14. \[V = lwh \quad \Rightarrow \quad 10 = (2w)(w)h = 2w^2h, \text{ so } h = \frac{5}{w^2}. \]

The cost is \[10(2w^2) + 6[2(2wh) + 2(hw)] = 20w^2 + 36wh, \text{ so} \]
\[C(w) = 20w^2 + 36w\left(\frac{5}{w^3}\right) = 20w^2 + 180/w. \]

\[C'(w) = 40w - 180/w^2 = 40\left(\frac{w - \frac{9}{2}}{w^2}\right)/w^2 \quad \Rightarrow \quad w = \frac{\sqrt{92}}{2} \text{ is the critical number. There is an absolute minimum} \]
for \(C \) when \(w = \frac{\sqrt{92}}{2} \) since \(C'(w) < 0 \) for \(0 < w < \frac{\sqrt{92}}{2} \) and \(C'(w) > 0 \) for \(w > \frac{\sqrt{92}}{2} \).

\[C\left(\frac{\sqrt{92}}{2}\right) = 20\left(\frac{\sqrt{92}}{2}\right)^2 + \frac{180}{\frac{\sqrt{92}}{2}/2} \approx 163.54. \]

19. From the figure, we see that there are two points that are farthest away from \(A(1, 0) \). The distance \(d \) from \(A \) to an arbitrary point \(P(x, y) \) on the ellipse is \[d = \sqrt{(x - 1)^2 + (y - 0)^2} \text{ and the square of the distance is} \]
\[S = d^2 = x^2 - 2x + 1 + y^2 = x^2 - 2x + 1 + (4 - 4x^2) = -3x^2 - 2x + 5. \]
\[S' = -6x - 2 \quad \text{and} \quad S'' = 0 \quad \Rightarrow \quad x = -\frac{1}{3}. \text{ Now } S'' = -6 < 0, \text{ so we know} \]
that \(S \) has a maximum at \(x = -\frac{1}{3} \). Since \(-1 \leq x \leq 1, \)
\[S(-\frac{1}{3}) = \frac{18}{3}, \text{ and } S(1) = 0, \text{ we see that the maximum distance is } \sqrt{\frac{18}{3}}. \text{ The corresponding } y\text{-values are} \]
\[y = \pm\sqrt{4 - 4\left(-\frac{1}{3}\right)^2} = \pm\sqrt{\frac{32}{9}} = \pm\frac{4}{3} \sqrt{2} \approx \pm1.89. \text{ The points are } (-\frac{1}{3}, \pm\frac{4}{3} \sqrt{2}). \]

24. The rectangle has area \(A(x) = 2xy = 2x(8 - x^2) = 16x - 2x^3, \text{ where} \)
\[0 \leq x \leq 2 \sqrt{2}. \text{ Now } A'(x) = 16 - 6x^2 = 0 \quad \Rightarrow \quad x = 2 \sqrt{\frac{2}{3}}. \text{ Since} \]
\[A(0) = A(2 \sqrt{2}) = 0, \text{ there is a maximum when } x = 2 \sqrt{\frac{2}{3}} \text{ Then } y = \frac{18}{3}, \]
so the rectangle has dimensions \(4 \sqrt{\frac{2}{3}} \) and \(\frac{18}{3} \).

32. \(xy = 180, \text{ so } y = 180/x. \text{ The printed area is} \)
\[(x - 2)(y - 3) = (x - 2)(180/x - 3) = 186 - 3x - 360/x = A(x). \]
\[A'(x) = -3 + 360/x^2 = 0 \text{ when } x^2 = 120 \quad \Rightarrow \quad x = 2 \sqrt{30}. \text{ This gives an absolute maximum since } A'(x) > 0 \text{ for } 0 < x < 2 \sqrt{30} \text{ and } A'(x) < 0 \text{ for } x > 2 \sqrt{30}. \text{ When} \]
\[x = 2 \sqrt{30}, \quad y = 180/(2 \sqrt{30}), \text{ so the dimensions are } 2 \sqrt{30} \text{ in. and } 90/\sqrt{30} \text{ in.} \]
44. Let \(t \) be the time, in hours, after 2:00 PM. The position of the boat heading south at time \(t \) is \((0, -20t)\). The position of the boat heading east at time \(t \) is \((-15 + 15t, 0)\). If \(D(t) \) is the distance between the boats at time \(t \), we minimize \(f(t) = [D(t)]^2 = 20^2 t^2 + 15^2 (t - 1)^2 \).

\[
f'(t) = 800t + 450(t - 1) = 1250t - 450 = 0 \quad \text{when} \quad t = \frac{450}{1250} = 0.36 \text{ h}.
\]

\(0.36 \text{ h} \times \frac{60 \text{ min}}{1 \text{ h}} = 21.6 \text{ min} = 21 \text{ min } 36 \text{ s}.\) Since \(f''(t) > 0 \), this gives a minimum, so the boats are closest together at 2:21:36 PM.

46. In isosceles triangle \(AOB \), \(\angle O = 180^\circ - \theta - \theta \), so \(\angle BOC = 2\theta \). The distance rowed is \(4 \cos \theta \) while the distance walked is the length of arc \(BC = 2(2\theta) = 4\theta \). The time taken is given by \(T(\theta) = \frac{4 \cos \theta}{2} + \frac{4\theta}{4} = 2 \cos \theta + \theta \), \(0 \leq \theta \leq \frac{\pi}{2} \).

\[
T'(\theta) = -2 \sin \theta + 1 = 0 \quad \Leftrightarrow \quad \sin \theta = \frac{1}{2} \quad \Rightarrow \quad \theta = \frac{\pi}{6}.
\]

Check the value of \(T \) at \(\theta = \frac{\pi}{6} \) and at the endpoints of the domain of \(T \); that is, \(\theta = 0 \) and \(\theta = \frac{\pi}{2} \).

\(T(0) = 2, T\left(\frac{\pi}{6}\right) = \sqrt{3} + \frac{\pi}{6} \approx 2.26 \), and \(T\left(\frac{\pi}{2}\right) = \frac{\pi}{2} \approx 1.57 \). Therefore, the minimum value of \(T \) is \(\frac{\pi}{2} \) when \(\theta = \frac{\pi}{2} \); that is, the woman should walk all the way. Note that \(T''(\theta) = -2 \cos \theta < 0 \) for \(0 \leq \theta < \frac{\pi}{2} \), so \(\theta = \frac{\pi}{6} \) gives a maximum time.

72. (a) Let \(D \) be the point such that \(a = |AD| \). From the figure, \(\sin \theta = \frac{b}{|BC|} \Rightarrow |BC| = b \csc \theta \) and

\[
\cos \theta = \frac{|BD|}{|BC|} = \frac{a - |AB|}{|BC|} \quad \Rightarrow \quad |BC| = (a - |AB|) \sec \theta. \quad \text{Eliminating} \quad |BC| \quad \text{gives}
\]

\[
(a - |AB|) \sec \theta = b \csc \theta \quad \Rightarrow \quad b \cot \theta = a - |AB| \quad \Rightarrow \quad |AB| = a - b \cot \theta. \quad \text{The total resistance is}
\]

\[
R(\theta) = C \frac{|AB|}{r_1^4} + C \frac{|BC|}{r_2^4} = C \left(\frac{a - b \cot \theta}{r_1^4} + \frac{b \csc \theta}{r_2^4} \right).
\]

(b) \(R'(\theta) = C \left(\frac{b \csc^2 \theta}{r_1^4} - \frac{b \csc \theta \cot \theta}{r_2^4} \right) = bC \csc \theta \left(\frac{\csc \theta}{r_1^4} - \frac{\cot \theta}{r_2^4} \right) \)

\[
R'(\theta) = 0 \quad \Leftrightarrow \quad \frac{\csc \theta}{r_1^4} = \frac{\cot \theta}{r_2^4} \quad \Leftrightarrow \quad \frac{r_2^4}{r_1^4} = \frac{\cot \theta}{\csc \theta} = \cos \theta.
\]

\[
R'(\theta) > 0 \quad \Leftrightarrow \quad \frac{\csc \theta}{r_1^4} > \frac{\cot \theta}{r_2^4} \quad \Rightarrow \quad \cos \theta < \frac{r_2^4}{r_1^4} \quad \text{and} \quad R'(\theta) < 0 \quad \text{when} \quad \cos \theta > \frac{r_2^4}{r_1^4}, \quad \text{so there is an absolute minimum}
\]

when \(\cos \theta = \frac{r_2^4}{r_1^4} \).

(c) When \(r_2 = \frac{3}{2} r_1 \), we have \(\cos \theta = \left(\frac{3}{2} \right)^4 \), so \(\theta = \cos^{-1}\left(\frac{3}{2} \right)^4 \approx 79^\circ \).