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On Chisini’s conjecture. II

Vik. S. Kulikov

Abstract. We prove that if S ⊂ PN is a smooth projective surface
and f : S → P2 is a generic linear projection branched over a cuspidal
curve B ⊂ P2, then S is uniquely determined (up to isomorphism) by B.

Let B ⊂ P2 be an irreducible plane algebraic curve over C with ordinary cusps
and nodes as the only singularities. We denote the degree of B by 2d and let g be
the genus of its desingularization, c the number of cusps and n the number of nodes.
The curve B is called the discriminant curve of a generic covering of the projective
plane if there is a finite morphism f : S → P2, deg f > 3, satisfying the following
conditions:

(i) S is a non-singular irreducible projective surface,
(ii) f is unramified over P2 \B,
(iii) f∗(B) = 2R +C, where R is a non-singular irreducible reduced curve and C

is a reduced curve,
(iv) the morphism f|R : R → B coincides with the normalization of B.
Such morphisms f are called generic coverings of the projective plane P2.
A generic covering f : S → P2 is called a generic projection if the surface S is

embedded in some projective space PN and f = pr|S is the restriction to S of some
linear projection pr: PN → P2.

Chisini’s conjecture (see [1]) claims that if f : S → P2 is a generic covering
of the projective plane and deg f > 5, then f is uniquely determined (up to an
isomorphism of S) by its discriminant curve.

It was proved in [2] that Chisini’s conjecture holds for the discriminant curve B
of a generic covering f : S → P2 if

deg f >
4(3d + g − 1)

2(3d + g − 1)− c
. (1)

Furthermore, it was observed in [3] that, by the Bogomolov–Miyaoka–Yau inequal-
ity, all possible values of the right-hand side of (1) are less than 12 and, there-
fore, the conjecture holds for the discriminant curves of generic coverings of degree
greater than 11. It was also shown in [3] that if S is a surface of non-general type,
then the conjecture holds for the discriminant curves of generic coverings f : S → P2

with deg f > 8.

This paper was written with partial support from RFBR (grant nos. 08-01-00095, 07-01-
92211-NCNIL−a, 06-01-72017MNTI, 05-02-89000-NWO−a), INTAS (grant no. 05-1000008-7805)
and RUM1-2692-MO-05.

AMS 2000 Mathematics Subject Classification. 14E22, 14N05, 14J25.
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The purpose of this paper is to prove the following theorem.

Theorem. Let f : S → P2 be a generic projection. Then the generic covering f is
uniquely determined (up to an isomorphism of S) by its discriminant curve B ⊂ P2

except in the case when S ' P2 is embedded in P5 by polynomials of degree two
(the Veronese embedding of P2 in P5) and f is the restriction to S of a linear
projection pr: P5 → P2.

Proof. To prove the theorem, we shall show that inequality (1) fails only for the
discriminant curves of two continuous families of generic projections onto the projec-
tive plane. Then we shall see that the generic coverings f : S → P2 of one of these
exceptional families are uniquely determined by their discriminant curves, while
generic projections of the other are the generic projections of S ' P2 embedded
in P5 by the Veronese embedding.

To do this, we consider a generic projection f : S → P2, where S is a non-singular
surface embedded in PN . Let deg S = m be the degree of the embedding S ⊂ PN

and let pr : PN → P2 be a linear projection such that f = pr|S . We have deg f =
deg S = m.

Any linear projection PN → P2 is determined by its centre PN−3 ⊂ PN . There-
fore the set of linear projections PN → P2 is parametrized by the points of the
Grassmannian Gr(N−3, N). Let u0 ∈Gr(N−3, N) be a point for which the generic
covering f = pru0|S is the restriction of the projection pr = pru0

. There is
a Zariski-open subset US of the Grassmannian Gr(N − 3, N) such that for every
u ∈ US the restriction fu of the corresponding linear projection pru to S is a generic
covering of the projective plane. The set US is non-empty since u0 ∈ US by assump-
tion. For all u ∈ US , the discriminant curves Bu of the generic coverings fu have
the same genus g, the same degree deg Bu = 2d and the same numbers c and n
of cusps and nodes. Therefore inequality (1) either holds simultaneously for all
the fu, u ∈ US , or for none of them. Thus any point of US can be taken for u0

when verifying inequality (1).
By Theorem 3 of [4] there is a non-empty Zariski-open subset VS ⊂ Gr(N−4, N)

such that for every linear projection prv : PN → P3 with centre at v ∈ VS , the image
S = prv(S) of S has only ordinary singular points (that is, singular points which are
given locally by one of the following equations: xy = 0 (a double curve), xyz = 0
(a triple point), x2 = y2z (a pinch)).

Consider the flag manifold F = F (N − 4, N − 3, N ) of linear subspaces
PN−4 ⊂ PN−3 in PN . We have natural projections p1 : F → Gr(N − 3, N) and
p2 : F → Gr(N − 4, N). Clearly, the intersection WS = p−1

1 (US) ∩ p−1
2 (VS) of

two non-empty Zariski-open subsets p−1
1 (US) and p−1

2 (VS) is a non-empty Zariski-
open subset of F . Hence there is no loss of generality in assuming that the generic
covering f coincides with the projection fu, where u ∈ US satisfies p1(w) = u

for some w ∈ WS . In other words, pru can be written as the composite of two
projections, prp2(w) and some projection pr: P3 → P2 such that S = prp2(w)(S)
is a surface in P3 of degree deg S = deg S with only ordinary singular points.
Let f1 : S → S denote the restriction of prp2(w) to S and f2 : S → P2 the restriction
of pr to S. The morphism f1 is birational. We have f = f2 ◦ f1.
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Denote by D ⊂ S the double curve of S. Write D = D1 ∪ · · · ∪ Du, where Di

(i = 1, . . . , u) are the irreducible components of D. Let gi and di be respectively the
genus and degree of the curve Di. We put ḡ =

∑u
i=1 gi and d̄ =

∑u
i=1 di. Denote

by t the number of triple points of S. Note that 0 6 u 6 d̄ and ḡ > 0.
We have (see, for example, [5])

K2
S = m(m− 4)2 − (5m− 24)d̄− 4(u− ḡ) + 9t, (2)

e(S) = m2(m− 4) + 6m− (7m− 24)d̄− 8(u− ḡ) + 15t, (3)

where KS is the canonical class of S and e(S) is its topological Euler characteristic.
On the other hand, since deg f = deg S = m for a generic projection f = pr|S , we
have (see Lemmas 6 and 7 in [2])

K2
S = 9m− 9d + g − 1, (4)

e(S) = 3m + 2(g − 1)− c. (5)

Lemma 1. We have

2d = m(m− 1)− 2d̄, (6)

d̄ 6
(m− 1)(m− 2)

2
. (7)

Proof. Let L be a generic line in P2 and L̄ = f−1
2 (L) its pre-image. Then L̄ is an

irreducible plane curve of degree m having d̄ nodes as its singular points. Therefore
the genus g(L̄) is equal to (m−1)(m−2)

2 − d̄, and inequality (7) follows from the
inequality g(L̄) > 0.

The covering f2|L̄ : L̄ → L is a morphism of degree m. It is branched at 2d =
(L,B)P2 = deg B points. It follows that 2g(L̄)−2 = −2m+2d by Hurwitz’ formula.
Thus we have

−2m + 2d = (m− 1)(m− 2)− 2d̄− 2,

that is, 2d = m(m− 1)− 2d̄. The lemma is proved.

It follows from (2)–(6) that

g − 1 =
m(2m2 − 7m + 5)

2
− 5(m− 3)d̄− 4(u− ḡ) + 9t, (8)

c = m(m− 1)(m− 2)− 3(m− 2)d̄ + 3t. (9)

Substituting equations (6), (8) and (9) in inequality (1) and performing obvious
transformations, we easily see that (1) is equivalent to the inequality

(m− 2)
[
m(m− 1)(m− 2)− (7m− 24)d̄− 8(u− ḡ)

]
+ 3(5m− 12)t > 0. (10)

Therefore, by Theorem 1 of [2], to prove the theorem it suffices to show that if
the inequality

(m− 2)
[
m(m− 1)(m− 2)− (7m− 24)d̄− 8(u− ḡ)

]
+ 3(5m− 12)t 6 0 (11)



904 Vik. S. Kulikov

holds for a surface S ⊂ P3 with ordinary singular points, then either f : S → P2 is
a projection of the projective plane embedded in P5 by the Veronese embedding, or
f is uniquely determined (up to an isomorphism of S) by its discriminant curve B.

By the main result of [3] we can assume that m 6 11.

Lemma 2. Chisini’s conjecture holds for the discriminant curves of generic pro-
jections f : S → P2 if 6 6 deg S = m 6 11 and K2

S 6 3e(S).

Proof. It follows from equations (4), (5) and the inequality K2
S 6 3e(S) that

3c 6 9d + 5(g − 1). (12)

Assume that the conjecture does not hold for the discriminant curve B of some
generic projection f : S → P2, deg f = deg S = m. Then the invariants of B do not
satisfy (1). Hence they satisfy the inequality

4(3d + g − 1)
2(3d + g − 1)− c

> m

or, equivalently,

c >
2(m− 2)

m
(3d + g − 1). (13)

It follows from inequalities (12) and (13) that

6(m− 2)
(
3d + (g − 1)

)
6 3mc 6 m

(
9d + 5(g − 1)

)
and hence

6(m− 2)
(
3d + (g − 1)

)
6 m

(
9d + 5(g − 1)

)
,

that is,

g − 1 >
9(m− 4)
12−m

d (14)

(we have m 6 11 by hypothesis). Therefore, applying inequality (13), we have

c >
2(m− 2)

m
(3d + g − 1) >

2(m− 2)
m

(
3d +

9(m− 4)
12−m

d

)
,

that is,

c >
12(m− 2)
12−m

d. (15)

Since deg B(deg B−3)
2 = c + n + g − 1 and n > 0, we have

d(2d− 3) > c + g − 1. (16)

Therefore we have

d(2d− 3) > c + g − 1 >
12(m− 2)
12−m

d +
9(m− 4)
12−m

d

and hence

2d− 3 >
12(m− 2)
12−m

+
9(m− 4)
12−m

=
21m− 60
12−m

,
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that is,

d >
3(3m− 4)
12−m

. (17)

If m = 11, then inequality (17) yields that d > 87. On the other hand, we have
d 6 55 by Lemma 1, a contradiction.

If m = 10, then inequality (17) implies that d > 39. Hence we have d̄ 6 6 by
Lemma 1. On the other hand, inequality (11) implies that

8
(
720− 46d̄− 8(u− ḡ)

)
+ 114t 6 0.

Since t > 0, we must have

720− 46d̄− 8(u− ḡ) 6 0.

Therefore,
720 6 46d̄ + 8(u− ḡ) 6 54d̄

because u − ḡ 6 d̄. Finally, we obtain that d̄ > 720
54 , which contradicts d̄ 6 6.

If m = 9, then inequalities (14) and (17) yield that d > 23 and g − 1 > 15d.
Therefore, by Lemma 1, we have

g − 1 > 15(36− d̄), (18)

d̄ 6 28− 23 = 5. (19)

It follows from inequality (11) that

7
(
504− 39d̄− 8(u− ḡ)

)
+ 99t 6 0

or, equivalently,
99t 6 273d̄ + 56(u− ḡ)− 3528. (20)

Equation (8), with m = 9, and inequality (18) imply that

468− 30d̄− 4(u− ḡ) + 9t > 15(36− d̄)

or, equivalently,
9t > 15d̄ + 4(u− ḡ) + 72. (21)

It follows from inequalities (20) and (21) that

273d̄ + 56(u− ḡ)− 3528 > 11
(
15d̄ + 4(u− ḡ) + 72

)
,

that is, 4320 6 108d̄ +12(u− ḡ) 6 120d̄ because ḡ > 0 and u 6 d̄. Therefore d̄ > 36.
But this contradicts inequality (19).

If m = 8, then it follows from (14) that g − 1 > 9d. Therefore, by Lemma 1, we
have

g − 1 > 9(28− d̄), (22)

where d̄ 6 21.
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It follows from (11) that

6
(
336− 32d̄− 8(u− ḡ)

)
+ 84t 6 0

or, equivalently,
7t 6 16d̄ + 4(u− ḡ)− 168. (23)

Equation (8), with m = 8, and inequality (22) imply that

308− 25d̄− 4(u− ḡ) + 9t > 9(28− d̄)

or, equivalently,
9t > 16d̄ + 4(u− ḡ)− 56. (24)

It follows from inequalities (23) and (24) that

7
(
16d̄ + 4(u− ḡ)− 56

)
6 9

(
16d̄ + 4(u− ḡ)− 168

)
,

that is, 1120 6 32d̄ + 8(u − ḡ) 6 40d̄ because ḡ > 0 and u 6 d̄. Therefore d̄ > 28,
which contradicts the inequality d̄ 6 21.

If m = 7, then it follows from inequality (14) that g − 1 > 27
5 d. Hence we have

g − 1 >
27
5

(21− d̄) (25)

since d = 21− d̄ and d̄ 6 15 by Lemma 1.
Inequality (11) can be rewritten as

69t 6 125d̄ + 40(u− ḡ)− 1050. (26)

Equation (8), with m = 7, and inequality (25) imply that

189− 20d̄− 4(u− ḡ) + 9t >
27
5

(21− d̄)

or, equivalently,
45t > 73d̄ + 20(u− ḡ)− 378. (27)

It follows from inequalities (26) and (27) that

15
(
125d̄ + 40(u− ḡ)− 1050

)
> 23

(
73d̄ + 20(u− ḡ)− 378

)
,

that is, 7056 6 196d̄ + 140(u − ḡ) 6 336d̄ because ḡ > 0 and u 6 d̄. Therefore
d̄ > 7056

336 = 21, which contradicts inequality d̄ 6 15.
If m = 6, then (14) yields that g − 1 > 3d. Hence we have

g − 1 > 3(15− d̄) (28)

because d = 15− d̄ and, moreover, d̄ 6 10 by Lemma 1.
Inequality (11) can be rewritten as

27t 6 36d̄ + 16(u− ḡ)− 240. (29)
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Equation (8), with m = 6, and inequality (28) imply that

105− 15d̄− 4(u− ḡ) + 9t > 45− 3d̄

or, equivalently (multiplying by 3),

27t > 36d̄ + 12(u− ḡ)− 180. (30)

It follows from inequalities (29) and (30) that

36d̄ + 16(u− ḡ)− 240 > 36d̄ + 12(u− ḡ)− 180,

that is, u − ḡ > 15. On the other hand, we have u − ḡ 6 10 since ḡ > 0 and
u 6 d̄ 6 10, a contradiction. The lemma is proved.

According to Theorem 2 of [3], if deg f > 8 and S is a surface of non-general type,
then Chisini’s conjecture holds for the discriminant curve B of any generic covering
f : S → P2. It is well known (see the classification of algebraic surfaces) that if the
Bogomolov–Miyaoka–Yau inequality does not hold for an algebraic surface S, then
S is an irregular ruled surface and we have K2

S 6 2e(S) and K2
S 6 −2. Therefore,

by Lemma 2, to prove the theorem, it suffices to consider only the following cases:
3 6 m 6 7 and, when m = 6 or 7, K2

S 6 2e(S) and K2
S 6 −2.

We again assume that the invariants of the surface S satisfy (11).
Case m = 3. In this case (11) takes the form

6 + 3d̄− 8(u− ḡ) + 9t 6 0.

It follows from (7) that d̄ 6 1. Hence there are two possibilities: either d̄ = 0 and,
therefore, u = ḡ = t = 0, or d̄ = 1 and, therefore, u = 1, ḡ = t = 0 because D is
a line in P3 in this case. In both cases, it is easy to see that inequality (11) does
not hold.

Case m = 4. In this case (11) takes the form

2
(
24− 4d̄− 8(u− ḡ)

)
+ 24t 6 0.

It follows from (7) that d̄ 6 3 and we have three possibilities: d̄ 6 2 (and hence
u 6 d̄ 6 2, ḡ = t = 0) or d̄ = 3, u = 3, ḡ = 0, t = 1, or d̄ = 3, u = 1, ḡ = 1 or ḡ = 0,
t = 0. It is easy to see that inequality (11) holds only in the following two cases:
u = d̄ = 2, ḡ = t = 0 and u = d̄ = 3, ḡ = 0, t = 1. These exceptional cases will be
investigated at the end of the proof of the theorem.

Case m = 5. Inequality (11) takes the form

3
(
60− 11d̄− 8(u− ḡ)

)
+ 39t 6 0

or, equivalently,
60 + 2t 6 11(d̄− t) + 8(u− ḡ). (31)

By Theorem 11 of [2], Chisini’s conjecture holds for all cuspidal curves B of
genus g 6 3. Therefore, by inequality (8), we have

g − 1 = 50− 10d̄− 4(u− ḡ) + 9t > 3
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or, equivalently,
47− t > 10(d̄− t) + 4(u− ḡ). (32)

By Lemma 1 we have u 6 d̄ 6 6. Therefore u− ḡ 6 6 and we get the following
corollary of inequality (31):

12 + 2t 6 11(d̄− t),

that is,
d̄− t > 2. (33)

Similarly, since d̄− t 6 6, inequality (31) implies that

−6 + 2t 6 8(u− ḡ)

and, therefore, u − ḡ > 0. Applying inequality (32), we have 47 − t > 10(d̄ − t),
that is, d̄− t 6 4. Therefore inequality (31) yields that 16 + 2t 6 8(u− ḡ), that is,
u− ḡ > 2. Then we have 39− t > 10(d̄− t) by inequality (32) and, therefore,

d̄− t 6 3. (34)

It now follows from inequality (31) that

27 + 2t 6 8(u− ḡ),

that is, u− ḡ > 4. Hence u > 4 and, therefore, d̄ > 4.
By inequalities (33) and (34) we have

2 6 d̄− t 6 3.

Consider the case when d̄− t = 3. It follows from (32) that

17− t > 4(u− ḡ). (35)

Hence u− ḡ 6 4. It follows that u− ḡ = 4, u = 4 and ḡ = 0 because the genera of
irreducible components of a curve of degree d̄ 6 6 having more than four irreducible
components must be equal to zero. Moreover, it follows from inequality (35) that
t 6 1. Therefore t = 1 and d̄ = 4 since d̄− t = 3 and d̄ > 4. In this case, formulae
(8), (9) and Lemma 1 yield that the curve B must have the following invariants:

deg B = 2d = 12, g = 4, c = 27, n = (2d− 1)(d− 1)− g − c = 24.

But this is impossible since, in this case, the degree of the dual curve B̌ equals
2d(2d − 1) − 3c − 2n = 3 by Plücker’s formula and, therefore, the degree of B
cannot exceed

deg B̌(deg B̌ − 1) = 3 · 2 = 6.

Consider the case when d̄− t = 2. It follows from (31) that

38 + 2t 6 8(u− ḡ). (36)

Hence u − ḡ > 5. It follows that u > 5 and ḡ = 0. Now (36) yields that u = 6
because the equation d̄ − t = 2 and the inequalities 6 > d̄ > u > 5 imply that
t > 3 and, therefore, 38 + 2t > 44. Thus we have only one possibility:

u = 6, ḡ = 0, d̄ = 6, t = 4.

But these values of u, ḡ, d̄ and t do not satisfy inequality (32).
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Case m = 6 and K2
S 6 2e(S). Applying formulae (4) and (5), we obtain

2c 6 9d + 3(g − 1)− 18. (37)

Inequality (13) may be written as

3c > 4(3d + g − 1). (38)

It follows from inequalities (38) and (37) that

24d + 8(g − 1) 6 6c 6 27d + 9(g − 1)− 54,

that is, 3d + g − 1 > 54. Since d = 15− d̄, we have

g − 1 > 54− 3(15− d̄) = 9 + 3d̄. (39)

By assumption, the invariants of S satisfy inequality (11) for m = 6. Hence they
satisfy inequality (29).

Equation (8), with m = 6, and inequality (39) imply that

105− 15d̄− 4(u− ḡ) + 9t > 9 + 3d̄

or, equivalently,
27t > 72d̄ + 12(u− ḡ)− 288.

By inequality (29) we have 36d̄ + 16(u− ḡ)− 240 > 27t. Hence,

36d̄ + 16(u− ḡ)− 240 > 72d̄ + 12(u− ḡ)− 288,

that is, 12 > 9d̄− (u− ḡ). But u− ḡ 6 d̄. Hence 9d̄− (u− ḡ) > 8d̄ and, therefore,
3 > 2d̄. Since d̄ is an integer, we must have d̄ 6 1.

On the other hand, inequality (29) implies that

240 6 9d̄ + 27(d̄− t) + 16(u− ḡ) 6 52d̄

because d̄− t 6 d̄ and u− ḡ 6 d̄. Therefore we get d̄ > 5, a contradiction.
Case m = 7 and K2

S 6 2e(S), K2
S 6 −2. Applying formulae (4), (5), we see from

the inequality K2
S 6 2e(S) that

2c 6 9d + 3(g − 1)− 21. (40)

We have K2
S 6 −2. Therefore it follows from (2) that

K2
S = 7 · 9− 25d̄− 4(u− ḡ) + 9t 6 −2.

Hence,
65 6 65 + 9t 6 25d̄ + 4(u− ḡ) 6 29d̄

because t > 0 and u− ḡ 6 d̄. Thus we have

d̄ > 3. (41)
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Inequality (13) may be written as

7c > 10(3d + g − 1). (42)

It follows from (42) and (40) that

60d + 20(g − 1) 6 14c 6 63d + 21(g − 1)− 147,

that is,
3d + g − 1 > 147. (43)

Since d = 21− d̄, we have

g − 1 > 147− 3(21− d̄) = 84 + 3d̄. (44)

Therefore inequality (41) implies that

g − 1 > 93. (45)

It follows from inequalities (42) and (43) that c > 210. Using inequality (16),
we get

d(2d− 3) > c + g − 1 > 210 + 93 = 303,

whence d > 3+
√

2433
4 > 13, that is,

d > 14 (46)

because d is an integer. Therefore,

d̄ = 21− d 6 7. (47)

By assumption, the invariants of S must satisfy inequality (11) for m = 7. Hence
they satisfy inequality (26). It follows from (26) that

210− 25d̄− 8(u− ḡ) 6 0

since t > 0. Then 210 6 25d̄ + 8(u − ḡ) 6 33d̄ because u − ḡ 6 d̄. Therefore
d̄ > 210

33 = 6 + 4
11 , that is, d̄ > 7 since d̄ is an integer. Applying inequality (47), we

must have d̄ = 7.
Equation (8), with m = 7, and inequality (44) imply that

181− 20d̄− 4(u− ḡ) + 9t > 84 + 3d̄.

Therefore,
9t > 64 + 4(u− ḡ) (48)

since d̄ = 7, and by (26) we have

125d̄ + 40(u− ḡ)− 1050 > 69t,

that is,
40(u− ḡ)− 175 > 69t. (49)
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Combining inequalities (48) and (49), we get

3
(
40(u− ḡ)− 175

)
> 23

(
64 + 4(u− ḡ)

)
,

that is, 28(u − ḡ) > 3 · 175 + 23 · 64 = 1997. On the other hand, u − ḡ 6 d̄ = 7,
a contradiction.

Let us return to the remaining two cases, when m = 4 and either u = d̄ = 2,
ḡ = t = 0, or u = d̄ = 3, ḡ = 0, t = 1.

First take the case when m = 4 and u = d̄ = 2, ḡ = t = 0. By formulae (8), (9)
and (6) we have d = 4, g = 1 and c = 12. Hence the number n of nodes of B is
equal to d(2d− 3)− c− g + 1 = 8.

Suppose that there is another generic covering f2 : S2 → P2 with the same dis-
criminant curve B and f2 is not equivalent to the generic projection f . By Theo-
rem 1 of [2], we have

deg f2 6
4(3d + g − 1)

2(3d + g − 1)− c
= 4.

Since S2 is a non-singular surface and the discriminant curve B of f2 has nodes,
deg f2 cannot be equal to 3. Hence deg f2 = 4.

We put S1 = S, R1 = R, C1 = C and f∗2 (B) = 2R2 + C2, where R2 is the
ramification locus of f2.

Consider the fibre product

S1 ×P2 S2 =
{
(x, y) ∈ S1 × S2 | f1(x) = f2(y)

}
and let X = ˜S1 ×P2 S2 be the normalization of S1 ×P2 S2. We denote the corre-
sponding natural morphisms by g1 : X → S1, g2 : X → S2 and f1,2 : X → P2. We
have deg g1 = deg f2 = 4, deg g2 = deg f1 = 4 and deg f1,2 = deg g1 · deg f1 = 16.
By Propositions 2 and 3 of [2], X is an irreducible non-singular surface.

Let R̃ ⊂ X be the curve g−1
1 (R1) ∩ g−1

2 (R2), C̃ = g−1
1 (C1) ∩ g−1

2 (C2), C̃1 =
g−1
1 (R1) ∩ g−1

2 (C2) and C̃2 = g−1
1 (C1) ∩ g−1

2 (R2).
By Proposition 4 of [2] we have

R̃2 = 2(3d + g − 1)− c = 12,

C̃2
1 = (deg f1 − 2)(3d + g − 1)− c = 12,

C̃2
2 = (deg f2 − 2)(3d + g − 1)− c = 12,

(R̃, C̃i) = c = 12, i = 1, 2.

Applying the arguments used in the proof of Proposition 4 in [2], one can easily see
that the intersection number

(C̃1, C̃2) = c + 2n = 28.

Hence the determinant ∣∣∣∣∣ R̃2 (R̃, C̃1)
(C̃1, R̃) C̃2

1

∣∣∣∣∣ = 0
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and, therefore, the Hodge index theorem yields that the classes [C̃1] and [R̃] of the
curves C̃1 and R̃ are linearly dependent in the Néron–Severi group NS(X) of all
divisors classes on X modulo numerical equivalence. Since R̃2 = C̃2

1 , we have
[R̃] = [C̃1] in NS(X). Applying the same arguments, we see that [R̃] = [C̃2] and,
therefore, [C̃2] = [C̃1] in NS(X). Hence the intersection number (C̃2, C̃1) must be
equal to C̃2

1 = 12. On the other hand, (C̃2, C̃1) = 28, a contradiction.
To complete the proof of the theorem, we note that the last case (when m = 4,

u = d̄ = 3, ḡ = 0, t = 1) corresponds to a generic projection f : S → P2,
where the surface S ' P2 is embedded in P5 by polynomials of degree two (the
Veronese embedding of P2 in P5) and f is the restriction to S of a linear projec-
tion pr : P5 → P2 (see, for example, [5]). In this case B ⊂ P2 is the dual curve of
a smooth cubic, deg B = 6, c = 9 and the curve B is the discriminant curve of four
inequivalent generic coverings of P2 (see [1], [6]). Three of these have degree 4 and
the other has degree 3.

Corollary 1. Let Si be non-singular surfaces, i = 1, 2, and let Si ⊂ PNi be embed-
dings given by complete linear systems of divisors on Si. Suppose that neither
of these embeddings coincides with the Veronese embedding of P2 in P5. Let
fi = pri|Si

: Si → P2 be two generic coverings ramified over the same cuspidal
curve B, where pri : PNi → P2 are linear projections. Then N1 = N2 = N and
there is a linear transformation h : PN → PN such that h(S1) = S2 and f1 = f2 ◦h.

Proof. Let L̄i = f−1
i (L) ⊂ Si, i = 1, 2, be proper transforms of a line L in P2. By

the theorem, there is an isomorphism h : S1 → S2 such that f1 = h ◦ f2. Hence
h(L̄1) = L̄2 and, therefore, h∗

(
OS2(L̄2)

)
= OS1(L̄1). It follows that

N1 = dim H0
(
S1,OS1(L̄1)

)
= dim H0

(
S2,OS2(L̄2)

)
= N2

and the isomorphism h can be defined by the linear transformation PN1 → PN2

induced by
h∗ : H0

(
S2,OS2(L̄2)

)
→ H0

(
S1,OS1(L̄1)

)
.

We also note that if f : S → P2 is a generic covering with deg f = 4 branched
over a cuspidal curve B ⊂ P2 with deg B = 6 and c = 9, then equations (4) and (5)
imply that K2

S = 9 and e(S) = 3. For any line L in P2, the genus of f−1(L) is equal
to −2 deg f+(L,B)

2 + 1 = 0 by Hurwitz’ formula. Therefore S ' P2 and f is given by
polynomials of degree 2. Hence, in the exceptional case of a cuspidal curve B ⊂ P2

with deg B = 6 and c = 9, each of the three inequivalent generic coverings fi with
deg fi = 4 ramified over B is a generic projection of P2 embedded in P5 by the
Veronese embedding. It is easy to see that the fourth exceptional generic covering
f4 : S → P2 with deg f4 = 3 is not a generic projection (see the case m = 3 in the
proof of the theorem). Hence we get the following corollary.

Corollary 2. Let f : S → P2 be a generic linear projection branched over a cuspidal
curve B ⊂ P2. Then the surface S is uniquely determined (up to isomorphism) by
the curve B.
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