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Adaptive solution of truss layout optimization problems with global stability constraints

Abstract

Truss layout optimization problems with global stability constraints are nonlinear and nonconvex
and hence very challenging to solve, particularly when problems become large. In this paper, a relax-
ation of the nonlinear problem is modeled as a (linear) semidefinite programming problem for which
we describe an efficient primal-dual interior point method capable of solving problems of a scale that
would be prohibitively expensive to solve using standard methods. The proposed method exploits the
sparse structure and low-rank property of the stiffness matrices involved, greatly reducing the com-
putational effort required to process the associated linear systems. Moreover, an adaptive ‘member
adding’ technique is employed which involves solving a sequence of much smaller problems, with the
process ultimately converging on the solution for the original problem. Finally, a warm-start strategy
is used when successive problems display sufficient similarity, leading to fewer interior point iterations
being required. We perform several numerical experiments to show the efficiency of the method and
discuss the status of the solutions obtained.
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1 Introduction

Optimization of the layout of truss structures is a class of problem that has been studied for many decades,
starting with the seminal paper of [30]. When solved computationally, truss layout optimization problems
are usually formulated based on the ground structure approach ([[11]]), in which a set of nodes are distributed
across the design space, then interlinked by potential connecting bars. The design variables in most cases
are the cross-sectional areas of these bars, but may also include the coordinates of the nodes when geometry
optimization is used ([40]).

The most common objectives of the optimization are to minimize the volume of the truss or to minimize
its compliance, for which several formulations exist, ranging from linear programming, for example for the
plastic design formulation, to nonlinear programming when elastic compatibility constraints are involved
(122, 31 14, 181139, 331]).

Even though the solutions obtained using the aforementioned classical formulations can give useful
insights into potential layouts of truss bars in a structure for use in the early stage of the design process,
the designs generated may fail to satisfy many practical requirements, and therefore may require exten-
sive modification in the later stages of the design process. Hence, in order to improve the practicality of
the designs generated by layout optimization, researchers have sought to introduce many practical engi-
neering issues in the formulation, such as constraints on stresses ([23} [19, |37, 138]]), constraints on local
buckling based on the Euler formula involving continuous ([46, 2,34} 20, [18]]) or discrete ([29]) variables,
addressing global stability via the use of nominal forces (|43} [10]]) or via introduction of global stabil-
ity constraints ([6, 27, 36, 12} 42]]), to mention a few. In recent years several articles have considered
optimization of beam/frame structures with buckling constraints ([41} 28} [31]]).

The aforementioned contributions which include Euler buckling constraints are intended to avoid slen-
der bars in compression being included in the solution while including nominal forces are designed to
ensure nodes connecting bars in compression are adequately braced. Formulations which directly include
global stability constraints are concerned with ensuring the stability of the whole structure. This is of inter-
est because, even if a structure is well-braced, it may fail as a result of insufficient overall elastic stiffness.
Note that global stability problem formulations implicitly address the nodal instability problem, though do
not take into account local instabilities of the sort dealt with by the Euler formula (e.g. [27]).



The focus of this paper is on problems with global stability constraints. These problems are in general
formulated as nonlinear and nonconvex semidefinite programs (6, 27,36} [12]]). Such problems are compu-
tationally challenging and for large-scale structures are usually considered numerically intractable, though
software capable of solving small problems is available ([[L3} [25]). For this reason, some studies formu-
late the nonlinear semidefinite programming problem as an equivalent nonlinear programming problem
([42]). Nevertheless, in all approaches the size of problems that have been solved thus far in the literature
have either been small or otherwise limited, e.g. by only specifying minimum connectivity between the
nodes in the design space. This is in stark contrast to the plastic design formulation, solvable via linear
programming, when full nodal connectivity problems can be solved even for high nodal densities.

In this article, we propose a relaxation of the nonlinear and nonconvex semidefinite programming
formulation, for which we develop an efficient optimization algorithm based on interior point methods.
The method is coupled with other novel techniques to make it capable of solving large-scale problems and
with full nodal connectivity. The relaxed problem is still a semidefinite program but ignores the kinematic
compatibility constraints present in standard elastic formulations. We observe huge computational gains by
solving the relaxed formulation and provide lower bounds for the associated general nonlinear problems.
Moreover, we report an estimation of the violation of the removed kinematics compatibility equations by
solving an associated least-squares problem. For some small-scale benchmark problems, we additionally
make comparisons between solutions of the relaxed and original nonlinear problems. In general, the error
due to ignoring the kinematic compatibility equations are observed to be very small for reasonable values
of the stability load factor, suggesting that solutions to the relaxed problems are acceptable. However, as
we increase the value of the stability load factor beyond practically realistic values, we observe a high
degree of violation in the compatibility equations and significant differences in the optimal designs. In this
paper we also describe the techniques that contribute to the efficiency of the proposed solution algorithm.

Firstly, we employ the adaptive ‘member adding’ approach, previously used to solve plastic truss
layout optimization problems ([[15, 35, 44]) via linear programming, though now solving the problems of
interest here via semidefinite programming. It is a procedure in which we approximate the large-scale
original problem by a sequence of smaller subproblems, the solutions of which ultimately converge to that
of the original problem. In the context of truss optimization, this is done by first solving the problem with
minimum nodal connectivity, followed by generating and adding more members / bars based on degree
of violation of constraints in the dual problem. The procedure continues until the solution to the original
problems is obtained. This procedure greatly reduces the memory required to solve a given problem and,
even using a standard desktop computer, we have managed to solve problems that otherwise would require
hundreds of GB memory. Detailed statistics are presented in Section [0} see in particular the large-scale
bridge example problem described in Section

Secondly, similar to [7]], we explicitly utilize the structures of the problems, i.e., the high degree of
sparsity and low-rank property of the element stiffness matrices ([9, 15, 13 8]]), to address the computational
bottle-neck associated with using the interior point method to solve semidefinite programming problems.
This determines the coefficient matrix of the linear system originating in the algorithm. Roughly speaking,
instead of performing & (mn> +m?n?) arithmetic operations ([14]]), by using standard and straightforward
expressions to determine the matrices involved in the linear systems, we perform ¢ (m?*n) arithmetic oper-
ations, where m is the number of bars and n is number of nodal degrees of freedom. Note that, the sparsity
of the element matrices is also effectively used in performing matrix inner products in the adaptive member
adding procedure, as described in Remark [6]

Finally, as when solving the plastic truss layout optimization using the interior point method ([44]),
we apply a warm-start strategy to solve some of the subsequent problems, determining an initial point that
reduces the number of interior point iterations and overall improves the convergence of the optimization
process. The technique relies on an observation that the number of newly added bars decreases towards the
end of the adaptive member adding procedure and therefore the degree of similarity between successive
subproblems increases at this stage.

The paper is organized as follows. In Section [2] we present the general nonlinear and nonconvex



semidefinite programming model of the truss layout optimization problem with global stability constraints,
its relaxation, and the least-squares problem used to estimate violation of the elastic compatibility con-
straints. We describe the general framework of the primal-dual interior point method and exploitation of
the structure of the matrices in Section [3] and the adaptive member adding procedure in Section d The
warm-start strategy and related mathematical analysis are presented in Section[5]and the numerical exper-
iments are described in Section[f] Finally, conclusions and possible future research directions are listed in
Section

2 The problem formulation with stability constraints

In this section, we describe the problem formulation for the layout optimization of trusses with global
stability constraints. We use the ‘ground structure’ approach ([[11]) to formulate problems. This is done by
distributing a finite set of nodes, say d, across the design space and connecting these nodes by all possible
potential bars, including overlapping ones. Hence, we have m = d(d — 1)/2 bars, where clearly m > d.
We denote the cross-sectional areas of the bars by a;, i = 1,...,m. Let f e R* £ =1,...,n; be a set of
external forces applied to the structure where n (= Nd, N is the dimension of the design space, i.e., 2 or
3) is the number of the non-fixed degrees of freedom. Then, the associated (nodal) displacements uy € R”,
£ =1,...,ng satisfy the elastic stiffness equation

K(a)ug = fo, 0=1,...,np, )

where the stiffness matrix K(a) is computed as

m
K(a) =Y aiK; )
i=1
and the element stiffness matrices K;’s are given by
E
Ki= Ty 3)
L
with 7; € R" being the vector of direction cosines for the ith bar.
Introducing the axial forces g; in member i which are given by
a;E
qri= % w 4)
l
allows us to rewrite equation (1)) as
qusze:lw"?nL? )
where B= (11, ,¥m) € R™".
Next, we define the geometric stiffness matrix G(gy) as given by
m
G(qr) =Y 41.Gi, (6)
i=1
where |
Gi= 7 (8] +nmy), ()

in which the vectors 9;,7; are determined so that ¥, J;, 1); are mutually orthogonal; see [24] for details. The
vectors §; and 1); are not necessarily unique. These are chosen in [24] as the orthogonal basis of the null
space of ¥ and we follow similar approach in our implementation.



Now, the multiple-load case minimum weight truss layout optimization problem with global stability
constraints can be formulated as
i

minimize a
a,qe,uy
subject to qu,i% = fo ve
i
a;E
2 '}/I.TLM = q[f,i VE (8)
1

—ac” <gq <ota, W
K(a)+1G(qr) =0, V¢
a>0,

where [ € R™ is a vector of lengths of the bars, and 6% > 0 and 6~ > 0 are the material yield stresses
in compression and tension, respectively. Note that we can find a similar formulation to problem in
[42] with additional constraints enforcing local (Euler) buckling. The parameter 7, can be interpreted as
a stability load factor and must be set to T, > 1,/ to indicate that the resulting optimal structure is stable
for the loads T/ fy,¢ € {1,...,n.}.

It is worth mentioning that problem formulation (8) does not address local buckling, as addressed e.g.,
by the Euler buckling equation. Therefore, we can expect that the optimal design obtained by solving
problem (8] could potentially include slender bars ([27])).

Due to the inclusion of the nonlinear kinematic compatibility equations (@), problem (8] is a nonlinear
and nonconvex semidefinite programming problem. Such problems are in general very difficult to solve.
In [13] and [36] methods for treating nonlinear semidefinite programming problems are described in which
a variant of formulation (8) is solved. These formulations are very attractive, but the challenge of solving
large-scale problems still remains. In [42], problem (8] is transformed from a semidefinite programming
problem to a standard nonlinear programming problem.

In this paper, we relax problem (8) by ignoring the kinematic compatibility constraint (@), and solve
a semidefinite programming problem of very large dimension because we allow full nodal connectivity.
Namely, we consider

minimize [a
a,qe
subject to qu,i}’i = f, vl
i

9
—ac”- <g/<octa, W ©)

K(a)+1G(qr) =0, V¢

a>0,
which is a (linear) semidefinite program and can be interpreted as the plastic design formulation with
global stability constraints. In our numerical experiments described in Section [6] we additionally report

the maximum violation of the elastic compatibility constraints for the optimal designs obtained by solving
the relaxed problem (9). This violation is estimated by solving the least-squares problem

1 *E
minimize max T3 Z(L%TW - q}f.i)27 (10)
i PAER A |

where a* and g are the solution of the relaxed problem @)

Note that the special case 7y = 0,V/, or in other words, excluding the matrix inequality constraints,
reduces problem (9) to the plastic layout optimization problem, which is a linear program that can be
solved efficiently by an interior point method ([44])).

Remark 1. The relaxed problem (9) belongs to the class of linear semidefinite programming problems.
Hence, any of its solutions are also globally optimal solutions. Moreover, this provides a (strict) lower
bound to nonconvex problem (8)) for 7, > 0.



Remark 2. The relaxed problem (9) can be solved very efficiently by extending the adaptive ‘member
adding’ scheme which has been used previously to solve large-scale plastic layout optimization of trusses
formulated as linear programs ([15]], [35], [441]).

Remark 3. For some of the examples in Section[6] we additionally solve the nonlinear semidefinite pro-
gram (8) using a modified version of the method discussed in Section[3|and compare the solutions obtained
with those of the linear SDP relaxation (9).

Remark 4. The least-squares problem always has an objective value of zero for a single-load case
problem and when 7 = 0 in (9). This is because for T =0, the problem (9] precisely reduces to the so-called
least-weight (or minimum volume) plastic design problem which has indeed been shown to be equivalent
to the elastic minimum compliance problem ([22, |3 4, |8, [1} 139]).

3 The primal-dual interior point framework

We adopt the Mehrotra-type primal-dual predictor-corrector interior point method ([[14]) for semidefinite
programming.
Introducing the slack variables s, , s} € R, and Sy € S, we rewrite (8) as

minimize [Ta
aqp
subjectto Y qui% = f7, vl
i
—ac +qi+s, =0, N4 (11
—ac” —qu+s, =0, W24
K(a)+1G(qr)—Sr=0, V¢
S;=0,sf >0,5, >0, W/
a>0,
and write down the following dual:
.. T
maximize A
Aox)oxp Xa.Xe zg:f/ ‘
subjectto o ijl- +0 szi + ZKi o Xy +Xqi = 1;,Vi
‘ [
%’Tlﬁ_xZi+xé_,i+TfGi.Xf =0, Ve, Vi (12)
Xé = 07 Ve
X, >0
x; >0,x, >0, Ve,

where Ay € R” denotes the virtual nodal displacement, xj, xZ eR"L=1,...,n,x, e R", X, €S", and
the notation U eV = Y, ¥ ;U;;V;; for U,V € R™™".

Remark 5. The primal problem formulation (11)) is traditionally referred to as the dual problem, and the
dual problem formulation (I2)) is traditionally referred to as the primal problem in literature on semidefinite
programming ([45]).



Next, we introduce a barrier parameter tt > 0 and formulate the perturbed first-order optimality con-
ditions as

oY xi+07 Y X+ Y KieXi+x,—1i=0, Vi (13a)
l l l

¥ A=) +x,;+ uGie X, =0, Ve, Vi (13b)

Zw,i% —fe=0, 7 (13c)

—ac +qp+s, =0, W74 (13d)

—a6 —qi+s, =0, W24 (13e)

K(a)+1G(qr)—Si =0, N4 (13f)

x; s, —He=0, W4 (13g)

X, -85, —He=0, Ve (13h)

Xg-a—He=0 (131)

X, —us;' =0, e, (13j)

where the notation u - v, for any v,u € R™ is a component wise multiplication and e = (1, ..., 1) of appropri-
ate size. We denote by &; = (£4,,64,,) the negative of the dual infeasibilities (13a)-(13b), by &, = (&, ,
Epri>8psss Epy,) the negative of the primal infeasibilities —, and by & = (&, ;s Ses 5 Eesr 8y, ) the
negative of the violation complementarity equations (I3g)-(13j). Note that a direction obtained with the
scaling corresponding to the last complementarity equation is called the HRVW/KSH/M direction
([21}, 261 32])).

Now, we solve system (I3) for a sequence of ; — 0 to find the solution of the primal and dual
problems (9) and (12). This is done by applying Newton’s method to the optimality conditions and
solving the (reduced) linear system.

A AL, 0] [Aa &
A Ay BT |Aq| = |&| . (14)

0 B 0] |Aw &3

where (borrowing Matlab notation) B = blkdiag(B, ..., B), Ay; = blkdiag(A1, ...,As), and A1, = (Aqy,...,A1)T
with 1
(An)ij = _ZXEKiSZ oK+ (D11)ij
l

(Au),-j:—XgK,-SZIOGj-F(DM),'j (15)
(Aw)ij = —X¢GiS; ' 8 G+ (Duy);j

and Dy; are diagonal matrices. The vector (£1,&,&3)7 is the resulting right hand side. For complete
description of the interior point method, we refer the reader to [14]. The rest of this section is dedicated to
the computational difficulties associated with the interior point method for semidefinite programming and
the techniques we use to resolve these difficulties.

There are several computational challenges associated with the linear system (I4). Firstly, all block
matrices Ay, k,l = 1,...,n; are dense and require a large amount of memory to store them; see Figure ] for
the sparsity structure of the coefficient matrix for a two load-case problem. Secondly, the straightforward
computation of the coefficient matrix requires & (mn3 + m2n2) operations ([14]).

The second challenge can be easily resolved by exploiting the low-rank property and sparsity of the
data matrices K;, G;,i = 1,...,m ([[7,0, 5,3/ [8]). From (3)) and (7)), it can be seen that the rank of the element
stiffness matrices K;,i = 1,...,m is always 1 and the rank of the element geometric stiffness matrices
G;,i=1,...,m is 1 for two-dimensional problems and 2 for three-dimensional problems. The direction



(a) (b)

Figure 1: Sparsity structure of the coefficient matrix in system for a two load-case problem: (a)
without adaptive member adding, number of non-zeroes = 73893; (b) with adaptive member adding, and
in the final SDP iteration, number of non-zeroes = 24126.

cosines vectors ¥;, 0;, and 1); are all very sparse with at most 4 or 6 nonzero entries for two- and three-
dimensional problems, respectively. Therefore, we utilize this property to compute the coefficient matrix
efficiently. For example, consider the block matrix A (single-load case for notation simplicity). We have

(A11)ij— (Dn1)ij = —XK:S "' e K;
E2 T o—1 T

E? .
= — EYJTS l?’i%’T

Xv;,
which can be computed in ¢'(n) arithmetic operations and hence the computation of the coefficient matrix
can be brought down to & (m?n).

In the next section, we discuss the novel approach employed to deal with the first challenge, i.e., the
large memory requirements.

4 Adaptive ‘member adding’

In problem formulation (9) we consider fully connected ground structures. Hence, for a N—dimensional
problem comprising d nodes, the coefficient matrix of the reduced Newton system (I4) has dimension

((np+1)m+ngn) x ((n,+ 1)m+ngn),

where m = d(d — 1)/2 and n =~ Nd. Moreover, all of the larger blocks of the coefficient matrix, each with
dimension m x m, are full matrices. This indicates that it would be computationally prohibitive to store or
factorize the matrix; see also the large-scale bridge example problem described in Section [6.3.1]

In order to overcome this we extend the adaptive ‘member adding’ approach initially proposed for
linear plastic truss layout optimization problems by [15] and later used in other studies, for example by
[35] and [44]. It is a strategy whereby the original large problem is solved by successively solving a
number of smaller sub-problems, as will now be described.

First we start with a structure constituting minimum connectivity, for example with the structure shown
in Figure 2a) for two-dimensional problems and Figure [2b] for three-dimensional problems, and let mq be
the number of bars in the the initial structure. We denote by Ky C {1,...,m} the set of indices of the
bars for which the primal problem (TT)) and its dual (I2) are currently solved. Next, we compute the dual
violations using only variables A, and X, in which are described below.



(a) two-dimensional problem (b) three-dimensional problem

Figure 2: Initial minimally connected ground structures for: (a) two-dimensional problem, (b) three-
dimensional problem.

For any member i to be dual feasible, see , we need

otY xji+07 Y X+ Y KieX <l (17a)
L l 14

¥ M+ TGie Xy =xt; —x;, Ve (17b)

X, =0, vl (17¢)

X[ >0,x;, >0, VL. (17d)

Now, since xj > 0andx, >0, from li we have
1 _ 1
;le. = F(li _;Ki'xé) and ;xm = F(li —;Ki'XZ), (18)

and from we have
—xp; S A+ uGie Xy < x[, VL. (19)

Combining (T8) and (19), we get

1 1 1
< Y M+ uGieX) < —,
o- T Li—-Y/KieX, 7 (1 A+ GieXe) < ot

vt (20)
for a member i to be dual feasible. Any member that violates is said to be dual infeasible.
Now, solving the problem for members with indices in Ky, we use (20) to generate the set K as

1 o

K:{je{l,--~,m}\Kolw;(G8£j+6+825)21+[3}, (21)

where ,
SZ =max{(y; 4/ + G;eX/)),0}

€, :max{—(}/jTlg* +7,GjeX/)),0}

with A, and X/ being optimal values, and 3 > 0 some prescribed tolerance. Then, we identify the bars with
indices in K, filter them, and then finally add then to form the next problem. The purpose of the filtering
is to limit the number of bars to be added in order to prevent fast growth of the size of the problem. For
details of heuristic filtering approaches, see [44]. For the numerical experiments in Section [6] we use the
member bar length approach described as filtering strategy AP3 in [44]. The member adding procedure
terminates when K = 0.

Remark 6. In our implementation, the sparsity of the data matrices K; and G| is exploited to determine the
set K in (21)) while performing the operations K; ¢ X; and G; e X;. Hence, this step becomes inexpensive.
The CPU times reported for the numerical experiments in Section [6]include this procedure.



Remark 7. In Figure [l we present the sparsity and size of the coefficient matrix of the reduced Newton
system (I4) for a small problem. Figure[Ia]shows the situation when the problem is solved for all potential
bars, and Figure|1b|shows the situation when we apply the adaptive member adding strategy. The sparsity
structures may look similar but the size is reduced. Moreover, this reduction in size becomes even more
significant for larger problems; see the large-scale bridge example problem described in Section[6.3.1]

5 Warm-start strategy

After performing several member adding iterations the subsequent sub-problems start to become more and
more similar. Therefore, we use a warm-start strategy and determine an initial point that can reduce the
number of interior point iterations required to obtain a solution. This has been used for the basic truss
layout optimization problem formulated as a linear program in [44] and is now applied to the semidefinite
programming formulations presented in this paper. The discussion in this section and the mathematical
analysis closely follow Section 6 of [44].

As described in Section |4 we generate the set K in at every member adding iteration. If K # 0,
then we form the new problem in which the variables are

+ - = = + et o
(a7qf>S€7S({7s()—>(aaaaqﬂyq€7‘séas({as1(7sf7s[)

] $S087 5 22)
(M)XE)XZ?X({ ) - (”vXZ’xzrvxjvxl e )

where the vectors with the super-bar, all in R¥, k = |K|, represent the new variables corresponding to the
newly added bars. We assume that the old solution (the left-hand-side in (22))) was feasible in the previous
instance of the adaptive member adding scheme.

5.1 Computing a warm-start point

We set the initial point for the variables without the super-bar in the right hand side of to the solution of
the previous problem instance obtained with a loose tolerance. Following [16]], the interior point algorithm
should not be initialized at a point too close to the boundary of the feasible region. For the newly added
variables, i.e., those with bars in (22)), we use a specialized initialization procedure given below. We first
set )EZ’ and x, as

— 1
Xz:j :max{f/flg + 1,G; ng,‘qu}, VjeK, o)

1
—— T 5 5 .
%, =max{—%; & — 1G;e Xy, 5 }, Vj EK,
where U is the value of the barrier parameter corresponding to the saved solution of the previous problem
instance. Its value is computed as

X (XpeS, +XZFTSZ +x[Ts[) +xla

Ho n-n+(np+1)mo ’ 29
where mo = |Kp|. Then, we set the new dual slack variable as
(¥,); = max{|l[; — 6*%)22;. -0~ ;X;] —K; oXA,ué},Vj €k. (25)
Finally, new primal variables are defined by
g, =0, V¢
aj=to(%, ")), Vi€ K 26)

s5f=0ta, vt

5§, =0 a, Vvt
Now, similar to [44], we estimate the bounds on the primal and dual infeasibilities, and the violation in
complementarity slackness conditions induced by the new variables.



5.1.1 Primal infeasibility
We start with the bounds for the first three primal infeasibilties &,, = (&, ,,&p,,,Eps)> £ = 1,-..,nL (13c)

-(13¢).
”gl’un = Hff _qu%' _Zqz,i'}_’in
i i
= |Ife=Y_ qeille
i
(27)
= {1&p llees
Hé’u”w = HGJF&_(?Z—S_Z_HDQ =0,
1Epsille = 1|07+ G0 — 5, || = 0.
Now, we determine the bound for the last primal infeasibility £, , (13f).
[Epa oo = [| = K(a) — TG(qe) + St — K(a@) — ©G(Ge)] |
< ||§p4/|‘°°+||K( a)|[e (28)
<1168, I+ 1 L2
l
This is because E Ea
n _ i
1K (@) = IIZ ’ ’%%Tllw Z%\I%%-Tl\w
’ (29)

| E

—71
E:x : 1 .
:[JOZ ll—ia7l S.u()zzlfll)

1
where the last inequality above holds since %, ; > p by definition. Moreover, ||%7/ || < 2N. This is be-

cause, for example, when N = 2 the non-zeros entries of the direction cosine ; are y;=(— @, — @, @, %)

which implies ||## || < 4 . Therefore, the expressions in and demonstrate that primal infeasi-
1

bility is at worst proportional to 17, and hence insignificant.

5.1.2 Dual infeasibility
Starting from the second dual infeasibility &4, , in (13b), using (23), we have

= 1
(gdz,f)i = 71’T7LE _xZi +X;+ TGie Xy < Uy

and hence 1
1€y oo < 15 - (30)

Now, we estimate the first dual infeasibilty &;, in (13a)). Using the definition of X, in (25) and the fact that
r—|r| <2|r|,r € R, we have

(Ea))i=1i— Z —0 Z’% ZKng Xai
<2|I; —G*ngl—c Zx&i—ZIZingH—ug
7
§2(E+G+;XZ,~+GZ%Zk"XeH#é 31)
2(l‘i+6m§|y, o+ TGie Xy —ZK o Xp) + (4n + 1)ug

i} 1
—2(li+0'max2(€[,.+eg ZK o Xy)+ (4np+1)ug ,
=\

10



where Gyqx = max{c~,0"}, and €, and € are given as (21). Hence,
_ _ 1
&l <120+ Y Omac(ey +85) =Y, A X0) + (dnp+ 1)y e |, (32)
l l

where (£ X;); = K;#X;,Vj € K. This expression reveals that there can be a considerable violation of the
first dual constraint in (I2)) and so we apply the warm starting routine presented by [16} [I7] to address this.

5.1.3 Centrality

We compute complementarity products for all newly added variables to evaluate the centrality of the new
point. Note that the last centrality in condition (13) is automatically satisfied. Moreover, the pairs (a,x,)
are [y centered from (26).

Since 1 1
(-fa)j = maX{|lj—G+Zf;j—Gi Z)ZZJ —Ki.XA,‘llg} > ug,
4 y4
we have
=+ +(+H) .5 +(X;)j L
(x,),;(57); =07 (x;),a; = too ), <ugor(x));
J
1 _ 1

1 _
< oo + g G+|77J-T/14+ G e Xy|
1
_ Yoy 2at(e— 1ot
Next, finding upper bound on (%)
_ e - 1
()Ea)j:max{]lj—GJr;XZj—G zglx&j—K,-ng],qu}

< maX{GmM(;(fz—)j +;()E;)j) Jrki'Xf’”O%}

_ [ 1
< max{Guanr max |}_/J-TM +17GieXo|+2n 1y +Kio X, g }

B} _ 1
< OmaxL MAX 7] Ao+ TG o Xy| + Ki 0 Xy +2nL

we get
_t
X
G50 = ot () = oo L
(xa)/
_ 1
L max{¥] A+ G e Xp, 15 }
= HoO -
(xa)j}
3
otug
= &), (34)
3
> o' g

_ _ 1
Omax, Maxy |’}_’]T)~15 + 7,G; .Xg| + K e X, + an[.loz
oo™
-1

Gmaan/J()T (man(Eé_j + 82,—) + Ki .Xf) +2ng,
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Then, using and

o" _ 1 _ .
=) - .UOS(XZ)jGZ)j§N06++“020'+(8£j+gg)7 ViVE (35)
OmaxnL iy’ (max[(s[; +£g) +K;eX;)+2n;

Similarly,

o N - P ;
= - Mo < (%,);(5,); < oo™ + 5o (g, +£)), ViVl (36
2 — +

OmaxnLby’ (maxe(€, +€,) + Ko Xy) +2n,

The bounds in (35) and (36) imply that the pairs (¥, ,5, ) and (£/,5,), £ € {1,...,n.} have no prominent
outliers from the pp-centrality. This is due to the shift-like terms involving (86,- + SZ ) in the right hand

1
side being multiplied by i, thus reducing the induced violation of the pio-centrality.

6 Numerical results

The interior point method has been implemented in MATLAB (R2016a). All numerical experiments have
been performed using a PC equipped with an Intel(R) Core(TM) i5-4590T CPU running at 2.00 GHz with
16 GB RAM. For the case of the cold-start runs the initial points a, sjo, s, 0, xjo,x/ 0, xJr are set to unity,

S¢, Xy to the identity matrix /, and q(é), ).,9 to zero. The interior point algorithm terminates when

k k T k__ Tk
1€l <e, H&dylm e [ zTgfk A
1+ [1]]e IRIAI™ 1+ |17 a¥|

S gopty (37)

where f = (fi,..., fn, )", matrix terms are vectorized, and the primal and dual residuals &, and &, are given
by (13). Note that, for feasible primal and dual points, the duality gap can easily be written as

lTa—ngTlg = Z(x/ sy +x, s[ +X,08)+a'x,
l l

by performing some elementary algebraic operations.

The primal and dual relative feasibility tolerances are set to €, = & = 107°.

For the optimality tolerance, we use loose tolerances in the first few member adding iterations since
the first few subproblems should not have to be solved to optimality, and then tighter tolerances in the final
iterations, i.e., &p; = [1072,1072, 1073, 10~*] and then always 107>, The reported CPU times correspond
to the entire solution process, including the member adding computations.

In the original problems we consider all the potential bars, including overlapping bars. At the start of
the solution process, we begin with the structure shown in Figure [2a for two-dimensional problems and
Figure [2b| for three-dimensional problems, and use 8 = 0.001 to generate the set of members in K given
in that are dual infeasible. If the warm-start strategy is used, then it is activated at the fourth member
adding iteration or else before this if (my - mg_; )/my < 0.12, where my is the number of bars used in
the kth member adding iteration. In applying this strategy, we use the solutions obtained with tolerance
€,pr = 0.1 in the preceding problem instance to determine the initial point of the subsequent problem.

For all examples, Anmi, denotes the minimum eigenvalue of the generalized eigenvalue problem

(K(a) +AG(qe))ve = 0.

Moreover, we set 7, = 0 in and (9) for problems without stability constraints and 7, > 1 for prob-
lems with stability constraints. Its specific values are mentioned in the examples below. Addtionally,
when reporting the solution of the SDP relaxation (9), we also provide an estimate of the violation of the
compatibility equations by solving the least-squares problem (I0).
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Table 1: L-shaped truss example: comparison of volumes obtained by solving the nonlinear SDP (8]) and
the SDP relaxation (9), and violation of the compatibility constraints (@) estimated by solving the least-

squares problem (T0).

T 1 10 20 30 40 50 60 70 80 90

Nonlinear SDP volume @' 0.0622 |0.0646 |0.0677|0.0717|0.0772|0.0846{0.0933|0.1031{0.1139{0.1251

Relaxed SDP volume (9) |0.0622 |0.0643 |0.0670|0.0703|0.0749{0.0805|0.0871{0.0947{0.1028|0.1117

Violation of compatibility |5.0e-06|5.3e-04/0.0024]0.0066|0.0164/0.0306/0.0368|0.0459|0.0591]0.0702

{. by 10

Finally, we use Young’s modulus E = 210GPa, and equal tensile and compressive strengths of 350MPa.
In the plots of the optimal designs, bars in tension are shown in red and bars in compression are shown
in blue (except for sake of clarity in the case of Figure [I0). In all cases, the bars shown are those with
cross-sectional area > 0.001ap,x and the dark dots are the active nodes connecting these bars.

6.1 Benchmark example problems

The objective of the examples in this section is to provide an insight into the solution obtained when a linear
SDP relaxation (9) is solved for benchmark problems reported in the literature. This is done by comparing
solutions with those obtained using nonlinear SDP (8)), which includes compatibility constraints.

6.1.1 L-shaped truss example

We solve the benchmark L-shaped truss example problem shown in Figure comprising 132 bars. It
has dimensions 1m x 3m x 4m (including the null region of dimensions 1m x 2m X 3m), and each of the
applied nodal loads is 350 KN, applied simultaneously. The optimal designs are given in Figures
and resemble the solutions presented in [27, 42], who solved various problem formulations incorporating
global stability constraints, and those presented in [43], [[LO], who obtained solved problems incorporating
destabilizing nodal forces.

When the problem is solved without stability constraints, the solution shown in Figure 1[3b]is obtained
which comprises two parallel planar trusses. In that case the optimal design has volume 0.0620m? and
Amin = 1.2¢ —05 < 1; hence it is not stable. Next, solving the relaxed problem (9) with stability constraints
for 7, = 1, we obtain the solution shown in Figure[3c| where a connection between the two parallel planes
is now established. The volume of the structure is 0.062217m> and A, = 1. It is useful to now to establish
an estimation of the violation of the elastic compatibility equation, obtained from (I0); this is found to have
a value of 4.9624¢ — 06. Moreover, we can compare the solution shown in Figure [3c|to that of the optimal
design shown in Figure obtained when solving the standard nonlinear SDP formulation (8). In this
case the design has a marginally higher volume of 0.062241m>.

In order to evaluate the result obtained by solving the relaxed SDP (9) and the nonlinear problem
in more detail, we also solve the problems for a larger value of the loading factor 7. Thus for 7, = 10,
the solution to the relaxed SDP gives the design shown in Figure 3¢ which has a volume 0.064333m?
and the violation of the elastic compatibility equation is equal to 5.3177¢ — 04 . This is larger than in the
case above when 7, = 1. For 7, = 10 the nonlinear SDP gives the design shown in Figure [3f] which has a
somewhat larger volume, of 0.064639m?>. Table (1| shows the behaviour for even higher values of 1, i.e.,
7, = 20,30, ...,90. This indicates that when the value of 7 is increased, the magnitude of the violation of
the elastic compatibility constraints increases. Nevertheless, the results seem to agree for small values of
Ty and especially for the required minimum value 7, = 1, so that the structure remains stable when the load
is applied.

13



N

D
‘,

A
i\

>
A

W
™

LU
A\VANWW A

N
> ~ V4
N

£

(a) ()7 =0in (@), © =1 in(9), (d)7=1in(8). (e) 7 =10in (9., (f) 7, = 10in (8),
vol = 0.062000m3 Vol = 0.062217m? vol = 0.062241m3 vol = 0.064333m® vol = 0.064639m*

Figure 3: L-shaped truss example: (a) design domain, boundary condition, and load; (b) optimal design
without stability constraints; (c)-(f) optimal designs with stability constraints.

Remark 8. The solution to the problem without stability constraints presented in Figure [3a constitutes not
only two independent planar trusses but also unstable nodes connecting bars that are in compression. The
unstable nodes are stabilized in Figures with bracing bars.

6.1.2 Tower example

We solve the tower example problem shown in Figure [a] comprising 1,953 bars in the fully connected
ground structure. This is motivated by the similar problems solved by [36] and [43]]. In this example, the
tower is for sake of simplicity assumed to have dimensions of Im x 1m x 3m, is fixed at its base, and is
subjected to a downwards vertical load of 350KN at the centre of its upper surface.

The optimal design is shown in Figure [b] for the problem without stability constraints, which turns
out to comprise six vertical inline bars with no bracing elements. Its volume is 0.00300m> and Ay, =
2.3277e — 04; clearly this structure is not stable. Now, setting 7, = 1 and solving the relaxed problem
with stability constraints (9), we obtain the solution shown in Figure fic| with no intermediate unstable
nodes, with bracing bars connecting the loaded node. The stable design has a volume of 0.003010m?>.
Estimating the violation of the elastic compatibility equation we solve problem and get 3.6617¢ — 06.
The nonlinear formulation (8]) produces the solution shown in Figure @] and has a volume of 0.003020m?.

For a higher value of 7, = 10, the solution to the relaxed SDP (9) returns the design shown in Figure[de]
with a volume 0.003102m? and compatibility constraint violation of 5.0965¢ — 05, and the nonlinear SDP
returns the design presented in Figure 4] with volume 0.003200m>. Note that the results are in broad
agreement with the results obtained by [36] and [43]], where the tower problem is respectively solved
using a nonlinear semidefinite formulation with global stability constraints and with the introduction of
destabilizing nodal forces. In Table |2 results are presented for higher values of 7, = 20,30,40, where
the largest violation of the compatibility equation is observed when 7, = 40. This suggests that further
investigation is required to evaluate the practical validity of the solution of the relaxed SDP formulation
(@) when large values of the stability load factor 7 is used.

Remark 9. As mentioned in Section [2}, models and (9) do not address local buckling. This is shown
in in Figures [4c| and 1] where long bars in compression are used as bracing or as means of stabilizing
otherwise unstable nodes.

The purpose of this example is simply to demonstrate that if the bars in the optimal design are all in
tension, then the solution obtained with or without the the global stability constraints are identical. To
show this we solve the problem in Example but with the direction of the load reversed, as shown
in Figure [5a] The optimal design is shown in Figure [5b] for the problem without stability constraints and
once again comprises six vertical inline bars, all in tension and with no bracing elements. Its volume is
0.00300m> and A, = 426.5575 > 1. This shows that the design is already stable and setting 7, = 1 and
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Figure 4: Tower example: (a) design domain, boundary conditions, and loading (downward); (b) optimal
design without stability constraints; (c)-(f) optimal designs with stability constraints.

Table 2: Tower example: comparison of volumes obtained obtained by solving the nonlinear SDP
and the SDP relaxation (9)), and violation of the compatibility constraints () estimated by solving the
least-squares problem (10).

T 1 10 20 30 40

Nonlinear SDP volume (|8 0.0030 {0.0032 [0.0370|0.0507{0.0663
Relaxed SDP volume (Igl) 0.0030 |0.0031 |0.0358|0.0499|0.0642
Violation of compatibility (4)), by (10))|3.7e-06|5.1e-05|0.0151|0.0510{0.5889

re-solving the problem with stability constraints @) will change neither its volume (which is is 0.00300m?)
nor its geometry, as can be seen in Figure

6.2 Adaptive ‘member adding’ problems

Here, we report on the efficacy of the adaptive member adding strategy described in Section {| for the
relaxed linear SDP (9)). This is achieved by solving problems both with and without the strategy, verifying
that the same solution is obtained, and reporting on comparative computational efficiency.

@ (b) ©

Figure 5: Tower example: (a) design domain, boundary conditions, and loading (now upward); (b) optimal
design without stability constraints; (c) optimal design with stability constraints.
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Table 3: Bridge example (small-scale): numerical statistics for the problem instance in Figure @

Without member adding | With member adding
Volume (m?)  ]0.05414 0.05414
Final no. of bars|3240 600
Mem. add. iter. |1 6
Total CPU (sec) 145 28

(a)

Figure 6: Bridge example (small-scale): (a) design domain, boundary conditiond, and loading; (b) optimal
design, without stability constraint; (c) optimal design, with stability constraint, without member adding;
(d) optimal design, with stability constraint, with member adding.

6.2.1 Bridge example (small-scale)

We solve the bridge-like example problem shown in Figure [6a] comprising 3,240 bars in the fully con-
nected ground structure. The design domain has dimensions 8m x 2m x 2m and has fixed pin supports at
each of the four corner nodes. Vertical loads of magnitude 350kN are applied to all nodes along each the
two long edges at the base of the domain.

The solution obtained when stability constraints are not included is shown in Figure[6b] comprising two
parallel planar trusses. In this case the optimal structure has a volume of 0.0540m? and A, = 3.8613¢ —08
(i.e. clearly not stable). Next, we solve the problem with the stability constraint (9)) for 7, = 1. Numerical
results are shown in Table [3] Figure [6c|shows the optimal design when solving the entire original problem
and Figure [6d) shows the structure obtained when member adding is used. The optimal designs are clearly
identical, and have the same volume, equal to 0.05414m?; see row 1 of Table 3| Moreover, the CPU times
reported in the table illustrate the efficiency of the member adding scheme. In general, these efficiencies
are much more pronounced for larger problems. Figure [7)illustrates the evolution of the solution when the
adaptive member adding strategy is used, showing the potential bars and the corresponding optimal design
for each member adding iteration. The violation of the elastic compatibility constraint is found to equal
5.8336e-06 at the end of the process.

6.3 Large-scale problems and warm-start strategy
We now solve a large-scale problem in which we additionally demonstrate the numerical benefit of using
the warm-start strategy described in Section [5]

6.3.1 Bridge example (large-scale)

We consider again the bridge problem, though now with 90, 100 bars, as shown in Figure [9a} the loading
conditions and dimensions are as described in Section It is worth mentioning that if we attempted
to solve the original problem without member adding, then we would need approx. 240GB of memory
to store the coefficient matrix in (I4). However, by applying the adaptive member adding technique we
not only reduce the CPU time but also significantly reduce peak memory requirements. Numerical results
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(e) Mem add iter.=5, 592 bars, vol= 0.05414m?> (f) Mem add iter.=6, 600 bars, vol= 0.05414m?>

Figure 7: Bridge example (small-scale): potential bars and optimal designs illustrating the evolution of
the optimal designs with respect to the member adding iterations reported in Table[3] Green bars represent
newly added bars.

Table 4: Bridge example (large-scale): numerical statistics.

Without warm-start| With warm-start
Volume (m?) 0.05147 0.05147
Mem. add. iter. 7 7
Total CPU time (s), for entire optimization process|3638 2654

are presented in Table [ It is evident that the warm-start strategy reduces CPU time by approx. 27%,
which is achieved by cutting down the number of interior point iterations; see Figure [8| In this example,
the warm-start is used in the last four member adding iterations. The optimal designs are shown in Figure
|§L where Figure 9b| shows the solution without stability constraints, which has a volume of 0.05122m?
and Anin = 8.0376e — 08 (i.e. clearly not stable). The last two Figures [9¢c|and |9d| correspond to stabilized
designs obtained respectively without and with the warm-start strategy. The stable design has volume
0.05147m? in both cases, with violation of the elastic compatibility constraint equal to 5.2354¢ — 06.

6.4 Stadium-roof application with multiple load-cases

We solve the stadium roof design problem shown in Figure [[0a] The roof is subject to three load-cases:
LCl=f;, LC2=f; + f>, and LC3=f; + f3, where the loads f; = 0.27kN/m?, f, = 2.7kN/m?, and f3 =
0.75kN/m? are uniformly distributed. Note that the loads and dimensions have been simplified in the
interests of clarity. The roof spans 40m in the y-direction, 80m in the x-direction and 4.2m in the the
z-direction. Detailed dimensions are given in the caption of Figure[I0a] The layout optimization problem
has 36,856 potential members.

We first solve the problem without stability constraints, obtaining the design shown in Figure [T0b]
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Figure 8: Bridge example (large-scale): comparison of (a) number of interior point iterations, (b) CPU
times, and (c) problem sizes, when using cold-start and warm-start strategies. The warm-start was used in
the last 4 member adding iterations.

(a) (®)
Figure 9: Bridge example (large-scale): (a) design domain, boundary conditions, and loading; (b) optimal
design without stability constraints; (c) optimal design with stability constraints and cold-start; (d) optimal
design with stability constraints and warm-start.

comprising parallel disconnected planar trusses with a volume 2.2992m? and with minimum positive
eigenvalues for the three load-cases LC1, LC2 and LC3 of 7.0387¢ — 04, 5.6185¢ — 05, and 1.8554¢ — 04,
respectively. This indicates that the structure is not stable for all load-cases. Note that since this is a multi-
ple load-case problem, we expect large violations of the elastic compatibility constraint, even for problems
without the stability constraints, as mentioned in Remark [ In this case, the violation was 0.0011. Next,
we set 7, = 10, £ = 1,2,3 and solve problem (9) with stability constraints to obtain the design shown in
Figure where the parallel planar trusses are now connected. In this case, the volume of the structure is
2.3279m?>, only slightly higher than before. A total of 6 member adding iterations were required to obtain
the solution and the final SDP problem solved contained 2487 members. The overall CPU time was 2238s.
In this case the violation of the elastic compatibility equation (I0) by the stable design was found to be
0.3190, which is large compared to the single-load case examples considered previously.

7 Conclusions

We have solved the truss layout optimization problem with global stability constraints via linear semidef-
inite programming by relaxing the nonlinear elastic compatibility constraint. A primal-dual interior point
method has been used, tailored to solving these problems efficiently. The implementation utilizes the
sparse structure and low-rank property of the element stiffness matrices to reduce the computational com-
plexity to determine the linear systems arising in the algorithm. Moreover, we have extended the range of
application of the adaptive member adding and warm-start techniques previously applied to truss layout
optimization problems formulated as linear programs, so these can now be applied to problems modelled
as semidefinite programs. By doing so, we have been able to find solutions to large-scale problems that
could not have been solved using previously available methods and standard desktop computers.

We have demonstrated the validity of solutions of the relaxed problem by comparing them with solu-
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(b) ()

Figure 10: Stadium-roof application: (a) design domain, boundary conditions, and loads. A = (0,0,2.3),
B=(0,5,0),C=(0,15,0), D = (0,20,0), E = (0,40,2.8), F = (0,15,4.2)). The roof is 80m long in the
x-direction; (b) optimal design without stability constraints; (c) optimal designs with stability constraints.
Note that in the plots, the member sizes are scaled for good visual presentation.
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tions of the original nonlinear problem for reasonable values of the stability load factor. If significantly
higher stability load factors are to be used, beyond those usually employed in practice, then further inves-
tigation of the usefulness of the relaxed formulation should be undertaken.

Finally, direct methods were used to solve the linear systems arising from the interior point algorithm.
The computational effort might be further reduced by use of iterative methods.
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9 Replication of results

The input and output data that are used for all of the examples described in Section[6]are explicitly provided
there. The same material has been used in all examples and the material properties are reported right before
Subsection [6.1] Note that these values and the applied loads require appropriate scaling if one wishes to
use standard SDP solvers.
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