2. \(y = -t \cos t - t \implies \frac{dy}{dt} = -t(-\sin t) + \cos t(-1) - 1 = t \sin t - \cos t - 1. \)

\[
\text{LHS} = t \frac{dy}{dt} = t(t \sin t - \cos t - 1) = t^2 \sin t - t \cos t - t
\]

so \(y \) is a solution of the differential equation. Also \(y(\pi) = -\pi \cos \pi - \pi = -\pi(-1) - \pi = \pi - \pi = 0 \), so the initial condition is satisfied.

10. (a) \(y = k \implies y' = 0 \), so \(\frac{dy}{dt} = y^4 - 6y^2 + 5y^2 \implies 0 = k^4 - 6k^2 + 5k^2 \implies k^2(k^2 - 6k + 5) = 0 \implies k = 0, 1, \text{ or } 5 \)

(b) \(y \) is increasing \(\iff \frac{dy}{dt} > 0 \iff y^2(y - 1)(y - 5) > 0 \iff y \in (-\infty, 0) \cup (0, 1) \cup (5, \infty) \)

(c) \(y \) is decreasing \(\iff \frac{dy}{dt} < 0 \iff y \in (1, 5) \)

11. (a) This function is increasing and decreasing. But \(\frac{dy}{dt} = e^y(y - 1)^2 \geq 0 \) for all \(t \), implying that the graph of the solution of the differential equation cannot be decreasing on any interval.

(b) When \(y = 1, \frac{dy}{dt} = 0 \), but the graph does not have a horizontal tangent line.

2. (a) [Image of a graph showing the direction field for the differential equation \(y' = \tan \left(\frac{\pi}{2} y \right) \).]

(b) It appears that the constant functions \(y = 0, y = 2, \) and \(y = 4 \) are equilibrium solutions. Note that these three values of \(y \) satisfy the given differential equation \(y' = \tan \left(\frac{\pi}{2} y \right) \).

3. \(y' = 2 - y \). The slopes at each point are independent of \(x \), so the slopes are the same along each line parallel to the \(x \)-axis.

Thus, III is the direction field for this equation. Note that for \(y = 2, y' = 0 \).

4. \(y' = x(2 - y) = 0 \) on the lines \(x = 0 \) and \(y = 2 \). Direction field I satisfies these conditions.

5. \(y' = x + y - 1 = 0 \) on the line \(y = -x + 1 \). Direction field IV satisfies this condition. Notice also that on the line \(y = -x \) we have \(y' = -1 \), which is true in IV.

6. \(y' = \sin x \sin y = 0 \) on the lines \(x = 0 \) and \(y = 0 \), and \(y' > 0 \) for \(0 < x < \pi, 0 < y < \pi \). Direction field II satisfies these conditions.
\[y' = xy - x^2 = x(y - x), \text{ so } y' = 0 \text{ for } x = 0 \text{ and } y = x. \] The slopes are positive only in the regions in quadrants I and III that are bounded by \(x = 0 \) and \(y = x \). The solution curve in the graph passes through \((0, 1)\).
19. (a) \(y' = F(x, y) = y \) and \(y(0) = 1 \) \(\Rightarrow \) \(x_0 = 0, y_0 = 1 \).

(i) \(h = 0.4 \) and \(y_1 = y_0 + hF(x_0, y_0) \) \(\Rightarrow \) \(y_1 = 1 + 0.4 \cdot 1 = 1.4 \). \(x_1 = x_0 + h = 0 + 0.4 = 0.4 \),
so \(y_1 = y(0.4) = 1.4 \).

(ii) \(h = 0.2 \) \(\Rightarrow \) \(x_1 = 0.2 \) and \(x_2 = 0.4 \), so we need to find \(y_2 \).
\(y_1 = y_0 + hF(x_0, y_0) = 1 + 0.2y_0 = 1 + 0.2 \cdot 1 = 1.2 \),
\(y_2 = y_1 + hF(x_1, y_1) = 1.2 + 0.2y_1 = 1.2 + 0.2 \cdot 1.2 = 1.44 \).

(iii) \(h = 0.1 \) \(\Rightarrow \) \(x_4 = 0.4 \), so we need to find \(y_4 \).
\(y_1 = y_0 + hF(x_0, y_0) = 1 + 0.1y_0 = 1 + 0.1 \cdot 1 = 1.1 \),
\(y_2 = y_1 + hF(x_1, y_1) = 1.1 + 0.1y_1 = 1.1 + 0.1 \cdot 1.1 = 1.21 \),
\(y_3 = y_2 + hF(x_2, y_2) = 1.21 + 0.1y_2 = 1.21 + 0.1 \cdot 1.21 = 1.331 \),
\(y_4 = y_3 + hF(x_3, y_3) = 1.331 + 0.1y_3 = 1.331 + 0.1 \cdot 1.331 = 1.4641 \).

(b) [Graph showing \(y = e^x \) with lines for \(h = 0.1 \), \(h = 0.2 \), \(h = 0.4 \).]

We see that the estimates are underestimates since they are all below the graph of \(y = e^x \).

(c) (i) For \(h = 0.4 \): (exact value) \(- (\text{approximate value}) = e^{0.4} - 1.4 \approx 0.0918 \)

(ii) For \(h = 0.2 \): (exact value) \(- (\text{approximate value}) = e^{0.4} - 1.44 \approx 0.0518 \)

(iii) For \(h = 0.1 \): (exact value) \(- (\text{approximate value}) = e^{0.4} - 1.4641 \approx 0.0277 \)

Each time the step size is halved, the error estimate also appears to be halved (approximately).

8. \(\frac{dy}{d\theta} = \frac{e^y \sin^2 \theta}{y \sec \theta} \Rightarrow \frac{y}{e^y} \cdot dy = \frac{\sin^2 \theta}{\sec \theta} \cdot d\theta \Rightarrow \int y e^{-y} dy = \int \sin^2 \theta \cos \theta d\theta \).
Integrating the left side by parts with \(u = y, dv = e^{-y} dy \) and the right side by the substitution \(u = \sin \theta \), we obtain \(-ye^{-y} - e^{-y} = \frac{1}{2} \sin^2 \theta + C \). We cannot solve explicitly for \(y \).

14. \(y' = \frac{xy \sin x}{y + 1}, y(0) = 1 \). \(\frac{y + 1}{y} \cdot \frac{dy}{dx} = x \sin x \) \(\Rightarrow \) \(\int \left(1 + \frac{1}{y} \right) \cdot dy = \int x \sin x \cdot dx \) \(\Rightarrow \)
\(y + \ln |y| = -x \cos x + \sin x + C \) [use parts with \(u = x, dv = \sin x \cdot dx \)]. Now \(y(0) = 1 \) \(\Rightarrow \)
\(1 + 0 = 0 + 0 + C \) \(\Rightarrow \) \(C = 1 \), so \(y + \ln |y| = -x \cos x + \sin x + 1 \). We cannot solve explicitly for \(y \).
16. \(\frac{dP}{dt} = \sqrt{P} t \) \(\Rightarrow \) \(\frac{dP}{\sqrt{P}} = \sqrt{t} dt \) \(\Rightarrow \) \(\int P^{-1/2} dP = \int t^{1/2} dt \) \(\Rightarrow \) \(2P^{1/2} = \frac{2}{3} t^{3/2} + C. \)

\(P(1) = 2 \) \(\Rightarrow \) \(2\sqrt{2} = \frac{2}{3} + C \) \(\Rightarrow \) \(C = 2\sqrt{2} - \frac{2}{3} \), so \(2P^{1/2} = \frac{2}{3} t^{3/2} + 2\sqrt{2} - \frac{2}{3} \) \(\Rightarrow \) \(\sqrt{P} = \frac{1}{2} t^{3/2} + \sqrt{2} - \frac{1}{3} \) \(\Rightarrow \)

\(P\left(\frac{1}{2} t^{3/2} + \sqrt{2} - \frac{1}{3}\right)^2 \).

29. The curves \(x^2 + 2y^2 = k^2 \) form a family of ellipses with major axis on the \(x \)-axis. Differentiating gives

\(\frac{d}{dx} (x^2 + 2y^2) = \frac{d}{dx} (k^2) \) \(\Rightarrow \) \(2x + 4yy' = 0 \) \(\Rightarrow \) \(4yy' = -2x \) \(\Rightarrow \) \(y' = -\frac{x}{2y} \). Thus, the slope of the tangent line at any point \((x, y)\) on one of the ellipses is \(y' = -\frac{x}{2y} \), so the orthogonal trajectories must satisfy \(y' = \frac{2y}{x} \) \(\Leftrightarrow \) \(\frac{dy}{dx} = \frac{2y}{x} \Leftrightarrow \frac{dy}{y} = 2 \frac{dx}{x} \Leftrightarrow \)

\(\int \frac{dy}{y} = 2 \int \frac{dx}{x} \Leftrightarrow \ln |y| = 2 \ln |x| + C_1 \Leftrightarrow \ln |y| = \ln |x|^2 + C_1 \Leftrightarrow \)

\(|y| = e^{\ln|x|^2+C_1} \Leftrightarrow y = \pm x^2 \cdot e^{C_1} = C x^2 \). This is a family of parabolas.

32. Differentiating \(y = \frac{x}{1 + kx} \) gives \(y' = \frac{1}{(1 + kx)^2} \cdot \frac{1}{x} \), but \(k = \frac{x - y}{xy} \), so

\(y' = \frac{1}{(1 + \frac{x-y}{y})^2} = \frac{y^2}{x^2}. \) Thus, the orthogonal trajectories must satisfy

\(y' = -\frac{x^2}{y^2} \Leftrightarrow y^2 dy = -x^2 dx \Leftrightarrow \int y^2 dy = -\int x^2 dx \Leftrightarrow \)

\(\frac{1}{2} y^3 = -\frac{1}{2} x^3 + C_1 \Leftrightarrow y^3 = C - x^3 \Leftrightarrow y = \sqrt[3]{C-x^3}. \)