finite set of complex numbers:

ICO

Γ ( / , * , Φ ) = j (O\[g]wJzkdz, (0.6)
0

where g = (% b

d)£j & I, (Hg]w+2Kz) = (<* + d)-w~^(gz), and 0 < k < w is an in-
teger. Denote by s and t the matrices (°x "Q) and (} ~Q) respectively.

0.4. The Eichler-Shimura relations. The set of periods uniquely determines the cusp
form Φ and satisfies the following system of relations (for the proof see §3):

r(j, k, Φ) + (—l)V(/s, w—k, Φ) = 0 ;

r(j,k,O) + y, (-\fk (k)r(jt, w-k + i, Φ)

£ l / (°7)
r . f " > - k \ t t i t _

A geometric treatment of the Eichler-Shimura relations in the style of Theorem 1.9 of
[5] is given in §2. The system of relations (0.7) is also satisfied by the periods of the forms
in the complex conjugate space 5 w + 2 (r) :

Therefore it is more natural to study the periods of forms in the space
Sw + 2(F) © Sw+aCO' which, along with its first summand, will be called a space of cusp
forms in the sequel. In spite of this extension of the space of forms, the Eichler-Shimura
relations do not provide a complete system of relations among the periods. However, in
the case of a congruence subgroup Γ the system (0.7) can be supplemented by new
relations for the periods, which are also linear and homogeneous with integral coeffi-
cients.

The appearance of new relations is connected with the theory of the Hecke operators
T'(n)w + 2 on the spaces SW+2(T') of cusp forms. In this connection an important role is
played by the geometric interpretation of the Hecke operators indicated in §4. The cause
of the incompleteness of the Eichler-Shimura system is that the Shimura integrals, and in
particular the periods

:(ioo)

r (/, k, Φ) = £< f Φ (dz - bf (a - cz)w~k dz, g = ^Φ (dz — oy (a — czy az, g= \
g(0)

are integrated as integrals over relative cycles. The method of using Hecke operators to
obtain absolute cycles from relative cycles with boundaries over cusps, the idea of which
is contained in Manin's paper [5], evidently was first described by Drinfel'd [2]. This
device is also used here (see §4), and enables us to get a series of new relations, which,
together with (0.7), completely determine the values of the periods of the forms in the
space 5w + 2(r') θ SW+2(T'). These additional relations, connected with the theory of
Hecke operators, evidently were first stated by Manin [6]. In this paper they appear in
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§5. In addition to the general relations, every form Φ that is an eigenvector for some
system of Hecke operators

satisfies an additional system of linear, homogeneous relations with coefficients in the
field of algebraic numbers generated by the field Q of rational numbers and the
eigenvalues λπ of the Hecke operators.

The importance of studying the periods of cusp forms and their distribution among
the other Shimura integrals is revealed in the following result, which holds for any
modular subgroup Γ.

0.5. THEOREM. For any rational number a £ Q and any integer 0 < k < w, there exist
integers h(j, I) such that

for any cusp form Φ Ε 5Η,+2(Γ).

This theorem immediately follows from the results of §§1 and 3. These results are
connected with the concept of the modular symbol {α, β, η, m}T of a homology class (see
§1) corresponding to arbitrary α, β & Q and n, m Ε Ζ1". More precisely, (α, β, η, m}T is
an element of the homology space //[(Δ, Π, (R^^QT) of a pair (Δ, Π) with coefficients
in the sheaf (R^*Q)W. (R^mQT is a symmetric tensor power of the sheaf /?,<&„,(? =
G ® Q Q, a "rational" homological invariant of the elliptic surface BT. Modular symbols
were introduced by Manin [5] and Swinnerton-Dyer and Mazur [3], [4] as a means of
calculating the periods of cusp forms of weight 2.

The construction of the modular symbol is guided by an investigation of the properties
of the homology space //,(Δ, Π, (R^^QT) introduced in [13].

The formulations of some theorems announced in [11] are incomplete in comparison
with this paper, and also possess some imprecision, which disappears if one considers the
results of [11] for a group Γ containing no elliptic elements. Moreover, the modular
symbol of [11] is different from the monomorphism GRiw considered in §1. The
monomorphism GRfl

K translates Theorems 1, 2 and 3 of [11] into Theorems 1.5, 2.3 and
4.3, respectively. And Theorems 5 and 6 and the corollary of [11] correspond to
Theorems 3.4, 5.7 and 0.5, 0.2.

§1. Modular symbols and marked classes

1.1. We first define the mapping

(a, n, m) >-> {a, n, m}r.

The element {a, n, m}T will be called a boundary symmetric modular symbol of weight
w + 2, or, for short, "the modular symbol {a, n, m}r" (we shall omit the index Γ when
this will not lead to a misunderstanding). Below we shall canonically identify the space
7/0(Π, (/?,Φ,ς>Γ) with a subspace of Η0(Σ, tf^Q) (see [13], 3.1).

Let D c H' be a connected, simply connected domain such that gD η D = 0 for all
^ ε Γ - {±id}. In this case D can also be considered as embedded in Δ'; and z\D, the
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restriction to D of the natural coordinate on the upper half-plane H, can be considered a
branch of the many-valued function ζ (see [12], 2.1). In the group of sections G\^
choose a basis e,, e2 such that e , | v e2\Zo G G\Zo = Hx(BZg, Z) is a basis and

where ω is a form of the first kind on the elliptic curve BZo, z0 e D. This basis is easily
seen to be uniquely determined up to the transformations ±id. In case (*),

The last embedding here is canonically determined by the isomorphism (5.2) of [12].
Hence in this case a basis e,, e2 can be uniquely specified: ex\z corresponds to the path
[0, 1] X z0 c C, and e2\z to [0, 1] X 1 c C. At each point ο 6 Δ fix a local parameter τ;
all the discs about the point υ considered below are taken with respect to this local
parameter. Let α Ε Q and n, m e Zw. Denote by p0 ε Π the cusp corresponding to a.
Then there is a direct sum decomposition:

H0(U, (R&flf) = Θ Ha(ρ, (K^.Qf). (1.1)
ΡΞΠ

By definition the modular symbol (a, n, m}T is trivial on the summands
HQ{p, {Ri<&+QT) of (1.1) for/) ¥=p0. Therefore, the symbol (a, n, m}T can be defined as
an element of the homology space H0(p0, (R^^QT)- Consider a small disc Ε about p0.
Denote by Ua a neighborhood of α in H' that covers E. We denote this covering, as well
as its Galois group, by fa. We choose a point zE e Ua and identify it with the point
vE = Γαζ£. By what has been said above this identification corresponds to a canonical
choice of basis in the group G\VE C / ? ^ , Q | C in case (*); and if (*) fails, the basis is
determined up to ±id. We include the point υΕ as a 0-cell in some cellular decomposi-
tion of the disc Ε (all the cellular decompositions in this paper that are needed to
compute the homology of the sheaf (R^tQ)w are such that every point of special type is
contained within a 2-cell). Denote by (z£, n, m}f c H0(E, (Λ,Φ»Q)W) the cohomology
class of a 0-chain-namely, of the cycle

w

Y[ {njel-\- mje2)vE. (1-2)

The correctness of this definition in the case where (*) fails follows from the evenness of
w. Taking the projective limit of the projective system of spaces H0(E> (R^^QT) linked
by the morphisms

where E' c Ε c Δ are small discs (see [13], 3.1), we define

{a, n, m)T = lim {zE, n, m}f e= Ho (E, (R&ATh (1-3)
Ε

To confirm the correctness of this definition it suffices to show that {zE, n, m}§ =
{z'E, n, m}p for all zE and z'E. Indeed, from this it easily follows that the limit (1.3) exists

(') For a sheaf of coefficients <S we denote by if^, where Ο is a subset of Δ, the group of sections VC§, D) not
the restriction of if to D.



SHIMURA INTEGRALS OF CUSP FORMS 609

and is independent of the choice of zE. Moreover, this shows that the limit (1.3) is
independent of the choice of the local parameter at p0. First, consider "near" points zE,
z'E £ Ua. This means that these points can be joined by a path z^z'E (directed from zE to
z'E) which is isomorphically embedded in E' = Ε — p0 by the mapping Γα. Γα identifies
the path zEz'E with its image υ^ν'Ε = Υ α(ζ~^ζ'Ε).

Moreover, we shall consider that %t3^ is a cell; that is, the path z^z'E is homeomorphic
to the segment [0, 1]. In this situation one can define a connected, simply connected
domain z^z'E c D c Ua of the type described above. Let ex, e2 be the corresponding
basis of the group of sections G\D c R^^Q\D. Consider a cellular decomposition of Ε
that includes the cell v^v'E. Then the boundary of the 1-chain UJ^i(nJel + mje2)vE

ru'E
equals

Π (nfix \v, + m,e2 \o. )vE — J\ (tify |pj j + mje2 | 0 £ ) vE.
/=1 Β Ε y = 1

Therefore, {zE, n, m}f = {z'E, n, m}f for "near" zEz'E. For arbitrary points zE, z'E e Ua

one can define a finite sequence of points zE, . . . , ζΕ €Ξ Ua such that the pairs (zE, zE),
(zE, zE), . . . , (zE"\ zE), (zE, z'E) consist of "near" points. Hence the relation {zE, n, m}§
= {z'E, η, >η}γ immediately follows from the same relation for "near" points.

1.2. LEMMA-DEFINITION. There exists a unique mapping

QxQxZwxZw-yH1(Ar, Π, (/^O.Qf),

(α, β, η, m)^{a, β, η, m}T,

whose images {α, β, η, m}r are called modular symbols of weight w + 2 and which have
the following properties:

a) θ{α, β, η, m}T = { β, η, m}T - {α, η, m}T, where

d: Ht(Ar, Π, (/?,Φ.Ο)-)->//0(Π, (R&.Q)")

is the boundary mapping of the pair (Δ, Π) (see [13], (3.3), with IT = 0).
b) For any cusp forms Φ,, Φ2 G

β w β w

({α, β, η, m}T, (Φν Φ2)) = j Φ, J ] (n/z + m,) dz + f Φ2 [ ] («/ί + m,·) dz,

where α, β Ε Q, « = («,, . . . , «„,), w = (mv . . . , mw) G Zw, and ( , ) is the canonical
pairing constructed in [13] (see 0.1).

Moreover, modular symbols have the following properties:
c) //,(Δ, Π, (Λ,Φ,ς>Γ) = Z e ^ e Q ; Λ , Μ ε ζ - Q{«, A «, m} r.
d) //0(Π, (Λ,Φ,ΟΓ) = 2 a e p ; n , m e z l Q { « , «, m} r.
e) /or any n, m G Zw and α, β, γ 6Ε Q
(e,) {α, β, «, w} r + { β, γ, η, m}T + {γ, α, η, m}r = 0;
(e-j) /or a// 1 < j < w

{α, β, η, m} r = «/{α, β, n(j, 1), m(/, 0)}r + my{a, β, n(j, 0), m(/, 1)}Γ>

{a, n, m)T = η;·{α, n(y, 1), m(j, 0)}r + my{a, n(j, 0), m(j, l)} r,

n ( y , * ) = ( « „ . . . , «,·_ „ *, n j + , , . . . , « J ;
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(e3) for any element g = (a

c

 b

d) e Γ

> dn—cm, —bn + am}T={a, β, η, m} r,

(g(a), dn—cm, —bn + am}T={a, n, m}F;

(e4) for any permutation s e Aw of w elements

{α, β, s(n),s(m)}T={a, $,n,m}T,

{a,s(n), s(m)}T—{a,n,m}T,

where s(n) = (ns(l), . . . , ns(w)).

13. COROLLARY. For any α, β ε Q a«cf n, m G Zw

a. {a, a, «, w} r = 0, and

b. {a,y3, n, m}r = -{ β, a, n, m)T.

In the sequel we shall often omit the index Γ from the modular symbol, assuming that

the group Γ is fixed.

PROOF OF COROLLARY 1.3. a. This immediately follows from 1.2(e,) with α = β = γ,

since 3 is invertible in the field Q.

b. This follows from 1.2(et) with γ = α and from 1.3a. •

On the set Q X Q X Z" x Zw the group

GL+(2, Ζ) = { ( α 6^€ΞΜ 2 (Ζ)|α, b, c, de=Z, ad—bc>0}
\c dj

acts from the left by

g = [a ) :(α, β, η, m)->-(g(a), g(p), dn — cm, —bn+ am).
\c dj

This action induces an "action" on the modular symbols:

g|{a, β, η, m}r={g(a), £(β), dn—cm, —bn + am}T. (1-3')

{α, β, η, m}r is a homology class in the space of one-dimensional homology

HX(A, Π, (Ri^^,Q)w) which is written in the form of the given modular symbol. The

"action" (1.3') is defined not simply for the homology class but for its representation as

the modular symbol {α, β, η, m}r. The image of this "action" is also not a homology

class, but its representation as a modular symbol {g(a), g(/2), dn — cm, -bn + am)T

obtained from the initial symbol {α, β, η, m}T. Likewise, there is an "action" of the

group GL+(2, Z) on the boundary modular symbols

1 {a, n, m}r = {g(a), dn — cm,—bn + am\r. (1.4)
\c dj

In the sequel the "actions" (1.3') and (1.4) will be called transformations of modular
symbols by elements of the group GL+(2, Z). Moreover, a permutation 5 ε Aw defines
the following transformations:

s\ {α, β, η, m} = {«, β, s(n), s{m)}T,

s\{a, n, m} = {a, s(n), s(rn)}r.
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By (e3) and (e4) of Lemma-Definition 1.2 the transformations g\ and s\, for g e Γ and
s e Aw, of a modular symbol are equal to the original symbol. The transformation also
possesses the following general properties for all α, β G Q, n, m G Zw, g, g' e
GL + (2, Z)andi, s' G Aw:

(tPi)g\g'\ = gg'l and J | J ' | = s's\.
(tP2)g\s\ = s\g\.
(tp3) For all 1 < k < w

g| {α, β, η, m)T = nk(g\ {α, β, η (k, 1), m (k, 0)}r)

{a, β, n(k,0),m(k, 1)}Γ),

which is proved by 1.2(e2).
1.4. DEFINITION. Let / = Γ \ SL(2, Z) be the set of right cosets j = Tg, g = ("c

 b

d) G
SL(2, Z). For pairs (J, k), where j = Tg is a right coset and 0 < k < w is an integer, we
define a homology class £(J, k) in the space ///Δ, Π, (•/?i<J>+Q)H'):

ξ(/> £ ) = £ | { 0 , ioo, I», 1«—U}r.

where 1̂  is an integral vector whose entries are 0 and 1, the number of ones being k; for
example, we can take

U = ( l ^ . ^ j , 0, . . . , 0).

The correctness of the definition follows from (tp,), (tp^), L2(e3) and (e4). The element
10', k) G //,(Δ, Π, (RfimQ)w) will be called a marked

1.5. THEOREM, a.

# ! (ΔΓ, Π, (ί^Φ.ΟΓ) = 7,

b. For any modular symbol {α, β, η, m}r, where α, β ε Q and n, m G Zw, there are
integers h(j, k) such that

{α, β η, m } r = ^ h(j,k)l(j,k). (1.5)

PROOF, a. This is an immediate corollary of 1.2c) and of point b of Theorem 1.5,
proved below.

b. For any a J e Q there exists a finite sequence of points γ,, . . . , γΛ e Q and
elements gv . . . , gh+ x of the group SL(2, Z) such that

(«. Yi) = (*i(0), gi('oo)), . . . , (γ,, γ, + 1) = ( a + ,(0), &+I(/oo)), . . . ,

(the proof of this is contained in the proof of Theorem 1.6 of [5]). From 1.2(e,) and 1.3 it
is easy to derive the relation

{α, γ, η, m) = {α, β, η, m} + {β, γ, η, m)
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for any α, β, γ e Q and n, m e Z". Therefore, an induction can prove that

A - l

{α, β, η, m} = {α, γ,, η, m} + ^ {Ύ·> Ύ·+Ι> «. m ) + {Ύ*. β, η, m).

This reduces the proof of 1.5b to the case (α, β) = (g(0), g(/'oo)) for g = (a

c

b

d) e

SL(2, Z). In this case we have the representation

{α, β, η, m}=g\ {0, ioo, n', m'}, (1.6)

where ri — an + cm and m' = dm + bn, since g e. SL(2, Z).

Let
w w

Y[ (mx + rmy) = ^ / i t (n, m) χ»ίΤ"*, (1.7)
1=1 * = 0

where \ (« , m) are integral coefficients uniquely determined by the vectors n, m ε Ζ1".

From 1.2(e2) and (e4) we then get

w

{0 ioo, n, m) = ^ Λ*(η, m){0, too, \k, \w—\k}. (1.8)

To obtain the decomposition we use the operations (ej) and (e4) of 1.2, which, by (tp2)

and (tp3), commute with the transformations g\. Therefore, for any g G GL+(2, Z)

w

g\{0,ico,n,m} = ^ hk{n,m)(g\{Qtioo, 1*. l « — l f e » . (1.9)
ft=o

From (1.6) we then get

{α, β, η, m) = | j hk (n't rri) I (j, k), j = Tg e= /. •
ft=o

We shall compute some concrete decompositions. Let g G GL+(2, Z), 0 < k <w,
s ~ (? o) a n d f = (! o) ( t m s notation for the matrices (̂  "̂ ) and ({ ~l

0) will be maintained

throughout). By (1.6) and (tpt) we then have

g-|{too,0, lk, lw—lk}=gs\{0,ioo, 1.—1», —I»},

g|{ioo, 1, \h, 1.—l»}=g/|{0, i™, 1W, - 1 J , (1.10)

g | { l ,0 , lA, 1 .—1»}=^|{0, too, 1.—U, —1»>.

The corresponding polynomials (1.7) are of the form

x"- ft(—y) " = ( — 1 ) kxw~hy\

* l

(*-</Γ*(-</)* = Σ ( - l W
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Therefore, by (1.9) and (1.10),

g\ {ioc, 0, It, lm— h} = (— 1) (gs|{0, too, \w_k, \W— la,_t}),

g|{i°o, 1, It, lw— It}

= V ( - \)k+l K, (gt\{0, too, \w^k+i, \W— \w-k+i}), (1.11)
t

g\{i,o,ik,\w-h}=yi (~i)w+c(w~k)(gt2\{0;i^, h, i»-i(}),
1 = 0 ^ '

and in case g G SL(2, Z) we find that

g\{ioo, 0, 1A, \w—lk} = (—l)hl(js, w—k),

g|{t°c, 1, It, lw—1*} = 2 (—1)*"( . }l(jt,w-k + i), (i.i2)
i=o V ' /

i=o

where./ = Tg e /.

PROOF OF LEMMA-DEFINITION 1.2. Uniqueness. Let a j £ Q and n,m EL Z W . Assume

that we have two modular symbols {α, β, η, m) and {α, β, η, m}', and put σ =

{α, β, η, m) - (α, β, η, m}'. Then σ G #j(A, ( i ^ » Q D by a. By b, (σ, (Φ1? Φ^) = 0

for (Φ,, Φ2) G SW + 2(T) Φ SW+2(T)- Since the pairing ( , ) is nondegenerate (see [13], 0.2)

we find that σ = 0.

We first prove (e,) and (e2). The second identities of (e^ and (e4) evidently follow from

(1.2) and (1.3). In the remaining identities in (e,) and (e^ there are modular symbols of

the form { , , , } that are as yet undefined. Therefore, the proof of these identities is

subsumed under the proof of the existence of the third symbol, if at least two of the

symbols in the identity are known to exist. The third symbol is defined as a homology

class in the space Η{(Α, Π, (Rfi+QT). To prove the existence of the third symbol,

properties a and b must be verified. The methods of verifying the various cases are

similar. As an example we take the case of the homology class (α, β, η, m) defined by

the first identity of (e2), assuming known the existence of the modular symbols

(α, β, n{j, 1), m(j, 0)} and {α, β, n(j, 0), m(J, 1)}· By the second identity of (ej we

then have

d{α, β, η, m} = n,d{a β, n(j, l),m(J, 0)} + m,-d{a, β, n(j, 0), m(j, 1)}

= "/ {β- " (/, 1)- tn (j, 0)} — η, {α, η (j, 1), m (j, 0)} + m, {β, η (j 0), tn (j, 1)}

— ηι,{α, n(j, 0), m(j, 1)} = {β, η, tn} — {a, n, tn}.

Moreover,

({α, β, η, m), (Φ,, Φ,)) = η,· ({α, β, n(j, 1), m(j, 0)}, (Φ 1 ; Φ2))

β W

+ m, ({α, β, η (j, 0), tn (j, 1)}, (Φ1; Φ2)) = f Φχ Γ] (mz + m,-) dz

2 Π ̂ ί2 + mi) ά ζ ·
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Therefore, the modular symbol {α, β, η, m} exists. The following statements may be
proved in the same style.

(e,) If the modular symbols {α, β, n, m) and {β, γ, η, m) exist, then so does the
symbol {α, γ, η, m], and we have the identity {α, γ, η, m} = {α, β, η, m) +
{ β, γ, η, m), where a , j ? , y £ Q and n, m G Zw are arbitrary.

The change in statements (e,), (e2) proved in this part, together with the uniqueness
and existence of the modular symbols [α, β, n, m} which will be proved below, complete
the proof of (e^ and (e2). (e4) is proved similarly.

Existence. Step 1 (reduction of the construction of the modular symbol {α, β, η, m}Tfor
arbitrary α, β G Q and n, m G Zw to the case of the construction of the modular symbols
{g(0), g(i'oo), lk, \w - lk}, where g e SL(2, Z) and 0 < k < w). Choose a finite se-
quence of points γ,, . . . , yh G Q between a and β, as at the start of b) in the proof of
Theorem 1.5. Using induction and (e,), we reduce the construction of the symbol
{α, β, n, m} to the construction of symbols of the form (g(0), g(/oo), n, m), where
g G SL(2, Z). By (e2) and (e4), to prove the existence of arbitrary symbols it suffices to
establish the existence of the symbols of the form {g(0), g(/oo), \k, \w — lk), where
g G SL(2, Z) and 0 < k < w.

Step 2 (construction of the cellular decomposition L'). Let L be the cellular decomposi-
tion of ΔΓ constructed in 1.9b of [5]. The cellular decomposition L' of Δ is gotten from L
by the following construction. Consider a point v0 G Δ that is not a cusp but is a 0-cell of
L. Then t>0 is the orbit of some point z0 = gi G H, where g G SL(2, Z).

(cd,) If v0 is not an elliptic point, then we kill the 0-cell vQ, joining the two cells e^(J)
and ex(js) into one: e[(J) = e^s) — e,(/) (see Figure 1). Evidently e\(Js) = -e[(J),
where e\(Js) is considered as a 1-chain with coefficients in Z, andy = Tg G /.

FIGURE 1

or e«

FIGURE 2

'Z(J)

FIGURE 3
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(cd2) If v0 is an elliptic point, denote by £ a small disc centered at the point v0. The

cellular decomposition L locally at the point t>0 has the following form (see Figure 2):

0-cell vo, 1 -cell ex(J) = e2(js), 2-cell e'2(J) or e'2'(j) (our notation for the cells of the

complex L is taken from [5]). The following local change at the point υ 0 determines L'

locally at v0 (see Figure 3): 0-cell eo(J) = dE η <?,(/)> 1-cells e'[(J) = -de'i'UX ex(J)

(denotes the cell ex(j) of the decomposition L with the excised part e0C/)%)> 2-cells
e2'U) = Ε (with its natural orientation), e'2(J) or e'2'(J) (denotes the cell e'2(J) or e'2'(J) of

the decomposition L with the excised part E). Note that in the process of constructing

the cell complex L', the original 2-cell e'2(j) or e'2'(J) of the decomposition L can undergo

from one to three excisions.

Step 3 (construction of the cellular decomposition Le' for sufficiently small ε > 0). By

definition, L'o = L'. Let τ = e2mz be the natural local parameter at the unique cusp of the

curve ASL(2>z)· Consider some cusp vQ £ Π on the curve Δ = ΔΓ. This point is of type Ι ό

or IJ (b > 1). The canonical projection

maps the point v0 to the cusp of ASL(2>Z), and the order of ramification at the point v0 is b.
bi bi—

Therefore, we can take rCg = V τ ° Ψ , choosing one branch of the root V , as a fixed

local parameter at v0. Put

Fe= U El,, Εΐ,= {\τν

FIGURE 4 FIGURE 5

The cellular decomposition L'c will be a decomposition of the pair (Δ, F"). The cellular

decomposition L' locally at v0 has the following form (see Figure 4): 0-cell VQ, 1-cells e[

(1 < / <b) (equal to ex(j) or e\(J)), 2-cells e^ (1 < ι < b) (equal to e'2(j) or e'2'(J)). The

following local change at the point v0 determines L't locally for 0 < e at v0 (see Figure 5):

0-cells e^e (1 < / < b), equal to the points of the intersection dE£ n e[, 1-cells e[t

(1 < / < b) (they denote the cell e{ with the excised part eotv0), e\>te\c, . . . , eifc^ef^,
eo,c

eo,e' 2-cells E* and e2e (1 < /' < b) (they denote the cell e2 with the excised two-di-

mensional simplex Δυο^ό,^ό*1, where Z>+1 = 1). The 1- and 2-cells of Le' gotten by
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excision from the cells of the decomposition L' will be denoted by e,(y)e, e\(j\, e'2(j\
and e2(j)e. The cells eo(j), e'{(j) and e'2"(j) (see (cd2)) are not changed in constructing L'e.
We maintain our previous notation for them. The remaining cells of L't lie in Fe, By (cd,)
the range of variation of j for the 1-cells e[(J\, e\{J)Q = e[U)> consists of the./ satisfying
the inequality js Φ], since the inequality js φ} is equivalent toys φ ±j. Therefore, the
range of variation of j for the 1-cells e,(y'),,, ei(y)o = e\U\ a Q d e'\U) is given by the
equality js = j . Therefore, a 1-chain of the pair (Δ, F') for the cellular decomposition L'c
has the form (with coefficients in the sheaf (Ri&*Q)w)

/s=/

where

(as usual, the symbol for an /-cell denotes a homeomorphic image of the interior of the
/-dimensional sphere). The 2-cells e'2"(J) and the 0-cells e^J), as well as e,(/), are
numbered by the j such that js = j . According to 1.9b in [5], the 2-cells e'{{J)t,
e'iU)o = e'iU\ a r e numbered by they for which j ψ ~jt, since the inequality./ φ ~jt is
equivalent toy φ ±jt (we have the condition j φ ±jt instead of the condition j φ]ί of
[5] because here we are considering a group Γ c SL(2, Z), not Γ/ ±E c SL(2, Ζ)/ ± .Ε).
Consequently, the 2-cells e'2<J)t, e'2{j)0 = ejO"), are numbered by they such that -yf =y.
Then a 2-chain with coefficients in the sheaf {R^tQT for the pair (Δ, F') with respect
to the cellular decomposition L'e has the form

σ 2 = 2 β>Ι(/)ε+ 2 Ρ Μ ) . + 2 Ρ / ί ( / ) , (1.14)

where

In contrast to (2.5) of [13], this description of the chains σ, and a2 does not use a
noncanonical choice of a point u0 e Δ' or the identification (Λ,Φ^Ρ)*^ c -»(i?^ i Q) w | u

for the cells e of the decomposition L'e. The boundary operator on chains ae with
coefficients in (Λ1Φ%<3)"', where e is some cell, acts as follows:

where 3e = Ee;, and a\e denotes the continuous prolongation of the coefficient α £

(^i^*Q) w | e

 t o t n e boundary e,.

Step 4 (construction of bases of the group of sections G\efor the 0- and l-cells e = e\(j),

exU), e'{(j) and e0U)). Lety = Tg e /.
(cb,) e = ei(y'), y'i ^y. In this case there exists a domain D ο g(0 /oo) (0 /oo is the

imaginary semiaxis) of the type described in 1.1. In case (*) we have defined a canonical
basis e\ ,(g), e\ 2(g) of the group G|e-O) (the first lower index indicates the dimension of
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the cell over which the sections are taken, and the second numbers the basis). In case (*)
fails, the basis e\ x(g), e\ 2(g) is determined up to ±id (see the note in §2 to step 7 (cgj) of
the proof of 2.3).

(cb2) e = ex(j),js = j . In this case there exists a domain D ο g(ioo i) satisfying the
conditions of 1.1. By (cd2) we have defined an identification e\(J) c g(icc)z0 c g(ioo i)
(see Figure 6) for some uniquely determined point z0 €Ξ Η. Therefore, as in (cb[), in the
group of sections G\eM we have defined the basis exl(g), ei2(g). Making a similar
construction for gs £ ; , we get a basis e, i(gj), el2(gs) in the same group G\Ci(J). In the
last case ex(J) is identified with g(O)z'o c g(0 ioo) (see Figure 6), and the point z'o is
uniquely determined.

FIGURE 6

(cb3) e = e'{(j), js = j . Denote by zjjzj, a path with orientation of the cell e'{(j) on Η
(see Figure 6). This path is simple. There exists a domain D D Z^ZQ (as usual, ζ£ζ'ο
denotes the interior points of the path from z0 to z'o) of type 1.1. Therefore, as above,
identifying e'{(j) with z^z'o, we get a basis e"A(g), e'{2(g) in the group G\e,;U).

(cb4) e = eo(j),js = j . Identifying z0 with eo(j), we correspondingly find bases eoi(g),
eO2(g) and eol(gs), eo2(gs) in the group G | e o 0 r

Note that cases (cb2^,) are possible only if (*) fails, in which case there can exist
elliptic points equivalent to /. In the case where (•) fails, w is even. Therefore, the
symmetric products

, mi' (g) = J[ (η/*Λ (g) + m/*t (g)) ,\w ι
'*"(/) (1.16)

are uniquely determined by g and n, m e Zw, where ** and * denote the indices ', ", 1 or
2, or no index. By the construction of the bases ev e2 in 1.1 and (cb2^) we have

(m, nh (g) |eo(/, = (m, n)x (g) |_ i§(/) = (m, n)0 (g),

(m, n)l (g) \eM = (m, n\ (gs) \eM) = (m, n)0 (gs).

(1.17)

For brevity, in the sequel we shall write α · ee instead of a\e • ee, for α ε (^i^*Q) w | e • By
(1.13) and (1.15)-(1.17), and because all the 0-cells, except eo(j), lie in F', all the 1-cycles
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of the pair (Δ, F') with coefficients in the sheaf (R^^QT can be represented in the form
of a finite sum:

w

σ ι = Σ Σ Σ «U.kQi* l»-l*)i(g) ·βι(/)β

— (1*. U—U)i(gs)) •e1(/)E + (U, \w~\kh(g) -e\(/)), (1.18)
where o,·^, a/^ e Q.

Denote by {g(0), g(/ao), 1*, 1,, - 1*}' £ //,(Δ, F£, (Λ,Φ,<2Γ) the homology class of
the cycle

(U, i»-U).'te)e.'(/).

if/s 7^7, or the cycle

((U, L—l*)i(gs) —(1», 1»—U)i(g))ei(/)«—(1», 1-—l»)."(g)-ei"(/)

if/s = y, where 7 = Fg.
5 {properties of the homology class (g(0), g(i"oo), 1λ, 1̂ , — \k}').

g(too), U, \w-\kf = {z'&, \k, \w-\kf-{ze, lk,\w— \kY

where zE', ze in the case 75 ^=7 are determined by the oriented identification 1^z's c
g(0 /oo), and in case 75 = 7 are determined by the identifications z^0 c g(/oo)z0 and
ζζο C g(0)zo· This property follows immediately from the construction of the basis ex, e2

in 1.1,(1.15), (cb,^) and (1.2).
be. Denote by σε e Hl+J(BW, 5/,, Q) the image of the class (g(0), g(ioo), 1λ,

l w - lkY under the mapping (3.5) of [13] for F = F\ Then

ωΦ ι + ω φ 2 = j ΦιΖ*άζ + j Φ22*ί/2. (1.19)

To prove this, consider the identification of one of the 1-cells e^j)c, e[(J)e or e'{(J)e with
e c H. Suppose ex, e2 is a basis of the group G\e, and Z) D e is an open set chosen
according to 1.1. Then, in case (*), by (5.2) of [12] there is a canonical isomorphism

(1.20)

where id Χ Ζ" Χ Zw acts according to (0.4). In case (*) fails, by 2.1 of [12] and the
choice of the function z{u) there is also an isomorphism (1.20), but it is determined only
up to the automorphism (±id, 0, 0). Changing the sign of the basis ev e2 if necessary, we
can consider that ex\Zo and e2\Zo correspond to z0 X [0, 1] and [0, 1] (see the beginning of
§3.7 in [13]) for z0 e D. In case (*) this normalization is introduced in 1.1. By 3.7 of [13]
and the description of the embedding
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in 2.2 of [13] we have the following fundamental set a c D X C with orientation for the
chain [w\e^e2~ke\. σ is projected onto e c D and each fiber over z0 e e has the form

w

<«,m) . = i

where (n, m) runs through all the permutations (J(I^), ^(1,,, — \k)) for s Ε Aw (the group
of permutations of w elements). The definition of the differential form ωφ by 5.5 and
(5.4) of [12] in the general case and by (0.1) of [12] in the case (*) gives an evident form
of the lifting of the holomorphic form ω φ | β and the antiholomorphic form ω , ^ to
D X C :

ωφ = Φάζ /\dl1f\ .. . f\
(1.22)

ω φ = Φάζ Λ άζ1 Λ · · • Λ dlw.
Then, since

[o,'i]z0 [o,'i]^o [o.i] [oa]

by (1.21) and (1.22) we have

(z z' \

ο ο _ _\

j O^dz + f Φ2ζ"άζ , (1.23)
^» Zo /

where 3e = z'o — z0 on //. From the definition of the homology class {g(0), g(ioo), 1̂ ,
lw — \ky, 3.7 of [13], (1.23) and the additivity of the integral with respect to the domain
of integration we get

f ω Φ ι + ωΦι = w\ Γ
V \ ^
l
V

wlae

By cancelling w\ we prove (1.19) for any cusp forms Φ,, Φ2 e SW+2(T).
Step 6 (construction of the modular symbol {g(0), g(ico), lk, lw — ik)rfor g ε SL(2, Z)

and 0 < k < w). The pairs (Δ, Fe) form a cofinal system in the projective system 3.1 of
[13], and the homomorphism (3.1) of [13] for F' = F'\ F = F\ 0 < ε' < ε and S7 =
(Λ,Φ,ΟΓ takes the homology class (g(0), g(/oo), lk, lw - lk}*' to {g(0), g(ioo), lk,
lw ~ lkY- Therefore, the limit

{g(0),g(toc) t U, U —l f t } r = lirn{g(0), g(too), 1*. Ι» —1*}β

is defined. Passing to the limit in properties a6 and be gives a and b. Consequently,
{g(0)> g('°°)> U. lw ~ UJr i s a modular symbol. By step 1 this proves the existence of
the modular symbols {α, β, η, m}T for arbitrary α, β G Q and n, m £ Z*.

By (1.18)

tfx(Δ, F ε, (R&.Qf) = 2 Q {g(0), g(too), 1 *, 1» - 1 ,}ε,
geSL(2,z)
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whence, by (3.2) of [13], we get c. By 2.56 of [13] we have

//ο(Δ,(/? 1Φ.Ο)")=0 for a>5>l.

Point d is then gotten immediately from c and the surjectivity of the mapping θ in the

exact sequence (3.3) of [13] for <S = (R^tQ)w and Π' = 0 . Properties (e1 2) and (e4)

have been proved above.

We prove (e3). From the definition of a modular symbol and of cusp forms Φν

Φ2 e SW+2(T), by substituting g{z) in the integral

g(P) w

j Φι Π ({dn( - cm^f ζ + (— bn, + m,)) dz
g(ot) i=\

g(0) _ w

+ j Φ2 Π {(.dtii — cm/) z + (— bnt + m,)) dz,
(
j

g(a)

for g = (a

c

 b

d) e Γ we obtain

({£(«). £(β)> dn—cm,—bn + am}, (φ,, Φ 2 )) = ({α, β, η, m}, (φ,, φ 2 ) )

for all Φ,, Φ2 e S^+jiF). From the second identity in (e3) and the uniqueness we then

get the third identity. To prove the second identity it suffices to establish that

{zE, n, m)l = {g (ζε), dn — cm, —bn + am}^ (1.24)

by 1.1 and (1.3). zE and z'E = g{zE) belong to one orbit vE e Δ'. In agreement with 1.1

we denote by e,, e2 and e\, e'2 the bases in the group of sections G\V£ that correspond to

the identification of vE with zE and z'E. By definition of the representation (1.4) of [12],

by the continuity along a path in H' of the construction of the basis 1.1, and by (2.1) of

[12] we have

(e i ' ,e 2 ' ) = ± ( e 1 I e i ) ( g ) · (1-25)

The sign ± is absent in case (*); and when (*) fails it can be left out of account because

w is even; that is, we shall consider that

(1-26)

Consequently, by (1.2), {z'E, dn — cm, ~bn + am}E is the homology class of the 0-cycle

w

TJ ((dtii — cmL) {ae1 + be2) + (— bnt + am,) {cex + de2)) vE

i—1

which proves (1.24). •

1.6. By (e2) and (e4) it is easy to prove, using the notation of (1.8), the following

identity:
w

{α, β, η, m} = ^ ft* (η, m){a, β, U 1. - 1*} (1-27)
fe=o
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for any α, β £ Q and n, m £ Zw. From (1.27) for α = g(0), β = g(i<x>) and g Ε
SL(2, Z), and from (1.16), (1.7) and the linearity of the limit Um, we then get

{£(0), g(ioc), n, m} r = Hm{g(0), g(i°o), n, mf (1.28)

for any n, m £ Z", where (g(0), g(/oo), «, w}e £ #,(Δ, F e, (/?^^Q)W) is the homology
class of the cycle (n, m)\{g) • e\(J)t wheny'i Φ) and of the cycle

((«, m)i(gs) - {n, m

when js = y, y = Tg. Put

d + c)\k^c\w,(—b^a)\k + a\w)'i(g)e1(j)'e if /s

(d + c) 1» — clffi, (— b — a) 1 fc + a 1 ̂  (gs) — ((d + c) 1 * — c\w,

—b^^lk + al^fg)) • e1{j\ — ((d + c) \k — c\w, (—b — a)

x h + a 1 w\ (g) e[ (/) if js = /,

for arbitrary j = Tg & I, g = {"c

b

d) and 0 < k < w. By (1.16) and (1.18), |(y, A;)e £
Ζ,(Δ, /"*, (R^tQ)w), the group of 1-cycles of the pair (Δ, Fe) with coefficients in the
sheaf for the cellular decomposition L'e. Moreover, it is evident that £(y, k)c is indepen-
dent of the choice of the vector \k e ΊΓ for fixed k. To prove the correctness of the
definition of the cycle f(y, k)c it is also necessary to verify that the definition is
independent of the choice of g £ j . Suppose

- (

is another choice, where

Reasoning as we did above in the case of the points zE and z'E, we get a relation for the
bases that is analogous to (1.26) if we make a suitable normalization of ± in case (·)
fails:

Ci (g') = ae**\ (g) + &C2 (q), 4*2 (g') = ̂ Ί (g) + de",2 (g) (l .29)

for all possible ** and *. Therefore, by (1.16),

(«, /«)** (gg) = (an + cm, bn + dm)" (g) (1.30)

for all g G Γ, g £ SL(2, Z) and n, w £ Zw. Since

a' 6 ' \ / a *\ /a

from (1.30) it is easy to derive the identity

((<f +C')lk — c'lw, ( — b' — a')lk + a'\w)"(g')

= ((d-f c)lfc —cl», ( - 6 — o)l t +d e )"fe).
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In the same way, from the relations (1.30) for the pairs g's = ggs and gs we get (1.31)
with the substitutions g' H> g's and g H> gs, which proves the correctness of the defini-
tion of the cycle l(J, k\. Denote by &/> k\ e H\A, F", (R^^Q)W) the homology class
of l(j, k\. From (1.28), (1.3°) and the definition of £(/, k) we then have

l(j, fc) = lirn|(/\ k)B (1-32)

as ε -» 0.
PROOF OF PROPOSITION 0.3 (on Shimura integrals). This immediately follows from the

definition of the pairing ( , ) (see 0.3 of [13]) and Lemma-Definition 1.2 for Φ, = Φ and
Φ2 = 0. •

Denote by σ c Β γ the set of points with coefficient 1/vv! that was constructed with
respect to αβ c H' and n, m ε Zw just before Proposition 0.3. There σ was called a
relative cycle of the pair B™, B^\p . To prove this one must show that Supp σ c B£ is
a subcomplex of some cellular decomposition of B%. The last claim is evident for
arbitrary intersections Supp σ η Β^\Α_Ε uE , where Epo and Epi are small discs about
the cuspsp0 and/?, corresponding to α and β. That is, the verification of the cellularity of
the embedding of Supp σ is reduced to a local problem. This problem is not trivial; it is
solved by studying the character of the approach of Supp σ to the fibers B£\Po and Β™\ρχ.
This investigation will not be carried out here. The cycle σ was introduced with an
illustrative goal: to graphically represent the homology class GRlw{a, β, η, m}T in §0,
where we had not given a complete description of the geometric realization mapping or a
definition of the modular symbol. We shall show, under the assumption that the
embedding Supp σ c B£ is cellular, that the homology class of the cycle σ in
HW+X{B£, Β£\Σ, Q) is GRlw{a, β, η, m}T. For this it suffices, by 1.2, the definition of
the pairing ( , ), and 3.2a, b of [13], to verify the following properties:

a. 3σ = GROw({ β, η, m}T - {a, «, w}r), _

b. /σα,φ] + ωφ2 = /£*ilir-!(«,·* + "0 dz + /> 2 IiJ_,(«/ + m,) dz; Φ,, Φ2 e SW+2(T).
The last follows from the description of a fundamental set for Supp σ and the lifting of

the form ωφ on Η' Χ C1". By the stabilization of the limit (3.8) of [13], the definition of
{**, n, m), and 3.6 of [13], to prove point a it suffices to establish the homology

σ Π Β" Π (nJ
υΕ = orbit(z£),

where zE G αβ is a point near **; ••= α, β. The last is evident from the choice of the
basis ex, e2 in case (*) (see 1.1), the description of the embedding (i?^,,Q)W c^
(R^*Q)®W, 3.6 of [13] and the definition of a. •

§2. The Eichler-Shimura relations

Theorem 1.5a proves that the marked classes £(j, k) generate the space
7/,(Δ, Π, (Ri$+Q)w)- In 2.1 we indicate a system of relations among the marked classes
!(./, k) which are called the Eichler-Shimura relations. This is a complete system of
relations in the sense of Theorem 2.3.

2.1. The marked classes £(_/, k) satisfy the following system of linear homogeneous
relations over Z:

id, k) + (~\fi(jS, w-k) = o,
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where j G 1T = Γ \ SL(2, Z), the right cosets of the subgroup Γ (for brevity we shall

often simply write /), and 0 < k < w are integers. The relations in the system (2.1) are

called the Eichler-Shimura relations. Lety = Tg, g G SL(2, Z). By (1.3), 1.3b and l^fo)

we have

g\{0, too, lk, \w-ih}+gl{icx}, 0, lh, ΐ Β _ ΐ Α } = ο ,

g\{0, i*>x 1*. l«, — h} + g\{ioo, 1, U, \w— \k)

0, 1*, U - l A } = 0,

whence, by (1.12), we immediately get (2.1).

2.2. Let C r = φ Q(J, k) be the free vector space over Q generated by all the pairs

(J, k), where j G / r and 0 < k < w. Then there is a uniquely determined linear mapping

ξ ·' Cr—>-//,(Δ, Π; (Ri<f>,Q)w),

taking the generator (j, k) to £(y, k).

23. THEOREM. The kernel of the mapping ξ is generated by the vectors

(j, k) + (— l)"(js, w—k), (2.2)

* kH(k\ . . w"k w+i(w—k\

i=o Vl i=o i ' /
AeZ.

PROOF. Λβ/7 1 {reduction to the case of a homomorphism ξε). The homology classes

y, k)e (see 1.6) determine a Q-linear mapping

ξΒ: (/, k)^l{j, k)t.

By (1.32), ξ =lim £e. By the stabilization of the limit lim, Theorem 2.3 is equivalent to

the theorem with the same formulation but with the mapping £e in place of £, for

sufficiently small ε.

Step 2 {{j, k) + (-lf(js, w - k) G Ker \e if js φ]"). The cycle? \(J, k) (see 1.6) de-

termine a Q-linear mapping

Lety G I,js ¥=j and g = (° ^) 6 / Since g(0 /oo) = gi(0 /oo), in case (*) (cb,) yields

ei.i (gs). = ei>iL(g·), ei,B fes) = e'U2 (g). (2.4)

When (*) fails it is also possible to assume (2.4); for this it suffices to choose an

appropriate sign ±, which does not influence the subsequent computation because w is

even. By (cd,) and the subsequent construction of the decomposition L'e, it is evident that
e'i(Js)e = -βΊΟΧ· By the definition of | e , since gs = (b

d i£) we have

le((i,k)+(—\f(js,w — k))
= ((d + c) 1 * - c\ w, (— b - a) \k + a\ w\ (g) ex (j)e

+ ( - 1 )*+ 1 ( ( - c + d) 1 w^k - d 1 w, (a - b) 1 TO_A + &1 „>; (gs) e, (]\,

whence, by (1.16) and (2.4), we find that (j, k) + (~l)k(js, w - k) G Ker £e iijs ¥=j.
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Step 3 (a remark on bases of symmetric powers). Let ev e2 be a basis of the free

Z-module Ze, Θ Ze 2 . It is then easy to show that the following vectors in the symmetric

tensor product (Qe, Θ Qe2)
w form a basis of it over Q:

(aex — be2) (—cex -\- ae2)
w~k = (\d -f c) \k — c\w, ( — b — a)\k + a\w)

for integers 0 < k < w, where g = (a

c

 b

d) e SL(2, Z) is some fixed matrix.

Step 4 (| e « an epimorphism and Ker | e is generated by the vectors (2.2) with js ¥=j). By

the construction of the cellular decomposition L'e (see 1.9b of [5], step 2.3 of the proof of

9.2) the relation

for <?', <?j" e Q is generated by the relations

for js Φ]. We choose a finite set Γ a I such that for anyy G / there exists a unique

/ e / ' for whichy —j'sk. By the preceding, by (1.18), step 3, and by the definition of

&J> Oe> t n e vectors | ( j , ^)e>
 I o r 7 e ^' a n ^ integers 0 < k < w, form a basis of the space

Ζ,(Δ, F e , (Λ,Φ,Ρ)1"). Denote by C" the subspace of C spanned by the vectors (7. k),

wherey e / ' and 0 < k < w. Then | e | c . is an isomorphism. It is evident that every vector

in C is distinguished from some vector of C" by a linear combination of vectors of the

form (2.2) for js ¥=j with coefficients in Q. Consequently, by step 2, Ker £e is generated

by vectors of the form (2.2), where./' Ε I,js Φ], and 0 < k < w. Moreover, from the fact

that £ e | c . is an isomorphism it follows that | e is an epimorphism.

Step 5 {reduction to the proof that the subspace of l-boundaries 2?,(Δ, F', (Rl®ifQ)w) is

generated by the vectors

%{'!, k\ + (— 1 )* l(js, w - k)e, js = ;, (2.5)

1 = 0

+ 2 (— Xf+i \~ ) I(/'2. *'e. (2·6)
i=o V t /

w/iere j £ / α/ίί/ 0 < A: < w). By the definition of £ε we have a commutative diagram

where the vertical arrow is the natural epimorphism mapping a cycle to its homology

class. The kernel of the vertical arrow, Β,(Δ, F\ (Rfi+Q)"), is the space of l-boundaries

of the pair (Δ, F') with coefficients in the sheaf (R^mQ)w for the cellular decomposition

L't. Therefore, the variant of Theorem 2.3 that has | e in place of ξ reduces, by the

preceding step, to the proof that the vectors (2.5) and (2.6) generate the space

2?,(Δ, F', (Λ,Φ,<?Γ).
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Step 6 (generators of the space Vs for an elliptic mapping S). Let Κ be a linear space of

dimension w + 1 over Q with basis e0, . . . , ew. By ellipticity of S we understand that the

Jordan form of S on V <8> C is of the form

εο Ο

0 '·ε

where the e, are roots of 1 of degree /. Then Sl = E, and a simple verification proves that

the vectors Σ'~ο S'ek,0<k< w, generate the space Vs of 5-invariant vectors.

Step 7 (construction of generators of the group of sections of (Ri&*Q)w\e2for the 2-cells

e2 = e'2(j\ e'2'(j), e'2"(j)). Let./ = Tg G /.

FIGURE 7

(eg,) e2 = e'2(J), -β =j. Let £>' = g(E'), D" = gt(E') and D'" = gt\E') (seeFigure

7), where E' is a triangular domain with Poincare segments Zoo 0, Op and ρ ice. The

domains D', D" and D'" satisfy the conditions 1.1 and are identified with the open

subset D c e'2(j). According to 1.1, in the group of sections G\D we construct bases

e'2,i(g)> e'2a(g) and e'u(gt), e'22(gt) and e'2l(gt2), e'22(gt\ identifying D', D" and D'"

respectively with D. Let v0 and υ, be the orbits of the points g(p) = gt(p) and g(ioo)

under Γ, where ρ = η + 1 = em/3. Since -yi = 7, the point u, e Δ is also the orbit of the

points g(l) = gt(icc) and g(0) = g/2(/'oo).

FIGURE 8

The cell e'2(j) decomposes into cells (see Figure 8): 0-cell UQ, 1-cells vrvo (the image of

g(Up) or g(/oo p) or g(lp) under the factorization of H' by Γ), and 2-cell D. In the cell
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e'2(J) there is only one point of special type t>0, an elliptic point, equivalent to η; that is,
by 5.2a of [12], of type II or IV*. For points z0 e D we denote by β~ a negative simple
circuit around v0 along the open ring e'2(J) — t>0. The continuous prolongation of a
section u S (Ri&+Q)W\D along the path β~ defines a Q-linear mapping

It is then evident that we have a canonical isomorphism (induced by restriction)

) \D

because of the local constancy of the sheaf ( ^ ^ Q ) * on e'2(J) — v0. Therefore, by
definition of the sheaf (Rfi,,Q)w (see 2.1 of [13]) we get a canonical isomorphism

Moreover, by the local constancy of the sheaf (.Ri^^Qy\e^-o and the definition of S_,
as well as (1.3) of [12], we have the following commutative diagram (the horizontal
isomorphisms are induced by restriction):

s-J

where the linear mapping j f t - is induced by the mapping* Sp- for w = 1. Therefore, to
prove S_ elliptic it suffices to establish that i^ is elliptic when w = 1. By definition of
the normal form of monodromy Av (see [12], §1), since v0 is of type IV* or II (in case (*)
we have IV*), in a suitable basis of G\Zo c Λ,Φ*Ο|Ζο the mapping se- can be written as
the action of a right matrix ±Cj J)'1 (see [12], Table 1). This proves S_ elliptic.
Moreover, since the eigenvalues of the matrix ±(~J ~Q) are ±η and ±η~\ we have
Si = ± E. According to 1.1 and the definition of the mapping S_ in case (•) we get

Sj, ι (g) = β*Λ (gt), S_e'2,2 (g) = eM (gt),
(2.8)

Sieri (g) = e'iA (gt2), Sle2,2 (g) = e2,2 (gf).

In case (*) fails we shall also assume (2.8). For this it suffices to choose a suitable
normalization of ± for the bases e'2l(gt), e'22(gt) and e'2l(gt2), e'22(gt2) which does not
influence the subsequent choice of generators because w is even. By steps 3 and 6, and
by (2.7) and (2.8), as generators of the space (^^^Q)*"!^^) we can take the vectors

2

— ^ ({d + c)\k — c\w, (~b — a)\k+a\w)'2(gi) (2.9)
1 = 0

for integers 0 < k < w, where g = (a

c

 b

d) E. j and the (n, m)'2{*) are defined by (1.16).
(cgj) e2 = e'jij), -jt Φ]. Let D = g(E"), where E" is the domain defined in 1.9b of

[5]. The domain D satisfies conditions 1.1 and is identified with the cell e'[{J). Therefore,
according to 1.1, in the group of sections G\e.(J) we have defined a basis e'2\i(g), e'22{g).

'Editor's note. The apposed symbolism, which is apparently in error, is reproduced from the original.



SHIMURA INTEGRALS OF CUSP FORMS 627

Then, by step 3, in the space we have defined a basis

(2.10)

for integers 0 < k < w, where g = (° b

d) Ε j and the (n, m)'2'{*) are defined by (1.16).
REMARK. The construction of bases in 1.1 is carried out for domains D c H'. The

same construction can be generalized to the case of an arbitrary connected, simply
connected domain D c Η with the condition gD η D — 0 for g G Γ — {±E}. This is
necessary, for example, in (cb,) and (cg2). For the construction we embed D into Δ and
consider an arbitrary connected, simply connected subdomain D' c D η Η'. The given
domain D does not contain elliptic points of the group Γ. Consequently, by 5.2a of [12]
all the points of D are of nonspecial type. By the connectivity and simple connectivity of
D we then have an isomorphism (induced by restriction)

•G
\D'·

Therefore, the choice of a basis of G\D reduces to the choice of a basis of G\D,. Denote
by ex, e2 a basis of G\D such that the basis ex\D,, e2\D' of G\D, is constructed according to
1.1 for D'. By (5.2) of [12] the canonicity of this basis is evident, as is its independence of
the choice of D' in case (*). In the case where (*) fails, by the continuity of the
construction of 1.1 along a path, the choice of basis does not depend on D' and is
defined up to ±id. This means that for every domain D' c D satisfying conditions 1.1
the basis e^D., e2\D, is constructed by 1.1.

FIGURE 9

e,U)

FIGURE 10

(cg3) e2 = e2"U)'Js = J ( s e e s t e P ^ °f t n e proof of 1.2). Denote by D' the 2-gon with
sides z^zl and zjjzj, (see Figure 9), where the path z^z'o is defined in step 4 (cb3) of the
proof of 1.2 (see Figure 6), and 1^z'o is a path on g(0 /oo) from z0 to z'o. Put D " = gsg^D'
(see Figure 9); this is a domain obtained from D' by turning about g(i). The domains D'
and D" are identified with a domain D c e'2'\j). According to 1.1, in the group of
sections G\D we construct bases e'2[(g), e^gVand e'2'[(gs), e'2%gs), identifying D' and
D", respectively, with D. The image of the path ZQZQ on Δ will be the cell voeQ(J) (see
Figures 10 and 6). The cell e'2"(j) decomposes into cells (see Figure 10): 0-cell VQ, l-cell
v0e0(j), and 2-cell D. In the cell e'2"(j) there is only one point of special type HI or III*.
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Just as in (eg,) the paths β~ determine a Q-linear mapping S_, and there is a canonical

isomorphism (induced by restriction)

Since Av = ± (? "0) by Table 1 of [12], we can use the methods of (eg,) to prove that S_

is elliptic and that for w = 1 the mapping has eigenvalues / and -i. Therefore, the

eigenvalues of 5_ are ia(-i)w-a = (-\)a(-i)w. Now note that, by Table 4 (·) of [12], the

cells e'2"(j) are possible only in case (*) fails, since v0 is an elliptic point equivalent to /.

Therefore w is even, and the eigenvalues of 5_ are (-l)a + w/2, where 0 < α < w is an

integer. This means that S* = E. According to 1.1, the definition of the bases e'2"x(*),

e'2''2(*), and the definition of the mapping S_, we find that, for a suitable normalization of

5 - C (S) = C (gs), S_el, (8) = < 2 (gs). (2.12)

By steps 3 and 6, and (2.11) and (2.12), as generators of the space (ΚιΦ^)γν\^υ) we can
take the vectors

(2.13)

for integers 0 < k < w, where g = (" b

d) ε j and the (n, m)'2"(*) are defined by (1.16).

Step 8 (reduction of step 5 to the proof that the boundaries

1 = 0

a ( _ ((d + c) 1» - cU, (— b - a) lft + a\ w)\ (g) e\ (j)e),

1

are respectively the vectors (2.6) for -jt = j ; (2.6) for -jt φ}\ (2.5); where g = (° b

d) ej).

The proof of this reduction follows from the fact that the boundaries indicated in the

formulation of this step generate the space β,(Δ, Fe, (Rfi+Q)w). The last follows from

(1.14) and step 7, since e'2(j\ c e'2(J) and e'2'(j\ c e'2'(j). Therefore, to prove Theorem

2.3 it remains to establish the relations

d( — ^ 2 ((d + c) U — cite,, (— b —• a)

= ί(/,*)ε + 1 (-ΐ)*+1Γ)1(/^-<

(2.14)
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for -jt = j ,

k

= f (/, k)B + yt ( - ι f+1 (k) lat, w-k

+i l'W—k

Έ

1 = 0

1 = 0

for -jt ¥=j, and
1

2 ((d + c) \k — c\w, (—b — a)\k

- I (/, k)k + ( - 1 )k i(js, w - k)e (2-16)
fory'i = j , where g = (° b

d) e y G /.
S/e/j 9 (proof of the relations (2.14)). Note that in this case —jt = j .
a. Casejs = j . Note that in this case Γ = SL(2, Z). By formula (8) of [5], (cdj) and step

3 of the proof of 1.2 we have

(1-cells of the form eo^o*1 c F e (see Figure 5) are not taken into account, since the
differential of the pair (Δ, F') is computed). To compute the differentials of chains with
coefficients in a sheaf, by (1.15) it is necessary to know that a\e is the restriction with
respect to a corresponding approach to the boundary et. By definition of the bases
e\,\(g\ el2(g)\ exx(gs\ eh2(gs) and e';x(g), e'{2(g) in (cb2_3) of the proof of 1.2 (see
Figure 6), as well as by the definition of the bases e'2ii(g), e'22(g) in step 7 (cg[) (see
Figure 7) and the continuity of the construction of the bases in 1.1, we have, for a
suitable normalization of ± 1 (for a picture see Figures 7 and 8, where + and — indicate
the corresponding approaches to e,(J) and to -ex(j), and v2 is the orbit of the point g(i)),

for any g £ / In the last relation |+<.;•(/), since the cell e'{(j) c Z? and the boundary
therefore does not depend on the approach. In the first two relations (2.18) the cell e,(y)
is considered as the boundary of a cell of D (see (eg,) and Figure 8, ex(Js) = ex(j)). Note
that gt e ; and gt2 E:j, since (*) fails in this case. Moreover, efO'i')e = e\*(J)e since
jt' =j. Therefore, by (2.9), (2.7), (1.16), (2.18), (2.17) and (1.15) the left side of (2.14)
equals

2

c)lft — c\w, (—ft —iOU + aUite/'s)

\k — c\w,(—b — a)\k +a)w)1(gti))e1(jt)e

]k-c\w,(—b-a)\k + a\w)1(gti) ·<(//'). (2.19)
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From the relations

(χ —y)k ***="% (-\)k

( * - y)w~k ( - yf = S ( - 1
i=0

by substituting

* = — α£ι (g) + ae**2 (g), # = — (c + d) *Ci(5) + (a + b) £>"2 (q);

x=(—c—d) el\ (g) + (a + b) el*2 (g), y=— del\ (g) + be",2 (g)

correspondingly, from (1.16) we get the identities

((d + c)\k — c\w, (— b — a) \k + α ϊ » ) " (g)

= Σ <— 1>*+/ · 1 ( d l «-^- — (c + d) 1», — 61 »-*+.· + (a + b) \ w ) " (£), (2.20)

((d + c ) l A — c l e , (— & — « ) U + a U ) " f e )

= S (.-\ri(W~k)(-c\i-d\w,a\i + b\wf Q) (2.21)
(=0 V ί /

for any g = {a

c

b

d), g ^ SL(2, Z). For any j ε / such thatyi ' j =^7' with a fixed integer

0 < /' < 2, g = (° £) ε 7 and an integer 0 < k < w, we denote by T(Jt\ k)e the ?th

addend of the sum (2.19). Then from (2.21), (2.20) and the definition of the cycle

\{jt', k)t we get the identities

Τ (it, k)e = 2 ( - l)k+i (k) K/7, w-k + i)v

» = o V 1 •/ (2.22)

·

since

/a &\ t (a + b —a\ ,2 /b —a—
* - { „ d ) ' g ' { c + 4 - c } - t [ i - c - 4

From (2.19) and (2.22), (2.14) immediately follows in case/s = j .

b. Case js ¥=j. By (8) of [5], by (cd,) and step 3 of the proof of 1.2 (see Figures 8 and

1; the nonelliptic point v0 of Figure 1 corresponds to the point v2 of Figure 8) we have

άύ/)β=-<(/)ε- (2-23)

By the definition of the bases e'ul(g), e\2{g) in (cb^ of the proof of 1.2, and e'2tl(g),

e'22(g) in step 7 (eg,) (see Figure 7; g(0 <oo) is a boundary of D'), and also by the

continuity of the construction of the bases 1.1 (for the correctness see the remark after

(cg2)) we have, for a suitable normalization of ± 1 , in case (*) fails for any g ε ±j,

« , i (8)' <,a (8)) \±e>U) = Kx (g), β1Λ (g)). (2.24)
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The ± upon restriction of (2.24) to the boundary e\(j) of the cell D indicates the
simplicity of the approach. By general considerations accompanying the establishment of
(2.19), by (2.23), and also by (2.24) for g e ±j,gt G ±j and gt2 e ±7 we find that the
left member of (2.14) equals

2 ((d + c) 1* — c\a, (—b — a)h + \w\ (gt) e[ (jt\, (2.25)
1 = 0

since e\(±jt') = e\(j(-t)') = e\(J) as long as -jt =j. We extend the definition of the
1-cycle T(jt', k)e in the following way. For any j Ε / such that jt's j^jt' for a fixed
integer 0 < i < 2, g = (a

c

b

d) 6 7 and an integer 0 < k < w, we denote by T(jt\ k)t the
j'th summand of the sum (2.25). By (2.20), (2.21) and the definition of the cycles ΐΟ'ί', k)e

it is easy to verify (2.22) for the cycles T(jt', k)e just introduced. Therefore, the cycle
T(jt', k\ is now defined for anyy Ε /, 0 < i < 2 and 0 < k < w, and is connected with
the cycles l(j, k\ by (2.22). It is evident that (2.25) and (2.22) imply (2.14) in caseyj =£j.

Step 10 (proof of (2.15)). In this case -jt ¥=j. By (9) of [5] and steps 2 and 3 of the
proof of 1.2,

(/4-Μ/Οε + <0'0 if its = it ( 2 2 6 )

- e[ (jt) if jts φ jt.

By (cg2), one of the boundaries of the domain D is g(0 ice) (in Figure 7 the domain D is
represented as the interior of the triangle with Poincare segments joining the vertices
g((oo), g(0), g(l)). Therefore, for any g G ±j, by the construction of the bases in step 7
(cg^, and also by the continuity of the construction of the bases 1.1 we have, for a
suitable normalization in case (*) fails,

U ; ( / , = (e'1A (g), <,2 (g)) (2-27)

if js ¥=j, and

7, since e**l(±g) = ej*(g) and e%*2{±g) = ej^(g)· Note that, by the construction
in step 7 (cg2), since gt'(E") = D for any integers /, for a suitable normalization of ± in
case (*) fails

(el.i {gt), e,,t (gt)) = (4.i (g), el,2 (g)) (2.28)

for any integer i. Then, by the general considerations accompanying the deduction of
(2.19), by (2.26), (2.28) and (2.27) for g ej, gt <Ejt and gt2 e jt2, and also by the
definition of the cycles T(Jt', k\, introduced in step 9, we find that the left member of
(2.15) equals

( = 0

Σ Tdtk)e,

from which (2.15) follows, by (2.22).
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Step 11 {proof of (2.16)). In this case/? — j . Using (1.16) and the definition of \{j, k)c

and l(js, w — k)e from the matrices g = (a

c

 b

d) e j and gs = (b

d IJJ) G j (see 1.6), and also

by the equalities el%±g) = e%*x{g) and e:J2(±g) = e%*2(g), we get

SO", *)e + (- i )*!(/*, w-k)e

= ((d«i.i (^) — beli2 (gs))k (— celtl (gs) + ae1A (gs))w-k

- (deltl (g) - beut (g))k ( - ce l a (g) + ae i,2 (g))"^

+ (_ 1 )* ( - celtl (g) + aeU2 (g)f-k ( - deltl (g) + beltt (g))k

— ( - \)k(— c e i i l (gs) + ae1A(gs)f-k ( - de,.!(gs) + belA (gs)f) e, {j\

— ((deli (g) — bei,t (g)>k (— ce\A (g) + ae'l, (g))w~k

+ (-1 )fc ( - ce^ (gs) + ae'i2 (gs)f-k ( - d e ^ (gs) + fee;,2 (gs))*) el (j)

= - 2 ( ( d + c ) 1A - cl«-> (— ̂  - a) 1* + a l » i <
1 = 0

Therefore, for the proof of (2.16) it suffices to establish the equality

((d + c) 1 * - c\ w, (— b — a) U + al a ) ) 1 ig^) i>;" (/)

1=0
1

= — S ((d + c) lft - cl „, ( - b - a) h + a\w\ (gs<) e[ (j). (2.29)
1 = 0

By (cd2) of the proof of 1.2 (see Figure 3)

de't"(j) = —e[(j). (2.30)

Moreover, by definition of the bases ej',(g), ej'2(g) and (cb3) of the proof of 1.2 (see

Figures 6 and 9), e2'i(g)> e2,2(s) m s t e P 7 (c§3) ( s e e Figures 9 and 10), and also by the

continuity of the construction of the bases 9.1, for a suitable normalization of ± we get

for any g 6 ; , from which, by (2.11), (1.15), (1.16), (2.30) and (2.31) for g <Ej and gs ej

we get (2.29). •

§3. The period mapping of cusp forms

We recall the following notation (see [8], §2.1):

W + 2

~2
(ΦI ig)wJ (2) = (det g) 2 (cz + d)-*-* Φ (gz);

the transformation [g]w+2is defined for arbitrary g = (" ̂ ) e GL + (2, Ζ), Φ is a function

on the upper half-plane, and (det gfw+2^2 is an arithmetic root.

3.1. PROPOSITION. For any g E j e / r, an integer 0 < k < w, and a form Φ = Φ! + Φ 2

e ^ + 2(Γ) θ S w + 2 ( r ) we have

(ξ (/, k), Φ) = j (Φχ | [g]m+2) 2 * d ? + J (Φ21 [g]wJ ? dz,

ο ο

where the pairing { , ) is defined in [12].
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3.2. The complex numbers
ioo joo

r (j, k, Φ) = j (φ11 [g]w+2) z*dz+ j ( Φ 2 | [ ^ + 2 ) ?<fe
ο ο

for g €Ξ j £ / and integers 0 < & < w are called the periods of the cusp form Φ = Φ, +

Φ2 ε sw+2(T) θ sw+2(T).
By Proposition 3.1,

/·(/,*, Φ) = (!(/, Λ), Φ ) . (3.1)

By (3.1) we then get a system of relations for the periods of a cusp form:

/-(/, /e, Φ) + (—l)V(/s, w—k, Φ ) = 0 ,

ft (3.2)

r U, k, Φ) + 2 ( - 1 )''+* ( & ) r (//, α; - Jfe + t, Φ)

where y e / and 0 < k < w are integers. The relations (3.2) are called the Eichler-

Shimura relations for periods.

PROOF OF 0.4. This is an immediate consequence of (3.2) for

Φ e sw+2(T) c sw+2(T) θ SW+2(T)

and 3.4a. •

As usual, by C* we denote the dual space of C (see 2.2), and by (J, k)* we denote the

basis of C* dual to (J, k);

,·,*),σ.*r>-f? ν-^\,
\\ if j = / and k = A:.

Moreover, for any subfield Κ c C we put

C(/C) =

and dually

Consider the subspace of C'(A') consisting of the vectors

Σ r(i,k)a,ky

that satisfy the Eichler-Shimura relations; that is, /·(./, k) & Κ and

(/, ) ,
,,. (3-3)

k) + 2 ( - 1)ί+*

w-k
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for ally e / r and 0 < k < w. We denote this subspace by RW+2(T, K). It is evident that

for subfields K' c Κ c C we have the inclusion RW+2(T, Κ')^> Rn+2(X, Κ). Moreover,

since equations (3.3) are defined over Q, the embedding determines a canonical isomor-

phism of AT-spaces

(Γ, Κ) <8>κ- K^ Rw+2 (Γ, Κ),
(3.4)

3.3. DEFINITION. The space RW+2(T, C) is called the space of periods of cusp forms of

weight w + 2 for the group Γ. The r(j, k, Φ), the periods of the cusp forms Φ e SW+2(T)

θ SW+2(T) (see 3.2), determine a C-linear mapping

(Γ) -• Rw+2 (Γ, C),

In fact, the C-linearity of r follows from the C-linearity of the pairing ( , ) in the

second argument and from (3.1), and Γ(Φ) e ΛΜ,+2(Γ, Q by (3.2) and (3.3). The mapping

r will be called the period mapping.

3.4. THEOREM, a. The period mapping r is an embedding.

b. codim Im r = /, + t2d(w), where S(w) = 1 for even w and is 0 otherwise (for the

definition of tt see [12], 5.3).

PROOF, a. Suppose /-(Φ) = 0 for Φ = Φ, + Φ2 e S^+^r) θ SW+2(T). By definition of

the mapping r and by (3.1), (|(y, &), Φ) = 0 for any j 6 / and 0 < k < w. Therefore,

from the nondegeneracy of the pairing ( , ) (see [13], 0.2), and also since the £(J, k) by

1.5a generate H^A, (Rt<t>*Q)w) C #,(Δ, Π, (/?,Φ«<2Γ), we get Φ = 0.

b. For any field Κ c C duality gives us an isomorphism

R.+AT, KV^H^A, Π, (/?,ΦΛ0·). (3.5)

This duality is induced by the natural pairing ( , ) of the spaces C(K) and C*(K). The

proof of this is an immediate consequence of Theorem 2.3, the definition of RW+2(T, K)

and the relation

Η, (Δ, Π, (/?ιΦ.*Γ) = Η, (Δ, Π, (tfxO.Qf) ® Q tf. (3.6)

The last relation is the formula for "change of scalars": /^Φ»Κ = / ? ^ % Q <8>Q # .
Moreover, we note that by the definition of r we have

(σ, Γ(Φ)) = ( σ , φ ) (3.7)

for any σ <Ξ #,(Δ, Π, (R^,K)W) and Φ e SW+2(T) θ S w + 2 ( r ) .

The duality (3.5) and the injectivity of r enable us to know the dimension of

RW+2(T, C) and of Im r. Namely,

dime/?,»*, (Γ, C) = dimcHx (Δ, Π, (^ l f OtC)w) = dimo/Z^A, Π, (R

dimc Im r = 2 dimc 5^2 (Γ) = dimc Hx (Δ, (RjOJCf) = dimQ //x (Δ,
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(see [13], 6.1). Therefore,

codimc Im r = dimQ H1 (Δ, Π (R^Q)") — dimQ Hl (Δ, (R&Q," ).

Consider the exact sequence of pairs

0 -> Hx (Δ, (R&Qf) -> Η, (Α, Π, (^Φ.ΟΓ)

-* //0 (Π, (^Φ.αΓ) -* //„ (Δ, (/?^,QD - . · · · (3.8)

(see (3.3) of [13] with <% = (Rt<S>mQ)w and Π' = 0). Since H0(A, (R^Qf) = 0 for

w > 1 by 2.5b of [13], we have

codimc Im r = dimQ Ho (Π, (RjOjQf) = S dimQ //„ (p, (R&.Qf).
pen

Therefore, in order to compute codimc Im r it remains to prove that

1 if Ρ is of type IA (b > 1),

») , ( P is of ̂  « » > 1 .

By stabilization of the limit (3.8) of [13] for sufficiently small discs Ε 3 ρ and points

o (P, (R&.Qf) ^ Ho (E, (R&Qf) ~ (^©.Q)1" lc

H:inv. (3.10)

M0 e dE we have

The coinvariants in the last relation are taken for the monodromy about the point/?. The

monodromy matrix in an appropriate basis of the space (/?^ + Q) w | u is of the form (2.9)

of [13] (see the proof of Lemma 2.7), from which by (3.10) it is easy to get (3.9). •

PROOF OF PROPOSITION 3.1. By the definition of £0', k) (see 1.4) and by 1.2b we have

g(ioo)

= J ®1{fc — b)k(—
g(0)

(ioo)

J Q>i{dz — b)\—cz~
g(0)

for g = (° b

d) ELJ, detg = 1. Substituting ζ ~> g{z) in the integrals and applying the

definition of ̂ ,|[g]K, + 2> we get the needed relation. •

§4. The Hecke operators of the space ^ . ^ ( Γ . ̂ 0

The embedding r transfers the action of the Hecke operator Tw+2 from the space

SW + 2(F) ® ̂ +2(Γ) to the subspace Im r c Λ» + 2(Γ> C). In this section we construct a

natural extension of this operator Tw+2 on the space RW+2(T, C). The use of this operator

enables us to compute the equation of the subspace Im r c /^+2(Γ> Q-

4.1. Let Μ be a subset of matrices in GL+(2, Z) having the following properties:

a. Γ,ΜΓ2 = Μ.

b. Μ has a finite decomposition into right cosets

for some modular groups Γ, and Γ2.
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Then the following C-linear map is defined:

[M]w+2: S W I (I\) 0 Sw+2 (Ι\) -> S^2 (Γ2) φ Su+z (Γ3),

[Μ W2: Φ = Φ, + Φ2 ^ 2 (det gf (Φχ | [£w, +' Φ 2 | [

(see (3.4.1) of [8]). That this definition is independent of the choice of representatives of g

follows from the property \[gg']w+2 = \[g]w+2\[g']w+2 for any g, g' e GL + (2, Z) (see [8],

§2.1) and the definition of cusp forms. Therefore, to verify the correctness of the

definition of [M]w+2 it remains to verify the inclusion

For this it suffices to establish the inclusion [M]w+^Sw+2(Ti)) c ^ ^ ( Γ ^ · The last is

easily inferred from Proposition 3.37 of [8]; for this one must use the decomposition

Μ = U g Γ\ gT2 into a finite number of double cosets, which is possible by points a and

b and the evident relations [M]w+2 = Σ8 [ F ^ F J J ^ + J .

4.2. LEMMA-DEFINITION. Under the assumptions and with the notation of the preceding

subsection for admissible (Γ,, w) and (Γ2, w) the following assertions are true:

a. There exists a unique Q- linear mapping

,: Hx (ΔΓ ΐ, Π 2 , (R^Qf) - Η, (ΔΓ ι, Πχ> (Rjtojdf) (4.2)

[M]l+S: {α, β, η m}r2 «- 2 g | {α, β, η, m}r,

for any α, β Ε Q and* Λ, w e Z w , a«<3? α/*ο a«y decompositions Μ = \J -T^g.

b. There is a unique Q- linear mapping

[Λίΰ2://0(Π2, (flxO.Qn-ffotfl!, (^Φ,ΟΓ)

2 : {α, η, m}r2 ̂  ^ g j {a, n, m}r,

for any a G Q a«a* «, w £ Zw, ana" a/jo any decompositions Μ = \J g

The mappings in a α/ία" b Λαυβ the following properties:

c. The following diagram is commutative:

/ΜΔΓι, ΐ Μ ^ Φ . α η Λ //ο(π2> (^o.Q)")
* I I ·

lMw+2 ι jf^ie^

//x (ΔΓι, Π (^O.Q)·) 4» //0 (n l f (R&QT)

d. For any σ e /ί,(ΔΓι, Π2, (Λ,Φ,ΟΓ) a«rf any Φ e 5w + 2(r,) Φ 5 w + 2 ( r t )

( [ M W , Φ) = (σ, [Af]»^), (4.3)

which justifies writing the operator [M]* + 2 as /Λβ conjugate of[M\w+2.



SHIMURA INTEGRALS OF CUSP FORMS 637

Let Γ" be the congruence subgroup defined in §0 (see (0.2)). Put

Δ ' = Ua ^ e G L + ( 2 , Z)\a<=f>, 6 Ξ 0 mod (/), c~0mod(N)

in the notation of 0.1. Moreover, we consider the following sets of matrices:

defined for arbitrary integers n. It is easy to check that ΓΆ/ηΤ' = M'n; and according to

Proposition 3.36 of [8], M'n satisfies 4.1b. Therefore, there are defined a C-endomorphism

[M^]w+2 °f t n e space SW+2(T') θ SW+2(V) and a Q-endomorphism of the space

# , ( Δ Γ , Π, (/?,Φ»(?Γ) - [A/n']*+2. The endomoφhism [ Λ / χ + 2 is also called a Hecke

operator and denoted by T'(n)w+2. The mapping [M n ' ]* + 2 is also called a Hecke operator,

and we shall denote it by 7"(«)* + 2. 7"(n)* + 2 defines a ΛΤ-endomorphism of the space

#,(ΔΓ-, Π, (Λ,Φ,,ΑΤ) for any field AT c C by 3.6. By the duality (3.5) a AT-endomor-

phism T'(n)w+2 of the space RW+2(T', K) is determined. This mapping will also be called

a Hecke operator. We shall check that T'(n)w + 2 extends the Hecke operator T'(n)w+2

defined on Im r c ^ . ^ ( Γ ' , C) by the embedding r\ that is, the following diagram is

commutative:

( Π θ S™ (Γ) Q ft^2 (Γ, C)

5 ΙΤ"\ £D> C IV\ r— J? IV C\

To prove this it suffices to verify the relation

(σ, rT' (η)αΗ-2Φ) = {Τ' (n)an-2O, rG>)

for any Φ e ^ + 2 ( Γ ' ) θ 5'1ν+2(Γ') and σ e //,(Δ, Π, (Λ,Φ,ΟΓ). The last follows from

(4.3), since (,/•) = ( , ) by (3.7).

The following subgroup of Γ" with t = Ν and b = Ε

, Z) \g=E mod Λ̂ }

is called the principal congruence subgroup (of SL(2, Z)) o/ /et>e/ iV. The corresponding

Hecke operators will be denoted by TN{n)w+2 and TN(n)* + 2.

43. THEOREM, a. For any prime ρ = 1 mod

l ^ ) , Π ,
b. For any cusp p G Π c ΔΓ ( Λ ί ) ί/jere « α unique (up to multiplication by Q*) nonzero

homology class βζ+1 e #,(ΔΓ ( Λ Γ ), ί), ( Λ , Φ ^ Γ ) 5«cA /Λαί

^(^^ + 3 =(l+/7^)^ 2 (4.5)

/ο/- any prime ρ Ξ 1 mod (./V).

4.4. COROLLARY. For any congruence subgroup Γ there is a unique subspace S n + 2 C

//,(ΔΓ, Π, (Λ^,,Ο)14') WiA the following properties:

a- (6n+2> ^ + 2 ( Π θ Sw + 2(r)) = 0,

b. 3 6 Γ 2 = //0(Π, (Λ,Φ,ΟΓ).
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4.5. COROLLARY. Im r is defined by a homogeneous system of linear equations over Q in

the basis (j, k)* of the space C*(C). More precisely, there is a unique subspace SW+2(T, Q)

C Λ»+2(Γ, Q) such that SW+2(T, Q) ® Q C is canonically isomorphic to SW+2(T, Q = Im r

under the isomorphism (3.4) (Γ is a congruence subgroup).

PROOF. Let Sn + 2 be the space constructed according to 4.4. Put

Sw + 2(r, K) = (S£ + 2 <S>Q ΚΫ = ( 6 Γ 2 ) Χ ® Q * ,

where the orthogonal complement is taken with respect to the pairing ( , ) that
establishes the duality (3.5). Then, by 4.4a,

SW+2(T, Q)®QCZDlmr. (4.6)

The exact sequence (3.8) for w > 1 determines an exact (by 2.5b of [13]) triple

0 -+ Hx (Δ, (R&.Qfj - Ut (Α, Π, (Rjto.Q)") 4* Ho (Π, (/?χΦ.<ΐΓ) -* 0. (4.7)

By 4.4b and (4.7) we get

dimc 'S»». (Γ, C) = dimQ S^ (Γ, Q)s^dimQ//1(A, Π, (^Φ.ΟΠ

— dimQ //„ (Π, (^Φ.ΟΓ) = dime R^ (Γ, C) - /, - /2δ (a»).

The last holds by (3.9). Therefore, by 3.4b, dimc SW+2(T, Q < dime Im r, from which,
by (4.6), we obtain the existence of the space 5'Η,+2(Γ, Q). Uniqueness is evident. •

PROOF OF COROLLARY 4.4. Uniqueness. From (0.2) of [13] and 4.4a it follows that

S?i+2 η # , ( Δ , {R&.QY) = ο.

From the exactness of the sequence (4.7) and from 4.4b we then have a direct sum
decomposition

7/,(Δ, Π, {R^Q)W) = &w

n

+2 θ //,(Δ, (Λ,Φ,ΡΓ). (4.8)

Moreover, it is evident that if <Sn+2 is another space with properties 4.4a, b, then
Sn + 2 + Sn + 2 also has these properties. Hence, because of (4.8), it easily follows that
Sw + 2 c-w + 2

π - © π ·
Existence. 1. The case of a principal congruence subgroup Γ = ΤΝ. We first prove the

invertibility of the operator TN(p)w+2 — 1 — pw+l on the space SW+2(TN) θ SW+2(TN)
for a sufficiently large prime ρ » 0. For this, of course, it suffices to establish its
invertibility on SW+2(TN). The last leads to a proof that Ker(TN(p)w+2 - 1 - pw+l) = 0
for a prime ρ » 0. Consider the direct sum decomposition

where Γό is defined by (3.5.1) of [8] for t — N, and ψ are characters of the group
(Z/NZ)*. According to (3.5.6) of [8]

Τ Ν \P)w+2 | = 7 " (p)w+s,ti>-

Therefore, it suffices to establish the triviality of the kernels of the operators Τ'(ρ)ν+2φ

— 1 - pw+l for sufficiently large/? » 0. This is easily deduced from Lemma 3.62 of [8]
for Γ = TN, k = w + 2, and the relations \c(l) = c{pl) for T'(p)w+2<j/f =\f,\e C,
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By (4.5), (4.3) and the bilinearity of ( , ), the invertibility of the operators TN(p)w+2 —
1 — pw+x follows from the orthogonality

(e™, S-^ (IV) 0 S«».(IV)) = 0 (4.9)

for the vector e™+2 from 4.3b. It is only necessary to verify the nonemptiness of the set
of prime numbers ρ = 1 mod Ν, ρ » 0. The last follows from Dirichlet's theorem on
primes in an arithmetic progression. By (4.7) and 0.2 of [13] we find that de%+1 ^ 0.
Moreover, dim H0(p, (Λ,Φ*(2Γ) = 1 (see (3.9)). Therefore,

3(S?1+2) = "ο(π, (*,Φ,ς>Γ) for S r 2 = Σ 2 <2 < + 2

pen

By (4.9), Sn + 2 satisfies 4.4a. This proves the existence of £>n+2 m c a s e Γ = I V
2. The case of an arbitrary congruence subgroup. Let Γ be a congruence subgroup.

Then, from the definition, for some natural number Ν we have an inclusion IV c Γ.
Note that if the pair (Γ, w) is admissible, then the same holds for any subgroup Γ" c Γ
with the same w. Denote by Sn^j2 the subspace of Sn+ 2 constructed with respect to the
group TN according to 4.4 (see case 1). Consider the double coset Μ = Γ · Ε • TN =
Γ · Ε. Put

By (4.1)

(Γ) φ Sw+2 (Γ) = SW¥2 (Γ) φ Sw,2 (Γ) c S^2 (VN) φ Sw t2 (ΓΝ).

Therefore, from (4.3) and from the definition of S ^ 2 w e ^ η ^ t n a t 4.4a also holds for
Sn + 2 . That 4.4b also holds for S>n+2 follows from the commutativity of the diagram in
4.2c and the fact that [M]*+2 is an epimorphism. The last is easily gotten from 1.2d,
since by 4.2b

% {a-, n, m}TN = {a, n, m)T. •

PROOF OF THEOREM 4.3. a. By the commutativity of the diagram in 4.2c it suffices to
establish that

(7V (p)w+2 — 1 - η Ηο (Π, (fliO.Q)') = 0. (4.10)

Let g e SL(2, Z) be an arbitrary matrix. Then

since IV is a normal subgroup of SL(2, Z). The operator [TNgTN]^,+2 is invertible, and
[IVg~'lV]* + 2 is its inverse. Moreover, [TNgTN]^,+2 commutes with the operator
TN(p)* + 2, since TNgMj, = M^gTN, where M'p is a double coset constructed in the case
/ = N, b = 1. Consider the following decomposition into a direct sum:

The automorphism [TNgFN]^ + 2 permutes the components of this sum (see 4.2b). The
component of a cusp ρ = TNa is mapped to the component of the point p' = gTNa =
TNga. The cusp TNia0 can be mapped to any other cusp. Therefore, since the Hecke
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operator TN(p)* + 2 commutes with the automorphism [TNgTN]l,+2, by (4.10) it suffices to

show that

(TN (P)'w+z — 1 — P"""1) Ho (TN ioo, (RjO,Q.)w) = 0. (4.11)

To prove the last fact it is necessary to require that/» be prime and that/» Ξ 1 mod (N).

In fact, by Proposition 3.36 of [8] we then have

« > " M ' ' bN

0 \) 6=0 [β ρ ,
Therefore, by 4.2b and 1.2(e2), (e4),

Τ Ν {P)wl-2 {i OO, la,, 0}r(jV)

bN ρ ο
0 1

{ioo, \w, 0}

(4.12)

since {ioo, lk, \w — \k}r(N) = 0 for 0 < k < w. The last is proved by induction on k

using the relation

(see 1.2(e3)). In fact, by (1.7) and (1.8) (in the last formula one must replace

{0, ioo, *, **} by {ioo, *, **}) we find that the left member of (4.13) equals

{too, lfe, la,— U}r(W) — Nk{ioo, lk_lt \w—U_i}r(jv)
k-2

+ 2 Oil {ioo, 1/, la, — 1/}Γ(ΛΤ),

where a, G Z. From this we get what we need, using an induction on k, 1 < k < w. By

1.2(e2^,) the modular symbols {ioo, lk, l w — 1Α}Γ(Λί) for 0 < k < w generate the space

#o(rjv/«,> (Ri^mQT)- T h e n (4· 1 1) follows immediately from (4.12) and the triviality of

the modular symbols {ioo, lk, \w — lfc}p(jv)Ior 0 < /c < w.

b. The relation

is gotten in the notation of Proposition 3.38 of [8] by analogous methods by 4.2a, b.

Therefore, by Theorem 3.34 of [8] the operators TN(p)*+2 and TN(p')Z+2 commute for

primes/> =p' = \ mod (iV). Choose/? so large that the operator TN(p)w+2 — 1 — pw+1

is invertible on SW+2(TN) θ SW+2(TN). That this is possible was shown at the start of the

analysis of case 1 in the existence part in the proof of 4.4. From (4.11), with the aid of

the operator [TNgTN]t, + 2 permuting the summands of // 0 (Π, (R^#Q)W) =

φ , e n H0(p, (R^mQ)w) we find that

(TN (P)»+, - 1 — Pw^) Ho (V, (RjOAT) = 0

for all ( ΐ ε Π , since ρ = 1 mod (N). Therefore, for all f e Π

(TN (p)'w+2 - 1 - Pw+i) Ηί (Δ, i, (R&fif) C Ht (Δ, {Rjto.Qf). (4.14)
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The exact sequence (3.3) of [13] for <3 = (Rfi*Q)w, w > 1, Π' = 0 and Π = {£} by

2.5b determines an exact sequence

0 -> Hx (Δ, (^O.Q)") - * Η, (Δ, p, ( ^ O . Q D ^ //„ (P, ( ^ Φ . Ο Γ ) - , 0. (4.15)

The group Γ^ satisfies (*) for Ν > 3, but not for TV = 1 or 2. Moreover, it is well known

that all the cusps of Γ^ (Ν > 3) are of the first kind (type 1^). Consequently, by (3.9),

dim H0(p, (Ri$>tQ)w) = 1. Denote by εζ+2 φ 0 a vector of the space

//,(Δ, ρ, (Λ,Φ,ΟΓ)

for which

Τ Ν (ρ)1+^+ΐ = (1 + p»»i) e™™. (4.16)

The existence of this vector follows from (4.14) and from the exactness of the sequence

(4.15). From (4.3), (4.16), the bilinearity of ( , ) and the invertibility of the operator

TN(p)w+2- l~Pw+l on SW+2(TN) θ SW+2(TN) follows the orthogonality of (4.9).

Therefore by (0.2) of [13] we have that εζ+2 <2 //,(Δ, (Λ,Φ»<?Γ); that is, by (4.15)

<'#0. (4.17)

Consequently, by the one-dimensionality of the space H0(p, (Rfi+QT), the vector βζ+1

is determined up to multiplication by Q*. We shall show that e™+2 satisfies (4.5) for any

p' = 1 mod (N). In fact, since TN(p)*+2 and TN(p')*+2 commute, by (4.16) we have

TN (p)'w+2TN (p')L· e p = (1 + pw+l) TN {p')'^*.

Then, by the proof of uniqueness,

for some α ε Q. Applying the operator 3 to both sides of the last equality and using the

commutativity of the diagram in 4.2c as well as (4.14), we find that ade™+2 =

(1 + p'w+x)de;+2. Then, by (4.17), α = 1 + p'w+1. •

PROOF OF LEMMA-DEFINITION 4.2. We begin with points c, d and e.

c follows from 1.2c, a, (1.3-4) and 4.2a, b.

d follows from c and the exactness of the sequence (4.7).

e. By 4.2a, 1.2b and (1.3') we have

([Ai]L-2{a, β, η, m}ra, Φ) = ^ ί φ ι Π ((dni — 'cmc)z

ββ W

+ (—~bm + ami)) dz -f j Φ 3 J J (0n. _ crm) ζ + (— bnt + ami)) dz
go. ' = 1

for any α, β e Q, n, m <Ξ Zw and Φ = Φ, + Φ 2 <Ξ 5 w + 2 ( r , ) θ ^ . ^ ( Γ , ) , where g =

(f bd>· Changing ζ to gz in the integrals of this sum, we get, by the definition of

and [M]w+2,
β w

([M]'w+2 {α, β, η, /n}ra, Φ) = j [ΑίΙ^Φι Π ("<2 + **) dz
ι—ι

2 Φ 2 JJ (η,-J-f- m,)di = ({α, β, η,
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The last we get by 1.2b, since [Μ] ν ν + 2Φ = [Μ]Μ, + 2 Φ 1 + [Μ]Κ + 2Φ2 Β
^+2(^2) © S w + 2 (r 2 ). Now (4.3) follows from what has been proved, by 1.2.

The uniqueness of the mappings of a and b follows from 1.2c, d and (e3).
Existence, a. By the linearity of [M]* +2 and by the decomposition

{α, β, η, ηήτ, = {α, Ji, η, m}Ti + {yh, β, η, m)T, + ^ {ϊ» Ύ'+i- "· m>r2

£ = 1

(see the proof of 1.5b) and (1.6) it suffices to establish the existence of a mapping

t-^]*+2 s u c h t h a t

[MW2g|{0, ioc, η, /Π}Γ2 = 2 ^ Κ ° . i°°,«. "Or,

for any g e SL(2, Z) and n, m e Z1", and also for any decompositions Μ = U ̂  Γ, g.
Then by (1.9) and by the linearity of the mapping [M]* + 2 it suffices to establish the
existence of an [A/]* + 2 which is defined on marked classes of the following form:

\ k)T, = S £ g | { 0 > ι'°°» Π, U —l*}r, (4.18)

for any g £ SL(2, Z) and integers 0 < k < w, and also for any decompositions Μ =
Ug T,g, where j = F2g. By 1.2(e3) it is easy to verify that the right-hand member
depends only on the pair (J, k) in (4.18). Therefore, we can define a Q-linear mapping

[MUt:Cr, -> /ΜΔΓ,, Π!, (Rjto.Qf),

too, U, 1B _ 1,}Γΐ,

where j — F2g. Therefore, by Theorem 2.3, to prove the existence of [Λ/]*+2 it suffices
to establish that the mapping [M]J,+2 takes the vectors (2.2) and (2.3) to 0. In fact, by the
linearity of [M]* + 2 and by (1.11) (the first relation), for representatives g G j and
gs Gjs, we find that [M]* + 2 maps (2.2) to

oo, u, \w — i*}r i + £g|{ioo, 0, u, u —ι*} Γ ι = ο.
s

We get the same thing for the vector (2.3) by (1.11) (the last two relations) and 1.2(e,),
taking representatives g £ j , gt e jt and gt2 e jt2.

b. Consider the decomposition

//0(Π2, (^O.Q)") = ® Ho(9, (^Φ,ΟΓ).
pen,

Since {a, n, m}r G H0(T2a, (Ri<&+Q)w), it suffices to establish the existence of a Q-
linear mapping

2://O(P, (R&.Qf) -* ̂ 0 (Πι, (R&Af) (4.19)

for any ρ e Π2 such that

ζ {a, n, m}r2 = S SI {«. ", ^}Γ, (4.20)
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for any α e ρ (that is, t> = Γ2α) and n, m Ε Zw, and for any decompositions Μ =
Ug Γ,£. It is easy to show that if we are given a decomposition Μ = Ljr,g then
Μ = U Γ, gg is also a decomposition for any g £ Γ2. For any α Ε Q and n, m Ε Z1" we
have

fea, n, m } = g | {a, an + cm, dm + bn),

where g = (a

c

 b

d) £ SL(2, Z). Consequently, it suffices to construct a mapping (4.19) such
that (4.20) holds for some fixed a G p. Fix α Ε Q and ρ = Γ2α Ε Π2. Then, by 1.2(e3),
(e4) and by the linearity of (4.19), it suffices to establish the existence of a mapping (4.19)
such that

[M]*w+2{a, lft, \w — 1Α}Γ2= 2 i | { a , lft) U —lft}r, (4.21)

for any integer 0 < k < w, and also for any decompositions Μ = U ̂  Γ, g. In the
notation of 1.1, by 1.2(e3^) we can define a linear mapping

{«. It, U — 1 * } Γ ι

for any integers 0 < A: < w and for any decompositions Μ = U g Γ, g, where
Zo(£, (Λ,ΦΓ .Q)1") is the space of 0-cycles with coefficients in the sheaf (Λ[ΦΓ .Q)1" for a
cellular decomposition of Ε c ΔΓ (see Figure 11): 0-cell vE, 1 -cell i/£ and 2-cell E with
standard orientation. By definition of the mapping [Λ/]*+2, by the stabilization of the
limit Hm H0(E, (R^^QD, and by (1.3) and (4.21), to establish the existence of the
mapping (4.19) it suffices to check that

[M]*w+2B0 (Ε, (^Φτ,Λ)") = 0, (4.22)

where B0(E, (Λ,ΦΓ .Q)") is the space of 0-boundaries over Ε with coefficients in the
sheaf (R^r2.Q)w for a cellular decomposition of Ε described above, for a sufficiently
small disc E. Identify zE £ H' with vE, and zEz'E with dE. Denote by e1 v e, 2 a basis of
the group of sections G\3E chosen according to 1.1, and denote by e,, e2 and e\, e'2 a basis
of G\v for the identification of zE with vE and z'E with vE, respectively. Evidently, for a
suitable normalization of ± in the case where (*) fails we have (e, „ e, ̂ l ^ = (e,, e2)
and (e,!, e1?2)| = (e\, e'J.

FIGURE 11

Therefore, by (1.15), since ddE = νE — u£, the space B0(E, (Λ,Φρ^Ρ)"1) is generated
by the vectors ê  = ({e\f(e'2y~k - e^~k) • vE for integers 0 < /t < w. By (1.7) and
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(1.26) for g = ( ° J ) e r 2 such that gzE = z'E we get

Hence, by the definition of [ M ] * + 2 and the relation

~ w

g\{a, n, m)= ^ Mn,m)i|{a, h, U-l*},
*=o

which holds for any g G GL + (2, Z) and n, m E; Zw (proved just like (1.9)), it follows that

M W f t = 2 g | { a , (a — c)h + c\w, (b — d)lk + dlw}ri—g\{a, 1*. lw— l * } r ,
i"

Since ga = a, we have

{a, (a—OU+cU, (b—d)lk+dlu}=g-l\{a, h, I.—1»}.

Consequently,

[M] ' m Ei= Σ έ ^ Μ Κ !*> U — U } r , — g | K U, U — l*}rv

Γ

It is easy to show that Μ = U g r,gg~' is also a decomposition. Therefore

26fc = 0 .

The vectors ek generate the space B0{E, (Λ)ΦΓ .Q)w), which proves (4.22). •

§5. Theorems on the periods of cusp forms

In this section, unless stated otherwise, by Φ e SW+2(T') Φ 5'Μ,+2(Γ') we denote a cusp

form that is an eigenvector for all the Hecke operators T\ri)w+2 with eigenvalues \,; that

is,

Γ ( / ι ) β + ϊ Φ = λ»Φ (5.1)

for all natural numbers η > 1 and λ, = 1. The group Γ' is defined by (0.2). By Κ we

shall mean the field Q(AP λ2, . . . ) C C. It is well known that Κ is a field of algebraic

numbers. Let θ be the ring of algebraic integers of the field K. Since 0 c C, C can be

considered as an 0 -module. Therefore, it makes sense to speak of an 0 -submodule of C.

5.1. MAIN THEOREM. There exist a free θ -submodule 91L c C o/ rank < 2 such that

(βφχζ
Ιί dz β

for all o J e Q , all integers 0 < k < w, and Φ = Φ, + Φ2 e SW+2(T') θ SW+2(T').

Since the Hecke operators T'(ri)w + 2 on SW+2(T') Θ SW+2(T') are extensions of the

Hecke operators T'{ri)w+2 on SW+2(T') (see (4.1)), from Theorem 5.1 we get the following

result.

5.2. THEOREM. // Φ e 5Ή,+2(Γ') is an eigenvector of all the Hecke operators T'(n)w+2,

i.e. if(5.l) holds, then there exists a free 6 -submodule 91L c C of rank < 2 such that

ίβφζΙί dz e 911

a// o J e Q αηί/ integers 0 < A: < w.
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The following weakening of Theorem 5.1 is essentially equivalent to it (see 5.6).

53 . THEOREM. The following inequality holds (under the assumptions and with the

notation of 5.1):

Just as 5.2 followed from 5.1, the following result is immediately obtained from 5.3.

5.4. THEOREM. Under the assumptions and with the notation of 5.2,

/
dim*/

V

PROOF OF 0.2. This follows immediately from 5.4. •

The following lemma holds for any modular subgroup Γ.

5.5. LEMMA. For arbitrary α, β G Q and any integer 0 < k < w, there exist integers

h(j, I) such that

β β _ _

\zk dz = y, h (j, I) r (j, Ι, Φ)

for any arbitrary cusp form Φ = Φ, + Φ2 e £„,_,.2(Γ) θ 5'Μ,+2(Γ).

PROOF OF 0.5. This is an immediate consequence of Lemma 5.5. |

5.6. LEMMA. The following assertions about the form Φ are equivalent:

a. Theorem 5.1.
b. Theorem 5.3.

dimK / 2 Kr(j, I,

/ ' = Γ \ SL(2, Z).

d. 77;ere ex«/i cr free Θ -submodule 'DIL c C o/ ran/c < 2 JMCA /Λα/ rQ', /, Φ) e 911 /or

/ ' and 0 < / < w.

5.7. PROPOSITION. /« the notation of 5.6,

d i m * / 2 #/•(/, /,

PROOF OF THEOREMS 5.1 AND 5.3. These assertions immediately follow from Lemma

5.6 and Proposition 5.7. •

PROOF OF PROPOSITION 5.7. ^Φ) e Im r, and the vector ΚΦ), by the commutativity of

the diagram (4.4), gives a system of equalities over K: T'{n)w+2r(Q) = λη^Φ). Since
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Im r, by Corollary 4.5, is defined by a system of linear equations over Q (equations in

the preceding and in the last case are taken in the basis (j, k)*), it suffices to prove the

following inequality:

d i m c { x e = I m r | r (η)^2χ = ληχ, n = 1, 2, . . .

This inequality, by the commutativity of (4.4), is equivalent to

dime {Φ 6Ξ Sw+2 (Γ) 0 Sw+2 (Γ) | Τ (η)^2Φ = ληΦ, η = 1,2, . . .} < 2. (5.2)

If Φ = Φ, + Φ2 <Ξ SW+2(T") θ SW+2(T') satisfies (5.1), then by (12.1)

Τ ' ( η ) ν ι + ΐ φ 1 = λ η Φ ί , η = 1 , 2 . . . , Γ ( η ) ν + 2 Φ 2 = λ η Φ 2 , η = 1 , 2 , . . . .

Therefore, to prove (5.2) it suffices to show that

dim c (Φ e S W 2 (Γ') 1 V (n)w+2O = μηΦ, η = 1, 2, . ..} ^ 1

for any μί e C, i e TV. The last inequality follows from 3.53 and 3.44 of [8] (and also

(3.5.6) of [8]).

PROOF OF LEMMA 5.6. The implication a => b is evident. The implication b => c is

gotten from (3.1) and from the relation in the proof of Proposition 3.1. From the

finiteness of the set / ' the implication c => d evidently follows. The implication d => a

follows from Lemma 5.5. •

PROOF OF LEMMA 5.5. The left-hand member of the relation to be proved, by 1.2b,

equals ({α, β, lk, \w — \k), Φ). Therefore, this lemma is an immediate consequence of

1.5b and (3.1). •

5.8. REMARK (on new forms). Any new cusp form (see [1] or [7]) is an eigenvector of all

the Hecke operators. Therefore, for any new form Theorems 5.2 and 5.3 will hold.

Received l l/OCT/79
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