A STANDARD INPUT FORMAT FOR MULTIPERIOD
STOCHASTIC LINEAR PROGRAMS

J.R. Birge
Department of Industrial and Operations Engineering
University of Michigan, Ann Arbor, USA
M.A.H. Dempster

Department of Mathematics, Statistics and Computing Sciences
Dalhousie University, Halifax, Canada
and Balliol College, Ozford, Fngland

H.I. Gassmann
School of Business Administration
Dalhousie University, Halifax, Canada
E.A. Gunn
Department of Industrial Engineering
Technical University of Nova Scotia, Halifax, Canada
A.J. King
International Institute for Applied Systems Analysis

Lazenburg, Austria

S.W. Wallace
Chr. Michelsen Institute, Bergen, Norway

ABSTRACT

Data conventions for the automatic input of multiperiod stochastic linear pro-
grams are described. The input format is based on the MPSX standard and is
designed to promote the efficient conversion of originally deterministic problems by
introducing stochastic variants in separate files. A flexible “header” syntax gener-
ates a useful variety of stochastic dependencies. An extension using the NETGEN
format is proposed for stochastic network programs.

0. Introduction

The desire to solve stochastic optimization problems as more realistic models
than deterministic formulations for decision making began in the early days of lin-
ear programming, see Dantzig [3] for example. As evidenced by recent volumes,
Prékopa and Wets [14] and Ermoliev and Wets [5], there is a wide body of active
research into numerical algorithms. However, these efforts have tended to be di-
rected towards specialized types of problems resulting in a potpourri of numerical
codes, problem formulations and data sets that are not comparable or even mutu-
ally compatible. The development of general purpose codes suitable for industrial
application is hampered by the lack of a comprehensive set of test problems in a
standard format to compare performance and challenge competitors. In this paper
we present our ideas on what we hope will become the nucleus of a standard problem
format for multistage stochastic linear programs.

The present contribution is an extension, simplification, and refinement of the
ideas in Edwards, et al. [4]. The spirit of the two proposals is identical: (a) to use
the MPSX convention for file formats; (b) to allow originally deterministic problems
to be changed to stochastic versions; (c) to permit a wide variety of stochastic
dependencies; and (d) to allow new options to be added. Two key aspects of the
original proposal are retained—the use of separate files to specify parameters related
torandom variables and the use of “header lines” to express and organize the relevant
parameters.

After a statement of the problem in the form we shall consider it, we present
in Section 2 our proposed input format. In Section 3 we present an extension
of the standard format to cover multistage stochastic network problems using the
NETGEN format [10], and in the final section we set out our recommendations for
mixed stochastic network and linear programs.

The collection of test problems is an ongoing enterprise in which readers are
encouraged to participate. Some examples, augmenting those already presented in
King [9] and illustrating the standard problem format, are available in computer
accessible form.

1. Problem Statement

A general form of the multiperiod stochastic linear program is:

minimize c¢i21 + E2Qa(21)
subject to =z, € R"
4 <=z <wy
Arzy = by,

9.
where the functions @5, @s3,...,Qr are defined recursively:
Q2(z1) = min{cyzs + E3Q3(z1,22)
subject to =z, € IR™
£ < zy < uy
Agizy + Aggzy = by }5

Qs(z1,z2) =min{cszs + E4Q4(21, 22, 23)

subject to z3 € IR™
£y < z3 < ug
A2y + Az + Asszs = bs};

and so forth, for t = 4,...,T — 1, where “F;” represents expectation with respect
to the random variables in period ¢, until finally

Qr(z1,...,27_1) =min{crzr
subject to zp € R"T
by <zp <wur
Az + -+ Aprer = by}

The data defining this problem may be conveniently arranged in an LP formulation
for a single realization of the random variables:

objective: c¢ixi + coxo + ...+ ey

constraints: z; € IR™ t=1,...,T

L<z; <wuy, t=1,...,T
(MP) Az =b € R™
Ayzy + Ay =b, € R"™

Az + Araze + ...+ Arrer = by € R™T

All entries of the matrices A;; and vectors: c¢;, £;, u;, b; may be random
(although in practice all but a few entries will be deterministic). The indices
t =1,...,T signify the periods of the problem; to each period ¢ there corresponds
a decision vector z; € IR™. The lower block-triangular constraint system expresses
the typical feature of these problems—the decisions of the prior periods constrain
the decision of the current period explicitly (since those decisions are known) but
the decision of the current period is affected only implicitly by the feasibility and
costs of possible future (recourse) decisions.

The proposed format is most easily understood by considering the problem
(MP) in stages of gradually increasing levels of detail. First we regard (MP) as a

-3-

purely deterministic problem and create an input file following the MPSX conven-
tion, ignoring (non-random) zero entries. This file will identify an objective vector
¢, upper and lower bounds u and ¢, a right hand side b, and a block lower-triangular
matrix A, all expressed in the usual column-row format; we call this the core file.

Next we note the period structure of the problem, that certain decisions z; €
IR™ are made at times ¢ = 1,...,T. Here it is necessary only to specify which
rows and columns from the core file correspond to which periods. It is most simply
done by indicating the beginning column and row for each period ¢. This is done in
the time file. Note that such a system relies on the proper sequencing of the core
file—we require that the list of row names is in order from first period to last period
and that the block lower-triangular matrix 4 has been entered in column order: first
period columns first, and last period columns last.

Finally there remains the specification of the distributions of the random en-
tries; this takes place in the stoch file. The simplest case occurs when all random
entries are mutually independent—one merely indicates by keywords which entries
are distributed as discrete, uniform, beta, gamma, etc., and supplies the appropriate
parameters. One may even use the entries in the core file to supply some of the pa-
rameters. We consider two general types of dependency among the random entries:
blocks and scenarios. A block is a random vector whose realizations are observed
in a single, fixed period. A scenario is a more general type of stochastic structure
which models dependencies across periods. Following Lane and Hutchinson [11], we
visualize scenarios as paths in an event tree. Each path corresponds to a particular
sequence of events through time, and is assigned a probability that is the product
of the conditional probabilities of the separate events.

The organization of the data files is similar to the MPSX format [6; pp. 199-
209]. Each data file contains a number of sections, some of which are optional.
A header line, or header, marks the beginning of each section and may contain
keywords to inform the user that the data to follow should be treated in a special
way. Each header line is divided into two fields delineated by specific columns.

Header line

— columns 1 through 14: first word field
— columns 15 through 24: second word field

Most sections contain datae lines. These are differently arranged for linear programs
than for networks and each version will be described in the appropriate sections.
Data lines are distinguished by a blank in the first column; the first word of a
header line must, therefore, begin with a non-blank character. Finally, comment
lines are indicated by an asterisk (*) in the first column and may appear anywhere.

We close this section with a comment to potential users. The header lines are
a powerful device that permits the expression of a wide variety of problem types,
however, one should not exploit it by tailoring a format convenient for one’s own
peculiar taste in test problems. That is definitely not in the spirit of our proposal!
Rather we hope that this proposal offers sufficient flexibility to be useful and we

4-

trust that many problems will become available using the basic elements to the
fullest extent—with tailored modifications only when absolutely necessary.

2. Standard Format for Linear Programs
2.1 Core File

The core file is sketched only briefly since it closely follows the MPSX standard
[6]. The core file consists of sections introduced by header lines. Data lines follow
the headers. We assume that all appropriate dimensioning has been done before
the files are read (for example in a file similar to the SPECS file for the MINOS
program [12]).

A data line is divided into six fields: three name fields, two numeric fields and
one code field.

Data line for LP

— columns 2 and 3: code field

— columns 5-12: first name field

— columns 15-22: second name field

— columns 25-36: first numeric field

— columns 40-47: third name field

— columns 50-61: second numeric field

A name is treated as a character string and may contain any ASCII symbol. Only
numbers with decimal point, or in scientific notation, may appear in numeric fields.

Core file sections for LP

1. NAME - starts the input file. The second word field is used to identify the
problem.

2. ROWS section — each data line specifies the names of the objective ¢ and rows of
the matrix 4 in the first name field, and the type of constraint (E, L, G, N)
in the code field. The list of row names must be in order from first period to
last, preceded by the objective name(s).

3. COLUMNS section — each data line specifies the column names and the nonzero
values of ¢ and A. This must be done in column order.

4. RHS section — data lines specify nonzero entries of the righthand side b.

5. BOUNDS (optional) — data lines specify the bound, v and £, using the codes L0
or UP in the code field.

6. RANGES (optional) — cf. the MPSX standard [6].

7. ENDATA - informative. End of problem data.

Core file — example

NAME problem name
ROWS
N O0BJ
L ROW1
E ROW2
COLUMNS
COL1 ROW1 value ROW2 value
COL1 ROW3 value ROW4 value
COL2 ROW1 value ROW2 value
RHS = ceee..
RHS ROW1 value ROW2 value
BOUNDS
L0 BND COL1 value
RANGES
ENDATA

If an entry is random then the value field should contain a non-zero number
(which may or may not be meaningful). This number must not be omitted from
the core file. Integer variables may be indicated by using delimiters as described in
the MPSX/MIP documentation [7] for those users who want to use mixed integer
programming techniques.

2.2 Time File

The time file contains the information needed to specify the dynamic structure
of the problem. It indicates which rows and columns (i.e., elements of the decision
vector z) are to be identified with which period. The first line identifies it as a
time file and gives a name to the problem. The next header line consists of a single
word PERIODS in the first name field, and contains the keyword LP in the second
name field to identify the problem as a pure LP. The first two name fields of the
data lines identify the beginning row and column names for each period with the
corresponding period name in the third name field.

Time file — example

TIME problem name

PERIODS LP
COL1 ROW 1 PERIOD1
COL6 ROW 3 PERIOD2
COL8 ROW19 PERIOD3

ENDATA

-6-

In this example: Columns COL1 through COL5 are PERIOD1 decision variables
and COL6 and COL7 are PERIOD2 variables; rows ROW1 and ROW2 are PERIOD1 con-
straints and ROW3 through ROW18 are PERIOD2 constraints. All remaining rows and
columns belong to PERIOD3.

Other possible keywords on the PERIODS line are NETWORK for pure network
problems and MIXED for coupled LP/network problems. These are explained in
some more detail in sections 3.2 and 4, respectively.

2.3 Stoch File

In the stoch file the distributions of the random variables are specified. As
mentioned, we consider three varieties of distributions: independent, blocks, and
scenarios. Each type will be treated in separate sections of this file; each section
consists of a header line followed by data lines.

Stoch file — header lines

1. STOCH — informative. Identifies a new problem with a give name in the second
word field.

2. INDEP section — specifies the distribution of all independent random entries in
separate sections for each type.

3. BLOCKS section — specifies the joint distribution of all dependent random entries
in separate sections for each type.

4. SCENARIOS section — specifies the scenarios.

5. ENDATA — informative. End of problem data.

2.3.1 A note on distributions

The purpose of the stoch file is to give the user the information needed to com-
pute with the random variables. In many applications the distributions are discrete
or discrete approximations of (absolutely) continuous distributions; thus the user
needs, ultimately, to know what value the random variable takes and with what
probability. The discrete case is straightforward—this information may be explic-
itly provided in the stoch file and then stored in appropriate data structures by the
user. In the continuous case users may have their own discretization scheme and
may need only to know the parameters and type of the continuously distributed
random variables. Such data is easily provided; however, users must then process
it themselves to obtain a discrete approximation. Finally there are cases where the
random variables may be accessed only through a user-supplied subroutine—for ex-
ample the output of a random number generator of nonstandard type. Alternatively,
the user may be able to compute directly with certain continuous distributions and
may build approximations to more general distributions based on them—for exam-
ple the piecewise linear and piecewise quadratic distributions investigated by Wets
[17] and Birge and Wets [2]. This information is easily transmitted using the various
data structures described below.

2.3.2 Independent

Independent random variables are easily treated. We provide facilities for iden-
tifying entries that are distributed as discrete, uniform, beta, gamma, normal and
log-normal; certainly other distributions may be considered. The INDEP header line
is repeated for each new distribution type; entries with the same type are listed
together following the appropriate header. The keyword in the second word field of
the header identifies the distribution. The data lines indicate the entry by column
and row in the first two name fields, and the distribution parameters are entered in
the first and second numeric fields.

Discrete. For each discretely distributed entry one must specify the values and
corresponding probabilities. The first two name fields identify the entry, and the
first two numeric fields are the value field and probability field respectively. The
intervening third name field contains the name of the period in which the random
variable is realized (this information is ignored by the input routine but is useful to
have made explicit for data consistency checking).

INDEP DISCRETE
COL1 ROW8 6.0 PERIOD2 0.5
COL1 ROW8 8.0 PERIOD2 0.5
RHS ROW8 1.0 PERIOD2 0.1
RHS ROW8 2.0 PERIOD2 0.5
RHS ROW8 3.0 PERIOD2 0.4

In this example the entry COL1/R0OW8 takes value 6.0 with probability 0.5 and 8.0
with probability 0.5; and the righthand side of ROW8 takes values {1.0,2.0, 3.0} with
probabilities {0.1,0.5,0.4} respectively. Of course the probabilities associated with
an entry must total one.

Uniform. The endpoints of the interval are the only relevant parameters for uni-
formly distributed entries. These are entered into the first two numeric fields; the

third name field is blank.

INDEP UNIFORM
COL1 ROW8 8.0 PERIOD2 9.0

In this example the random entry COL1/ROW8 is uniformly distributed over the in-
terval [8.0,9.0].

Normal. The normal distribution is specified by mean p and variance o? in the
first two numeric fields.
INDEP NORMAL
COL1 ROWS 7! PERIOD2 o?

Beta, Gamma, Lognormal. The standard beta on [0, 1], gamma on [0, 00), log-
normal on [0,00) are two-parameter families of distributions and may be handled

-8-

in a similar fashion to the normal, using the standard descriptors as presented in,
for example, Raiffa and Schlaifer [16]. An adjustment to other intervals could be
effected within the framework of the linear transformations described below.

Subroutine. Some random entries may have distributions that are computed by
subroutines, for example, empirical distributions which are discretely distributed
but whose values may be randomly generated by user-supplied computer codes.

INDEP SUB
COL1 ROW8 blank PERIOD2

This example indicates that the user must access a subroutine to generate an ap-
propriate distribution for the entry COL1/R0OWS.

2.3.3 Blocks

Blocks may be regarded as mutually independent random vectors. We provide
for three distribution types: discrete, subroutine, or linear transformation. As in the
independent case, blocks with common distribution types are grouped in the same
section under a header line.

Discrete. The “values” of a block are actually vectors of values of the entries that
make up the block, and to each value of a block there corresponds a probability. We
need two sorts of data lines to describe a block. The first line, distinguished by a BL
in the code field, gives the name of the block, the name of the period in which the
block is realized, and the probability that the block assumes a given vector value;
the following lines identify which entries of the block assume which value.

BLOCKS DISCRETE

BL BLOCK1 PERIOD2 0.5
COL1 ROW6 83.0
COL2 ROW8 1.2

BL BLOCK1 PERIOD2 0.2
COL2 ROW8 1.3

BL BLOCK1 PERIOD2 0.3
COL1 ROW6 84.0

One needs to record only those values that change. We adopt the convention that
the first statement of the block is the basis from which all changes are computed.
(Thus zero values must be stated explicitly.) In this example the block, called
BLOCK1, is the 2-vector made up of the entries COL1/R0W6 and COL2/R0OW8. It takes
values (83.0, 1.2) with probability 0.5, (83.0, 1.3) with probability 0.2, and (84.0,1.2)
with probability 0.3.

Subroutine. The user accesses a subroutine to compute the distribution of the
block consisting of the listed entries.

BLOCKS SUB

BL BLOCK1 PERIOD2
COL1 ROW6
COL2 ROW8

BL BLOCK2 PERIOD2
RHS ROW6
RHS ROW8

Here we have identified two blocks, each a 2-vector, BLOCK1 and BLOCK2 whose
distributions must be computed by a subroutine.

Linear Transformations. These are blocks whose distribution is computed as a
linear transformation of another random vector with independent components, i.e.,

v=Hu

where H is a matrix and v and u are random vectors. The vector v is the block whose
distribution is desired; the vector u has independently distributed components of
standard type, e.g., normal. We first identify the block as in the subroutine case,
then the (marginal) distribution of each (independent) component of u followed
immediately by the corresponding column of H.

BLOCKS LINTR
BL V.BLOCK PERIOD2
COL1 ROWS
COL3 ROW6
RV U1 NORMAL L blank o?
COL1 ROWS hi1
COL3 ROW6 oy
RV U2 UNIFORM a blank b
COL1 ROWS hys
COL3 ROW6 has
RV U3 CONSTANT
COL3 ROW6 C

This example illustrates the file structure. In this case

COL1/ROW8 = hyy - N(i,02) + hiy - U(a, b)
COL3/ROW6 = hyy - N(,02) + hyy - U(a,b) + C.

General multivariate normal [8] and multigamma distributions [13] can also be
treated in this way. Note that the “names” U1, U2 and U3 are irrelevant and may

be left blank.

-10-

2.3.4 Scenarios

To describe scenarios one needs a data structure that expresses inter-period
dependencies. This is best developed as a description of the distribution of a process
vector in the periods, t = 1,...,T, just as one may describe a stochastic process

in probability theory. We consider the random entries of (¢, by, A¢s :

s < t) as

states of a process vector ;, for each time t = 1,...,T. Given the corresponding
(finite dimensional) joint distributions of this process ¢, Kolmogorov’s construction
yields a probability measure P, termed the process distribution, on the space 0 of
trajectories. Thus, in general, we have the alternatives of describing the distribution
of the stochastic process ¢ in joint or conditional state distribution form, or as a

process distribution over trajectories.

t=1 t=2 t=3 t

O

O

O

Figure 1. Event tree representation of scenarios

O O0OOO0O0 OO 0O

O

Scen 1
Scen 2

Scen 3

Scen N

More specifically, with the stochastic process ¢ is associated a filtration {F; :
t=1,...,T}, where for each t the sigma algebra F; consists of subsets of) termed
events determined by the history of the process ¢ up to time ¢, and F; C F;y; for

-11-

allt =0,...,7 — 1 (with Fy := {Q2,0}). Given the process distribution P over the
space of trajectories and an event A in period ¢+ 1 we may compute the conditional
probability P{p;1 € A | F;}. Conversely, these conditional probabilities may be
composed to generate the finite dimensional distributions of the process ¢. In the
case under consideration in this paper, all this may be given a much simpler, more
graphic, characterization.

To describe the process paths in the discrete state case, note that ¢; can assume
only finitely many values for each t. A given history of values ¢,, for s = 1,...,¢,
may be followed by a finite collection of values of ;1. We think of these as nodes
in period ¢+ 1. Following Lane and Hutchinson [11] and Raiffa [15], we construct an
event tree representation of the trajectories: Represent the (unique) value of ¢; by
a single node connected by oriented arcs from ¢, to nodes representing the values
of 3. These are the descendant nodes of the first period node in the terminology
of Birge [1]. Each node of period 2 is connected to its descendant nodes at period 3
by individual arcs oriented in the direction of the period 3 nodes. This construction
is continued by connecting each ancestor at period t — 1 with its descendants at
period t. Each node of this tree has a single entering arc and multiple departing
arcs representing the possible next period events.

A trajectory o thus corresponds to a path from the period 1 node to a single
period T node composed of arcs oriented in the direction of increasing time ¢ and,
moreover, corresponds uniquely to a single node in the last period 7. There are only
finitely many paths linking nodes in period 1 to nodes in period T and to specify
the distribution on the paths one needs only to attach a definite probability to each
path. Hence specifying the process distribution in terms of path probabilities can
be effected in this context by assigning probabilities to period T nodes of the event
tree (see Figure 2).

For each period £ = 1,...,T, the corresponding sigma algebra F; is formed by
taking all possible unions of the events represented by the nodes of period £; thus the
topology of this event tree represents the information about the process expressed
by the filtration {F; : ¢ = 1,...,T}. To each arc we attach the probability that the
terminal node occurs given the initial node has occurred—that is, the conditional
probability of ¢, given the history ¢, for s = 1,...,¢. These arc probabilities can
be computed from the path probabilities by summing the probabilities of the paths
visiting the terminal node and then dividing by the sum of the probabilities of the
paths visiting the initial node. Conversely, if to each arc in the tree we know the
conditional probability that its terminal node occurs given that its initial node has
occurred, then the probability of any given path is simply the product of the arc
probabilities along the path.

A decision z; is made only on the basis of information collected up to and
including time £. This is represented by a single node in period ¢t. The uncertainty
faced by the decision maker is represented by the collection of paths that branch
from this node. Thus in Figure 2, the decisions occur at the nodes and the scenarios
branch after the node.

In a language more specific to our application, a “path” in the tree analogy

-12-

PERIOD1 PERIOD2 PERIOD3 PERIOD4

O O o O O o O O o O O SCEN1, Prob=0.5

O O o O O SCEN2, Prob=0.2

O O SCEN3, Prob=0.2

O O o O O o O O SCEN4, Prob=0.1

Figure 2. Scenarios example — event tree

is a single “scenario”. The nodes visited by the path correspond to certain values
assumed by certain entries of the matrices in the core file. Thus a scenario is
completely specified by a list of column/row names and values, and a probability
value. Once a single given scenario is described, then other scenarios that branch
from it may be described by indicating in which period the branch has occurred,
and then listing the subsequent column/row names and values. It is best to work
through the example of Figure 2.

There are two types of data lines. The first, signified by SC in the code field,
gives the name of the scenario in the first name field and its probability in the
first numeric field; and then gives the name of the scenario from which the branch
occurred and the name of the period in which the branch occurred—i.e., the first
period in which the two scenarios differ—in the second name field and third name
field, respectively. A scenario that originates in period one is indicated by ROOT in
the name field. The next data lines give the column/row values assumed by the
scenario.

-13-

Scenarios — example

SCENARIOS DISCRETE
SC SCEN1 ROOT 0.5 PERIOD1
COL1 ROW2 1.0
COL2 ROW3 1.0
COL3 ROW4 1.0
C0L4 ROWS 1.0
SC SCEN2 SCEN1 0.2 PERIOD3
COL3 ROW4 1.0
C0L4 ROWS 1.0
SC SCEN3 SCEN2 0.2 PERIOD4
C0L4 ROWS 0.0
SC SCEN4 SCEN1 0.1 PERIOD2
COL2 ROW3 0.0
COL3 ROW4 0.0
C0L4 ROWS 0.0

This is a description of the distribution of four entries: COL1/R0OW2, COL2/ROW3,
COL3/R0W4, COL4/ROW5, which for convenience we denote here as di, dy, d3, d,,
respectively (see Figure 2). Note that in PERIOD4 there are two nodes for the “state”
dy, = 0.0 and two for d; = 1.0, and similarly in PERIOD3 two nodes for d3 = 1.0.
This is because a node is distinguished by the information that one has collected
concerning the path up to and including time ¢. Thus in PERIOD3 the two nodes are
distinguished because in scenario SCEN1 one knows that the final state is dy = 1.0,
whereas in SCEN2 the outcome of d; is in doubt.

3. Network Standard Format

There are several network formats in use. However, it is our view that the most
common format is the NETGEN format, see Klingman, Napier and Stutz [10]. For
NETGEN we have the following organization of the data line.

Data line for networks

— columns 2—4: code field

— columns 7-12: first name field

— columns 13-18: second name field

— columns 21-30: first numeric field

— columns 31-40: second numeric field
— columns 41-50: third numeric field
— columns 51-60: fourth numeric field

3.1 Core File

As in MPSX there are header lines and data lines in the input format. We
adopt a slight variation of the NETGEN standard in omitting the BEGIN line and
substituting a NAME line to start the input file and in changing the END line to
ENDATA.

-14-

Core file sections for networks

1.

2.

NAME — starts the input file. The rest of the line can be used for the problem
name.

ARCS section — each data line following the ARCS header specifies input for
one arc. In the first name field is the name of the originating node for the
arc, in the second name field the name of the terminating node, in the first
numeric field the unit cost, in the second numeric field the upper bound on
arc flow, in the third numeric field the lower bound on the flow (if not zero)
and in the fourth numeric field the arc multiplier (arc gain) if we are dealing
with generalized networks. If the word UNCAP follows the ARCS code, upper and
lower bounds need not be specified as they are assumed to be co and zero,
respectively. Similarly, the keyword UNDIR signals an undirected network with
default bounds of +0c0 and —co.

. SUPPLY (optional) — each data line following the SUPPLY header contains a node

name in the first name field and the amount supplied in the second numeric field.
DEMAND (optional) — each data line following the DEMAND header contains a node
name in the first name field and the amount demanded in the second numeric

field.

. ENDATA — informative. End of problem data.

Note that there is no section naming all nodes (i.e., rows). They are named

implicitly by their appearance in the ARCS section. Also note that arcs (i.e., columns)
have no names. Hence they cannot be referred to by name, only by a pair of node
names. However, if there are parallel arcs, the user must be careful.

Core file — example

NAME problem name
ARCS
NODE1 NODE2 cost upper lower multiplier
NODE1 NODE3 cost upper lower multiplier
NODEk NODEn cost upper lower multiplier
SUPPLY
NODE1 amount
DEMAND
ENDATA

3.2 Time File

It is normally assumed that in a NETGEN file, all arcs originating in a given

node are given before we start giving arcs originating in the next node. This rule
should be followed. We shall further assume that FROM-nodes are given in node
order, in the sense that if the arcs originating in NODE<¢ occur before those originat-
ing in NODEj, then NODEj belongs to the same or a later time period. However,

-15-

note that we are not able to give arcs in arc order at the same time. The keyword
NETWORK in the PERIODS header indicates that the problem is a pure network.

Time file — example

TIME problem name

PERIODS NETWORK
NODE1 PERIOD1
NODE3 PERIOD2
NODE7 PERIOD3

ENDATA

In the example, NODE1 and NODE2 are first period nodes, NODE3 to NODE6 are
second period nodes, and all remaining nodes are third period nodes. Arcs going
from first to second period nodes are a part of the first period decisions, and carry
flow over to the second period by defining external flows for that period.

3.3 Stoch File

Since arcs are defined by pairs of nodes, to say that the cost of the arc from
node NODE1 to node NODE2 is random requires three parameters. The same goes
for bounds and multipliers. We can use the CODE field for that purpose as in the
following example. (The data line format used in the stoch file for the networks case
is the same as that for the LP case.)

INDEP DISCRETE NETWORK

C1 NODE1 NODE3 6.0 PERIOD2 0.6
C1 NODE1 NODE3 8.0 PERIOD2 0.4
U2 NODE6 NODES 7.0 PERIOD2 0.2
U2 NODE6 NODES 9.0 PERIOD2 0.8
SU NODE6 6.0 PERIOD2 0.1
SU NODE6 8.0 PERIOD2 0.9

The keyword NETWORK indicates that there is something to look for in the code
field of the subsequent data records. We use C1 for “cost of first arc from node
NODE1 to node NODE2” and use higher numbers, such as €2, for the second parallel
arc, etc. Similarly, M = multiplier, U = upper bound, and L = lower bound. Random
supply and demand are accomodated by use of SU and DE, respectively, in the code
fields as illustrated. This format can be changed to all the other distribution forms
in obvious ways.

4. Coupled LP and Network Formats

A network can be viewed as a special case of a linear program, yet it is desirable
to use the more compact network data format to express those parts of a multistage
problem that may be interpreted as network flow problems. The nodes of a network
flow problem are the rows in its LP statement. Our proposal for the coupled format
utilizes an MPSX-like format, but uses the ARCS card to indicate that the following
data lines are in the NETGEN format and the COLUMNS card to indicate that the

-16-

following lines are in MPSX format. While this is consistent with the philosophy as
expressed in the introduction, it does have a particular disadvantage. Many multi-
stage mixed LP /network problems will actually be composed from separate problem
files. To generate the proposed format will involve a certain amount of editing of
these files, however this editing could be automated in various (system specific) ways.

The first section is the ROWS. (The absence of a ROWS card tells the program
that the problem to follow is a pure network.) Note that only those node names
that are going to appear as row names of an LP variable need to be named in
the ROWS section. Then follows the COLUMNS/ARCS section. Once the data for the
columns and arcs has been entered, then the other sections (RHS, BOUNDS, SUPPLY,
etc.) may follow. With the proper logic, the same computer program can read all
three formats and does not need to be told beforehand the nature of the problem
in the file, whether pure LP, pure network, or mixed. As always, the end of the
problem is indicated by an ENDATA line. Below is an example for the case when we
first have LP, then networks and then LP again.

Core file — example of coupled format

NAME problem name

ROWS

E ROW3

E ROW4

L NODE1

G NODE2

E ROW5

E ROW6

COLUMNS
COL16 ROW3 value NODE1 value
COL17 ROW4 value NODE2 value

ARCS
NODE1 NODE2 cost upper lower multiplier
NODE1 NODE7 cost upper lower multiplier
NODE8 ROWS cost upper lower multiplier
NODE8 ROW6 cost upper lower multiplier

COLUMNS
COL18 ROWS value ROW7 value
COL19 ROW6 value ROWS8 value

RHS

SUPPLY

ENDATA

-17-

If we now have a TIME file as follows, the coupling is done.

Time file
TIME problem name
PERIODS MIXED
COL1 ROW1 PERIOD1
COL6 ROW3 PERIOD2
NODE1 PERIOD3
NODE3 PERIOD4
COL18 ROW5 PERIOD5
ENDATA

That the problem is a mixed LP /network is indicated by the keyword MIXED.
Here we have that COL1 through COL5 are first stage decision variables, with ROW1 and
ROW2 first stage constraints. COL6 through COL17 are second stage decision variables,
with ROW3 and ROW4 as constraints. Arcs originating in NODE1 and NODE2 are third
stage decision variables, arcs originating in nodes NODE3 through NODES8 belong to
stage 4. Finally, all variables corresponding to columns C0L18 through whatever the
second COLUMNS section dictates are fifth stage decisions with all constraints after
ROWS associated with them.

The last two entries in the first COLUMNS section will take values from the second
to the third stage. The amount will be determined by the values of COL16 and COL17
and the corresponding entries in this COLUMNS section.

The last two entries in the ARCS section will bring “flow” from NODE8 to the
right hand side of ROW5 and ROW6 by entering a number in those rows. The number
will be the “multiplier” from the input, and the value ending up on the right hand
side will be the product of this multiplier and the flow running out of NODES8 to these
rows (which are nodes when viewed from the network).

A cknowledgements

The authors are grateful to Dalhousie University and the Natural Sciences and
Engineering Research Council of Canada for providing facilities and support for this
research.

References

[1] J.R. Birge, “Decomposition and partitioning methods for multistage stochastic
linear programs”, Operations Research 33(1985), 989-1007.

[2] J.R. Birge and R. J-B Wets, “A sublinear approximation method for stochastic
programming”, Department of Industrial and Operations Engineering, The Uni-
versity of Michigan, Technical Report 86-26.

[3] G. Dantzig, Linear Programming and Eztensions, Princeton University Press,
1968.

18-

[4] J. Edwards, J. Birge, A. King and L. Nazareth, “A standard input format for
computer codes which solve stochastic programs with recourse and a library of
utilities to simplify its use”, International Institute for Applied Systems Anal-
ysis, Working Paper WP-85-03, 1985.

[5] Yu. Ermoliev and R.J-B. Wets, Numerical Methods for Stochastic Programming,
Springer Verlag, 1987.

[6] International Business Machines, Inc., Mathematical Programming Subsystem
— Fuatended (MPSX) and Generalized Upper Bounding (GUB) Program De-
scription, document number SH20-0968-1, 1972.

[7] International Business Machines, Inc., Mathematical Programming Subsystem
— FEutended (MPSX) and Mized Integer Programming (MIP) Program Descrip-
tion, document number GH19-1091-0.

[8] N.L. Johnson and S. Kotz, Distributions in Statistics, Vol. 4, Wiley, New York,
1972.

[9] A.J. King, “Stochastic programming problems: examples from the literature”,
in Yu. Ermoliev and R.J-B. Wets, op cit.

[10] D. Klingman, A. Napier and J. Stutz, “NETGEN: A program for generating
large scale capacitated assignment, transportation, and minimum cost flow net-
work problems”, Management Science 20(1974), 814-821.

[11] M. Lane and P. Hutchinson, “A model for managing a certificate of deposit
portfolio under uncertainty”, in: Stochastic Programming, M.A.H. Dempster,
ed., Academic Press, 1980.

[12] B.A. Murtagh and M.A. Saunders, “MINOS — User’s Guide”, Technical Report
SOL 77-9, Systems Optimization Laboratory, Department of O.R., Stanford
Univ.

[13] A. Prékopa and T. Szintai, “A new multivariate gamma distribution and its
fitting to empirical data”, Water Resources Research 14 (1978), 19-24.

[14] A. Prékopa and R.J-B Wets, Stochastic Programming: 1984, Math. Prog.
Study 27, 1986.

[15] H. Raiffa, Decision Analysis: Introductory Lectures on Choices Under Uncer-

tainty, Addison-Wesley, Reading, 1968.

[16] H. Raiffa and R. Schlaifer, Applied Statistical Decision Theory, Harvard Uni-
versity Press, Cambridge, 1961.
[17] R.J-B Wets, “Solving stochastic programs with simple recourse, II”, in: Pro-

ceedings of 1975 Conference on Information Sciences and Systems, Johns Hop-
kins Univ. Press, Baltimore, Maryland, 1975.

