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Factorization semigroups
and irreducible components of the Hurwitz space. II

Vik. S. Kulikov

Abstract. We continue the investigation started in [1]. Let HUR
Sd
d,t(P

1)

be the Hurwitz space of coverings of degree d of the projective line P1 with
Galois group Sd and monodromy type t. The monodromy type is a set
of local monodromy types, which are defined as conjugacy classes of per-
mutations σ in the symmetric group Sd acting on the set Id = {1, . . . , d}.
We prove that if the type t contains sufficiently many local monodromies
belonging to the conjugacy class C of an odd permutation σ which leaves
fC > 2 elements of Id fixed, then the Hurwitz space HUR

Sd
d,t(P

1) is irre-
ducible.

Keywords: semigroup, factorizations of an element of a group, irreducible
components of the Hurwitz space.

Introduction

This paper is continuation of [1]. Before stating its results, we recall the main
definitions and notation used in [1]. A quadruple (S, G, α, ρ), where S is a semi-
group, G is a group and α : S → G, ρ : G → Aut(S) are homomorphisms, is called
a semigroup S over a group G if for all s1, s2 ∈ S we have

s1 · s2 = ρ(α(s1))(s2) · s1 = s2 · λ(α(s2))(s1), (1)

where λ(g) = ρ(g−1). Let (S1, G, α1, ρ1) and (S2, G, α2, ρ2) be semigroups over G.
A homomorphism of semigroups ϕ : S1 → S2 is said to be defined over G if α1(s) =
α2(ϕ(s)) and ρ2(g)(ϕ(s)) = ϕ(ρ1(g)(s)) for all s ∈ S1 and g ∈ G.

A pair (G, O), where O is a subset of G invariant under inner automorphisms
of G, is called an equipped group. With every equipped group (G, O) one can
associate a semigroup SO = S(G, O) over G (called the factorization semigroup
of elements of G with factors in O) generated by the elements of the alphabet
X = XO = {xg | g ∈ O} subject to the relations

xg1 · xg2 = xg2 · xg−1
2 g1g2

= xg1g2g−1
1

· xg1 (2)

for all xg1 , xg2 ∈ X, and if g2 = 1, then xg1 ·x1 = xg1 . We define a map α : X →G by
putting α(xg) = g for every xg ∈ X. It induces a homomorphism α : SO → G called
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the product homomorphism. The action ρ (on the left) of G on SO is induced by the
following action on the alphabet X:

xa ∈ X 7→ ρ(g)(xa) = xgag−1 ∈ X

for g ∈ G. Note that α(ρ(g)(s)) = gα(s)g−1 for all s ∈ SO and g ∈ G.
Let O \ {1} = C1 t · · · t Cm be the decomposition of O into a disjoint union of

conjugacy classes of elements of G. Every element s = xg1 ·. . .·xgn ∈ SO determines
an element τ(s) = n1C1 + · · ·+ nmCm of the free Abelian semigroup generated by
the symbols C1, . . . , Cm (the element τ(s) is called the type of s), where ni is the
number of those factors xgj in the factorization s = xg1 · . . . · xgn which satisfy
gj ∈ Ci. The number n =

∑m
i=1 ni is called the length of s and is denoted by ln(s).

A subsemigroup S of SG is said to be stable if there is an element s ∈ S (called
a stabilizing element of S) such that s1 · s = s2 · s for all s1, s2 ∈ S satisfying
α(s1) = α(s2) and τ(s1) = τ(s2).

For every element s = xg1 · . . . · xgn ∈ SO, let Gs = 〈g1, . . . , gn〉 be the subgroup
of G generated by the elements g1, . . . , gn. Given any (not necessarily proper)
subgroups H and Γ of G, one can define subsemigroups SH

O = {s ∈ S(G, O) |
Gs = H} and SO,Γ = {s ∈ S(G, O) | α(s) ∈ Γ}. If H and Γ are normal subgroups
of G, then SO,Γ and SH

O are semigroups over G. By definition, SH
O,Γ = SO,Γ ∩ SH

O .
Let Sd be the symmetric group acting on the set Id = {1, . . . , d} and let Td ⊂ Sd

be the subset of transpositions. We denote the semigroup SSd
by Σd. By Theo-

rem 2.3 in [1], the element

h =
(d−1∏

i=1

x(i,i+1)

)3

is a stabilizing element of Σd. Here (i, i+1) ∈ Td is the transposition interchanging
the elements i and i + 1 of Id.

The aim of this paper is to prove that a similar result holds for almost all odd
elements of Sd. More precisely, let C = Cσ be the conjugacy class of a permutation
σ ∈ Sd, nC the order of σ ∈ C, kC = |C| the number of elements of C, and fC the
number of elements of Id that remain fixed under the action of σ ∈ C on Id.

It is known that if σ is an odd permutation, then elements of C generate the
whole group Sd and, in particular, any transposition (i, j) ∈ Sd can be written as
a product of permutations belonging to C. In the case when fC > 2, we write
mC for the minimal number (counting multiplicities) of permutations in C ∩ Sd−2

needed to express (1, 2) as a product of elements of C ∩ Sd−2. We also fix any one
of these expressions:

(1, 2) = σ1 . . . σmC
, σi ∈ C ∩ Sd−2. (3)

Theorem 1. Let C be the conjugacy class of an odd permutation σ ∈Sd. If fC > 2,
then there is a constant

N = NC < 3d−3(2d− 1)(d− 1)mC + nCkC + 1

such that every element s = s̃ · s ∈ ΣSd

d with s ∈ SC and ln(s) > N is uniquely
determined by τ(s) and α(s).
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Corollary 1. Let an equipped symmetric group (Sd, O) be such that the set O
contains the conjugacy class C of an odd permutation σ, fC > 2. Then SO =
S(Sd, O) is a stable semigroup.

Note that the constant NC whose existence is asserted in Theorem 1 is generally
greater than 1. For example, it is shown in [2] that this is the case when C is the
conjugacy class of σ = (1, 2)(3, 4, 5) ∈ S8.

The proof of Theorem 1 is similar to that of Theorem 2.3 in [1]. It is based on
the following theorem.

Theorem 2. Let C be the conjugacy class of an odd permutation σ ∈ Sd, and let
s(i1,i2) ∈ SC be an element with the following properties :

(i) α(s(i1,i2)) = (i1, i2),
(ii) there are i3, i4 ∈ Id \ {i1, i2} such that ρ((i3, i4))(s(i1,i2)) = s(i1,i2).

Then there is an embedding over Sd of the semigroup SSd

Td
in the semigroup SC .

Let HURd,b(P1) (resp. HURG
d,b(P1)) be the Hurwitz space of ramified coverings of

degree d of the projective line P1 (defined over C) branched over b points (resp. with
Galois group G). It was shown in [1] that the irreducible components of HURd,b(P1)
are in one-to-one correspondence with the orbits of the action of Sd by simultane-
ous conjugation (that is, the action determined by the homomorphism ρ) on the
set Σd,1,b = {s ∈ Σd,1 | ln(s) = b}, and if G = Sd, then the irreducible compo-
nents of HURSd

d,b(P1) are in one-to-one correspondence with the elements of ΣSd

d,1

of length b. If an irreducible component of HURSd

d,b(P1) corresponds to an ele-
ment s ∈ ΣSd

d,1, then τ(s) is called the monodromy factorization type of coverings
belonging to this irreducible component. We denote the union of all irreducible
components corresponding to the elements s ∈ ΣSd

d,1 with τ(s) = t by HURSd

d,t(P1).
The following theorem is a corollary of Theorem 1.

Theorem 3. The space HURSd

d,t(P1) is irreducible if the monodromy factorization
type t contains more than NC factors belonging to the conjugacy class C of an odd
permutation σ ∈ Sd with fC > 2, where NC is the number defined in Theorem 1.

We note that an analogue of Theorem 3 holds for the Hurwitz spaces of d-sheeted
coverings of the disc ∆ = {z ∈ C | |z| 6 1} (resp. d-sheeted coverings of the affine
line C1).

§ 1. Proof of Theorem 2

There is no loss of generality in assuming that (i1, i2) = (1, 2) and (i3, i4) = (3, 4).
For every transposition (i, j) ∈ Td we choose a permutation σi,j ∈ Sd such that

(i, j) = σi,j(1, 2)σ−1
i,j and put

c = s2
(1,2) · s

2
(2,3) · . . . · s

2
(d−1,d),

where s(i,j) = ρ(σi,j)(s(1,2)).
Clearly, α(s(i,j)) = (i, j) and α(c) = 1. Since the transpositions (1, 2), . . . ,

(d − 1, d) generate the whole group Sd, we have c ∈ SSd

C,1. Therefore, by Proposi-
tion 1.1, 2) in [1], the element c is fixed under the conjugation action of Sd on SC .
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Given any k > 4, we write Zk ' S2 × Sk−2 for the subgroup of Sd generated by
the transpositions (1, 2) and (i, j), 3 6 i < j 6 k. Note that Zd is the centralizer
of (1, 2) in Sd.

Assertion 1. There is z(1,2) ∈ SC such that α(z(1,2)) = (1, 2) and ρ(σ)(z(1,2)) =
z(1,2) for all σ ∈ Zd.

Proof. We use induction on k to prove the existence of an element y(1,2),k ∈ SSd

C

such that α(y(1,2),k) = (1, 2) and ρ(σ)(y(1,2),k) = y(1,2),k for all σ ∈ Zk. Then
z(1,2) = y(1,2),d is the desired element.

Put y(1,2),4 = s(1,2) · c. Moving the first factor s(1,2) to the right, we get

y(1,2),4 = s(1,2) · s(1,2) · s(1,2) · s2
(2,3) · . . . · s

2
(d−1,d)

= ρ((1, 2))(s(1,2)) · s(1,2) · s(1,2) · s2
(2,3) · . . . · s

2
(d−1,d)

= ρ((1, 2))(s(1,2)) · c = ρ((1, 2))(s(1,2)) · ρ((1, 2))(c)

= ρ((1, 2))(s(1,2) · c) = ρ((1, 2))(y(1,2),4)

since c is fixed under the conjugation action of Sd.
Using the hypotheses of Theorem 2, we similarly have

ρ((3, 4))(y(1,2),4) = ρ((3, 4))(s(1,2) · c) = ρ((3, 4))(s(1,2)) · ρ((3, 4))(c)

= s(1,2) · c = y(1,2),4,

whence ρ(σ)(y(1,2),4) = y(1,2),4 for all σ ∈ Z4.
Suppose that for some k > 4, k < d, we have already constructed an element

y(1,2),k ∈ SSd

C such that α(y(1,2),k) = (1, 2) and ρ(σ)(y(1,2),k) = y(1,2),k for all σ ∈ Zk.
Consider the element y′(1,2),k = ρ((k, k+1))(y(1,2),k). Clearly, it belongs to SSd

C and
we easily see that α(y′(1,2),k) = (1, 2). Hence the element y(1,2),k · y′(1,2),k belongs
to SSd

C,1 and, therefore, it is fixed under the conjugation action of Sd. We claim that
y′(1,2),k is fixed under the action of the group Z ′

k generated by the transpositions
(i, j) ∈ Zk+1, i, j 6= k. Indeed, if (i, j) ∈ Z ′

k and i, j 6= k + 1, then

ρ((i, j))(y′(1,2),k) = ρ((i, j))
(
ρ((k, k + 1))(y(1,2),k)

)
= ρ

(
(i, j)(k, k + 1)

)
(y(1,2),k) = ρ

(
(k, k + 1)(i, j)

)
(y(1,2),k)

= ρ((k, k + 1))
(
ρ((i, j))(y(1,2),k)

)
= ρ((k, k + 1))(y(1,2),k) = y′(1,2),k.

If (i, k + 1) ∈ Z ′
k, then

ρ((i, k + 1))(y′(1,2),k) = ρ((i, k + 1))
(
ρ((k, k + 1))(y(1,2),k)

)
= ρ

(
(i, k + 1)(k, k + 1)

)
(y(1,2),k) = ρ

(
(k, k + 1)(i, k)

)
(y(1,2),k)

= ρ((k, k + 1))
(
ρ((i, k))(y(1,2),k)

)
= ρ((k, k + 1))(y(1,2),k) = y′(1,2),k

since (i, k) ∈ Zk.
Moreover, the elements y(1,2),k and y′(1,2),k commute because

y′(1,2),k · y(1,2),k = ρ
(
α(y′(1,2),k)

)
(y(1,2),k) · y′(1,2),k

= ρ((1, 2))(y(1,2),k) · y′(1,2),k = y(1,2),k · y′(1,2),k.
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We put y(1,2),k+1 := y2
(1,2),k ·y

′
(1,2),k. Clearly, y(1,2),k+1 ∈ SSd

C and α(y(1,2),k+1) =
(1, 2). We claim that ρ(σ)(y(1,2),k+1) = y(1,2),k+1 for all σ ∈ Zk+1. Indeed, note
that the group Zk+1 is generated by the elements of the groups Zk and Z ′

k. For
every σ ∈ Zk we have

ρ(σ)(y(1,2),k+1) = ρ(σ)(y(1,2),k · y(1,2),k · y′(1,2),k)

= ρ(σ)(y(1,2),k) · ρ(σ)(y(1,2),k · y′(1,2),k) = y(1,2),k · y(1,2),k · y′(1,2),k

since the element y(1,2),k ·y′(1,2),k ∈ SSd

C,1 is fixed under the conjugation action of Sd.
For every σ ∈ Z ′

k we similarly have

ρ(σ)(y(1,2),k+1) = ρ(σ)(y2
(1,2),k · y

′
(1,2),k)

= ρ(σ)(y2
(1,2),k) · ρ(σ)(y′(1,2),k) = y2

(1,2),k · y
′
(1,2),k = y(1,2),k+1

since the element y(1,2),k ·y(1,2),k ∈ SSd

C,1 is fixed under the conjugation action of Sd.
The assertion is proved.

Consider the orbit XTC,d
of the element z(1,2) under the conjugation action of Sd

on SC , where z(1,2) is the element constructed in the proof of Assertion 1 with the
help of the element s(1,2).

Assertion 2. Define a map α : XTC,d
→ XTd

= {x(i,j) | (i, j) ∈ Td} by the formula

α
(
ρ(σ)(z(1,2))

)
= xσ(1,2)σ−1 .

Then this map is a one-to-one correspondence.

Proof. The map α : XTC,d
→ XTd

is surjective because for every transposition
(i, j) ∈ Td one can find σ ∈ Sd such that (i, j) = σ(1, 2)σ−1, and this permu-
tation σ satisfies

α
(
ρ(σ)(z(1,2))

)
= σ(1, 2)σ−1 = (i, j),

α
(
α(ρ(σ)(z(1,2)))

)
= α(xσ(1,2)σ−1) = σ(1, 2)σ−1 = (i, j).

The order of the group Zd is equal to 2(d − 2)!. Therefore, by Assertion 1, the
number |XTC,d

| of elements in XTC,d
does not exceed d!

2(d−2)! = d(d−1)
2 = |Td|. Hence

the map α : XTC,d
→ XTd

is a one-to-one correspondence. The assertion is proved.

We write z(i,j) for an element z ∈ XTC,d
such that α(z) = (i, j). Let STC,d

be the
subsemigroup of SC generated by the elements z(i,j), 1 6 i, j 6 d, i 6= j. It follows
from the construction of the elements z(i,j) that STC,d

is a semigroup over Sd.

Assertion 3. The subsemigroup STC,d
of SC is a semigroup over Sd. The elements

z(i,j) ∈ STC,d
, 1 6 i, j 6 d, i 6= j, satisfy the following relations :

z(i,j) = z(j,i) ∀ {i, j}ord ⊂ Id,

z(i1,i2) · z(i1,i3) = z(i2,i3) · z(i1,i2) = z(i1,i3) · z(i2,i3) ∀ {i1, i2, i3}ord ⊂ Id,

z(i1,i2) · z(i3,i4) = z(i3,i4) · z(i1,i2) ∀ {i1, i2, i3, i4}ord ⊂ Id.

(4)
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Proof. This follows directly from the construction of the elements z(i,j) and
Assertion 1.1 in [1].

Assertion 4. The map α−1 : XTd
→ XTC,d

can be extended to a surjective homo-
morphism α−1 : STd

→ STC,d
of semigroups over Sd.

Proof. Substituting x(i,j) for z(i,j) in (4), we get the defining relations of the semi-
group STd

. Hence it follows from Assertion 3 that α−1 can be extended to a sur-
jective homomorphism of semigroups over Sd. The assertion is proved.

If s ∈ STC,d
is a product of n generators z(i,j) of the semigroup STC,d

, then
we define its T -length by the formula lnT (s) = n. We have ln(s) = lnT (α−1(s))
for s ∈ STd

.
Assertion 4 shows that all statements in [1] saying that an element of STd

can be
represented as a product of some generators xi,j , remain valid for elements of STC,d

if we replace x(i,j) by z(i,j) and lengths by T -lengths.
We define a subsemigroup SSd,T

TC,d
of STC,d

by putting

SSd,T
TC,d

:= α−1(SSd

Td
).

Theorem 2 follows from the following assertion.

Assertion 5. The restriction of α−1 : STd
→ STC,d

to SSd

Td
,

α−1 : SSd

Td
→ SSd,T

TC,d
,

is an isomorphism of semigroups over Sd.

Proof. The homomorphism α−1 : SSd

Td
→ SSd,T

TC,d
is injective by Theorem 2.1 in [1].

We also mention the following immediate corollary of Theorem 2.1 in [1] and
Assertion 5.

Corollary 2. Every element s of the semigroup SSd,T
TC,d

is uniquely determined
by α(s) and lnT (s).

§ 2. Proof of Theorem 1

Consider an element s(1,2) = xσ1 · . . . · xσmC
, where σ1, . . . , σmC

∈ C are the
factors in the factorization (3).

If fC > 2, we can and will assume that all the permutations σi appearing in (3)
belong to the subgroup S{3,4}

d ' Sd−2 of those elements of Sd that leave 3, 4 ∈ Id

fixed. Then the element s(1,2) = xσ1 · . . . · xσmC
satisfies all the hypotheses of

Theorem 2. Hence the elements z(i,j) constructed in § 1 with the help of s(1,2) =
xσ1 · . . . · xσmC

uniquely determine a subsemigroup SSd,T
TC,d

of SC isomorphic to SSd

Td

over Sd.
Note that the length of the element z(1,2) constructed in the proof of Assertion 1

is equal to ln(z(1,2)) = 3d−4(2d − 1)mC if we start the construction with s(1,2) =
xσ1 · . . . · xσmC

.
We put

hC = (z(1,2) · z(2,3) · . . . · z(d−1,d))3.
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Then hC belongs to SSd,T
TC,d

. We rewrite hC as a product:

hC = xσ1 · . . . · xσL
, σi ∈ C, i = 1, . . . , L.

The length of hC is easily found to be

ln(hC) = 3d−3(2d− 1)(d− 1)mC := L.

The following assertion will be used in the proof of Theorem 1.

Assertion 6. Under the hypotheses of Theorem 1 suppose that s = s̃ · s ∈ ΣSd

d ,
where s ∈ SC has length

ln(s) := M > 3d−3(2d− 1)(d− 1)mC + nCkC .

Then s can be represented as a product : s = s̃ ′ · hC .

Proof. Write
s = xσ1 · . . . · xσM

, σi ∈ C. (5)

Since M = ln(s) > 3d−3(2d− 1)(d− 1)mC + nCkC > nCkC , there is a permutation
σ ∈ C such that at least nC + 1 factors in (5) are equal to xσ. Therefore s can be
written as s = s′ ·xnC

σ , where s′ ∈ SC is such that s̃ · s′ ∈ ΣSd

d . By Lemma 1.1 in [1]
we have

s = s̃ · s′ · xnC
σ = s̃ · s′ · xnC

σL
= s̃ · sL · xσL

,

where sL = s′ · xnC−1
σL

. Note that s̃ · sL ∈ ΣSd

d and ln(sL) > nCkC . Therefore,
by the same argument, s̃ · sL can be written as s̃ · sL = s̃ · s′L · xnC−1

σL−1
· xσL−1 . We

put sL−1 = s′L · xnC−1
σL−1

. Repeating the same arguments for s̃ · sL−1, we obtain that
s̃ · sL−1 = s̃ · sL−2 · xσL−1 , and so on. At the Lth step we finally get

s = s̃ · s = s̃ · s0 · (xσ1 · . . . · xσL
) = s̃ · s0 · hC .

The assertion is proved.

To complete the proof of Theorem 1, we recall that the proof of Theorem 2.3 in [1]
consists of two parts. In the first part it is proved that every element s = s̃ ·s ∈ ΣSd

d

with s ∈ STd
and ln(s) > 3(d− 1) admits another factorization s = s̃1 · s1 such that

s1 ∈ SSd

Td
and ln(s1) = 3(d− 1). In this case, the element s1 is uniquely determined

by its product α(s1) = α(s̃1)−1α(s).
In the second part of the proof of Theorem 2.3 in [1] it was proved that every

such element s = s̃1 · s1 may be rewritten as s = s̃2 · s2, where s2 ∈ SSd

Td
is

still of length ln(s2) = 3(d − 1) and s̃2 is uniquely determined by the type τ(s̃1).
Here we have only used properties of the semigroup STd

and the relations (1) in
the factorization semigroups. Therefore, by Assertions 5 and 6, the end of the
proof of Theorem 1 coincides almost verbatim with the second part of the proof of
Theorem 2.3 in [1]. We need only replace the elements x(i,j) by z(i,j), the lengths
of elements by the T -lengths, the element hd,g by α−1(hd,g), the semigroup SSd

Td

by SSd,T
TC,d

and the homomorphism r by r = α−1 ◦ r.
However, at the request of the referee, we give this proof again. To do this, we

introduce the notation hC,d,g = α−1(hd,g) for the image of the Hurwitz element
hd,g = x2g

(1,2) · x
2
(1,,2) · . . . · x

2
(d−1,d).
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Lemma 1. For every disjoint union {i1,1, . . . , ik1,1} t · · · t {i1,n, . . . , ikn,n} of
ordered subsets of Id, the Hurwitz element hC,d,0 can be represented as a product

hC,d,0 = (z(i1,1,i2,1) · . . . · z(ik1−1,1,ik1,1)) · . . . · (z(i1,n,i2,n) · . . . · z(ikn−1,n,ikn,n)) · h,

where h is an element of SSd,T
TC,d

.

Proof. This follows directly from Lemma 2.9 in [1] and Assertion 5.

By Assertion 6, the element s can be represented as a product s = s̃ ′ · s, where
s is an element of SSd,T

TC,d
of T -length k > 3(d − 1) (in our case s = hC and k =

3(d− 1)) and s̃ ′ = xσ′1
· . . . ·xσ′m . By Proposition 2.4 in [1] and Assertion 5 we have

s = hC,d,0 · s′.
To complete the proof of Theorem 1, we use induction on m. If m = 0 (that is,

s ∈ STC,d
), then Theorem 1 follows from Proposition 2.4 in [1] and Assertion 5.

Suppose that m = 1. For the canonical representative σm,0 of type t(σm) (see [1]
for a definition of the canonical representative) there is an element σm ∈ Sd such
that σm,0 = σ−1

m σ′mσm. The permutation σm can be factorized into a product of
cyclic permutations, and each cyclic permutation can be factorized into a product
of transpositions:

σm =
(
(i1,1, i2,1) . . . (ik1−1,1, ik1,1)

)
. . .

(
(i1,n, i2,n) . . . (ikn−1,n, ikn,n)

)
.

Consider the element

r(xσm
) = (z(i1,1,i2,1) · . . . ·z(ik1−1,1,ik1,1)) · . . . · (z(i1,n,i2,n) · . . . ·z(ikn−1,n,ikn,n)) ∈ STC,d

.

By Lemma 1 we have
hC,d,0 = r(xσm

) · hm,

where hm is an element of SSd,T
TC,d

. Therefore

s = xσ′m · hd,0 · s′ = xσ′m · r(xσm) · hm · s′

= r(xσm
) · xσm,0 · hm · s′ = xσm,0 · r(xσ′m

) · hm · s′,

where xσ′m
= λ(σm,0)(xσm). We have s′1 = r(xσ′m

) · hm · s′ ∈ SSd,T
TC,d

and α(s′1) =
σ−1

m,0α(s). Theorem 2.4 in [1] and Assertion 5 imply that s′1 = r(xσ) · hC,d,g, where
σ = α(s′1) = σ−1

m,0α(s) and g = k−lnt(xσ)
2 − d + 1.

We now assume that Theorem 1 is true for all m < m0 and consider an element

s = xσ1 · . . . · xσm0
· s1,

where the T -length of s1 ∈ SSd,T
TC,d

is equal to k > 3(d− 1). We have

s = xσ1 · . . . · xσm0
· s1 = xσ′2

· . . . · xσ′m0
· xσ1 · s1

= xσ′2
· . . . · xσ′m0

· xσ1,0 · s′1 = xσ1,0 · xσ′′2
· . . . · xσ′′m0

· s′1,
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where σ′j = σ1σjσ
−1
1 and σ′′j = σ−1

1,0σ
′
jσ1,0 for j = 2, . . . ,m, and the element s′1 ∈

SSd,T
TC,d

satisfies lnT (s′1) = k. By the induction hypothesis we have

s = xσ1,0 · (xσ′′2
· . . . · xσ′′m0

· s′1) = xσ1,0 · (xσ2,0 · . . . · xσm0,0 · s′′1),

where s′′1 ∈ SSd,T
TC,d

and lnT (s′′1) = k. By Proposition 2.4 in [1] and Assertion 5
we have s′′1 = r(xσ) · hC,d,g, where σ = α(s′′1) = (σ1,0 . . . σm,0)−1α(s) and g =
k−lnt(xσ)

2 − d + 1.
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