HALPHEN PENCILS ON QUARTIC THREEFOLDS

IVAN CHELTSOV AND ILYA KARZHMANOV

Abstract. For every smooth quartic threefold, we classify all pencils on it whose general
element is an irreducible surface birational to a smooth surface of Kodaira dimension zero.

1. Introduction

Let C be a smooth curve in P^2 that is defined by a cubic homogeneous equation $f(x, y, z) = 0,$
and let P_1, \cdots, P_9 be nine distinct points on the curve C such that the divisor

$$\sum_{i=1}^{9} P_i - O_{P^2}(3)|_C$$

is a torsion divisor of order $m \geq 1$ on the curve C. Then there is a curve $Z \subset P^2$ of degree $3m$
such that $\text{mult}_{P_i}(Z) = m$ for each point P_i. Let P be the pencil given by the equation

$$\lambda f^m(x, y, z) + \mu g(x, y, z) = 0 \subset \text{Proj}(\mathbb{C}[x, y, z]) \cong P^2,$$

where $g(x, y, z) = 0$ is a homogeneous equation of the curve Z and $(\lambda, \mu) \in P^1$. Then a general
curve in P is birational to an elliptic curve.

Remark 1.1. The construction of pencil P can be generalized to the case when C has at most
ordinary double points and the points P_1, \cdots, P_9 are not necessarily distinct (see [3]).

The pencil P is called a standard Halphen pencil.

Definition 1.2. A Halphen pencil is a one-dimensional linear system whose general element is
an irreducible subvariety that is birational to a smooth variety of Kodaira dimension zero.

The following result is proved in [3].

Theorem 1.3. Every Halphen pencil on P^2 is birational to a standard Halphen pencil.

Let X be a smooth quartic threefold in P^4. Then X is not rational, because

$$\text{Bir}(X) = \text{Aut}(X)$$

due to [5]. The following threefold analogue of Theorem 1.3 is proved in [1].

Theorem 1.4. Suppose that X is general. Then every Halphen pencil on X is cut out by

$$\lambda f_1(x, y, z, t, w) + \mu g_1(x, y, z, t, w) = 0 \subset \text{Proj}(\mathbb{C}[x, y, z, t, w]) \cong P^4,$$

where $f_1(x, y, z, t, w)$ and $g_1(x, y, z, t, w)$ are linearly independent linear forms, and $(\lambda, \mu) \in P^1$.

The assertion of Theorem 1.4 may fail without the generality assumption (see [4]).

Example 1.5. Suppose that X is given by an equation

$$w^3x + w^2q_2(x, y, z, t) + wxp_2(x, y, z, t) + q_4(x, y, z, t) = 0 \subset \text{Proj}(\mathbb{C}[x, y, z, t, w]) \cong P^4,$$

where q_i and p_i are a homogeneous forms of degree i. Let P be the pencil that is cut out by

$$\lambda x^2 + \mu (wx + q_2(x, y, z, t)) = 0$$

We assume that all varieties are projective, normal and defined over \mathbb{C}.

1
where \((\lambda, \mu) \in \mathbb{P}^1\). Then \(\mathcal{P}\) is a Halphen pencil if \(q_2(0, y, z, t, w) \neq 0\).

The purpose of the given paper is to prove the following result.

Theorem 1.6. Let \(\mathcal{M}\) be a Halphen pencil on \(X\). Then one of the following holds:

- the pencil \(\mathcal{M}\) is cut out on the hypersurface \(X\) by a pencil
 \[
 \lambda f_1(x, y, z, t, w) + \mu g_1(x, y, z, t, w) = 0 \subset \text{Proj}\left(C[x, y, z, t, w]\right) \cong \mathbb{P}^4,
 \]
 where \(f_1\) and \(g_1\) are linearly independent linear forms, and \((\lambda, \mu) \in \mathbb{P}^1\),
- the hypersurface \(X \subset \mathbb{P}^4\) is given by an equation
 \[
 w^3 + w^2 q_2(x, y, z, t) + wx p_2(x, y, z, t) + q_4(x, y, z, t) = 0 \subset \text{Proj}\left(C[x, y, z, t, w]\right) \cong \mathbb{P}^4,
 \]
 and the pencil \(\mathcal{M}\) is cut out on the hypersurface \(X\) by a pencil
 \[
 \lambda x^2 + \mu \left(wx + q_2(x, y, z, t)\right) = 0
 \]
 where \(q_i\) and \(p_i\) are homogeneous forms of degree \(i\), \(q_2(0, y, z, t) \neq 0\), and \((\lambda, \mu) \in \mathbb{P}^1\).

For a point \(P \in X\), let us define a mobility threshold by

\[
\iota(P) = \sup \left\{ \lambda \in \mathbb{Q} \mid n \left(\pi^* (-K_X) - \lambda E\right) \right\}
\]

where \(\pi: Y \to X\) is a blow up of \(P\), and \(E\) is the exceptional divisor of \(\pi\). Then

- the inequalities \(2 \geq \iota(P) \geq 1\) holds,
- \(\iota(P) = 1 \iff \) the hyperplane section of \(X\) that is singular at \(P\) is a cone,
- \(\iota(P) = 3/2\) in the case when \(X\) contains no lines passing through \(P\).

Remark 1.7. The proof of Theorem 1.6 implies that \(\iota(P) = 2 \iff X\) can be given by

\[
w^3 + w^2 q_2(x, y, z, t) + wx p_2(x, y, z, t) + q_4(x, y, z, t) = 0 \subset \text{Proj}\left(C[x, y, z, t, w]\right) \cong \mathbb{P}^4
\]

in a way such that \(P\) is given by \(x = y = z = t = 0\), where \(q_i(x, y, z, t)\) and \(p_i(x, y, z, t)\) are homogeneous polynomials of degree \(i \geq 2\) such that the inequality \(q_2(0, y, z, t) \neq 0\) holds.

The proof of Proposition 1.7 was completed on board of IL-96-300 Valery Chkalov while flying from Seoul to Moscow. We thank Aeroflot Russian Airlines for very nice working conditions.

2. Preliminaries

Let \(X\) be a threefold with \(\mathbb{Q}\)-factorial singularities, and let \(\mathcal{M}\) be a pencil on \(X\) whose general element is irreducible. We consider the log pair \((X, \mu \mathcal{M})\) for some \(\mu \in \mathbb{Q}\) such that \(\mu \geq 0\).

Remark 2.1. Let \(\mathcal{H}\) be a linear system on the threefold \(X\) whose general element is an irreducible surface. Then \(\mathcal{M} = \mathcal{H}\) if there is a proper Zariski closed subset \(\Sigma \subseteq X\) such that

\[
\text{Supp}(M) \cap \text{Supp}(H) \subseteq \Sigma
\]

for every general divisors \(M \in \mathcal{M}\) and \(H \in \mathcal{H}\) that are chosen independently of the subset \(\Sigma\).

Let \(\rho: X \dashrightarrow \mathbb{P}^1\) be a map induced by the pencil \(\mathcal{M}\). Then there is a commutative diagram

\[
\begin{array}{ccc}
Y & \xrightarrow{\alpha} & X \\
\downarrow{\beta} & & \downarrow{\rho} \\
\mathbb{P}^1 & & \mathbb{P}^1
\end{array}
\]

such that \(Y\) is smooth and \(\beta\) is a morphism. Let \(\mathcal{B}\) be the proper transform of \(\mathcal{M}\) on \(Y\). Then

\[
K_Y + \mu \mathcal{B} \equiv \alpha^* \left(K_X + \mu \mathcal{M}\right) + \sum_{i=1}^k a_i E_i,
\]
where E_i is an exceptional divisor of the birational morphism α and a_i is a rational number.

Definition 2.2. The singularities of the log pair $(X, \mu M)$ are terminal (canonical, respectively) in the case when each rational number a_i is positive (nonnegative, respectively).

It is convenient to specify where the log pair $(X, \mu M)$ is not terminal.

Definition 2.3. A subvariety $Z \subset X$ is a center of canonical singularities of $(X, \mu M)$ if $\alpha(E_i) = Z$ for some α-exceptional divisor E_i such that $a_i \leq 0$.

The set of all centers of canonical singularities of $(X, \mu M)$ is denoted by $\text{CS}(X, \mu M)$.

Remark 2.4. The log pair $(X, \mu M)$ is terminal if and only if $\text{CS}(X, \mu M) = \emptyset$.

Remark 2.5. Let $C \subset X$ be a curve such that $C \not\subseteq \text{Sing}(X)$. Then

$$C \in \text{CS}(X, \mu M) \iff \text{mult}_C(M) \geq 1/\mu,$$

where M is a general surface in the pencil M.

Suppose now that $M \equiv -\mu K_X$, and suppose that one of the following holds:

- either the divisor $-K_X$ is ample, or the divisor $-K_X$ is nef and big;
- the linear system $|-qK_X|$ is base point free for $q \gg 0$ and induces an elliptic fibration.

Theorem 2.6. Suppose that M is a Halphen pencil. Then $\text{CS}(X, \mu M) \neq \emptyset$.

Proof. Suppose that $\text{CS}(X, \mu M) = \emptyset$. Then $\text{CS}(X, \epsilon M) = \emptyset$ as well for some positive rational number $\epsilon > \mu$. The divisor $K_X + \epsilon M$ is ample. We consider the numerical equivalence

$$K_Y + \epsilon B \equiv \alpha^*(K_X + \epsilon M) + \sum_{i=1}^k c_i E_i,$$

where c_i is a rational number. Then each c_i is positive, and B is base point free.

Let S be a general surface in B, and let m be a big and divisible natural number. Then

$$\left|m(K_Y + \epsilon S)\right|$$

gives a dominant rational map $\xi: Y \dasharrow Z$ with $\text{dim}(Z) \geq 2$. The adjunction formula implies

$$m(K_Y + \epsilon S)_{|S} \sim mK_S,$$

which implies that $\text{dim}(V) \leq 1$, because S has Kodaira dimension zero. It is a contradiction. □

How to decide whether the pencil M is a Halphen pencil or not?

Lemma 2.7. Suppose that there is a nef and big divisor D on the threefold X such that $D \cdot C = 0$ for every base curve C of the pencil M, and $(X, \mu M)$ is canonical. Then M is a Halphen pencil.

Proof. It follows from [7] that for some rational number $\lambda > \mu$ there is a birational map

$$\xi: X \dasharrow W$$

such that the map ξ is an isomorphism in codimension one, the log pair $(W, \lambda H)$ is log-terminal, and the divisor $K_W + \lambda H$ is nef, where H is a proper transform of M on the threefold W.

Let H be a general surface in the pencil H. Since

$$H \equiv \frac{1}{\lambda - \mu} \left(K_W + \lambda H - (K_W + \mu H)\right),$$
the divisor H is nef. Then $|mH|$ is base-point-free for some $m \gg 0$ by the abundance theorem.

Let R be the proper transform of $|mH|$ on the threefold X. Then

$$D \cdot R \cdot M = 0$$

where R and M are general surfaces in R and M, respectively.

It follows from Remark 2.7 that the linear system R is composed from the pencil M, which implies that the pencil H is base-point-free and induces a morphism $\pi: W \to \mathbb{P}^1$.

The log pair $(W, \mu H)$ is canonical, because the map $\xi: X \dashrightarrow W$ is a log flop with respect to the log pair $(X, \mu M)$. Hence, the surface H has canonical singularities, and the equivalence

$$K_W + \mu H \equiv 0$$

implies that $K_H \equiv 0$. Consequently, the linear system M is a Halphen pencil.

The proof of Lemma 2.7 implies the following corollary.

Corollary 2.8. Under the assumption and notation of Lemma 2.7, suppose that

$$M \sim -nK_X$$

for some $n \in \mathbb{N}$. Then general surface in M is birational to a K3 surface or an abelian surface.

The following result is obvious but sometimes it is useful.

Lemma 2.9. Let C be a curve such that $\text{Sing}(X) \not\supseteq C \in \mathcal{CS}(X, \mu M)$. Then $-K_X \cdot C \leq -K_X^3$.

Proof. Let M_1 and M_2 be general surfaces in M. Then the inequalities

$$\text{mult}_C(M_1 \cdot M_2) \geq \text{mult}_C(M_1)\text{mult}_C(M_2) \geq 1/\mu^2$$

holds. We can find $H \in |-mK_X|$ that does not contain components of $M_1 \cdot M_2$. Then

$$\frac{m}{\mu^2}(-K_X^3) = H \cdot M_1 \cdot M_2 \geq \left(-mK_X \cdot C\right)\text{mult}_C(M_1 \cdot M_2) \geq \frac{m}{\mu^2}(-K_X \cdot C),$$

which implies the required inequality $-K_X \cdot C \leq -K_X^3$.

Let us introduce the following objects:

- let S be a normal irreducible surface;
- let O be a smooth point of the surface S;
- let R be an effective divisor on S such that $O \in R$;
- let \mathcal{D} be a linear system on the surface S such that
 - the linear system \mathcal{D} has no fix components,
 - the point O is contained in the base locus of \mathcal{D}.

Lemma 2.10. Let D_1 and D_2 be general curves in \mathcal{D}. Then

$$\text{mult}_O(D_1 \cdot R) = \text{mult}_O(D_2 \cdot R) \leq \text{mult}_O(R)\text{mult}_O(D_1 \cdot D_1).$$

Proof. Put $S_0 = S$ and $O_0 = O$. Consider the sequence of blow ups

$$S_n \xrightarrow{\pi_n} S_{n-1} \xrightarrow{\pi_{n-1}} \cdots \xrightarrow{\pi_2} S_1 \xrightarrow{\pi_1} S_0$$

such that π_1 is a blow up of the point O_0, and π_i is a blow up of the point O_{i-1} that is contained in the curve E_{i-1}, where E_{i-1} is the exceptional curve of the blow up π_{i-1}, and $i = 2, \ldots, n$.

Let D_j be the proper transform of D_j on the surface S_i for $i = 0, \ldots, n$ and $j = 1, 2$. Then

$$D_1^i \equiv D_2^i \equiv \pi_i^*(D_1^{i-1}) - \text{mult}_{O_{i-1}}(D_1^{i-1})E_i \equiv \pi_i^*(D_2^{i-1}) - \text{mult}_{O_{i-1}}(D_2^{i-1})E_i$$

for $i = 1, \ldots, n$. Put $d_i = \text{mult}_{O_{i-1}}(D_1^{i-1}) = \text{mult}_{O_{i-1}}(D_2^{i-1})$ for $i = 1, \ldots, n$.

Let R^i be the proper transform of R on the surface S_i for $i = 0, \ldots, n$. Then
\[R^i \equiv \pi_i^* \left(R^{i-1} \right) - \text{mult}_{O_{i-1}} \left(R^{i-1} \right) E_i \]
for $i = 1, \ldots, n$. Put $r_i = \text{mult}_{O_{i-1}} \left(R^{i-1} \right)$ for $i = 1, \ldots, n$. Then $r_1 = \text{mult}_O(R)$.

We may chose blow ups π_1, \ldots, π_n in a way such that the intersection $D^n_1 \cap D^n_2$ is empty in the neighborhood of the exclamational locus of $\pi_1 \circ \pi_2 \circ \cdots \circ \pi_n$. Then
\[\text{mult}_O \left(D_1 \cdot D_2 \right) = \sum_{i=1}^n d_i^2. \]

We may chose blow ups π_1, \ldots, π_n in a way such that the intersections $D^n_1 \cap R^n$ and $D^n_2 \cap R^n$ are empty in the neighborhood of the exclamational locus of $\pi_1 \circ \pi_2 \circ \cdots \circ \pi_n$. Then
\[\text{mult}_O \left(D_1 \cdot R \right) = \text{mult}_O \left(D_2 \cdot R \right) = \sum_{i=1}^n d_i r_i, \]
where some numbers among r_1, \ldots, r_n may be zero. Then
\[\text{mult}_O \left(D_1 \cdot R \right) = \text{mult}_O \left(D_1 \cdot R \right) = \sum_{i=1}^n d_i r_i \leq \sum_{i=1}^n d_i r_1 \leq \sum_{i=1}^n d_i^2 r_1 = \text{mult}_O(R) \text{mult}_O \left(D_1 \cdot D_1 \right), \]
because $d_i \leq d_i^2$ and $r_1 \leq r_1 = \text{mult}_O(R)$ for every $i = 1, \ldots, n$.

The obvious assertion of Lemma 2.10 is a cornerstone of the proof of Theorem 1.6.

3. CURVES

Let X be a smooth quartic hypersurface in \mathbb{P}^4, and let \mathcal{M} be a Halphen pencil on it. Then
\[\mathcal{M} \sim -nK_X, \]
because Pic(X) = $\mathbb{Z}K_X$. Put $\mu = 1/n$. Then $(X, \mu \mathcal{M})$ is canonical (see [5], [6], [2]).

Lemma 3.1. Suppose that $\mathbb{C}S(X, \mu \mathcal{M})$ contain a point $P \in X$. Then
\[\text{mult}_P(M) = n \text{mult}_P(T) = 2n, \]
where M is any surface in \mathcal{M}, and T is a surface in $| - K_X |$ that is singular at P.

Proof. Let M_1 and M_2 be two general surfaces in \mathcal{M}. Then the inequality
\[\text{mult}_P \left(M_1 \cdot M_2 \right) \geq 4n^2 \]
holds (see [6], [2]). Let H be a general surface in $| - K_X |$ that contains P. Then
\[4n^2 = H \cdot M_1 \cdot M_2 \geq \text{mult}_P \left(M_1 \cdot M_2 \right) \geq 4n^2, \]
which implies that $\text{mult}_P(M_1 \cdot M_2) = 4n^2$. Then the inequality
\[\text{mult}_P(M_1) = \text{mult}_P(M_2) = 2n \]
holds (see [6], [2]). Similarly, we see that
\[4n = H \cdot T \cdot M_1 \geq \text{mult}_P(T) \text{mult}_P(M_1) = 2n \text{mult}_P(M_1) \geq 4n, \]
which implies that $\text{mult}_P(T) = 2$. Similarly, we see that
\[4n^2 = H \cdot M \cdot M_1 \geq \text{mult}_P(M) \text{mult}_P(M_1) = 2n \text{mult}_P(M) \geq 4n^2, \]
where M is any surface in \mathcal{M}. The assertion is proved. \[\Box \]

Let M_1 and M_2 be two general surfaces in \mathcal{M}.
Lemma 3.2. Suppose that $\mathcal{CS}(X, \mu M)$ contain a point $P \in X$. Then

$$M_1 \cap M_2 = \bigcup_{i=1}^r L_i,$$

where L_1, \ldots, L_r are all lines on X that pass through P, and $r < +\infty$.

Proof. It follows from Lemma 3.1 that there

$$4n^2 = H \cdot M_1 \cdot M_2 = \text{mult}_P(M_1 \cdot M_2) = 4n^2,$$

where H is a general surface in $|-K_X|$ that passes through P. Thus, we see that the support of the cycle $M_1 \cdot M_2$ consists of all lines on X that contains P, which completes the proof. □

Lemma 3.3. Suppose that $\mathcal{CS}(X, \mu M)$ contain a point $P \in X$. Then the inequalities

$$n/3 \leq \text{mult}_L (M) \leq n/2$$

hold for every line $L \subset X$ such that $P \in L$.

Proof. Let D be a general hyperplane section of X that contains L. Then

$$M \big|_D = \text{mult}_L(M) L + \Delta,$$

where M is a general surface in \mathcal{M}, and Δ is an effective divisor such that

$$\text{mult}_P(\Delta) \geq 2n - \text{mult}_L(M).$$

We have $L \cdot L = -2$ on the surface D. Hence, we have

$$n + 2\text{mult}_L(\mathcal{M}) = L \cdot \Delta \geq \text{mult}_P(\Delta) \geq 2n - \text{mult}_L(M),$$

which implies $n/3 \leq \text{mult}_L(M)$.

Let T be the surface in $-K_X$ that is singular at P. Then the cycle $T \cdot D$ is reduced and

$$T \cdot D = L + Z,$$

where Z is plane cubic curve that passes through the point P. Thus, we have

$$3n = \left(\text{mult}_L(M) L + \Delta \right) \cdot Z = 3\text{mult}_L(M) + \Delta \cdot Z \geq 3\text{mult}_L(M) + 2n - \text{mult}_L(M),$$

which implies $\text{mult}_L(M) \leq n/2$. □

In particular, the set $\mathcal{CS}(X, \mu M)$ contains no curves and $n \neq 1$ if it contains a point.

Proposition 3.4. Suppose that $\mathcal{CS}(X, \mu M)$ contains a curve. Then $n = 1$.

Let us prove Proposition 3.4. Suppose that the set $\mathcal{CS}(X, \mu M)$ contains a curve Z. Then

$$\text{mult}_Z(M) = n,$$

the set $\mathcal{CS}(X, \mu M)$ contains no points, and $\deg(Z) \leq 4$ by Lemma 2.9.

Lemma 3.5. Suppose that $\deg(Z) = 1$. Then $n = 1$.

Proof. Let $\pi : V \to X$ be the blow up along the line Z. Then

$$B \equiv -nK_V,$$

where B is a proper transform of \mathcal{M} on the threefold V. There is a commutative diagram

$$\begin{array}{ccc}
V & \xrightarrow{\eta} & \mathbb{P}^2 \\
\pi \downarrow & & \downarrow \\
X & \xrightarrow{\psi} & \mathbb{P}^2;
\end{array}$$

where ψ is a projection from Z, and η is a morphism induced by the linear system $|-K_V|$.

It follows from the equivalence $B \equiv -nK_X$ implies that the pencil B is contained in the fibers of the elliptic fibration η. So, the base locus of B does not contain curves not contracted by η.

The set $\mathcal{CS}(V, \mu B)$ is not empty by the Theorem [2.9]. Then it does not contain points because the set $\mathcal{CS}(X, \mu M)$ contains no points. Hence, there is an irreducible curve $L \subset V$ such that $mult_L(B) = n$

and $\eta(L)$ is a point $Q \in \mathbb{P}^2$, where B is a general surface in the pencil B.

Every hyperplane section of the hypersurface X that contains the line Z is smooth in general point of the line Z. But B is the pull-back of a pencil P on the plane \mathbb{P}^2 via η. Then

$$P \sim O_{\mathbb{P}^2}(n),$$

which implies that $mult_Q(P) = n$. Then $n = 1$, because general surface in M is irreducible. \square

Thus, we may assume that the set $\mathcal{CS}(X, \mu M)$ does not contain lines.

Lemma 3.6. The curve $Z \subset \mathbb{P}^4$ is contained in a two-dimensional linear subspace.

Proof. Suppose that the curve Z is not contained in any plane in \mathbb{P}^4. Then $deg(Z) \geq 3$, and Z is smooth if $deg(Z) = 3$. If $deg(Z) = 4$, then Z may have at most one double point.

Suppose that Z is smooth. Let $\alpha: U \to X$ be the blow up at Z, and F be the exceptional divisor of the birational morphism α. Then the base locus of the linear system

$$\left|\alpha^*\left(-deg(Z)K_X\right) - F\right|$$

does not contain any curve. The later is impossible, because explicit calculations show that

$$\left(\alpha^*\left(-deg(Z)K_X\right) - F\right) \cdot D_1 \cdot D_2 < 0,$$

where D_1 and D_2 are proper transforms on U of the surfaces M_1 and M_2, respectively.

We see that the curve Z is a quartic curve with a double point P. Let $\beta: W \to X \subset \mathbb{P}^4$ be the composition of the blow up at the point P with the blow up along the proper transform of the curve Z. Let G and E be β-exceptional divisors such that $\beta(E) = Z$ and $\beta(G) = P$. Then

$$\left|\beta^*\left(-4K_X\right) - E - 2G\right|$$

has no base curves. The later is impossible, because explicit calculations show that

$$\left(\beta^*\left(-4K_X\right) - E - 2G\right) \cdot R_1 \cdot R_2 < 0$$

where R_1 and R_2 are proper transforms on W of the surfaces M_1 and M_2, respectively. \square

If $deg(Z) = 4$, then $n = 1$ by Remark [2.11]. Thus, we may assume that $2 \leq deg(Z) \leq 3$

Lemma 3.7. Suppose that $deg(Z) = 3$. Then $n = 1$.

Proof. Let P be the pencil in $|-K_X|$ that contains all surfaces that pass through the irreducible reduced plane cubic curve Z, and let D be a general surface in P. Then D is a smooth surface, and the base locus of the pencil P consists of the curve Z and some line $L \subset X$. We have

$$\mathcal{M}|_D = nZ + mult_L(\mathcal{M})L + B \equiv nZ + nL,$$

where B is a pencil on D without fixed components. But on the surface D we have

$$Z \cdot Z = 0, \quad Z \cdot L = 3, \quad L \cdot L = -2,$$

which implies that $L \in \mathcal{CS}(X, \mu M)$. But the set $\mathcal{CS}(X, \mu M)$ does not contain lines. \square
We may assume that Z is a conic. Let $\alpha: U \to X$ be the blow up at Z, and let D be a general surface in the pencil $|−K_U|$. Then D is a smooth K3 surface and

$$-nK_U|_D \equiv B|_D \equiv nL,$$

where B is a proper transform of the pencil \mathcal{M} on the threefold U, and L is the unique base curve of the pencil $|−K_U|$. The latter implies that

$$L \in \text{CS}(U, \mu B),$$

because $L^2 = −2$ on the surface D. Then $B = |−K_U|$ by Remark 2.1, which implies that $n = 1$. The assertion of Proposition 3.4 is proved.

4. General points

Let X be a smooth quartic hypersurface in \mathbb{P}^4, and let \mathcal{M} be a Halphen pencil on it. Then

$$\text{CS}\left(X, \frac{1}{n} \mathcal{M}\right) \neq \emptyset,$$

where $n \in \mathbb{N}$ such that $\mathcal{M} \sim −nK_X$. Suppose that $n \neq 1$.

Remark 4.1. To prove Theorem 1.6, we must show that X can be given by an equation

$$w^3x + w^2q_2(x, y, z, t, w) + wxp_3(x, y, z, t, w) + q_4(x, y, z, t, w) = 0 \subset \text{Proj} \left(\mathbb{C}[x, y, z, t, w]\right) \cong \mathbb{P}^4,$$

where q_i and p_i are homogeneous polynomials of degree $i \geq 2$ such that $q_2(0, y, z, t, w) \neq 0$.

It follows from Lemmas 3.3, 3.2, 3.3 that there is a point $P \in X$ such that

- there are finitely many distinct lines $L_1, \ldots, L_r \subset X$ containing $P \in X$,
- the base locus of the pencil \mathcal{M} consists of the lines $L_1, \ldots, L_r \subset X$,
- the equality $\text{mult}_P(M) = 2n$ and inequalities

$$n/3 \leq \text{mult}_{L_i}(M) \leq n/2$$

hold, where M is a general surface in the pencil \mathcal{M},
- for $T \in |−K_X|$ that $\text{mult}_P(T) \geq 2$, the equality $\text{mult}_P(T) = 2$ holds,
- for general surfaces M_1 and M_2 in the pencil \mathcal{M}, we have

$$\text{mult}_P\left(M_1 \cdot M_2\right) = 4n^2.$$

Remark 4.2. It follows from the proof of Lemma 2.7 that such point P is unique.

The quartic threefold X can be given by an equation

$$w^3x + w^2q_2(x, y, z, t, w) + wq_3(x, y, z, t) + q_4(x, y, z, t) = 0 \subset \text{Proj} \left(\mathbb{C}[x, y, z, t, w]\right) \cong \mathbb{P}^4,$$

where q_i is a homogeneous polynomial of degree $i \geq 2$.

Remark 4.3. The lines $L_1, \ldots, L_r \subset \mathbb{P}^4$ are given by the equations

$$x = q_2(x, y, z, t) = q_3(x, y, z, t) = q_4(x, y, z, t) = 0.$$

The surface $T \in |−K_X|$ that is singular at the point P is cut out on X by the equation $x = 0$.

Remark 4.4. The assertion $\text{mult}_P(T) = 2$ is equivalent to $q_2(0, y, z, t, w) \neq 0$.

Let $\pi: V \to X$ be the blow up at the point P and E be the π-exceptional divisor. Then

$$B \equiv \pi^*(-nK_X) - 2E \equiv -nK_V,$$

where B is the proper transform of \mathcal{M} on the threefold V.

Remark 4.5. The pencil \mathcal{B} has no base curves in E, because

$$\text{mult}_P\left(M_1 \cdot M_2\right) = \text{mult}_P(M_1)\text{mult}_P(M_2).$$
Let L_i be the proper transform of the line L_i on V, for $i = 1, \ldots, r$. Then

$$B_1 \cdot B_2 = \sum_{i=1}^{r} \text{mult}_{L_i} (B_1 \cdot B_2) \bar{L}_i,$$

where B_1 and B_2 are proper transforms of M_1 and M_2 on the threefold V, respectively.

Lemma 4.6. Let Z be an irreducible curve on X such that $Z \not\in \{L_1, \ldots, Z_r\}$. Then

$$\deg(Z) \geq 2 \text{mult}_P(Z),$$

and the equality $\deg(Z) = 2 \text{mult}_P(Z)$ implies that

$$\mathcal{Z} \cap \left(\bigcup_{i=1}^{r} \bar{L}_i \right) = \emptyset,$$

where \mathcal{Z} is a proper transform of the curve Z on the threefold V.

Proof. The curve \mathcal{Z} is not contained in the base locus of \mathcal{B}. Hence, we have

$$0 \leq B_i \cdot \mathcal{Z} \leq n \left(\deg(Z) - 2 \text{mult}_P(Z) \right),$$

which implies the required assertions. □

For every line $L \subset X$, it is known that L has normal bundle $\mathcal{O}_{\mathbb{P}^1}(-1) \oplus \mathcal{O}_{\mathbb{P}^1}$ if and only if no two-dimensional linear subspace in \mathbb{P}^4 is tangent to the quartic X along the line L.

Lemma 4.7. Suppose that L_i has normal bundle $\mathcal{O}_{\mathbb{P}^1}(-1) \oplus \mathcal{O}_{\mathbb{P}^1}$. Then $\text{mult}_{L_i}(\mathcal{M}) = n/2$.

Proof. Let $\alpha: W \to X$ be the blow up of the threefold X at the line L_i, and let F be the exceptional divisor of the blow up α. Then the surface F is the rational ruled surface \mathbb{F}_1.

Let Δ be the irreducible curve on the surface F such that $\Delta^2 = -1$, and let Z be the fiber of the morphism $\pi_F: F \to L_i$ over the point P. Then $F|_F \equiv -(\Delta + Z)$, which implies that

$$\mathcal{H}|_F \equiv nZ + \text{mult}_{L_i}(\mathcal{M})(\Delta + Z),$$

where \mathcal{H} is the proper transform of the pencil \mathcal{M} on the threefold W.

Let $\beta: U \to W$ be the blow up along the curve Z, and let G be the exceptional divisor of the blow up β. The surface E is the proper transform of G on the threefold V. Then

$$n + \text{mult}_{L_i}(\mathcal{M}) \geq \text{mult}_Z(\mathcal{H}|_F) \geq 2n - \text{mult}_{L_i}(\mathcal{M}),$$

which implies that $\text{mult}_{L_i}(\mathcal{M}) \geq n/2$. But $\text{mult}_{L_i}(\mathcal{M}) \leq n/2$ by Lemma □

The surface $T \in |-K_X|$ has only isolated singularities, and $\text{mult}_P(T) = 2$.

Lemma 4.8. Suppose that L_i has normal bundle $\mathcal{O}_{\mathbb{P}^1}(-1) \oplus \mathcal{O}_{\mathbb{P}^1}$ for $i = 1, \ldots, r$. Then $r \geq 3$.

Proof. Suppose that P is an ordinary double point of T. Then the conic

$$q_2(0, y, z, t) = 0 \subset \text{Proj} \left(\mathbb{C}[y, z, t] \right) \cong \mathbb{P}^2$$

is irreducible. Let H_i be a general hyperplane section of X that passes through L_i. Then

$$H_i \cdot T = L_i + Z_i,$$

where Z_i is an irreducible reduced cubic curve. The line L_i contains at most three singular points of the surface T, because the line L_i has normal bundle $\mathcal{O}_{\mathbb{P}^1}(-1) \oplus \mathcal{O}_{\mathbb{P}^1}$.

The curve Z_i intersect L_i at the point P and at some smooth point of T. Then

$$L_i^2 = H_i \cdot L_i - Z_i \cdot L_i < -1/2.$$
Let \bar{T} be the proper transform of T on the threefold V. Then \bar{T} is normal, and it follows from the inequality $L_1^2 < -1/2$ that $L_1^2 < -1$ on the surface \bar{T}. But

$$\text{Supp}(T \cdot M) = \bigcup_{i=1}^{3} L_i,$$

because $\text{mult}_P(T \cdot M) = 4n$. The equalities $\text{mult}_P(T) = 2n$ and $\text{mult}_P(M) = 2n$ imply that

$$\text{Supp}(\bar{T} \cdot M) = \bigcup_{i=1}^{r} L_i,$$

where \bar{M} be the proper transform of $M \in \mathcal{M}$ on the threefold V. Hence, we have

$$\bar{M}|_{\bar{T}} = \sum_{i=1}^{r} m_i \bar{L}_i,$$

but $M \cdot L_1 = -n$ and $\bar{L}_i \cdot \bar{L}_j = 0$ for $i \neq j$ on the surface \bar{T}. Then

$$-n = \bar{M} \cdot \bar{L}_j = \sum_{i=1}^{r} m_i \bar{L}_i \cdot \bar{L}_j = m_j \bar{L}_j \cdot \bar{L}_j,$$

which implies that $m_j < n$. Let H be a general hyperplane section of the quartic X. Then

$$4n = M \cdot T \cdot H = \sum_{i=1}^{r} m_i L_i \cdot H = \sum_{i=1}^{r} m_i = \sum_{i=1}^{r} m_i < rn,$$

which implies that $k > 4$. Thus, the inequality $r \geq 4$ holds.

Therefore, to complete the proof, we may assume that $r \leq 3$, and

$$q_2(x, y, z, t) = (\alpha_1 y + \beta_1 z + \gamma_1 t)(\alpha_2 y + \beta_2 z + \gamma_2 t) + xp_1(x, y, z, t)$$

where $p_1(x, y, z, t)$ is a linear form, and $(\alpha_1, \beta_1, \gamma_1) \in \mathbb{P}^2 \ni (\alpha_2, \beta_2, \gamma_2)$.

Let Z be the curve in X that is cut out by the equations

$$x = \alpha_1 y + \beta_1 z + \gamma_1 t = 0,$$

which implies that $\deg(Z) = 3$. Then $\text{Supp}(Z)$ contains a line among L_1, \ldots, L_r.

The curve Z is reduced. It follows from Lemma 4.6 that Z is none of the following curves:

- a union of an irreducible cubic curve and a line;
- a union of two lines and an irreducible conic.

Thus, the reducedness of Z implies that $r = 3$ and $Z = L_1 + L_2 + L_3 + L$, where L is a line on the quartic X that does not contain P. Then L intersects M in at least three points

$$L_1 \cap L, \ L_2 \cap L, \ L_3 \cap L,$$

but $M \cdot L = n$, which implies that L is contained in M by Lemma 4.7, which is impossible. \qed

The following conditions are satisfied for general smooth quartic threefold:

- are at most 3 lines on pass though a given point;
- every line has normal bundle $O_{\mathbb{P}^3}(-1) \oplus O_{\mathbb{P}^1}$.

Remark 4.9. To prove Theorem 1.6 it is enough to show that

$$q_3(x, y, z, t) = xp_2(x, y, z, t) + q_2(x, y, z, t)p_1(x, y, z, t),$$

where p_1 and p_2 are some homogenous polynomials of degree 1 and 2, respectively.

The remaining part of the proof of Theorem 1.6 splits into the following cases:

- the conic $q_2(0, y, z, t) = 0 \subset \text{Proj}(\mathbb{C}[y, z, t]) \cong \mathbb{P}^2$ is irreducible (see Section 5);
- the conic $q_2(0, y, z, t) = 0 \subset \text{Proj}(\mathbb{C}[y, z, t]) \cong \mathbb{P}^2$ is reducible and reduced (see Section 6);
- the conic $q_2(0, y, z, t) = 0 \subset \text{Proj}(\mathbb{C}[y, z, t]) \cong \mathbb{P}^2$ is not reduced (see Section 7).
5. Good points

Let us use the assumptions and notation of Section 4. Suppose that the conic
\[q_2(0, y, z, t) = 0 \subset \text{Proj} \left(\mathbb{C}[y, z, t] \right) \cong \mathbb{P}^2 \]
is reduced and irreducible. In this section we prove the following result.

Proposition 5.1. The polynomial \(q_3(0, y, z, t) \) is divisible by \(q_2(0, y, z, t) \).

Let us prove Proposition 5.1. Suppose that \(q_3(0, y, z, t) \) is not divisible by \(q_2(0, y, z, t) \).

Lemma 5.2. The surface \(T \) is singular outside of the point \(P \).

Proof. We suppose that the surface \(T \) is smooth outside of the point \(P \). Let \(\bar{T} \) be the proper transform of the surface \(T \) on the threefold \(V \). Then \(\bar{T} \) is smooth, and
\[\bar{L}_i \cdot \bar{L}_i = -2, \quad \bar{L}_i \cdot \bar{L}_j = 0 \]
on the surface \(\bar{T} \) for every \(i = 1, \ldots, r \) and \(j = 1, \ldots, r \). On the other hand, we have
\[
\text{Supp} \left(T \cdot \bar{M} \right) = \bigcup_{i=1}^{3} L_i,
\]
because \(\text{mult}_P(T \cdot M) = 4n \). The equalities \(\text{mult}_P(T) = 2n \) and \(\text{mult}_P(M) = 2n \) imply that
\[
\text{Supp} \left(\bar{T} \cdot \bar{M} \right) = \bigcup_{i=1}^{r} \bar{L}_i,
\]
where \(\bar{M} \) be the proper transform of the surface \(M \) on the threefold \(V \). Hence, we have
\[
\bar{M} \big|_{\bar{T}} = \sum_{i=1}^{r} m_i \bar{L}_i,
\]
but \(M \cdot \bar{L}_t = -n \) and \(\bar{L}_i \cdot \bar{L}_j = 0 \) for \(i \neq j \) on the surface \(\bar{T} \). Then the equalities
\[
-n = \bar{M} \cdot \bar{L}_j = \sum_{i=1}^{r} m_i \bar{L}_i \cdot \bar{L}_j = m_j \bar{L}_j \cdot \bar{L}_j = -2m_j
\]
implicate that \(m_j = n/2 \). Let \(H \) be a general hyperplane section of the quartic \(X \). Then
\[
4n = M \cdot T \cdot H = \sum_{i=1}^{r} m_i L_i \cdot H = \sum_{i=1}^{r} m_i = rn/2,
\]
which implies that \(r = 8 \). But the lines \(L_1, \ldots, L_r \subset \mathbb{P}^4 \) are given by the equations
\[
x = q_2(x, y, z, t) = q_3(x, y, z, t) = q_4(x, y, z, t) = 0,
\]
which implies that \(r \leq 3 \), because
\[
r \leq \left| x = q_2(x, y, z, t) = q_3(x, y, z, t) = w = 0 \right| \leq 6
\]
due to our assumption that \(q_3(0, y, z, t) \) is not divisible by \(q_2(0, y, z, t) \).

Let \(\mathcal{R} \) be the linear system on the threefold \(X \) that is cut out by quadrics
\[
xh_1 + \lambda (wx + q_2) = 0,
\]
where \(h_1 = h_1(x, y, z, t) \) is an arbitrary linear form and \(\lambda \in \mathbb{C} \).

Remark 5.3. The linear system \(\mathcal{R} \) does not have fixed components.

The following result is crucial for the proof of Proposition 5.1.
Lemma 5.4. Let R_1 and R_2 be general surfaces in the linear system \mathcal{R}. Then

$$\sum_{i=1}^{r} \text{mult}_{L_i}(R_1 \cdot R_2) \leq 6.$$

Proof. We may assume that R_1 is cut out by $wx + q_2(x, y, z, t) = 0$, and R_2 is cut out by the equation $xh_1(x, y, z, t) = 0$, where the polynomial $h_1(x, y, z, t) = 0$ is sufficiently general. Then

$$\text{mult}_{L_i}(R_1 \cdot R_2) = \text{mult}_{L_i}(R_1 \cdot T),$$

where T is the hyperplane section of X that is cut out by $x = 0$. Put

$$R_1 \cdot T = \sum_{i=1}^{r} m_i L_i + \Delta,$$

where m_i is a natural number, and Δ is an effective cycle, whose support does not contain lines that pass through P. Then the equality $m_i = \text{mult}_{L_i}(R_1 \cdot T)$ holds.

Let \bar{R}_1 and \bar{T} be the proper transforms of R_1 and T on the threefold V, respectively. Then

$$\bar{R}_1 \cdot \bar{T} = \sum_{i=1}^{r} m_i \bar{L}_i + \Omega,$$

where Ω is an effective cycle, whose support does not contain the curves $\bar{L}_1, \ldots, \bar{L}_r$.

The support of the cycle Ω does not contain curves that are contained in the exceptional divisor E, because $q_3(0, y, z, t)$ is not divisible by $q_2(0, y, z, t)$ by our assumption. We have

$$6 = E \cdot \bar{R}_1 \cdot \bar{T} = \sum_{i=1}^{r} m_i (E \cdot \bar{L}_i) + E \cdot \Omega \geq \sum_{i=1}^{r} m_i (E \cdot \bar{L}_i) = \sum_{i=1}^{r} m_i,$$

which is exactly what we want. \hfill \square

Let M and R be general surfaces in \mathcal{M} and \mathcal{R}, respectively. Put

$$M \cdot R = \sum_{i=1}^{r} m_i L_i + \Delta,$$

where $m_i \in \mathbb{N}$, and Δ is an effective cycle, whose support contains no lines among L_1, \ldots, L_r.

Lemma 5.5. The cycle Δ is not trivial.

Proof. Suppose that $\Delta = 0$. Then $\mathcal{M} = \mathcal{R}$ by Remark 2.7. But \mathcal{R} is not a pencil. \hfill \square

We have $\deg(\Delta) = 8n - \sum_{i=1}^{r} m_i$. On the other hand, the inequality

$$\text{mult}_P(\Delta) \geq 6n - \sum_{i=1}^{r} m_i$$

holds, because $\text{mult}_P(M) = 2n$ and $\text{mult}_P(R) \geq 3$. It follows from Lemma 4.6 that

$$\deg(\Delta) = 8n - \sum_{i=1}^{r} m_i \geq 2 \text{mult}_P(\Delta) \geq 2 \left(6n - \sum_{i=1}^{r} m_i\right),$$

which implies that $\sum_{i=1}^{r} m_i \geq 4n$. But it follows from Lemmas 2.10 and 3.3 that

$$m_i \leq \text{mult}_{L_i}(R_1 \cdot R_2) \text{mult}_{L_i}(M) \leq \text{mult}_{L_i}(R_1 \cdot R_2)n/2$$

for every $i = 1, \ldots, r$, where R_1 and R_2 are general surfaces in \mathcal{R}. Then

$$\sum_{i=1}^{r} m_i \leq \sum_{i=1}^{r} \text{mult}_{L_i}(R_1 \cdot R_2)n/2 \leq 3n$$

by Lemma 5.4, which is a contradiction. The assertion of Proposition 5.1 is proved.
6. Bad points

Let us use the assumptions and notation of Section 4. Suppose that the conic
\[q_2(0, y, z, t) = 0 \subset \text{Proj}(\mathbb{C}[y, z, t]) \cong \mathbb{P}^2 \]
is reduced and reducible. Therefore, we have
\[q_2(x, y, z, t) = (\alpha_1 y + \beta_1 z + \gamma_1 t)(\alpha_2 y + \beta_2 z + \gamma_2 t) + xp_1(x, y, z, t) \]
where \(p_1(x, y, z, t) \) is a linear form, and \((\alpha_1, \beta_1, \gamma_1) \in \mathbb{P}^2 \ni (\alpha_2, \beta_2, \gamma_2) \).

Proposition 6.1. The polynomial \(q_3(0, y, z, t) \) is divisible by \(q_2(0, y, z, t) \).

Let us prove Proposition 6.1. Suppose that \(q_3(0, y, z, t) \) is not divisible by \(q_2(0, y, z, t) \). Then
- either the polynomial \(q_3(0, y, z, t) \) is not divisible by \(\alpha_1 y + \beta_1 z + \gamma_1 t \),
- or the polynomial \(q_3(0, y, z, t) \) is not divisible by \(\alpha_2 y + \beta_2 z + \gamma_2 t \).

Remark 6.2. We may assume that \(q_3(0, y, z, t) \) is not divisible by \(\alpha_1 y + \beta_1 z + \gamma_1 t \).

Let \(Z \) be the curve in \(X \) that is cut out by the equations
\[x = \alpha_1 y + \beta_1 z + \gamma_1 t = 0. \]

Remark 6.3. The equality \(\text{mult}(Z) = 3 \) holds, but \(Z \) is not necessary reduced.

Hence, it follows from Lemma 4.6 that \(\text{Supp}(Z) \) contains a line among \(L_1, \ldots, L_r \).

Lemma 6.4. The support of the curve \(Z \) does not contain an irreducible conic.

Proof. Suppose that \(\text{Supp}(Z) \) contains an irreducible conic \(C \). Then
\[Z = C + L_i + L_j \]
for some \(i \in \{1, \ldots, r\} \ni j \). Then \(i = j \), because otherwise the set \((C \cap L_i) \cup (C \cap L_j) \) contains a point that is different from the point \(P \), which is impossible by Lemma 4.6. Thus, we see that
\[Z = C + 2L_i, \]
and it follows from Lemma 4.6 that \(C \cap L_i = P \). Then \(C \) is tangent to \(L_i \) at the point \(P \).

Let \(\bar{C} \) be a proper transform of the curve \(C \) on the threefold \(V \). Then
\[\bar{C} \cap \bar{L}_i \neq \emptyset, \]
which is impossible by Lemma 4.6. The assertion is proved. \(\square \)

Lemma 6.5. The support of the curve \(Z \) consists of lines.

Proof. Suppose that \(\text{Supp}(Z) \) does not consist of lines. Then it follows from Lemma 6.4 that
\[Z = L_i + C, \]
where \(C \) is an irreducible plane cubic curve. But the equality \(\text{mult}(Z) = 3 \) implies that \(C \) must be singular at the point \(P \), which is impossible by Lemma 4.6. \(\square \)

Without loss of generality, we may assume that
\[Z = a_1 L_1 + \cdots + a_k L_k + L, \]
where \(a_1, a_2, a_3 \in \mathbb{N} \) such that \(a_1 \geq a_2 \geq a_3 \) and \(\sum_{i=1}^{k} a_i = 3 \), and \(L \) is a line such that \(P \not\in P \).

Remark 6.6. We have \(L_i \neq L_j \) whenever \(i \neq j \).

Let \(H \) be a sufficiently general surface of \(X \) that is cut out by the equation
\[\lambda x + \mu(\alpha_1 y + \beta_1 z + \gamma_1 t) = 0, \]
where \((\lambda, \mu) \in \mathbb{P}^1 \). Then \(H \) has at most isolated singularities.
Remark 6.7. The surface \(H \) is smooth at the points \(P \) and \(L \cap L_i \), where \(i = 1, \ldots, k \).

Let \(\bar{H} \) and \(\bar{L} \) be the proper transforms of \(H \) and \(L \) on the threefold \(V \), respectively.

Lemma 6.8. The inequality \(k \neq 3 \) holds.

Proof. Suppose that the equality \(k = 3 \) holds. Then \(H \) is smooth. Put
\[
B|_{\bar{H}} = m_1 \bar{L}_1 + m_2 \bar{L}_2 + m_3 \bar{L}_3 + \Omega,
\]
where \(B \) is a general surface in the pencil \(\mathcal{B} \), and \(\Omega \) is an effective divisor on the surface \(\bar{H} \) whose support does not contain any of the curves \(\bar{L}_1, \bar{L}_2 \) and \(\bar{L}_3 \). Then \(\bar{L} \not\subseteq \text{Supp}(\Omega) \not\supseteq \bar{H} \cap E \), because the base locus of \(\mathcal{B} \) consists of the curves \(\bar{L}_1, \ldots, \bar{L}_r \). Then
\[
n = L \cdot \left(m_1 L_1 + m_2 L_2 + m_3 L_3 + \Omega \right) = \sum_{i=1}^{3} m_i + L \cdot \Omega \geq \sum_{i=1}^{3} m_i,
\]
which implies that \(\sum_{i=1}^{3} m_i \leq n \). On the other hand, we have
\[
-n = L_i \cdot \left(m_1 L_1 + m_2 L_2 + m_3 L_3 + \Omega \right) = -3m_i + L_i \cdot \Omega \geq -3m_i,
\]
which implies that \(m_i \geq n/3 \). Thus, we have \(m_1 = m_2 = m_3 = n/3 \) and
\[
\Omega \cdot \bar{L} = \Omega \cdot \bar{L}_1 = \Omega \cdot \bar{L}_2 = \Omega \cdot \bar{L}_3 = 0,
\]
which implies that \(\text{Supp}(\Omega) \cap \bar{L}_1 = \text{Supp}(\Omega) \cap \bar{L}_2 = \text{Supp}(\Omega) \cap \bar{L}_3 = \emptyset \).

Let \(B' \) be another general surface in \(\mathcal{B} \). Arguing as above, we see that
\[
B'|_{\bar{H}} = \frac{n}{3} \left(\bar{L}_1 + \bar{L}_2 + \bar{L}_3 \right) + \Omega',
\]
where \(\Omega' \) is an effective divisor on \(\bar{H} \) whose support does not contain \(\bar{L}_1, \bar{L}_2 \) and \(\bar{L}_3 \) such that we have \(\text{Supp}(\Omega') \cap \bar{L}_1 = \text{Supp}(\Omega') \cap \bar{L}_2 = \text{Supp}(\Omega') \cap \bar{L}_3 = \emptyset \). But \(\Omega \cdot \Omega' = n^2 \neq 0 \). Then
\[
\text{Supp}(\Omega) \cap \text{Supp}(\Omega') \neq \emptyset,
\]
because \(|\text{Supp}(\Omega) \cap \text{Supp}(\Omega')| < +\infty \) due to generality of the surfaces \(B \) and \(B' \).

The base locus of the pencil \(\mathcal{B} \) consists of the curves \(\bar{L}_1, \ldots, \bar{L}_r \). Hence, we have
\[
\text{Supp}(B) \cap \text{Supp}(B') = \bigcup_{i=1}^{r} \bar{L}_i,
\]
but \(\bar{L}_i \cap \bar{H} = \emptyset \) whenever \(i \notin \{1, 2, 3\} \). Hence, we have
\[
\bar{L}_1 \cup \bar{L}_2 \cup \bar{L}_3 \cup (\text{Supp}(\Omega) \cap \text{Supp}(\Omega')) = \text{Supp}(B) \cap \text{Supp}(B') \cap \bar{H} = \bar{L}_1 \cup \bar{L}_2 \cup \bar{L}_3,
\]
which implies that \(\text{Supp}(\Omega) \cap \text{Supp}(\Omega') \subset \bar{L}_1 \cup \bar{L}_2 \cup \bar{L}_3 \). In particular, we see that
\[
\text{Supp}(\Omega) \cap \left(\bar{L}_1 \cup \bar{L}_2 \cup \bar{L}_3 \right) \neq \emptyset,
\]
because \(\text{Supp}(\Omega) \cap \text{Supp}(\Omega') \neq \emptyset \). But \(\text{Supp}(\Omega) \cap \bar{L}_i = \emptyset \) for \(i = 1, 2, 3 \). \(\square \)

Lemma 6.9. The inequality \(k \neq 2 \) holds.

Proof. Suppose that the equality \(k = 2 \) holds. Then \(Z = 2L_1 + L_2 + L \). Put
\[
B|_{\bar{H}} = m_1 \bar{L}_1 + m_2 \bar{L}_2 + \Omega,
\]
where \(B \) is a general surface in the pencil \(\mathcal{B} \), and \(\Omega \) is an effective divisor on the surface \(\bar{H} \) whose support does not contain the curves \(\bar{L}_1 \) and \(\bar{L}_2 \). Then \(\bar{L} \not\subseteq \text{Supp}(\Omega) \not\supseteq \bar{H} \cap E \) and
\[
n = L \cdot \left(m_1 L_1 + m_2 L_2 + \Omega \right) = m_1 + m_2 + L \cdot \Omega \geq m_1 + m_2,
\]
which implies that $m_1 + m_2 \leq n$. On the other hand, we have

$$\bar{T}|_{\bar{H}} = 2\bar{L}_1 + \bar{L}_2 + \bar{L} + E|_{\bar{H}} \equiv \left(\pi^*\left(-K_X\right) - 2E\right)|_{\bar{H}},$$

where \bar{T} is the proper transform of the surface T on the threefold V. Then

$$-1 = \bar{L}_1 \cdot \left(2\bar{L}_1 + \bar{L}_2 + \bar{L} + E|_{\bar{H}}\right) = 2\bar{L}_1 \cdot \bar{L}_1 + 2,$$

which implies that $\bar{L}_1 \cdot \bar{L}_1 = -3/2$ on the surface \bar{H}. Then

$$-n = \bar{L}_1 \cdot \left(m_1\bar{L}_1 + m_2\bar{L}_2 + \Omega\right) = -3m_1/2 + L_1 \cdot \Omega \geq -3m_1/2,$$

which implies that $m_1 \geq 2n/3$. Similarly, we see that $\bar{L}_2 \cdot \bar{L}_2 = -3$ on the surface \bar{H}. Then

$$-n = \bar{L}_2 \cdot \left(m_1\bar{L}_1 + m_2\bar{L}_2 + \Omega\right) = -3m_2 + L_2 \cdot \Omega \geq -3m_2,$$

which implies that $m_2 \leq n/3$. Thus, we have $m_1 = 2m_2 = 2n/3$ and

$$\Omega \cdot \bar{L}_1 = \Omega \cdot \bar{L}_2 = 0,$$

which implies that $\text{Supp}(\Omega) \cap \bar{L}_1 = \text{Supp}(\Omega) \cap \bar{L}_2 = \emptyset$.

Let B' be another general surface in \mathcal{B}. Arguing as above, we see that

$$B'|_{\bar{H}} = \frac{2n}{3}\bar{L}_1 + \frac{n}{3}\bar{L}_2 + \Omega',$$

where Ω' is an effective divisor on \bar{H} whose support does not contain \bar{L}_1 and \bar{L}_2 such that

$$\text{Supp}(\Omega') \cap \bar{L}_1 = \text{Supp}(\Omega') \cap \bar{L}_2 = \emptyset,$$

which implies that $\Omega \cdot \Omega' = n^2$. In particular, we see that

$$\text{Supp}(\Omega) \cap \text{Supp}(\Omega') \neq \emptyset,$$

and arguing as in the proof of Lemma 6.8, we obtain a contradiction. \hfill \Box

It follows from Lemmas 6.8 and 6.9 that $Z = 3\bar{L}_1 + L$. Put

$$B|_{\bar{H}} = m_1\bar{L}_1 + \Omega,$$

where B is a general surface \mathcal{B}, and Ω is an effective divisor such that $\bar{L}_1 \not\subseteq \text{Supp}(\Omega)$. Then

$$\bar{L} \not\subseteq \text{Supp}(\Omega) \not\supseteq \bar{H} \cap E,$$

because the base locus of \mathcal{B} consists of the curves $\bar{L}_1, \ldots, \bar{L}_r$. Then

$$n = \bar{L} \cdot \left(m_1\bar{L}_1 + \Omega\right) = m_1 + \bar{L} \cdot \Omega \geq m_1,$$

which implies that $m_1 \leq n$. On the other hand, we have

$$\bar{T}|_{\bar{H}} = 3\bar{L}_1 + \bar{L} + E|_{\bar{H}} \equiv \left(\pi^*\left(-K_X\right) - 2E\right)|_{\bar{H}},$$

where \bar{T} is the proper transform of the surface T on the threefold V. Then

$$-1 = \bar{L}_1 \cdot \left(3\bar{L}_1 + \bar{L} + E|_{\bar{H}}\right) = 3\bar{L}_1 \cdot \bar{L}_1 + 2,$$

which implies that $\bar{L}_1 \cdot \bar{L}_1 = -1$ on the surface \bar{H}. Then

$$-n = \bar{L}_1 \cdot \left(m_1\bar{L}_1 + \Omega\right) = -m_1 + L_1 \cdot \Omega \geq -m_1,$$

which gives $m_1 \geq n$. Thus, we have $m_1 = n$ and $\Omega \cdot \bar{L} = \Omega \cdot \bar{L}_1 = 0$. Then $\text{Supp}(\Omega) \cap \bar{L}_1 = \emptyset$.

Let B' be another general surface in \mathcal{B}. Arguing as above, we see that

$$B'|_{\bar{H}} = n\bar{L}_1 + \Omega',$$
where \(\Omega' \) is an effective divisor on \(\bar{H} \) whose support does not contain \(\bar{L}_1 \) such that
\[
\text{Supp}(\Omega') \cap \bar{L}_1 = \emptyset,
\]
which implies that \(\Omega \cdot \Omega' = n^2 \). In particular, we see that \(\text{Supp}(\Omega) \cap \text{Supp}(\Omega') \neq \emptyset \).

The base locus of the pencil \(\mathcal{B} \) consists of the curves \(\bar{L}_1, \ldots, \bar{L}_r \). Hence, we have
\[
\text{Supp}(\mathcal{B}) \cap \text{Supp}(\mathcal{B}') = \bigcup_{i=1}^{r} \bar{L}_i,
\]
but \(\bar{L}_i \cap \bar{H} = \emptyset \) whenever \(\bar{L}_i \neq \bar{L}_1 \). Then \(\text{Supp}(\Omega) \cap \bar{L}_1 \neq \emptyset \), because
\[
\bar{L}_1 \cup \left(\text{Supp}(\Omega) \cap \text{Supp}(\Omega') \right) = \text{Supp}(\mathcal{B}) \cap \text{Supp}(\mathcal{B}') \cap \bar{H} = \bar{L}_1,
\]
which is a contradiction. The assertion of Proposition 6.1 is proved.

7. Very bad points

Let us use the assumptions and notation of Section 4. Suppose that \(q_3 = y^2 + \alpha f_2(z, t) + x h_2(z, t) + x^2 a_1(x, y, z, t) + xy b_1(x, y, z, t) + y^2 c_1(y, z, t) \)
where \(a_1, b_1, c_1 \) are linear forms, \(f_2 \) and \(h_2 \) is a homogeneous polynomial of degree two.

Proposition 7.1. The equality \(f_2(z, t) = 0 \) holds.

Let us prove Proposition 7.1 by reductio ad absurdum. Suppose that \(f_2(z, t) \neq 0 \).

Remark 7.2. By choosing suitable coordinates, we may assume that \(f_2 = z t \) or \(f_2 = z^2 \).

We must use smoothness of the threefold \(X \) by analyzing the shape of \(q_4 \). We have
\[
q_4 = f_4(z, t) + x u_3(z, t) + y v_3(z, t) + x^2 a_2(x, y, z, t) + xy b_2(x, y, z, t) + y^2 c_2(y, z, t),
\]
where \(a_2, b_2, c_2 \) are homogeneous polynomial of degree two, \(u_3 \) and \(v_3 \) are homogeneous polynomial of degree two, and \(f_4 \) is a homogeneous polynomial of degree four.

Lemma 7.3. Suppose that \(f_2(z, t) = z t \) and \(f_4(z, t) = t^2 g_2(z, t) \) for some \(g_2(z, t) \in \mathbb{C}[z, t] \). Then \(v_3(z, 0) \neq 0 \).

Proof. Suppose that \(v_3(z, 0) = 0 \). The surface \(T \), which is cut out by \(x = 0 \), is given by
\[
w^2 y^2 + z t + y^2 c_1(x, y, z, t) + t^2 g_2(z, t) + y v_3(z, t) + y^2 c_2(x, y, z, t) \subset \text{Proj} \left(\mathbb{C}[y, z, t, w] \right) \cong \mathbb{P}^3
\]
which immediately implies that \(T \) has non-isolated singularity along the line \(x = y = t = 0 \), because we assume that \(v_3(z, 0) = 0 \). But the latter is impossible because \(X \) is smooth. \(\square \)

Arguing as in the proof of Lemma 7.3, we obtain the following corollary.

Corollary 7.4. Suppose that \(f_4(z, t) = z^2 g_2(z, t) \) for some \(g_2(z, t) \in \mathbb{C}[z, t] \). Then \(v_3(0, t) \neq 0 \).

The assertions of Lemma 7.3 and Corollary 7.4 are crucial for the proof of Proposition 7.1.

Lemma 7.5. Suppose that \(f_2 = z t \). Then \(f_4(0, t) = f_4(z, 0) = 0 \).

Proof. We may assume that \(f_4(0, t) \neq 0 \). Let \(\mathcal{H} \) be a linear system on \(X \) that is cut out by
\[
x \lambda + y \mu + z \nu = 0,
\]
where \((\lambda, \mu, \nu) \in \mathbb{P}^2 \). Then the base locus of \(\mathcal{H} \) consists of the point \(P \).

Let \(\mathcal{R} \) be a proper transform of \(\mathcal{H} \) on the threefold \(V \). Then the base locus of \(\mathcal{R} \) consists of a single point that is not contained in any of the curves \(\bar{L}_1, \ldots, \bar{L}_r \).

The linear system \(\mathcal{R}|_B \) does not have base points, where \(B \) is a general surface in \(\mathcal{B} \). But
\[
R \cdot R \cdot B = 2n > 0,
\]
where R is a general surface in the linear system \mathcal{R}. Thus, the linear system $\mathcal{R}|_B$ is not composed from a pencil. Hence, the curve $R \cdot B$ is irreducible and reduced by the Bertini theorem.

Let H and M be general surfaces in \mathcal{H} and \mathcal{M}, respectively. Then $M \cdot H$ is irreducible and reduced. Thus, the linear system $\mathcal{M}|_H$ is a pencil.

The surface H contains no lines passing through P, and H_3 can be given by

$$w^3x + w^2y^2 + w(y^2l_1(x, y, z, t) + xl_2(x, y, z, t)) + l_4(x, y, z, t) = 0 \subset \text{Proj}(\mathbb{C}[x, y, z, w]) \cong \mathbb{P}^3,$$

where $l_i(x, y, z, t)$ is a homogeneous polynomial of degree i.

Arguing as in Example 1.5 we see that there is a pencil Q on the surface H such that
- the equivalence $Q \sim \mathcal{O}_{\mathbb{P}^3}(2)|_H$ holds,
- the equality $\text{mult}_P(Q) = 4$ holds.

Arguing as in the proof of Lemma 3.1 we see that $\mathcal{M}|_H = Q$ by Remark 2.1 Then

$$\text{mult}_P(M) = 4$$

and $M \equiv -2K_X$, where M is a general surface in the pencil \mathcal{M}.

The surface M is cut out on X by an equation

$$\lambda x^2 + x \left(A_0 + A_1(y, z, t) \right) + B_2(y, z, t) + B_1(y, z, t) + B_0 = 0,$$

where A_i and B_i are homogeneous polynomials of degree i, and $\lambda \in \mathbb{C}$.

It follows from $\text{mult}_P(M) = 4$ that $B_1(y, z, t) = B_0 = 0$.

The coordinated (y, z, t) are also local coordinates on X near the point P. Then

$$x = -y^2 - y \left(zt + yp_1(y, z, t) \right) + \text{higher order terms},$$

which is a Taylor power series for $x = x(y, z, t)$, where $p_1(y, z, t)$ is a linear form.

The surface M is locally given by the analytic equation

$$\lambda y^4 + \left(-y^2 - yzt \right) + y^2p_1(y, z, t) \left(A_0 + A_1(y, z, t) \right) + B_2(y, z, t) + \text{higher order terms} = 0,$$

and $\text{mult}_P(M) = 4$. Hence, we see that $B_2(y, z, t) = \lambda A_0y^2$ and

$$A_1(y, z, t)y^2 + A_0y \left(zt + yp_1(y, z, t) \right) = 0$$

which implies that $A_0 = A_1(y, z, t) = 0$. Then $B_2(y, z, t) = 0$, which implies that a general surface of the pencil \mathcal{M} is cut out on the hypersurface X by the equation $x^2 = 0$, which is a absurd. □

Arguing as in the proof of Lemma 7.5 we obtain the following corollary.

Corollary 7.6. Suppose that $f_2 = z^2$. Then $f_4(0, t) = 0$.

Let \mathcal{R} be the linear system on the threefold X that is cut out by cubics

$$xh_2(x, y, z, t) + \lambda \left(w^2x + wy^2 + q_3(x, y, z, t) \right) = 0,$$

where $h_2 = h_2(x, y, z, t)$ is an arbitrary homogenous polynomial of degree 2 and $\lambda \in \mathbb{C}$.

Remark 7.7. The linear system \mathcal{R} does not have fixed components.

Let M and R be general surfaces in \mathcal{M} and \mathcal{R}, respectively. Put

$$M \cdot R = \sum_{i=1}^{r} m_i L_i + \Delta,$$

where $m_i \in \mathbb{N}$, and Δ is an effective cycle, whose support contains no lines among L_1, \ldots, L_r.

Lemma 7.8. The cycle Δ is not trivial.

Proof. Suppose that $\Delta = 0$. Then $\mathcal{M} = \mathcal{R}$ by Remark 2.1 But \mathcal{R} is not a pencil. □
We have $\text{mult}_P(\Delta) \geq 8n - \sum_{i=1}^r m_i$, because $\text{mult}_P(M) = 2n$ and $\text{mult}_P(\mathcal{R}) \geq 4$. Then

$$\deg(\Delta) = 12n - \sum_{i=1}^r m_i \geq 2\text{mult}_P(\Delta) \geq 2\left(8n - \sum_{i=1}^r m_i\right)$$

by Lemma 4.6, because $\text{Supp}(\Delta)$ does not contain any of the lines L_1, \ldots, L_r.

Corollary 7.9. The inequality $\sum_{i=1}^r m_i \geq 4n$ holds.

Let R_1 and R_2 be general surfaces in the linear system \mathcal{R}. Then

$$m_i \leq \text{mult}_{L_i}(R_1 \cdot R_2)\text{mult}_{L_i}(M) \leq \text{mult}_{L_i}(R_1 \cdot R_2)n/2$$

for every $1 \leq i \leq 4$ by Lemmas 2.10 and 3.3. Then

$$4n \leq \sum_{i=1}^r m_i \leq \sum_{i=1}^r \text{mult}_{L_i}(R_1 \cdot R_2)n/2.$$

Corollary 7.10. The inequality $\sum_{i=1}^r \text{mult}_{L_i}(R_1 \cdot R_2) \geq 8$ holds.

Now we suppose that R_1 is cut out on the quartic X by the equation

$$w^2x + wy^2 + q_3(x, y, z, t) = 0,$$

and R_2 is cut out by $xh_2(x, y, z, t) = 0$, where $h_2(x, y, z, t) = 0$ is sufficiently general. Then

$$\text{mult}_{L_i}(R_1 \cdot T) = \text{mult}_{L_i}(R_1 \cdot R_2) \geq 8n,$$

where T is the hyperplane section of the hypersurface X that is cut out by $x = 0$. But

$$R_1 \cdot T = Z_1 + Z_2,$$

where Z_1 and Z_2 are cycles on X such that Z_1 is cut out by $x = y = 0$, and Z_2 is cut out by

$$x = wy + f_2(z, t) + yc_1(x, y, z, t) = 0.$$

Lemma 7.11. The equality $\sum_{i=1}^r \text{mult}_{L_i}(Z_1) = 4$ holds.

Proof. The lines $L_1, \ldots, L_r \subset \mathbb{P}^4$ are given by the equations

$$x = y = q_4(x, y, z, t) = 0,$$

which implies that $\sum_{i=1}^r \text{mult}_{L_i}(Z_1) = 4$ holds. \qed

Hence, we see that $\sum_{i=1}^r \text{mult}_{L_i}(Z_2) \geq 4$. But Z_2 can be considered as a cycle

$$uy + f_2(z, t) + yc_1(y, z, t) = f_4(z, t) + yv_3(z, t) + y^2c_2(y, z, t) = 0 \subset \text{Proj}\left(\mathbb{C}[y, z, t, w]\right) \cong \mathbb{P}^3,$$

and, introducing new variable $u = w + c_1(y, z, t)$, we see that Z_2 can be considered as a cycle

$$uy + f_2(z, t) = f_4(z, t) + yv_3(z, t) + y^2c_2(y, z, t) = 0 \subset \text{Proj}\left(\mathbb{C}[y, z, t, u]\right) \cong \mathbb{P}^3,$$

and we can consider lines L_1, \ldots, L_r as curves in \mathbb{P}^3 given by the equations $y = f_4(z, t) = 0$.

Lemma 7.12. The inequality $f_2(z, t) \neq zt$ holds.

Proof. Suppose that $f_2(z, t) = zt$. Then it follows from Lemma 7.3 and Corollary 7.4 that

$$f_4(z, t) = zt(\alpha_1z + \beta_1t)(\alpha_2z + \beta_2t)$$

for some $(\alpha_1, \beta_1) \in \mathbb{P}^1 \ni (\alpha_2, \beta_2)$. Then Z_2 can be given by

$$uy + zt = yv_3(z, t) + y^2c_2(y, z, t) - uy(\alpha_1z + \beta_1t)(\alpha_2z + \beta_2t) = 0 \subset \text{Proj}\left(\mathbb{C}[y, z, t, u]\right) \cong \mathbb{P}^3,$$

which implies that $Z_2 = Z_2^1 + Z_2^2$, where Z_2^1 and Z_2^2 are cycles on \mathbb{P}^3 such that Z_2^2 is given by

$$y = uy + zt = 0,$$
and Z_2^2 is given by $uy + zt = v_3(z,t) + yc_2(y,z,t) - u(\alpha_1 z + \beta_1 t)(\alpha_2 z + \beta_2 t) = 0$.

We may assume that L_1 is given by $y = z = 0$, and L_2 is given by $y = t = 0$. Then

$$Z_2^1 = L_1 + L_2,$$

which implies that $\sum_{i=1}^r \text{mult}_{L_i}(Z_2^2) \geq 2$.

Suppose that $r = 4$. Then $\alpha_1 \neq 0$, $\beta_1 \neq 0$, $\alpha_2 \neq 0$, $\beta_2 \neq 0$. Hence, we see that

$$L_1 \not\subseteq \text{Supp}(Z_2^2) \not\subseteq L_2,$$

because $v_3(z,t) + yc_2(y,z,t) - u(\alpha_1 z + \beta_1 t)(\alpha_2 z + \beta_2 t)$ does not vanish on L_1 and L_2. But

$$L_3 \not\subseteq \text{Supp}(Z_2^2) \not\subseteq L_4,$$

because zt does not vanish on L_3 and L_4. Then $\sum_{i=1}^r \text{mult}_{L_i}(Z_2^2) = 0$, which is a contradiction.

Suppose that $r = 3$. We may assume that $(\alpha_1, \beta_1) = (1, 0)$, but $\alpha_2 \neq 0$ and $\beta_2 \neq 0$. Then

$$L_2 \not\subseteq \text{Supp}(Z_2^2),$$

because $v_3(z,t) + yc_2(y,z,t) - uz(\alpha_2 z + \beta_2 t)$ does not vanish on L_2. We have

$$f_4(z,t) = z^2 t(\alpha_2 z + \beta_2 t),$$

which implies that $v_3(0,t) \neq 0$ by Corollary 7.4. Hence, we see that

$$L_1 \not\subseteq \text{Supp}(Z_2^2) \not\subseteq L_3,$$

because $v_3(z,t) + yc_2(y,z,t) - uz(\alpha_2 z + \beta_2 t)$ and zt do not vanish on L_1 and L_3, respectively, which implies that $\sum_{i=1}^r \text{mult}_{L_i}(Z_2^2) = 0$. The latter is a contradiction. Then $r \neq 3$.

We see that $r = 2$. Then we may assume that $(\alpha_1, \beta_1) = (1, 0)$, and either $\alpha_2 = 0$ or $\beta_2 = 0$.

Suppose that $\alpha_2 = 0$. Then $f_4(z,t) = \beta_2 z^2 t^2$. By Lemma 7.3 and Corollary 7.4 we have

$$v_3(0,t) \neq 0 \neq v_3(z,0),$$

which implies that $v_3(z,t) + yc_2(y,z,t) - \beta_2 z t$ does not vanish neither on L_1 nor on L_2. Then

$$L_1 \not\subseteq \text{Supp}(Z_2^2) \not\subseteq L_2,$$

which implies that $\sum_{i=1}^r \text{mult}_{L_i}(Z_2^2) = 0$, which is a contradiction.

We see that $\alpha_2 \neq 0$ and $\beta_2 = 0$. We have $f_4(z,t) = \alpha_2 z^3 t$. Then

$$v_3(0,t) \neq 0$$

by Corollary 7.4. Then $L_1 \not\subseteq \text{Supp}(Z_2^2)$ because $v_3(z,t) + yc_2(y,z,t) - \alpha_2 z^2$ does not vanish on L_1.

The line L_2 is given by the equations $y = t = 0$. But Z_2 is given by the equations

$$uy + zt = v_3(z,t) + yc_2(y,z,t) - \alpha_2 u z^2 = 0,$$

which implies that $L_2 \not\subseteq \text{Supp}(Z_2^2)$. Then $\sum_{i=1}^r \text{mult}_{L_i}(Z_2^2) = 0$, which is a contradiction.

Therefore, we see that $f_2(z,t) = z^2$. It follows from Lemma 7.6 that

$$f_4(z,t) = zg_3(z,t)$$

for some $g_3(z,t) \in \mathbb{C}[z,t]$. We may assume that L_1 is given by $y = z = 0$.

Lemma 7.13. The equality $g_3(0,t) = 0$ holds.

Proof. Suppose that $g_3(0,t) \neq 0$. Then $\text{Supp}(Z_2) = L_1$, because Z_2 is given by the equations

$$uy + z^2 = zg_3(z,t) + yv_3(z,t) + y^2 c_2(y,z,t) = 0,$$

and the lines L_2, \ldots, L_r are given by the equations $y = g_3(z,t) = 0$.

The cycle $Z_2 + L_1$ is given by the equations

$$uy + z^2 = z^2 g_3(z,t) + zy v_3(z,t) + zy^2 c_2(y,z,t) = 0,$$

which implies that the cycle $Z_2 + L_1$ can be given by the equations

$$uy + z^2 = zy v_3(z,t) + zy^2 c_2(y,z,t) - uy g_3(z,t) = 0.$$
We have $Z_2 + L_1 = C_1 + C_2$, where C_1 and C_2 are cycles on \mathbb{P}^3 such that C_1 is given by

$$y = uy + z^2 = 0,$$

and the cycle C_2 is given by the equations

$$uy + z^2 = zv_3(z, t) + yc_2(y, z, t) - ug_3(z, t) = 0.$$

We have $C_1 = 2L_2$. But $L_1 \not\subseteq \text{Supp}(C_2)$ because the polynomial

$$zv_3(z, t) + yc_2(y, z, t) - ug_3(z, t)$$

does not vanish on L_1, because $g_3(0, t) \neq 0$. Then

$$Z_2 + L_1 = 2L_2,$$

which implies that $Z_2 = L_1$. Then $\sum_{i=1}^r \text{mult}_{Z_i}(Z_2) = 1$, which is a contradiction. □

Thus, we see that $r \leq 3$ and

$$f_2(z, t) = z^2(\alpha_1 z + \beta_1 t)(\alpha_2 z + \beta_2 t)$$

for some $(\alpha_1, \beta_1) \in \mathbb{P}^1 \ni (\alpha_2, \beta_2)$. Then $v_3(0, t) \neq 0$ by Corollary 7.14. But Z_2 can be given by

$$uy + z^2 = yv_3(z, t) + y^2c_2(y, z, t) - u(\alpha_1 z + \beta_1 t)(\alpha_2 z + \beta_2 t) = 0 \subset \text{Proj}(\mathbb{C}[y, z, t, u]) \cong \mathbb{P}^3,$$

which implies that $Z_2 = Z_2^1 + Z_2^2$, where Z_2^1 and Z_2^2 are cycles on \mathbb{P}^3 such that Z_2^1 is given by

$$y = uy + z^2 = 0,$$

and the cycle Z_2^2 is given by the equations

$$uy + z^2 = v_3(z, t) + yc_2(y, z, t) - u(\alpha_1 z + \beta_1 t)(\alpha_2 z + \beta_2 t) = 0,$$

which implies that $Z_2^2 = 2L_1$. Thus, we see that $\sum_{i=1}^r \text{mult}_{Z_i}(Z_2^2) \geq 2$.

Lemma 7.14. The inequality $r \neq 3$ holds.

Proof. Suppose that $r = 3$. Then $\beta_1 \neq 0 \neq \beta_2$, which implies that

$$L_1 \not\subseteq \text{Supp}(Z_2^2),$$

because $v_3(z, t) + yc_2(y, z, t) - u(\alpha_1 z + \beta_1 t)(\alpha_2 z + \beta_2 t)$ does not vanish on L_1. But

$$L_2 \not\subseteq \text{Supp}(Z_2^2) \not\subseteq L_3,$$

because $\beta_1 \neq 0 \neq \beta_2$. Then $\sum_{i=1}^r \text{mult}_{Z_i}(Z_2^2) = 0$, which is a contradiction. □

Thus, we see that either $r = 1$ or $r = 2$.

Lemma 7.15. The inequality $r \neq 2$ holds.

Proof. Suppose that $r = 2$. We may assume that either $\beta_1 \neq 0 = \beta_2$, or $\alpha_1 = \alpha_2$ and $\beta_1 = \beta_2 \neq 0$.

Suppose that $\beta_2 = 0$. Then $f_1(z, t) = \alpha_2 z^3(\alpha_1 z + \beta_1 t)$ and

$$L_1 \not\subseteq \text{Supp}(Z_2^2),$$

because $v_3(z, t) + yc_2(y, z, t) - u(\alpha_1 z + \beta_1 t)(\alpha_2 z + \beta_2 t)$ does not vanish on L_1. But L_2 is given by

$$y = \alpha_1 z + \beta_1 t = 0,$$

which implies that z^2 does not vanish on L_2, because $\beta_1 \neq 0$. Then $L_2 \not\subseteq \text{Supp}(Z_2^2)$, which immediately implies that $\sum_{i=1}^r \text{mult}_{L_i}(Z_2^2) = 0$, which is a contradiction.

Hence, we see that $\alpha_1 = \alpha_2$ and $\beta_1 = \beta_2 \neq 0$. Then

$$L_1 \not\subseteq \text{Supp}(Z_2^2),$$

because $v_3(z, t) + yc_2(y, z, t) - u(\alpha_1 z + \beta_1 t)^2$ does not vanish on L_1. But $L_2 \not\subseteq \text{Supp}(Z_2^2)$, because the polynomial z^2 is not zero on L_2. Then $\sum_{i=1}^r \text{mult}_{L_i}(Z_2^2) = 0$, which is a contradiction. □
We see that $f_4(z, t) = z^2$ and $f_4(z, t) = \mu z^4$ for some $0 \neq \mu \in \mathbb{C}$. The cycle Z_2^2 is given by
\[uy + z^2 = v_3(z, t) + yc_2(y, z, t) - \mu z^2 = 0, \]
where $v_3(0, t) \neq 0$ by Corollary [7.1]. Thus, we see that
\[L_1 \not\subseteq \text{Supp}(Z_2^2), \]
because $v_3(z, t) + yc_2(y, z, t) - \mu z^2$ does not vanish on L_1. Then
\[\sum_{i=1}^{r} \text{mult}_{L_i}(Z_2^2) = 0, \]
which is a contradiction. The assertion of Proposition [7.1] is completely proved.

The assertion of Theorem [1.6] follows from Propositions [3.4, 5.1, 6.1, 7.1].

References

