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KÄHLER–RICCI SOLITONS ON
COMPACT COMPLEX MANIFOLDS WITH C1(M) > 0

Huai-Dong Cao, Gang Tian and Xiaohua Zhu

Abstract. In this paper, we discuss the relation between the existence
of Kähler–Ricci solitons and a certain functional associated to some com-
plex Monge–Ampère equation on compact complex manifolds with positive
first Chern class. In particular, we obtain a strong inequality of Moser–
Trudinger type on a compact complex manifold admitting a Kähler–Ricci
soliton.

0 Introduction

In this paper, we study the existence of Kähler–Ricci solitons by using
properness of a certain functional. Our approach is similar to that of [T]
(also see [TZ1]) for Kähler–Einstein metrics. A Kähler metric g on a com-
pact complex manifold M with first Chern class c1(M) > 0 is called a
(homothetically shrinking) Kähler–Ricci soliton if there is a holomorphic
vector field X on M such that the Kähler form ωg of g satisfies

Ric(ωg) − ωg = LXωg ,

where Ric(ωg) denotes the Ricci form of ωg and LX is the Lie derivative
operator along X. In particular, if X = 0, such a g is a Kähler–Einstein
metric. So Kähler–Ricci solitons can be regarded as a generalization of
Kähler–Einstein metrics of positive scalar curvature. Ricci solitons have
been studied extensively in the recent years ([K], [H], [C], [M2], [T], [TZ2,3],
[WZ], etc.). One motivation is that they are very closely related to the sin-
gular behavior of limit solutions of certain PDEs which arise from geometric
analysis, such as Hamilton’s Ricci flow [H] and certain complex Monge–
Ampère equations associated to Kähler–Einstein metrics [T]. Kähler–Ricci
solitons are special Ricci solitons. It was proved recently in [TZ2] and
[TZ3] that there exists at most one Kähler–Ricci soliton on any compact
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Kähler manifold with positive first Chern class, modulo holomorphic auto-
morphisms. This extends the uniqueness theorem of Bando and Mabuchi
for Kähler–Einstein metrics with positive scalar curvature [BM].

Let g be a Kähler metric on M with its Kähler form

ωg =
√−1
2π

∑

i,j

gijdzi ∧ dzj ,

representing c1(M). Then there is a smooth real-valued function hg such
that

Ric(ωg) − ωg =
√−1
2π ∂∂hg .

Suppose that X is a holomorphic vector field on M so that the integral
curve KX of the imaginary part Im(X) of X consists of isometries of g. By
the Hodge decomposition theorem, there exists a unique smooth real-valued
function θX = θX(ωg) on M such that

{
iXωg =

√−1
2π ∂θX ,∫

M eθXωng =
∫
M ωng = V .

Set

MX(ωg) =
{
ψ ∈ C∞(M)

∣∣∣ ωψ = ωg +
√−1
2π ∂∂ψ > 0 , Im(X)(ψ) = 0

}
.

The following functional on MX(ωg) was introduced in [TZ3],

F̃ωg(ψ) = J̃ωg (ψ) − 1
V

∫

M
ψeθXωng − log

(
1
V

∫

M
ehg−ψωng

)
,

where

J̃ωg (ψ) =
n
√−1
2πV

n−1∑

k=0

Ckn−1

∫

M

(∫ 1

0

∫ 1

0
t(st)k(1−st)n−1−keθX+stX(ψ)dt ds

)

× ∂ψ ∧ ∂ψ ∧ ωkψ ∧ ωn−1−k
g .

Let K0(⊇ KX) be a maximal compact subgroup of the automorphisms
group of M such that σ · η = η ·σ for any η ∈ K0 and any σ ∈ KX . Then a
Kähler–Ricci soliton with respect to X on M must be K0-invariant by the
uniqueness theorem in [TZ2]. We introduce

Definition 0.1. The functional F̃ωg( · ) is said to be proper with respect
to X if for any sequence {ψi} of K0-invariant functions in MX(ωg),

lim
i→∞

F̃ωg (ψi) = +∞ ,

whenever limi→∞ Iωg(ψi) = +∞. Here

Iωg (ψi) =
1
V

∫

M
ψi(ωng − ωnψi

) .
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We note that the above definition is independent of the choice of ωg
since functional F̃ωg ( · ) satisfies a co-cycle condition (cf. section 1). The
following was essentially proved in [TZ2].

Theorem 0.1 [TZ2]. Suppose that F̃ωg( · ) is proper with respect to a
holomorphic vector field X on M . Then there is a Kähler–Ricci soliton
with respect to X on M .

This theorem says that the properness of F̃ωg( · ) is a sufficient condition
for the existence of Kähler–Ricci solitons. Since we did not state this result
as a theorem in [TZ2], we will include its proof here following [TZ2].

In [TZ3], we proved that F̃ωg ( · ) is bounded from below if there is a
Kähler–Ricci soliton on M . The main purpose of this paper is to show
that F̃ωg ( · ) is actually proper wherever M admits a Kähler–Ricci soliton.
This shows that F̃ωg ( · ) is also a necessary condition for the existence of
Kähler–Ricci solitons (cf. section 5). Suppose that M admits a Kähler–
Ricci soliton ωKS with respect to some holomorphic vector field X. We
define a weighted inner product on C∞(M) by

(φ,ψ) =
∫

M
φψeθX (ωKS)ωnKS ,

and denote by

Λ1(M,ωKS) =
{
u ∈ C∞(M)

∣∣ �ωKS
u+X(u) = −u} .

Theorem 0.2. Let M be a compact complex manifold which admits a
Kähler–Ricci soliton ωKS with respect to some holomorphic vector field X
and G(⊇ KX) be a compact subgroup of K0 with σ · η = η · σ for any
σ ∈ KX and η ∈ G. Suppose that any G-invariant smooth function on
M is perpendicular to the space Λ1(M,ωKS) with respect to the weighted
inner product defined above. Then there are two positive numbers c and
C such that for any G-invariant ψ in MX(ωg),

F̃ωKS
(ψ) ≥ cIωKS

(ψ)
1

4n+5 − C . (0.1)

In particular, F̃ωKS
( · ) is proper under the same assumption.

The proof of Theorem 0.2 is inspired by [T] and [TZ1], where the authors
proved a fully non-linear inequality of Moser–Trudinger type for Kähler–
Einstein manifolds. In fact, inequality (0.1) in Theorem 0.2 is equivalent
to the following inequality,
∫

M
e−ψωnKS ≤ C exp

{
J̃ωKS

(ψ) − cJ̃ωKS
(ψ)

1
4n+5 − 1

V

∫

M
ψωnKS

}
. (0.2)
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Inequality (0.2) generalizes the corresponding one in [T] and [TZ1]. Recall
that on S2 with the standard Riemannian metric such an inequality is just
a kind of the stronger version of Moser–Trudinger inequality [A], [T].

The organization of this paper is as follows. In section 1, we give a
proof of Theorem 0.1 following [TZ2]. In section 2, we give an estimate for
a certain heat kernel on manifolds with modified positive Ricci curvature.
In section 3, a C0-estimate for certain complex Monge–Ampère equations
is obtained. In section 4, we prove a smoothing lemma by using Hamilton’s
Ricci flow. Theorem 0.2 will be proved in section 5.

Acknowledgment. The third author would like to thank Professor
T. Mabuchi for valuable discussions during his visit at Osaka University
in the spring of 2001.

1 An Analytic Criterion for Kähler–Ricci Solitons

Let (M,g) be an n-dimensional compact Kähler manifold with the first
Chern class c1(M) > 0. Denote by Aut◦(M) the connected component of
the automorphism group of M . Let K be a maximal compact subgroup of
Aut◦(M), then the Chevalley decomposition allows us to write Aut◦(M) as
a semi-direct decomposition [FM],

Aut◦(M) = Autr(M) ∝ Ru ,

where Autr(M) ⊂ Aut◦(M) is a reductive algebraic subgroup and the
complexification of K, and Ru is the unipotent radical of Aut◦(M). Let
ηr(M) be the Lie subalgebra of Autr(M).

Let X ∈ ηr(M) such that the one-parameter subgroupKX generated by
Im(X) is contained in K, where Im(X) denotes the imaginary part of X .
Choose a KX-invariant Kähler metric g on M with the Kähler form ωg.
Then by the Hodge decomposition theorem, there is a unique smooth real-
valued function θX = θX(ωg) of M such that{

iXωg =
√−1
2π ∂θX ,∫

M eθXωng =
∫
M ωng = V ,

where ωng = ωg ∧ ... ∧ ωg. The first relation above implies

LXωg = diX(ωg) =
√−1
2π ∂∂θX .

We consider the following complex Monge–Ampère equations with pa-
rameter t ∈ [0, 1]:{

det(gij + ϕij) = det(gij) exp
{
h− θX −X(ϕ) − tϕ

}
,

(gij + ϕij) > 0 ,
(1.1)
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where h = hg is a smooth real-valued function on M defined by{
Ric(ωg) − ωg =

√−1
2π ∂∂h ,∫

M ehωng =
∫
M ωng .

Then one can check that ωφ = ωg +
√−1
2π ∂∂φ is a Kähler–Ricci soliton with

respect to X, i.e. ωφ satisfies
Ric(ωφ) − ωφ = LXωφ ,

if and only if φ modulo a constant is a solution of equation (1.1)t for t = 1.
In fact, (1.1)t is equivalent to

Ric(ωφt) − LX(ωφt) = tωφt + (1 − t)ωg , (1.2)
where φt is a solution of (1.1)t.

Since
d

dt

(∫

M
eθX+X(φt)ωnφt

)
=
∫

M

(�′φ̇t +X(φ̇t)
)
eθX+X(φt)ωnφt

= 0 ,

we have ∫

M
eθX+X(φt)ωnφt

=
∫

M
eθXωng = V . (1.3)

Integrating (1.1)t after multiplying by eθX+X(φt), it follows that∫

M
eh−tφtωng = V .

Therefore, differentiating the above identity, we get∫

M
φ̇te

h−tφtωng = −1
t

∫

M
φte

h−tφtωng . (1.4)

Set
M(ωg) =

{
φ ∈ C∞(M)

∣∣∣ ωφ = ωg +
√−1
2π ∂∂φ > 0

}

and
MX(ωg) =

{
φ ∈ M(ωg)

∣∣ Im(X)(φ) = 0
}
.

We define the following two functionals on MX(ωg) (cf. [TZ2]):

Ĩωg(φ) =
1
V

∫

M
φ
(
eθXωng − eθX+X(φ)ωnφ

)

and
J̃ωg(φ) =

1
V

∫ 1

0

∫

M
φ̇s
(
eθXωng − eθX+X(φs)ωnφs

) ∧ ds , (1.5)

where φs(0 ≤ s ≤ 1) is a path from 0 to φ in MX(ωg). Since J̃ωg(φ) is
independent of the choice of a path, by choosing φs = sφ, one can show
that J̃ωg (φ) defined here coincides with one in the introduction. It is known
that there are two uniform positive constants c1 and c2 such that

c1Iωg(φ) ≤ Ĩωg (φ) − J̃ωg(φ) ≤ c2Iωg(φ) , (1.6)
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where Iωg(φ) = 1
V

∫
M φ(ωng − ωnφ).

Let

F̂ωg(φ) = J̃ωg (φ) − 1
V

∫

M
φeθXωng

= − 1
V

∫ 1

0

∫

M
φ̇se

θX+X(φs)ωnφs
∧ ds .

By simple computations, one can show that for any two functions φ and ψ
in MX(ωg), the following co-cycle condition is satisfied,

F̂ωg (ψ) = F̂ωg (φ) + F̂ωφ
(ψ − φ) ,

where F̂ωφ
(ψ − φ) = − 1

V

∫ 1
0

∫
M φ̇se

θX+X(φs)ωnφs
∧ ds and φs is a path from

0 to (ψ − φ) in MX(ωg).

Proposition 1.1. Let φs be a solution of (1.1)s for all s ≤ t. Then

F̂ωg (φt) = −1
t

∫ t

0

(
Ĩωg(φs) − J̃ωg (φs)

)
ds .

Proof. Differentiating (1.1)s on s, we have
�′φ̇s +X(φ̇s) = −(sφ̇s + φs) . (1.7)

Then by using (1.7) and (1.4), we get
d

ds

(
Ĩωg(φs) − J̃ωg (φs)

)
= − 1

V

∫

M
φs

d

ds

(
eθX+X(φs)ωnφs

)

= − 1
V

∫

M
φs
(�′φ̇s +X(φ̇s)

)
eθX+X(φs)ωnφs

=
1
V

∫

M
φs(sφ̇s + φs)eθX+X(φs)ωnφs

=
1
V

∫

M
φs(sφ̇s + φs)eh−sφsωng

=
1
V

d

ds

(∫

M
(−φs)eh−sφsωng

)
+

1
V

∫

M
φ̇se

h−sφsωng

=
1
sV

d

ds

(∫

M
s(−φs)eh−sφsωng

)

=
1
sV

d

ds

(∫

M
s(−φs)eθX+X(φs)ωnφs

)
.

It follows that
d
ds

(
s(Ĩωg(φs) − J̃ωg (φs))

) − (Ĩωg(φs) − J̃ωg(φs)
)

=
1
V

d

ds

(∫

M
s(−φs)eθX(φs)ωnφs

)
, (1.8)
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and consequently,

F̂ωg (φt) = − 1
V

∫

M
φeθX+X(φt)ωnt − (Ĩωg(φt) − J̃ωg (φt)

)

= −1
t

∫ t

0

(
Ĩωg(φs) − J̃ωg (φs)

)
ds . �

Remark 1.1. It was proved in Lemma 3.2 in [TZ2] that

d
ds

(
Ĩωg(φs) − J̃ωg(φs)

) ≥ 0 .

Recall that the functional F̃ωg( · ) is defined as

F̃ωg (ψ) = F̂ωg (ψ) − log
(

1
V

∫

M
eh−ψωng

)

= J̃ωg (ψ) − 1
V

∫

M
ψeθXωng − log

(
1
V

∫

M
eh−ψωng

)
,

and F̃ωg( · ) is called proper with respect to X if for any sequence {ψi} of
K0-invariant functions in MX(ωg),

limi→∞F̃ωg (ψi) = +∞ ,

whenever limi→∞ Iωg (ψi) = +∞, where K0(⊇ KX) is a maximal compact
subgroup of automorphisms group Aut(M) of M such that σ · η = η · σ for
any σ ∈ KX and η ∈ K0.

Proof of Theorem 0.1. We use arguments from [TZ2]. Assuming the
functional F̃ωg is proper, we shall prove the existence of a Kähler–Ricci
soliton with respect to X on M . This is equivalent to proving that there is
a solution of (1.1)t for t = 1. It suffices to prove that Iωg(φt) is uniformly
bounded for any solution of (1.1)t for 0 ≤ t ≤ 1. This is because C3-norm
of φt can be uniformly bounded by Iωg(φt) and the set of parameter t for
which there exists a smooth solution of (1.1)t is non-empty and open (cf.
[TZ2]). By the implicit function theorem, one can show the solution of
(1.1)t varies smoothly with t < 1. Without the loss of generality, we may
assume that the Kähler form ωg is K0-invariant. Then all solutions φt are
all K0-invariant.

By Proposition 1.1, we have

F̃ωg (φt) = −1
t

∫ t

0

(
Ĩωg(φs) − J̃ωg(φs)

)
ds− log

(
1
V

∫

M
eh−φtωng

)

≤ − log
(

1
V

∫

M
eh−φtωng

)
. (1.9)
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On the other hand, by using (1.1)t and concavity of the logarithmic func-
tion, one can deduce

− log
(

1
V

∫

M
eh−φtωng

)
=

1 − t

V

∫

M
φte

θX+X(φt)ωnφt

≤ 1 − t

V

∫

M
φte

h−tφtωng ≤ C . (1.10)

Combining (1.9) and (1.10), we get

F̃ωg (φt) ≤ C .

Therefore, the assumption of properness on F̃ωg ( · ) implies

Iωg (φt) ≤ C ′,
and consequently, there is a Kähler–Ricci soliton onM with respect to X. �

2 A Heat Kernel Estimate

In this section, we give an estimate on the heat kernel of a linear elliptic
operator P associated to a Kähler form ω and a holomorphic vector field
X on M , where P = Pω = � + X( · ) is defined on the space NX =
{u ∈ C∞(M) | Im(X(u)) = 0}. As a consequence, we derive a lower bound
of the Green function of P . The method here follows that of T. Mabuchi in
[M1] with modifications which in turn were inspired by Li–Yau [LY]. Note
that P is a self-adjoint elliptic operator on NX with respect to the inner
product,

(φ,ψ) =
∫

M
φψeθXωn.

Lemma 2.1. Let ω be a Kähler form on M and X a holomorphic vector
field on M with

Ric(ω) − LXω ≥ 0 ,

and
�θX ≤ k ,

for some positive number k, where θX = θX(ω) is defined as in section 1
for Kähler form ω. Let v(x, t) be a positive smooth solution on M × (0,∞)
of equation

(
P − ∂

∂t

)
v = 0. Suppose that

lim
t→0

sup
M×{t}

t
(
v−2〈∂v, ∂v〉 − v−1vt) ≤ 2n ,

where vt = ∂v/∂t. Then there is a positive number C depending only on

m1 = −max
M

θX and m2 = −min
M

θX
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such that

v(x, t1) ≤ v(y, t2)
(
t2
t1

) n
C exp

{
(t2−t1)−1r(x, y)2/2+C−1k(t2−t1)

}
, ∀t1<t2 ,

(2.1)
where r(x, y) denotes the distance between x and y associated to metric ω.

Proof. Let f = ln v and F̂ = t(〈∂f, ∂f〉 − ft). Then
PF̂ + tPft

= t
(〈trω(∇∇)∂f, ∂f〉 + 〈trω(∇∇)∂f, ∂f〉
+X(〈∂f, ∂f〉) + ‖∇∇f‖2 + ‖∇∇f‖2

)
.

(2.2)

For simplicity, we choose a local holomorphic coordinate system (z1, . . . , zn)
near each point p such that gij(p) = δij and fij(p) = δijfii(p). By a direct
computation, one sees that

fifijj = fi(fjji + flRil) ,

fifijj = fifjji ,

and
Xi(fjfj)i + fifjXji = fi(Xjfj)i + fi(Xjfj)i .

Inserting the above identities into (2.2), we obtain
PF̂ ≥ t

(〈∂f, ∂(Pf)〉 + 〈∂(Pf), ∂f〉) − tPft + t
n(�f)2

= 2t
〈
∂(Pf), ∂f

〉− tPft + t
n(�f)2.

(2.3)

Since
Pf − ft = −〈∂f, ∂f〉 ,

we have
F̂ = −tPf ,

and
∂
∂t F̂ − 1

t F̂ = −tPft .
Hence by (2.3), we get

(
P − ∂

∂t

)
F̂ ≥ −2〈∂F̂ , ∂f〉 − 1

t F̂ + t
n

(
1
t F̂ +X(f)

)2
. (2.4)

Let m1 = − supx∈M θX(x) and m2 = − infx∈M θX(x). As in [M1], we
define a monotone-increasing function η on [m1,m2] by

η(s) = exp
∫ s

m

1
b0e−y − 1

dy ,

where b0 = em2(1 + n). Then η is a solution of the ODE on [m1,m2],
η′′
η − η′

η = 2
(
η′
η

)2
.

Moreover, one can check that the number C defined by
C = min

s∈[m1,m2]
η(s)−1

(
1 − (1 − η(s)−1η(s)′n)2

)
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is positive, and
0 < η′

η ≤ 1
n .

Let F = η(−θX)F̂ . Then by (2.4), one can show that

(P − ∂

∂t
)F ≥ −2〈∂F, ∂f〉 − 1

tF

+
(
η′′
η − η′

η − 2
(
η′
η

)2 )‖X‖2F

+ η−1η′
(− 2X(F ) − F�θX

)

+ n−1t−1F 2η−1
(
1 − (1 − η−1η′n)2

)

+ t
nη
[−1

t η
−1F (1 − nη−1η′)2 −X(f)

]2
.

By the assumption in the lemma, we have
(
P − ∂

∂t

)
F ≥ −2〈∂F, ∂f〉 − 2η−1η′X(F ) − (1

t + k
n

)
F + C

ntF
2. (2.5)

Applying the maximal principle to the function F (x, t) on M × (0, T ],
we get from (2.5),

F (x, t) ≤ C̃−1(2n+ kt) ,

for any (x, t) ∈M × (0, T ], and consequently,

v(x, t)−2
〈
∂v(x, t), ∂v(x, t)

〉− v(x, t)−1vt(x, t) ≤ C̃−1
(

2n
t + k

)
,

for any (x, t) ∈ M × (0,∞). Now by integrating the above estimate as
in [LY], we can immediately obtain (2.1). �

Let H = H(x, y, t) be a fundamental solution on M ×M × [0,∞) of
equation (

P − ∂
∂t

)
v(x, y, t) = 0 , (2.6)

i.e. H is a smooth solution of (2.6) satisfying





H(x, y.t) = H(y, x, t) ,
H(x, y, t) =

∫
M H(x, z, t− s)H(z, y.s)eθXωn,

limt→0H(x, y, t) = δx(y) .

By using the asymptotic behavior of H, for each fixed x ∈M , one sees
that

lim
t→0

sup
M×{t}

t
(
H−2〈∂H(x, ·, t), ∂H(x, ·, t) > −H−1Ht

) ≤ 2n .

Moreover, following an argument by Li and Yau (cf. [LY, Lemma 3.2]), we
can deduce

Lemma 2.2. Let Z1 and Z2 be two measurable subset of M . Let T, δ, τ
be three positive numbers with τ < (1 + 2δ)T . For each x, y ∈ M and
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0 < t ≤ τ , denote

Fx,T (y, t) =
∫

Z1

H(y, ·, t)H(x, ·, T )eθXωn.

Then∫

Z2

Fx,T (·, t)2eθXωn ≤ exp
{−r(x,Z1)2

2(1 + 2δ)T
+

R(x,Z2)2

2(1 + 2δ)T − 2t

}
Fx,T (x, T ) ,

where r(x,Z1) = infz∈Z1 r(x, z) and R(x,Z2) = supz∈Z2
r(x, z).

Proposition 2.1. Let H(x, y, t) be a fundamental solution on
M ×M × [0,∞) of equation (2.6). Suppose

Ric(ω) − LXω ≥ 0 ,
and

�θX ≤ k ,

for some positive number k. Then for any δ > 0 we have

ṽol
(
Bx(

√
t)
)1/2ṽol

(
By(

√
t)
)1/2

H(x, y, t)

≤ (1+δ)4n/C exp

{
−{r(x, y)−√

t}2
+

4t(1+3δ+2δ2)
+ tδ(2+δ)C−1k +

3
4δ(1+δ)

+
1
2δ

}
,

(2.7)

where ṽol(By(
√
t)) =

∫
By(

√
t) e

θXωn, and
{
r(x, y) −√

t
}

+
= max

{
0, r(x, y) −√

t
}
.

Proof. First applying Lemma 2.1 to the function Fx,T (y, t) with (t1, t2) =
(T, τ = (1 + δ)T ), we have

Fx,T (x, T ) ≤ Fx,T (y, τ)(1 + δ)
2n
C exp

{
T−1δ−1r(x, y)2

2
+ C−1kTδ

}
. (2.8)

Let Z1 = By(
√
t) and Z2 = Bx(

√
t). Then integrating the square of the

above inequality over all y ∈ Z2 and using Lemma 2.2, it follows that

ṽol
(
Bx(

√
t)
)
Fx,T (x, T )2

≤ (1 + δ)4n/C exp
{−r(x,Z1)2

2(1 + 2δ)T
+ 2C−1kTδ +

3t
2Tδ

}
Fx,T (x, T ) ,

and consequently,

ṽol
(
Bx(

√
t)
) ∫

Z1

H(x, ·, T )2eθXωn

= ṽol
(
Bx(

√
t)
)
Fx,T (x, T )

≤ (1 + δ)4n/C exp
{−r(x,Z1)2

2(1 + 2δ)T
+ 2C−1kTδ +

3t
2Tδ

}
.

(2.9)
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On the other hand, applying Lemma 2.1 to the function H(x, z, t) in z
with (t1, t2) = (t, T = (1 + δ)t), we have for any x, y, z ∈M ,
H(x, y, t)2 ≤ (1 + δ)4n/CH(x, z, T )2 exp

{
T−1δ−1r(y, z)2 + 2C̃−1kTδ

}
.

Integrating this inequality over all z ∈ Z1, and using (2.9), we can get
(2.7). �

Theorem 2.1. Let φ ∈ MX(ωg). Suppose that

Ric(ωφ) − LXωφ ≥ λωφ , (2.10)
and

�θX(ωφ) ≤ k ,

for some positive numbers λ and k. Then there is a uniform constant C
depending only on λ and k such that

sup
M

(−φ) ≤ 1
V

∫

M
(−φ)eθX (ωφ)ωnφ + C . (2.11)

Proof. Let µi(µ0 = 0), i = 0, 1, . . . , be the increasing sequence of eigenvalues
of operator −P = −(�ωφ

+X( · )) associated to metric ωφ. Then by using
the standard Bochner technique, one can obtain µ1 ≥ λ (cf. [TZ2]). Let
G(x, y) be the Green function with

∫
M G(x, ·)eθX (ωφ)ωnφ = 0 associated to

the operator P . Then

G(x, y) =
∫ ∞

0

(
H(x, y, t) − 1

V

)
dt .

Since

H0(x, y, t) = H(x, y, t) − 1
V

=
∞∑

i=1

e−µitfi(x)fi(y) ,

we have
H0(x, x, t+ t0) ≤ e−µ1tH0(x, x, t0) , (2.12)

for any t0, t > 0, where fi(x) denote the eigenfunctions of µi.
In [M2], it was proved under the condition (2.10) that there is a uniform

constant C1 such that
Diam(M,ωφ) ≤ C1√

λ
.

Choose t0 = 1
4 Diam(M,ωφ)2. Then by Proposition 2.1 we have

H0(x, x, t0) ≤ C2 , (2.13)
for some uniform constant C2 depending only on λ and k.

By using (2.12) and (2.13), we get

G(x, y) ≥ −
∫ t0

0

1
V
dt −

∫ ∞

t0

e−µ1(t−t0)
(
H0(x, x, t0)H0(y, y, t0)

)1/2
dt

≥ −C3 .
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Note that �ωφ
(−φ) ≥ −n and

sup
ψ∈MX (ωg)

‖X(ψ)‖C0(M) ≤ c (2.14)

for some uniform constant c = c(ωg,X) (cf. Lemma 5.1 in [Z]). Therefore
applying the Green formula to function −φ, we prove

sup
M

(−φ) =
1
V

∫

M
(−φ)eθX (ωφ)ωnφ − inf

M

∫

M
P
(− φ( · ))G(x, ·)eθX (ωφ)ωnφ

=
1
V

∫

M
(−φ)eθX (ωφ)ωnφ− inf

M

∫

M

(�ωφ
(−φ)−X(φ)

)
G(x, ·)eθX (ωφ)ωnφ

≤ 1
V

∫

M
(−φ)eθX (ωφ)ωnφ + C3V

(
n+ ‖X(φ)‖C0(M)

)

≤ 1
V

∫

M
(−φ)eθX (ωφ)ωnφ + C . �

3 A C0-Estimate for Solutions of (1.1)t

Lemma 3.1. There are two positive numbers c1 and c2 < 1 such that for
any φ ∈ MX(ωg),

c1Ĩωg(φ) ≤ Ĩωg (φ) − J̃ωg(φ) ≤ c2Ĩωg(φ) . (3.1)

Proof. Let ωsφ = ω + s
√−1
2π ∂∂φ. Then one can compute

Ĩωg(φ)

=
1
V

∫

M
φ

∫ 1

0

d

ds
(eθX+sX(φ)ωnsφ) ∧ ds

=
n
√−1
2πV

∫ 1

0
ds

∫

M
∂φ ∧ ∂φeθX+sX(φ) ∧ ωn−1

sφ

=
n
√−1
2πV

n−1∑

k=0

Ckn−1

∫

M

(∫ 1

0
sk(1 − s)n−1−keθX+sX(φ)ds

)

× ∂φ ∧ ∂φ ∧ ωkφ ∧ ωn−1−k
g

≤ n
√−1
2πV

C1

n−1∑

k=0

Ckn−1∂φ ∧ ∂φ ∧ ωkφ ∧ ωn−1−k
g .

(3.2)

and

J̃ωg (φ)

=
n
√−1
2πV

∫ 1

0
dt

∫ 1

0
ds

∫

M
t∂φ ∧ ∂φeθX+stX(φ) ∧ ωn−1

stφ
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=
n
√−1
2πV

n−1∑

k=0

Ckn−1

∫

M

(∫ 1

0

∫ 1

0
t(st)k(1 − st)n−1−keθX+stX(φ)dt ∧ ds

)

× ∂φ ∧ ∂φ ∧ ωkφ ∧ ωn−1−k
g (3.3)

≥ n
√−1
2πV

C ′
1

n−1∑

k=0

Ckn−1∂φ ∧ ∂φ ∧ ωkφ ∧ ωn−1−k
g .

Combining (3.2) and (3.3), we get

J̃ω(φ) ≥ C′
1

C1
Ĩω(φ) ,

and consequently, prove the second inequality of (3.1).
On the other hand, we have (cf. [TZ2]),
Ĩωg (φ) − J̃ωg(φ)

=
n
√−1
2πV

n−1∑

k=0

Ckn−1

∫

M

(∫ 1

0
sk+1(1 − s)n−1−keθX+sX(φ)ds

)

× ∂φ ∧ ∂φ ∧ ωkφ ∧ ωn−1−k
g (3.4)

≥ n
√−1
2πV

C2

n−1∑

k=0

Ckn−1∂φ ∧ ∂φ ∧ ωkφ ∧ ωn−1−k
g .

Hence, combining (3.2) and (3.4), we also prove the first inequality of
(3.1). �

Proposition 3.1. Let φ = φt(t ≥ t0 > 0) be a solution of equation (1.1)t.
Then there are two uniform constants C1 and C2 depending only on X and
t0 such that

oscM φ ≤ C1

∫

M
φ(ωng − ωnφ) + C2 . (3.5)

Proof. Let θ′X = θX(ωφ). First we note
�θ′X = −θ′X −X(hωφ

) + c ,

for some constant c. Clearly c ≤ oscM |θ′X |, since θ′X changes the sign. By
using the fact (cf. the relation (1.2)),

hωφ
= θ′X − (1 − t)φ+ const. ,

we have �θ′X = −θ′X − ‖X‖ωφ
+ (1 − t)X(φ) + c

≤ 2 oscM |θX | + 3|X(φ)| ≤ C ′
1 ,

for some uniform constant C ′
1. Applying Theorem 2.1, we see that there is

some uniform constant C ′
2 depending only on X and t0 such that

sup
M

(−φ) ≤ 1
V

∫

M
(−φ)eθ

′
Xωnφ + C ′

2 . (3.6)
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On the other hand, by using the Green formula, we have

sup
M

φ ≤ 1
V

∫

M
φeθXωng + C ′

3 (3.7)

for some uniform constant C ′
3 (cf. Lemma 5.3 in [TZ3]). Hence, combing

(3.6) and (3.7), we get

oscM φ ≤ 1
V

∫

M
φ(eθXωng − eθ

′
Xωnφ) + C ′

2 +C ′
3 .

By using (1.6) and (3.1), we prove (3.5). �

4 A Smoothing Lemma

In this section, following an approach in [T], we will prove a smoothing
lemma by using Hamilton’s Ricci flow. This lemma will be used in the
proof of Theorem 0.2. Let ω be any Kähler form in c1(M) > 0 such that{

Ric(ω) − LXω ≥ (1 − ε)ω ,∣∣X(hω − θX(ω))
∣∣ ≤ εc1 ,

(4.1)

for some constant c1 and 0 < ε < 1. We consider the heat equation



∂u
∂t = log

(
(ω+

√−1
2π

∂∂̄u)n

ωn

)
+ u− hω + θX(ω) ,

u|t=0 = 0 .
(4.2)

Note that eq. (4.2) is the scalar version of the modified Kähler–Ricci
flow

∂
∂tωt = −Ric(ωt) + ωt + LXωt .

Here ωt = ω +
√−1
2π ∂∂ut, and ut = u(x, ·). Denote by ht = hωt and θt =

θX(ωt), then it follows from the above equation and maximum principle
that

ht − θt = −∂u
∂t + c̃t

where c̃t depends on t only. Also, u0 = 0 and hence c̃0 = 0.
We list a few basic estimates for the solution u(x, t). Differentiat-

ing (4.2), we get

∂
∂t

(
∂u
∂t

)
= (∆ +X)

(
∂u
∂t

)
+
(
∂u

∂t

)
. (4.3)

Applying the maximum principle, we have

Lemma 4.1. Let ut be a solution of (4.2). Then

‖ut‖C0 ≤ et
∥∥hω − θX(ω)

∥∥
C0 ,

and ∥∥∂u
∂t

∥∥
C0 ≤ et

∥∥hω − θX(ω)
∥∥
C0 .
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Lemma 4.2.
(∆ +X)(ht − θt) ≥ −(c1 + n)εet.

Proof. From eq. (4.3), we have
∂
∂t

(
(∆ +X)

(
∂u
∂t

))
= (∆ +X)2

(
∂u
∂t

)
+ (∆ +X)

(
∂u
∂t

)− ∣∣∇∇̄ (∂u∂t
)∣∣2

≤ (∆ +X)2
(
∂u
∂t

)
+ (∆ +X)

(
∂u
∂t

)
.

It follows from the maximum principle that
(∆ +X)(ht − θt) ≥ et inf

M
(∆ +X)

(
hω − θX(ω)

)
.

On the other hand, (4.1) implies that, at t = 0,
(∆ +X)(hω − θX(ω)) ≥ −(c1 + n)ε .

Then the lemma follows directly. �

Lemma 4.3.∥∥ ∂
∂tu
∥∥2

C0 + t
∥∥∇ ( ∂∂tu

)∥∥2

C0 ≤ e2t
∥∥hω − θX(ω)

∥∥2

C0 .

Proof. By direct computations, we have
∂
∂t

(
∂u
∂t

)2 = (∆ +X)
(
∂u
∂t

)2 − ∣∣∇ (∂u∂t
)∣∣2 + 2

(
∂u
∂t

)2
,

and
∂
∂t

(∣∣∇ (∂u∂t
)∣∣2
)

= (∆ +X)
(∣∣∇ (∂u∂t

)∣∣2
)
− ∣∣∇∇ (∂u∂t

)∣∣2 − ∣∣∇∇̄ (∂u∂t
)∣∣2 +

∣∣∇ (∂u∂t
)∣∣2 .

Hence
∂
∂t

((
∂u
∂t

)2
+ t
∣∣∇ (∂u∂t

)∣∣2
)

≤ (∆ +X)
((

∂u
∂t

)2
+ t
∣∣∇ (∂u∂t

)∣∣2
)

+ 2
((

∂u
∂t

)2
+ t
∣∣∇ (∂u∂t

)∣∣2
)
.

Lemma 4.3 follows from the maximum principle again. �
Set

v = h1 − θ1 − 1
V

∫

M
(h1 − θ1)eθ1ω1

n.

Lemma 4.4.

‖v‖2
L2 ≤ 2(c1 + n)e2V

λ1
ε
∥∥hω − θX(ω)

∥∥
C0 .

Proof. By Lemma 4.2, we have
(∆ +X)v + (c1 + n)eε ≥ 0 .

It follows that∫

M

∣∣(∆ +X)v + (c1 + n)eε
∣∣eθ1ω1

n =
∫

M

(
(∆ +X)v + (c1 + n)eε

)
eθ1ω1

n

= (c1 + n)eεV .
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Hence, by applying the Poincaré inequality and Lemma 4.1, we have
λ1

V

∫

M
|v|2eθ1ω1

n ≤ 1
V

∫

M
|∇v|2eθ1ωn1

=
1
V

∫

M
(−v)(∆ +X)veθ1ω1

n

=
1
V

∫

M
(−v)[(∆ +X)v + c1eε

]
eθ1ω1

n

≤ 1
V
‖v‖C0

∫

M

(
(∆ +X)v + (c1 + n)eε

)
eθ1ω1

n

≤ 2e2(c1 + n)ε
∥∥hω − θX(ω)

∥∥
C0 .

This shows the lemma is true. �

Lemma 4.5. We have

‖v‖C0 ≤ C(n, c1a, λ1)
(
1 + ‖hω − θX(ω)‖C0

)
ε1/2(n+1), (4.4)

provided that the following condition holds: there exists a constant a > 0
such that for any x0 ∈M and 0 < r < 1,(

Br(x0)
) ≥ ar2n (4.5)

with respect to the metric ω1.

Proof. Pick r = ε1/2(n+1) and cover M by geodesic balls of radius r. For
any x ∈M , we have x ∈ Br(x0) for some x0 ∈M . Now

inf
Br(x0)

|v|2ε n
n+1 ≤ 1

a

∫

Br(x0)
|v|2eθ1ω1

n

≤ 2(c1 + n)e2V 2

aλ1
ε
∥∥hω − θX(ω)

∥∥
C0 .

Hence
inf

Br(x0)
|v| ≤ C(n, c1, a, λ1)ε1/2(n+1)

∥∥hω − θX(ω)
∥∥1/2

C0 .

Assuming infBr(x0) |v| = v(x
′
0), then

|v(x)| ≤ ∣∣v(x) − v(x
′
0)
∣∣+ v(x

′
0) ≤ r sup

Br(x0)
|∇v| + v(x

′
0)

≤ e
∥∥hω − θX(ω)

∥∥
C0ε

1/2(n+1) + Cε1/2(n+1)
∥∥hω − θX(ω)

∥∥1/2

C0

≤ C ′(1 + ‖hω − θX(ω)‖C0

)
ε1/2(n+1).

This finishes the proof of Lemma 4.5. �

Proposition 4.1 (Smoothing lemma). Let ω ∈ c1(M) > 0 be any Kähler

metric satisfying (4.1). Then there is another Käher form ω′ = ω+
√−1
2π ∂∂u

such that
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(1) ‖u‖C0 ≤ e‖hω − θX(ω)‖
(2) ‖h′ − θ′‖C1/2 ≤ C(n, c1, a, λ1)(1 + ‖hω − θX(ω)‖C0)ε

1
4(n+1) , where

C(n, c1, a, λ1) is a constant depending only on the dimension n, the
Poincare constant λ1, constants c1 and a appeared in (4.5).

Proof. We shall prove that ω1 satisfies the above two conditions of the
proposition under the assumption (4.5). By Lemma 4.1, it suffices to check
the second condition only.

Since
1
V

∫

M
eh

′−θ′eθ1ω1
n = 1 ,

by (4.4) in Lemma 4.5, we have

‖h′ − θ′‖C0 ≤ C(n, c1, a, λ1)
(
1 + ‖hω − θX(ω)‖C0

)
ε1/2(n+1). (4.6)

For any two points x, y in M , if the distance d(x, y) ≤ ε1/2(n+1), then
Lemma 4.3 implies that |∇(h′ − θ′)| ≤ e||hω − θX(ω)||C0 and hence

|(h′ − θ′)(x) − (h′ − θ′)(y)|√
d(x, y)

≤ e
∥∥hω − θX(ω)

∥∥
C0ε

1/4(n+1).

On the other hand, if d(x, y) ≥ ε1/2(n+1) then (4.6) implies that
|(h′ − θ′)(x) − (h′ − θ′)(y)|√

d(x, y)
≤ C(n, c1, a, λ1)

(
1 + ‖hω − θX(ω)‖C0

)
ε1/4(n+1).

This completes the proof of Proposition 4.1. �

5 Properness of F̃ωKS
(ψ)

We are now ready to prove Theorem 0.2 stated in the introduction. The
method here is analogous to one in [T] for Kähler–Einstein manifolds with
positive scalar curvature.

Proof of Theorem 0.2. Let ωKS be the Kähler form of Kähler–Ricci soliton
gKS and ωg = ωψ = ωKS +

√−1
2π ∂∂ψ. We consider the complex Monge–

Ampère equations with parameter t ∈ [0, 1]:
{

det(gij + ϕij) = det(gij) exp
{
hg − θX −X(ϕ) − tϕ

}
,

(gij + ϕij) > 0 .
(5.1)

Clearly, −ψ modulo a constant is a solution of (5.1)t for t = 1. Since ψ is G-
invariant, by the implicit function theorem, there are G-invariant solutions
of (5.1)t for t sufficiently close to 1. In fact, in [TZ2], it was proved that
there are G-invariant solutions of (5.1)t for any t ∈ [0, 1]. This is because
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Ĩωg(ϕt) − J̃ωg (ϕt) is nondecreasing in t (cf. Remark 1.1 in section 1), and
consequently the C3-norm of ϕt can be uniformly bounded (cf. [TZ2], [Y]).

Put ωt = ωg +
√−1
2π ∂∂ϕt. Then ω1 = ωKS. Moreover, by (1.2), we have

{
hωt − θX(ωt) = −(1 − t)ϕt + ct ,

Ric(ωt) − LX(ωt) = tωt + (1 − t)ω ≥ tωt ,

where ct is determined by∫

M
e−(1−t)ϕt+cteθX (ωt)ωnt = V .

In particular,

|ct| ≤ (1 − t)‖ϕt‖C0(M) ,
∥∥hωt − θX(ωt)

∥∥
C0(M)

≤ 2(1 − t)‖ϕt‖C0(M) ,

and∣∣X(hωt − θX(ωt))
∣∣ =

∣∣(1 − t)X(ϕt)
∣∣

≤ (1 − t)
(|X(ϕt − ϕ1)| + |X(ψ)|) ≤ (1 − t)c1(ωKS,X) .

Hence by applying Proposition 4.1 to each ωt, we obtain a modified Kähler
form ω′

t = ωt +
√−1
2π ∂∂ut satisfying

‖ut‖C0(M) ≤ 2e(1 − t)‖ϕt‖C0(M) ,

‖hω′
t
‖C1/2 ≤ C(n, c1, a, λ1)

(
1 + ‖(1 − t)ϕt‖C0(M)

)
(1 − t)1/4(n+1).

As before, there are ψ̃t such that ωKS = ω′
t +

√−1
2π ∂∂ψ̃t and

ωnKS = (ω′
t)
ne
hω′

t
−θX(ω′

t)−X(ψ̃t)−ψ̃t
.

It follows from the maximum principle that

ϕt = ϕ1 − ψ̃t + µt , (5.2)

where µt are constants with

|µt| ≤ 2(e + 1)(1 − t)‖ϕt‖C0(M) + c1(ωKS,X) . (5.3)

Hence, ϕt is uniformly equivalent to ϕ1 as long as ψ̃t is uniformly bounded.
Consider the operator Φt : C2,1/2(M) → C0,1/2 by

Φt(ψ̃) = log

((
ωKS −

√−1
2π ∂∂ψ̃

)n

ωnKS

)
+ hω′

t
− θX(ω′

t) −X(ψ̃) − ψ̃ .

Its linearization at ψ̃ = 0 is (−�−1−X( · )), so it is invertible in the space
of G-invariant functions by the assumption of Theorem 0.2. Then by the
implicit function theorem, there is a δ > 0, such that if the Hölder norm
‖hω′

t
‖C1/2(ωKS) with respect to ωKS is less than δ, then there is a unique ψ̃t

such that Φt(ψ̃t) = 0 and ‖ψ̃t‖C2,1/2 ≤ C(δ).
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We observe that

λ1,ω′ ≥ 2−n−1λ1,ωKS
, a ≥ 1

22n a0 ,

whenever 1
2ωKS ≤ ω′ ≤ 2ωKS, where a is a constant appeared in (4.5) and

a0 is a constant such that

a0r
2n ≤ωKS

(
Br(x)

)
, ∀x ∈M .

Now we choose t0 such that (1 − t0) ≤ (δ/4C0)4(n+1) and

(1 − t0)‖ϕt0‖C0(M)(1 − t0)1/4(n+1) = δ
4C0

, (5.4)

where C0 = C0(n, c1, a0, λ1,ωKS
). Then by Proposition 4.1 and the above

argument, one can prove that for any t ≥ t0, we have

‖ut‖C0(M) ≤ 2e(1 − t)‖ϕt‖C0 , ‖ψ̃t‖C0(M) ≤ 1
4 .

Therefore, by using (5.2) and (5.3), we get

‖ϕ1 − ϕt‖C0(M) ≤ 6e(1 − t)‖ϕt‖C0(M) + c2 , (5.5)

and
1
2‖ϕ1‖C0 − c2 ≤ ‖ϕt‖C0(M) ≤ 2‖ϕ1‖C0(M) + c3 , (5.6)

for some uniform constants c2 and c3, as long as 1− t ≤ min{1/12e, 1− t0}.
Since Ĩωg(ϕt) − J̃ωg (ϕt) is nondecreasing, by (3.1), we have

F̃ωKS
(ψ) = −F̃ωg (ϕ1)

=
∫ 1

0

(
Ĩωg(ϕt) − J̃ωg(ϕt)

)
dt

≥ (1 − t)
(
Ĩωg(ϕt) − J̃ωg (ϕt)

)

≥ ε(1 − t)J̃ωg (ϕt) ,
where ε > 0 is a uniform constant. On the other hand, by using the co-cycle
condition of F̂ωg( · ), we have

J̃ωg(ϕt) = J̃ωg (ϕ1) − 1
V

∫

M
(ϕ1 − ϕt)eθXωng + F̂ϕ1(ϕt − ϕ1)

≥ J̃ωg (ϕ1) − 1
V

∫

M
(ϕ1 − ϕt)(eθXωng − eθX+X(ϕ1)ωnϕ1

)

≥ J̃ωg (ϕ1) − oscM (ϕ1 − ϕt) .
It follows by (1.6) and (3.1),

J̃ωg(ϕt) ≥ ε′Iωg(ϕ1) − oscM (ϕ1 − ϕt) .

Thus by (5.5) and (5.6), we get

F̃ωKS
(ψ) ≥ εε′(1 − t)Iωg(ϕ1) − (1 − t) oscM (ϕt − ϕ1)

≥ εε′(1 − t)Iωg(ϕ1) − 12e(1 − t)2‖ϕ1‖C0(M) − C1 (5.7)
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= εε′(1 − t)IωKS
(ψ) − 12e(1 − t)2 oscM ψ − C1 , for any t ≥ t0 .

Therefore, in case
oscM ψ ≤ C̃

(
1 + IωKE

(ψ)
)

for some uniform constant C̃, then by choosing t=t0 in (5.7) and using (5.4),
we see that there are two positive numbers C and C ′ such that

F̃ωKS
(ψ) ≥ CIωKS

(ψ)1/4n+5 − C ′, (5.8)
and consequently this would prove the theorem.

In the general case, we shall use a trick in [TZ1]. First by Proposi-
tion 3.1, we have for any t ≥ 1/2,

oscM (ϕt − ϕ1) ≤ C2

(
1 + IωKS

(ϕt − ϕ1)
)
.

Set ψ′ = ϕt − ϕ1. Then applying inequality (5.8) to function ψ′, we get
F̃ωg (ϕt) − F̃ωg(ϕ1) = F̃ωKS

(ψ′)

≥ C3IωKS
(ψ′)1/4n+5 − C4 .

(5.9)

On the other hand, by integrating (1.8) from t to 1, we have
F̂ωg (ϕ1) − F̂ωg(ϕt)

≥ J̃ωg (ϕ1) − 1
V

∫

M
ϕ1e

θXωng − t

(
J̃ωg(ϕt) −

1
V

∫

M
ϕte

θXωng

)

≥ −(1 − t)
(
Ĩωg(ϕ1) − J̃ωg(ϕ1)

)

≥ −C5(1 − t)Iωg (ϕ1) = −C5(1 − t)IωKS
(ψ) .

(5.10)

By using the concavity of the logarithmic function and (3.6), we also have

− log
(

1
V

∫

M
eh−ϕtωng

)
≤ 1 − t

V

∫

M
ϕte

θX(ωt)ωnϕt

≤ −1 − t

V
sup
M

(−ϕt) + C6 ≤ C6 .

(5.11)

Hence combining (5.10) and (5.11), we get
F̃ωg (ϕt) − F̃ωg (ϕ1) ≤ C5(1 − t)IωKS

(ψ) +C6 . (5.12)
From (5.9) and (5.12), we deduce

(1 − t)IωKS
(ψ) ≥ c3 oscM (ϕt − ϕ1)1/4n+5 − c4 .

Then as in (5.7), we prove (cf. [TZ1]),
F̃ωKS

(ψ)
≥ εε′(1 − t)IωKS

(ψ) − (1 − t) oscM (ϕt − ϕ1)

≥ εε′(1−t)IωKS
(ψ) − (1−t)(c−1

3 )4n+5
(
(1−t)IωKS

(ψ)+c4
)4n+5

≥ cIωKS
(ψ)1/4n+5 − C ,

(5.13)

for some small positive number c and large number C. Thus Theorem 0.2
is proved. �
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Remark 5.1. By (1.6) and (3.1), we see that the inequality (5.13) is
equivalent to the following non-linear inequality of Moser–Trudinger type,

∫

M
e−ψωnKS ≤ C exp

{
J̃ωKS

(ψ) − cJ̃ωKS
(ψ)1/4n+5 − 1

V

∫

M
ψωnKS

}

for some positive numbers c and C.

Remark 5.2. In view of results in [T] and [TZ1], one should be able to
generalize Theorem 0.2 by proving the following:

F̃ωKS
(ψ) ≥ cIωKS

(ψ)1/4n+5 −C

holds for any ψ ∈ Λ1(M,ωKS)⊥. In the proof of Theorem 0.2, we used
a technical assumption on subgroup G(⊆ K0) in order to apply the im-
plicit function theorem. We also notice from Theorem 0.2 that (5.13) holds
for any almost plurisubharmonic function on a Kähler–Einstein manifold
without any nontrivial holomorphic vector field.
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[A] T. Aubin, Réduction du cas positif de i’equation de Monge–Ampère sure
les varieétés Kählerinnes compactes à la démonstration d’un intégralité, J.
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