
THE PDCGM 2.0 MANUAL

Jacek Gondzio ∗1, Pablo González-Brevis†1,2, and Pedro Munari‡3

1School of Mathematics, University of Edinburgh, Edinburgh, United Kingdom
2Engineering School, Universidad del Desarrollo, Concepción, Chile

3Production Engineering Department, Federal University of São Carlos, São Carlos-SP, Brazil

September 3, 2013

1 Introduction

This document contains general information about the PDCGM which is the acronym for the
primal-dual column generation method. For a complete description of the method and for refer-
ence, please refer to [13, 14]. This software has been written on top of HOPDM (Higher Order
Primal-Dual Method) [7, 8, 9] which is a state-of-the-art implementation of a primal-dual interior
point algorithm [11, 25].

1.1 About the PDCGM

The PDCGM is a column generation method [20] based on an infeasible primal-dual interior
point algorithm [11]. This method was originally proposed in [15] and further developed in
[14]. It relies on sub-optimal and well-centred solutions (dual variables) of the restricted master
problem (RMP) sent to the oracle. In order to obtain sub-optimal solutions, the tolerance
used to solve each restricted master problem is dynamically adjusted starting from loose at the
beginning and being gradually tightened once the column generation method gets close the the
solution. The centrality feature of the method is provided by the use of a primal-dual interior
point method (path-following method) which obtains points in the interior of the feasible set
and in the proximity to the central path [11]. At the end of the process, the optimal solution of
the master problem is obtained if such exists. In [14], the authors present theoretical properties
as well as extensive computational evidence of using the PDCGM in solving relaxations of
integer programming problems. Extensions to more general applications are discussed in [13].
In [21], the authors study how to combine the PDCGM in a branch-and-price framework to
solve the vehicle routing problem with time windows. Since the method requires solving a series
of closely related problems, it employs specially designed warmstarting techniques for interior
point methods [10, 12].

Some features in the current version are:

B More than one column can be added to the RMP per iteration.

B The method can warmstart.

B Redundant columns can be removed.

2 Installation of the PDCGM

You can download the latest version1 of the PDCGM at http://www.maths.ed.ac.uk/~gondzio/
software/pdcgm.html. PDCGM/HOPDM is distributed as a compressed tar’ed and gzip’ed file
pdcgmDEMOv2.0.tar.gz.

∗j.gondzio@ed.ac.uk
†pablogonzalez@ingenieros.udd.cl
‡munari@dep.ufscar.br
1The current version is 2.0

1

The implementation has been tested in different UBUNTU distributions with 32 and 64 bit
architectures. Once you get the file pdcgmDEMOv2.0.tar.gz, open the Terminal window and
type

> tar xvfz pdcgmDEMOv2.0.tar.gz

to create a new subdirectory pdcgmDEMOv2.0 in the current directory. Once you have uncom-
pressed the file, enter to /pdcgmDEMOv2.0 and look at its content.

You will find the following subdirectories:

B applications: it contains a number of applications which use the PDCGM libraries;

B data: it contains instance files for some of the implementations in the applications

directory;

B extras: it contains third-party files;

B hopdm: it contains the HOPDM library;

B interface: it contains a C interface to HOPDM library;

B mkfhosts: it contains examples of files which specify the names of compilers, paths to
libraries, and a number of compilation options;

B pdcgm: it contains the PDCGM library;

and two files:

B README.1st: it is a short version of this manual.

B MANUAL.pdf: it is the manual for using the PDCGM that you are reading now.

To install PDCGM/HOPDM on UBUNTU, you will need the library libf2c. To install this
library in your system, open a Terminal window and type

> sudo apt-get install libf2c2

> sudo apt-get install libf2c2-dev

> sudo rm /usr/lib/libf2c.so && sudo ln -s /usr/lib/libf2c.a /usr/lib/libf2c.so

Your makefile in the directory mkfhosts should have the line: LIBS= -lm -lf2c just below
the tag #Libraries:. In all our applications we use munari located in mkfhosts... have a look!

3 Applications

We provide the current version of the PDCGM with source files for seven different applica-
tions. In the applications directory you will find the following subdirectories: clspst, csp,

demo pdcgm, mcnf, mkl, tssp and vrptw.
Some of the applications depend on third-party packages/libraries. For instance, mkl depends

on the SHOGUN Machine Learning Toolbox [22]2 and tssp depends on the IBM CPLEX Opti-
mizer package [16]3. Please, make sure you have these packages installed and properly working
on your machine before compiling and running the corresponding PDCGM applications.

For a full description of the applications, we point the reader to some references where more
details about the problems and column generation formulations can be found. At this point, it
is enough to say that for every application we rely on the Dantzig-Wolfe decomposition principle
(DWD) [4] and that the resulting problem fits into the column generation framework [20].

In the /applications you can find the following directories:

B clspst: this directory contains the capacitated lot-sizing problem with setup times [17, 23]
where the linking constraint is the capacity constraint. By using DWD, we gain separability
per item and therefore the master problem is a disaggregated one (one column per item).
The subproblem is a single-item lot-sizing problem without capacity constraint and we use
the Wagner-Within algorithm [24] to solve it.

2http://shogun-toolbox.org/
3http://www-01.ibm.com/software/commerce/optimization/cplex-optimizer/

2

B csp: this directory includes the cutting stock problem [2, 3]. The linking constraint is
the demand constraint and since the width of the rolls is assumed to be the same, an
aggregated master problem is obtained. The subproblem is a knapsack problem and more
than one column per iteration may be obtained. We use a branch-and-bound method
provided by Dr. Aline Leão [19] to solve the subproblem.

B demo pdcgm: this directory contains three quadratic problems which can be solved by
a cutting plane method. The problem uses Lagrangian relaxation and you can see the
correspondence with the column generation method at every single file. Also, it provides
some examples of how to feed the PDCGM with dense matrix representation.

B mcnf: this directory includes the multicommodity network flow problem [13]. In its stan-
dard linear programming formulation, the arc-node incidence matrix is replicated K times,
where K is the number of commodities. These replicated matrices would be independent
from each other, except for the capacity constraint. By taking this constraint as the linking
constraint, the problem decomposes by commodity and a disaggregated master problem
is obtained. The subproblem is a shortest path problem. An active set strategy is used
as in [1] to determine which capacity constraints may be relaxed without compromising
optimality.

B mkl: this directory contains the multiple kernel learning problem [13] formulated as a
quadratically constrained quadratic problem (QCQP). By applying DWD for general con-
vex programs [6], we obtain an aggregated master problem. The subproblem is a single
kernel problem which is solved using the SHOGUN Machine Learning Toolbox [22].

B tssp: this directory includes the two-stage stochastic programming problem [13]. We
solve the dual of the deterministic equivalent problem [26]. The linking constraints are the
ones which relate the first-stage variables in the dual problem. The problem decomposes by
scenario, so for each scenario we have a subproblem which is the dual of the second-stage
problem. The subproblems are solved using the optimization package IBM ILOG CPLEX
[16]. For this application we have an aggregated master problem and the subproblems may
generate extreme points as well as extreme rays.

B vrptw: this directory contains the vehicle routing problem with time windows [5, 18]. The
linking constraint is the demand constraint (every customer has to be visited) and since the
vehicles are assumed to be identical, an aggregated master is obtained. The subproblem is
an elementary shortest path problem with resource constraints. We solve a relaxed version
of this subproblem in which non-elementary paths are allowed (i.e., paths that visit the
same customer more than once).

In each of these directories you will find:

B <application name>-pdcgm: it is the source file of the application;

B example: it is a file with a toy example for the application;

B include: it is the directory that includes some useful libraries such as the subproblem
solver;

B makefile: it compiles the source code and creates the executable;

B run-instances: it is a script that runs all the instances included in the /data directory.

3.1 Compiling and using the applications

In our experience a good strategy would be to try the applications in clspst, csp, demo pdcgm,

mcnf and/or vrptw directories first since these are stand-alone applications. If everything is
working fine with these applications, you could then try with the mkl and tssp which depend
on third-party packages. Before running any of the applications, we suggest you to read the
README.1st file included in every application subdirectory.

3

3.1.1 CLSPST

To compile and run the CLSPST application, go to /applications/clspst and type

> make

> ./clspst-pdcgm <instance file>

For each CLSPST instance solved successfully, the following statistics are printed in the file
output-clspst-pdcgm.txt

Instance - Lower bound - Upper bound - Relative gap - Outer iterations - RMP time (s) -
Oracle time (s) - Total time (s)

There is an instance example in this directory which you can run by typing

> ./clspst-pdcgm example.txt

You will find more CLSPST instances in /data/clspst. In case you wish to run the PDCGM
on all those instances, you can type

> ./run-instances

3.1.2 CSP

To compile and run the CSP application, go to /applications/csp and type

> make

> ./csp-pdcgm <instance file> <max number of cols>

If <max number of cols> is omitted, then it sets <max number of cols> = 100. For each CSP
instance solved successfully, the following statistics are printed in the file output-csp-pdcgm.txt

Instance - Lower bound - Upper bound - Relative gap - Outer iterations - RMP time (s) -
Oracle time (s) - Total time (s)

There is an instance example in this directory which you can run by typing

> ./csp-pdcgm example.txt

You will find more CSP instances in /data/csp. In case you wish to run the PDCGM on all
those instances, you can type

> ./run-instances

3.1.3 DEMO PDCGM

To compile and run the qpexample1 inside demo pdcgm, go to /applications/demo pdcgm and
type

> cp qpexample1.c example-pdcgm.c

> make

> ./example-pdcgm.c

Similar statements can be used to run qpexample2 and qpexample3. A full description of the
quadratic problem and the column generation implementation is available at the beginning of
each file.

3.1.4 MCNF

To compile and run the MCNF application, go to /applications/mcnf and type

> make

> ./mcnf-pdcgm <instance_name> <p1> <p2>

4

where <instance name> should be replaced by the full path to the input file; <p1> should be 1
for an aggregated model or 0, otherwise; <p2> should be 1 for using the active set strategy or 0,
otherwise. In case <p1> and <p2> are both omitted, it assumes <p1>=0 and <p2>=1.

For each MCNF instance solved successfully, the following statistics are printed in the file
output-mcnf-pdcgm.txt

Instance - Lower bound - Upper bound - Relative gap - % of active sets - Outer iterations -
RMP time (s) - Oracle time (s) - Total time (s)

There is an instance example in this directory and you can run it by typing

> ./mcnf-pdcgm example.dat 0 1

You will find more MCNF instances in /data/mcnf. In case you wish to run the PDCGM on
all those instances, you can type

> ./run-instances

This will solve the instances using the default settings (<p1>=0 and <p2>=1).

3.1.5 MKL

Before using this code, you must have installed on your machine the g++ compiler and the
package SHOGUN

SHOGUN setup. In order to compile and run the MKL application, you must have the
SHOGUN Machine Learning Toolbox [22] installed on your machine. We recommend you
to use the version available in /extras of this PDCGM distribution. First, extract the file
shogun-toolbox.tar.gz. Then, open the terminal console, go to the generated directory and
type

> cd src

> ./configure

> make

> sudo make install

After these steps, SHOGUN should be working fine. In case something goes wrong, we suggest
you have a look at the files INSTALL and README available on the directory shogun-toolbox/src.
For further information, go to http://shogun-toolbox.org.
After installing SHOGUN, you will be able to run the MKL. To compile and run the MKL
application, go to /applications/mkl and type

> make

> ./mkl-pdcgm <instance_name>

There is an instance example in this directory which you can run by typing

> ./mkl-pdcgm example.txt

For each MKL instance solved, the following statistics are printed in the file output-mkl-pdcgm.txt

Instance - Lower bound - Upper bound - Relative gap - Outer iterations - RMP time (s) -
Oracle time (s) - Total time (s) - Number of kernels - Accuracy

You will find more MKL instances in /data/mkl. In case you wish to run PDCGM on all those
instances, you can type

> ./run-instances

5

3.1.6 TSSP

In order to compile this application, you must have CPLEX [16] installed on your machine.
Please, check in the makefile available in the current directory if the flags CPLEXDIR, SYSTEM
and LIBFORMAT are properly set according to your CPLEX installation. Certain versions of
CPLEX require the library ia32-libs to be installed. If this is the case, you can install this
library by typing on the terminal

> sudo apt-get install ia32-libs

To compile and run the TSSP application, go to /applications/tssp and type

> make

> ./tssp-pdcgm <instance file.cor> <instance file.tim> <instance file.sto>

By default, this setting allows an aggregated formulation. Additionally, you can specify if a
disaggregated formulation should be used by typing

> ./tssp-pdcgm <instance file.cor> <instance file.tim> <instance file.sto> 0

For each TSSP instance solved, the following statistics are printed in the file output-tssp-pdcgm.txt

Instance - Number of scenarios - Lower bound - Upper bound - Relative gap - Outer iterations
- RMP time (s) - Oracle time (s) - Total time (s)

There is an instance example in this directory which you can run by typing

> ./tssp-pdcgm example.cor example.tim example.sto

You will find more TSSP instances in /data/tssp. In case you wish to run the PDCGM on all
those instances, you can type

> ./run-instances

3.1.7 VRPTW

To compile and run the VRPTW application, go to /applications/vrtpw and type

> make

> ./vrptw-pdcgm <instance file> <max number of cols>

If <max number of cols> is omitted, then it sets <max number of cols> = 100. For each
VRPTW instance solved, the following statistics are printed in the file output-vrptw-pdcgm.txt

Instance - Lower bound - Upper bound - Relative gap - Outer iterations - RMP time (s) -
Oracle time (s) - Total time (s)

There is an instance example in this directory which you can run by typing

> ./vrptw-pdcgm example.txt

You will find more VRPTW instances in /data/vrptw. In case you wish to run PDCGM on all
those instances, you can type

> ./run-instances

4 Developing a new application

When developing an application on top of PDCGM, the user must define the two main compo-
nents of a column generation procedure: (i) the master problem; (ii) the oracle function. We
advise the user to start developing the master problem structure and then set the PDCGM envi-
ronment with all this information. In the applications provided in pdcgmDEMOv.2.0, this task is
done in the main function of the C/C++ files. Here is an example with the basic statements of a
main function, where k and v are the number of linking constraints and the number of convexity
constraints in the master problem, respectively.

6

4.1 Main function

Set the PDCGM environment
PDCGM *PDCGM env

Allocate memory for the master problem
b = PDCGM ALLOC(double, k + v + 1) → right hand side vector
u0 = PDCGM ALLOC(double, k + v + 1) → initial guess for the duals (can be NULL)
row type = PDCGM ALLOC(double, k + v + 1) → constraints type (=, ≤, ≥ or objective)
lo box = PDCGM ALLOC(double, k) → lower bound of each dual variable
up box = PDCGM ALLOC(double, k) → upper bound of each dual variable

Populate the internal data structure of the PDCGM environment
PDCGM env = PDCGM set data(

k, → number of linking constraints in the RMP
v, → number of convexity constraints in the RMP
(k + v + 1), → maximum number of nonzeros in a column
max ncols oracle, → maximum number of columns generated in a call to the oracle
max outer, → maximum number of outer iterations
u0, → initial guess of the dual solution (can be NULL)
b, → RHS of each constraint in the RMP
row type, → type of each constraint (row) in the RMP
lo box, → lower bound vector of the dual variables in the RMP
up box, → upper bound vector of the dual variables in the RMP
instance) → a pointer to the instance data (any data structure defined by the user)

Set parameter δ: optimality tolerance for the column generation algorithm
PDCGM set delta(PDCGM env, optimality tolerance)

Set parameter D: degree of optimality. It must be greater than 1.0
PDCGM set degree of optimality(PDCGM env, D)

Set parameter εmax: maximum optimality tolerance used to solve the RMP
PDCGM set max opt tol(PDCGM env, epsilon max)

Set parameter: verbose mode (how much information is printed)
0: only info about HOPDM; 1: info about PDCGM; 2: more info about PDCGM
PDCGM set verbosity(PDCGM env, 1)

Start the column generation procedure (the oracle function must be sent as a parameter)
PDCGM solve MP(PDCGM env, oracle)

The entries in row type must be defined by using the following macros

EQUAL, LESS EQUAL, GREATER EQUAL or OBJECTIVE.

We need to draw the reader’s attention to two important structures in the previous example.
First, is the variable instance which is sent as a parameter in function PDCGM set data(). It
should be a pointer to the data structure defined by the user, but it can be sent as NULL, in case
no data structure is needed in the application. This pointer is sent to oracle function, every time
PDCGM calls this function, in order to have the instance data available in the oracle.

The second important structure in the example is the oracle variable, which must be a
pointer to a function that performs all the tasks required in the oracle (e.g., calling a pricing
subproblem, creating a matrix of generated columns, adding columns to the RMP). As men-
tioned above, this function is one of the main components to be defined in a column generation
procedure. At each outer iteration, PDCGM solves the restricted master and then calls the
oracle function. An example of an oracle function with the main statements is given in the next
section.

7

4.2 Oracle function

static short oracle(

double *primal violation,→ violation of the generated constraints (returning parameter)
double *dual violation, → relative cost of the generated columns (returning parameter)
PDCGM *PDCGM env, → a pointer to the PDCGM environment
void *instance data) → a pointer to the instance data
{
Get the pointer to the dual solution of the current RMP
double *u = PDCGM get dual solution(PDCGM env)

Set a sparse matrix that will be used to store the generated columns
PDCGM SMatrix CW *M

Allocate the sparse matrix in memory
M = PDCGM ALLOC(PDCGM SMatrix CW, 1)

PDCGM set SMatrix CW(M, max nrows, max ncols, max nnz)

At this point, the pricing subproblem should be called. Then, the solution provided by the
subproblem should be used to generate columns (if possible). These columns must be written
in the sparse matrix

Add the generated columns to the RMP
PDCGM add columns(PDCGM env, M, NULL)

Set the relative cost of the generated columns
*dual violation = subproblem value

Free up the allocated memory
PDCGM free SMatrix CW(M)

PDCGM FREE(M)

Standard return in column generation
return 1

}

The values max nrows, max ncols and max nz refer to the maximum number of rows, the
maximum number of columns and the maximum number of nonzero entries which must be
allocated in M. A new column in PDCGM (aggregated version) must have the coefficients in the
form [Aj , 1, cj]

T , where Aj is the array of coefficients in the linking constraints, and cj is the cost
coefficient of the column. For a description of how to use the sparse matrix representation, see the
APPENDIX A at the end of this document. A dense representation may also be used in PDCGM.
For an example of this, please see the source codes in the directory /applications/demo pdcgm.
We recommend using the dense representation only in a preliminary implementation, as it may
slow down the performance of the column generation procedure.

Notice that the parameters primal violation and dual violation must be set inside the
oracle. The parameter primal violation is intended for row generation and, hence, it is not
used in a pure column generation procedure (the row generation is not covered in this man-
ual). The (best) relative cost of the generated columns should be assigned to dual violation.
The oracle should always return 1, in case of column generation (even though no columns are
generated).

In summary, the oracle function must: (i) call the pricing subproblem in order to generate
one or more columns; (ii) in case new columns were generated, set them in an auxiliary matrix;
(iii) add the auxiliary matrix to the RMP; and (iv) set the relative cost. It is worth mentioning
that a similar function can be defined by the user, in order to set initial columns to the RMP. This
function must be called once in the main function (the one used to set the master problem). An
example of this operation is implemented in the applications provided with the pdcgmDEMOv2.0.

8

5 Final remarks

We provide the PDCGM code with no warranty, so be aware of using it at your own risk. We
are not able to provide much support for the code, but we would appreciate if you could report
any bug you may find when using the code. We would be happy to hear about your experience
while using the code, specially about the applications you implement and the results you obtain.
This code must be used for academic purposes only and should never be redistributed. Please,
refer to one of the authors or http://www.maths.ed.ac.uk/~gondzio/software/pdcgm.html

if someone is interested in using it. When reporting the use of the code, please cite [13, 14].

We wish you a lot of fun when using the PDCGM/HOPDM code.

Best regards,

Jacek, Pablo and Pedro

9

References

[1] Babonneau, F., du Merle, O., Vial, J.P.: Solving large-scale linear multicommodity flow
problems with an active set strategy and proximal-ACCPM. Operations Research 54(1),
184–197 (2006)

[2] Ben Amor, H., Valério de Carvalho, J.: Cutting stock problems. In: G. Desaulniers,
J. Desrosiers, M.M. Solomon (eds.) Column Generation, pp. 131–161. Springer US (2005)

[3] Briant, O., Lemaréchal, C., Meurdesoif, P., Michel, S., Perrot, N., Vanderbeck, F.:
Comparison of bundle and classical column generation. Mathematical Programming 113,
299–344 (2008)

[4] Dantzig, G.B., Wolfe, P.: The decomposition algorithm for linear programs. Econometrica
29(4), 767–778 (1961)

[5] Desrochers, M., Desrosiers, J., Solomon, M.: A new optimization algorithm for the vehicle
routing problem with time windows. Operations Research 40(2), 342–354 (1992)

[6] Geoffrion, A.M.: Elements of large-scale mathematical programming Part II: Synthesis of
algorithms and bibliography. Management Science 16(11), 676–691 (1970)

[7] Gondzio, J.: HOPDM (version 2.12) - a fast LP solver based on a primal-dual interior
point method. European Journal of Operational Research 85, 221–225 (1995)

[8] Gondzio, J.: Multiple centrality corrections in a primal-dual method for linear
programming. Computational Optimization and Applications 6(2), 137–156 (1996)

[9] Gondzio, J.: Presolve analysis of linear programs prior to applying an interior point
method. INFORMS Journal on Computing 9(1), 73–91 (1997)

[10] Gondzio, J.: Warm start of the primal-dual method applied in the cutting-plane scheme.
Mathematical Programming 83, 125–143 (1998)

[11] Gondzio, J.: Interior point methods 25 years later. European Journal of Operational
Research 218(3), 587–601 (2012)

[12] Gondzio, J., González-Brevis, P.: A new warmstarting strategy for the primal-dual
column generation method. Technical Report, ERGO 12-007, University of Edinburgh,
School of Mathematics (2012)

[13] Gondzio, J., González-Brevis, P., Munari, P.: Large-scale optimization with the
primal-dual column generation method. Technical Report, ERGO 13-013, University of
Edinburgh, School of Mathematics (2013)

[14] Gondzio, J., González-Brevis, P., Munari, P.: New developments in the primal-dual
column generation technique. European Journal of Operational Research 224(1), 41–51
(2013)

[15] Gondzio, J., Sarkissian, R.: Column generation with a primal-dual method. Technical
Report 96.6, Logilab (1996)

[16] IBM ILOG CPLEX v.12.1: Using the CPLEX Callable Library (2010)

[17] Jans, R., Degraeve, Z.: Improved lower bounds for the capacitated lot sizing problem with
setup times. Operations Research Letters 32(2), 185 – 195 (2004)

[18] Kallehauge, B., Larsen, J., Madsen, O.B., Solomon, M.M.: Vehicle routing problem with
time windows. In: G. Desaulniers, J. Desrosiers, M.M. Solomon (eds.) Column
Generation, pp. 67–98. Springer US (2005)

[19] Leão, A.A.S.: Geração de colunas para problemas de corte em duas fases. Master’s thesis,
ICMC - University of Sao Paulo, Brazil (2009)

10

[20] Lübbecke, M.E., Desrosiers, J.: Selected topics in column generation. Operations Research
53(6), 1007–1023 (2005)

[21] Munari, P., Gondzio, J.: Using the primal-dual interior point algorithm within the
branch-price-and-cut method. Computers & Operations Research 40(8), 2026–2036 (2013)

[22] Sonnenburg, S., Rätsch, G., Henschel, S., Widmer, C., Behr, J., Zien, A., de Bona, F.,
Binder, A., Gehl, C., Franc, V.: The shogun machine learning toolbox. Journal of
Machine Learning Research 11, 1799–1802 (2010)

[23] Trigeiro, W.W., Thomas, L.J., McClain, J.O.: Capacitated lot sizing with setup times.
Management Science 35(3), 353–366 (1989)

[24] Wagner, H.M., Whitin, T.M.: Dynamic version of the economic lot size model.
Management Science 5(1), 89–96 (1958)

[25] Wright, S.J.: Primal-Dual Interior-Point Methods. SIAM (1997)

[26] Zverovich, V., Fábián, C.I., Ellison, E.F., Mitra, G.: A computational study of a solver
system for processing two-stage stochastic LPs with enhanced Benders decomposition.
Mathematical Programming Computation 4, 211–238 (2012)

11

A Sparse representation

To fill in the matrix M, you may use sparse or dense matrix representations. For details of
dense representation, see /applications/demo pdcgm and the examples therein. The basic
idea of a sparse representation is to assign some pointers and value to the nonzero elements in
a matrix. Note that for the sparse representation, FORTRAN indexing must be used (starting
from 1 and not from 0). There are three vectors that describe a matrix.

B clpnts: vector of column pointers;

B coeff: vector of coefficients;

B rwnmbs: vector with row numbers.

For instance, assume we have a matrix

A =

0 3 2 0 1
2 4 0 0 0
1 1 1 1 1
3 2 4 1 5

The matrix dimensions and number of nonzero elements is given as

M->m = 4; /*number of rows*/

M->n = 5; /*number of columns*/

M->nz= 15; /*number of nonzero elements*/

The elements of the matrix have to be given in a column-wise fashion. clpnts[i] denotes with
which element the (i+ 1)-th column starts with. We always start with M->clpnts[0] = 1. In
our toy example, matrix A has three nonzero elements in the first column and therefore, the
counter is updated from 1 to 4. The second column has four nonzero elements so the counter is
updated from 4 to 8... and so on. The clpnts vector for this example is

M->clpnts[0] = 1;

M->clpnts[1] = 4;

M->clpnts[2] = 8;

M->clpnts[3] = 11;

M->clpnts[4] = 13;

M->clpnts[5] = 15;

The nonzero elements of the matrix are added in the following way

Element in row 2, column 1: 2

M->coeff[1] = 2;

M->rwnmbs[1] = 2;

Element in row 3, column 1: 1

M->coeff[2] = 1;

M->rwnmbs[2] = 3;

....

Element in row 3, column 3: 1

M->coeff[9] = 1;

M->rwnmbs[9] = 3;

....

Element in row 4, column 5: 5

M->coeff[15] = 5;

M->rwnmbs[15] = 4;

12

