Show that ∞^0 is an indeterminate form

November 10, 2009

To show that $+\infty^0$ is an indeterminate form, you have to show that knowing that $\lim_{x \to a} f(x) = +\infty$ and $\lim_{x \to a} g(x) = 0$ is not enough to compute the limit of $f(x)g(x)$! This means you have to find two sets of functions f, g and f_1, g_1 such that:

- $\lim_{x \to a} f(x) = +\infty$, $\lim_{x \to a} f_1(x) = +\infty$
- $\lim_{x \to a} g(x) = 0$, $\lim_{x \to a} g_1(x) = 0$
- $\lim_{x \to a} f(x)^{g(x)} \neq \lim_{x \to a} f_1(x)^{g_1(x)}$

Hint: this will be very similar to the examples we found in class for the case of the indeterminate form 1^∞.

Possible solution: choose any two of the following:

- $\lim_{x \to +\infty} x^0 = 1$ (this is an indeterminate form of type ∞^0 because $\lim_{x \to +\infty} x = +\infty$, $\lim_{x \to +\infty} 0 = 0$)
- $\lim_{x \to +\infty} (e^x)^{\frac{1}{x}} = \lim_{x \to +\infty} e = e$ (this is an indeterminate form of type ∞^0 because $\lim_{x \to +\infty} e^x = +\infty$, $\lim_{x \to +\infty} \frac{1}{x} = 0$)
- $\lim_{x \to +\infty} \left(e^{x^2}\right)^{\frac{1}{2}} = \lim_{x \to +\infty} e^x = +\infty$

(this is an indeterminate form of type ∞^0 because $\lim_{x \to +\infty} e^x = +\infty$, $\lim_{x \to +\infty} \frac{1}{x} = 0$)