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ABSTRACTData conventions for the automatic input of multiperiod stochastic linear pro-grams are described. The input format is based on the MPSX standard and isdesigned to promote the e�cient conversion of originally deterministic problems byintroducing stochastic variants in separate �les. A 
exible \header" syntax gener-ates a useful variety of stochastic dependencies. An extension using the NETGENformat is proposed for stochastic network programs.



0. IntroductionThe desire to solve stochastic optimization problems as more realistic modelsthan deterministic formulations for decision making began in the early days of lin-ear programming, see Dantzig [3] for example. As evidenced by recent volumes,Pr�ekopa and Wets [14] and Ermoliev and Wets [5], there is a wide body of activeresearch into numerical algorithms. However, these e�orts have tended to be di-rected towards specialized types of problems resulting in a potpourri of numericalcodes, problem formulations and data sets that are not comparable or even mutu-ally compatible. The development of general purpose codes suitable for industrialapplication is hampered by the lack of a comprehensive set of test problems in astandard format to compare performance and challenge competitors. In this paperwe present our ideas on what we hope will become the nucleus of a standard problemformat for multistage stochastic linear programs.The present contribution is an extension, simpli�cation, and re�nement of theideas in Edwards, et al. [4]. The spirit of the two proposals is identical: (a) to usethe MPSX convention for �le formats; (b) to allow originally deterministic problemsto be changed to stochastic versions; (c) to permit a wide variety of stochasticdependencies; and (d) to allow new options to be added. Two key aspects of theoriginal proposal are retained|the use of separate �les to specify parameters relatedto random variables and the use of \header lines" to express and organize the relevantparameters.After a statement of the problem in the form we shall consider it, we presentin Section 2 our proposed input format. In Section 3 we present an extensionof the standard format to cover multistage stochastic network problems using theNETGEN format [10], and in the �nal section we set out our recommendations formixed stochastic network and linear programs.The collection of test problems is an ongoing enterprise in which readers areencouraged to participate. Some examples, augmenting those already presented inKing [9] and illustrating the standard problem format, are available in computeraccessible form.1. Problem StatementA general form of the multiperiod stochastic linear program is:minimize c1x1 + E2Q2(x1)subject to x1 2 IRn`1 � x1 � u1A1x1 = b1;



-2-where the functions Q2; Q3; : : : ; QT are de�ned recursively:Q2(x1) =minfc2x2 +E3Q3(x1; x2)subject to x2 2 IRn2`2 � x2 � u2A21x1 +A22x2 = b2g;Q3(x1; x2) =minfc3x3 +E4Q4(x1; x2; x3)subject to x3 2 IRn3`3 � x3 � u3A31x1 +A32x2 +A33x3 = b3g;and so forth, for t = 4; : : : ; T � 1, where \Et" represents expectation with respectto the random variables in period t, until �nallyQT (x1; : : : ; xT�1) =minfcTxTsubject to xT 2 IRnT`T � xT � uTAT1x1 + � � �+ ATT xT = bT g:The data de�ning this problem may be conveniently arranged in an LP formulationfor a single realization of the random variables:(MP) objective: c1x1 + c2x2 + : : :+ cT xTconstraints: xt 2 IRnt t = 1; : : : ; Tlt � xt � ut; t = 1; : : : ; TA1x1 = b1 2 IRm1A21x1 +A22x2 = b2 2 IRm2� � �AT1x1 +AT2x2 + : : :+ ATT xT = bT 2 IRmTAll entries of the matrices Ats and vectors: ct, `t, ut, bt may be random(although in practice all but a few entries will be deterministic). The indicest = 1; : : : ; T signify the periods of the problem; to each period t there correspondsa decision vector xt 2 IRnt . The lower block-triangular constraint system expressesthe typical feature of these problems|the decisions of the prior periods constrainthe decision of the current period explicitly (since those decisions are known) butthe decision of the current period is a�ected only implicitly by the feasibility andcosts of possible future (recourse) decisions.The proposed format is most easily understood by considering the problem(MP) in stages of gradually increasing levels of detail. First we regard (MP) as a



-3-purely deterministic problem and create an input �le following the MPSX conven-tion, ignoring (non-random) zero entries. This �le will identify an objective vectorc, upper and lower bounds u and `, a right hand side b, and a block lower-triangularmatrix A, all expressed in the usual column-row format; we call this the core �le.Next we note the period structure of the problem, that certain decisions xt 2IRnt are made at times t = 1; : : : ; T . Here it is necessary only to specify whichrows and columns from the core �le correspond to which periods. It is most simplydone by indicating the beginning column and row for each period t. This is done inthe time �le. Note that such a system relies on the proper sequencing of the core�le|we require that the list of row names is in order from �rst period to last periodand that the block lower-triangular matrixA has been entered in column order: �rstperiod columns �rst, and last period columns last.Finally there remains the speci�cation of the distributions of the random en-tries; this takes place in the stoch �le. The simplest case occurs when all randomentries are mutually independent|one merely indicates by keywords which entriesare distributed as discrete, uniform, beta, gamma, etc., and supplies the appropriateparameters. One may even use the entries in the core �le to supply some of the pa-rameters. We consider two general types of dependency among the random entries:blocks and scenarios. A block is a random vector whose realizations are observedin a single, �xed period. A scenario is a more general type of stochastic structurewhich models dependencies across periods. Following Lane and Hutchinson [11], wevisualize scenarios as paths in an event tree. Each path corresponds to a particularsequence of events through time, and is assigned a probability that is the productof the conditional probabilities of the separate events.The organization of the data �les is similar to the MPSX format [6; pp. 199{209]. Each data �le contains a number of sections, some of which are optional.A header line, or header, marks the beginning of each section and may containkeywords to inform the user that the data to follow should be treated in a specialway. Each header line is divided into two �elds delineated by speci�c columns.Header line{ columns 1 through 14: �rst word �eld{ columns 15 through 24: second word �eldMost sections contain data lines. These are di�erently arranged for linear programsthan for networks and each version will be described in the appropriate sections.Data lines are distinguished by a blank in the �rst column; the �rst word of aheader line must, therefore, begin with a non-blank character. Finally, commentlines are indicated by an asterisk (*) in the �rst column and may appear anywhere.We close this section with a comment to potential users. The header lines area powerful device that permits the expression of a wide variety of problem types,however, one should not exploit it by tailoring a format convenient for one's ownpeculiar taste in test problems. That is de�nitely not in the spirit of our proposal!Rather we hope that this proposal o�ers su�cient 
exibility to be useful and we



-4-trust that many problems will become available using the basic elements to thefullest extent|with tailored modi�cations only when absolutely necessary.2. Standard Format for Linear Programs2.1 Core FileThe core �le is sketched only brie
y since it closely follows the MPSX standard[6]. The core �le consists of sections introduced by header lines. Data lines followthe headers. We assume that all appropriate dimensioning has been done beforethe �les are read (for example in a �le similar to the SPECS �le for the MINOSprogram [12]).A data line is divided into six �elds: three name �elds, two numeric �elds andone code �eld.Data line for LP{ columns 2 and 3: code �eld{ columns 5{12: �rst name �eld{ columns 15{22: second name �eld{ columns 25{36: �rst numeric �eld{ columns 40{47: third name �eld{ columns 50{61: second numeric �eldA name is treated as a character string and may contain any ASCII symbol. Onlynumbers with decimal point, or in scienti�c notation, may appear in numeric �elds.Core �le sections for LP1. NAME { starts the input �le. The second word �eld is used to identify theproblem.2. ROWS section { each data line speci�es the names of the objective c and rows ofthe matrix A in the �rst name �eld, and the type of constraint (E, L, G, N)in the code �eld. The list of row names must be in order from �rst period tolast, preceded by the objective name(s).3. COLUMNS section { each data line speci�es the column names and the nonzerovalues of c and A. This must be done in column order.4. RHS section { data lines specify nonzero entries of the righthand side b.5. BOUNDS (optional) { data lines specify the bound, u and `, using the codes LOor UP in the code �eld.6. RANGES (optional) { cf. the MPSX standard [6].7. ENDATA { informative. End of problem data.



-5-Core �le { exampleNAME problem nameROWSN OBJL ROW1E ROW2� � � � � �COLUMNSCOL1 ROW1 value ROW2 valueCOL1 ROW3 value ROW4 value� � � � � �COL2 ROW1 value ROW2 valueRHS � � � � � �RHS ROW1 value ROW2 value� � � � � �BOUNDSLO BND COL1 value� � � � � �RANGES� � � � � �ENDATAIf an entry is random then the value �eld should contain a non-zero number(which may or may not be meaningful). This number must not be omitted fromthe core �le. Integer variables may be indicated by using delimiters as described inthe MPSX/MIP documentation [7] for those users who want to use mixed integerprogramming techniques.2.2 Time FileThe time �le contains the information needed to specify the dynamic structureof the problem. It indicates which rows and columns (i.e., elements of the decisionvector x) are to be identi�ed with which period. The �rst line identi�es it as atime �le and gives a name to the problem. The next header line consists of a singleword PERIODS in the �rst name �eld, and contains the keyword LP in the secondname �eld to identify the problem as a pure LP. The �rst two name �elds of thedata lines identify the beginning row and column names for each period with thecorresponding period name in the third name �eld.Time �le { exampleTIME problem namePERIODS LPCOL1 ROW 1 PERIOD1COL6 ROW 3 PERIOD2COL8 ROW19 PERIOD3ENDATA



-6-In this example: Columns COL1 through COL5 are PERIOD1 decision variablesand COL6 and COL7 are PERIOD2 variables; rows ROW1 and ROW2 are PERIOD1 con-straints and ROW3 through ROW18 are PERIOD2 constraints. All remaining rows andcolumns belong to PERIOD3.Other possible keywords on the PERIODS line are NETWORK for pure networkproblems and MIXED for coupled LP/network problems. These are explained insome more detail in sections 3.2 and 4, respectively.2.3 Stoch FileIn the stoch �le the distributions of the random variables are speci�ed. Asmentioned, we consider three varieties of distributions: independent, blocks, andscenarios. Each type will be treated in separate sections of this �le; each sectionconsists of a header line followed by data lines.Stoch �le { header lines1. STOCH { informative. Identi�es a new problem with a give name in the secondword �eld.2. INDEP section { speci�es the distribution of all independent random entries inseparate sections for each type.3. BLOCKS section { speci�es the joint distribution of all dependent random entriesin separate sections for each type.4. SCENARIOS section { speci�es the scenarios.5. ENDATA { informative. End of problem data.2.3.1 A note on distributionsThe purpose of the stoch �le is to give the user the information needed to com-pute with the random variables. In many applications the distributions are discreteor discrete approximations of (absolutely) continuous distributions; thus the userneeds, ultimately, to know what value the random variable takes and with whatprobability. The discrete case is straightforward|this information may be explic-itly provided in the stoch �le and then stored in appropriate data structures by theuser. In the continuous case users may have their own discretization scheme andmay need only to know the parameters and type of the continuously distributedrandom variables. Such data is easily provided; however, users must then processit themselves to obtain a discrete approximation. Finally there are cases where therandom variables may be accessed only through a user-supplied subroutine|for ex-ample the output of a random number generator of nonstandard type. Alternatively,the user may be able to compute directly with certain continuous distributions andmay build approximations to more general distributions based on them|for exam-ple the piecewise linear and piecewise quadratic distributions investigated by Wets[17] and Birge and Wets [2]. This information is easily transmitted using the variousdata structures described below.



-7-2.3.2 IndependentIndependent random variables are easily treated. We provide facilities for iden-tifying entries that are distributed as discrete, uniform, beta, gamma, normal andlog-normal; certainly other distributions may be considered. The INDEP header lineis repeated for each new distribution type; entries with the same type are listedtogether following the appropriate header. The keyword in the second word �eld ofthe header identi�es the distribution. The data lines indicate the entry by columnand row in the �rst two name �elds, and the distribution parameters are entered inthe �rst and second numeric �elds.Discrete. For each discretely distributed entry one must specify the values andcorresponding probabilities. The �rst two name �elds identify the entry, and the�rst two numeric �elds are the value �eld and probability �eld respectively. Theintervening third name �eld contains the name of the period in which the randomvariable is realized (this information is ignored by the input routine but is useful tohave made explicit for data consistency checking).INDEP DISCRETECOL1 ROW8 6.0 PERIOD2 0.5COL1 ROW8 8.0 PERIOD2 0.5RHS ROW8 1.0 PERIOD2 0.1RHS ROW8 2.0 PERIOD2 0.5RHS ROW8 3.0 PERIOD2 0.4In this example the entry COL1/ROW8 takes value 6.0 with probability 0.5 and 8.0with probability 0.5; and the righthand side of ROW8 takes values f1:0; 2:0; 3:0g withprobabilities f0:1; 0:5; 0:4g respectively. Of course the probabilities associated withan entry must total one.Uniform. The endpoints of the interval are the only relevant parameters for uni-formly distributed entries. These are entered into the �rst two numeric �elds; thethird name �eld is blank.INDEP UNIFORMCOL1 ROW8 8.0 PERIOD2 9.0In this example the random entry COL1/ROW8 is uniformly distributed over the in-terval [8:0; 9:0].Normal. The normal distribution is speci�ed by mean � and variance �2 in the�rst two numeric �elds.INDEP NORMALCOL1 ROW8 � PERIOD2 �2Beta, Gamma, Lognormal. The standard beta on [0; 1], gamma on [0;1), log-normal on [0;1) are two-parameter families of distributions and may be handled



-8-in a similar fashion to the normal, using the standard descriptors as presented in,for example, Rai�a and Schlaifer [16]. An adjustment to other intervals could bee�ected within the framework of the linear transformations described below.Subroutine. Some random entries may have distributions that are computed bysubroutines, for example, empirical distributions which are discretely distributedbut whose values may be randomly generated by user-supplied computer codes.INDEP SUBCOL1 ROW8 blank PERIOD2This example indicates that the user must access a subroutine to generate an ap-propriate distribution for the entry COL1/ROW8.2.3.3 BlocksBlocks may be regarded as mutually independent random vectors. We providefor three distribution types: discrete, subroutine, or linear transformation. As in theindependent case, blocks with common distribution types are grouped in the samesection under a header line.Discrete. The \values" of a block are actually vectors of values of the entries thatmake up the block, and to each value of a block there corresponds a probability. Weneed two sorts of data lines to describe a block. The �rst line, distinguished by a BLin the code �eld, gives the name of the block, the name of the period in which theblock is realized, and the probability that the block assumes a given vector value;the following lines identify which entries of the block assume which value.BLOCKS DISCRETEBL BLOCK1 PERIOD2 0.5COL1 ROW6 83.0COL2 ROW8 1.2BL BLOCK1 PERIOD2 0.2COL2 ROW8 1.3BL BLOCK1 PERIOD2 0.3COL1 ROW6 84.0One needs to record only those values that change. We adopt the convention thatthe �rst statement of the block is the basis from which all changes are computed.(Thus zero values must be stated explicitly.) In this example the block, calledBLOCK1, is the 2-vector made up of the entries COL1/ROW6 and COL2/ROW8. It takesvalues (83:0; 1:2) with probability 0:5, (83:0; 1:3)with probability 0:2, and (84:0; 1:2)with probability 0:3.Subroutine. The user accesses a subroutine to compute the distribution of theblock consisting of the listed entries.



-9-BLOCKS SUBBL BLOCK1 PERIOD2COL1 ROW6COL2 ROW8BL BLOCK2 PERIOD2RHS ROW6RHS ROW8Here we have identi�ed two blocks, each a 2-vector, BLOCK1 and BLOCK2 whosedistributions must be computed by a subroutine.Linear Transformations. These are blocks whose distribution is computed as alinear transformation of another random vector with independent components, i.e.,v = HuwhereH is a matrix and v and u are random vectors. The vector v is the block whosedistribution is desired; the vector u has independently distributed components ofstandard type, e.g., normal. We �rst identify the block as in the subroutine case,then the (marginal) distribution of each (independent) component of u followedimmediately by the corresponding column of H .BLOCKS LINTRBL V BLOCK PERIOD2COL1 ROW8COL3 ROW6RV U1 NORMAL � blank �2COL1 ROW8 h11COL3 ROW6 h21RV U2 UNIFORM a blank bCOL1 ROW8 h12COL3 ROW6 h22RV U3 CONSTANTCOL3 ROW6 CThis example illustrates the �le structure. In this caseCOL1/ROW8 = h11 �N(�; �2) + h12 � U(a; b)COL3/ROW6 = h21 �N(�; �2) + h22 � U(a; b) + C:General multivariate normal [8] and multigamma distributions [13] can also betreated in this way. Note that the \names" U1, U2 and U3 are irrelevant and maybe left blank.



-10-2.3.4 ScenariosTo describe scenarios one needs a data structure that expresses inter-perioddependencies. This is best developed as a description of the distribution of a processvector in the periods, t = 1; : : : ; T , just as one may describe a stochastic processin probability theory. We consider the random entries of (ct; bt; Ats : s � t) asstates of a process vector 't, for each time t = 1; : : : ; T . Given the corresponding(�nite dimensional) joint distributions of this process ', Kolmogorov's constructionyields a probability measure P , termed the process distribution, on the space 
 oftrajectories. Thus, in general, we have the alternatives of describing the distributionof the stochastic process ' in joint or conditional state distribution form, or as aprocess distribution over trajectories.t = 1 t = 2 t = 3 t = T
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 Scen NFigure 1. Event tree representation of scenariosMore speci�cally, with the stochastic process ' is associated a �ltration fFt :t = 1; : : : ; Tg, where for each t the sigma algebra Ft consists of subsets of 
 termedevents determined by the history of the process ' up to time t, and Ft � Ft+1 for



-11-all t = 0; : : : ; T � 1 (with F0 := f
; ;g). Given the process distribution P over thespace of trajectories and an event A in period t+1 we may compute the conditionalprobability Pf't+1 2 A j Ftg. Conversely, these conditional probabilities may becomposed to generate the �nite dimensional distributions of the process '. In thecase under consideration in this paper, all this may be given a much simpler, moregraphic, characterization.To describe the process paths in the discrete state case, note that 't can assumeonly �nitely many values for each t. A given history of values 's, for s = 1; : : : ; t,may be followed by a �nite collection of values of 't+1. We think of these as nodesin period t+1. Following Lane and Hutchinson [11] and Rai�a [15], we construct anevent tree representation of the trajectories: Represent the (unique) value of '1 bya single node connected by oriented arcs from '1 to nodes representing the valuesof '2. These are the descendant nodes of the �rst period node in the terminologyof Birge [1]. Each node of period 2 is connected to its descendant nodes at period 3by individual arcs oriented in the direction of the period 3 nodes. This constructionis continued by connecting each ancestor at period t � 1 with its descendants atperiod t. Each node of this tree has a single entering arc and multiple departingarcs representing the possible next period events.A trajectory ' thus corresponds to a path from the period 1 node to a singleperiod T node composed of arcs oriented in the direction of increasing time t and,moreover, corresponds uniquely to a single node in the last period T . There are only�nitely many paths linking nodes in period 1 to nodes in period T and to specifythe distribution on the paths one needs only to attach a de�nite probability to eachpath. Hence specifying the process distribution in terms of path probabilities canbe e�ected in this context by assigning probabilities to period T nodes of the eventtree (see Figure 2).For each period t = 1; : : : ; T , the corresponding sigma algebra Ft is formed bytaking all possible unions of the events represented by the nodes of period t; thus thetopology of this event tree represents the information about the process expressedby the �ltration fFt : t = 1; : : : ; Tg. To each arc we attach the probability that theterminal node occurs given the initial node has occurred|that is, the conditionalprobability of 't+1 given the history 's for s = 1; : : : ; t. These arc probabilities canbe computed from the path probabilities by summing the probabilities of the pathsvisiting the terminal node and then dividing by the sum of the probabilities of thepaths visiting the initial node. Conversely, if to each arc in the tree we know theconditional probability that its terminal node occurs given that its initial node hasoccurred, then the probability of any given path is simply the product of the arcprobabilities along the path.A decision xt is made only on the basis of information collected up to andincluding time t. This is represented by a single node in period t. The uncertaintyfaced by the decision maker is represented by the collection of paths that branchfrom this node. Thus in Figure 2, the decisions occur at the nodes and the scenariosbranch after the node.In a language more speci�c to our application, a \path" in the tree analogy



-12-PERIOD1 PERIOD2 PERIOD3 PERIOD4
 � 
 � 
 � 
 SCEN1, Prob=0.5
 � 
 SCEN2, Prob=0.2
 SCEN3, Prob=0.2
 � 
 � 
 SCEN4, Prob=0.1d1 d2 d3 d4Figure 2. Scenarios example { event treeis a single \scenario". The nodes visited by the path correspond to certain valuesassumed by certain entries of the matrices in the core �le. Thus a scenario iscompletely speci�ed by a list of column/row names and values, and a probabilityvalue. Once a single given scenario is described, then other scenarios that branchfrom it may be described by indicating in which period the branch has occurred,and then listing the subsequent column/row names and values. It is best to workthrough the example of Figure 2.There are two types of data lines. The �rst, signi�ed by SC in the code �eld,gives the name of the scenario in the �rst name �eld and its probability in the�rst numeric �eld; and then gives the name of the scenario from which the branchoccurred and the name of the period in which the branch occurred|i.e., the �rstperiod in which the two scenarios di�er|in the second name �eld and third name�eld, respectively. A scenario that originates in period one is indicated by ROOT inthe name �eld. The next data lines give the column/row values assumed by thescenario.



-13-Scenarios { exampleSCENARIOS DISCRETESC SCEN1 ROOT 0.5 PERIOD1COL1 ROW2 1.0COL2 ROW3 1.0COL3 ROW4 1.0COL4 ROW5 1.0SC SCEN2 SCEN1 0.2 PERIOD3COL3 ROW4 1.0COL4 ROW5 1.0SC SCEN3 SCEN2 0.2 PERIOD4COL4 ROW5 0.0SC SCEN4 SCEN1 0.1 PERIOD2COL2 ROW3 0.0COL3 ROW4 0.0COL4 ROW5 0.0This is a description of the distribution of four entries: COL1/ROW2, COL2/ROW3,COL3/ROW4, COL4/ROW5, which for convenience we denote here as d1, d2, d3, d4,respectively (see Figure 2). Note that in PERIOD4 there are two nodes for the \state"d4 = 0:0 and two for d4 = 1:0, and similarly in PERIOD3 two nodes for d3 = 1:0.This is because a node is distinguished by the information that one has collectedconcerning the path up to and including time t. Thus in PERIOD3 the two nodes aredistinguished because in scenario SCEN1 one knows that the �nal state is d4 = 1:0,whereas in SCEN2 the outcome of d4 is in doubt.3. Network Standard FormatThere are several network formats in use. However, it is our view that the mostcommon format is the NETGEN format, see Klingman, Napier and Stutz [10]. ForNETGEN we have the following organization of the data line.Data line for networks{ columns 2{4: code �eld{ columns 7{12: �rst name �eld{ columns 13{18: second name �eld{ columns 21{30: �rst numeric �eld{ columns 31{40: second numeric �eld{ columns 41{50: third numeric �eld{ columns 51{60: fourth numeric �eld3.1 Core FileAs in MPSX there are header lines and data lines in the input format. Weadopt a slight variation of the NETGEN standard in omitting the BEGIN line andsubstituting a NAME line to start the input �le and in changing the END line toENDATA.



-14-Core �le sections for networks1. NAME { starts the input �le. The rest of the line can be used for the problemname.2. ARCS section { each data line following the ARCS header speci�es input forone arc. In the �rst name �eld is the name of the originating node for thearc, in the second name �eld the name of the terminating node, in the �rstnumeric �eld the unit cost, in the second numeric �eld the upper bound onarc 
ow, in the third numeric �eld the lower bound on the 
ow (if not zero)and in the fourth numeric �eld the arc multiplier (arc gain) if we are dealingwith generalized networks. If the word UNCAP follows the ARCS code, upper andlower bounds need not be speci�ed as they are assumed to be 1 and zero,respectively. Similarly, the keyword UNDIR signals an undirected network withdefault bounds of +1 and �1.3. SUPPLY (optional) { each data line following the SUPPLY header contains a nodename in the �rst name �eld and the amount supplied in the second numeric �eld.4. DEMAND (optional) { each data line following the DEMAND header contains a nodename in the �rst name �eld and the amount demanded in the second numeric�eld.5. ENDATA { informative. End of problem data.Note that there is no section naming all nodes (i.e., rows). They are namedimplicitly by their appearance in the ARCS section. Also note that arcs (i.e., columns)have no names. Hence they cannot be referred to by name, only by a pair of nodenames. However, if there are parallel arcs, the user must be careful.Core �le { exampleNAME problem nameARCSNODE1 NODE2 cost upper lower multiplierNODE1 NODE3 cost upper lower multiplier� � � � � �NODEk NODEn cost upper lower multiplierSUPPLY� � � � � �NODE1 amountDEMAND� � � � � �ENDATA3.2 Time FileIt is normally assumed that in a NETGEN �le, all arcs originating in a givennode are given before we start giving arcs originating in the next node. This ruleshould be followed. We shall further assume that FROM-nodes are given in nodeorder, in the sense that if the arcs originating in NODEi occur before those originat-ing in NODEj, then NODEj belongs to the same or a later time period. However,



-15-note that we are not able to give arcs in arc order at the same time. The keywordNETWORK in the PERIODS header indicates that the problem is a pure network.Time �le { exampleTIME problem namePERIODS NETWORKNODE1 PERIOD1NODE3 PERIOD2NODE7 PERIOD3ENDATAIn the example, NODE1 and NODE2 are �rst period nodes, NODE3 to NODE6 aresecond period nodes, and all remaining nodes are third period nodes. Arcs goingfrom �rst to second period nodes are a part of the �rst period decisions, and carry
ow over to the second period by de�ning external 
ows for that period.3.3 Stoch FileSince arcs are de�ned by pairs of nodes, to say that the cost of the arc fromnode NODE1 to node NODE2 is random requires three parameters. The same goesfor bounds and multipliers. We can use the CODE �eld for that purpose as in thefollowing example. (The data line format used in the stoch �le for the networks caseis the same as that for the LP case.)INDEP DISCRETE NETWORKC1 NODE1 NODE3 6.0 PERIOD2 0.6C1 NODE1 NODE3 8.0 PERIOD2 0.4U2 NODE6 NODE8 7.0 PERIOD2 0.2U2 NODE6 NODE8 9.0 PERIOD2 0.8SU NODE6 6.0 PERIOD2 0.1SU NODE6 8.0 PERIOD2 0.9The keyword NETWORK indicates that there is something to look for in the code�eld of the subsequent data records. We use C1 for \cost of �rst arc from nodeNODE1 to node NODE2" and use higher numbers, such as C2, for the second parallelarc, etc. Similarly, M = multiplier, U = upper bound, and L = lower bound. Randomsupply and demand are accomodated by use of SU and DE, respectively, in the code�elds as illustrated. This format can be changed to all the other distribution formsin obvious ways.4. Coupled LP and Network FormatsA network can be viewed as a special case of a linear program, yet it is desirableto use the more compact network data format to express those parts of a multistageproblem that may be interpreted as network 
ow problems. The nodes of a network
ow problem are the rows in its LP statement. Our proposal for the coupled formatutilizes an MPSX-like format, but uses the ARCS card to indicate that the followingdata lines are in the NETGEN format and the COLUMNS card to indicate that the



-16-following lines are in MPSX format. While this is consistent with the philosophy asexpressed in the introduction, it does have a particular disadvantage. Many multi-stage mixed LP/network problems will actually be composed from separate problem�les. To generate the proposed format will involve a certain amount of editing ofthese �les, however this editing could be automated in various (system speci�c) ways.The �rst section is the ROWS. (The absence of a ROWS card tells the programthat the problem to follow is a pure network.) Note that only those node namesthat are going to appear as row names of an LP variable need to be named inthe ROWS section. Then follows the COLUMNS/ARCS section. Once the data for thecolumns and arcs has been entered, then the other sections (RHS, BOUNDS, SUPPLY,etc.) may follow. With the proper logic, the same computer program can read allthree formats and does not need to be told beforehand the nature of the problemin the �le, whether pure LP, pure network, or mixed. As always, the end of theproblem is indicated by an ENDATA line. Below is an example for the case when we�rst have LP, then networks and then LP again.Core �le { example of coupled formatNAME problem nameROWS� � � � � �E ROW3E ROW4L NODE1G NODE2E ROW5E ROW6� � � � � �COLUMNS� � � � � �COL16 ROW3 value NODE1 valueCOL17 ROW4 value NODE2 valueARCSNODE1 NODE2 cost upper lower multiplierNODE1 NODE7 cost upper lower multiplier� � � � � �NODE8 ROW5 cost upper lower multiplierNODE8 ROW6 cost upper lower multiplierCOLUMNSCOL18 ROW5 value ROW7 valueCOL19 ROW6 value ROW8 value� � � � � �RHS � � � � � �SUPPLY� � � � � �ENDATA



-17-If we now have a TIME �le as follows, the coupling is done.Time �le TIME problem namePERIODS MIXEDCOL1 ROW1 PERIOD1COL6 ROW3 PERIOD2NODE1 PERIOD3NODE3 PERIOD4COL18 ROW5 PERIOD5ENDATAThat the problem is a mixed LP/network is indicated by the keyword MIXED.Here we have that COL1 through COL5 are �rst stage decision variables, with ROW1 andROW2 �rst stage constraints. COL6 through COL17 are second stage decision variables,with ROW3 and ROW4 as constraints. Arcs originating in NODE1 and NODE2 are thirdstage decision variables, arcs originating in nodes NODE3 through NODE8 belong tostage 4. Finally, all variables corresponding to columns COL18 through whatever thesecond COLUMNS section dictates are �fth stage decisions with all constraints afterROW5 associated with them.The last two entries in the �rst COLUMNS section will take values from the secondto the third stage. The amount will be determined by the values of COL16 and COL17and the corresponding entries in this COLUMNS section.The last two entries in the ARCS section will bring \
ow" from NODE8 to theright hand side of ROW5 and ROW6 by entering a number in those rows. The numberwill be the \multiplier" from the input, and the value ending up on the right handside will be the product of this multiplier and the 
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