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1 Introduction 

In 1983, Futaki introduced his famous invariant. This invariant generalizes the 
obstruction of Kazdan-Warner  to prescribing Gauss curvature on S 2 (cf. [Ful l ) .  
The Futaki invariant is defined for any compact K/ihler manifold with positive first 
Chern class that has nontrivial holomorphic vector fields. It is a Lie algebraic 
character from the Lie algebra of holomorphic vector fields into •, and its 
vanishing is a necessary condition for the existence of a K/ihler-Einstein metric on 
the underlying manifold. Therefore, it can be used to test the existence of K/ihler- 
Einstein metrics on a given compact K/ihler manifold with positive first Chern 
class. An excellent reference on the Futaki invariant is Futaki 's book [Fu2]. 

Until now, all known nontrivial obstructions to K/ihler-Einstein metrics come 
from holomorphic vector fields. This suggests the following conjecture. 

Conjecture. I f  a compact Kdhler manifold with positive first Chern class has no 
nontrivial holomorphic vector fields, then it admits a Kdhler-Einstein metric. 

One can also formulate a parallel conjecture for K~ihler orbifolds. 
In this paper, we will use the jumping of complex structures to produce new 

obstructions to the existence of K~ihler-Einstein (or orbifold) metrics. Our obstruc- 
tions do not assume that the underlying K~ihler manifold (or orbifold) has non- 
trivial holomorphic vector fields, hence, they could lead to counterexamples to the 
above conjecture. Indeed, we will see that the conjecture is false for K/ihler 
orbifolds. Our results also indicate that there might be a connection between the 
existence ofa  K/ihler-Einstein metric and Mumford's  stability of the point in Chow 
variety corresponding to the underlying K/ihler manifold. 

Let X be a compact K/ihler manifold with positive first Chern class CI(X). 
Kodaira 's  embedding Theorem implies that the pluri-anticanonical line bundle 
K ~ "  is very ample for sufficiently large m > 0, namely, any basis of H~ K x " )  
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gives an embedding of X into some projective space ~pN. Therefore, we may 
assume that X is a submanifold in II;P N and the hyperplane line bundle on CP N 
restricts to a multiple of the anticanonical bundle Kx 1. Let at be a one-parameter 
subgroup in Aut(@P N) = SL(N + 1,112), which is generated by the real part of 
a holomorphic vector field v. 

Denote by Xt the submanifold at(X) (t e IR). It is well known that Xt converges 
to a subvariety X~ in ~pN as t tends to + oo. Although this is not necessary, for 
simplicity, we assume here that X~ is irreducible and nondegenerate, i.e., X~ is not 
contained in any hyperplane of 112P N. Then at preserves Xoo for all teIR. Conse- 
quently, the induced holomorphic vector field v is tangent to X~.  For convenience, 
later on, we say that X jumps to X~. Let t/(X~) be the Lie algebra of the 
holomorphic vector fields on ~;pN which are tangent to X~ along it. We will first 
generalize the arguments in [Fu l ]  to introduce a character Fx~ from q(X~) into 

(cf. Sect. 1 for the details). As in the smooth case, we call Fx~ the Futaki invariant 
of X~.  

Theorem 0.1 Let X,  at, v, Xoo be as above. Assume that X~  is normal and X admits 
a Kiihler-Einstein metric. Then the real part of the generalized Futaki invariant 
Fx~ (v) is nonnegative. 

The following can be easily proved by applying Theorem 0.1 to both v and - v. 

Corollary 0.1 (Futaki, 83, [Fu l ] )  I f  at preserves X,  then Fx(v) = O. 

Theorem 0.1 can be generalized to the case of K/ihler orbifolds and yields 
obstructions to the existence of Kfihler-Einstein orbifold metrics. A K/ihler-Ein- 
stein orbifold metric is just a K/ihler orbifold metric such that the Ricci curvature is 
proportional to the metric. The analysis on K/ihler orbifolds is identical to that on 
smooth K/ihler manifolds. In particular, if X is a normal K~ihler orbifold, the first 
Chern class C1 (X) is defined to be the cohomology class represented by the Ricci 
curvature of any K/ihler orbifold metric. We say that C1 (X) is positive if it is 
represented by a K~hler orbifold metric. By a theorem of Baily [Ba], if C1 (X) is 
positive, we can still embed X into some projective space CP N by pluri-anticanoni- 
cal sections as in the case of smooth K/ihler manifolds. 

Theorem 0.2 Let X be a K(ihler orbifold embedded in I~P N such that the hyperplane 
bundle restricts to a multiple of the anticanonical bundle Kx  1, and let at be a one- 
parameter subgroup in Aut(~P N) = SL(N + 1, ~), which is induced by the real part 
of a holomorphic veetor field v. Assume that Xt = at(X) converges to an irreducible, 
normal and nondegenerate variety X ~  and X admits a Kiihler-Einstein orbifold 
metric. Then the real part of the 9eneralized Futaki invariant Fx~(v) is nonnegative. 

Although we have not been able to construct a counterexample to the above 
conjecture using Theorem 0.1, we will show that Theorem 0.2 does provide many 
counterexamples to the conjecture in the case of K/ihler orbifolds. In fact, some of 
these K/ihler orbifolds are just cubic hypersurfaces in II?P 3. Of course, by the main 
theorem in [Ti],  these cubic surfaces can not be smooth, but they have only mild 
quotient singularities, i.e., simple surface singularities (cf. [BPV, pp. 86-87]). 
A generic one has only one quotient singular point of type A3 (cf. Sect. 4 for details). 
Recall that a singularity of type Ak (k > 1) is a simple surface singularity, and is 
isomorphic to the quotient space of 1122 by the cyclic subgroup of order k + 1 in 
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SU(2). In the applications of Theorem 0.2 to cubic hypersurfaces, the limit variety 
X~ is still diffeomorphic to X in some cases, while X~ is more singular than X in 
other ones. Curiously, our discussions yield that a cubic surface in II;P 3 has 
a K/ihler-Einstein orbifold metric only if it is semistable in the sense of Mumford 
[Md] (Theorem 4.1). This makes us wonder if this is true in general. 

The organization of this paper is as follows. In Sect. 1, we introduce the 
generalized Futaki invariant for a class of singular varieties. We also give a method 
of computing this generalized invariant for nondegenerate vector fields on K/ihler 
orbifolds, following the argument of Futaki in [Fu2] in the smooth case. In Sect. 2, 
we briefly discuss the K-energy and state a result of Bando and Mabuchi in the 
setting of orbifolds. This result will be used in the proof of our main theorems. 
Section 3 contains the proof of Theorem 0.1. The proof for Theorem 0.2 is 
analogous and we omit it. In Sect. 4, we apply Theorem 0.2 to some cubic 
hypersurfaces in CP 3. We find many interesting examples of K/ihler orbifolds with 
positive first Chern class and without any holomorphic vector fields, which do not 
have K/ihler-Einstein orbifold metrics, either. In the final section, we give two 
problems and discuss some possible generalizations to arbitrary K/ihler manifolds 
with extremal metrics. 

1 Futaki invariants fur singular Fano varieties 

In this section, we define and study a generalized Futaki invariant for a class of 
normal projective varieties. 

Let Y be an irreducible, normal projective variety. In particular, the singular 
locus Sing(Y) of Y has complex dimension less than dime Y - 1. A line bundle L in 
Y is said to be ample if the tensor power L m of L is very ample for some m > 0, i.e., 
any basis of the sections o fL  m gives a Kodaira embedding of Yinto some projective 
space IUP N. An admissible K/ihler metric 09 on Y is defined as follows. Assume that 
L"  is very ample and let 0,, : Y ~ I~PN be the corresponding Kodaira  embedding. 
Then any metric of the form 

(1.1) 09 = ~b,~ 09vs + ~? (c~ > 0) 

where 09FS is the Fubini-Study metric and ~ is a smooth function on II~P N, is said to 
be admissible. 

One can check that the admissibility of 09 is independent of the choice of an 
m such that L m is very ample. Since dime Sing(Y) < n - 2, where n = dime Y, the 
K/ihler metric 09 defines a cohomology class [09] of type (1, 1) on Y, i.e., 
[09] = ~CI(L). It follows from the definition that, given two admissible K/ihler 
metrics 09, and 092 in [09], there is a bounded, continuous function q~ that is smooth 
away from Sing(Y) such that 

(1.2) 09-0 2 = o91 + ~- -~ l~ j~o  on Y\Sing(Y). 

Definition 1.1 We say that Y is a Q-Fano variety if there is an ample line bundle 
which restricts to the pluri-anticanonical line bundle K~-" on the regular part of  
Y for some m. 
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Obviously,  if Yis smooth,  then Y is Q-Fano  if and only if C I(Y) > 0. There are 
two impor tan t  special cases of Q-Fano  varieties: (1) if Y has a resolution l 7 with the 
ant icanonical  line bundle K ~ 1 being nef and ample  outside the exceptional divisor. 
The line bundle in Definit ion 2.1 is just the pushdown of the anticanonical  line 
bundle K~I; (2) If  Y is a nondegenerate ,  normal  subvariety in some projective 
space C P  N with the proper ty  that  there is a sequence of compac t  K/ihler manifolds 
{Xi}i__> 1 in C P  N with C I ( X i ) >  0 such that  l i m i , ~ X i  = Y and the hyperplane 
bundle restricts to the pluri-ant icanonical  bundle Ks m for a fixed m and all i. In 
part icular,  the subvarie ty  X ~  in Theorem 0.1 is a Q-Fano  variety, as is the one in 
Theorem 0.2 for a similar reason. 

Fo r  convenience, in the following, we will denote  by C~(Y) the cohomology  

class --1 C~(L) i f L  is the line bundle in Definition 1.1 on the Q-Fano  variety Y. Let 
m 

o) e C~ (Y) be an admissible K/ihler metric. Then there is a smooth  f u n c t i o n f o n  the 
regular  part  Y~g of Y such that  

(1.3) Ric(co) - co = x / -  1 0t~f on Yrr~g. 
2~ 

L e m m a  1.1 The function f can be extended to Y and is LP-integrable with respect to 
the volume form ~o" on Y for any 9iven p > 1. 

Proof Let Ybe  a smooth  resolution of Y, and 05 be a K/ihler metric on I7 such that  
~z*co < 05, where ~: Y-~ Y is the natural  projection. By the choice of ~o, the 
cohomology  class of Ric(05) - ~*eJ has its suppor t  in the exceptional divisors 
E1 . . . . .  Ee of Y over  Y, say 

E 

Ric (05) -  ~*o~ = ~ ~iCl([Ei]), 
i = 1  

where C I ( [ E i ] )  are the Poincar6 duals to Ei in Y. Fo r  each i, let II �9 [[i be a hermit ian 
metric  on the line bundle [Ei]  and Si be a section of [El]  whose zero locus is El. 
Then we have in the sense of distribution, 

Ric(05) -- n*~o -- ~ - ~ilog IIS~ll~ + ~ , 
i = l  

where ~, is a smoo th  function on ]7. Consequently,  

n*Ric(e~) - n*~o = Ric(n*~o) - n*m 

= Ric(05) -- ~*e~ + - - - ~  0t~log 

(1.4) = 1 0 J  - ~ l o g  II S, II, ~ + ~0 + log ~ . 
i = 1  

Since the singular locus Sing(Y) is of  complex codimension at least two, it follows 

(1.5) f =  - ~ o~ilogllSill2 + tp + log ~ + c on Yreg, 
i = 1  
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where c is a constant. Therefore, f can be extended to Y and is L~-integrable with 
respect to co" for any p > 1. 

Remark. If Y admits a smooth resolution Y such that 

(1.6) C I ( Y ) - n * C I ( Y ) =  ~ a~C~([Ei]) 
i = 1  

for some ~ < 1 (i = 1, 2 . . . . .  :), where E~ are the exceptional divisors in 17, then e: 
is L~-bounded with respect to ~o. This follows from (1.5) in the proof of the lemma 
above. 

Definition 1.2 A holomorphic vector field v on Y~e, is admissible if there is an 
embedding of Y into some projective space CP N such that the hyperplane bundle 
C9r restricts to a pluri-anticanonical line bundle K~"  on Y~eg and v is the 
restriction of some holomorphic vector field on ~pN to Y. 

Let co be an admissible Kfihler metric as given in the definition (1.1). Then by 
Lemma 1.1, there is a L4- func t ionfon  Y such that in the sense of distribution, 

(1.7) Ric(o))-  co = x/2~ l c ~ f  on Y, 

that is, for any smooth (n - 1, n 1)-form ~b on ~pN, 

~ (Ric(~) - co)/x ~ = xfl2~ 1 ! f0J~9. 
Y 

Since co is the restriction of a Kfihler metric on some projective space CpU, the 
scalar curvature of co is Ll-integrable. Therefore, the above integral on the left- 
hand side is well-defined. 

Since the Ricci curvature Ric(co) is bounded from above, 

(1.8) ~ r Coo 
2n 

for some constant C > 0. In particular, it implies that f is  bounded from below. This 
can be seen by pulling (1.8) back to a smooth resolution of Y and using Green's 
formula on the smooth resolution. Notice that by taking the trace of (1.8) with 
respect to co, we get 

(1.9) Ao, f < Cn, 

where A~, denotes the Laplacian operator of the admissible Kfihler metric o). 
1 

Multiplying both sides of (1.9) by and integrating by parts, we 
1 + ( f -  inf r f )  

obtain 

IVfl 2 
(1.10) ! (1 + ( f -  infrf))  2 (o" < Cn ~ r co" 

= CnV. 
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Therefore 

r = (1 + ( f - -  i n f r f ) )  z (9" ~ r (1 + ( f -  infrf))6co" , 

< O 0  

i.e., IVfJ is L3/2-bounded. It follows that the integral ~r v(f)~o" is well-defined for 
any admissible holomorphic  vector field v. 

Lemma 1.2 Let v be an admissible holomorphic vector field, r ~02 be two admissible 
Kdhler metrics in C I ( Y)  on a Q-F ano variety Y. I f  f l  ,f2 are the functions defined in 
(1.7)for ~0 = ~01, o)2, respectively, then 

(1.11) ~ V ( f l ) ~  = I v(f2)co~. 
Y Y 

Proof. Without  loss of generality, we may assume that Y is a subvariety in CpN, 
both  ~ol, ~o2 are Kfihler metrics on ~pN and v is a holomorphic  vector field on 
C P  N. Then there is a smooth function ~p on CP  N such that 

(cf. (1.2)). 

Define (~s = co~ + (s 1)~J~o, (1 < s _< 2), then all co~ are admissible 

K/ihler metrics in C1 (Y). Letf i  be the function such that in the sense of distribution, 

(1.12) Ric(~os) - r~ = x / - 1  c~Jf~. 
2~ 

A direct computa t ion  shows: we can take f~ to be of the form 

(1.13) f i = - - l o g  (~~ - (s - 1)~o + f .  

~f~ t=s Consequently,  iff~ denotes the derivative ~ -  , we have 

(1.14) f ~ = - A ~ ( p - ( p  on Y,  

where As denotes the Laplacian of the metric cox. In particular, f~ is cont inuous 
on Y. Therefore 

Y 

= ~ ( v ( -  As~o - ~o) + v ( L ) ~ ) ~ o "  
Y 

(1.15) = ~ ((divAv) + v( fA)A~o  - v(q~s))~o';, 
r 

where div~(v) denotes the divergence of v with respect to ~o,. Since v is holomorphic  
and ~o~ is a K/ihler metric on CP  N, the interior product  v-] ~o~ is a [-closed 
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(0, l)-form. Therefore, there is a smooth function 0~ such that Jq~ = v-] o~. Since 
v is tangent to Y, div~(v) = Ashby, so by (1.15), 

(1.16) ~ v(L)~o2 = ~ (A~@~ + ~p~ + v(A))A~tpsco]'. 
g 

It is an easy computation to show that ~-(A~0 ~ + ~s + v(.~)) is identically zero. 
Here one needs to use the Eq. (1.12) and the fact that v is holomorphic. Using the 
arguments in the proof of Lemma 1.1, we see that df~ can only have simple poles 
along the normal directions of the singular set Sing(Y) of Y. However, since v is 
tangent to Sing(Y) along Sing(Y), the normal part of v is zero. Consequently, v(f~) 
is bounded on Y and so is AstP~ + Os + v(f~). Therefore, the holomorphic function 
As~,~ + Os + v(f~) has to be a constant. It follows from (1.16) that 

The lemma follows. 
Now we can define the generalized Futaki invariant Fr(v) for an admissible 

holomorphic vector field v on a Q-Fano variety Y by 

(1.17) Fr(v ) = ~ v(f)o~" , 
Y 

where ~o is any admissible metric a n d f i s  defined by (1.7). Lemma 1.2 tells us that 
Fr(v) is independent of the choice of the admissible metric t~ and so is a holomor- 
phic invariant of Y. 

If Y is smooth, this Fr (v) is just the Futaki invariant [Fu 1 ]. In fact, the proof of 
Lemma 1.2 is essentially due to Futaki. Our contribution is only to make sure that 
the singularities of Y do not cause any serious trouble. 

Finally, we discuss briefly how to compute this generalized Futaki invariant in 
case Y is a normal Kfihler orbifold with CI (Y )  > 0. The reader can find some 
descriptions of K/ihler orbifolds in the two paragraphs before Theorem 2.2 in 
Sect. 2. If we take m to be in CI(Y) ,  there is a smooth function f satisfying: 

(1.18) Ric(6o) - co = x / -  I c ~ f  on Y. 
2rt 

He re f i s  smooth in the following sense: for any local uniformization (U, F, 4~), ~* f  
is smooth in U, where re: U --) U/F c Yis the projection. A K~ihler orbifold Ywith 
CI (Y )  > 0 is a Q-Fano variety. This follows from Kodaira 's  embedding Theorem 
in the case of K~ihler orbifolds (cf. [Ba]). 

Proposition I .I  Assume that v is an admissible holomorphic vector field on a Ka'hler 
orbifold Y with C I ( Y )  > O. Then for any Kiihler orbifold metric ~o in C I (Y )  and 
f defined in (1.18), 

(1.19) Fr(v) = ~ v( f )co" .  
Y 

Proof Recall that the generalized Futaki invariant Fr(v) was defined using admiss- 
ible K~hler metrics, which are degenerate K~ihler orbifold metrics: they degenerate 
along the normal directions of Sing(Y). We are asserting that orbifold metrics can 
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be used instead. The point is that one can approximate an admissible K~ihler metric 
COo by K/ihler orbifold metrics. Moreover, a direct computation shows that there is 

a function q~, smooth in the sense of orbifolds, such that cot = coo + e ~ 0{~o are 

K/ihler orbifold metrics for any sufficiently small e > 0. Obviously, all these cot are 
in CI(Y). 

By the analogue of Lemma 1.2 for Kfihler orbifold metrics on Y, we have, 

v(f)co" = ~ v(f~)~oy 
Y Y 

= lim ~ v(f~)co~", 
E ~ O  + Y 

where the f~ are the functions satisfying: 

Ric(co,)-cot=~2~r-10tTf~ on Y. 

Then the f~ can be taken to be 

- log \cog ] - ~p + f o ,  

where f = f o  satisfies (1.7) with o) = co o. Therefore 

= + 

consequently, 

lim ~v(f~'~ lim (-!v(co'~ ! ) ,~o+ r ,~o+ \oogJ co~ + v(fo)co2 

= Fr(v) + lim ~ div,oo(V)co~' . 
t ~ O  + Y 

By the admissibility of v, div,oo(V) is bounded, so 

lim S i " d V~o(V)co ~ = S divo)o(v)co~) = 0 
t ~ O  + g Y 

The proposition is proved. 
Let Y be a K/ihler orbifold with C1 (Y) > 0. A holomorphic vector field v is said 

to be nondegenerate if the zero set of v consists of disjoint subsets {Z~}z~A 
satisfying the following conditions: for each local uniformization ~ : U --* U/F c Y 
with zt(U)c~Z~ 4= O, n - I ( Z z )  is smooth in U, n*v vanishes along r~-l(Zz) and is 
nondegenerate in the normal directions of re- I (Z D. Now if co is a K/ihler orbifold 
metric in CI(Y) ,  then we define an endomorphism L(v) of T I ' ~  by 

(1.20) L(v)(u) = V v u -  L ,u  = V,,v, 

where Lv denotes the Lie derivative, and u is a vector field of type (1,0). We should 
point out that at a singular point of Y, (1.20) is understood to be defined via local 
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uniformization. Let Za be one of the components in Zero(v), then L(v) induces an 
endomorphism L~(v) of the normal bundle of 7z- I(Zz) in any local uniformization 

: U --* II. This L~(v) is of full rank at any point of Zz by the nondegeneracy 
condition. The following proposition is the analogue of Theorem 5.2.8 in [Fu2] for 
KS, hler orbifolds and can be proved by giving additional care at the singular set. 

Proposition 1.2 Let Y, o, v be as above, f2 be the curvature jbrm of to and K ~ be the 
curvature form of the induced metric on the normal bundle Nrlz~ of Z;,  which is 
defined to be Nvl~ x(z~) in any local uniformization 7z: U ~ Y. Then 

1 
(1.21) Fr(v) = ~, ~ ~ ~o(L(v) + O)/det(Lz(v) + Kz) , 

2~A  I )~l Z)  

where I Fz] is the order of the local uniformization group at a generic point of Z~, and 
~o denotes the (n + D-power of the invariant Chern-Weil polynomial defining the first 
Chern class. 

There are two special cases of this proposition in which Fr (v) has a very simple 
formula. 

Corollary 1.1 Let Y, ~o, v be as above. I f  all Zz are of dimension 0, then 

(1.22) Fr(v)= ~ 1 (divz~(v)) "+1 

Corollary 1.2 Let Y , o , v  be as above, n = 2 ,  A = A I ~ A 2 .  Assume that 
dimcZz = O for 2cA1 and dimcZ~ = l for 26A2. Then 

1 (divz~(V)) 3 
Fy(v)= ~ [F~ldet(L(v)lz~) ) .eA~ ( 1( )) 

(1.23) + ~ divz~(V) 2 d e g ( Z D + ~  2 - 2 g ( Z D -  ~z IFxF-1 
2e,/l 2 X X ? / ~  ' 

where 9(Z~) is the genus of Z ~ for each ). e A2 and Fx is the local uniformization group 
of Y at x, in particular, if x is a smooth point, [Fxl = 1. 

Examples. (1) Let X s ~ ~p3  be the zero locus of a cubic polynomial f Put 
f =  ZoZ 2 + Z2Za(Z2- z3), where Zo,Zl,Z2,Z3 are homogeneous coordinates of 
CP a. Then X I has a unique quotient singularity at Po = [1,0, 0, 0]. This singular- 
ity is of the form C2/F, where F is the dihedral subgroup in SU(2) of type D4. One 
can check that X I is a K/ihler orbifold with Cx(X )>  0. In fact, the minimal 
resolution of X f  is an almost Del Pezzo surface. Let v be the holomorphic 
vector field whose real part generates the one-parameter subgroup 
{diag(1, e at, e 2t, eEt)}te R in SL(4, C). Then v restricts to a holomorphic vector field 
on X s and has five zeros [1, 0, 0, 0], [0, 1, 0, 0], [0, 0, l, 0], [0, 0, 0, 1], [0, 0, 1, 1]. 
A computation shows 

1 (1)3 (_2)3 ( _  1)3 
Fx~ (v) = g. ~ + - - i  + 3 ~ -  

1 3 7 25 
= - - 8 +  . . . .  8 

4 2 4 = - 4-- " 
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(2) Let Xj- = {(Zo, zl, z2, z3)eCP 3 [f(zo, zl, z2, z3) = 0} be defined by the cu- 
bic polynomialf  = ZoZ 2 + zx z 2 + z~. Then X s is a K/ihler orbifold with C1 (X) > 0 
and a unique quotient singular point of type E6, i.e., C2/F, where F c SU(2) is 
a finite group of type E 6. Let v be the holomorphic vector field on X whose real 
part generates the one-parameter subgroup {diag(1, e 6t, e 3~, e4t)}te~, in SL(4, r 
Then v has zeros [1, 0, 0, 0], [0, 1, 0, 0], I-0, 0, 1, 0], and by Corollary 1.2, 

1 (div(v)) 3 [1,o,o,ol 125 8 
Fx,(V) - 60det(L(v)) 6 + 3 ' 

< 0 .  

(3) Let f =  Zo(Z 2 + z 2) + z2zl .  Then Sing(Xs) = {[1, 0, 0, 0], [-0, 1, ___ 

C2/F4x/-1; 0]}. The first of them is of type A3, i.e., the quotient singularity of the form 
where F4 c SU(2) is generated by 

( e2n~/?/4 e _ 2nOv/~/4 ) . 

The others are of type A1. Let v be the holomorphic vector field whose real part 
generates {diag(1, e 2', e 2', e')}. Then Zero(v) consists of [1, 0, 0, 0] and the line 
{Zo = z3 = 0}. This line has the degree 1 and contains two singularities 

[0, 1, +__ . , , / -  1, 0]. Also, the 'generic point of this line is smooth. Therefore, by 
Corollary 1.2, 

11 a 
Fx•  3 2 < 0 .  

(4) Let f =  Zo(Z 2 + z 2) + z~. Then Sing(Xs) consists of three points [1, 0, 0, 0] 
and [0, 1, _+ x / - 1 ,  0]. Let v be the holomorphic vector field whose real part 
generates the group {diag(1, e 3', e 3', e2')}. The zero set ofv consists of a single point 
[1, 0, 0, 0] and a line {Zo = z3 = 0}. By Corollary 1.2, one obtains 

Fx~(v)  = 3 1 2 + 2 -  = 0 .  

In fact, this orbifold is the quotient of CP 2 by the cyclic group F3 in SU(2). 
Therefore, it has a K/ihler-Einstein orbifold metric and has vanishing Futaki 
invariant. 

2 The lower boundedness of the K-energy 

The K-energy was first introduced by Mabuchi in [Ma] on any compact K/ihler 
manifold with positive first Chern class. It was used in [BM] to prove the 
uniqueness of K~hler-Einstein metrics. Its definition was inspired by the work of 
Donaldson on Yang-Mills connections and stable bundles. Bando and Mabuchi 
also proved in IBM] that if there is a Kfihler-Einstein metric on the underlying 
manifold, then the K-energy is bounded from below. In this section, we give a brief 
account of the K-energy. 
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Let X be a compact Kfihler manifold with positive first Chern class C1 (X). By 
an abuse of notation, we will also denote by C1 (X) the set of Kfihler metrics whose 
Kfihler form represents C I(X), and we will identify a Kfihler metric with its Kfihler 
form. For any two K~ihler metrics o0 and o)1 in CI(X), there is a smooth function 
(p, unique up to the addition of constants, satisfying: 

(2.1) o l  = o0 + ~ 8 ~ 0  . 

s x ~ - -  1 _ 
We put os = o0 + ~ 8&p and define 

-- ~p(R(os) - n)o2 ds , (2.2) M(oo,  coi ) = V o \ x 

where R(oA denotes the scalar curvature of the metric, n is the complex dimension 
of X and V is the volume of X with respect to ~o0. The functional M has the 
properties: 

(1) m(o0 ,  o l )  = - m ( o l ,  Oo) 
(2) M(o0,  o l )  + m ( o l ,  o2) = m(oo ,  m2). 

These identities can be proved by a direct computation (cf. Proposition 6.3.1, 
[Fu2]). Fix any K~ihler metric o in C~ (X), we define the K-energy M,~(. ) on the set 
C~(X) of K~hler metrics by 

(2.3) m~,(o')  = m ( o ,  o ' ) .  

Lemma 2.1 Let ot be a family of Kdhler metrics in CI(X). Write o~ = o + 

~/-10ffq~t.  Then 
2n 

(2.4) d M~(ot) 1 ! 
d--t = p v , ~ , ( f ~ ) o ~  , 

where the functions f are determined by 

(2.5) Ric(ot) - o,  - x / -  1 88-f 
2n 

(2.6) ~ fo~ '  = 0 .  
x 

This follows from a direct computation. We omit the proof. 

Theorem 2.1 (Bando and Mabuchi [BM]) I f X  admits a Kdhler-Einstein metric, 
then the K-energy Mo, is bounded from below. 

We refer the reader to [BM] for the proof of this theorem. 
A local uniformizing chart is a triple (U, F, ~b) satisfying the following condi- 

tions: (1) 4~ : U --* C" is a holomorphic embedding; (2) F is a finite group acting on 
U by biholomorphisms and q5 o F o ~ - 1 is contained in U(n). A complex orbifold is 
a Hausdorff topological space covered by the open subsets {U,/F~}, where the 
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U,/F, are the quotients of the U, by the F~, and the {(U,, F,, q~,)} are local 
uniformizing charts. A K~ihler orbifold metric on the complex orbifold is a K/ihler 
metric co on the regular part of the orbifold such that if (U, F, 4)) is a local 
uniformizing chart and n:U ~ U/F is the projection, then n 'co extends smoothly 
on U. A complex orbifold is a Kfihler orbifold if it has a K~ihler orbifold metric. 
A Kfihler-Einstein orbifold metric is just a K/ihler orbifold metric whose Ricci 
curvature is proportional to the metric. The first Chern class of a compact Kfihler 
orbifold is defined to be the cohomology class represented by the Ricci curvature 
form of any K/ihler orbifold metric. 

Let X be a compact K/ihler orbifold. We assume that the first Chern class 
C~ (X) can be represented by a d-closed positive (1,1)-form, namely, Ct (X) > 0. It is 
known that C~(X) > 0 is equivalent to the existence of a K~ihler orbifold metric 
co such that Ric(co) is a positive-definite (1,1)-form. As before, we denote by CI(X) 
the set of K/ihler orbifold metrics whose K~ihler form represents C1 (X). Then we 
can define a functional M ( . , . )  by (2.1) and (2.2) and the K-energy in this general 
case. This M ( . , . )  has the properties (1), (2) on K/ihler orbifolds as well as on 
smooth Kfihler manifolds. In particular, we have the variation formula (2.4) for the 
K-energy on the Kfihler orbifold X and the following 

Theorem 2.2 'Let X be a compact Kdhler orbifold with positive first Chern class. I f  
X admits a Kdhler-Einstein orbifold metric, then the K-energy M~, is bounded from 
below. 

There is another functional F,o introduced by the first author in [Di]. This 
functional is cohomological to the K-energy. It bounds the K-energy from below. 
Moreover, this F~ has a nice expression in terms of the solutions of the following 
complex Monge-Ampere  equations: 

We refer readers to [DT]  for this functional. 

3 The proof of  the main theorems 

This section is devoted to the proof of Theorem 0.1. The proof of Theorem 0.2 is 
analogous and we omit 'it. Let X be a compact Kfihler manifold in (FP N with 
CI(X) > 0 and crt be a one-parameter subgroup in Aut(CP N) = SL(N + 1, ~2) as in 
the introduction. Let v be the holomorphic vector field induced by at. 

Denote by X, the submanifold at(X)(tElR). Then Xt converge to a subvariety 
X~ in II~P N as t tends to + oe. By assumption, this X~ is irreducible, normal and 
nondegenerate. 

1 , 
Let C0VS be the Fubini-Study metric on ~pN. Then - a~ toys restricts to a K/ihler 

m 
metric cot on X with its K/ihler form in CI(X) for any t~IR. By Theorem 2.1, the 
existence of a K/ihler-Einstein metric on X implies that the K-energy Mo~(cot) is 
bounded from below for t ~ IR, where co = coo. 
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By changing the coordinates [Zo . . . . .  zN] of ff;pN, we may assume that v is 
represented by an (N + 1)x (N + 1)-matrix (a~j)0 <_ i,j < N satisfying the following 
conditions: there are 0 = ko < k~ < . . .  < k. = N, such that 

a . = 2 =  fo rk~_l  < i < k = ,  c~= 1,2 . . . . .  I t ,  

a i j : O  i f i > j  or k=_l < i < k ~ < j ,  

ali+ 1 = 1 if k=_ 1 < i < j < k= , 

namely, v is in its Jordan  form. Consequently, a, can be represented by a family of 
(N + 1) •  + 1) matrices 

(3.1) a, = (aij(t)  )o <_ i,j < N ,  

where 

(3.2) 

0 

e2J 
aij(t ) = i t J_ ,e2 ,  t 

( ( j  --  i)! 

if i > j  or k,-1 < i <  ks < j ,  ct = 1,2 . . . . .  /1 , 

if k ~ - l  < i = j  < k~,c~ = 1 . . . . .  It , 

if k , - i  < i < j < k , , c ~ =  1,2 . . . . .  It . 

Recall that in the homogeneous  coordinates of lISP N, 

(3.3) (/)FS -- ~ -- 1 ~ ' log  ( ~ 'Zi12 ) 2 ~  i = 0 

it follows 

(3.4) O.ffO)F s = x / -  1 8~log . 
2re i j=o 

Let us introduce the functions 

N N 2 
l l o g ( ~ ' 4 = o  [2;=_o _o'/j(t)zjl '~ 

(3.5) ~o,=m \ E~=olZ~l 2 / 

Then by (3.3) and (3.4), we have 

1 
~ o , -  ~9o = - ( , r * ~ F s  - O)Fs)lx m 

/ 
1 (3.6) _ ~ / -  - 0&o, .  

2n 

A direct computa t ion  shows 

= )-'~i = o 2 ~iJ(t)ZJ)( E k  = 0 tYik(t)Zk)) R e ( ( 2 j = o  ~bt 1 N N , N 
N 2 m Z,"= o I Z j = o  ~,~(t)zjl 
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Z i  = ka 1 2 Re a l j ( t ) z j . ~ j =  i + z j )  1 2 " = 1  ~ k , - 1  ( 2 ~ q 0  k , - l (  2=t 1~ tJ-i- le;~t  
\ ~= \ j - - i  J ( j - - i - -  1)[ / 

N N 
m ~i=o l~ j=o  aij(t)z~l: 

k ~ - I  N N 
= _ - Y , j = o  6~+  1 , / t ) ) z j }  j=0  -~ 1, kO'i+ 1 2 Re{Z~_  1 ~i=k ,  , O'ij(t)ZJ (),~aij(t) 

m 

(3.7) 

N N 
~i=o I ~ j=o  a,j(t)zjl 2 

Define a smooth function 0~ on CP N by 

(3.8) 
( ~ ' , k= -  1 2~1z,12 Re(2k~-k l l~ iZi+l) )  Ov(zo . . . . .  Z N ) = ~ u : I  ~ i = k ~ ,  + 2  - , 

N 
Z,=olZ,  I ~ 

then (3.7) implies 

(3.9) 
2 

@ = - -  R e ( 0 , ~  o a t )  . 
m 

By Lemma 2.1, we have 

d 1 
(3.10) ~ M~(co,) = ~ ! ~ @(J~)~o~', 

where ~ denotes the gradient with respect to the metric cot and j~ is the function 
defined by the equations 

(3.11) Ric(cot) -- cot = x / -  1 00-ft, 
2~ 

(3.12) inf J~ = 0 .  
X 

Denote by f the composition J~ o at -1. Then f is smooth on X, and 

(3.13) 

(3.14) 

Ric COvsrx, - m - -  

inf f = 0 .  
X, 

Then (3.10) becomes 

d M~(o~,) = ~ R e  j" (V,0v)(f,) m~O~s . (3.15) dt \ x ,  

Claim. limt~+~o Ix, (E0v) ( f )  mCOFS = Fx~(V). 

Obviously, Theorem 0.1 follows from this claim, (3.15) and Theorem 2.1. Now 
let us prove this claim. 
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Lemma 3.1 There is a uniform constant C, independent oft, such that for any smooth 
function ~p on Xt, we have the followin9 Sobolev inequality, 

n - - 1  

(3.16) 1~1 " -1 )  ~ F S )  ~ C  j ' ( i ~ b  +l~Ol2)~mO)Vs) . 
t S t  

Any complex submanifold is a minimal submanifold, so this lemma follows from 
the Sobolev inequality in (Theorem 18.6, p. 93 [-Si]). 

1 
Lemma 3.2 Let At be the Laplacian operator of the metric -~OFS restricted to Xt. 

m 
Then there is a positive constant c > 0, independent oft, such that the first eiqenvalue 
;.~(A,) > c > O. 

Proof We prove it by contradiction. Suppose that the lemma is false. Then there is 
a sequence {h} satisfying: (1) l i m i ~  ti = oo; (2) the first nonzero eigenvalue 2(tl) 
of Ar converges to zero. For each i, let Oi be the eigenfunction of A,, with the 
eigenvalue 2(t~) such that (, )n 

S ~/ ;  m (DFS = 1 . 
XI, 

Using Lemma 3.1 and a standard Moser iteration argument, one can show 

(3.17) I~Aco < C ,  

where C is a uniform constant. Therefore, it follows from the elliptic theory that 
a subsequence of {~i} converges to a bounded nonzero function ~ on X~, which 
is actually smooth away from Sing(X~). Furthermore, by the assumption on 2(ti), 
we have A~o0~ = 0 on X~\Sing(X~)  and 

(1). 
~'4,oo ~ s  = 0 .  

X~ 

This implies that X~o is reducible, a contradiction. The lemma is proved. 
Since X, is a complex submanifold, by the Gauss equation, the scalar curvature 

R(~--O~vs[x,]/--\ of the metric--10)FSIX ' is bounded from above by mn(n+l) .  There- 
\m / m 

1 
fore, taking the trace of (3.13) against --~OFSlX,, we obtain 

m 

(3.18) A t f  < mn(n + 1). 

For any 6 > 0, multiplying both sides of (3.17) by (1 + f ) - 0  and integrating by 
parts, 

1 

where Co is a constant depending only on 6, m, n. 
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In the following, we always use C to denote a constant independent of t. There is 
a uniform constant C > 0 and a small tubular neighborhood BASing(X~)) in CP N 
(~ > 0) such that 

V o l l  I~ (X , \B4~(Sing(X ))) > 3 V 

(3.21) Oavslx, < C on X t \ B ~ ( S i n g ( X ~ ) ) .  

Outside B~(Sing(X~)), the submanifolds Xt are uniformly smooth. Then Lemma 
3.2 and the standard elliptic estimates imply 

(3.22) sup - O;vs < C .  
X,\B4~(Sing(X~,)) X, \ / 

Lemma 3.3 There is a uniform constant C' > 0 such that for any k > O, 

(3.23) k < C ' +  ( k - f ) +  ~Ovs , 
t 

where (k - f t ) +  = max{0, k - f } .  

Proof  Put ~h to be 

(k - f ) +  - ~ ( k - f t ) +  , 
c 

then by (3.18), we have 

(3.24) - At~h < mn(n + 1). 

For any p > 0, multiplying both sides of (3.24) by (k~+ and integrating by parts, we 
obtain 

(3.25) S I7,0~r m~~ < mn(n + 1) OP+ m~OVs . 
Xf t 

With help of the Sobolev inequality in Lemma 3.1, the standard Moser iteration 
argument yields 

1 

(3.26) sup 0 < C 1 + 02 mrs , 
I t  t 

where C is a uniform constant. 
On the other hand, multiplying (3.18) by (k - f ) +  and integrating by parts, we 

have 

(3.27) ~ I E~,I 2 ~O~s < mn(n + 1) ~ (k - f ) +  e)vs �9 
Xt Xt 

The Lemma 3.2 implies 

x, m ~~ =< c x , ~ ( k - f ' ) +  ~OFs , 
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where c is the lower bound of the first eigenvalues in Lemma 3.2. Then (3.23) 
follows from (3,26), (3.28) and the Schwartz inequality. 

Corollary 3.1 Let Et be the subset {xeX, lf(x) < 80} .  Denote by rues(.) the 
1 

measure on X~ induced by the metric --COvs. Then we have 
m 

(3.29) mes(Et) > �88 V. 

Proof By (3.23), we have 

2~x(16C' ( 1 )  = 16C' < C' + - f ) +  COFs 

24C' 12C' 
< C' + - -U-  mes(E,) + - - p - - ( V -  mes(E,)) 

12C' 
= 13C' + rues(E,). 

V 

Then (3.29) follows. 
By this corollary, there is at least one point in the set Et\B4~(Sing(Xo~)), and 

consequently (3.22) implies 

~Ovs < C .  
X, \ / 

(3.30) 

since ft > O, we have 

1 
(3.31) ~ x  ~ l1 -t-fl 1 toys ~ 1 -4- C .  

1 ,  
Next, we fix 6 to be 2nn then applying Lemma 3.1 to the inequality (3.19) and using 

(3.31), we have 

(3.32) I l1 + f l  ~ ~FS < C.  
X, 

Consequently 

I f vf, I ~ -  ~O~s  
X, 

, * n + l  

= I I Vf, l~.~__6.+ '" , (1 + f , )  ,6.~.-,)  mO~S 
x,(1 + f )  16n(n-1) 

4 n  + 1 4.n - I ([. IVftl 2 f l  "]"']--g~// 2 , - ' / "  1 "~"'~ 8, 
< \ }  --~.~--6.+, [~covs) ] I I (1 + 

, (I  + f , ) ~ '  " = . x ,  
1 3 4 n +  1 

((16n 2 -  1 2 n -  4~2 S I V(1 -4-f)2-4'4nz-3"-l'12/1 X~n~ 
< \ \  8n2 6 n ~ 7  ,] x, (1-[-it) ~ 6 " - 2  
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4 n -  1 

�9 (1 + f , ) ~  mO~S 
t 

(3.33) =< C .  

On the other hand, the A t f  are uniformly bounded in any compact subset away 
from Sing(X~). It follows that theft converge to f~  in C~-norms on any compact 
subset away from Sing(X~). Therefore, using (3.33) and the fact that Sing(X~) is of 
complex dimension smaller than n, we have 

(3.34) lim S (VOv)( f )  mCOVs = f VO~.(f~) m~%S . 
t ~ + ~ X~ X ~  

Furthermore, in the sense of distribution, 

(3.35) Ric ~Ovslx,. -- ~ - -  �9 

In fact, the above equation is valid in Ca-sense away from the singular set of X~.  
Note that the solution of (3.35) is unique up to an additive constant and 0v is 
a smooth function on CP N. On X ~  VO~ is nothing else but v. Therefore, according 
to Sect. l, we have 

(3.36) lim ~ (VO~)(f)  mmVS = Fx~(V). 
t--* + ~ X t 

The claim, and consequently Theorem 0.1, have been proved. 

4 Examples 

In this section, we will apply Theorem 0.2 to study the existence of K~ihler-Einstein 
orbifold metrics on a cubic hypersurface Xf in ~p3.  The cubic hypersurface Xf is 
the zero locus in CP 3 of a cubic homogeneous polynomial f on C 4. By the main 
theorem in [Ti],  if X I is smooth, it has a Kfihle~Einstein metric. Therefore, we 
may assume that Xj- is a Kfihler orbifold with isolated singular points. Note that 
CI(X I) > 0. By changing the coordinates Zo, z~, z:,  z3, we may further assume that 
[1, 0, 0, 0] is a singular point of X I and that the order of its local uniformization 
group is maximal. This implies that the polynomial f is of the form 

(4.1) f (zo,  z1, z 2 ,  z 3 )  = zof2(z1, z2, z 3 )  " q - f 3 ( z 1 ,  z 2 ,  z 3 ) ,  

where fj are homogeneous polynomials of degree j on zl, z: ,  z3. 
By a linear transformation on Zl, Zz, z3, we may assume fz takes one of the 

following forms. 

(l) f2 = z ~ ,  

(2) fz =z~  + z ~ ,  

(4.2) (3) f2 = z lz2 - z~ . 
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Since [1, 0, 0, 0] is the singular point of X I with maximal  order  of the local 
uniformizat ion group,  the singularities of X I can only be ordinary double points in 
the case 3). 

Proposition 4.1 Let  X f  be a cubic surface in I~P 3 defined as above. Assume that fz  is 
ofform (1) or (2) in (4.2) and f3(O, 0, z3) =- 0. Then X I has no Kdhler-Einstein orbifold 
metric. Moreover, the generic X f in these two cases does not have any nontrivial 
holomorphic vector fields and has only one singular point of  type A 3. 

Proof  Let us first assume that  f2 = z f. There are three subcases according to the 
number  of different linear factors in f3(0, z2, z3). (i) If f3(0, z2, z3) has three different 
linear factors, then by a linear t ransformation,  we may  assume that  f3(0, z2, z3) = 
Z2Z3(Z 2 - -  Z3). Let {or} = {diag(1, e at, e 2t, eZt)}teR and Xt = cs(Xi). Then X, is 
defined by a cubic polynomial  of the form ZoZZ~ + zzz3(z2 - z3) + O(e-t) ,  where 
O(e- ' )  stands for the terms with coefficients < ce- '  for some constant  c. Therefore, 
Xt converges to a Kfihler orbifold X~  defined by the cubic polynomial  
ZoZZ~ + z2z3(z2 - z3). The au tomorph i sms  at preserve X ~ .  By Example  (l) at the 
end of section t, if v is the ho lomorphic  vector field whose real par t  generates at, 
then Fx~(v) < 0. Therefore, by Theorem 0.2, there is no Ktihler-Einstein orbifold 
metric on Xy. Note  that  Xy is diffeomorphic to X ~  and generically such an Xc has 
no nontrivial  ho lomorph ic  vector fields. 

(ii) If  f3(O, z2,z3)  has two different factors, then we may  assume 
f3(0, z2, z3) = zzz  2. By changing coordinates,  we can take f to be of the form 
ZoZ~ + ~z~zZ2 + z2 z2. Since Xy has only isolated singular points, c~ 4= 0, then 
X f  has a ho lomorphic  vector field v whose real par t  generates the one-parameter  
subgroup  {diag(1, e ~', e 2t, e3')}te~. One can easily compute  that Fx~.(v) 4= O. There- 
fore, X I has no Kfihler-Einstein orbifold metric, either. 

(iii) If  f3(0, z2, z3) has only one factor, then by a t ransformation,  we may  take 
f t o  be ZoZ~ + z~z 2 + z 3. By Example  (2) in Sect. 1, such an Xy has a ho lomorphic  
vector field v with Fx~(V) + O. So this X r has no K~hler-Einste in  orbifold metric. 

Next,  we assume that  f2 = z f + zz z and f3(0, 0, z 3 ) =  0. Since Xy has only 
isolated singular points, f3 contains either z2z~ or zZz2 . Define 
crt = diag(1, e 2t, e 2', e~). Then Xt  = cr(X I )  converge to X ~  defined by the cubic 
polynomial  Zo(Z~ + z 2) + z3(ctzl + flz2) as t goes to ~ ,  where Ic~l 2 + Ifl[ 2 > 0. By 
a t ransformation,  we may  assume that  ct = 1 and fl = 0. Obviously,  or, preserves 
Xo~, so the corresponding ho lomorphic  vector field v is tangent  to X ~ .  By Example  
(3) in Sect. 1, Fx~(v) < 0. Therefore,  Theorem 0.2 implies that  there is no K/ihler-  
Einstein orbifold metric on Xy. 

Claim. For  generic f i n  this case, Xy has no nontrivial  ho lomorphic  vector fields 
and has a unique singular point  of the A3-type at [1, 0, 0, 0]. 

Let zt be any family of au tomorph i sms  in ~ p 3  preserving Xy. Then 
r,([1, 0, 0, 0]) = [ 1 , 0 , 0 , 0 ] .  If zt =(ztij)o<=i,j<__3, then Z,o = 0  for i >  1. We may  
assume Ztoo = 1. But r ' f =  2if, where 2, are complex numbers,  it follows that  
r*(zl  z + zz z) = 2,(z 2 + z2). Therefore, by making  a linear t ransformat ion  on zl ,  z2, 
we may  assume zt~j = 6~j)~t for i = 1, 2, consequently,  z,i3 = 0 for i = 1, 2. Let us 
take f to be of the form 

+ + Z Zl + z z2 + z z3 . 
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Then ztii = 1 for i = 0 , . . . , 3 .  Since f contains no terms like Z3ZlZ 2 or z2 a, 
zt32 = ~t02 = 0. Then using z * f = f ,  one can see that rt has to be the identity for 
each t, i.e., X :  has no nontrivial holomorphic vector fields. A simple computation 
shows that X:  has a unique singular point of A3-type at [1, 0, 0, 0]. So the claim is 
proved. 

The proof of Proposition 4.1 is complete. 
Let us discuss the rest of the cases. First we recall the definition of Mumford's  

stability for hypersurfaces in a projective space CP" + 1. Let 91,, m be the space of all 
homogeneous polynomials of degree m on tEP "+ 1. Then the linear group SL(n + 2) 
acts on this space. A polynomial f i n  91,,m is said to be stable if the orbit SL(n + 2 ) f  
in 9t,,m is closed and the stabilizer of f i n  SL(n + 2) is finite, and it is semistable if 
0 is not in the closure of the orbit SL(n + 2)f. Then the hypersurface X :  = {x 
CP" + 1 If(x) = 0} is stable (resp. semistable) in the sense of Mumford i f f  is stable 
(resp. semistable). The following proposition can be found in [-Md, p. 51] or proved 
by a straightforward computation. 

Proposition 4.2 Let X :  be a cubic surface in (FP 3 defined by the polynomial f in  ~R2, 3. 
Then X :  is stable if and only if it is either smooth or an orbifold with only isolated 
ordinary double points, and X:  is semistable and not stable if and only if it is 
a singular orbifold with only isolated simple surface singularities of type A2. 

Putting the above two propositions together, we obtain 

Theorem 4.1 Let X :  be a cubie surface as above. Then X :  admits a Kdhler-Einstein 
orbifold metric only if it is semistable in the sense of Mumford. 

It is very likely that the method in [-Ti] can be applied to prove the existence of 
a K/ihler-Einstein orbifold metric on a stable (possibly even semistable) cubic 
surface. However, extra effort is needed in computing those analytic invariants in 
[Ti]  because of the presence of singularities. We have not carried this out. 

5 Some remarks 

In this last section, we discuss some open problems. Mukai and Umemura  con- 
structed in [ M U ]  a Fano 3-fold X which can jump to another Fano 3-fold X~,  
moreover, X has no nontrivial holomorphic vector fields and the Futaki invariant 
on X~ vanishes. 

Problem 1 Is there a Fano n-fold X which has no nontrivial holomorhic vector fields 
and which jumps to another Fano n-fold X~  with nonvanishing Futaki invariant? 

If the answer to this problem is affirmative, then one can further ask 

Problem 2 Let X ~  be a Fano n-fold with a holomorphic vector field v. Assume that 
the Futaki invariant Re(Fx~(v)) 4= O. We normalize v such that Re(Fx~(v)) < O. This 
holomorphic vector field v induces an adjoint action on the infinitesimal deformation 
group H I ( X ~ ,  Tx| Is it possible that this adjoint representation of Re(v) has 
negative eigenvalues in Hl(Xo~, Tx~)? 

By our main theorem, if there is a K/ihler-Einstein manifold X which jumps to 
X~ ,  then the adjoint representation of Re(v) in HI(X~ ,  Tx~) has no negative 
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eigenvalues. In particular, it follows from [Ti]  that  the answer to Problem 2 is 
negative in the case of complex surfaces. One can also show that  the answer to 
Problem 1 is negative in the case of complex surfaces. On the other hand, the 
examples of last section show that  if X~ is a K~ihler orbifold with positive first 
Chern class, the possibility in Problem 2 certainly exists. This shows the subtlety of 
Problem 2 in the smooth  case. 

The K-energy in Sect. 2 can be defined for KS.hler metrics with K/ihler class 
other than CI (X)  and the manifold X need not  have positive first Chern class, 
either. In this general case, Calabi and Futaki have introduced the analogous 
Futaki invariant and proved that it is an obstruction to the existence of  K/ihler 
metrics with constant  scalar curvature. The K/ihler metrics with constant scalar 
curvature are the extremal metrics in the sense of Calabi (cf. [Fu2]).  All the 
discussions in Sects. 1, 3 are still valid for the general case. The problem is that we 
do not know if the K-energy is bounded from below under the assumption that 
there exists a Kfihler metric of constant  scalar curvature in the given Kfihler 
class. In other words, for the general case we have not gotten a result similar to 
Theorem 2.1. 

Finally, as one can see from the discussions in Sect. 2, the generalized Futaki 
invariant can be defined for any (even reducible) variety. An interesting problem is 
to compute  it in terms of the zeroes of the admissible holomorphic  vector field and 
the singularities of the variety. Is there a formula analogous to (1.21)? Even an 
estimate of the upper bound of the generalized Futaki  invariant is of  interest. Such 
an upper bound may be related to the numerical criterion in [ M d ]  for Mumford ' s  
stability. 
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