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Before formulating the main statement of the present note, recall some definitions and statements
related to Hodge structures.

Let H = {M,Hp,n−p, Q} be a polarized Hodge structure of weight n, i.e., a free Z-module M , a
nondegenerate bilinear form Q : M × M → Z, the vector space

M ⊗ C =
b⊕

p=a

Hp,n−p

presented as the direct sum of its complex subspaces Hp,n−p for some a, b ∈ Z, a ≤ b, such that
Hn−p,p = Hp,n−p and

Q(u, v) = (−1)nQ(v, u),

Q(u, v) = 0 for u ∈ Hp,n−p, v ∈ Hp′,n−p′, p �= n − p′.

A polarized Hodge structure H = {M,Hp,q, Q} is said to be unimodular if Q is an unimodular
bilinear form, i.e., if (ei) is a free basis of M , then the determinant of the matrix A = (Q(ei, ej)) is equal
to ±1.

Let

H1 = {M1,H
p,q
1 , Q1} and H2 = {M2,H

p,q
2 , Q2}

be two polarized Hodge structures of weight n. A Z-homomorphism f : M1 → M2 of Z-modules is a
morphism of polarized Hodge structures if

Q2(f(u), f(v)) = Q1(u, v) for all u, v ∈ M1

and f induces a morphism of Hodge structures, i.e.,

fC(Hp,q
1 ) ⊂ Hp,q

2 for all p, q, where fC = f ⊗ Id .

Note that if f : M1 → M2 is a morphism of polarized Hodge structures, then f is an embedding, since
Q1 and Q2 are nondegenerate bilinear forms. We say that H1 is a polarized Hodge substructure of
H2 (and write H1 ⊂ H2) if the embedding M1 ⊂ M2 is a morphism of polarized Hodge structures. A
polarized Hodge structure

H = {M1 ⊕ M2,H
p,q, Q1 ⊕ Q2}
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58 KULIKOV

is called the direct sum of the polarized Hodge structures H1 and H2 if the canonical embeddings
Mi ⊂ M1 ⊕ M2 are morphisms of polarized Hodge structures for i = 1, 2. In the case of a direct sum,
we have

Hp,q = Hp,q
1 ⊕ Hp,q

2 for all p, q.

We say that a polarized Hodge structure H is nondecomposable if it is not isomorphic to the direct
sum of two nontrivial polarized Hodge structures.

Let X be a smooth projective manifold defined over the field C, dimC X = n. It is well known that
one can associate to X a polarized Hodge structure HX = {MX ,Hp,q, Q} of weight n, where

MX = Hn(X, Z)/{torsion},
Hp,q = Hp,q

X ⊂ Hn(X, C) are the spaces of harmonic (p, q)-forms on X and Q = QX is the restriction
to

MX ⊂ MX ⊗ C � Hn(X, C)

of the bilinear form

Q(φ,ψ) =
∫

X
φ ∧ ψ.

It is well known that the lattice (MX , QX) is unimodular. Denote by

hp,q = hp,q(X) = dimHp,q
X = dimHq(X,Ωp

X )

the Hodge numbers of X, where Ωp
X is the sheaf of holomorphic p-forms on X.

Lemma 1. Let f : X → V be a birational morphism of smooth projective manifolds of dimension
dimC X = dimC V = n. Then the polarized Hodge structure HX can be decomposed into the direct
sum of the polarized Hodge structure f∗(HV ) � HV and a polarized Hodge structure H ⊥

V .

Proof. This statement is well known in the particular case where f = σ : X → V is the monoidal
transformation with nonsingular center C ⊂ V ([1]–[3]; also see [4]). By induction, the validity of the
lemma follows for any composition

f = σm ◦ · · · ◦ σ1 : X → V

of monoidal transformations σi : Xi → Xi−1 with nonsingular centers C̃i−1 ⊂ Xi−1, where X0 = V and
Xm = Y .

Now, let f be an arbitrary birational morphism. Since deg f = 1, we have
∫

V
φ ∧ ψ =

∫

X
f∗(φ) ∧ f∗(ψ),

i.e., f∗ is an embedding of the lattice MV = Hn(V, Z) in the lattice MX = Hn(V, Z). Therefore,
f∗ : HV → HX is an embedding of the polarized Hodge structure HV . Since the lattices f∗(MV )
and MX are unimodular, there is a sublattice M⊥

V of MX such that

MX = f∗(MV ) ⊕ M⊥
V

is the direct sum of lattices.
Let us show that this decomposition in the direct sum of lattices induces the decomposition

HX = f∗(HV ) ⊕ H ⊥
V

in the direct sum of polarized Hodge structures. For this, since the image of Hodge structure under a
morphism of Hodge structures is a Hodge structure, it suffices to show that the natural projection

pr⊥ : MX ⊗ C → M⊥
V ⊗ C

is a morphism of Hodge structures. To show that pr⊥ is a morphism of Hodge structures, let us consider
the birational map f−1 : V ��� X. By the Hironaka theorem, there is a composition

σ = σm ◦ · · · ◦ σ1 : Y → V
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of monoidal transformations σi : Yi → Yi−1 with nonsingular centers C̃i−1 ⊂ Yi−1, where Y0 = V and
Ym = Y , such that g = f−1 ◦ σ : Y → X is a birational morphism. We obtain the decomposition

HY = σ∗(HV ) ⊕
m−1⊕

i=0

H̃i

in a direct sum of polarized Hodge structures, where H̃i is the contribution in HY of the monoidal
transformation σi+1. Note that the natural projection

p̃r2 : HY →
m−1⊕

i=0

H̃i

is a morphism of polarized Hodge structures.
It follows from the commutative diagram

Y
g

����
��

��
�

σ

���
��

��
��

X
f

�� V

that g∗ : HX → HY is an embedding of polarized Hodge structures such that

g∗(f∗(HV )) = σ∗(HV ) and g∗(M⊥
V ) ⊂ (σ∗(MV ))⊥.

Therefore, we can identify HX with its image g∗(HX), f∗(HV ) with σ∗(HV ) and M⊥
V with g∗(M⊥

V ).
Under these identifications, the projection pr⊥ is identified with the restriction of p̃r2 to g∗(HX).
Therefore, pr⊥ is a morphism of Hodge structures, being the composition of two morphisms of Hodge
structures: namely, of the embedding g∗ and the projection p̃r2.

Let dimC X = 2k. Believing in the Hodge Conjecture, the elements of AX = MX ∩ Hk,k will be
called algebraic, and the module

TX = {γ ∈ MX | Q(γ, α) = 0 for all α ∈ AX}
will be called the module of transcendental n-cycles on X, n = 2k. It is easy to see that a polarized
Hodge structure HX induces the polarized Hodge structure

TX = {TX ,Hp,q
T , QT }, where Hp,q

T = (T ⊗ C) ∩ Hp,q
X

and QT is the restriction of Q to TX .
If S is a smooth projective surface, then the form Q = QS is symmetric unimodular and, by the index

theorem, its signature is equal to (2h2,0 + 1, h1,1 − 1). Note that the polarized Hodge structure TS on
the transcendental cycles on a smooth projective surface S is a birational invariant of the surface S.

Nondecomposability Conjecture. The polarized Hodge structure TS on the transcendental
cycles on a smooth projective surface S is nondecomposable.

Let V ⊂ P
5 be a smooth cubic fourfold. It is known (see [5], [6]) that the moduli space of cubic

fourfolds contains several families of rational cubics. Nevertheless, the following conjecture is well
known.

Nonrationality Conjecture. A generic cubic fourfold is nonrational.

The aim of the present note is to show that the Nonrationality Conjecture follows from the Non-
decomposability Conjecture. To formulate the precise statement, we fix one of the smooth cubic
fourfolds V0. For each cubic fourfold V , we can identify the lattice (MV , QV ) with the lattice (M0, Q),
where M0 = H4(V0, Z) and Q = QV0 . Let λ = L2 ∈ M0, where L ∈ H2(V0, Z) is the class of the
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hyperplane section of V0 ⊂ P
5. It is well known (see, e.g., [7]) that each smooth cubic fourfold V has

the following Hodge numbers:

h4,0 = h0,4 = 0, h3,1 = h1,3 = 1, and h2,2 = 21.

Consider the polarized Hodge structures HV = {MV ,Hp,q, QV } on the fourth cohomology groups of
the smooth cubic fourfolds V . Since h4,0 = 0 and h3,1 = 1, the polarized Hodge structure

HV = {M0,H
p,q
V , Q}

is defined by a nonzero element ω ∈ H3,1
V ⊂ M0 ⊗ C. It follows from the Hodge–Riemann bilinear

relations that

Q(λ, ω) = Q(ω, ω) = 0 and Q(ω, ω) < 0.

Therefore, the classifying space D of polarized Hodge structures of smooth cubic fourfolds coincides
with

D = {ω ∈ P
22 | Q(ω, λ) = Q(ω, ω) = 0, Q(ω, ω) < 0}.

The point ω(V ) ∈ D corresponding to the polarized Hodge structure HV = {M0,H
p,q(V ), Q} of a

smooth cubic fourfold V is called the periods of V . By [8] and by the global Torelli theorem proved
in [9], the set D0 of periods of the smooth cubic fourfolds is an open subset of D.

Let

P = {µ ∈ M0 | Q(λ, µ) = 0}
be the submodule of M0 consisting of the primitive elements. For each endomorphism A ∈ End(M0)
such that A(P ) ⊂ P and the restriction A|P of A to P is not proportional to the identity automorphism
of P , denote

EA = {ω ∈ D ⊂ P
22 | ω is an eigenvector of A}.

Obviously, EA is the intersection of D and a finite number of linear subspaces of P
22 of codimension at

least 2. Therefore, EA is a proper closed analytic subvariety of D. Put E =
⋃

EA. Then E is the union
of countably many proper closed analytic subvarieties of D. Therefore, D \ E is everywhere dense in D.

For each µ ∈ M0, µ is not proportional to λ, we put

Bµ = {ω ∈ D ⊂ P
22 | Q(µ, ω) = 0} and B =

⋃
Bµ.

As above, B is the union of countably many proper closed analytic subvarieties of D. Therefore,
D0 \ (E ∪ B) is also everywhere dense in D0.

Proposition 1. If the Nondecomposability Conjecture is true, then a smooth cubic fourfold V is
nonrational if its periods ω(V ) are contained in D0 \ (E ∪ B).

Proof. Assume that the smooth cubic fourfold V is rational and its periods ω(V ) are contained in
D0 \ (E ∪ B).

Note that the sublattice of transcendental elements TV of the lattice MV coincides with the sublattice
of primitive elements P if the periods ω(V ) belong to D0 \ B.

Since V is rational, then there is a birational map r : P
4 ��� V . By the Hironaka theorem, there is a

composition

τ = τn ◦ · · · ◦ τ1 : X → P
4

of monoidal transformations τi : Xi → Xi−1 with nonsingular centers Ci−1 ⊂ Xi−1, where X0 = P
4 and

Xn = X, such that

f = r ◦ τ : X → V

is a birational morphism.
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Each τi induces an inclusion of unimodular polarized Hodge structures τ∗
i : HXi−1 ↪→ HXi such that

HXi � τ∗
i (HXi−1) ⊕ (τ∗

i (HXi−1))
⊥.

In particular,

H4(Xi, Z) = τ∗
i (H4(Xi−1, Z)) ⊕ (τ∗

i (H4(Xi−1, Z)))⊥.

Moreover, if dimCi−1 ≤ 1, then

(τ∗
i (H4(Xi−1, Z)))⊥ ⊂ H2,2

Xi
,

and if Ci−1 is a smooth surface, then

(τ∗
i (HXi−1))

⊥ � −HCi−1(−1),

where

−HCi−1(−1) = (MCi−1 ,H
p,q
i−1,−QCi−1) and Hp,q

i−1 = Hp−1,q−1
Ci−1

.

Therefore,

H3,1
Xi

= τ∗
i (H3,1

Xi−1
) ⊕ H3,1

i−1, H4,0
Xi

= 0

and

QXi(u, v) = 0 for u ∈ τ∗
i (H3,1

Xi−1
⊕ H1,3

Xi−1
), v ∈ H3,1

i−1 ⊕ H1,3
i−1.

As a consequence, we obtain a decomposition of the unimodular polarized Hodge structure

HX = τ∗(HP4) ⊕
n−1⊕

i=0

Hi

into a direct sum of polarized Hodge structures, where Hi is the contribution in HX of the (i + 1)th
monoidal transformation τi+1. By induction, we have Hi � (τ∗

i (HXi−1))
⊥ and, consequently,

TX � −⊕ TCi(−1),

where the sum is taken over all surfaces Ci with pg ≥ 1, since

H4(P4, C) = H2,2
P4 , h2,2(P4) = 1, H2(Ci, C) = H1,1

Ci

if the geometric genus pg of the surface Ci is equal to zero.
The morphism f induces a morphism of Hodge structures f∗ : HV → HX . By Lemma 1, the Hodge

structure HX is decomposed into the direct sum f∗(HV ) ⊕ H ⊥
V of polarized Hodge structures.

Lemma 2. Let V be a smooth cubic fourfold from Proposition 1, and let

τ = τn ◦ · · · ◦ τ1 : X → P
4 and f = r ◦ τ : X → V

be the morphisms described above. Then there is an i0 such that the polarized Hodge structure
TCi0

on the transcendental cycles of the surface Ci0 can be decomposed into the direct sum of
polarized Hodge structures T ′

Ci0
� −f∗(TV )(1) and T ′′

Ci0
.

Proof. We have two decompositions

HX = f∗(HV ) ⊕ H ⊥
V = τ∗(HP4) ⊕

n−1⊕

i=0

Hi

of the polarized Hodge structure HX . Consider a nonzero element ω ∈ f∗(H3,1
V ). It can be represented

in the form

ω =
n−1∑

i=0

ωi, where ωi ∈ H3,1
i .
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Let i0 be an index such that ωi0 �= 0. Put ω⊥
i0

=
∑

i�=i0
ωi, and let

pri0 : HX → Hi0 , pr⊥i0 : HX → ⊕i�=i0Hi, pr: HX → f∗(HV ), pr⊥ : HX → H ⊥
V

be the natural projections. Note that all these projections are defined over Z. We have pr(pri0(ω)) = aω

for some a ∈ C, since dim f∗(H3,1
V ) = 1 and pr, pri0 are morphisms of Hodge structures.

Let us show that a = 1. Indeed, the restriction of pr ◦pri0 to f∗(MV ) � MV induces an endomor-
phism of MV such that

pr ◦pri0(f
∗(P )) ⊂ f∗(P ),

since pr ◦pri0 is a morphism of Hodge structures, MV ∩H2,2
V = Zλ and P = TV by assumption. There-

fore, (pr ◦pri0)|f∗(P ) = a · Id, since pr(pri0(ω)) = aω (i.e., ω is an eigenvector of (pr ◦pri0)|f∗(MV ) and a

is its eigenvalue, and, by assumption, ω(V ) ∈ D0 \ (E ∪ B)). Therefore, a ∈ Z, since (pr ◦pri0)|f∗(P ) is
an endomorphism of Z-module f∗(P ) � P . Let

ω⊥ = pr⊥(ωi0) ∈ H3,1
X .

Then we have

ωi0 = aω + ω⊥,

ω⊥
i0 = (1 − a)ω − ω⊥.

By Hodge–Riemann bilinear relations, QX(γ, γ) ≤ 0 for γ ∈ H3,1
X and QX(γ, γ) = 0 if and only if γ = 0.

Therefore, without loss of generality, we can assume that

QX(ω, ω) = −1 and QX(ω⊥, ω⊥) = b ≤ 0.

We have QX(ωi0, ωi0) = −a2 + b and, consequently, a and b cannot simultaneously be equal to zero,
since ωi0 �= 0. Besides, we have

QX(ω, ω⊥) = QX(ω, ω⊥) = QX(ω, ω⊥) = QX(ω, ω⊥) = QX(ωi0, ω
⊥
i0) = 0.

Therefore,

QX(ωi0 , ω
⊥
i0) = QX(aω + ω⊥, (1 − a)ω − ω⊥) = a(1 − a)(−1) − b = 0,

i.e., a2 − a − b = 0, and hence

a =
1 ±

√
1 + 4b
2

.

But, a ∈ Z and b ≤ 0; therefore, b = 0, a = 1 and hence ω⊥ = 0, since QX(ω⊥, ω⊥) = b = 0. Therefore,
ω ∈ H3,1

i0
. Besides, we showed that (pr ◦pri0)|f∗(P ) = Id.

Let us show that f∗(TV ) ⊂ Ti0 . As above, we have two decompositions

TX = f∗(TV ) ⊕ f∗(TV )⊥ =
n−1⊕

i=0

Ti

of the polarized Hodge structure TX . Each γ ∈ f∗(TV ) can be written in the form

γ = γi0 + γ⊥
i0 , where γi0 = pri0(γ) ∈ Ti0 , γ⊥

i0 = pr⊥i0(γ) ∈ ⊕i�=i0Ti.

Then, since (pr ◦pri0)|f∗(P ) = Id and P = TV , we have

γi0 = γ + γ⊥,

γ⊥
i0 = −γ⊥,

where

γ⊥ = pr⊥(γi0) ∈ f∗(TV )⊥.
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Denote by p(3,1) : MX ⊗ C → H3,1
X the natural projection. Then, by definition of transcendental cycles,

p(3,1)(γ) �= 0 for each nonzero element γ ∈ TX , since the Hodge number h4,0(X) is zero. In particular,

p(3,1)(γ) = aγω for some aγ ∈ C, aγ �= 0, since f∗(H3,1
V ) = Cω. Therefore, p(3,1)(γi0) = aγω, since

ω ∈ f∗(H3,1
V ) ⊂ H3,1

i0
, and hence p(3,1)(γ⊥

i0
) = 0. From this, we have γ⊥

i0
= 0, i.e., f∗(TV ) ⊂ Ti0 .

As a consequence, we see that

Ti0 = f∗(TV ) ⊕ T ′′
i0 (1)

is a direct sum of polarized Hodge structures, where T ′′
i0

is a polarized Hodge substructure of f∗(TV )⊥.
To complete the proof of Lemma 2, recall that Ti0 � −TCi0

(−1), where TCi0
is the polarized Hodge

structure on the transcendental 2-cycles on the smooth projective surface Ci0 .

Lemma 3. There does not exist any smooth projective surface S such that TV � −TS(−1),
where V is a smooth cubic fourfold whose periods ω(V ) belong to D0 \ B.

Proof. If TV � −TS(−1) for some surface S, then its geometric genus is

pg = h2,0(S) = h3,1(V ) = 1

and rkTS = rkTV = 22. Since pg = 1, the surface S is not a ruled surface. The lattice TS is a birational
invariant. Therefore, we can assume that S is a minimal model and its second Betti number satisfies

b2(S) = h1,1(S) + 2h2,0(S) ≥ 23,

because rkTS = rkTV = 22 and S should have also algebraic 2-cycles. Therefore, h1,1(S) should be
greater than 20, since h2,0(S) = 1.

On the other hand, it follows from the classification of algebraic surfaces that K2
S ≥ 0, where KS is

the canonical class of S. Denote by

χ(S) = 1 − h1,0(S) + h2,0(S)

the algebraic Euler characteristic of the surface S and by

e(S) = 2 + h1,1
S + 2h2,0(S) − 4h1,0(S)

its topological Euler characteristic. Note that

h1,0(S) = dimH0(S,Ω1
S) ≥ 0.

By Noether’s formula, we have

χ(S) =
1
12

(K2
S + e(S)),

and hence

h1,1(S) = 10 + 10h2,0(S) − 8h1,0(S) − K2
S = 20 − 8h1,0(S) − K2

S ,

because h2,0(S) = 1. Therefore, h1,1(S) ≤ 20.

It follows from Lemma 3 that, in the decomposition (1), the summand T ′′
i0

is nontrivial, which
contradicts the Nondecomposability Conjecture.
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