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Abstract. In this paper, we prove that if M is a Kähler-Einstein surface with
positive scalar curvature, if the initial metric has nonnegative sectional cur-
vature, and the curvature is positive somewhere, then the Kähler-Ricci flow
converges to a Kähler-Einstein metric with constant bisectional curvature. In
a subsequent paper [7], we prove the same result for general Kähler-Einstein
manifolds in all dimension. This gives an affirmative answer to a long stand-
ing problem in Kähler Ricci flow: On a compact Kähler-Einstein manifold,
does the Kähler-Ricci flow converge to a Kähler-Einstein metric if the initial
metric has a positive bisectional curvature? Our main method is to find a set
of new functionals which are essentially decreasing under the Kähler Ricci
flow while they have uniform lower bounds. This property gives the crucial
estimate we need to tackle this problem.
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1 Introduction

In the last two decades, the Ricci flow, introduced by R. Hamilton in [14], has
been a subject of intense study. The Ricci flow provides an indispensable
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tool of deforming Riemannian metrics towards canonical metrics, such
as Einstein ones. It is hoped that by deforming a metric to a canonical
metric, one can further understand geometric and topological structures
of underlying manifolds. For instance, it was proved [14] that any closed
3-manifold of positive Ricci curvature is diffeomorphic to a spherical space
form. We refer the readers to [17] for more information.

If the underlying manifold is a Kähler manifold, the Ricci flow pre-
serves the Kähler class. It follows that the Ricci flow can be reduced to
a fully nonlinear parabolic equation on functions (cf. Sect. 2 for details).
Usually, this reduced flow is called the Kähler Ricci flow. Unlike the Ricci
flow in the real case, it can be proved directly that the Kähler Ricci flow
always has a global solution (cf. [4]). Following a similar calculation of
Yau [30], Cao [4] proved that the solution converges to a Kähler-Einstein
metric if the first Chern class of the underlying Kähler manifold is zero or
negative. Consequently, he re-proved the famous Calabi-Yau theorem [30].
On the other hand, if the first Chern class of the underlying Kähler manifold
is positive, the solution of a Kähler Ricci flow may not converge to any
Kähler-Einstein metric. This is because there are compact Kähler manifolds
with positive first Chern class which do not admit any Kähler-Einstein met-
rics (cf. [13], [27]). A natural and challenging problem is whether or not
the Kähler Ricci flow on a compact Kähler-Einstein manifold converges to
a Kähler-Einstein metric. It was proved by S. Bando [1] for 3-dimensional
Kähler manifolds and by N. Mok [22] for higher dimensional Kähler mani-
folds that the positivity of bisectional curvature is preserved under the Kähler
Ricci flow. A long standing problem in the study of the Ricci flow is whether
or not the Kähler Ricci flow converges to a Kähler-Einstein metric if the
initial metric has positive bisectional curvature. In view of the solution of
the Frankel conjecture by S. Mori [23] and Siu-Yau [25], we suffice to study
this problem on a Kähler manifold which is biholomorphic to CPn . Since
CPn admits a Kähler-Einstein metric, the above problem can be restated
as follows: on a compact Kähler-Einstein manifold, does the Kähler Ricci
flow converge to a Kähler-Einstein metric? This problem was completely
solved by R. Hamilton in the case of Riemann surfaces (cf. [16]). We also
refer the readers to B. Chow’s papers [9] for more developments on this
problem. In this paper, we give an affirmative answer to this problem in
dimension two.

Theorem 1.1. 1 Let M be a Kähler-Einstein surface with positive scalar
curvature. If the initial metric has nonnegative bisectional curvature and
positive at least at one point, then the Kähler Ricci flow will converge
exponentially fast to a Kähler-Einstein metric with constant bisectional
curvature.

1 In a subsequent paper [7], we will prove the same theorem for all dimensions. The proof
for higher dimensions needs new ingredients. Both results were announced in [8].
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Corollary 1.2. The space of Kähler metrics with non-negative bisectional
curvature (and positive at least at one point) is path-connected. Moreover,
the space of metrics with non-negative curvature operator (and positive at
least at one point) is also path-connected.

Remark 1.3. Using the same arguments, we can also prove the version of
our main theorem for Kähler orbifolds.

Remark 1.4. What we really need is that the Ricci curvature is positive for
evolved metric under the Ricci flow. Since the condition on Ricci may not
be preserved under the Ricci flow, in order to have the positivity of the Ricci
curvature, we will use the fact that the positivity of the bisectional curvature
is preserved.

Remark 1.5. We need the assumption on the existence of Kähler-Einstein
metric because we will use a nonlinear inequality from [28]. Such an in-
equality is nothing but the Moser-Trudinger-Onofri type if the Kähler-
Einstein manifold is the Riemann sphere.

The typical method in studying the Ricci flow depends on pointwise
bounds of the curvature tensor by using its evolution equation as well as the
blow-up analysis. In order to prevent formation of singularities, one blows
up the solution of the Ricci flow to obtain profiles of singular solutions.
Those profiles involve Ricci solitons and possibly more complicated singu-
lar models. Then one tries to exclude formation of singularities by checking
that these solitons or models do not exist under appropriate global geomet-
ric conditions. It is a common sense that it is very difficult to detect how
the global geometry affects those singular models even for a very simple
manifold like CP2. The first step is to classify those singular models and
hope to find their geometric information. Of course, it is already a very big
task. There have been many exciting works on these (cf. [17]).

Our new contribution is to find a set of new functionals which are the
Lagrangians of certain new curvature equations involving various symmetric
functions of the Ricci curvature. We show that these functionals decrease
essentially along the Kähler Ricci flow and have uniform lower bound.
By computing their derivatives, we can obtain certain integral bounds on
curvature of metrics along the flow.

For the readers’ convenience, we will discuss more on these new func-
tionals. Let M be a compact Kähler manifold with positive first Chern class
c1(M) and ω be a fixed Kähler metric on M with the Kähler class c1(M).
Consider the following expansion

(ω+ tRic(ω))n =
(

n∑
k=0

σk(ω)t
k

)
ωn, (1.1)

where σk(ω) is the k-th symmetric polynomial of the Ricci tensor Ric(ω).
Then we say that a Kähler metric ω is of extremal k-th symmetric Ricci
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curvature (k = 0, 1, · · · , n) if σk(ω) satisfies

∆σk(ω)− n − k

k + 1
σk+1(ω) = ck, (1.2)

where ck is a constant determined by c1(M) and the Kähler class [ω]. Clearly,
the extremal 0-symmetry means constant scalar curvature. When the first
Chern class c1(M) of M is positive and ω represents c1(M), a Kähler
metric with constant scalar curvature is of constant Ricci curvature and
consequently, has extremal k-th symmetric Ricci curvature for all k. In
general, a Kähler metric of constant scalar curvature may not have extremal
k-th symmetric Ricci curvature for k > 1.

Our new functionals Ek are simply the Lagrangians of the above Ricci
curvature equations (cf. Sect. 4 for details). When k = 0, the functional
E0 is nothing but the K-energy of T. Mabuchi. We will prove that the
derivative of each Ek along an orbit of automorphisms gives rise to a holo-
morphic invariant �k, including the well-known Futaki invariant as a spe-
cial one. When M admits a Kähler-Einstein metric, all these invariants �k
vanish, so the functionals Ek are invariant under the action of automor-
phisms.

Next we will prove that these Ek are bounded from below. This can
be achieved by making use of a fully nonlinear inequality from [28] (cf.
Sect. 5). But in order to apply this inequality, we have to adjust the fixed
Kähler-Einstein metric so that the evolved Kähler metrics are centrally
positioned with respect to the adjusted Kähler-Einstein metrics, that is, the
Kähler potentials between the two evolved metrics are orthogonal to the first
eigenspace of the evolved Kähler-Einstein metrics (cf. Sect. 6). It causes
some extra difficulties in the proof of our main theorem (particularly in
higher dimensions).

Next we will compute the derivatives of Ek along the Kähler-Ricci flow.
Recall that the Kähler Ricci flow is given by

∂ϕ

∂t
= log

(ω+√−1∂∂ϕ)n

ωn
+ ϕ − hω, (1.3)

where hω depends only ω. The derivatives of these functionals are all
bounded uniformly from above along the Kähler Ricci flow. Furthermore,
we found that E0 and E1 decrease along the Kähler Ricci flow. These play
a very important role in this and the subsequent paper. We can derive from
these properties of Ek integral bounds on curvature, e.g. for almost all Kähler
metrics ωϕ(t) along the flow, we have∫

M
R(ωϕ(t)) Ric(ωϕ(t))

k ∧ ωϕ(t)n−k ≤ C, k = 1, · · · , n, (1.4)

and
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∫
M
(R(ωϕ(t))− r)2 ωϕ(t)

n → 0, (1.5)

where R(ωϕ(t)) denotes the scalar curvature and r is the average scalar
curvature.

In principle, one can then follow Hamilton’s arguments in the case of
Riemann surfaces. But we need to do some changes since the sectional
curvature may not be positive and we can not apply Klingenberg’s esti-
mate on injectivity radius. We will generalize Klingenberg’s estimate to
Kähler manifolds of positive bisectional curvature. Then, combining the
above integral bounds on the curvature with Cao’s Harnack inequality
and the generalization of Klingenberg’s estimate, we can bound the cur-
vature uniformly along the Kähler Ricci flow in the case of Kähler-Einstein
surfaces. Then it is quite routine to prove the convergence to the Kähler-
Einstein metric. For higher dimensions, one has to develop new techniques
in order to get the curvature bound. We will do it in a subsequent pa-
per [7].

The organization of our paper is roughly as follows: In Sect. 2, we review
briefly some basics in Kähler geometry and necessary information on the
Kähler Ricci flow. In Sect. 3, we discuss two important energy functionals.
In Sect. 4, we introduce a set of new functionals as we have briefly described
in the above. In Sect. 5, we prove that these functionals are invariant on any
Kähler-Einstein manifolds. In Sect. 6, we modify the evolved Kähler metrics
to obtain desired integral estimates on the curvature. In Sects. 7, 8, 9, we
will bound the scalar curvature uniformly along the Kähler Ricci flow. In
Sect. 10, we prove the exponentially convergence. In Sect. 11, we make
some concluding remarks and propose some open questions.

2 Basic Kähler geometry

2.1 Notations in Kähler geometry

Let M be an n-dimensional compact Kähler manifold. A Kähler metric can
be given by its Kähler form ω on M. In local coordinates z1, · · · , zn, this ω
is of the form

ω = √−1
n∑

i, j=1

gi j d zi ∧ d z j,

where {gi j } is a positive definite Hermitian matrix function. The Kähler
condition requires that ω is a closed positive (1,1)-form. In other words, the
following holds

∂gik

∂z j
= ∂gjk

∂zi
and

∂gki

∂z j
= ∂gk j

∂zi
∀ i, j, k = 1, 2, · · · , n.
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The Kähler metric corresponding to ω is given by

√−1
n∑
1

gαβ d zα ⊗ d zβ.

For simplicity, in the following, we will often denote by ω the correspond-
ing Kähler metric. The Kähler class of ω is its cohomology class [ω] in
H2(M,R). By the Hodge theorem, any other Kähler metric in the same
Kähler class is of the form

ωϕ = ω+√−1
n∑

i, j=1

∂2ϕ

∂zi∂z j
d zi ∧ d z j̄ > 0

for some real value function ϕ on M. The functional space in which we are
interested (often referred as the space of Kähler potentials) is

P (M, ω) = {ϕ | ωϕ = ω+√−1∂∂ϕ > 0 on M}.
Given a Kähler metric ω, its volume form is

ωn = (√−1
)n

det
(
gi j

)
d z1 ∧ d z1 ∧ · · · ∧ d zn ∧ d zn.

Its Christoffel symbols are given by

Γk
i j =

n∑
l=1

gkl ∂gil

∂z j
and Γk

i j
=

n∑
l=1

gkl ∂gli

∂z j
, ∀ i, j, k = 1, 2, · · · , n.

The curvature tensor is

Ri jkl = − ∂2gi j

∂zk∂zl
+

n∑
p,q=1

gpq ∂giq

∂zk

∂gp j

∂zl
, ∀ i, j, k, l = 1, 2, · · · , n.

We say that ω is of nonnegative bisectional curvature if

Ri jklv
jviwlwk ≥ 0

for all non-zero vectors v andw in the holomorphic tangent bundle of M. The
bisectional curvature and the curvature tensor can be mutually determined
by each other (cf. the appendix for more information). The Ricci curvature
of ω is locally given by

Ri j = −∂
2 log det(gkl)

∂zi∂ z̄ j
.

So its Ricci curvature form is

Ric(ω) = √−1
n∑

i, j=1

Ri j (ω)d zi ∧ d z j = −√−1∂∂ log det(gkl).

It is a real, closed (1,1)-form. Recall that [ω] is a canonical Kähler class if
this Ricci form is cohomologous to λ ω, for some constant λ
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2.2 The Kähler Ricci flow

Now we assume that the first Chern class c1(M) is positive. The Ricci flow
(see for instance [14] and [15]) on a Kähler manifold M is of the form

∂gi j

∂t
= gi j − Ri j , ∀ i, j = 1, 2, · · · , n. (2.1)

If we choose the initial Kähler metric ωwith c1(M) as its Kähler class. Then
the flow (2.1) preserves the Kähler class [ω]. It follows that on the level of
Kähler potentials, the Ricci flow becomes

∂ϕ

∂t
= log

ωϕ
n

ωn
+ ϕ − hω, (2.2)

where hω is defined by

Ric(ω)− ω = √−1∂∂hω, and
∫

M
(ehω − 1)ωn = 0.

As usual, the flow (2.2) is referred as the Kähler Ricci flow on M. Differ-
entiating on both sides of equation (2.2) on t, we obtain

∂

∂t

∂ϕ

∂t
= �ϕ

∂ϕ

∂t
+ ∂ϕ

∂t
,

where �ϕ is the Laplacian operator of the metric ωϕ. Then it follows from
the standard Maximum Principle

Lemma 2.1. Along the Kähler Ricci flow (2.1), | ∂ϕ
∂t | grows at most expo-

nentially.

In particular, the C0-norm of ϕ can be bounded by a constant depending
only t. Using this fact and following Yau’s calculation in [30], one can prove
that for any initial metric with Kähler class c1(M), the evolution equation
(2.2) has a global solution for all time 0 ≤ t <∞ (cf. [4]).

2.3 Preservation of nonnegative bisectional curvature

The Kähler Ricci flow induces an evolution equation on the bisectional
curvature

∂

∂t
Ri jkl = �Ri jkl + Ri j pq Rq pkl − Ri pkq Rp jql + Ril pq Rq pk j + Ri jkl

− 1

2

(
Ri p Rp jkl + Rp j Ri pkl + Rkp Ri j pl + Rpl Ri jkp

)
.
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Similarly, we have evolution equation for the Ricci tensor and the scalar
curvature

∂

∂t
Ri j = �Ri j + Rlk Ri jkl − Rik Rk j ,

and

∂

∂t
R = �R + |Ric|2 − R.

The following theorem was proved by S. Bando for 3-dimensional
compact Kähler manifolds. This was later generalized to all dimensional
Kähler manifolds by N. Mok in [22]. Their proof used Hamilton’s Max-
imum Principle for tensors. The proof for higher dimensions is quite in-
trigue.

Theorem 2.2. [1], [22] Under the Kähler Ricci flow, if the initial metric has
nonnegative bisectional curvature, then the evolved metrics also have non-
negative bisectional curvature. Furthermore, if the bisectional curvature of
the initial metric is positive at least at one point, then the evolved metric
has positive bisectional curvature at all points.

Previously, R. Hamilton proved (by using his Maximum principle for
tensors)

Theorem 2.3. Under the Kähler Ricci flow, if the initial metric has nonneg-
ative curvature operator, then the evolved metrics also have non-negative
curvature operator. Furthermore, if the curvature operator of the initial
metric is positive at least at one point, then the evolved metric has positive
curvature operator at all points.

It is still interesting to see if similar conclusion holds for sectional
curvature, that is, if the initial metric has nonnegative sectional curva-
ture, do evolved metrics along the Kähler Ricci flow have nonnegative
sectional curvature? If so, our theorem will imply that there is no ex-
otic Kähler metric with positive sectional curvature on complex projective
spaces.

3 Generalized energy functionals

In this section, we will introduce some generalized energy functionals Jω,
Fω and νω. The second functional was first used in [11], while the 3rd one
was introduced by T. Mabuchi. These are all useful functionals in Kähler
geometry. We then review some known properties of Fω and νω, such as a)
they both decrease under the Kähler Ricci flow; b) They are both invariant
under automorphisms on any Kähler-Einstein manifolds.
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3.1 A nonlinear inequality

Recall that the generalized energy:

Jω(ϕ) = 1

V

n−1∑
i=0

∫
M

i + 1

n + 1

√−1 ∂ϕ ∧ ∂ϕ ∧ ωi ∧ ωϕn−1−i . (3.1)

where V =
∫

M
ωn = [ω]n([V ]) and ωϕ = ω + √−1∂∂ϕ. This is clearly

a positive functional. When n = 1, it is just the standard Dirichlet energy

Jω(ϕ) = 1

2V

∫
M

√−1 ∂ϕ ∧ ∂̄ϕ = 1

2V

∫
M
|∂ϕ|2ω.

If n = 2, we have

Jω(ϕ) = 1

3V

∫
M

√−1 ∂ϕ ∧ ∂̄ϕ ∧ ωϕ + 2

3V

∫
M

√−1 ∂ϕ ∧ ∂̄ϕ ∧ ω.

Taking derivative of Jω along a path ϕ(t) ∈ P (M, ω), we arrive at

d Jω(ϕ)

d t
= − 1

V

∫
M

∂ϕ

d t

(
ωϕ

n − ωn
)
.

Alternatively, one can use this formula to define Jω. From this formula,
one can see that Jω does not satisfy the cocycle condition. Recall that the
functional Fω is defined by

Fω(ϕ) = Jω(ϕ)− 1

V

∫
M
ϕ ωn − log

(
1

V

∫
M

ehω−ϕ
)
.

It satisfies the cocycle condition and its critical points are Kähler-Einstein
metrics. If n = 1, then M = S2 and

Fω(ϕ) = 1

2V

∫
S2
|∂ϕ|2 − 1

V

∫
S2
ϕω− log

1

V

∫
S2

ehω−ϕω.

This is precisely the functional in studying L. Nirenbberg’s problem of
prescribing the Gauss curvature on S2.

Suppose that M has positive first Chern class and admits a Kähler-
Einstein metric. Then there is a Kähler-Einstein metric ω1 such that Ric(ω1)
= ω1. We will denote by Λ1 the space of eigenfunctions with eigenvalue
one if one is an eigenvalue of the Kähler-Einstein metric ω1. If one is
not an eigenvalue, we simply put Λ1 to be {0}. By φ ⊥ Λ1, we mean∫

M φψω1
n = 0 for all ψ ∈ Λ1. Note that if M admits no holomorphic

vector fields, then Λ1 = {0} and φ ⊥ Λ1 is automatically true.
The following inequality plays an important role in our proof.
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Theorem 3.1. (Tian) [27] Let M be given as above and ω1 be any Kähler
metric with c1(M) as its Kähler class. Then there exist constants δ = δ(n)
and c = c(M, ω1) ≥ 0 such that for any φ ∈ H which satisfies φ ⊥ Λ1, we
have

Fω1(φ) ≥ Jω1(φ)
δ − c

which is the same as

1

V

∫
M

e−φω1
n ≤ CeJω1(φ)− 1

V

∫
M φω1

n−Jω1(φ)
δ

.

Remark 3.2. This inequality was first proved under an extra condition,
which was removed later in [29].

Remark 3.3. Since the difference of Jω and Jω1 (resp. Fω and Fω1 ) is
bounded by a constant depending only on ω and ω1, the inequality in
the above theorem holds irrelevant of choices of initial metrics.

Inspired by the work of Donaldson [12], T. Mabuchi introduced the
K-energy.

Definition 3.4. (Mabuchi [21]) For any ϕ(t) ∈ P , the derivative of the
K-energy along this path ϕ(t) is:

d

d t
νω(ϕ(t)) = − 1

V

∫
M

∂ϕ

∂t
(R(ϕ(t))− r) ωϕ

n,

where r is the average value of the scalar curvature r = [c1(M)]·[ω]n−1

[ω]n .

It was found in [26] that the K-energy can be expressed as

νω(ϕ) = 1

V

∫
M

log
(
ωn
ϕ

ωn

)
ωn
ϕ −

1

V

∫
M

hω
(
ωn − ωn

ϕ

)

−
√−1

V

n−1∑
i=0

∫
M
∂ϕ ∧ ∂̄ϕ ∧ ωi ∧ ωϕn−i−1. (3.2)

It was also observed in [11] that

νω(ϕ) ≥ Fω(ϕ)− 1

V

∫
M

hωω
n.

Combining this with the above theorem, we get

Corollary 3.5. [27] Suppose that c1(M) > 0 and there is a Kähler-
Einstein metric on M. Then for any Kähler metric ω with c1(M) as its
Kähler class, there are constants δ = δ(n) and c = c(M, ω) ≥ 0 such that
for any ϕ ∈ P (M, ω) which satisfies ϕ ⊥ Λ1, we have

νω(φ) ≥ Jω(φ)
δ − c,
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The following corollary will be crucial in our arguments.

Corollary 3.6. Suppose that c1(M) > 0 and there is a Kähler-Einstein
metric on M. Then for any function ϕ ∈ P (M, ω) perpendicular to Λ1, we
have ∫

M
log

(
ωn
ϕ

ωn

)
ωn
ϕ ≤ C(1 + νω(ϕ)) 1

δ ,

where C is a constant depending only on M and ω.

3.2 Monotonicity along the Kähler Ricci flow

First we collect two simple facts which were known to experts in the field
for a while.

Lemma 3.7. Under the Kähler Ricci flow, Fω decreases monotonely.

Proof. Let c = log

(
1
V

∫
M

ehω−ϕ
)

. Then

d

d t
Fω(ϕ(t)) = − 1

V

∫
M

∂ϕ

∂t

(
ωϕ

n − ehω−ϕ−cωn
)

= − 1

V

∫
M

(
log

ωϕ
n

ωn
+ ϕ − hω

) (ωϕn

ωn
− ehω−ϕ−c

)
ωn

= − 1

V

∫
M

(
log

ωϕ
n

ωn
− (hω − ϕ − c)

) (ωϕn

ωn
− ehω−ϕ−c

)
ωn

≤ 0.
��

Similarly, we have

Lemma 3.8. Under the Kähler Ricci flow, the K-energy νω monotonely
decreases!

Proof. By the definition, we have

d

d t
νω(ϕ(t)) = − 1

V

∫
M

∂ϕ

∂t
(R(ωϕ(t))− r)ωϕt

n

= 1

V

∫
M

(
log

ωϕt
n

ωn
+ ϕ − hω

)(
�ϕt

(
log

ωϕt
n

ωn
+ ϕ − hω

))
ωϕ

n

≤ 0.

The lemma follows. ��
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Remark 3.9. The monotonicity of νω and Fω along the continuous flow and
the Ricci flow were known before from the works of Bando-Mabuchi [2],
Ding-Tian [11], [10] and Cao H. D. .

Next we want to prove that Fω and νω are both invariant under automor-
phisms on a Kähler-Einstein manifold.

Recall that the Futaki invariant fM can be defined by (see [13])

fM(ω, X) =
∫

M
X(hω)ω

n,

where ω is a Kähler metric with c1(M) as its Kähler class and X is a holo-
morphic vector field on M. Futaki proved that the integral is independent
of the choice of ω, so it gives rise to a holomorphic invariant. If M admits
a Kähler-Einstein metric, then fM ≡ 0.

Let Φt be a one-parameter group of automorphisms generated by Re(X).
Write ωt = Φ∗

t ω = ω + √−1∂∂̄ϕt . We can further normalize ϕt such
that

∫
M(e

hω−ϕt − 1)ωn = 0. Then hωt = Φ∗
t hω. This implies that ḣωt =

Re(X)(hωt ).
On the other hand, using the identity

Ric(ωt)− ωt = Ric(ω)− ω−√−1∂∂̄ log
(
ωn

t

ωn

)
−√−1∂∂̄ϕt,

we get

hωt = hω − log

(
ωn

t

ωn

)
− ϕt.

Differentiating it with respect to t, we have

ḣωt = −∆ωt ϕ̇t − ϕ̇t .

Combining all these, we arrive at

d

dt
Fω(ϕt) = 1

V
Re( fM(X)).

The following corollary is an immediate consequence of this.

Lemma 3.10. The functional Fω is invariant under automorphisms if
fM ≡ 0. In particular, it is true if M is a Kähler-Einstein manifold.

Similarly, we have

Lemma 3.11. On a Kähler-Einstein manifold, νω is invariant under auto-
morphisms.
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We deduce the following from the above

Proposition 3.12. Suppose that M admits a Kähler-Einstein metric. Let
ϕ(t) (t > 0) be a global solution of the Kähler Ricci flow and Ψ(t) be
a family of automorphisms of M. Write

Ψ∗
t ωϕ(t) = ω+√−1∂∂̄ψ(t).

Then Fω(ψt) and νω(ψ(t)) are decreasing functions of t.

Combining this with Tian’s inequality last subsection, we get

Corollary 3.13. Suppose that ω1 is a Kähler-Einstein metric with Ric(ω1)
= ω1. Let ϕ(t) (t > 0) be a global solution of the Kähler Ricci flow and Ψt
be a family of automorphisms of M. Write

Ψ∗
t ωϕ(t) = ω+√−1∂∂̄ψ(t).

If ψ(t) is perpendicular to the eigenspace of ω1 with eigenvalue one, then

Jω(ψ(t)) ≤ νω(ϕ(0))+ c,

where c is a uniform constant.

3.3 Estimate on volume forms

The following is the main result of this subsection.

Proposition 3.14. If Ric(ωϕ) ≥ 0, then there exists a uniform constant C
such that

inf
M

(
log

ωn
ϕ

ωn

)
(x) ≥ −4C e

2(1 +
∫

M

(
log

ωn
ϕ

ωn

)
ωϕ

n)
.

Proof. Choose any constant c such that

1

V

∫
M

log
ωϕ

n

ωn
ωϕ

n ≤ c,

where V = ∫
M ω

n.
Put ε to be e−2(1+c). Observe that(

log
ωn
ϕ

ωn

)
ωn
ϕ ≥ −e−1ωn,

we have
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cV ≥
∫
εω n
ϕi
>ω n

(
log

ωn
ϕ

ωn

)
ωn
ϕ +

∫
εω n
ϕi
≤ω n

(
log

ωn
ϕ

ωn

)
ωn
ϕ

≥
∫
εω n
ϕi
>ω n

(
log

1

ε

)
ωn
ϕ +

∫
εω n
ϕi
≤ω n

(−e−1ωn)

> 2(1 + c)
∫
εω n
ϕi
>ω n

ωn
ϕ − V.

It follows that ∫
εω n
ϕi
>ω n

ωn
ϕ <

V

2
,

and consequently,

∫
ω n≤4ω n

ϕi

ωn ≥ ε

∫
ε
4ω

n≤εω n
ϕ≤ω n

ωn
ϕ >

εV

4
.

The Ricci curvature being non-negative implies that

ω+√−1 ∂∂

(
hω − log

ωϕ
n

ωn

)
≥ 0.

Taking trace with respect to ω, we get

n +∆

(
hω − log

ωϕ
n

ωn

)
≥ 0,

where ∆ denotes the Laplacian of ω. Then by the Green formula, we have

(
hω − log

ωn
ϕ

ωn

)
(x)

= 1

V

∫
M

(
hω − log

ωn
ϕ

ωn

)
ωn − 1

V

∫
M

∆

(
hω − log

ωϕ
n

ωn

)
G(x, y)ωn(y)

≤ 1

V

∫
M

(
hω − log

ωϕ
n

ωn

)
ωn − n

V

∫
M

G(x, y)

≤ 1

V

∫
M

(
hω − log

ωϕ
n

ωn

)
ωn + c′,

where G(x, y) ≥ 0 is a Green function of ω. Note that we will always
denote by c′ a constant depending only on ω in this proof.
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It follows from the above inequalities that

inf
M

(
log

ωn
ϕ

ωn

)

≥ 1

V

∫
M

(
log

ωn
ϕ

ωn

)
ωn − c′

≥ inf
M

(
log

ωn
ϕ

ωn

)
1

V

∫
ω n≥4ω n

ϕ

ωn − log 4

V

∫
ω n≤4ω n

ϕ

ωn − c′

≥
(

1 − ε

4

)
inf
M

(
log

ωn
ϕ

ωn

)
− c′.

Therefore, we have

inf
M

(
log

ωn
ϕ

ωn

)
(x) ≥ −4c′e2(1+c).

By the way we choose the constant c in the beginning of the proof, we have

inf
M

(
log

ωn
ϕ

ωn

)
(x) ≥ −4c′e

2(1 +
∫

M

(
log

ωn
ϕ

ωϕn

)
ωn)

.

The proposition is proved. ��

4 New functionals

In this section, we introduce a family of new functionals on the space of
Kähler potentials P (M, ω). We will show that their derivatives along the
Kähler Ricci flow are bounded uniformly from above.

4.1 Definition of functionals Ek

In this subsection, we introduce Ek for k = 0, 1, · · · , n.

Definition 4.1. For any k = 0, 1, · · · , n, we define a functional E0
k on

P (M, ω) by

E0
k,ω(ϕ) =

1

V

∫
M

(
log

ωϕ
n

ωn
− hω

)( k∑
i=0

Ric(ωϕ)
i ∧ ωk−i

)
∧ ωϕn−k.

If there is no possible confusion, we will often drop the subscript ω in
the following.
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Remark 4.2. If k = n = 1, then

E0
1 =

1

V

∫
M

(
log

ωϕ

ω
− hω

) (
R ωϕ + 1 · ω) .

This is analogous to the well-known Liouville energy on Riemann sur-
faces.

Next for each k = 0, 1, 2, · · · , n− 1, we will define Jk,ω as follows: Let
ϕ(t) (t ∈ [0, 1]) be a path from 0 to ϕ in P (M, ω), we define

Jk,ω(ϕ) = −n − k

V

∫ 1

0

∫
M

∂ϕ

∂t

(
ωϕ

k+1 − ωk+1) ∧ ωϕn−k−1 ∧ dt.

One can show that the integral on the right is independent of choices of
the path. This is because P (M, ω) is simply-connected and its derivative
has nothing to do with the path. Clearly, we have

dJk,ω

d t
= −n − k

V

∫
M

∂ϕ

∂t

(
ωϕ

k+1 − ωk+1
) ∧ ωϕn−k−1,

For simplicity, we will often drop the subscript ω in the following.

Remark 4.3. If k = n − 1, then

dJn−1

d t
= − 1

V

∫
M

∂ϕ

∂t

(
ωϕ

n − ωn
)

Thus Jn−1,ω = Jω is just the generalized energy functional (cf. [11] and
also Sect. 3.1).

Proposition 4.4. For each k = 0, 1, · · · , n − 1, we have the following
explicit formula for Jk:

Jk(ϕ) = n − k

V

n−k−1∑
j=0

k∑
i=0

n−i− j−1∑
s=0

csij

∫
M

√−1 ∂ϕ ∧ ∂ϕ ∧ ωϕs ∧ ωn−1−s,

(4.1)

where csij is

(−1)n−i− j−s−1

(n − i − j + 1)

(
k + 1

i

)(
n − k − 1

j

)(
n − i − j − 1

s

)



Ricci flow on Kähler-Einstein surfaces 503

Proof. We will calculate Jk(ϕ) via a trivial path tϕ ∈ P (M, ω) (the corres-
ponding Kähler metrics are ω+ t

√−1∂∂ϕ).

Jk(ϕ)

= k − n

V

∫ 1

0

∫
M
ϕ
(
ωk+1

tϕ − ωk+1
)
∧ ωn−k−1

tϕ ∧ dt

= k − n

V

∫ 1

0

∫
M
ϕ

k∑
i=0

(
k + 1

i

)
ωi ∧ (√−1∂∂ϕ)k+1−i tk+1−i

∧
n−k−1∑

j=0

(
n − k − 1

j

)
ω j ∧ (√−1∂∂ϕ)n−k−1− j tn−k−1− j ∧ d t

= k − n

V

∫ 1

0

∫
M
ϕ

k∑
i=0

n−k−1∑
j=0

(
k + 1

i

)(
n − k − 1

j

)
ωi+ j ∧ (t√−1∂∂ϕ}n−i− j ∧ dt

= −n − k

V

∫
M
ϕ

n−k−1∑
j=0

k∑
i=0

1

n − i − j + 1

(
k + 1

i

)(
n − k − 1

j

)
ωi+ j ∧ (√−1∂∂ϕ)n−i− j

=
k∑

i=0

n−k−1∑
j=0

(
k + 1

i

)(
n − k − 1

j

)
(n − k)

√−1

(n − i − j + 1)V

∫
M
∂ϕ ∧ ∂ϕ ∧ ωi+ j ∧ (ωϕ − ω)n−i− j−1

=
n−k−1∑

j=0

k∑
i=0

n−i− j−1∑
s=0

(n − k)(−1)n−i− j−s−1

(n − i − j + 1)V

(
k + 1

i

)(
n − k − 1

j

)(
n − i − j − 1

s

)
∫

M

√−1 ∂ϕ ∧ ∂ϕ ∧ ωi+ j ∧ ωϕs ∧ ωn−s−i− j−1.

��
The following is an immediate corollary of Formula (4.1).

Corollary 4.5. For each k, there is a uniform constant ak such that for any
ϕ ∈ P (M, ω),

|Jk,ω(ϕ)| ≤ ak · Jω(ϕ).

This follows from Formula (4.1) and the explicit expression:

Jω(ϕ) = 1

V

n−1∑
i=0

∫
M

i + 1

n + 1

√−1 ∂ϕ ∧ ∂ϕ ∧ ωi ∧ ωϕn−1−i .

Now we simply define Ek,ω (k = 0, 1, · · · , n) by

Ek,ω(ϕ) = E0
k,ω(ϕ)− Jk,ω(ϕ),

where we set Jn,ω = 0.
In the following, we will often write Ek for Ek,ω if no confusion may

occur.
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4.2 Derivative of Ek

In this subsection, we derive a few basic properties of Ek.

Theorem 4.6. For any k = 0, 1, · · · , n, we have2

dEk

dt
= k + 1

V

∫
M

∆ϕ

(
∂ϕ

∂t

)
Ric(ωϕ)

k ∧ ωϕn−k

− n − k

V

∫
M

∂ϕ

∂t

(
Ric(ωϕ)

k+1 − ωϕk+1) ∧ ωϕn−k−1. (4.2)

Here {ϕ(t)} is any path in P (M, ω).

Remark 4.7. When k = 0, we have

dE0

dt
= n

V

∫
M

∂ϕ

∂t

(
Ric(ωϕ)− ωϕ

) ∧ ωϕn−1.

Thus E0 is a multiple of the well known K-energy function introduced by
T. Mabuchi.

Proof. We suffice to compute the derivatives of E0
k (k = 0, 1, · · · , n). Put

F = log
ωn
ϕ

ωn − hω. It is clear that

√−1∂∂F = Ric(ω)− Ric(ωϕ)−
√−1∂∂hω

= ω− Ric(ωϕ)

and

∂Ric(ωϕ)

∂t
= −√−1∂∂∆ϕ

(
∂ϕ

∂t

)
.

2 In a non canonical Kähler class, we need to modify the definition slightly since hω is
not defined there. For any k = 0, 1, · · · , n, we define

Ek,ω(ϕ) = 1

V

∫
M

log
ωϕ

n

ωn

(
k∑

i=0

Ric(ωϕ)
i ∧ Ric(ω)k−i

)
∧ ωϕn−k

− n − k

V

∫
M
ϕ
(

Ric(ω)k+1 − ωk+1
)
∧ ωn−k−1 − Jk,ω(ϕ).

The second integral on the right is to offset the change from ω to Ric(ω) in the first term.
The derivative of this functional is exactly same as in the canonical Kähler class. In other
words, the Euler-Lagrange equation is not changed.



Ricci flow on Kähler-Einstein surfaces 505

Thus,

dE0
k

dt

= 1

V

∫
M

∆ϕ

(
∂ϕ

∂t

)( k∑
i=0

Ric(ωϕ)
i ∧ ωk−i

)
∧ ωϕn−k

+ 1

V

∫
M

F
k∑

i=0

i Ric(ωϕ)
i−1 ∧ ωk−i ∧

(
−√−1∂∂∆ϕ

∂ϕ

∂t

)
∧ ωϕn−k

+ n − k

V

∫
M

F

(
k∑

i=0

Ric(ωϕ)
i∧ωk−i

)
∧
(√−1∂∂

(
∂ϕ

∂t

))
∧ ωϕn−k−1

= 1

V

∫
M

∆ϕ

(
∂ϕ

∂t

)( k∑
i=0

Ric(ωϕ)
i ∧ ωk−i ∧ ωϕn−k

− √−1∂∂F ∧
k∑

i=0

i Ric(ωϕ)
i−1 ∧ ωk−i ∧ ωϕn−k

)

+ n − k

V

∫
M

∂ϕ

∂t

(
k∑

i=0

Ric(ωϕ)
i ∧ ωk−i

)
∧ (√−1∂∂F

) ∧ ωϕn−k−1.

Plugging
√−1∂∂F = ω− Ric(ωϕ), we obtain

dE0
k

dt

= 1

V

∫
M

∆ϕ

(
∂ϕ

∂t

)( k∑
i=0

Ric(ωϕ)
i ∧ ωk−i ∧ ωϕn−k

+ (
Ric(ωϕ)− ω

) ∧ k∑
i=0

i Ric(ωϕ)
i−1 ∧ ωk−i ∧ ωϕn−k

)

+ n − k

V

∫
M

∂ϕ

∂t

(
k∑

i=0

Ric(ωϕ)
i ∧ ωk−i

)
∧ (ω− Ric(ωϕ)

) ∧ ωϕn−k−1.

Now we recall a polynomial identity: For any two variables x, y and any
integer k > 0, we have

k∑
i=0

xi yk−i + (x − y)
k∑

i=0

ixi−1 yk−i = (k + 1) xk. (4.3)
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Applying this identity to the first integral above, we get

dE0
k

dt
= k + 1

V

∫
M

∆ϕ

(
∂ϕ

∂t

)
Ric(ωϕ)

k ∧ ωϕn−k

+ n − k

V

∫
M

∂ϕ

∂t

(
ωk+1 − Ric(ωϕ)

k+1) ∧ ωϕn−k−1.

The theorem follows from this and explicit expression of the derivative
of Jk . ��

From this theorem, we can show that all Ek satisfy a cocycle condition.

Corollary 4.8. For each k = 0, 1, · · · , n, the functional Ek,ω satisfies the
following: For any ϕ and ψ in P (M, ω),

Ek,ω(ϕ)+ Ek,ωϕ (ψ − ϕ) = Ek,ω(ψ).

Let us write down the Euler-Lagrange equation for the functional Ek(k =
0, 1, · · · , n). Recall the expansion formula (1.1) in t:

(
ωϕ + t Ric(ωϕ)

)n =
(

n∑
k=0

σk(ωϕ)t
k

)
ωn
ϕ.

Clearly, σ0(ωϕ) = 1, σ1(ωϕ) = R(ωϕ), the scalar curvature ofωϕ . In general,
σk is a k-th symmetric polynomial of Ricci curvature. The Euler-Lagrange
equation of Ek is

(k + 1)∆ϕσk(ωϕ)− (n − k)σk+1(ωϕ) = ck,

where ∆ϕ is the Laplacian of the metric ωϕ and ck is the constant

−(n − k)c1(M)
k+1 ∪ [ω]n−k−1([M]).

Clearly, Kähler-Einstein metrics are solutions to the above equation for
any k. If the Kähler class is canonical, one can show that for k = n, Kähler-
Einstein metrics are the only solutions of the Euler-Lagrange equation with
positive Ricci curvature. However, It is not clear what the critical points
are in other Kähler classes. But it certainly merit further study of these
equations.

Proposition 4.9. Along the Kähler Ricci flow, we have

dEk

dt
≤ −k + 1

V

∫
M
(R(ωϕ)− r)Ric(ωϕ)

k ∧ ωϕn−k. (4.4)

When k = 0, 1, we have

dE0

d t
= −n

√−1

V

∫
M
∂
∂ϕ

∂t
∧ ∂ ∂ϕ

∂t
ωϕ

n−1 ≤ 0, (4.5)

dE1

dt
≤ − 2

V

∫
M
(R(ωϕ)− r)2ωϕ

n ≤ 0.

In particular, both E0 and E1 are decreasing along the Kähler Ricci flow.
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Proof. Along the Kähler Ricci flow, we have

∆ϕ

(
∂ϕ

∂t

)
= r − R(ωϕ).

Here r is again the average of the scalar curvature R(ωϕ). We also have

√−1∂∂
∂ϕ

∂t
= √−1∂∂

(
log

ωϕ
n

ωn
+ ϕ − hω

)

= −Ric(ωϕ)+
(
ω−√−1∂∂hω

)
+√−1∂∂ ϕ

= −Ric(ωϕ)+ ω+√−1∂∂ ϕ = ωϕ − Ric(ωϕ).

Therefore,

dEk

dt
(4.6)

= −k + 1

V

∫
M
(R(ωϕ)− r)Ric(ωϕ)

k ∧ ωϕn−k

+ n − k

V

∫
M

∂ϕ

∂t

√−1∂∂

(
∂ϕ

∂t

)
∧

k+1∑
i=0

Ric(ωϕ)
k+1−i ∧ ωn−k+i−1

ϕ (4.7)

≤ −k + 1

V

∫
M
(R(ωϕ)− r)Ric(ωϕ)

k ∧ ωϕn−k. (4.8)
��

The following is an easy corollary of the above, but it will be crucial in
our proof.

Theorem 4.10. Let ϕ(t) be the global solution of the Kähler Ricci flow.
Then for any T > 0, we have

k + 1

V

∫ T

0

∫
M
(R(ωϕ)− r) Ric(ωϕ)

k ∧ ωϕn−k d t ≤ Ek(ϕ(0))− Ek(ϕ(T )).

When k = 1, this reduces to

2

V

∫ T

0

∫
M
(R(ωϕ)− r)2ωϕ

n d t ≤ E1(ϕ(0))− E1(ϕ(T ))

In particular, if Ek(ϕ(t)) is uniformly bounded from below, then for any
sequence of positive numbers εi with lim

i→∞ εi = 0, there exists a sequence

of ti such that

n∑
k=0

k + 1

V

∫
M
(R(ωϕ(ti ))− r)Ric(ωϕ(ti))

k ∧ ωϕ(ti)n−k ≤ εi .
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When k = 1, this becomes

1

V

∫
M
(R(ωϕ(ti))− r)2 ωϕ(ti)

n ≤ εi.

In order to have integral bounds of curvature from these inequalities,
we need to bound these functionals Ek from below. The following provides
a way of achieving it.

Lemma 4.11. Let ϕ be in P (M, ω) such that Ric(ωϕ) ≥ 0. Then there is
a uniform constant c = c(ω) such that

Ek(ϕ) ≥ −ec(1+max{0,νω(ϕ)}+Jω(ϕ)).

Proof. We will always denote by c a constant depending only on ω. By the
definition of Ek and Corollary 4.5, we have

Ek ≥ 1

V

∫
M

(
log

ωn
ϕ

ωn

)( k∑
i=0

Ric(ωϕ)
i ∧ ωn−i

)
− c (1 + Jω(ϕ)) .

In particular, since E0 is just the K-energy, we have

1

V

∫
M

(
log

ωn
ϕ

ωn

)
ωn
ϕ ≤ νω(ϕ)+ c(1 + Jω(ϕ)).

Then the lemma follows from the above two inequalities and the volume
estimate in Proposition 3.14. ��

Because of the monotonicity of the K-energy along the Kähler Ricci
flow, the K-energy νω(ϕ) is bounded. Hence, in order to bound Ek , we
suffice to bound the generalized energy Jω(ϕ) along the Kähler Ricci flow.
The trouble is that Jω(ϕ)may not be bounded along the flow. We will bound
Jω for modified Kähler Ricci flow, which turns out to be sufficient (cf.
Sect. 6).

5 New holomorphic invariants

In this section, we want to show that on any Kähler-Einstein manifolds,
Ek (k = 0, 1, · · · , n) are invariant under automorphisms. First we want to
show that the derivatives of Ek in the direction of holomorphic vector field
give us holomorphic invariants of the Kähler class.

Let X be a holomorphic vector field and ω be a Kähler metric. Then
iXω is a ∂-closed (0,1) form, by the Hodge theorem, we can decompose
iXω into a parallel αX form plus

√−1∂θX , where θX is some function. For
simplicity, we will assume that αX = 0. This is automatically true if M is
simply-connected. We will call that θX is a potential of X with respect to ω.
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It is unique modulo addition of constants. Note that L X(ω) =
√−1∂∂θX .

Now we define �k(X, ω) for each k = 0, 1, · · · , n by

�k(X, ω) = (n − k)
∫

M
θX ω

n

+
∫

M

(
(k + 1)∆θX Ric(ω)k ∧ ωn−k − (n − k) θX Ric(ω)k+1 ∧ ωn−k−1

)
.

Here and in the following, ∆ denotes the Laplacian ofω. Clearly, the identity
is unchanged if we replace θX by θX + c for any constant c.

The next theorem assures that the above integral gives rise to a holomor-
phic invariant.

Theorem 5.1. The integral �k(X, ω) is independent of choices of Kähler
metrics in the Kähler class [ω], that is, �k(X, ω) = �k(X, ω′) so long as the
Kähler forms ω and ω′ represent the same Kähler class. Hence, the integral
�k(X, ω) is a holomorphic invariant, which will be denoted by �k(X, [ω]).
Remark 5.2. When k = 0, we have

�0(X, ω) =
∫

M
∆θX ω

n + n θX (ω− Ric(ω)) ∧ ωn−1

= −n
∫

M
θX ∆ hω ω

n = n
∫

M
X(hω) ω

n.

Thus �0(X, [ω]) is a multiple of the Futaki invariant ([13]).

If [ω] is a canonical Kähler class and there is a Kähler-Einstein metric
on M, then we can choose ω such that Ric(ω) = ω and deduce

�k(X, ω) = (k + 1)
∫

M
∆θX ω

n = 0.

Therefore, we have

Corollary 5.3. The above invariants �k(X, c1(M)) all vanish for any holo-
morphic vector fields X on a compact Kähler-Einstein manifold. In particu-
lar, these invariants all vanish on CPn.

Before we prove this theorem, we first use to show the invariance of Ek
under automorphisms.

Proposition 5.4. Let X be a holomorphic vector field and {Φ(t)}|t|<∞ be
the one-parameter subgroup of automorphisms induced by Re(X). Then

dEk(ϕt)

dt
= 1

V
Re(�k(X, ω)),

where ϕt are the Kähler potentials of Φ∗
t ω, i.e., Φ∗

t ω = ω+√−1∂∂ϕt .
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Proof. Differentiating Φ∗
t ω = ω+√−1∂∂ϕt , we get

L Re(X )ω = √−1∂∂

(
∂ϕt

∂t

)
.

On the other hand, since L Xω = √−1∂∂θX , we have

∂ϕt

∂t
= Re(θX )+ c,

where c is a constant. It follows

dEk

dt
= 1

V

∫
M

(
(k + 1)∆

(
∂ϕt

∂t

)
Ric(ω)k ∧ ωn−k

− (n − k)
∂ϕt

∂t

(
Ric(ω)k+1 − ωk+1

) ∧ ωn−k−1

)

= 1

V
Re(�k(X, ω)).

��

An immediate corollary is

Corollary 5.5. On a Kähler-Einstein manifold M with c1(M) = [ω], all
functionals Ek,ω (k = 0, 1, · · · , n) are invariant under automorphisms of M.

Remark 5.6. It also follows from the above proposition that Ek has a lower
bound only if �k(X, ω) = 0.

The rest of this section is devoted to proving this theorem. We will follow
the arguments in [28]. For this purpose, we first formulate �k in terms of
some particular forms, i.e., the Bott-Chern forms.

Lemma 5.7. There exists a matrix
(
cij

)
(1 ≤ i, j ≤ n + 1) such that

�k−1(X, ω) = −n − k + 1 + υk

n + 1

∫
M
(−θX + ω)n+1

+ 1(n+1
k

) n+1∑
i=1

cik

∫
M
(−θX + ω+ i(∆θX + Ric(ω)))n+1 ,

where the matrix
(
cij
)

is the inverse matrix of the well known Vandermonde
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matrix 3 and

υk = n + 1(n+1
k

) n+1∑
i=1

cik . where k = 1, 2, · · · , n + 1.

Proof. Consider

Ipq =
∫

M
(−p θX + q ∆θX) (q Ric(ω)+ p ω)n

= 1

n + 1

∫
M
(−p θX + q ∆θX + q Ric(ω)+ p ω)n+1 .

Note that the only forms of degree 2n contribute to the above integral.
Expanding the integrand, we have

Ipq

=
∫

M
(−p θX + q ∆θX)

(
n∑

k=0

qk pn−k

(
n

k

)
Ric(ω)k ∧ ωn−k

)

3 There is an explicit way of finding cij , which we learned from E. Calabi. Let us define
a sequence of polynomials of degree n + 1 by

fi(x) =
n+1∑
j=1

cij x j , ∀ i = 1, 2, · · · , n + 1.

Since (cij ) is the inverse matrix of Vandermonde matrix:




1 2 · · · n + 1
12 22 · · · (n + 1)2

13 23 · · · (n + 1)3

...
...

. . .
...

1n+1 2n+1 · · · (n + 1)n+1


 ,

we obtain

fi(k) =
n+1∑
j=1

cij k j = δk j , ∀ i, k = 1, 2, · · · , n + 1.

It follows that for each i = 1, 2, · · · , n + 1,

fi(x) =
n+1∑
j=1

cij x j = x Πn+1
k �=i,k=1(x − k)

i Πn+1
k �=i,k=1(i − k)

.

Thus cij can be found.
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= −
∫

M
θX

(
n∑

k=0

qk pn−k+1

(
n

k

)
Ric(ω)k ∧ ωn−k

)

+
∫

M
∆θX

(
n∑

k=0

qk+1 pn−k

(
n

k

)
Ric(ω)k ∧ ωn−k

)

= −
∫

M
θX

(
n∑

k=0

qk pn−k+1

(
n

k

)
Ric(ω)k ∧ ωn−k

)

+
∫

M
∆θX

(
n+1∑
k=1

qk pn−k+1

(
n

k − 1

)
Ric(ω)k−1 ∧ ωn−k+1

)

=
n+1∑
k=0

qk pn−k+1 n!
k!(n − k + 1)!

·
∫

M

(
k ∆θX Ric(ω)k−1 ∧ ωn−k+1 − (n − k + 1) θX Ric(ω)k ∧ ωn−k

)
.

Now set p = 1 and observe (k = 0, 1, 2, · · · , n)

�k(X, ω)− (n − k)
∫

M
θXω

n

=
∫

M

(
(k + 1)∆θX Ric(ω)k ∧ ωn−k − (n − k) θXRic(ω)k+1 ∧ ωn−k−1

)
.

Then

I1q = −
∫

M
θX ω

n

+ 1

(n + 1)

n+1∑
k=1

(
n + 1

k

) (
�k−1(X, ω)− (n − k + 1)

∫
M
θXω

n

)
qk,

or equivalently,

1

(n + 1)

n+1∑
k=1

(
n + 1

k

) (
�k−1(X, ω)− (n − k + 1)

∫
M
θXω

n

)
qk

= I1q +
∫

M
θXω

n.
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Since
(
cij

)
is the inverse matrix of the Vandermonde matrix, we have(n+1

k

)
(n + 1)

(
�k−1(X, ω)− (n − k + 1)

∫
M
θXω

n

)

=
n+1∑
i=1

cik

(
I1i +

∫
M
θXω

n

)

=
n+1∑
i=1

cik I1i +
n+1∑
i=1

cik

∫
M
θXω

n

=
n+1∑
i=1

cik I1i + υk

(n+1
k

)
(n + 1)

∫
M
θXω

n.

The lemma follows from this since

−
∫

M
θXω

n = 1

n + 1

∫
M
(θX + ω)n+1 .

��
Now we continue the proof of Theorem 5.1. We suffice to prove the

independence of Ipq. First we observe that
√−1 ∂θX = iXω and

√−1 ∂∆θX = −iXRic(ω).

The second identity can be checked as follows: Suppose ω =
√−1

n∑
i, j=1

gi j dzi ∧ dz j in local coordinates. Then

iXRic(ω) = −√−1 ∂̄

(
Xi ∂

∂zi
log det(gkl̄)

)

= −√−1 ∂̄
(

Xi gkl̄ ∂gil̄

∂zk

)

= −√−1 ∂̄

(
gkl̄ ∂

∂zk
(Xi gil̄)− gkl̄gil̄

∂Xi

∂zk

)

= −√−1 ∂̄
(

gkl̄ ∂

∂zk
(Xi gil̄)

)
= −√−1 ∂̄∆gθX .

Since the space of Kähler metrics is path-connected, it suffices to show
that Ipq is invariant when we deform the Kähler potential along any path
ϕt ∈ P (M, ω). To emphasis the dependence on ωϕ, we will denote by
Ipq(ϕ) the integral

Ipq(ϕ) =
∫

M

(−pθX + q∆θX + qRic(ωϕ)+ pωϕ
)n+1

.
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We need to show that

∂Ipq

∂t
(ϕt) = 0.

Put ωt = ω+√−1∂∂̄ϕt . Then

iXωt =
√−1∂̄ (θX + X(ϕt))

iXRic(ωt) = −√−1∂̄∆t (θX + X(ϕt)) ,

where ∆t is the Laplacian ofωt . For simplicity, we denote by Ψt the function

−p (θX + X(ϕt))+ q ∆t (θX + X(ϕt)) .

Define

αt = −p ∂

(
∂ϕt

∂t

)
+ q ∂∆t

(
∂ϕt

∂t

)
.

Using the identity

Ric(ωt) = Ric(ω)−√−1 ∂∂̄ log
(
ωn

t

ωn

)
,

we can show

√−1 ∂̄αt = ∂

∂t
(p ωt + q Ric(ωt)) .

On the other hand, we have

iXαt = ∂Ψt

∂t
.

This can be seen as follows: Suppose that in local coordinates,

X = Xk ∂

∂zk
and ωt =

√−1
n∑

i, j=1

gi j dzi ∧ dz j .

Then

∂Ψt

∂t
= −p X

(
∂ϕt

∂t

)
+ q

∂

∂t

(
gi j̄ ∂2

∂zi∂ z̄ j
(θX + X(ϕt))

)
,

iXαt = −p X

(
∂ϕt

∂t

)
+ q X

(
gi j̄ ∂2

∂zi∂ z̄ j

(
∂ϕt

∂t

))
.
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Notice that
√−1∂̄ (θX + X(ϕt)) = iXωt . We then have

∂

∂t

(
gi j̄ ∂2

∂zi∂ z̄ j
(θX + X(ϕt))

)

= gi j̄ ∂2

∂zi∂ z̄ j

(
Xk ∂

∂zk

(
∂ϕt

∂t

))
+ ∂gi j̄

∂t

∂

∂zi

(
Xkgk j̄

)

= gi j̄ ∂

∂zi

(
Xk ∂2

∂zk∂ z̄ j

(
∂ϕt

∂t

))
− gil̄ ∂2

∂zm∂ z̄l

(
∂ϕt

∂t

)
gm j̄ ∂

∂zi

(
Xkgk j̄

)

= gi j̄ Xk ∂3

∂zi∂zk∂ z̄ j

(
∂ϕt

∂t

)
− gil̄ ∂2

∂zm∂ z̄l

(
∂ϕt

∂t

)
gm j̄ Xk

∂gk j̄

∂zi

= Xk ∂

∂zk

(
gi j̄ ∂2

∂zi∂ z̄ j

(
∂ϕt

∂t

))
.

It follows that iXαt = ∂Ψt
∂t .

For simplicity, we will denote by Rt the curvature form p ωt+q Ric(ωt).
Then

√−1 ∂̄Ψt = − iX Rt and
√−1 ∂̄αt = ∂Rt

∂t
.

Hence, we have

√−1
∂

∂t
Ipq(ϕt)

=
∫

M

(√−1
∂Ψt

∂t
+ ∂Rt

∂t

)(√−1 Ψt + Rt

)n

=
∫

M

(√−1 iXαt +
√−1 ∂̄αt

) (√−1 Ψt + Rt

)n

=
∫

M

√−1 iXαt

(√−1 Ψt + Rt

)n

+ n
∫

M

√−1 αt ∧ ∂̄
(√−1 Ψt + Rt

)
∧
(√−1 Ψt + Rt

)n−1

=
∫

M

√−1 iXαt

(√−1 Ψt + Rt

)n

− n
∫

M

√−1 αt ∧ iX

(√−1 Ψt + Rt

)
∧
(√−1 Ψt + Rt

)n−1

=
∫

M
iX

(√−1 αt ∧
(√−1 Ψt + Rt

)n)
.

Here we have used the second Bianchi identity: ∂̄R(gt) = 0. We also
have used ∂̄ψX,t = −iX R(gt) = −iX(ψX,t + R(gt)).
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Put
η = √−1 αt ∧

(√−1 Ψt + Rt

)n
.

We write it as g0 + · · · + g2n and iXη = β0 + β1 + · · · + β2n . The only
term which contributes to the above integral is the β2n , but β2n = iXg2n+1
and g2n+1 = 0. Therefore, the above integral is zero. Thus, the theorem is
proved.

6 Modified Kähler Ricci flow

In the first subsection, we want to modify the Kähler Ricci flow by au-
tomorphisms so that the evolved Kähler form is centrally positioned with
respect to a fixed Kähler-Einstein metric (see Definition 6.1 below). Our
argument here essentially due to S. Bando and T. Mabuchi [2]. In the second
subsection, we use this and Tian’s inequality [28] to derive a uniform lower
bound on Ek. That in turn implies the desired integral estimate on curvature
(Corollary 6.9).

6.1 Modified Kähler form by automorphisms

As before, let ω1 be a Kähler-Einstein metric in M such that Ric(ω1) = ω1.
Let us first introduce the definition of “centrally positioned”:

Definition 6.1. Any Kähler form ωϕ is called centrally positioned with
respect to some Kähler-Einstein metric ωρ = ω+√−1∂∂ρ if it satisfies the
following: ∫

M
(ϕ − ρ) θ ωρn = 0, ∀ θ ∈ Λ1(ωρ). (6.1)

We now introduce a well known functional in Kähler geometry first:

I(ωϕ, ω) = 1

V

∫
M
ϕ
(
ωn − ωϕn

)
.

Note that this definition is symmetric with respect to ω and ωϕ. Alterna-
tively, for any path ϕ(t) ∈ P (M, ω), we have

d I

d t
= 1

V

∫
M

∂ϕ

∂t

(
ωn − ωϕn

)− 1

V

∫
M
ϕ�ϕ

∂ϕ

∂t
ωϕ

n.

Put

J(ωϕ, ω) = Jω(ϕ).

This implies that

d (I − J)

d t
= − 1

V

∫
M
ϕ�ϕ

∂ϕ

∂t
ωϕ

n. (6.2)
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Now we consider a functional Ψ on Autr(M) by,

Ψ(σ) = (I − J)(ωϕ, σ
∗ω1) = (I − J)(ωϕ, ωρ) (6.3)

for any σ ∈ Autr(M) and σ∗ω1 = ωρ = ω + √−1∂∂ρ. If σ is a critical
point in ∈ Autr(M), then ωρ is the desired Kähler-Einstein metric.

Proposition 6.2. Let ωρ be the minimal point of Ψ. For any u ∈ Λ1(ωρ),
we have ∫

M
(ρ − ϕ)u ωn

ρ = 0,

or equivalently

ρ − ϕ ⊥ Λ1(ωρ).

In other words, ωϕ is centrally positioned with respect to ωρ.

Note that if Λ1(M) = ∅, then this proposition hold trivially. Before
we prove this proposition, we pause to establish the equivalence relation
between the first eigenspace of ω1(or any Kähler-Einstein metric) and the
space of holomorphic vector fields (denoted by η(M)).

Lemma 6.3. The first eigenvalue of ∆ω1 ≥ 1. Moreover, there is a 1-1
correspondence between the first eigenspace Λ1 of ω1 and the space of
holomorphic vector fields η(M).

The lemma is well-known. For the reader’s convenience, we outline its
proof here.

Proof. Let λ1 be the first eigenvalues of ω1 and u is any eigenfunction
of ω1 with eigenvalue λ1, so ∆ω1u = −λ1u. Define a vector field X by
iXω1 =

√−1∂̄ u. Then by a direct computation, we have∫
M

| ∂̄ X |2 ω1
n = λ2

1

∫
M

u2 ω1
n −

∫
M

| ∂ u |2 ω1
n.

This implies that

λ2
1

∫
M

u2 ω1
n =

∫
M
|∂u|2 ω1

n +
∫

M
| ∂̄ X |2 ω1

n

≥ λ1

∫
M

u2 ω1
n +

∫
M

| ∂̄ X |2 ω1
n

≥ λ1

∫
M

u2 ω1
n.

Here we have used the variational characterization of λ1. Thus λ1 ≥ 1.
If the equality holds, i.e., λ1 = 1, we have ∂̄X = 0. It follows that X is
a holomorphic vector field.
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Conversely, if X is a holomorphic vector field, we define u by iXω1 = ∂̄u

and
∫

M
u ω1

n = 0. Then a straightforward computation shows that

∂̄(�ω1 u + u) = 0.

It follows that u is an eigenfunction with eigenvalue 1. So we have estab-
lished the following identification

η(M) ! { eigenfunctions of ω1 with eigenvalue 1}.
��

Next we return to the proof of Proposition 6.2.

Proof. Let σs be the one parameter subgroup generated by the real part of
∂u, write

ωρs = σ∗s ωρ = ωρ +
√−1∂∂ (ρs − ρ)

= ωϕ +
√−1∂∂(ρs − ϕ).

One can easily see that d ρs
d s |s=0= u modulo constants. Denote the

complex Laplacian operator of ωρ by �ρ. Then,

�ρu + u = 0, ∀ u ∈ Λ1(ωρ).

Computing the derivative of Ψ (see Formula 6.2) along this holomorphic
path, we have

0 = d

d s
Ψ(σs) |s=0

= − 1

V

∫
M
(ρ − ϕ) �ρ

d ρs

d s
|s=0 ωn

ρ

= − 1

V

∫
M
(ρ − ϕ) �ρ u ωn

ρ

= 1

V

∫
M
(ρ − ϕ) u ωn

ρ.

In other words,

ρ − ϕ ⊥ Λ1(ωρ). ��
The rest of the subsection is devoted to prove that there always exists
a minimizer of Ψ in Autr(M). Recall that ω1 is a Kähler-Einstein metric, so
ωρ is also Kähler-Einstein metric:(

ωϕ +
√−1∂∂̄(ρ(t)− ϕ(t))

)n = ωρ
n = e−(ρ−ϕ)+hϕωϕ

n, (6.4)
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where

Ric(ωϕ)− ωϕ =
√−1∂∂hϕ.

We shall normalize hϕ and ρ as

1

V

∫
M

e−(ρ−ϕ)+hϕωn
ϕ =

1

V

∫
M

ehϕωn
ϕ = 1.

Therefore, we have

sup
M
(ρ − ϕ) ≥ 0.

Proposition 6.4. The following inequalities hold

I − J ≤ I ≤ (n + 1)(I − J). (6.5)

Proof. From the definition of I, we have

I(ωϕ, ω) = 1

V

∫
M
ϕ(ωn − ωϕn)

= 1

V

∫
M
ϕ ∧ (−√−1∂∂ϕ

) n−1∑
i=0

ωi ∧ ωn−i−1
ϕ

=
n−1∑
i=0

1

V

∫
M

√−1 ∂ϕ ∧ ∂ϕ ∧ ωi ∧ ωn−i−1
ϕ ≥ 0.

Therefore,

I − J =
n−1∑
i=0

n − i

n + 1

1

V

∫
M

√−1 ∂ϕ ∧ ∂ϕ ∧ ωi ∧ ωn−i−1
ϕ .

This in turn implies that

I − J ≤ I ≤ (n + 1)(I − J).
��

Next we can prove that Ψ always achieve its minimum value in Autr(M).

Lemma 6.5. The minimal value of Ψ can be attained in Autr(M). Moreover,
Ψ is proper.

Proof. Observe that

Ψ(σ) = (I − J)(ωϕ, ωρ) ≥ 1

n + 1

∫
M
(ρ − ϕ)(ωn

ϕ − ωn
ρ

) ≥ 0.
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Put Gr = {σ ∈ Autr (M)|Ψ(σ) ≤ r} and Er = {ρ|σ∗ω1 = ωρ, σ ∈ Gr}.
Then, ∫

M
(ρ − ϕ)(ωn

ϕ − ωn
ρ

) ≤ (n + 1)r, ∀ρ ∈ Er .

However,

− 1

V

∫
M
(ρ − ϕ)ωn

ρ = − 1

V

∫
M
(ρ − ϕ)e−(ρ−ϕ)+hϕωn

ϕ

≥ −C2

∫
M
ρ e−ρ ωn

ϕ − C ′
2

≥ −C3.

Therefore, we have ∫
M
(ρ − ϕ)ωn

ϕ ≤ C ′
3.

Since �ϕ(ρ − ϕ) ≥ −n, by the Green formula, we have

sup
M
(ρ − ϕ)

≤ 1

V

∫
M
(ρ − ϕ)ωn

ϕ − max
x∈M

(
1

V

∫
M
(G(x, ·)+ C4)�ϕ(ρ − ϕ)ωn

ϕ(y)

)

≤ 1

V

∫
M
(ρ − ϕ)ωn

ϕ + nC4,

where G(x, y) is the Green function associated toωϕ satisfying G(x, ·) ≥ 0.
Therefore, there exists a uniform constant C such that

sup
M
(ρ − ϕ) ≤ C.

On the other hand, we have

−
∫

M
(ρ − ϕ)ωn

ρ ≤ (n + 1)r −
∫

M
(ρ − ϕ)ωn

ϕ

≤ (n + 1)r + nC5 − sup
M
(ρ − ϕ)

≤ C6.

Following Proposition 6.6 below, we can prove that there exists a con-
stant C such that

inf
M
(ρ − ϕ) ≥ −C.

Hence, by the C2 estimate of Yau [30] and C3 estimate of Calabi, we
obtain

‖ρ − ϕ‖C3 ≤ C7(r), ∀ρ ∈ Er .
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Then Er is compact in C2 topology, and so is Gr . In particular, the
minimal value of Ψ can be attained. ��
Proposition 6.6. Let ωρ be a Kähler-Einstein metric, then

0 ≤ − inf
M
(ρ − ϕ) ≤ C

(
1

V

∫
M
(−(ρ − ϕ))ωn

ρ + 1

)
.

The proposition is known (cf. [28]), we include its proof here for reader’s
convenience.

Proof. Denote by ∆ρ the Laplacian ofωρ . Then, becauseωϕ+∂∂̄(ρ−ϕ)>0,
we see that ωϕ = ωρ − ∂∂̄(ρ − ϕ) > 0 and taking the trace of this latter
expression with respect to ωρ, we get

n −∆ρ(ρ − ϕ) = trωρ
ωϕ > 0.

Defining now (ρ − ϕ)−(x) = max{−(ρ− ϕ)(x), 1} ≥ 1, so that

(ρ − ϕ)− p(n − ∆ρ(ρ − ϕ)) ≥ 0.

And integrating this, we get

0 ≤ 1

V

∫
M
(ρ − ϕ)− p(n −∆ρ(ρ − ϕ))ωn

ρ

= n

V

∫
M
(ρ − ϕ)− pωn

ρ +
1

V

∫
M
∇ρ(ρ − ϕ)− p∇ρ(ρ − ϕ)ωn

ρ

= n

V

∫
M
(ρ − ϕ)− pωn

ρ +
1

V

∫
{(ρ−ϕ)≤−1}

∇ρ(ρ − ϕ)− p∇ρ(ρ − ϕ)ωn
ρ

= n

V

∫
M
(ρ − ϕ)− pωn

ρ +
1

V

∫
M
∇ρ(ρ − ϕ)− p∇ρ(−(ρ − ϕ)−)ωn

ρ

= n

V

∫
M
(ρ − ϕ)− pωn

ρ −
1

V

4p

(p + 1)2

∫
M
|∇ρ(ρ − ϕ)− p+1

2 |2ωn
ρ,

which yields, using the fact that (ρ − ϕ)− ≥ 1 and hence (ρ − ϕ)− p ≤
(ρ − ϕ)− p+1,

1

V

∫
M

∣∣∇ρ(ρ − ϕ)− p+1
2
∣∣2ωn

ρ ≤
n(p + 1)2

4pV

∫
M
(ρ − ϕ)− p+1ωn

ρ.

Note that ωρ is a Kähler Einstein metric which has a uniform Sobolev
constant. Thus, we have

1

V

(∫
M
|(ρ − ϕ)−| (p+1)n

n−1 ωn
ρ

) n−1
n

≤ c(p + 1)

V

∫
M
(ρ − ϕ)− p+1ωn

ρ.
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Moser’s iteration will show us that

sup
M
(ρ − ϕ)− = lim

p→∞‖(ρ − ϕ)−‖L p+1(M,ωρ) ≤ C‖(ρ − ϕ)−‖L2(M,ωρ).

Recall that λ1(ωρ) ≥ 1, so that the Poincaré inequality reads

1

V

∫
M

(
(ρ − ϕ)− − 1

V

∫
M
(ρ − ϕ)−ωn

ρ

)2

ωn
ρ ≤

1

V

∫
M
|∇(ρ − ϕ)−|2ωn

ρ

≤ C

V

∫
M
(ρ − ϕ)−ωn

ρ,

where we have set p = 1 and used the same reasoning as before. This then
implies that

max{− inf
M
(ρ − ϕ), 1} = sup

M
(ρ − ϕ)− ≤ C

V

∫
M
(ρ − ϕ)−ωn

ρ,

since
∫

M e−hϕ+(ρ−ϕ)ωn
ρ = V , we can easily deduce

∫
(ρ−ϕ)>0

(ρ− ϕ)ωn
ρ ≤ C.

Combining this together with the above, we get

− inf
M
(ρ − ϕ) ≤ C

V

∫
M
(−(ρ − ϕ))ωn

ρ + C,

which proves the proposition. ��

6.2 Application to the Kähler Ricci flow

Let ϕ(t) be the global solution of the Kähler Ricci flow in the level of Kähler
potentials. According to Lemma 6.5, there exists a one parameter family of
Kähler Einstein metrics ωρ(t) = ω+√−1∂∂̄ρ(t) such that ωϕ(t) is centrally
positioned with respect to ωρ(t) for any t ≥ 0. Suppose that ωϕ(0) is already
centrally positioned with the Kähler-Einstein metric ω1 = ω+√−1∂∂̄ρ(0).
Recall that Ek,ω(ϕ) and νω all satisfy the cocycle condition:

Ek,ω(ϕ)+ Ek,ωϕ (ψ − ϕ) = Ek,ω(ψ)

for any k = 0, 1, · · · , n. Note that νω = E0,ω.

Theorem 6.7. On a Kähler-Einstein manifold, the K-energy νω is uniformly
bounded from above and below along the Kähler Ricci flow. Moreover, there
exist some uniform constants c,C, C ′ and C ′′ such that

|Jk,ωρ(t) (ϕ(t)− ρ(t))| ≤ {νω(ϕ(t))+ C} 1
δ ,

log
ωϕ

n

ωρ(t)n
≥ −4C ′′ e2(νω(ϕ(t))+C)

1
δ +C′),

Ek(ϕ(t)) ≥ −ec
(

1+max{0,νω(ϕ(t))}+(νω(ϕ(t))+C)
1
δ

)
.
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Proof. Sinceωϕ(t) is centrally positioned with respect to the Kähler-Einstein
metric ωρ(t), Proposition 6.1 implies that

ϕ(t)− ρ(t) ⊥ Λ1(ωρ(t)).

Theorem 3.1 implies that K-energy is proper with respect to the evolved
Kähler metric ωϕ and the modified Kähler-Einstein metric ωρ(t). Thus,

νωρ(t) (ϕ(t)− ρ(t)) ≥
(

Jωρ(t) (ϕ − ρ(t))
)δ − c

for some uniform constant δ > 0 and c. Since the K energy satisfies the
cocycle condition, we have

νω(ϕ(t))− νωρ(t) (ϕ(t)− ρ(t)) = νω(ρ(t)).

Lemma 3.8 implies that the K-energy monotonely decreases along the
Kähler Ricci flow

νω(ϕ(t)) ≤ νω(ϕ(0)), ∀ t <∞.

Combining the three inequalities above, we arrive at

νω(ϕ(0)) ≥ νω(ϕ(t)) ≥
(

Jωρ(t) (ϕ − ρ(t))
)δ − c + νω(ρ(t)).

Note that the K energy is invariant under automorphisms and the fact
that ωρ(t) is path connected with ω1 via automorphisms, then we have

νω(ρ(t)) = νω(ρ(0)).

Thus

0 ≤ Jωρ(t) (ϕ − ρ(t)) ≤ (νω(ϕ(t))+ C)
1
δ ≤ (νω(ϕ(0))+ C)

1
δ .

In particular, the K energy has a uniform up-bound and lower bound
along the Kähler Ricci flow. Lemma 4.10 implies that Ek,ωρ (ϕ(t)−ρ(t)) are
uniformly bounded from below. Now,

Ek,ω(ϕ(t)) = Ek,ωρ (ϕ(t)− ρ(t))+ Ek,ω(ρ(t))

Similarly since Ek is invariant under automorphisms, we have

Ek,ω(ρ(t)) = Ek,ω(ρ(0)).

Thus

Ek,ω(ϕ(t)) = Ek,ωρ (ρ(t)− ϕ(t))+ Ek,ω(ρ(0))

≥ −ec(1+max{0,νω(ϕ(t))}+Jωρ(ϕ−ρ)) + Ek,ω(ρ(0))

= −ec
(

1+max{0,νω(ϕ(t))}+(νω(ϕ(t))+C)
1
δ

)
− C1,
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where c,C and C1 are some uniform constant. It also implies that (from the
explicit expression of the K energy (3.2)):∫

M

(
ln
ωϕ(t)

n

ωρn

)
ωϕρ(t)

n ≤ (νω(ϕ(t))+ C)
1
δ + C2,

where C2 is some uniform constant. Proposition 3.14 then implies that
log ωϕ

n

ωρ(t)
n is uniformly bounded from below:

inf
M

(
log

ωn
ϕ

ωρn

)
(x) ≥ −4C3 e

2(1 +
∫

M

(
log

ωn
ϕ

ωρn

)
ωρ

n)

≥ −4C3 e2(νω(ϕ(t))+C)
1
δ +C′)

where C,C3 and C ′ are some uniform constant. Corollary 4.5 shows that
Jk(k = 0, 1, · · · n − 2) are uniformly bounded from above and below. ��

An immediate corollary is

Corollary 6.8. The energy functional Ek(k = 0, 1, · · · n) has a uniform
lower bound from below along the Kähler Ricci flow.

Proof. Since Ek is invariant under action of automorphisms. Thus

Ek(ϕ) = Ek(ϕ̃) ≥ −C.
��

Now combing Theorem 4.10 and this corollary, we arrive at the following
important corollary:

Corollary 6.9. For each k = 0, 1, · · · n, there exists a uniform constant C
such that the following holds (for any T ≤ ∞) along the Kähler Ricci flow:∫ T

0

k + 1

V

∫
M

(
R(ωϕ(t))− r

)
Ric(ωϕ(t))

k ∧ ωϕ(t)n−k d t ≤ C.

When k = 1, we have∫ ∞

0

1

V

∫
M
(R(ωϕ(t))− r)2 ωϕ(t)

n d t ≤ C <∞.

7 Injectivity radius

In 1959, Klingenberg proved that for any compact oriented, even dimen-
sional manifold without boundary, if the sectional curvature is bounded in
(0, 1], then the injectivity radius is at least π. This theorem of Klingenberg
does not apply to the evolved metrics in the Kähler Ricci flow since we do
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not know if the positivity of the sectional curvature will be preserved. How-
ever, by Theorem 2.2, the bisectional curvature is positive along the Kähler
Ricci flow if the initial metric has a positive bisectional curvature. There-
fore, we need to adopt Klingenberg’s original theorem to our case. Namely,
obtaining a similar estimate of the injectivity radius based on the positivity
of the bisectional curvature only. Such a lemma is a natural extension of the
original Klingenberg’s theorem to the Kähler setting.

Lemma 7.1. Suppose that (M, g) is an orientable compact Kähler manifold
with bisectional curvature bounded in (0, 1]. Then there exists some uniform
constant β > 0 such that the injectivity radius must be no less than βπ4.

Proof. We follow the arguments in the proof of Klingenberg theorem
(c.f. [6]). Since the bisectional curvature ≤ 1, there exists a uniform con-
stant 1

β2 such that the sectional curvature is uniformly bounded from above

by 1
β2 . This follows that the conjugate radius is not shorter than βπ :

conj radM ≥ βπ.

A lemma in [6] by Cheeger and Ebin asserts:

injM = min{βπ, 1

2
the length of shortest closed geodesic}.

We want to prove the lemma by contradiction. If the injective radius
< βπ, then there exists a shortest closed geodesic which realizes this injec-
tivity radius. Denote this shortest closed curve by c0(t) (0 ≤ t ≤ 2 injM )
parameterized by the arc length. Suppose J is the underlying complex struc-
ture. The plane spanned by c0(t)′ and J(c0(t)′) is a holomorphic plane. Thus
the sectional curvature of this plane must be strictly positive. Deform c0
on the direction of J(c0(t)′). Since J(c0(t)′) is a parallel vector field along
this closed geodesic, the second variation in this direction is strictly nega-
tive. Therefore, there exists a 1-parameter family of nearby closed curves
cs : R/Z → V, t → expc0(t)(sJ(c0(t)′)) which are strictly shorter than c0
provided s is small enough. Since the length of c0 equals to 2 injM, the
entire curve cs (s > 0) must be contained in the closed ball with radius
≤ 1

2 L(cs) < injM . Thus, one can lift the entire curve cs(t) as a closed curve
c̃s in Tcs(0)M such that c̃s(0) = 0. Since everything occurs within the conju-
gate radius, by taking limit, we can lift up c0(t) as a closed curve in Tc0(0)M.
That is a contradiction since the lifting of c0 is a straight line. ��

8 Harnack inequality

Recall Cao’s Harnack inequality in the Kähler Ricci flow:

Theorem 8.1. [5] Let gi j be the solution of the Kähler Ricci flow with
positive bisectional curvature. Then for any x, y ∈ M and 0 < t1 < t2 <∞,

4 According to Corollary 12.2, the best constant is β = 1√
2
.
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the scalar curvature R satisfies the inequality:

R(x, t1) ≤ et2 − 1

et1 − 1
e

∆
4 R(y, t2).

Here ∆ is defined as

∆ = ∆(x, y, t1, t2) = inf
γ

∫ t2

t1

|γ ′
(s)|2 d s

where the infimum is taken over all curves from x to y, where |γ ′
(s)|s is the

velocity of γ at time s.

The basic ideas5 of the proof in [5] can be described as follows: If g is
a Kähler Ricci soliton, we have

Ri j − gi j = f,i j (8.1)

and

f,ij = 0, ∀ i, j = 1, 2, · · · , n.

Thus, X = f ,i ∂
∂zi is a holomorphic vector field. Taking Laplacian of the

soliton equation (8.1), we arrive at the following

∆Ri j + Ri jkl Rlk − Ri j + Ri j ,k f,k + Ri j ,k f,k + Ri jkl f,l f,k = 0.

Motivated by this identity for Ricci solitons, Cao introduced the follow-
ing 2-tensor Qi j for any vector v ∈ Tx V,

Qi j = ∆Ri j + Ri jkl Rlk − Ri j + Ri j ,k v
,k + Ri j ,kv

,k + Ri jkl v
,lv,k + Ri j

1 − e−t

= ∂

∂t
Ri j + Rik Rk j

− Ri j + Ri j ,k v
,k + Ri j ,kv

,k + Ri jkl v
,lv,k + Ri j

1 − e−t
. (8.2)

Clearly, Q is a positive tensor at t = 0 and t = ∞. Through tedious but
direct calculations, Cao proved that Q is positive for all the time and for all
vectors v(x, t). Taking trace on both side of (8.2), we obtain the following

∂R

∂t
+ R,kv

,k + R,kv
,k + Ri jv

iv j + R

1 − e−t
> 0.

Let vk = −R,k
R , then

∂R

∂t
− |D R|2

R
+ R

1 − e−t
> 0.

Using this inequality and a similar argument of Li-Yau [20], Cao [5]
proved the Harnack inequality for the scalar curvature of M.

5 These types of arguments are due to R. Hamilton in the real case (cf. [17]).



Ricci flow on Kähler-Einstein surfaces 527

9 Convergence by sequence in any Cl norm

In this section, we want to show that for any sequence of metrics over the
Kähler Ricci flow, there exists a subsequence which converges to a Kähler-
Einstein metric with constant bisectional curvature. We first prove that the
bisectional curvature and its derivatives are uniformly bounded in complex
dimension 2 in the first subsection. In the second subsection, we then prove
the convergence by sequences.

9.1 Uniform curvature bound in complex dimension 2

In this subsection,we concentrate on complex dimension 2 and we will
prove that the scalar curvature is uniformly bounded from above along the
flow. One should note that only Lemma 9.3 need to be proved in complex
dimension 2. All other theorems, lemmas hold for all dimensions.

Lemma 9.1. In the Kähler Ricci flow with positive bisectional curvature,
denote the maximal scalar curvature at time t as Rmax(t). Then

Rmax(t) ≤ 2Rmax(t0), ∀ t ∈
[

t0, t0 + 1

2Rmax(t0)

]
.

Proof. During time t ∈ [t0, t0 + 1
2Rmax(t0)

], we have

d

d t
Rmax ≤ Rmax

2.

Thus,

Rmax(t) ≤ 2Rmax(t0), ∀ t ∈
[

t0, t0 + 1

2Rmax(t)

]
.

��
By Theorem 4.10 and Corollary 6.9, for any fixed period T 6, we have∫ ∞

0

∫
M
(R − r)2 ωn

ϕ d t =
∞∑

n=0

∫ (n+1)T

nT

1

V

∫
M
(R − r)2 ωn

ϕ d t

=
∫ ∞

0

1

V

∫
M
(R − r)2 ωn

ϕ d t

=
∫ ∞

0

1

V

∫
M
(R − r) Ric ∧ ωn−1

ϕ d t <∞.

Thus,

lim
n→∞

∫ (n+1)T

nT

1

V

∫
M
(R − r)2 ωϕ

n d t = 0.

6 The value of T will be fixed later in the subsection when we prove Theorem 9.4.
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This follows that
∫

M (R − r)2 ωϕ(t)n is small for almost all t large. In
other words, at every interval of length T, there exists at least one time t
such that this integral is small:

Lemma 9.2. For any sequence si → ∞, and for any fixed time period T ,
there exists ti →∞ and 0 < si − ti < T such that

lim
ti→∞

1

V

∫
M
(R − r)2 ωn

ϕ = 0. (9.1)

Lemma 9.3. Over the Kähler Ricci flow on a Kähler surface, if ti → ∞
satisfies the condition (9.1), then Rmax(ti) = max

p∈V
R(p)(ti) is uniformly

bounded from above.

Proof. Choose time τi < ti such that ti − τi = 1
2Rmax(τi )

7. Such a τi can
always be chosen. Following Lemma 9.1, we have

Rmax(t) ≤ 2Rmax(τi), ∀t ∈ [τi, ti].
Recall the flow equation,

∂

∂t
gαβ = gαβ − Rαβ.

Thus, the distance grows at most by a constant factor since Rαβ > 0 for
all the time. For any fixed point p, we have(

gi j

)
n×n

(p, t) ≤ (
gi j

)
n×n

(p, τi), ∀ t ∈ [τi, ti].
On the other hand,

∂

∂t
gαβ = gαβ − Rαβ

≥ −Rmax(t)gαβ
≥ −2Rmax(τi) gαβ, ∀ t ∈ [τi, ti].

Thus,(
gi j

)
n×n

(p, ti) ≥
(
gi j

)
n×n

(p, τi) · e−2Rmax(τi )(ti−τi )

= (
gi j

)
n×n

(p, τi)e
−1.

Therefore,(
gi j

)
n×n

(p, t) ≤ 3 · (gi j

)
n×n

(p, ti), ∀ t ∈ [τi, ti].
If d(ξ, X) is the geodesic distance at time ti, then

∆(ξ, τi, X, ti) ≤ 9
d(ξ, X)2

ti − τi
.

7 In Hamilton’s paper, Hamilton choose τi in a different way.
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For all X in a ball around ξ of radius

ρ = π√
Rmax (τi )

2

=
√

2π2

Rmax(τi)
,

we have

∆(ξ, τi, X, ti) ≤ 9

(√
2π2

Rmax(τi )

)2

ti − τi
= 36π2.

When ti, τi large enough, we have

eti − 1

eτi − 1
< 2.

Then the Harnack inequality gives

R(ξ, τi) ≤ 2e9π2
R(X, ti)

or

R(X, ti) ≥ 1

2
e−9π2

Rmax(τi)

for all X in a ball around ξ of radius

ρ = π√
Rmax(τi )

2

.

By Lemma 7.1, the injectivity radius of the evolved metric at time ti is:

injM(ti) ≥ βπ√
Rmax(ti )

2n(n+1)

≥ βρ ·
√

n(n + 1)

2
.

Set ρ1 = ρ ·
√

n(n+1)
2 . In complex dimension 2, if

min
X∈Bβρ1(ξ)

R(X, ti) > 2 r,

then

R(X, ti)− r >
1

2
R(X, ti), ∀ X ∈ Bβρ1(ξ).

Therefore, we have (at time ti)∫
Bβρ1(ξ)

(R(X, ti)− r)2 ωϕ(ti)
n ≥ 1

4

∫
Bβρ1 (ξ)

R(X, ti)
2 ωϕ(ti)

n > C.
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The last inequality follows from a volume comparison theorem (cf. [6]).
This contradicts with the initial assumption (9.1). Thus,

min
X∈Bβρ1(ξ)

R(X, ti) < 2r.

Again, by the Harnack inequality, we have

max
Bβρ(ξ)

R(X, ti) ≤ 2Rmax(τi)

≤ 4e9π2
min
Bβρ(ξ)

R(ti)

< 8e9π2
r.

Then the scalar curvature must be uniformly bounded above for this
sequence ti →∞. ��

Now combine Lemmas 9.1, 9.2 and 9.3, we can prove the following
theorem:

Theorem 9.4. In dimension 2 (or Lemma 9.3 holds), then Rmax (t) is bounded
from above uniformly along the Kähler Ricci flow.

Proof. Choose T = 1
16r e−9π2

in Lemma 9.2. Let {si}, {ti} be two sequences
as in Lemma 9.2. Then, Lemma 9.3 implies that Rmax(ti) is uniformly
bounded by a constant 8e9π2

r. Since si ≤ ti + T, Lemma 9.1 implies that
Rmax(si) is uniformly bounded by a constant 16e9π2

r. Since si is an arbitrary
sequence of time, the maximal scalar curvature must be bounded from above
uniformly. ��

9.2 Convergence to Kähler-Einstein metrics by sequence

In this subsection, we want to show that for any integer l > 0, the Kähler
Ricci flow converges to a Kähler-Einstein metric in any Cl norm. Note
that the limit Kähler-Einstein metric may be different when extracting from
a different sequences. We will defer to the next section to prove that the
limit metric is in fact unique. Let us first recall a theorem by W.X. Shi [24]
(which we have restated in our setting):

Theorem 9.5. [24] Let (M, g0) be a Kähler metric in Mn with bounded
sectional curvature satisfying:

|Ri jkl|2 ≤ k0, ∀ i, j, k, l = 1, 2, · · · , n.

Then there exists a constant T(n, k0) which depends only on n and k0 such
that the evolution equation

∂gi j

∂t
= gi j − Ri j on M,

gi j(x, 0) = g0i j(x), ∀ x ∈ M
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has a smooth solution in 0 ≤ t ≤ T(n, k0), and satisfies the following
estimates: For any integer m ≥ 0, there exists constants cm > 0 depending
only on n,m, and k0 such that

sup
x∈M

|∇m Ri jkl| ≤
cm

tm
, ∀ 0 ≤ t ≤ T(n, k0).

In particular, there exists a constant c such that

1

c
gi j(x) ≤ g̃i j (x) ≤ c gi j (x)

where g̃i j(x) = gi j (x, T ).

Combining Shi’s theorem with Theorem 9.4, we arrive at the following

Theorem 9.6. The folllowing statements hold along the Kähler Ricci flow:

1. The injectivity radius has a uniform positive lower bound, and the diam-
eter has a uniform upper bound.

2. The bisectional curvature and all its derivatives are uniformly bounded
from above over the Kähler Ricci flow. In particular, the scalar curvature
has a uniform upper bound and positive lower bound.

3. lim
t→∞(R − r) = 0.

4. For any integer l > 0, and for any time sequence ti → ∞, there
exists a subsequence of {ti} (still using the same notation) such that
the evolved Kähler metrics converges to a Kähler-Einstein metric with
constant bisectional curvature in Cl norm.

Proof. By Theorem 9.4, the bisectioinal curvature R is uniformly bounded.
Lemma 7.1 then implies that the injectivity radius has a uniform positive
lower bound, which in turns implies that the Sobolev constant has a uni-
form upper bound. Since the volume is fixed along the Kähler Ricci flow,
the diameters are bounded uniformly from above. Repeatedly applying the
theorem of Shi, we can show that all the derivatives of the sectional curva-
tures are uniformly bounded over the entire flow. In particular, any sequence
of metrics over time must have a subsequence which converges to a limit
metric in Cl for any fixed integer l.

Next we want to show that lim
t→∞(R(t) − r) = 0. We just need to show

this for an arbitrary sequence si →∞. Lemma 9.2 implies that there exists
another sequence of time ti →∞ such that

lim
i→∞

∫
M
(R(ωϕ(ti) − r)2ωϕ(ti)

2 = 0, where ti ≤ si ≤ ti + T.

Combining this with the earlier result of convergence in any Cl norm,
we arrive at

lim
i→∞(R(ωϕ(ti) − r) = 0.
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Thus ωϕ(ti) converges to a Kähler-Einstein metric as ti → ∞. Note that
all of the l−th derivatives of the evolved metrics are controlled for any
integer l ≥ 0. Consider the sequence of the Kähler Ricci flow from ti to
ti + T. This sequence of Ricci flow with fixed length T converges strongly
to the Kähler Ricci flow of limit metrics. Since the limit of ωϕ(ti) is a Kähler-
Einstein metric, the limiting Ricci flow must be trivial and all of the limits of
sequences of flow from ti to ti +T are Kähler Einstein metrics. In particular,
since ti ≤ si ≤ ti + T, we show that lim

i→∞(R(ωϕ(si ) − r) = 0. Since {si} is

a sequence chosen randomly, we then have

lim
t→∞(R(ωϕ(t) − r) = 0.

In other words, the limit metric of any sequence along the Kähler Ricci flow
must be of constant scalar curvature. Consequently, the limit metric of any
sequence must be a Kähler-Einstein metric. Moreover, in CPn, this in turn
implies that the limit metric has constant bisectional curvature. In summary,
we have

lim
t→∞

(
Ri j −

1

n
Rgi j

)
= 0,

and

lim
t→∞

(
Ri jkl −

1

n(n + 1)
R(gi j gkl + gil gk j)

)
= 0.

��

10 Exponential convergence

In the previous section, we prove that the Kähler Ricci flow converges to
Kähler-Einstein metrics by sequences. Although limit metrics (from dif-
ferent time sequences) might be isometric to each other, but certainly not
necessarily unique. We want to show that the limit is unique and the Kähler
Ricci flow converges exponentially to this metric. In the 1st subsection,
we explain how to initialize the Kähler potential at time t = 0 in order to
have convergence on the Kähler potential level. In the second subsection,
we prove that Kähler Ricci flow converges exponentially fast to a unique
Kähler-Einstein metric.

10.1 Normalization of initial value

Consider the Ricci flow on the Kähler potential level,

∂ϕ

∂t
= log

ωϕ
n

ωn
+ ϕ − hω. (10.1)
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Define

c(t) = 1

V

∫
M

∂ϕ

∂t
ωϕ

n.

We have the following lemma

Lemma 10.1. Set the inital value of ϕ at time 0 so that

c(0) = 1

V

∫ ∞

0
e−t

∫
M
|∇ ∂ϕ
∂t
|2ϕωϕnd t < C.

This normalization is appropriate when the K energy has a uniform lower
bound along the Kähler Ricci flow. Then, c(t) > 0 for all time t. We have

lim
t→∞ c(t) = lim

t→∞
1

V

∫
M

∂ϕ

∂t
ωϕ

n = 0.

Proof. A simple calculation yields

c′(t) = c(t)− 1

V

∫
M
|∇ ∂ϕ
∂t
|2ϕωϕn.

Define

ε(t) = 1

V

∫
M
|∇ ∂ϕ
∂t
|2ϕωϕn.

Since the K energy has a lower bound along the Kähler Ricci flow, we
have ∫ ∞

0
ε(t)d t = 1

V

∫ ∞

0

∫
M
|∇ ∂ϕ
∂t
|2ϕ ωϕnd t < C

for some constant C. Now, we normalize our initial value of c(t) as

c(0) = 1

V

∫ ∞

0
ε(t)e−td t

= 1

V

∫ ∞

0

∫
M
|∇ ∂ϕ
∂t
|2ϕωϕne−td t

≤ 1

V

∫ ∞

0

∫
M
|∇ ∂ϕ
∂t
|2ϕωϕnd t

=
∫ ∞

0

d ν

d t
d t = ν(0)− ν(∞) < C.

This shows that our initial setting is correct. From the equation for c(t),
we have

(e−tc(t))′ = −ε(t)e−t .
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Integrating this equation from 0 to t, we have

e−tc(t) = c(0)−
∫ t

0
ε(τ)e−τd τ

=
∫ ∞

0
ε(t)e−td t −

∫ t

0
ε(τ)e−τd τ

=
∫ ∞

t
ε(τ)e−τd τ.

Thus

c(t) = et
∫ ∞

t
ε(τ)e−τd τ

=
∫ ∞

t
ε(τ)e−(τ−t)d τ

≤
∫ ∞

t
ε(τ)d τ → 0. (10.2)

Note that c(t) > 0 for all time. In conclusion, we have

lim
t→∞ c(t) = lim

t→∞

∫
M

∂ϕ

∂t
ωϕ

n = 0. (10.3)
��

10.2 Exponential convergence

In this subsection, we assume that the evolved Kähler metrics ωϕ(t) converge
to a Kähler-Einstein metric in at least C3−norm. We then show that the flow
must converge to a unique Kähler-Einstein metric exponentially fast.

Recall that the Kähler Ricci flow equation:

∂ϕ

∂t
= ln

ωn
ϕ

ωn
+ ϕ − hω.

Since the evolved Kähler metrics converge to Kähler-Einstein metrics
by sequences in any Ck norm, then we have the following

1. Modulo constants, we have

lim
t→∞

∂ϕ

∂t
= lim

t→∞

(
ln
ωn
ϕ

ωn
+ ϕ − hω

)
= 0.

This together with the normalization of the initial value (see Lem-
ma 10.1), we have

lim
t→∞

∂ϕ

∂t
= lim

t→∞

(
ln
ωn
ϕ

ωn
+ ϕ − hω

)
= 0.
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2. The eigenspace of ωϕ(t) converges to the eigenspace of a Kähler-Einstein
metric. Notice that in a fixed Kähler class, all Kähler-Einstein metrics
are isometric to each other so that they have the same spectrum.

3. The eigenvalues of ωϕ(t) converge to the eigenvalues of some Kähler
Einstein metrics. Note that the second eigenvalue of a Kähler Einstein
metric is strictly bigger than 1.

Proposition 10.2. There exists a positive numberα > 0 and constant C > 0
such that

∫
M

(
∂ϕ

∂t
− c(t)

)2

ωn
ϕ ≤ C e−α t .

Moreover, for every integer l > 0, there exists a constant Cl such that

∫
M
| Dl

(
∂ϕ(t)

∂t
− c(t)

)
|2ϕ ωn

ϕ(t) ≤ Cl e−αt .

First we want to prove a corollary of this proposition

Corollary 10.3. There exists a uniform constant C such that

0 < c(t) ≤ C e−α t, ∀ t > 0.

Proof. Recall that

ε(t) = 1

V

∫
M
| ∂

(
∂ϕ(t)

∂t
− c(t)

)
|2ϕ ωn

ϕ(t) ≤ C1 e−α t,

where C1 is some uniform constant. Plugging this into Formula (10.2), we
obtain

c(t) =
∫ ∞

t
ε(τ)e−(τ−t)d τ ≤ C1

1 + α ete−(1+α)t = C1

1 + α e−α t .

��
Next we return to prove Proposition 10.2.

Proof. Differentiating the Kähler Ricci flow with respect to time t,

∂2ϕ

∂t2
= ∆ϕ

∂ϕ

∂t
+ ∂ϕ

∂t
. (10.4)
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Put µ(t) =
∫

M

(
∂ϕ

∂t
− c(t)

)2

ωn
ϕ. Then

d µ(t)

d t

= 2
∫

M

(
∂ϕ

∂t
− c(t)

)(
∂2ϕ

∂t2
− c′(t)

)
ωn
ϕ +

∫
M

(
∂ϕ

∂t
− c(t)

)2

∆ϕ

∂ϕ

∂t
ωn
ϕ

= 2
∫

M

(
∂ϕ

∂t
− c(t)

)(
∆ϕ

∂ϕ

∂t
+ ∂ϕ

∂t
− c(t)

)
ωn
ϕ +

∫
M

(
∂ϕ

∂t
− c(t)

)2

∆ϕ

∂ϕ

∂t
ωn
ϕ

= −2
∫

M

(
1 + ∂ϕ

∂t
− c(t)

)
| ∇

(
∂ϕ

∂t
− c(t)

)
|2ϕ ωn

ϕ + 2
∫

M

(
∂ϕ

∂t
− c(t)

)2

ωn
ϕ.

Here we have used the fact
∫

M

(
∂ϕ

∂t
− c(t)

)
ωn
ϕ = 0 twice. Since lim

t→∞
∂ϕ

∂t
=

lim
t→∞ c(t) = 0 for any ε > 0, and for t large enough, we have

d µ(t)

d t

≤ −2(1 − ε)
∫

M
| ∇

(
∂ϕ

∂t
− c(t)

)
|2ϕ ωn

ϕ

+ 2
∫

M

(
∂ϕ

∂t
− c(t)

)2

ωn
ϕ. (10.5)

If the first eigenvalue of ωϕ(t) converges to 1, it appears to be quite diffi-
cult from the previous inequality to derive any control on d µ(t)

d t . Denote the
first, second eigenvalue of a Kähler Einstein metric as λ1 < λ2. Lemma 6.3
implies that λ1 ≥ 1 and the equality holds if and only if the space of holo-
morphic vector fields η(M) is non-trivial. In case of η(M) = 0, we have
λ1 > 1. For t large enough, all eigenvalues of ωϕ(t) will be bigger than
λ1+1

2 > 1. Therefore,

∫
M
| ∇

(
∂ϕ

∂t
− c(t)

)
|2ϕ ωn

ϕ ≥
λ1 + 1

2

∫
M

(
∂ϕ

∂t
− c(t)

)2

ωn
ϕ.

Plugging this into inequality (10.5), we obtain

d µ(t)

d t
≤ −2(1 − ε)λ1 + 1

2

∫
M

(
∂ϕ

∂t
− c(t)

)2

ωn
ϕ + 2

∫
M

(
∂ϕ

∂t
− c(t)

)2

ωn
ϕ

≤ −α
∫

M

(
∂ϕ

∂t
− c(t)

)2

ωn
ϕ = −α µ(t),
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where α = 2(1 − ε)λ1+1
2 − 2. Choose ε > 0 to be small enough, we have

α > 0. It is straightforward to prove that there exists a uniform constant C
such that

µ(t) =
∫

M

(
∂ϕ

∂t
− c(t)

)2

ωn
ϕ ≤ C e−αt .

On the other hand, if η(M) �= 0, then λ1 = 1 and the first eigenvalue
of ωϕ(t) converges to 1. The inequality (10.5) gives us little control of the
growth of µ(t). However, the Futaki invariant comes to rescue: Let X be
any holomorphic vector field, then (in a Kähler-Einstein manifold)

0 = fM(X, ωϕ)

=
∫

M
X

(
ln
ωn
ϕ

ωn
+ ϕ − hω

)
ωn
ϕ

=
∫

M
X

(
∂ϕ

∂t
− c(t)

)
ωn
ϕ = −

∫
M

∆ϕθX ·
(
∂ϕ

∂t
− c(t)

)
ωn
ϕ,

where L X(ωϕ) = √−1∂∂θX as defined in Sect. 6. If ωϕ were already
a Kähler-Einstein metric, then the above inequality would imply that

∫
M

∆ϕ(θX ) ·
(
∂ϕ

∂t
− c(t)

)
ωn
ϕ = −

∫
M
θX ·

(
∂ϕ

∂t
− c(t)

)
ωn
ϕ = 0.

This in its turn would imply that
(
∂ϕ

∂t − c(t)
)

is perpendicular to the
first eigenspace of ωϕ. And that would give us the desired estimate from
the inequality (10.5). Unfortunately, ωϕ is not a Kähler-Einstein metric.
However, ωϕ(t) is at least C3 close to a Kähler-Einstein metric as t → ∞;
and this shall be sufficient to derive the exponential convergence. Note that
the eigenvalues ofωϕ(t) shall converges to the eigenvalues of Kähler Einstein
metrics. For any fixed ε > 0, and for t large enough, the eigenvalues of ωϕ(t)
must be either in (1−ε, 1+ε) or are strictly bigger than λ2+1

2 > 1+ε. Denote
the set of all eigenspaces ofωϕ(t) whose eigenvalues are between (1−ε, 1+ε)
as Λsmall(ωϕ). Then Λsmall(ωϕ) converges to the first eigenspace of some
Kähler Einstein metrics. Moreover, by Lemma 6.3, {�ϕ(t)θX | X ∈ η(M)}
converges to the first eigenspace of the limit Kähler-Einstein metric space.
Thus, {�ϕ(t)θX | X ∈ η(M)} is essentially Λsmall(ωϕ(t)), where possible
error terms become as small as needed when t → ∞. In other words, the
vanishing of Futaki invariant implies that the projection of ∂ϕ

∂t − c(t) into
the eigenspace Λsmall(ωϕ) is very small (compare to the size of ∂ϕ

∂t − c(t)).
Namely, we have

∂ϕ

∂t
− c(t) = �+ �⊥,



538 X.X. Chen, G. Tian

where � ∈ Λsmall(ωϕ) and �⊥ ⊥ Λsmall(ωϕ). For t large enough, we have∫
M
�2ωn

ϕ ≤ ε

∫
M

(
∂ϕ

∂t
− c(t)

)2

ωn
ϕ,

and ∫
M
�⊥2

ωn
ϕ ≥ (1 − ε)

∫
M

(
∂ϕ

∂t
− c(t)

)2

ωn
ϕ.

Notice that the eigenvalue of ωϕ(t) corresponds to Λsmall(ωϕ(t))
⊥ are

always bigger than λ2+1
2 > 1 when t large enough. Therefore,∫

M
| ∇

(
∂ϕ

∂t
− c(t)

)
|2 ωn

ϕ ≥
λ2 + 1

2

∫
M
�⊥2

ωn
ϕ

≥ (1 − ε)λ2 + 1

2

∫
M

(
∂ϕ

∂t
− c(t)

)2

ωn
ϕ.

Plugging this into inequality (10.5), we obtain

d µ(t)

d t
≤ −2(1 − ε)(1 − ε)λ2 + 1

2

∫
M

(
∂ϕ

∂t
− c(t)

)2

ωn
ϕ + 2

∫
M

(
∂ϕ

∂t
− c(t)

)2

ωn
ϕ

≤ −α
∫

M

(
∂ϕ

∂t
− c(t)

)2

ωn
ϕ = −α µ(t),

where α = 2(1− ε)2 λ2+1
2 − 2. Again, we choose ε > 0 to be small enough,

we have α > 0. It is straightforward to prove that there exists a uniform
constant C such that

µ(t) =
∫

M

(
∂ϕ

∂t
− c(t)

)2

ωn
ϕ ≤ C e−αt .

This proves the first part of Proposition 10.2. Next we want to prove the
exponential convergence for all derivatives. For any integer l > 0, consider
the L2 norm of l−th derivatives (l ≥ 1) of

(
∂ϕ

∂t − c(t)
) :

µl(t) =
∫

M
| Dl

(
∂ϕ(t)

∂t
− c(t)

)
|2ϕ(t) ωn

ϕ(t)

=
∫

M
| Dl ∂ϕ(t)

∂t
|2ϕ(t) ωn

ϕ(t).

Since lim
t→∞

(
∂ϕ

∂t
− c(t)

)
= 0 and since the Kähler Ricci flow converges to

some Kähler-Einstein metrics in any Ck norm (Theorem 9.6) for any integer
k > 0, we have

lim
t→∞µl(t) = 0.
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Finally, we want to show that it is exponentially decay along the Kähler
Ricci flow. Using the equation (10.4), and the fact that all the derivatives of
curvature are uniformly bounded, we have (l ≥ 1)

dµl(t)

d t

=
∫

M

∂

∂t
| Dl ∂ϕ(t)

∂t
|2ϕ ωn

ϕ(t) +
∫

M
| Dl ∂ϕ(t)

∂t
|2ϕ �ϕ(t)

∂ϕ(t)

∂t
ωn
ϕ(t)

≤ −2
∫

M
| Dl+1 ∂ϕ(t)

∂t
|2ϕ ωn

ϕ(t) + c(n, l)
∫

M
| Dl ∂ϕ(t)

∂t
|2ϕ ωn

ϕ(t).

≤ −2
∫

M
| Dl+1 ∂ϕ(t)

∂t
|2ϕ ωn

ϕ(t)

+ c(n, l)

(
ε

∫
M
| Dl+1 ∂ϕ(t)

∂t
|2ϕ ωn

ϕ(t) + c(ε)
∫

M

(
∂ϕ(t)

∂t
− c(t)

)2

ωn
ϕ(t)

)

= −(2 − c(n, l)ε)
∫

M
| Dl+1 ∂ϕ(t)

∂t
|2ϕ ωn

ϕ(t)

+ c(n, l)c(ε)
∫

M

(
∂ϕ(t)

∂t
− c(t)

)2

ωn
ϕ(t).

In the first inequality, we use integration by parts and the fact that all of
the l−th derivatives of the metrics are uniformly bounded. In the second to
the last inequality, we have used an interpolation formula where C(ε) is the
interpolation constant. Choose ε to be small enough so that

2 − c(n, l)ε > 0.

Then, we have

dµl(t)

d t
≤ c(n, l)c(ε)

∫
M

(
∂ϕ(t)

∂t
− c(t)

)2

ωn
ϕ(t) ≤ Cl e−αt .

Here Cl = c(n, l)c(ε)C < ∞. Integrating the above inequality from t to
∞, we arrive at the desired estimates:

µl(t) =
∫

M
| Dl

(
∂ϕ(t)

∂t
− c(t)

)
|2ϕ ωn

ϕ(t) ≤ Cl e−αt,

where we have used the fact that lim
t→∞µl(t) = 0. ��

Note that ωϕ(t) have uniform positive lower bound on injective radius
and a uniform positive bound for Sobolev constant. Combining the above
inequality and Sobolev embedding theorem, we arrive at

| Dl

(
∂ϕ(t)

∂t
− c(t)

)
|2ϕ≤ cl e−αt, (10.6)
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where cl is another set of uniform constants. In particular when l = 0, we
have

| ∂ϕ(t)
∂t

− c(t) |< c0 e−αt .

Combining this inequality with Corollary 10.3, we have

| ∂ϕ(t)
∂t

|< c0 e−αt

where c0 might be some new constant. Thus there exists a unique Kähler
potential ϕ(∞) such that

| ϕ(t)− ϕ(∞) |≤ c0 e−αt .

From here, we can easily obtain that ωϕ(t)(0 ≤ t ≤ ∞) are mutually
equivalent, i.e., there exists a uniform constant c > 1 such that

1

c
ωϕ(∞) ≤ ωϕ(t) ≤ c ωϕ(∞), ∀ t ≥ 0.

Here ϕ(∞) is the unique Kähler Einstein metric (arisen from the limit of the
Kähler Ricci flow). Combining this with inequalities (10.6), we can easily
imply that

| Dl

(
∂ϕ(t)

∂t
− c(t)

)
|2ϕ(∞)≤ cl e−αt,

Thus, ϕ(t) converges exponentially fast to a unique Kähler-Einstein
metric in P (M, ω) in any Cl norm. We then prove the following proposition

Proposition 10.4. For any integer l > 0, ∂ϕ

∂t converges exponentially fast
to 0 in any Cl norm. Furthermore, the Kähler Ricci flow converges expo-
nentially fast to a unique Kähler Einstein metric on any Kähler-Einstein
surfaces.

11 Concluding remarks

Now we prove our main Theorem 1.1 and Corollary 1.2.

Proof. Theorem 1.1 follows from Proposition 10.4. Next we want to prove
Corollary 1.2. For any Kähler metric in the canonical Kähler class such
that it has non-negative bisectional curvature on M but positive bisectional
curvature at least at one point, we apply the Kähler Ricci flow to this metric.
According to Theorem 2.2, the bisectional curvature of the evolved metric
is strictly positive. By our Theorem 1.1, the Kähler Ricci flow converges
exponentially to a unique Kähler Einstein metric with constant positive
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bisectional curvature. Thus, any Kähler metric with nonnegative bisec-
tional curvature on M and positive at least at one point is path connected
to a Kähler-Einstein metric with positive bisectional curvature. Note that
all the Kähler-Einstein metrics are path connected by automorphisms [3].
Therefore, the space of all Kähler metrics with nonnegative bisectional cur-
vature on M and positive at least at one point, is path connected. Similarly,
using Theorem 2.3 and our Theorem 1.1, we can show that all of the Kähler
metrics with nonnegative curvature operator on M and positive at least at
one point is path connected. Note that the nonnegative curvature operator
implies the nonnegative bisectional curvature. ��
Remark 11.1. Combining our Main theorem 1.1 and Theorem 2.2, 2.3, we
can easily generalize Corollary 1.2 to the case that the bisectional curvature
(or curvature operator) is only assumed to be non-negative.

Next we want to propose some future problems.

Question 11.2. As our Remark 1.4 indicates, what we really need is the
positivity of Ricci curvature along the Kähler Ricci flow. However, it is not
expected that the positivity of Ricci curvature is preserved under the Kähler
Ricci flow except on Riemann surfaces. The positivity of bisectional curva-
ture is a technical assumption to assure the positivity of Ricci curvature. It
is very interesting to extend Theorem 1.1 to metrics without the assumption
on bisectional curvature.

Question 11.3. Our main theorem can be extended to the Kähler orbifold
case. By an old theorem of Berger, any Kähler-Einstein metric on a Käh-
ler manifold with positive bisectional curvature has constant bisectional
curvature. One should be able to use the Kähler Ricci flow to classify all
Kähler-Einstein orbifolds with positive bisectional curvature8.

Question 11.4. Is the positivity of the sectional curvature preserved under
Kähler Ricci flow?

12 Appendix: Sectional curvature and bisectional curvature

It is well known that in a Kähler manifold, these two types of curvature ten-
sors (the sectional curvature and the bisectional curvature) determine each
other uniquely. However, an explicit formula which express the sectional
curvatures in terms of the bisectional curvature is not so well publicized in
the literature, although the derivation of such a formula is long but rather
elementary. However, such an explicit formula is critically needed for the
sharp estimate of the injectivity radius in terms of the upper bound of the
bisectional curvature. Thus, we will include this formula here for the read-
er’s convenience. However, we will omit the proof here and refer the reader
to [18] and [19] for details.

8 In our second paper [7], we prove that any Kähler-Einstein orbifold with positive
bisectional curvature must be a global quotient of CPn .
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We first explain some basic concepts of the sectional curvature and
the bisectional curvature. Let u, v,w, x be any four tangent vectors in M.
Suppose R(u, v,w, x) is the Riemannian curvature tensor. Then

R(u, v, Jw, Jx) = R(u, v,w, x)

where J is the complex structure of M. Because of splitting TC M = T 1,0M⊕
T 0,1M into ±√−1 eigenspaces of J , we can deduce that
R(u, v,w, x) = 0 unless w and x are of different type. We will use this
property strongly in the this appendix. Suppose x ⊥ y are two unit tangent
vectors of M. Denote the sectional curvature on the plane x, y as K(x, y).
Set now

u = 1√
2
(x −√−1Jx), v = 1√

2
(y −√−1Jy).

If y⊥J x, then

R(u, u, v, v) = R(x, y, y, x)+ R(x, J y, J y, x). (12.1)

If y = Jx, then

R(u, u, v, v) = R(x, J x, J x, x).

This means that the bisectional curvature and the sectional curvature
are the same on any holomorphic plane. Now, we seek a formula which
expresses the sectional curvature in terms of the bisectional curvature.

Lemma 12.1. If w1, w2 are two mutually perpdicular real vectors in TM
such that the two complex planes spanned by w1 and w2 respectively are
either perpendicular to each other or are identical, then the sectional cur-
vature of the real plane spanned by these two vector fields is

K(w1, w2) = 1

4

(
R(A, A, A, A)− 2R(B, B, A, A)+ R(B, B, B, B)

)
where A = 1√

2
(u1 + u2) and B = 1√

2
(u1 − u2) and

u1 = 1√
2
(w1 −

√−1Jw1), and u2 = 1√
2
(−Jw2 −

√−1w2).

An immediate corollary is

Corollary 12.2. If the bisectional curvature is less than 1, then the sectional
curvature is less than 2.

We omit the proof for both the lemma and corollary.
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