Sample exercises for the Final

June 30, 2009

1. Compute the following indefinite integrals:

(a) \[\int x \sin(3x^2 + 2) \, dx \]

(b) \[\int \frac{x + 3}{x^2} \, dx \]

(c) \[\int e^{\sqrt{x}} \, dx \]

(d) \[\int \frac{1 + 2x}{\sqrt{1 - x^2}} \, dx \]

2. Compute the following integrals:

(a) \[\int_{-\pi/2}^{\pi/2} \frac{x \cos x}{1 + x^4} \, dx \]

(b) \[\int_{0}^{\pi/2} \frac{\sin x}{\sqrt{\cos x}} \, dx \]
3. Estimate the number \(\ln 1.04 \).
Estimate the number \(\ln 3 \) (remember: \(e \sim 2.7 \)).

4. State the fundamental theorem of calculus.
Use it to compute
\[
\frac{d}{dx} \int_{x}^{3x-1} \tan(2t - 1) \sqrt{t} dt
\]
Is this computation correct:
\[
\int_{-1}^{2} \frac{1}{x^2} dx = \left[\frac{-1}{x} \right]_{-1}^{2} = -\frac{1}{2} - 1 = -\frac{3}{2}
\]

5. Sketch the graph of the function
\[
f(x) = \frac{x + 1}{\sqrt{x^2 + 1}}
\]

6. Sketch the graph of a function that has 3 local extrema and 5 critical points.
How many inflection points does your graph have?

7. Sketch the graph of the function
\[
f(x) = \ln(1 + x^2)
\]

8. If \(f \) is continuous and \(\int_{1}^{22} f(x) dx = 3 \), compute
\[
\int_{0}^{7} f(3x + 1) dx
\]

9. State Rolle’s theorem.
Give an example of a function \(f \) such that:
• \(f(a) = f(b) \) for some \(a, b \in \mathbb{R} \);
• \(f \) is continuous;
• \(f \) is not differentiable on \([a, b]\);
• The conclusion of Rolle’s theorem does not hold.

10. Compute the following limits:

(a) \[
\lim_{x \to +\infty} xe^{-x}
\]

(b) \[
\lim_{x \to 0} \frac{\arctan{x}}{x}
\]

(c) \[
\lim_{x \to +\infty} (\ln(x) - \ln(x + 1))
\]

11. An ant is crawling along a path that is exactly the graph of the function \(y = 3x^2 \). She starts at the origin \((0, 0)\). Her \(x \)-coordinate is changing at the rate of 10 cm per minute. How fast is her distance from the origin changing when her \(y \)-coordinate is 27?

12. Suppose that \(f \) is continuous and differentiable on all of \(\mathbb{R} \). Suppose \(f'(x) > 0 \) for all \(x \in [0, 1] \) and \(f(0) = 0 \). Is \(f(1) \) positive, negative, or zero? Explain.

13. Find the volume of the solid obtained by considering the region bounded by \(y = x^3 \) and \(x = 1 \) and \(y = 0 \) and and rotating it along the line \(y = -2 \).
14. Consider the following trapezoid:

\[\begin{array}{c}
\text{l} \\
\theta \\
\text{b} \\
\theta \\
\text{l}
\end{array} \]

(b and \(l \) are fixed numbers, \(B \) and \(\theta \) are not). Find the angle \(\theta \) that minimizes the area.

15. Find the area enclosed between the two curves \(x = 2y^2 \) and \(x = 4 + y^2 \).