
PAPER

GENERAL

Grzegorz Zadora,1 Ph.D.; Tereza Neocleous,2 Ph.D.; and Colin Aitken,3 Ph.D.

A Two-Level Model for Evidence Evaluation in
the Presence of Zeros*

ABSTRACT: Likelihood ratios (LRs) provide a natural way of computing the value of evidence under competing propositions. We propose LR
models for classification and comparison that extend the ideas of Aitken, Zadora, and Lucy and Aitken and Lucy to include consideration of zeros.
Instead of substituting zeros by a small value, we view the presence of zeros as informative and model it using Bernoulli distributions. The proposed
models are used for evaluation of forensic glass (comparison and classification problem) and paint data (comparison problem). Two hundred and
sixty-four glass samples were analyzed by scanning electron microscopy, coupled with an energy dispersive X-ray spectrometer method and 36
acrylic topcoat paint samples by pyrolysis gas chromatography hyphened with mass spectrometer method. The proposed LR model gave very satis-
factory results for the glass comparison problem and for most of the classification tasks for glass. Results of comparison of paints were also highly
satisfactory, with only 3.0% false positive answers and 2.8% false negative answers.
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Various types of materials such as glass and paint fragments are
routinely subjected to physico-chemical examination by forensic
scientists. For example, glass and paint fragments could be obtained
from hit-and-run accident debris comprising a mixture of pieces of
sand, soil, dust, and other transfer evidence such as glass and paint.
These fragments are called the recovered sample. If it is also possi-
ble, glass from the glass object broken, e.g., during the car acci-
dent, and/or paint fragments from the car paint surface destroyed
during the accident are collected for analysis. Such samples are
called the control sample.

One of the problems of analysis of materials found in debris for
forensic purposes is their classification into use-type category (e.g.,
whether a glass object originates from the window category or the con-
tainer category). In the case of transfer evidence such as glass this pro-
cess is especially important in the absence of a control sample as it
could help investigators (policemen, prosecutors) focus their search
for appropriate control materials. Another common task is the compar-
ison problem. This task relates to the question—could two samples
(e.g., a paint fragment recovered from a smear found on the clothes of
the victim of a hit-and-run accident and a paint fragment collected
from the suspected car) have originated from the same object?

The size of recovered fragments of glass and paint is very
small. Therefore, addressing the above-mentioned problems

requires data obtained during physico-chemical analysis that are
quantitative and semi-quantitative such as the concentration of
elements in a glass fragment (1,2) or peak areas of compounds
present in a chromatogram of pyrolysis gas chromatography
(Py-GC) (3,4).

The importance of glass as evidence was recognized many years
ago (5,6) as very small glass fragments (of linear dimension 0.1–
0.5 mm) that arise during car accidents, burglaries, fights, etc. could
be carried on the clothes, shoes, and hair of participants. The glass
refractive index measurement method and scanning electron micro-
scopy, coupled with an energy dispersive X-ray spectrometer
(SEM–EDX), are routinely used in many forensic institutes for the
investigation of glass and other forensic problems (1,7). Other meth-
ods of elemental analysis of glass fragments are l-X-ray fluorescence
(8) and laser ablation-inductively coupled plasma-mass spectrometry
(LA-ICP-MS) (9). However, these methods require relatively large
fragments of glass, for example LA-ICP-MS gives good results with
pieces of glass larger than 0.5 mm. SEM–EDX has the drawback that
it can only provide information about major and minor elements,
such as O, Na, Al, Mg, Si, K, Ca, Fe, from any glass fragment. Trace
elements exist in concentrations below the detection limits of this
method. It is commonly believed that trace element concentrations
are essential to enable the glass investigator to compare and individu-
alize glass evidence effectively. However, it has been shown that
some headway can be made on the basis of the major and minor ele-
ment concentrations (1,7). These data could be used for classification
of recovered glass fragments and/or in the comparison problem if a
control glass sample is available.

The comparison of car paints is an important problem in road
accident investigations (5). Paint fragments are collected from the
road or the victim’s clothes and compared with paint that originated
from the suspected car. It is necessary to obtain information on
both the morphology and the chemical composition of the analyzed
samples in order to solve the comparison problem mentioned
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earlier. However, if the paint samples belong to the same class, i.e.,
contain similar polymer binder and pigments, then further individu-
alization requires the application of a more sensitive and discrimi-
nating analytical method, Py-GC hyphened with MS as a detector
(Py-GC/MS) (3,4). Moreover, Py-GC/MS is able to find subtle
structural or trace compositional variations within a sample that
appears overwhelmingly similar even when compared with similar
samples of the same category. The disadvantage of application of
Py-GC/MS for forensic purposes is that samples are destroyed
during the analysis. It should be kept in mind that the analyzed
paint sample is the evidence, and it should be available for various
analyses at any time.

Evaluation of evidence is based on analytical data obtained dur-
ing the physico-chemical analysis. The comparison of control and
recovered materials and the classification of the analyzed materials
require careful attention to the following considerations:

• possible sources of uncertainty (sources of error), which will
include, at least:

(a) variation of measurements of characteristics within the recov-
ered and/or control items,

(b) variation of measurements of characteristics between various
objects in the relevant population (e.g., glass object
population);

• information about the rarity of the determined physico-chemical
characteristics (e.g., elemental and/or chemical composition of
compared samples) for recovered and/or control samples in the
relevant population;

• the level of association between different characteristics when
more than one characteristic has been measured; and

• in the case of the comparison problem, the similarity of the
recovered material to the control sample.

The best way of obtaining the value of the evidence, especially
in the case when the observed differences of the analyzed features
are small and/or the number of observed features is larger than
one, is using statistical methods, especially those related to the like-
lihood ratio (LR), which is a well-documented measure of evidence
value in the forensic field (1,2,10):

LR ¼ Pr EjH1; Ið Þ
Pr EjH2; Ið Þ ð1Þ

where H1 and H2 are the considered propositions; I is the back-
ground information of the case not related to the evidence E. Val-
ues of LR above 1 support H1 and values of LR below 1 support
H2. A value of LR close to 1 provides little support for either prop-
osition. Also the larger (the lower) the value of the LR, the
stronger (the weaker) the support of E for H1 (H2).

Consider a case where the fact finder (prosecutor, judge, etc.)
asks a forensic scientist to evaluate evidence in the form of a
recovered material, of unknown origin, and a control material,
whose origin is known. The result of such a comparison will be
referred to as E. The relevant propositions for the fact finder arise
from the circumstances of the case, and often because of the adver-
sarial nature of the system, but for evidence evaluation they typi-
cally are as follows:
• H1: the control and recovered samples come from the same

source (prosecutor proposition),
• H2: the control and recovered samples come from different

sources both belonging to a relevant population (defense
proposition).

Also, there are several methods which could be used for the classi-
fication of forensic evidence (11). For example, the category for type
of use of glass fragments described by the content of the main
elements (E) can be determined by application of different classifiers
such as Support Vector Machines and Na�ve Bayes Classifiers (7).
These methods allocate an observation on an object to one of the con-
sidered glass categories (class 1 or class 2) according to posterior
probabilities P(H1|E) and P(H2|E) where H1 is the hypothesis that the
object came from class 1 and H2 is the hypothesis that the object
came from class 2. In forensic science, it is more common to evaluate
evidence (E) in the context of two propositions (H1 and H2), i.e., to
determine the conditional probabilities P(E|H1) and P(E|H2). This
information can be expressed in terms of the LR mentioned earlier,
with the relevant propositions in the form:
• H1: the recovered samples come from category 1 (prosecutor

proposition),
• H2: the recovered samples come from category 2 (defense

proposition).

Several models exist (e.g., [1,12]), which allow calculation of
the LR for multivariate data, but these models assume that there
are no missing data (i.e., no zeros in any of the considered vari-
ables). Based on the experience of the authors, it is almost impossi-
ble to have such multidimensional data, especially in the field of
the physico-chemical analysis of microtraces like glass or paint
where the presence or absence of a particular component is related
to the nature of the analyzed objects. One novelty in the proposed
model is that it allows for the presence of zero concentrations. The
zeros are assumed to be structural. Of course, absolute zero does
not exist in analytical chemistry as measurements depend on the
detection level of the method used. Elements and components pres-
ent in trace levels (below the detection limit) will always be unde-
tectable for the specific method, and hence the measurements
obtained can be considered as structural zeros for the purposes of
the statistical analysis.

The performance of the model is discussed as applied to glass
and paint data, for classification of glass fragments into one of two
known categories, and second, for evidence evaluation by compari-
son of recovered and control samples of glass and paint. Related
work with an application to food compositions using latent Gauss-
ian models, i.e., ones in which the data are assumed to arise from
a Euclidean projection of a multivariate Gaussian random model to
the unit simplex, may be found in (13).

Physico-Chemical Data

Glass Database

Four glass fragments, with surfaces as smooth and flat as possi-
ble, collected from each of 264 glass objects (79 building win-
dows [w], 86 car windows [c], 26 bulbs [b], 16 headlamps [h],
and 57 containers [p]) were placed on self-adhesive carbon tabs
on an aluminum stub and then carbon coated using an SCD sput-
ter (Bal-Tech, Liechtenstein, Switzerland). Three replicate mea-
surements on each fragment were made. Analysis of the
elemental content of each glass fragment was carried out using a
SEM (JSM-5800; Jeol, Tokyo, Japan), with an EDX detector
(Link ISIS 300; Oxford Instruments Ltd., Witney, Oxfordshire,
U.K.). The measurement conditions were accelerating voltages
20 kV, life time 50 sec, magnification 1000–2000·, and the cali-
bration element was cobalt. The SEMQuant option (part of the
software LINK ISIS; Oxford Instruments Ltd.) was used in the
process of determining the percentage of particular elements in a
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fragment. The selected analytical conditions allowed the determi-
nation of concentrations of oxygen (O), sodium (Na), magnesium
(Mg), aluminum (Al), silicon (Si), potassium (K), calcium (Ca),
and iron (Fe).

Each of the four glass fragments selected for analysis was mea-
sured three times and the mean of the three measurements was
taken for each fragment in the comparison problem. In addition,
the mean of the four fragments was taken to obtain just one value
for each object in the classification problem. Descriptive statistics
are presented in the form of boxplots (Fig. 1) depicting the median,
upper and lower quartiles (box), outliers (dots), and smallest and
largest nonoutlier values (fences). Values lying more than 1.5 inter-
quartile ranges (IQRs) below the lower quartile or more than 1.5
IQRs above the upper quartile are considered to be outliers.

The data consist of seven variables obtained as the log 10 of the
ratio with respect to the oxygen (O) concentration, which is always
nonzero for glass data. The seven variables thus obtained will be
denoted as (Na¢, Mg¢, Al¢, Si¢, K¢, Ca¢, Fe¢). When raw data take
the value 0 the logratio is not available as log 10 of zero cannot
be obtained. The proportions of nonzero values for each variable
are given in Table 1.

Paint Database

These data were originally published in Table 2 of (4) and
obtained in the following way (4): a pyrolyser (CSD2000; Analytix,
Peterlee, U.K.) coupled with GC/MS (TurboMass Gold; Perkin
Elmer, Wellesley, MA) was used to analyze 36 samples, each with

FIG. 1—Univariate descriptive statistics of variables in each of the five glass categories (b, bulbs, c, car windows, h, headlamps, p, containers, w, building
windows); (a) oxygen, (b) sodium, (c) silica, (d) calcium, (e), aluminum, (f) potassium, (g) magnesium, (h) iron.
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three replications, of acrylic topcoat paints—called clear coat—that
were indistinguishable in terms of their infrared spectra and ele-
mental composition. The clear coat was isolated from paints under
an optical microscope (40· magnification; SMXX Carl Zeiss, Jena,
Germany) using a scalpel, and this was placed in a quartz tube
(Analytix Ltd.) in the platinum coil of a pyrolyser. The sample size
was 50–100 lg. The GC program was 40�C held for 2 min;
ramped 10�C/min to 300�C, 300�C held for 2 min; increase 30�C/
min to 320�C; 320�C held for 3 min. A RTx-35MS (Restek, Belle-
fonte, PA) capillary column (30 m · 0.25 mm · 0.25 lm) was
used. Py was performed at 750�C during 20 sec. Peak areas were
collected by application of the software TurboMass 4.4.0.014; Per-
kin Elmer.

The log 10 of the ratio of the peak areas for each of the following
seven organic compounds compared to the peak area of styrene was
calculated: methylmethacrylate (MMA – abbreviation used in this
paper for log10 ratios); toluene (TOL); butylmethacrylate (BMA);
a)methylstyrene (MST); 2-hydroxyethylmethacrylate (M2E); 2-
hydroxypropylmethacrylate (M2P); and 1,6-diisocyanatehexane.
These are the most frequently occurring compounds in the analyzed
samples. The choice of variables was subjective as the number of
samples in the database was relatively small. Peak values below
10)4 in (4) were practically zero peaks and their logratio was thus
not available. The two-level LR model published in (7) was used in
the calculations of (4). This LR model did not allow for the presence
of zeros. Instead, in (4), missing chromatographical data (logratios
corresponding to zeros) were replaced by the relatively small value
of 1000, when other values of peak areas had order of magnitude
107)108. Descriptive statistics are shown in Table 3 and Fig. 2.

Statistical Methods

Likelihood Models in the Presence of Zeros

A common way to deal with data obtained from physico-chemical
analysis is to take the logratio of a composition x ¼ (x1,…,xD),
xD „ 0 given by

y1 ¼ log
x1

xD

� �
; . . . ; yD�1 ¼ log

xD�1

xD

� �

and then apply the methodology for continuous data to y ¼ (y1,
…,yD)1). This effectively removes stochastic fluctuations in
instrumental measurement (especially those that occur in the use
of various chromatography techniques) and also allows the elimi-
nation of the problem of large differences in the level of magni-
tude of the various values of the variables. However, it is often
the case that some of the {xi; i „ D} are zero thus making it
impossible to compute the logratio.

Methods for replacing the zeros by some small number have
been proposed, e.g., (14), and these are useful when the proportion
of zeros is small and the zeros are not structural. If the zeros are
structural, this should be taken into account when building a model.
One possible way of doing this is to look at the logratios for non-
zero subcompositions (15). These can be assumed to have multivar-
iate distributions with varying dimensions as each observation has
up to D)1 variables for nonzero concentrations. The following
independent binary model is assumed for the zeros. Let ui be an
indicator of whether the ith variable in the composition is nonzero,
for i ¼ 1,…,D. For example, the eight-component composition
x ¼ (0.4,0.2,0.1,0.0,0.1,0.1,0.0,0.1) has corresponding u-vector
(1,1,1,0,1,1,0,1). The probability of the vector u is taken to be

bðujpÞ ¼
YD
i¼1

pui
i ð1� piÞð1�uiÞ

which is the product of D independent Bernoulli variables with dif-
ferent probabilities, pi, of success. In the example above, D ¼ 8
and the pi; i ¼ 1,…,D are estimated from background data as the

TABLE 1—Number (out of 264) and proportion not zero for the glass data by category (b, c, h, p, w) and overall, where b represents bulbs, c represents car
windows, h represents headlamps, p represents containers, and w represents building windows.

Variable O Na Mg Al Si K Ca Fe

Proportion b 1.000 1.000 0.923 1.000 1.000 1.000 0.769 0.346
Proportion c 1.000 1.000 1.000 0.975 1.000 0.747 1.000 0.456
Proportion h 1.000 1.000 0.812 0.938 1.000 0.875 1.000 0.000
Proportion p 1.000 1.000 0.982 1.000 1.000 0.807 1.000 0.211
Proportion w 1.000 1.000 1.000 0.907 1.000 0.744 1.000 0.256
Overall proportion 1.000 1.000 0.977 0.958 1.000 0.792 0.977 0.299
Overall number 264 264 258 253 264 209 258 73

TABLE 2—Estimated probability vectors for the glass comparison problem. For the numerator of the likelihood ratio, these are obtained from same-object
pairs, and for the denominator from different-object pairs. Thus, p(u1 ¼ 0, u2 ¼ 0) is an estimate of the probability that both variables will be zero,

[p(u1 ¼ 0, u2 ¼ 1) or p(u1 ¼ 1, u2 ¼ 0)] is an estimate of the probability that one variable will be zero and the other nonzero, p(u1 ¼ 1, u2 ¼ 1) is an
estimate of the probability that both variables will be nonzero.

Variable O Na Mg Al Si K Ca Fe

Numerator
p(u1 ¼ 0, u2 ¼ 0) 0.000 0.000 0.060 0.056 0.000 0.199 0.036 0.718
p(u1 ¼ 0, u2 ¼ 1 or u1 ¼ 1, u2 ¼ 0) 0.000 0.000 0.037 0.011 0.000 0.084 0.008 0.043
p(u1 ¼ 1, u2 ¼ 1) 1.000 1.000 0.902 0.933 1.000 0.717 0.956 0.238

Denominator
p(u1 ¼ 0, u2 ¼ 0) 0.000 0.000 0.006 0.003 0.000 0.057 0.001 0.547
p(u1 ¼ 0, u2 ¼ 1 or u1 ¼ 1, u2 ¼ 0) 0.000 0.000 0.146 0.116 0.000 0.368 0.077 0.387
p(u1 ¼ 1, u2 ¼ 1) 1.000 1.000 0.848 0.881 1.000 0.575 0.921 0.067

TABLE 3—Proportion and number (out of 36) not zero for the paint data.

Variable MMA TOL BMA MST M2E M2P I16

Proportion 0.694 0.694 0.778 0.806 0.500 0.667 0.833
Number 25 25 28 29 18 24 30
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proportion of observations that are not zero for each of the eight
components separately. Suppose that the estimated p-vector is (0.3,
0.6, 0.9, 0.2, 0.7, 0.5, 0.1, 0.8). Thus, in this example, 30% of
observations of component 1 are not zero, whereas 90% of obser-
vations of component 3 are not zero. Since the estimated value of
p1 is 0.3, the term for the first component for u-vector (1, 1, 1, 0,
1, 1, 0, 1) will be 0.31(1)0.3)0 ¼ 0.3. Similarly, the term for the
fourth component will be 0.20(1)0.2)1 ¼ 0.8 and so on. All eight
factors (i ¼ 1,…,8) can be obtained in this way and multiplication
of them together will give b(u|p). For an observation without zeros,
the incidence vector u would equal (1, 1, 1, 1, 1, 1, 1, 1) and the
corresponding probability b(u|p) with p as given earlier would be
0.3·0.6·0.9·0.2·0.7·0.5·0.1·0.8.

Let the logratios Y be taken with respect to the last column of X,
which is assumed to contain only nonzero data. For a logratio vec-
tor y, let Q be the matrix picking out only the elements of y com-
ing from nonzero elements of x. The contribution of each
observation to the likelihood will then be b(u|p) f(Qy), where f(Qy)
is the multivariate density for the nonzero subcomposition. This
multivariate density could be assumed to be normal or, if neces-
sary, obtained by kernel density estimation (KDE) (e.g., by applica-
tion of a Gaussian kernel). More details on the LR calculation can
be found in the Appendix.

The Classification Problem

Consider the problem in which an observation x0 ¼ (x1,…,xD) is
to be classified into one of two groups. Background data X1,X2 of
dimension N1·D and N2·D (N1 observations from group 1 and N2

observations from group 2), respectively, exist for each group, thus
allowing parameter estimation under the propositions

H1: x0 comes from group 1, H2: x0 comes from group 2.

A LR can thus be constructed to assess whether the observation
is more likely if H1 were true or if H2 were true. More details on
parameter estimation and the derivation of the LR can be found in
the Appendix.

The Comparison Problem

Another problem, perhaps more common in forensic science, is
to compare two pieces of evidence (the control and recovered sam-
ples, x1 and x2, respectively) in order to determine whether they
could originate from the same source. For this comparison problem,
the propositions of interest are

H1: x1 and x2 come from the same group, H2: x1 and x2 come
from different groups,

and a two-part model similar to that for classification is used. The
binary part is assumed to be independent of the continuous part of
the model. Under H1, u1 and u2, the incidence vectors from x1 and
x2, respectively, are not independent and their joint distribution
must be considered. This can be estimated from background data
from the pairs coming from the same group for the numerator and
from the pairs coming from different groups for the denominator.
Thus, with background data with m groups of size n each, there
are 1

2 mnðn� 1Þ same-group pairs and 1
2 mn2ðm� 1Þ different-group

pairs for estimation of the probabilities p(u1 ¼ 1, u2 ¼ 1),
p(u1 ¼ 1, u2 ¼ 0), p(u1 ¼ 0, u2 ¼ 1), and p(u1 ¼ 0, u2 ¼ 0).
Same-object pairs give estimates for the joint distribution of (u1,
u2) in the numerator of the LR (i.e., under H1), and different-object
pairs for the distribution in the denominator (i.e., under H2). The
estimates thus obtained are shown in Table 2.

For the continuous part of the model, i.e., the nonzero subcom-
positions, two levels of variation are assumed for the logratios, y1

(control) and y2 (recovered), of the two observations. The proposi-
tions H1 and H2 can be expressed in terms of the logratios and a
LR can be constructed as shown in the Appendix by multiplying
together the binary and continuous parts for the numerator and
denominator. These likelihood calculations take into account the
differing sample sizes for y1 and y2.

Variance Estimation

Formulae for the estimated within- and between-group vari-
ances in the comparison problem are given in the Appendix and
follow (12). For both comparison and classification, these estima-
tion procedures were adapted to deal with missing data corre-
sponding to logratios of zero values. Two methods for missing
data were considered: available cases and multiple imputation.
The ‘‘available cases’’ method computes covariances from pairs of
observations with complete data only, while imputation ‘‘fills in’’
missing data with plausible values. Multiple imputation (16) is a
particular form of imputation in which the missing values are
replaced by M>1 simulated versions, where M is typically small
(e.g., 3–10). The multiple imputation method used here involves a
combination of the Expectation–Maximization algorithm and boot-
strap as described in (17,18) and is implemented in the Amelia
package in R (19). From each simulated dataset with imputed
values, a variance matrix is obtained. These datasets result in M
variances and their average is the estimate used in the LR
calculations.

FIG. 2—Boxplots of the univariate distributions for paint item means.
STY, styrenel; MMA, methylmethacrylate; TOL, toluene; BMA, butylmethac-
rylate; MST, a-methylstyrene; M2E, 2-hydroxyethylmethacrylate; M2P, 2-
hydroxypropylmethacrylate; I16, 1,6-diisocyanatehexane.
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Dimension Reduction for High-Dimensional Data

A limitation of multivariate modeling is the lack of background
data from which to estimate the parameters of the assumed distri-
butions such as means, variances, and covariances. This requires
far more analytical data than are usually accessible in many foren-
sic databases. This effect has been dubbed the ‘‘curse of dimension-
ality.’’ For the examples described in the Physico-Chemical Data
section, 264 glass samples and 36 paint samples with seven vari-
ables each are used as background data. Therefore, it is necessary
to reliably estimate up to seven means, seven variances, and 21 co-
variances if all variables (Vi; i ¼ 1,…,d) where d ¼ D)1 are to be
taken into account in calculating the LR in

LR ¼ f V1;V2; . . . ;VdjH1ð Þ
f V1;V2; . . . ;VdjH2ð Þ ð2Þ

(LR-full-model). The estimates from a small dataset could be very
imprecise. The simplest way around this problem is to assume
independence of the variables considered. However, this is a naive
assumption as by nature the measured features are correlated, espe-
cially those pertaining to the main components of the analyzed
materials. Where feasible, models should take into account this cor-
relation, possibly in combination with some form of dimension
reduction, e.g., graphical models (20), and the independence
assumption should be used only when the number of observations
is extremely limited.

Graphical models are a dimension-reduction technique based on
graph theory. They are obtained from the matrix of negative partial
correlation coefficients, that is the rescaled inverse of the covari-
ance matrix calculated from the between-object covariance matrix.
These partial correlations are used to aid the construction of a
decomposable graphical model, that is a model with complete irre-
ducible components (20), and hence to factorize the multivariate
density function into the product of several density functions in
lower dimensions, allowing more precise estimates of parameters
from small background sample sizes, much smaller than those for a
full model.

The factorization is done according to

f ðCijSiÞ ¼
f ðCiÞ
f ðSiÞ

ð3Þ

where Ci is the ith clique in the model and Si is the set of all sepa-
rators for the ith clique calculated from a set chain of the cliques
for the model.

A set chain is a particular ordering of the cliques in the model
and may be constructed using the following factorization algorithm.

• Select a node arbitrarily from the model graph and denote this
as the lowest numbered node, number each remaining node in
turn ordered by the number of edges linking it to any other
already numbered node.

• Break ties arbitrarily; assign a rank to each clique based upon
the highest numbered node in the clique; if two cliques share
the highest numbered node then rank arbitrarily between the
two nodes.

Given the cliques for the model, and a suitable set chain, the set
of separators (Si) for each clique is found. The first clique in the
set chain is always a complete subgraph (i.e., all nodes or elements
in the clique are connected by edges) and there are no separator
sets. After that, the next clique present in the set chain is added to
the model. The intersection of elements between these two cliques

becomes the first separator set. The process is continued until all
cliques are joined to the model. This process is repeated until all
nodes are part of the graphical model. If this does not happen, the
model cannot be factorized (20).

In this article, the graphical model shown in Fig. 3 is used for
the analysis of the glass data. The clique (Si¢, Na¢, Ca¢) involves
elements that form the basis of soda-lime-silica glass. A high corre-
lation between Al¢ and K¢ was also observed in previous analyses
(e.g., [1]). These variables represent compounds used in glass as
additives whose role is to improve the physical properties of glass
samples (optical—K2O—or to avoid recrystallization process—
Al2O3). The variables Mg¢ and Fe¢ are treated as independent vari-
ables. Variables Mg¢ and Ca¢ are correlated, most probably because
compounds of Mg are substitutes of Ca compounds in glass since
they have the same oxidation number. However, if this correlation
is taken into account, the resulting model is nondecomposable (20).
The proposed decomposable graphical model (Fig. 3) thus ignores
the Mg¢–Ca¢ correlation. This model was used in all the problems
studied, i.e., classification and comparison of glass samples. This is
a simplified version of a graphical model previously obtained for
glass data (1), and it accounts for the main relationships between
the most important chemical compounds in glass.

This model was chosen because the graphical models obtained
from the matrices of negative partial correlation coeficients were
heavily influenced by the few observations that did contain all ele-
ments, and as such they did not represent the chemical relationships
between the variables. For example, the graphical model obtained
from the matrix shown in Table 4 cannot be interpreted based on
chemical knowledge as the Fe¢ variable has a relatively high corre-
lation with Ca¢ and Si¢ (|0.464| and |0.442|, respectively). Therefore,
the graphical model (Fig. 4) has an unusual construction from the
point of view of the chemistry. At the same time Na¢ is very
weakly correlated to Ca¢ (|0.033|) and to Si¢ (|0.050|). However,
these three variables involve elements that form the basis of soda-
lime-silica glass so they should be relatively highly correlated, as

FIG. 3—The graphical model used in this research.

TABLE 4—Partial correlation matrix for the seven variables based on the
between-object covariance matrix C for the glass comparison problem. Only

the upper right triangle of the matrix is shown, the lower left triangle is
given by symmetry.

Na¢ Mg¢ Al¢ Si¢ K¢ Ca¢ Fe¢

Na¢ 1.000 0.128 0.166 )0.050 0.162 )0.033 )0.366
Mg¢ 1.000 0.121 )0.157 )0.211 )0.035 )0.065
Al¢ 1.000 )0.143 )0.250 0.179 )0.034
Si¢ 1.000 )0.102 )0.517 )0.442
K¢ 1.000 )0.009 0.007
Ca¢ 1.000 0.464
Fe¢ 1.000
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observed in previous research, e.g., the partial correlation coeffi-
cients of |0.598| for Na¢–Ca¢ and |0.267| for Na¢–Si¢ in Table 3 of
(1). These values allowed these three nodes to be localized near
each other in the graph in Fig. 3 of (1). Similar values of partial
correlation coefficients were obtained for classification tasks
described in (21).

Experiments—Determination of Incorrect Answers

Experiments on Glass Data

The classification problems examined in this article arose from
the practical experience of the authors. The first problem was the
classification of a glass object into either the car windows, building
windows, and containers category (cwp) or the bulbs and head-
lamps category (bh). Glass objects from category c, w, and p repre-
sent glass commonly occurring in forensic practice. It is expected
(7) that bulbs and car headlamps (bh) would have systematically
different elemental compositions to container glass (p—jars and
bottles) because of their optical properties. If a glass sample was
originally classified to the cwp category, an attempt was made to
classify it further into the cw or p category. Glass objects from the
c (car windows) and w (building windows) categories have very
similar elemental content because they are manufactured in a simi-
lar way (by a float glass manufacturing method). Therefore, glass
objects from categories c and w are treated as one category—cw.
Two additional classification problems were studied, i.e., b versus h
and c versus w. The latter problem, whether glass objects from the
c and w categories could be distinguished despite the similarity of
their chemical composition, was especially interesting. It was found
that this was possible (7) but that the accuracy of the process was
lower in comparison to other classification tasks.

The factorization of the LR

LR ¼ LRðNa0;Ca0; Si0Þ � LRðAl0;K0Þ � LRðMg0Þ � LRðFe0Þ ð4Þ

derived from the graphical model shown in Fig. 3 was selected
based on the authors’ experience from previous analyses of a glass
database (e.g. [1]). The notation LR(V1,…,Vk) refers to the LR cal-
culated using Eq. (2) with k-variate densities f(V1,…,Vk|H1) and
f(V1,…,Vk|H2). Note that there are no separators Si (see Eq. [3]) in
Eq. (4). The statistical approach described in the previous section
was used for the evaluation of evidence obtained by glass SEM–
EDX analysis in the classification and comparison problems. Two
types of LR models were considered; first, those that assumed a
multivariate normal (MVN) distribution for the continuous part of
the LR, and, second, those in which the multivariate distribution of
the continuous part of the LR was obtained by a KDE method. In
addition, the outcomes of the use of two methods of calculation of
the variance–covariance matrices (imputation and available cases)
were studied.

The performance of the models for the classification problems
was evaluated by determination of the number and percentage of
samples incorrectly classified, the latter referred to as accuracy.
The expected LR value was LR>1 if the true category of the glass
object was that assumed in the numerator of Eq. (1) and LR<1 if
the true category was that assumed in the denominator. An incor-
rect answer would yield LR>1 when LR<1 is expected or LR<1
when LR>1 is expected. Results of the classification experiments
are shown in Tables 7–10.

The performance of the models for the comparison problem
was evaluated in terms of the number and percentage of false
negative and positive answers. A false negative answer (type I
error) is an answer where the compared glass samples originated
from the same glass object but were evaluated as having origi-
nated from different glass objects (LR<1). A false positive answer
(type II error) is an answer where the compared glass samples
originated from different glass objects but were evaluated as hav-
ing originated from the same glass object (LR>1). Control of the
level of false positive answers is especially important from the
forensic point of view as such a result lends support, falsely, to
the proposition that the defendant was associated with the crime
scene and hence, perhaps, the crime. The following experiments
were performed in order to study the level of false positive and
false negative answers, obtained by the proposed model for the
comparison problem:

• Experiment 1 (estimation of the percentage of false negative
answers). The results of the analysis of the first two glass frag-
ments of a total of four analyzed from a particular glass sample
were selected for the simulated measurements of the A sample
(recovered). The results of the analysis of the other two glass
fragments were assigned to the B sample (control). Each simu-
lated A sample was compared with the simulated B sample
from the same total sample of four fragments. Two hundred
and sixty-four such sets were created. The desirable answer was
LR>1, and each answer with LR<1 was a false negative
answer.

• Experiment 2 (estimation of percentage of false positive
answers). The results of all four analyses performed on two
glass samples of size two from different total samples of size
four were selected for creation of a pair of samples to compare,
i.e., samples A and B. Two hundred and sixty-four glass sam-
ples were available in the database, and thus 2264 ¼ 34,716 such
pairs were created. The desirable answer was LR<1, and each
answer with LR>1 was a false positive answer.

A comparison between the performance of the graphical model
approach (Fig. 3) and two extreme assumptions, i.e., the assumption
that all the variables are independent (called the LR-independent
model) – LR ¼ LR(Na¢)LR(Mg¢)LR(Al¢)LR(Si¢)LR(K¢)LR(Ca¢)LR
(Fe¢)—and that all variables are correlated—LR ¼ LR(Na¢,Mg¢,Al¢,
Si¢,K¢,Ca¢,Fe¢)—called the LR-full model, was made. Results in the
form of Tippett plots and receiver operating characteristic (ROC)
curves are shown in Figs. 5 and 6.

Experiments on Paint Data

Because of the small size of the database (36 paint samples),
only the LR-independent model LR ¼ LR(MMA)LR(TOL)LR
(BMA)LR(MST)LR(M2E)LR(M2P)LR(I16) was considered. The
following experiments were performed in order to check the level
of false positive and false negative answers obtained by using the
proposed model for the comparison of paints:

FIG. 4—The graphical model obtained for the comparison problem of
glass samples from the matrix of partial correlation coefficients in Table 4.
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• Experiment 1 (estimation of the percentage of false negative
answers). The results of the first two analyses of a total of three

performed on a particular paint sample were selected for the
simulated measurements of the A sample. The result of the third
analysis of the paint sample was assigned to the B sample. Each
simulated A sample was compared with a simulated B sample
from the same source. Thirty-six such sets were created. The
desirable answer was LR>1 and each answer with LR<1 was a
false negative answer.

• Experiment 2 (estimation of percentage of false positive
answers). The results of all three analyses performed on two dif-
ferent paint samples were selected for creation of a set of com-
pared samples, i.e., samples A and B. Thirty-six paint samples
were available in the database, and thus 236 ¼ 630 such sets
were created. The desirable answer was LR<1 and each answer
with LR>1 was a false positive answer.

Results are presented in the form of Tippett plots in Fig. 7.

Discussion

Glass—Classification Results

Because of the varying number of observations for each of the
classification tasks, multiple imputation for variance estimation was
not always feasible; hence, the available-cases method was used for
this part of the statistical analysis.

Examination of Table 5 shows that classification into cwp ver-
sus bh gave in general very satisfactory results, i.e., low rates of
false answers. Slightly better results were obtained when normal-
ity (MVN) was assumed—minimum cumulative percent of false
answers equal to 1.5% (a total of four incorrectly classified sam-
ples). This seems to be in contrast to the expectation that KDE
would give better results. A more detailed inspection shows that
most of the incorrect classifications in the KDE model came
from the bh category, where the full (F), graphical (G), and
independent (I) models gave 4, 11, and 25 incorrectly classified
samples, respectively, out of 42 (Table 5). At the same time,
normal models gave just two incorrectly classified samples. This
is not surprising because the bh category contains only 42 sam-
ples, which could be too small for reliable nonparametric multi-
variate density estimation. Moreover, the elemental composition
for the set of bulbs (b) varied much more between objects than
in other categories (Fig. 1) implying that it affects the variability
of the bh category too. This may also have contributed to prob-
lems with estimation for the bh category. On the other hand,
the number of samples in the cwp dataset (222) was sufficiently
large for reliable nonparametric density estimation. The full,
graphical, and independent models gave two (1.0%), five (4.8%),
and four (2.3%) incorrectly classified cwp samples, respectively,
under the MVN assumption and one (0.5%), one, and zero
incorrectly classified cwp samples when KDE was used
(Table 5).

The graphical models in combination with KDE gave the best
cumulative results for the problem cw versus p. The full, graphical,
and independent models yielded eight (4.9%), four (2.4%), and one
(0.6%) incorrectly classified cw samples and nine (15.8%), seven
(12.3%), and 31 (54.4%) incorrectly classified p samples, respec-
tively (Table 6). At the same time, normal models gave 13 (7.9%),
eight (4.9%), and 12 (7.3%) incorrectly classified cw samples and
12 (21.1%), five (8.8%), and five incorrectly classified p samples,
respectively.

Very similar patterns were observed in Table 7, which shows
results obtained for the b versus h task. However, because of the
small number of samples and limited availability of Fe¢

FIG. 6—Plot of true positive rate against false positive rate for the per-
formance of models applied to the comparison problem of glass samples:
(a) full model with kernel density estimation (KDE) assumption (A), (b) gra-
phical model with KDE assumption (B), (c) independence model with KDE
assumption (C), (d) full model with multivariate normality (MVN) assump-
tion (D), (e) graphical model with MVN assumption (E), (f) independence
model with MVN assumption (F).

FIG. 5—Tippett plots—comparison problem of glass samples when the
variance was estimated using multiple imputation: (a) independent model
with multivariate normality (MVN) assumption, (b) graphical model with
MVN assumption, (c) full model with MVN assumption, (d) independent
model with kernel density estimation (KDE) assumption, (e) graphical model
with KDE assumption, (f) full model with KDE assumption. fn, false nega-
tive answers; fp, false positive answers.
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observations, this variable was not used in the analysis. KDE
results were poor because of the small number of data points (26 b
and 16 h), i.e., five (11.9%), three (7.1%), and six (14.3%) incor-
rectly classified samples for the full, graphical, and independent
models, respectively. The LR model with the normality assumption
and the graphical approach for dimension reduction gave, respec-
tively, 2.4%, 4.8%, and 9.5% false answers (one, two, and four
incorrect classifications). The LR-full model gave slightly better

results (one incorrectly classified sample; Table 7) but it also gave,
as in other classification problems, many more LR values above
107 than the LR-graphical model.

Results obtained for the c versus w problem were the worst
among all classification problems considered (Table 8). The lowest
cumulative number of incorrectly classified samples (18.2%) was
observed for the normality assumption and the graphical approach
for dimension reduction. This could be expected taking into

FIG. 7—Tippett plots—comparison problem of paint samples: (a) variance estimation using imputation with multivariate normality (MVN) assumption, (b)
available case variance estimation with MVN assumption, (c) variance estimation using imputation with kernel density estimation (KDE) assumption, (d)
available case variance estimation with KDE assumption. fn, false negative answers; fp, false positive answers.

TABLE 5—Likelihood ratio (LR) distribution for glass object classification into car windows, building windows, and containers (cwp) or bulbs and
headlamps (bh). MVN, multivariate normal distribution; KDE, kernel density estimation; F, full model; G, graphical model; I, independent model. There are
264 samples in the full dataset of which 42 are bh and 222 are cwp; percentages in the table are percentages of 222 for columns headed cwp and of 42 for

columns headed bh and of 264 for the last row, labeled ‘‘cumulative %.’’

LR

MVN KDE

F G I F G I

cwp bh cwp bh cwp bh cwp bh cwp bh cwp bh

>107 53.2 52.4 35.6 33.3 35.1 33.3 53.2 54.8 51.8 33.3 71.6 33.3
106–107 9.0 2.4 9.9 4.8 10.4 0.0 7.2 2.4 8.6 0.0 14.9 0.0
105–106 6.3 0.0 8.1 0.0 9.9 14.3 7.2 4.8 16.2 4.8 9.5 0.0
104–105 9.9 14.3 10.8 23.8 9.5 16.7 14.0 7.1 12.2 4.7 2.7 0.0
103–104 7.2 16.7 9.0 19.1 9.0 4.8 10.8 9.5 8.1 7.1 0.9 0.0
102–103 7.7 4.8 9.0 7.1 8.6 14.3 5.9 2.4 1.4 4.8 0.0 0.0
101–102 3.6 4.8 9.9 4.8 9.0 11.9 0.5 4.8 1.4 9.5 0.5 2.4
1–10 2.3 0.0 5.4 2.4 6.8 0.0 0.9 4.8 0.0 9.5 0.0 4.8
10)1–1 0.5 2.4 0.9 2.4 0.9 2.4 0.0 0.0 0.0 2.4 0.0 4.8
10)2–10)1 0.0 2.4 0.9 2.4 0.9 2.4 0.0 7.1 0.0 11.9 0.0 14.3
10)3–10)2 0.0 0.0 0.5 0.0 0.0 0.0 0.0 2.4 0.0 4.8 0.0 16.7
10)4–10)3 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 4.8 0.0 16.7
10)5–10)4 0.5 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.00 0.0 4.8
10)6–10)5 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.00 0.0 2.4
<10)6 0.0 0.0 0.0 0.0 0.0 0.0 0.5 0.0 0.5 2.4 0.0 0.0
False answers % 1.0 4.8 2.3 4.8 1.8 4.8 0.5 9.5 0.5 26.3 0.0 59.7
Cumulative % 1.5 2.7 2.3 1.9 4.6 9.5
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account that samples from both categories have very similar ele-
mental composition because of their similar manufacturing process
(float glass production). Moreover, LR values are relatively small,
i.e., in the range 0.01–100, and hence lend limited support to either
of the considered propositions (H1 and H2).

In general, the independent models performed poorly because
they do not take into account the correlation between variables.
With enough background data, this correlation can be estimated rel-
atively accurately, and use of a multivariate model can improve
performance in both classification and comparison tasks.

Glass—Comparison Problem Results

Both methods of variance estimation (available cases and multi-
ple imputation) gave very similar results for the glass comparison
problem, with the imputation method yielding slightly lower per-
centages of false positive answers. As it is more important that the
percentage of false positive answers is controlled, in what follows
results are presented that are obtained using the multiple imputation
method for variance estimation. Application of the KDE approach
returned fewer false positive answers than the model assuming

TABLE 7—Likelihood ratio (LR) distribution for glass object classification into bulbs (b) or headlamps (h). MVN, multivariate normal distribution; KDE,
kernel density estimation; F, full model; G, graphical model; I, independent model. There are 264 samples in the full dataset of which 26 are b and 16 are h;

percentages in the table are percentages of 26 for columns headed b and of 16 for columns headed h and of 42 for the last row, labeled ‘‘cumulative %.’’

LR

MVN KDE

F G I F G I

b h b h b h b h b h b h

>107 84.6 56.3 61.5 12.5 57.7 6.3 50.0 12.5 50.0 18.8 69.2 12.5
106–107 7.7 0.0 3.9 0.0 0.0 6.3 0.0 0.0 0.0 0.0 0.0 0.0
105–106 0.0 0.0 3.9 0.0 0.0 0.0 30.8 0.0 0.0 6.3 0.0 0.0
104–105 3.9 12.5 0.0 0.0 0.0 0.0 3.8 12.5 0.0 6.3 0.0 6.3
103–104 0.0 6.3 7.7 18.8 11.5 6.3 7.7 12.5 0.0 6.3 0.0 0.0
102–103 3.9 6.3 0.0 25.0 0.0 18.8 0.0 12.5 0.0 25.0 7.7 6.3
101–102 0.0 6.3 11.5 12.5 7.7 31.3 0.0 18.8 38.5 12.5 19.2 18.8
1–10 0.0 6.3 11.5 18.8 15.4 18.8 0.0 12.5 11.5 6.3 3.9 18.8
10)1–1 0.0 6.3 0.0 6.3 7.7 12.5 7.7 6.3 0.0 12.5 0.0 6.3
10)2–10)1 0.0 0.0 0.0 6.3 0.0 0.0 0.0 12.5 0.0 0.0 0.0 25.0
10)3–10)2 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 6.3 0.0 6.3
10)4–10)3 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
10)5–10)4 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
10)6–10)5 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
<10)6 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
False answers % 0.00 6.3 0.0 12.5 7.7 12.5 7.7 18.8 0.0 18.8 0.0 37.5
Cumulative % 2.4 4.8 9.5 11.9 7.1 14.3

TABLE 6—Likelihood ratio (LR) distribution for glass object classification into car windows and building windows (cw) or containers (p). MVN, multivariate
normal distribution; KDE, kernel density estimation; F, full model; G, graphical model; I, independent model. There are 264 samples in the full dataset of

which 165 are cw and 57 are p; percentages in the table are percentages of 165 for columns headed cw and of 57 for columns headed p and of 222 for the
last row, labeled ‘‘cumulative %.’’

LR

MVN KDE

F G I F G I

cw p cw p cw p cw p cw p cw p

>107 13.9 29.8 12.7 33.3 12.1 33.3 43.0 35.1 24.2 1.8 23.6 1.8
106–107 5.5 3.5 6.7 0.0 4.2 0.0 9.7 12.3 6.1 0.0 17.0 0.0
105–106 4.2 1.8 4.2 1.8 5.5 1.8 6.1 5.3 20.6 5.3 19.4 0.0
104–105 19.4 3.5 15.8 5.3 12.7 5.3 9.1 5.3 20.6 1.8 20.6 1.8
103–104 20.0 10.5 12.7 14.0 14.6 8.8 6.1 5.3 14.6 24.6 10.9 1.8
102–103 15.2 5.3 16.4 5.3 20.6 14.0 13.3 8.8 5.5 8.8 5.5 8.8
101–102 7.3 14.0 19.4 21.1 13.3 15.8 6.7 8.8 4.9 26.3 2.4 15.8
1–10 7.3 10.5 7.3 10.5 9.7 12.3 1.2 3.5 1.2 19.3 0.0 15.8
10)1–1 4.2 10.5 3.0 7.0 5.5 5.3 1.8 3.5 0.6 1.8 0.0 33.3
10)2–10)1 1.2 5.3 0.6 0.0 0.6 1.8 0.6 5.3 0.0 7.0 0.0 8.8
10)3–10)2 0.6 5.3 0.6 0.0 0.0 0.0 0.6 3.5 0.6 1.8 0.0 7.0
10)4–10)3 0.0 0.0 0.0 1.8 0.0 0.0 0.6 1.8 0.0 0.0 0.0 3.5
10)5–10)4 0.0 0.0 0.0 0.0 0.6 0.0 0.0 0.0 0.6 0.0 0.0 0.0
10)6–10)5 0.0 0.0 0.0 0.0 0.0 1.8 0.6 0.0 0.0 0.0 0.0 0.0
<10)6 1.2 0.0 0.6 0.0 0.6 0.0 0.6 1.8 0.6 1.8 0.6 1.8
False answers % 7.9 21.1 4.9 8.8 7.3 8.8 4.9 15.8 2.4 12.3 0.6 54.4
Cumulative % 11.3 5.9 7.7 7.7 5.0 14.4
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MVN, as can be seen in Figs. 5 and 6. For example, when the
assumption of independence of all variables was made (Figs. 5(a)
and (d)), the level of false positive answers was equal to 14.5% for
the MVN model and 12.0% for the KDE model. The improvement
in the rates of false positive answers is followed by deterioration of
the rates of false negative answers—from 3.8% (10 incorrect
results; Fig. 5(a)) to 4.2% (11 incorrect results; Fig. 5(d)), respec-
tively. The differences in levels of false positive answers seem to
be very small but in fact 0.1% means that the wrong result was
obtained in 35 comparisons. At the same time, one incorrect com-
parison corresponds to 0.4% in the experiment for estimation of
false negative answers. Therefore, the kernel estimation procedure
is recommended for the glass comparison problem.

Moreover, the KDE procedure and the LR-full model shown in
Fig. 5(f) gave the lowest percent false positives (10.3%) but at the
same time the highest rates of false negative answers (7.2%,
Fig. 5(f)). The opposite was observed for the LR-independent
model, and the graphical model gave results somewhere in the mid-
dle. Similar patterns were observed in the MVN models, except
that use of the LR-graphical model yielded the lowest level of false
negative answers (Fig. 5(b)).

Because a direct comparison of the above six models is not
straightforward, ROC analysis was also performed in order to com-
pare the performance of the six models (Fig. 5(a)–(f)). Results are
shown in Fig. 6, where it can be seen that all models gave very

satisfactory results as all points are located near the upper-left cor-
ner where the point characterizing the perfect model (false positive
rates ¼ 0, true positive rates ¼ 1) is located.

In the Tippett plots in Fig. 5, the lower solid line (H2; obtained
from different-source comparisons) does not reach 100% on the left
side in the range up to )12 (negative values of log [LR]). This
means that around 50% of the obtained results gave very small val-
ues of LR, i.e., much lower than 10)12. At the same time, all LR
values obtained from same-source comparisons (rates of false nega-
tive answers) were in the range from 10)12 to 1012.

Paint—Comparison Problem

The LR-independent model was the only model considered
because of the limited number of paint samples (36). The level of
false positive answers was 3.0% for both the available case and impu-
tation methods of variance estimation, and also for both MVN and
KDE. The level of false negative answers was the same for both vari-
ance estimation methods but KDE gave slightly better rates of false
negative answers, i.e., 2.8% (one incorrect comparison) than MVN
(5.6% false negatives or two incorrect comparisons).

LR values in the range from 10)12 to 1012 (upper line, Fig. 7)
were obtained in the experiment for estimation of the percentage of
false negative answers. The lower line in Fig. 7, which shows
log(LR) results from different-source comparisons, suggests that

TABLE 8—Likelihood ratio (LR) distribution for glass objects classification into car windows (c) or building windows (w). MVN, multivariate normal
distribution; KDE, kernel density estimation; F, full model; G, graphical model; I, independent model. There are 264 samples in the full dataset of which 86

are c and 79 are w; percentages in the table are percentages of 86 for columns headed c and of 79 for columns headed w and of 165 for the last row,
labeled ‘‘cumulative %.’’

LR

MVN KDE

F G I F G I

c w c w c w c w c w c w

>107 0.0 3.5 0.0 1.2 0.0 1.2 1.3 2.3 0.0 1.2 0.0 1.2
106–107 0.0 0.0 0.0 0.0 0.0 0.0 0.0 1.2 0.0 0.0 0.0 0.0
105–106 0.0 0.0 0.0 2.3 0.0 1.2 0.0 1.2 0.0 0.0 0.0 0.0
104–105 0.0 1.2 0.0 0.0 0.0 0.0 3.8 1.2 0.0 1.2 0.0 1.2
103–104 2.5 0.0 1.3 0.0 0.0 0.0 6.3 8.1 2.5 1.2 0.0 0.0
102–103 2.5 0.0 21.5 2.3 1.3 1.2 8.9 17.4 2.5 4.7 3.8 5.8
101–102 27.9 12.8 68.4 1.2 30.4 12.8 24.1 23.3 22.8 29.1 25.3 30.2
1–10 58.2 46.5 7.6 55.8 50.6 50.0 38.0 24.4 51.9 31.4 44.3 29.1
10)1–1 5.1 33.7 0.0 34.9 15.2 29.1 12.7 10.5 16.5 20.9 21.5 24.4
10)2–10)1 2.5 2.3 0.0 2.3 1.3 4.7 1.3 7.0 2.5 9.3 3.8 5.8
10)3–10)2 0.0 0.0 0.0 0.0 0.0 0.0 1.3 2.3 0.0 0.0 0.0 1.2
10)4–10)3 0.0 0.0 0.0 0.0 0.0 0.0 1.3 0.0 0.0 0.0 0.0 1.2
10)5–10)4 1.3 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
10)6–10)5 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
<10)6 0.0 0.0 1.3 0.0 1.3 0.0 1.3 1.2 1.3 1.2 1.3 0.0
False answers % 8.9 36.1 1.3 37.2 17.7 33.7 17.7 31.0 20.3 31.4 26.6 32.6
Cumulative % 21.2 18.2 24.9 18.8 25.5 28.5

TABLE 9—Estimated probability vectors for the paint comparison problem. For the numerator of the likelihood ratio, these are obtained from same-object
pairs, and for the denominator from different-object pairs.

Variable MMA TOL BMA MST M2E M2P I16

Numerator
p(u1 ¼ 0, u2 ¼ 0) 0.306 0.306 0.222 0.194 0.500 0.333 0.167
p(u1 ¼ 0, u2 ¼ 1 or u1 ¼ 1, u2 ¼ 0) 0.000 0.000 0.000 0.000 0.000 0.000 0.000
p(u1 ¼ 1, u2 ¼ 1) 0.694 0.694 0.778 0.806 0.500 0.667 0.833

Denominator
p(u1 ¼ 0, u2 ¼ 0) 0.087 0.087 0.044 0.033 0.243 0.105 0.024
p(u1 ¼ 0, u2 ¼ 1 or u1 ¼ 1, u2 ¼ 0) 0.437 0.437 0.356 0.322 0.514 0.457 0.286
p(u1 ¼ 1, u2 ¼ 1) 0.476 0.476 0.600 0.644 0.243 0.438 0.690
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most of the LR values are lower than 10)12, i.e., they are very
large values in support of the proposition in the denominator. This
is due to a feature of the small paint background database, namely
that no pair of different-source observations had a zero and a non-
zero value for the same variable (Table 9). Thus, the likelihood of
such a pair coming from the same source was estimated as zero
(and hence the log-likelihood was )¥).

These results are slightly better than those obtained in (4), which
were 5.6% of false negative answers and 3.3% of false positive
answers, but as they were obtained from a rather small database
(36 paint samples), more Py-GC/MS data are needed before this
approach can be used in forensic practice. For a larger database, a
multivariate model is anticipated to perform better than the model
used here.

Conclusions

The proposed procedure considers a two-part, two-level multi-
variate model for evidence evaluation in the presence of zeros.
The main difference between this model and the model in (12) is
that it is no longer necessary to substitute the zeros by a small
value. In addition, the resulting nonzero subcompositions can be
closer to normality when the influence of many small values
caused by zero substitution is removed. Data with zeros occur
routinely in forensic science and modeling the zeros is desirable
in many cases. In addition, the procedure offers the flexibility of
multivariate modeling even when the amount of background data
is not very large, e.g., by means of density factorization using
decomposable graphical models. For small datasets, univariate
densities can be of some use, but it is desirable to obtain more
data for fitting multivariate models. The proposed LR models
gave very satisfactory results for both problems considered (classi-
fication and comparison) of glass and car paint data. For rela-
tively large datasets (such as the glass data in the comparison
problem), use of KDE gives better results than normal models.
Simpler models were used for the paint problem because of the
small amount of background data and some promising results
were obtained. This suggests that more effort should be made in
forensic laboratories toward data collection, especially in the case
of routine forensic problems (e.g., glass, paint, or fire debris anal-
ysis) and calculation of their evidential value.

Acknowledgment

The authors thank Prof. Janina Zieba-Palus, Institute of
Forensic Research, Krakow, Poland for providing some of the
paint data.

References

1. Aitken CGG, Zadora G, Lucy D. A two level model for evidence evalu-
ation. J Forensic Sci 2007;52:412–9.

2. Aitken CGG, Lucy D, Zadora G, Curran JM. Evaluation of trace evi-
dence for three-level multivariate data with the use of graphical models.
Comput Stat Data Anal 2006;50:2571–88.

3. Zieba-Palus J, Zadora G, Milczarek JM, Koscielniak P. Pyrolysis-gas
chromatography/mass spectrometry analysis as a useful tool in forensic
examination of automotive paint traces. J Chromatogr A 2008;1179:
41–6.

4. Zieba-Palus J, Zadora G, Milczarek JM, Koscielniak P. Differentiation
and evaluation of evidence value of styrene acrylic urethane topcoat car
paints analyzed by pyrolysis-gas chromatography. J Chromatogr A
2008;1179:47–58.

5. Caddy B. Forensic examination of glass and paint. Boca Raton, FL:
CRC Press, 2001.

6. Curran JM, Hicks TN, Buckleton JS. Forensic interpretation of glass
evidence. Boca Raton, FL: CRC Press, 2000.

7. Zadora G. Glass analysis for forensic purposes—a comparison of classi-
fication methods. J Chemom 2007;21:174–86.

8. Hicks TC, Monard Sermier F, Goldmann T, Brunelle A, Champod C,
Margot P. The classification and discrimination of glass fragments using
non destructive energy dispersive x-ray fluorescence. Forensic Sci Int
2003;137:107–18.

9. Trejos T, Almirall JR. Sampling strategies for the analysis of glass frag-
ments LA-ICP-MS part 1: micro-homogeneity study of glass and its
application to the interpretation of forensic evidence. Talanta
2005;67:388–95.

10. Aitken CGG, Taroni F. Statistics and the evaluation of evidence for
forensic scientists. Chichester, U.K.: John Wiley & Sons, 2004.

11. Bishop C.M. Pattern recognition and machine learning. New York:
Springer, 2006.

12. Aitken CGG, and Lucy D. Evaluation of trace evidence in the form of
multivariate data. J R Stat Soc Ser C Appl Stat 2004;53:109–22.

13. Butler A, Glasbey CA. A latent Gaussian model for compositional data
with zeros. J R Stat Soc Ser C Appl Stat 2008;57:505–20.

14. Fry J, Fry T, McLaren K. Compositional data analysis and zeros in
micro data. Appl Econ 2000;32:953–9.

15. Aitchison J, Kay J. Possible solutions of some essential zero problems
in compositional data analysis. Girona, Spain: In Compositional Data
Analysis Workshop, 2004.

16. Rubin DB. Multiple imputation for nonresponse in surveys. New York:
John Wiley & Sons, 1987.

17. Honaker J, King G. What to do about missing values in time-series
cross-section data? 2007. http://gking.harvard.edu/files/pr.pdf (accessed
January 23, 2009).

18. Honaker J, King G, Blackwell M. Amelia II: a program for missing
data. 2007. http://gking.harvard.edu/amelia/ (accessed January 23, 2009).

19. R Development Core Team. R: a language and environment for statisti-
cal computing. R Foundation for Statistical Computing, Vienna, Austria,
2008. ISBN 3-900051-07-0. http://www.R-project.org (accessed January
23, 2009).

20. Whittaker J. Graphical models in applied multivariate statistics. Chiches-
ter: John Wiley & Sons, 1990.

21. Zadora G. Classification of glass fragments based on elemental composi-
tion and refractive index. J Forensic Sci 2009;54:49–59.

22. Silverman BW. Density estimation for statistics and data analysis.
London: Chapman and Hall, 1986.

23. Lindley DV. A problem in forensic science. Biometrika 1977;64:207–
13.

Additional information and reprint requests:
Grzegorz Zadora, Ph.D.
Institute of Forensic Research
Westerplatte 9
31-033 Krakow
Poland
E-mail: gzadora@ies.krakow.pl

TABLE 10—Values of the optimal kernel bandwidth hopt given by Eq. (5)
when d variables are considered. The sample size n is shown in brackets for

each of the five categories of glass objects (b, bulbs; c, car windows; h,
headlamps; p, containers; w, building windows).

d

Glass Type

b (26) h (16) c (86) w (79) p (57)

1 0.55 0.61 0.43 0.44 0.47
2 0.56 0.61 0.46 0.47 0.49
3 0.58 0.62 0.49 0.49 0.52
7 0.66 0.69 0.59 0.60 0.61
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Appendix

Likelihood Ratio (LR) Model for Classification

The LR for a composition x0 with an incidence vector u0 and a logratio vector y0 is assumed to be

bðu0jp1Þf ðQ1y0jh1Þ
bðu0jp2Þf ðQ2y0jh2Þ

where f(Æ) is the multivariate density function for the logratio-transformed nonzero subcomposition vector Qgy0, g ¼ 1,2. The
parameters (pg,hg) are replaced by their estimates for g ¼ 1,2 obtained from the background data. The probability vectors p are
simply the proportions of each component that are not zero, as shown in Table 1.

If f(Æ) is assumed to be MVN, the parameters hg are the mean and covariance matrix of the MVN distribution, taking distinct values for
the two distinct populations. If the logratios are not normally distributed, the continuous parts of the likelihood are estimated using Gaussian
kernels. Given background data (transformed logratios) {vgi, i ¼ 1,…,mg, g ¼ 1,2} from the population database and smoothing parameter
(kernel bandwidth) h, the multivariate Gaussian kernel for the gth population is

Kgðy0jvg1; . . . ; vgmg ;Rg; hÞ ¼
1

mg

Xmg

i¼1

fgi

where fgi ¼ ð2pÞ�dgi=2jQgiðh2RgÞQ>gij
�1=2exp

�
� 1

2 ðQgiy0 � QgivgiÞ> ½Qgiðh2RgÞQ>gi�
�1ðQgiy0 � QgivgiÞ

�
and dgi equals the number of

nonzero variables in data point gi.
The Qgi select the nonzero variables from both y0 and vgi. The optimal value for the kernel bandwidth is

hopt ¼
4

nð2d þ 1Þ

� � 1
dþ4

; ð5Þ

where d is the number of variables and n the number of observations (22). Numerical values of hopt for the various numbers of
parameters, d, used in the models for classification, are shown in Table 10. In practice, sensitivity analysis shows that values of h
between 0.4 and 0.5 perform well; and thus, for simplicity, the value h ¼ 0.45 was used for all glass classification problems.

LR Model for Comparison Problem

Suppose that the controlled and recovered vectors (means of n1 and n2 observations, respectively) are x1 and x2 with corresponding
incident vectors u1 and u2 and logratios y1 and y2, respectively. The background data comprise logratios vij i ¼ 1,…,m, j ¼ 1,…,ni

from m groups. The group means �við¼ ð
Pni

j¼1 vijÞ=niÞ, as well as the within-group covariance matrix U, and the between-group
covariance matrix, C, can be estimated using multiple imputation or available cases to deal with missing data due to zeros.

The LR is assumed to be of the form

bðu1; u2jH1Þf ðy1; y2jH1Þ
bðu1; u2jH2Þf ðy1; y2jH2Þ

where the binary part, b(Æ), considers two separate sets of joint probabilities for the incidence vectors u1 and u2 under the prosecution
proposition H1 and the defense proposition H2, and the continuous part is obtained as follows.

The denominator assumes independence of y1 and y2, with normal within-group distributions and Gaussian KDE for between-group dis-
tributions, with kernel bandwidth h. Thus

f ðy1; y2jH2Þ ¼ f ðy1jU;C; hÞf ðy2jU;C; hÞ

with f ðyljU;CÞ ¼ 1
m

Pm
i¼1

�
ð2pÞ�dli=2jQ�liðUnl

þ h2CÞQ�>li Þj
�1=2� exp

�
� 1

2 ðQ�liyl � Q�li�viÞ>ðQ�liðUnl
þ h2CÞQ�>li Þ

�1ðQ�liyl � Q�li�viÞ
��

for
Q�li defined as the operator selecting only variables that are nonzero for both yl and �vi for l ¼ 1,2 and i ¼ 1,…,m.

In the numerator, the joint probability density function of y1 and y2 is the ‘‘average’’ of products of two independent MVN terms, one
for (y1)y2) and another for ðy� � �viÞ, where

y� ¼ n1y1 þ n2y2

n1 þ n2

Let A be the matrix that selects the nonzero subcomposition of (y1)y2) and Bi the corresponding matrices for ðy� � �viÞ, i ¼ 1,…,m. This
results in
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Aðy1 � y2Þ � MVN 0;A
U

n1
þ U

n2

� �
A>

� �

and, independently,

Biðy� � �viÞ � MVN 0;Bi
U

n1

� ��1

þ U

n2

� ��1
 !�1

þh2C

2
4

3
5B>i

0
@

1
A

which yield

f ðy1; y2jH1Þ ¼ f ðy1 � y2; y�jU;C; hÞ ¼ ð2pÞ�dA=2jA U

n1
þ U

n2

� �
A>j�1=2 exp � 1

2
ðAy1 � Ay2Þ> A

U

n1
þ U

n2

� �
A>

� ��1

ðAy1 � Ay2Þ
( )

� 1
m

Xm

i¼1

ð2pÞ�di=2jBi
U

n1

� ��1

þ U

n2

� ��1
 !�1

þh2C

2
4

3
5B>i j

�1=2

8<
:

� exp � 1
2
ðBiy� � Bi �viÞ> Bi

U

n1

� ��1

þ U

n2

� ��1
 !�1

þh2C

2
4

3
5B>i

0
@

1
A
�1

ðBiy� � Bi �viÞ

2
4

3
5
9=
;

The kernel bandwidth, h, is taken to equal its optimal value given by Eq. (5), assuming the maximal dimension d ¼ 7 for glass, and
d ¼ 1, i.e., univariate, for paint.

Note that if Q, A, and B are taken to be identity matrices, then the expression for f(y1,y2|H1) ¼ f(y1)y2,y
*|U,C,h) reduces to Eq. (14) of

(12). Also, the expression f(yl|U,C,h)f(y2|U,C,h) reduces to Eq. (15) of (12).
Some clarification is needed of the differences between the models in (12) and (1). The expression for the numerator in the Appendix in

(1) includes a third component of variation for measurement error using the between-group covariance matrix. It is hard to envisage a situa-
tion where this may arise and the authors recommend the use of the results in (12). Note also that the comment on page 419 of (1) about
the ‘‘multivariate analog of the univariate example in (23)’’ refers to the expressions for

�Y1 � �Y2 � Nð0;U

nc
þ U

nr
Þ

and

ðnc �Y1 þ nr �Y2Þ=ðnc þ nrÞ � N l;C þ U

nc þ nr

� �

and ð�Y1 � �Y2Þ and ðnc �Y1 þ nr �Y2Þ=ðnc þ nrÞ are independent with unit Jacobian at the bottom of page 418 of (1).

Variance Estimation

Assuming a background database of m groups of n objects, denoted as

xij ¼ ðxij1; . . . ; xijpÞ>; i ¼ 1; . . . ;m; j ¼ 1; . . . ; n;

with �xi ¼ 1
n

Pn
j¼1 xij; �x ¼

Pm
i¼1 �xi=m; the within-group variance estimate is

Û ¼ Sw

mðn� 1Þ

where

Sw ¼
Xm

i¼1

Xn

j¼1

ðxij � �xiÞðxij � �xiÞ>;

and the between-group variance estimate is

Ĉ ¼ S�

m� 1
� Sw

mnðn� 1Þ

where

S� ¼
Xm

i¼1

ðxi � �xÞðxi � �xÞ>:
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