Calculus 2 Quiz 2

NAME

Show details in the space next to each problem.
You must show your work to receive full credit.

1. (5 points) Compute the following integral:

\[\int x \tan x \sec x \, dx \]

Solution: Integrate by part with \(u = x \), \(dv = \sec x \tan x \) so that \(du = 1 \) and \(v = \sec x \)
so we get

\[
\int x \sec x \tan x \, dx = x \sec x - \int \sec x \, dx = x \sec x - \ln | \sec x + \tan x | + C
\]

2. (5 points) Is the following integral convergent or divergent? Why?

\[\int_1^\infty \frac{\ln x}{x^3} \, dx \]

Solution: I claim that for \(x > 1 \) we have \(x - \ln x > 0 \). In fact \(1 - \ln 1 = 1 > 0 \) and
for \(x \geq 1 \) we have \(\frac{d}{dx}(x - \ln x) = 1 - \frac{1}{x} \geq 0 \). Therefore \(x - \ln x \) is positive at 1 and
increasing on \([1, \infty)\) hence always positive on that interval, so that \(x > \ln x \) on that
interval. So we have

\[\frac{\ln x}{x^3} < \frac{1}{x^2} \]

and the integral is convergent by the comparison theorem since

\[\int_1^\infty \frac{1}{x^2} \]

is convergent.

Alternative solution: You can compute the integral by parts: we can set \(u = \ln x \)
and \(dv = \frac{1}{x^3} \) so that \(du = \frac{1}{x} \, dx \) and \(v = \frac{-1}{2x^2} \), so that

\[
\int_1^\infty \frac{\ln x}{x^3} \, dx = \lim_{t \to \infty} \left[-\ln x \right]_1^t - \int_1^\infty \frac{-1}{2x^3} \]

which is convergent because

\[\lim_{t \to \infty} -\frac{\ln x}{2x^2} = \lim_{t \to \infty} -\frac{1}{4x^2} = 0 \]

and

\[\int_1^\infty \frac{1}{2x^2} \]

is convergent.