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Primal-Dual Pair of Linear Programs

Primal Dual

min cTx max bTy
s.t. Ax = b, s.t. ATy + s = c,

x ≥ 0; s ≥ 0.

Lagrangian

L(x, y) = cTx− yT (Ax− b).

Optimality Conditions

Ax = b,

ATy + s = c,

XSe = 0, ( i.e., xj · sj = 0 ∀j),

x ≥ 0,

s ≥ 0,

where X = diag{x1, · · · , xn}, S = diag{s1, · · · , sn} and e = (1, 1, · · · , 1) ∈ Rn.
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Complementarity
Recall that the Simplex Method works with a partitioned formulation:

LP constraint matrix A = [B,N ], B is nonsingular

primal variables x = (xB, xN),

reduced costs s = (sB, sN).

The simplex method maintains the complementarity of primal and dual solutions:

xj · sj = 0 ∀j = 1, 2, ..., n.

For basic variables, sB = 0 and

(xB)j · (sB)j = 0 ∀j ∈ B.

For non-basic variables, xN = 0 hence

(xN)j · (sN)j = 0 ∀j ∈ N .
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J. Gondzio Interior Point Methods

What’s wrong with the Simplex Method?
A vertex is defined by a set of n equations:[

B N
0 In−m

] [
xB

xN

]
=

[
b
0

]
.

The linear program with m constraints and n variables (n ≥ m) has at most

NV =

(
n
m

)
=

n!

m!(n−m)!

vertices and the simplex method can make a non-polynomial number of iterations
to reach the optimality.

V. Klee and G. Minty’s example LP: simplex method needs 2n iterations.

How good is the simplex algorithm,
in: Inequalities-III, O. Shisha, ed., Academic Press, 1972, 159–175.
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First Order Optimality Conditions

Simplex Method: Interior Point Method:

Ax = b
ATy + s = c

XSe = 0
x, s ≥ 0.

Ax = b
ATy + s = c

XSe = µe
x, s ≥ 0.

Basic: x > 0, s = 0 Nonbasic: x = 0, s > 0

x x

s s

"Basic": x > 0, s = 0 "Nonbasic": x = 0, s > 0

x x

s s

Theory: IPMs converge in O(
√

n) or O(n) iterations
Practice: IPMs converge in O(log n) iterations
... but one iteration may be expensive!
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Logarithmic barrier − lnxj
“replaces” the inequality xj ≥ 0 .

x

−ln x

1

Observe that

min e−
∑n

j=1 ln xj ⇐⇒ max
n∏

j=1

xj

The minimization of −∑n
j=1 ln xj is equivalent to the maximization of the product

of distances from all hyperplanes defining the positive orthant: it prevents all xj

from approaching zero.
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Use Logarithmic Barrier

Primal Problem Dual Problem

min cTx max bTy
s.t. Ax = b, s.t. ATy + s = c,

x ≥ 0; s ≥ 0.

Primal Barrrier Problem Dual Barrrier Problem

min cTx−
n∑

j=1

ln xj max bTy +
n∑

j=1

ln sj

s.t. Ax = b, s.t. ATy + s = c,
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Primal Barrier Program: min cTx− µ
n∑

j=1

ln xj

s.t. Ax = b.

Lagrangian: L(x, y, µ) = cTx− yT (Ax− b)− µ

n∑
j=1

ln xj,

Stationarity: ∇xL(x, y, µ) = c− ATy − µX−1e = 0

Denote: s = µX−1e, i.e. XSe = µe.

The First Order Optimality Conditions are:

Ax = b,
ATy + s = c,

XSe = µe
(x, s) > 0.
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Newton Method
The first order optimality conditions for the barrier problem form a large system
of nonlinear equations

F (x, y, s) = 0,

where F : R2n+m 7→ R2n+m is an application defined as follows:

F (x, y, s) =


 Ax − b

ATy + s − c
XSe − µe


 .

Actually, the first two terms of it are linear; only the last one, corresponding to
the complementarity condition, is nonlinear.

For a given point (x, y, s) we find the Newton direction (∆x, ∆y, ∆s) by solving
the system of linear equations:

 A 0 0
0 AT I
S 0 X


 ·


 ∆x

∆y
∆s


 =


 b− Ax

c− ATy − s
µe−XSe


 .
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IPM for QP
min cTx + 1

2x
TQx → min cTx + 1

2x
TQx− µ

∑n
j=1 ln xj

s.t. Ax = b, s.t. Ax = b,
x ≥ 0.

The first order conditions (for the barrier problem)

Ax = b,

ATy + s−Qx = c,

XSe = µe.

Newton direction
 A 0 0
−Q AT I

S 0 X





 ∆x

∆y
∆s


 =


 ξp

ξd

ξµ


 =


 b− Ax

c− ATy − s+Qx
µe−XSe


 .

Augmented system[ −Q− Θ−1 AT

A 0

] [
∆x
∆y

]
=

[
ξd −X−1ξµ

ξp

]
.
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IPM for NLP min f(x) → min f(x)− µ
m∑

i=1

ln zi

s.t. g(x) + z = 0 s.t. g(x) + z = 0,
z ≥ 0.

Lagrangian: L(x, y, z, µ) = f(x) + yT (g(x) + z)− µ
m∑

i=1

ln zi.

The first order conditions (for the barrier problem)

∇f(x) +∇g(x)Ty = 0,
g(x) + z = 0,

Y Ze = µe.

Newton direction
 Q(x, y) A(x)T 0

A(x) 0 I
0 Z Y





∆x

∆y
∆z


 =


 −∇f(x)− A(x)Ty

−g(x)− z
µe− Y Ze


 .

Augmented system[
Q(x, y) A(x)T

A(x) −ZY −1

] [
∆x
∆y

]
=

[−∇f(x)−A(x)Ty
−g(x)−µY −1e

]
where

A(x) = ∇g
Q(x, y) = ∇2

xxL
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Optimality Conditions: Newton Direction:

Ax = b
ATy + s = c

XSe = µe
x, s ≥ 0.


 A 0 0

0 AT I
S 0 X





 ∆x

∆y
∆s


 =


 ξp

ξd

ξµ


 .

Linear Algebra involves an (ill-conditioned) scaling matrix Θ = XS−1.

Augmented System vs Normal Equations

LP QP NLP

[
Θ−1 AT

A 0

][
∆x
∆y

]
=

[
f
d

] [
Q+Θ−1 AT

A 0

][
∆x
∆y

]
=

[
f
d

] [
Q(x, y) A(x)T

A(x) −ZY−1

][
∆x
∆y

]
=

[
f
d

]

(AΘAT )∆y=g (A(Q+Θ−1)−1AT )∆y=g (AQ−1AT +ZY −1)∆y=g
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Direct Methods: Symmetric LDLT Factorization

Indefinite Quasidefinite Positive Definite

H =

[
Q AT

A 0

]
H =

[
Q AT

A −R

]
H = AQ−1AT

2×2 pivots needed 1×1 pivots (any sign) 1×1 pivots (positive)
[

0 a
a 0

]
and

[
0 a
a d

]
strongly factorizable easy

Vanderbei, SIOPT (1995): Symmetric QDFM’s are strongly factorizable.
For any quasidefinite matrix there exists a Cholesky-like factorization

H̄ = LDLT,

where D is diagonal but not positive definite:
D has n negative pivots and m positive pivots.
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OOPS (Object Oriented Parallel Solver)

• Mantra: “Truly large scale problems are not only sparse but structured”
(due to e.g. dynamics, uncertainty, spatial distribution etc.)

• Exploiting structure is key to building efficient IPMs for large problems:

– Faster linear algebra

– Reduced memory use

– Possibility to exploit (massive) parallelism

– We assume that structure is known! ⇒ no automatic detection.

• OOPS currently solves LP/QP problems.

• Simple sequential-QP scheme solves nonlinear ALM models
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OOPS: (Block) Elimination Trees:

Elimination tree orders rows/columns for elimination with minimum fill-in:



x x x
x x x

x x x x
x x x

x x x
x x x

x x x x x
x x x x x x x x




3 7

61 2 4 5

8

Elimination Tree can be extended to Block Elimination Tree






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D D1211 D10 B B11 12 D D D D B B B21 22 23 20 21 22 23

C32

⇒ Organisation of linear algebra, Parallelism
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Minimum Degree Ordering

Sparse Matrix Pivot h11 Pivot h22

H =




x x x x
x x

x x x
x x x
x x x

x x x







p x x x
x x

x x f f x
x f x f x
x x f f x

x x x







x x x x
p x

x x x
x x x
x x x

x x x




Minimum degree ordering:
choose a diagonal element corresponding to a row with the min number of nonzeros.
Permute rows and columns of H accordingly.
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From Sparsity to Block-Sparsity:

Apply minimum degree ordering to (sparse) blocks:

Block-Sparse Matrix Pivot Block H11 Pivot Block H22

H =










P






P




choose a diagonal block-pivot corresponding to a block-row with the min number
of blocks.
Permute block-rows and block-columns of H accordingly.
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OOPS: Object-oriented linear algebra implementation

• Every node in block elimination tree has own linear algebra implementation
(depending on its type)

• Implementation is realisation of an abstract linear algebra interface.

• Different implementations for different structures are available.

Di

Bi

RankCorrector

Rank corrector

implementations

D

R

SparseMatrix

general sparse

linear algebra

matrix

y=Mtx

y=Mx

SolveLt

SolveL

factorize

Schur complement

Implementations based on

BorderedBlockDiagonal

M
at

ri
x 

In
te

rf
ac

e

⇒ Rebuild block elimination tree with matrix interface structures
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Application: Asset and Liability Management Problem

• A set of assets J = {1, ..., J} is given (e.g. bonds, stock, real estate).

• At every stage t = 0, ..., T−1 we can buy or sell different assets.

• The return of asset j at stage t is uncertain (but distribution is known).

We have to make investment decisions: what to buy or sell, at which time stage

Objectives:

• maximize the final wealth

• minimize the associated risk
⇒ Mean Variance formulation:

max IE(X)− ρVar(X)

⇒ Stochastic Program:

• Can formulate deterministic equivalent problem

• standard QP, but huge

PPAM Conference, Poznań, September 2005 20
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ALM: Structure of matrices A and Q:

Matrix A Matrix Q


-1

A

A

A

B

B

A

B

d d d d

B

B

A

B

A

A







−1

Q

Q

Q

Q



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ALM: Structure of Augmented System matrix:
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ALM: Largest Problem Attempted

• Optimization of 21 assets (stock market indices) over 7 time stages.

• Using multistage stochastic programming
Scenario tree geometry: 128-30-16-10-5-4 ⇒ 16 million scenarios.

• Scenario Tree generated using geometric Brownian motion.

• ⇒ 1.01 billion variables, 353 million constraints

Issues for Massive Parallelism

• Sparsity of multilevel linear Algebra

• Memory Management
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BlueGene (Edinburgh, Scotland)

• 2048 Processors

• 0.7GHz, 256Mb

• 4.7 TFlops

• #64 in top500.org list

HPCx (Daresbury, England)

• 1600 IBM Power-4 Processors

• 1.7GHz, 800Mb

• 6.2 TFlops

• #45 in top500.org list
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Sparsity of Linear Algebra I

• In ALM problems matrices up to ≈ 500.000 − 1.000.000 variables can be
treated as unstructured sparse matrices

• Problem has: – 128 first level nodes with 10.000.000 variables each.

– 3840 second level nodes with 350.000 variables each.

⇒ need to decompose problem at second level
(with 1280 processors ⇒ 3 blocks per processor)

30 nodes 30 nodes

128 nodes
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Sparsity of Linear Algebra II

• ⇒ – 63 + 128× 63 = 8127 columns for
Schur-complement

– Prohibitively expensive

• ⇒ – Need facility to exploit nested structure

– Need to be careful that Schur-complement
calculations stay sparse on second level
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Memory Management
• Data for problem requires > 1GB of memory.
⇒ need to split information between processors

• To each node in block-elimination tree a set of processors is assigned

• Linear Algebra is implemented so that processors communicate when needed

Distribution of leading matrix blocks
among processors implies

• Distribution of subordinate blocks

• Distribution of row/column vector
contributions

11

2

3 3

2

1

5

6 6

5

654

1 2 3 1−3 4 5 6 1−6

6

5

3

2

4

4−6

4−6 4−6

1 2 3 1−3 1−3

44

1 2 3 1−3 4 5 6 4−6 1−6

1−6

4−6

6

5

4

1−3

3

2

1
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Results (ALM: Mean-Variance QP formulation):

Problem Stages Blk Assets Scenarios Constraints Variables iter time procs machine

ALM8 7 128 6 12.831.873 64.159.366 153.982.477 42 3923 512 BlueGene

ALM9 7 64 14 6.415.937 96.239.056 269.469.355 39 4692 512 BlueGene

ALM10 7 128 13 12.831.873 179.646.223 500.443.048 45 6089 1024 BlueGene

ALM11 7 128 21 16.039.809 352.875.799 1.010.507.968 53 3020 1280 HPCx

The problem with

• 353 million of constraints

• 1 billion of variables

solved in 50 minutes using 1280 procs.
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Object-Oriented Parallel Solver (OOPS):
http://www.maths.ed.ac.uk/~gondzio/parallel/solver.html
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Conclusions:

• Interior Point Methods are the key optimization technique.

• The theory of IPMs is well understood.

• IPMs demonstrate spectacular efficiency.

• Today IPMs can solve problems of dimension 109.

IPMs are well-suited to exploit parallelism

PPAM Conference, Poznań, September 2005 30
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Thank you for your attention!

PPAM Conference, Poznań, September 2005 31
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Interior-Point Framework
The logarithmic barrier

− ln xj

added to the objective in the optimization problem prevents variable xj from
approaching zero and “replaces” the inequality

xj ≥ 0.

Derive the first order optimality conditions for the primal barrier problem:

Ax = b,
ATy + s = c,

XSe = µe,

and apply Newton method to solve this system of nonlinear equations.
Actually, we fix the barrier parameter µ and make only one (damped) Newton
step towards the solution of FOC. We do not solve the current FOC exactly. In-
stead, we immediately reduce the barrier parameter µ (to ensure progress towards
optimality) and repeat the process.
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Central Trajectory

Parameter µ controls the distance to optimality.

cTx−bTy = cTx−xTATy = xT(c−ATy) = xTs = nµ.

Analytic center (µ-center): a (unique) point

(x(µ), y(µ), s(µ)), x(µ) > 0, s(µ) > 0

that satisfies the first order optimality conditions.

The path
{(x(µ), y(µ), s(µ)) : µ > 0}

is called the primal-dual central trajectory.
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J. Gondzio Interior Point Methods

Follow the Central Path

Ax = b,
ATy + s = c,

XSe ≈ µe, i.e. ‖XSe− µe‖ ≤ θµ,

where θ ∈ (0, 1) and the barrier µ satisfies xTs = nµ.

2
θN  (   ) neighbourhoodof the central path
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Progress to optimality
Reduce the barrier: µk+1 = σµk, where σ = 1− β/

√
n for some β ∈ (0, 1).

Compute Newton direction:
 A 0 0

0 AT I
S 0 X


 ·


 ∆x

∆y
∆s


 =


 0

0
σµe−XSe


 ,

and make step.

At the new iterate (xk+1, yk+1, sk+1) = (xk, yk, sk) + (∆xk, ∆yk, ∆sk)
duality gap is reduced 1− β/

√
n times.

Note that since at one iteration duality gap is reduced 1 − β/
√

n times, after
√

n iterations the reduction becomes:

(1− β/
√

n)
√

n ≈ e−β.

After C · √n iterations, the reduction is e−Cβ.
For sufficiently large constant C the duality gap becomes arbitrarily small.
Hence this algorithm has complexity O(

√
n).
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O(
√

n) Complexity Result
Theorem
Given ε > 0, suppose that a feasible starting point (x0, y0, s0) ∈ N2(0.1) satisfies

(x0)Ts0 = nµ0, where µ0 ≤ 1/εκ,

for some positive constant κ.
Then there exists an index K with K = O(

√
n ln(1/ε)) such that

µk ≤ ε, ∀k ≥ K.
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Interior Point Methods

• Fiacco & McCormick (1968)
handling inequality constraints - logarithmic barrier;
minimization with inequality constraints
replaced by a sequence of unconstrained minimizations

• Lagrange (1788)
handling equality constraints - multipliers;
minimization with equality constraints
replaced by unconstrained minimization

• Newton (1687)
solving unconstrained minimization problems;

Marsten, Subramanian, Saltzman, Lustig and Shanno:
“Interior point methods for linear programming:
Just call Newton, Lagrange, and Fiacco and McCormick!”,
Interfaces 20 (1990) No 4, pp. 105–116.
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Elimination Tree:
Matrix Cholesky Factor Elimination Tree



x x x
x x x

x x x
x x x

x x x x
x x x x

x x x x
x x







x
x

x
x x

x x
x x x

x x x f x
x x f x


 5 4

1 2

6 3

7

8




x x x
x x x

x x x x
x x x

x x x
x x x

x x x x x
x x x x x x x x







x
x

x x x
x

x
x

x x x x
x x x x x x x x




3 7

61 2 4 5

8
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From Sparsity to Block-Sparsity:

Sparse Matrix Block-Sparse Matrix

H =




x x x x
x x
x x
x x


⇒L=




x
x x
x x x
x x x x








⇒L=







PHPT =




x x
x x

x x
x x x x


⇒L=




x
x

x
x x x x








⇒L=







Object-Oriented Parallel Solver ⇒ problems of size 106, 107, 108,109, ...

G. & Sarkissian, MP 96 (2003) 561-584.
G. & Grothey, SIOPT 13 (2003) 842-864.
G. & Grothey, AOR (to appear).
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