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MILP Formulation for Islanding of Power Networks
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Abstract—In this paper, a mathematical formulation for the
islanding of power networks is presented. Given an area of
uncertainty in the network, the proposed approach uses mixed
integer linear programming to isolate unhealthy components of
the network and create islands, by (i) cutting lines, (ii) shedding
loads and (iii) switching generators, while maximizing load
supply. A key feature of the new method is that network
constraints are explicitly included in the MILP problem, resulting
in balanced, steady-state feasible DC solutions. A subsequent
AC optimal load shedding optimization on the islanded network
model provides a feasible AC solution. Numerical simulations
on the 24-bus IEEE reliability test system and larger systems
demonstrate the effectiveness of the method.

Index Terms—Power system modeling, Power system security,
Optimization, Integer programming, Blackouts, Islanding

I. I NTRODUCTION

I N recent years, there has been an increase in the oc-
curence of wide-area blackouts of power networks. In

2003, separate blackouts in Italy [1], Sweden/Denmark [2] and
USA/Canada [3] affected millions of customers. The wide-
area disturbance in 2006 to the UCTE system caused the
system to split in an uncontrollable way [4], forming three
islands. More recently, the UK network experienced a system-
wide disturbance caused by an unexpected loss of generation;
blackout was avoided by local load shedding [5].

While the exact causes of wide-area blackouts differ from
case to case, some common driving factors emerge. Modern
power systems are being operated closer to limits: liberaliza-
tion of the markets, and the subsequent increased commercial
pressures and change in expenditure priorities, has led to
a reduction in security margins [6]–[8]. A more recently
occurring factor is increased penetration of variable distributed
generation, notably from wind power, which brings significant
challenges to secure system operation [9].

For several large disturbance events,e.g., [3], studies have
shown that wide-area blackout could have been prevented by
intentionally splitting the system into islands [10]. By isolating
the faulty part of the network, the total load disconnected in the
event of a cascading failure is reduced.Controlledislanding or
system splitting is therefore attracting an increasing amount of
attention. The problem is how to efficiently split the network
into islands that are balanced in load and generation, and
have stable steady-state operating points. This is a consider-
able challenge, since the search space of line cutsets grows
combinatorially with network size, and is exacerbated by the
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requirement for strategies that obey non-linear power flow
equations and satisfy operating constraints.

Approaches in the literature broadly differ according to
the motive of islanding, and within that the search method
employed to determine the splitting boundary. The simplest
example of the former is forming balanced islands. In [11], a
three-phase ordered binary decision diagram (OBDD) method
is proposed that determines a set of islanding strategies.
The approach uses a reduced graph-theoretical model of the
network to minimize the search space for islanding; power
flow analyses are subsequently executed on islands to exclude
strategies that violate operating constraints,e.g., line limits.

An alternative motive seeks to split the network into
electromechanically stable islands, commonly by splitting so
that generators with coherent oscillatory modes are grouped.
Determing the optimal cutset of lines involves considerations
of load-generation balance and other constraints; algorithms
include exhaustive search [12], minimal-flow minimal-cutset
determination using breadth-/depth-first search [13], andgraph
simplification and partioning [14]. The authors of [15] note
that splitting based simply on slow coherency is not always
effective under complex oscillatory conditions, and propose a
framework that, iteratively, identifies thecontrolling group of
machines and the contingencies that most severely impact sys-
tem stability, and uses a heuristic method to search for a split-
ting strategy that maintains a desired margin. Wang et al. [16]
employed a power flow tracing algorithm to first determine
the domain of each generator,i.e. the set of load buses
that ‘belong’ to each generator. Subsequently, the networkis
coarsely split along domain intersections before refinement of
boundaries to minimize imbalances.

While several useful strategies exist for splitting a network
into synchronous balanced islands, little attention has focused
on islanding in response to particular contigencies. If, for ex-
ample, a line failure occurs and subsequent cascading failures
are likely, it may be desirable to isolate a small part of the
network—the impacted area—from the rest. A method that
does not take the impacted area into account when designing
islands may leave this area within an arbitrary large section
of the network, all of which may become insecure as a result.

In this paper, we propose an optimization-based approach
to system islanding and load shedding. Given some uncertain
set of buses and/or lines, solving an optimization determines
(i) the optimal set of lines to cut, (ii) which generators
to switch off, and (iii) which loads to shed. The solution
isolates the suspected parts from the rest of the network
while maximizing load supply. A key feature of the method is
that any islands created are balanced and satisfy power flow
equations, and also operating constraints are handled naturally
by the constrained optimization framework. The approach
uses two stages: solving a mixed-integer linear programming
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(MILP) islanding problem, which includes the linear DC
flow equations, determines a DC-feasible solution, and an AC
optimal load shedding optimization subsequently providesan
AC-feasible operating point.

Integer programming has many applications in power sys-
tems, but its use in network splitting and blackout prevention
is limited. Bienstock and Mattia [17] proposed an IP-based
approach to the problem of designing networks that are robust
to sets of cascading failures and thus avoid blackouts; whether
to upgrade a line’s capacity is a binary decision. Fisher et
al. [18] propose a method for optimal transmission switching
for the problem of minimizing the cost of generation despatch
by selecting a network topology to suit a particular load. In
common with the formulation presented here, binary variables
represent switches that open or close each line and the DC
power flow model is used, resulting in a MILP. However, in
this paper sectioning constraints are present, and the problem
is to create balanced islands while maximizing load supply.

The organization of the paper is as follows. The next section
outlines the motivation and assumptions that underpin the
approach. The islanding formulation is developed in Sec-
tion III. The AC optimal load shedding problem is described in
Section IV. In Section V, numerical simulations are presented.
Finally, conclusions are drawn in Section VI

II. M OTIVATION AND ASSUMPTIONS

The motivation for the formulation is stated as follows.
Following some failure, we assume that limited information
is available about the network and its exact state is uncertain;
there are parts of the network that are suspected of having a
fault and some where we are reasonably sure have no faults.
We assume that in such a case, a robust solution to prevent
cascading failures is to isolate the uncertain part of the network
from the certain part, by forming one or more stable islands.
Fig. 1(a) depicts such a situation for a fictional network;
uncertain lines and buses are indicated.

??

? ?

(a) Network prior to islanding

?

??

?

Island 1 Island 2

Section 0 Section 1Section 1

Island 3 Island 4

(b) Network post islanding

Fig. 1. (a) Fictional network with uncertain buses and lines, and (b) the
islanding of that network by disconnecting lines.

Our aim is to split the network into disconnected sections so
that the possible faults are all in one section. It is desirable that
this section be small, since it may be prone to failure, and that
the other section is able to operate with little load shedding.

We would also like the problem section to shed as little load
as possible. Fig. 1(b) shows a possible islanding solution for
this network, where all uncertain buses have been placed in
a section0 and all uncertain lines with at least one end in
section1 are disconnected. We make the following distinction
betweensectionsand islands.

• The optimized network consists of two sections, an
“unhealthy” section0 and a “healthy” section1. No lines
connect the two sections. On the other hand, neither
section is required to be a single, connected component.

• An island is a connected component of the network.
Thus, either section may contain a number of islands, as in
fig. 1(b), where section1 comprises islands1, 3 and4, while
section0 is a single island. The boundaries of sections and the
number of islands formed will depend on the optimization.

We will assume that generator outputs and load levels
immediately after the initial fault are known. We have central
control of generation, load shedding and line breakers; we
may instantaneously reduce the demand and disconnect any
lines. Furthermore, we assume that we have a certain degree
of control over a generator’s output. We require that after the
adjustments the system is a feasible equilibrium.

III. MILP I SLANDING FORMULATION

In this section, we present a MILP formulation for islanding
and minimizing the load shed in a network under stress.

Consider a network that comprises a set of busesB =
{1, 2, . . . , nB} and a set of linesL = {1, 2, . . . , nL}. The
two vectorsF andT describe the connection topology of the
network: a linel ∈ L connects busFl to busTl. We assume
there also exists a set of generatorsG = {1, 2, . . . , nG} and
a set of loadsD = {1, 2, . . . , nD}. A subsetGb of generators
is attached to busb ∈ B; similarly, Db contains the subset of
loads present at busb ∈ B.

A. Sectioning Constraints

We aim to allocate buses and lines into the two sections
0 and 1. We suspect that some subsetB0 ⊆ B of buses and
some subsetL0 ⊆ L of lines have a possible fault. These
subsets thus contain all “uncertain” buses and lines, while
the remainder of buses/lines are defined as “certain”. It is the
uncertain components that we wish to confine to section0.

We introduce a binary decision variableγb with each bus
b ∈ B; γb shall be set equal to0 if b is placed in section
0 and γb = 1 otherwise. To partition the network in such a
way, we need to disconnect lines. Accordingly, we define a
binary decision variableρl for eachl ∈ L; ρl = 0 if line l is
disconnected andρl = 1 otherwise.

Constraints (1a) and (1b) apply to each linel not assigned
to L0. The line is cut if its two end buses are in different
sections (i.e. γFl

= 0 andγTl
= 1, or γFl

= 1 andγTl
= 0).

Otherwise, if the two end buses are in the same section then
ρl ≤ 1, and the line may or may not be disconnected. Thus,
these constraints enforce the requirement that any certainline
between sections0 and1 shall be disconnected.

ρl ≤ 1 + γFl
− γTl

, ∀l ∈ L \ L0, (1a)

ρl ≤ 1− γFl
+ γTl

, ∀l ∈ L \ L0. (1b)
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Constraints (1c) and (1d) apply to lines assigned toL0.
A line l ∈ L0 is disconnected if at least one of the ends
is in section1. Thus, an uncertain line either (i) shall be
disconnected if entirely in section1, (ii) shall be disconnected
if between sections0 and1, or (iii) may remain connected if
entirely in section0.

ρl ≤ 1− γFl
, ∀l ∈ L0, (1c)

ρl ≤ 1− γTl
, ∀l ∈ L0, (1d)

Constraints (1e) and (1f) set the value ofγb for a bus
b depending on what section that bus was assigned to. We
defineB1 to be the set of buses that are desired to remain in
section1. It may be that we wish to exclude buses from the
“unhealthy” section, and such an assignment will in general
reduce computation time.

γb = 0, ∀b ∈ B0, (1e)

γb = 1, ∀b ∈ B1. (1f)

Given some assignments toB0,B1 andL0, the optimization
will disconnect lines and place buses in sections0 or 1, hence
partitioning the network into sections0 and 1. What else is
placed in section0, what other lines are cut, and which loads
and generators are adjusted, are degrees of freedom for the
optimization, and will depend on the objective function.

B. DC Power Flow Model

The power flow model we employ is a variant of the “DC”
model, assuming unit voltage at each bus and small phase
angle differences, but accouting for line losses. Kirchhoff’s
current law is applied at each busb ∈ B:

∑

g∈Gb

pG
g =

∑

d∈Db

pD
d +

∑

l∈L:Fl=b

pL
l −

∑

l∈L:Tl=b

(pL
l − h̄L

l ), (2)

wherepG
g is the real power output of generatorg ∈ Gb at busb,

pD
d is the real power demand from loadd ∈ Db. The variable

pL
l is the real power flow into the first end (busFl) of line l,

and pL
l − h̄L

l is the flow into of the second end, reduced by
the lossh̄L

l . Loss modelling is described later in this section.
When a linel is connected, Kirchhoff’s voltage law (KVL)

demands that a flow of real power is established depending
only on the difference in phase angle across the line. However,
we may not equatepL

l directly to this flow, since if a line
is disconnected by the optimization, zero power will flow
through that line. In this case, we must allow different phase
angles at each end of the line. To achieve this, the KVL
expression is equated to a variablep̂L

l .

p̂L
l =

−BL
l

τl

(

δFl
− δTl

)

, (3)

where constantsBL
l , τl are, respectively, the susceptance and

off-nominal turns ratio of linel. Then, when linel is connected
we will set pL

l = p̂L
l , and whenl is disconnectedpL

l = 0. We
model this as follows.

Assume the maximum possible magnitude of real power
flow through a linel is P L max

l . Then

−ρlP
L max
l ≤ pL

l ≤ P L max
l ρl, (4a)

−(1− ρl)P̂
L max
l ≤ p̂L

l − pL
l ≤ P̂ L max

l (1− ρl). (4b)

When the sectioning constraints set a particularρl = 0, then
pL
l = 0 but p̂L

l may take whatever value necessary to satisfy
the KVL constraint (3). Conversely, ifρl = 1 thenpL

l = p̂L
l .

Line limits P L max
l may be expressed either directly as

MW ratings on real power for each line, or as a limit on
the phase angle difference across a line. Since in the model
the real power through a line is just a simple scaling of the
phase difference across it, then any phase angle limit may
be expressed as a corresponding MW limit. Note that at the
very minimum P̂ L max

l ≥ P L max
l , but these limits should be

of large enough to allow two buses across a disconnected line
to maintain sufficiently different phase angles.

C. Loss Modelling

While the DC power flow model allows the islanding
problem to remain linear, one disadvantage is that real power
losses in the network are assumed to be zero. The lossless
DC model will under-estimate the amount of load that needs
to be shed when forming islands, and thus could lead to
poor islanding decisions. In this paper, three loss models are
considered in addition to lossless DC. The actual loss function
hL
l is derived from the AC real power flows, and is then

approximated bȳhL
l .

1) In the standard lossless DC model,h̄L
l = 0.

2) Constant loss. The loss for each line is determined from
the current operating point of the network, in which
line l has a flow pL∗

l , voltagesv∗Fl
and v∗Tl

, and a
corresponding losshL∗

l = hL
l (p

L∗
l , v∗Fl

, v∗Tl
).

h̄L
l = ρlh

L∗
l ,

The inclusion ofρl drives the loss to zero if the islanding
optimization cuts the line.

3) Linear loss. The AC line loss function is linearized about
the operating point, assuming constant voltages.

h̄L
l = ρlh

L∗
l +

∂hL∗
l

∂pL
l

(

pL
l − ρlp

L∗
l

)

.

Then if ρl = 0, pL
l = 0 and h̄L

l = 0. The bound
h̄L
l ≥ 0 is included to exclude the possibility of negative

line losses in the solution. Consequently, the linear loss
model restricts islanding solutions to a region around the
pre-islanding operating point, and prohibits lines from
generating real power.

4) Piecewise linear (PWL) loss. The AC loss function is
first approximated by assumingvFl

= vTl
= 1 so that

hL
l ≈

GL
l

τl

[

1

τl
+ τl − 2 cos

( τl

BL
l

pL
l

)

]

,

This function is then approximated over an interval by
a number of line segments, to givēhL

l . The line binary
variableρl may be included in the PWL expression to
set h̄L

l = 0 whenρl = 0.

D. Generation constraints

In situations where there is a need to react quickly to
an unplanned contingency, to prevent cascading failures the
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time available to island the network and adjust loads and
generators will be short. Therefore, we must assume that full
re-scheduling of generators and/or the addition of new units to
the network will not be possible. On the other hand, a certain
amount of spinning reserve will be available in the network
for small-scale changes. For any unit, we will assume that
a new setpoint, close to the current operating point, may be
commanded. This setpoint should be reachable within a short
time period, and also must not violate limits. In practice, fast
governer action will quickly raise/lower real power outputto
the new setpoint, before the spinning reserve takes over.

A further assumption we make is that a generator obeys a
binary regime: either it operates near its previous real power
output, or it may have its output switched to zero. That is,

pG
g ∈

[

PG−
g , PG+

g

]

∪ {0}.

This latter case models the removal of the source of mechani-
cal input power; it is assumed that electrical power will fall to
zero within the timeframe of islanding. Although the switched-
off generating unit contributes no power in steady state to the
network, it remains electrically connected to the network.

To model this disjoint set constraint, we introduce a binary
variableζd ∈ {0, 1} for each generator. 1

ζgP
G−
g ≤ pG

g ≤ ζgP
G+
g , (5)

for all g ∈ G. If ζg = 0 then generatorg is switched off;
otherwise it outputspG

g ∈
[

PG−
g , PG+

g

]

. These limits depend
on the ramp and output limits of the generator, and the amount
of reserve available to the unit.

E. Load shedding

Following separation of the network into islands, and given
the limits on generator power outputs, it follows that it maynot
be possible to fully supply all loads. However, the optimization
is to determine a feasible steady-state for the islanded network,
and thus it is necessary to permit some shedding of loads.

Suppose that a loadd ∈ D has a constant real power demand
PD
d . We assume this load may be reduced by disconnecting a

proportion1− αd. For all d ∈ D:

pD
d = αdP

D
d , (6)

where 0 ≤ αd ≤ 1. In determining an feasible islanded
network, it is in our interests to promote full load supply,
and so load shedding is minimized in the objective function.

F. Objective function

The overall objective of islanding is to minimize the risk
of system failure. In our motivation we assumed that there is
some uncertainty associated with a particular subset of buses
and/or lines; we suspect there may be a fault and so we wish
to isolate these components from the rest of the network.

Suppose we associate a rewardMd per unit supply of load
d. In islanding the uncertain components, we wish to maximize
the total value of supplied load. However, in placingany load
in section0, we assume a risk of not being able to supply
power to that load, since that section containts “unhealthy”

components and may fail. Accordingly, we introduce a load
loss penalty0 ≤ βd < 1, which may be interpreted as the
probability of being able to supply a loadd if placed in
section 0. If d is placed in section1 we realize a reward
Md per unit supply, but ifd is placed in section0, with the
uncertain components, we realize a reward ofβdMd < Md.
The objective is to maximize the expected load supplied,J∗:

J∗
DC = max

∑

d∈D

MdPd

(

βdα0d + α1d

)

, (7)

where,

αd = α0d + α1d, ∀d ∈ D, (8a)

0 ≤ α0d ≤ 1, ∀d ∈ D, (8b)

0 ≤ α1d ≤ γb, ∀b ∈ B, d ∈ Db. (8c)

Here we have introduced a new variableαsd for the loadd
delivered in sections ∈ {0, 1}. If γb = 0, and the load at bus
b is in section0, thenα1d = 0, α0d = αd and the reward is
βdMdPdαd. On the other hand, ifγb = 1 thenα1d = αd and
α0d = 0, giving a higher rewardMdPdαd. Thus the objective
has a preference forγb = 1 and a smaller section0.

G. Overall formulation

The overall formulation for islanding is to maximize (7)
subject to (1)–(8). The resulting problem is an MILP.

Remark 1 (Penalizing line cuts and generator switching):
While the sectioning constraints force certain lines to be
cut, it may also be desirable to penalize the unnecessary
disconnection of other, healthy lines in the network. To do
so will also encourage binary variablesρl to take on integer
values in the LP relaxations of the problem. This may be
achieved by adding a small reward in the objective for
non-zero values ofρl:

ǫ1
∑

l∈L\L0

ρl (9)

For similar reasons, it may be desirable to penalize the
switching-off of generators in the objective by rewarding non-
zero values ofζg

ǫ2
∑

g∈G

Wgζg, (10)

whereWg is some weight. A uniform weight,e.g., Wg =
1, ∀g, will encourage large generators to switch off, rather than
several small units, for any given decrease in total generation.
Generation disconnection can be more evenly penalized by
instead settingWg equal to the generator’s capacityPG+

g .

IV. POST-ISLANDING AC OPTIMAL LOAD SHEDDING

The solution of the DC islanding optimization includes a set
of lines to disconnect, new generation levels, and the propor-
tions of loads to be shed. In general, however, the predictions
of the DC model will not match reality, and no consideration
is given to reactive power and voltage. Therefore, to determine
a feasible AC solution for the islanded network, we propose
that an AC optimal load shedding (OLS) problem is solved
immediately after the islanding optimization.
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The AC-OLS optimization problem is a standard OPF
problem albeit with load shedding. The AC-OLS is solved
for the network in its islanded state. That is, the setL is
modified by removing lines for whichρl = 0. Furthermore,
any generator for whichζg = 0 has its upper and lower bounds
on real power set to zero; others are free to vary real power
output within a restricted region, as described previously.

This problem also maximizes the value of total real power
supplied to loads:

J∗
AC = max

∑

d∈D

RdαdPd, (11)

subject to,
f(x) = 0, (12a)

g(x) ≤ 0, (12b)

(pG
g , q

G
g ) ∈ Og, ∀g ∈ G, (12c)

(pD
d , q

D
d ) = αd(P

D
d , Q

D
d ), ∀d ∈ D. (12d)

Here, Rd is the reward for supplying loadd, and is equal
to Md if the load has been placed in section1 and βdMd

if placed in section0. The equality constraint (12a) captures
Kirchoff’s current and voltage laws in a compact form;x
denotes the collection of bus voltages, angles, and real/reactive
power injections across the islanded network. The inequality
constraint (12b) captures line limits and bus voltage limits.
Og is the post-islanding region of operation for generator

g, and depends on the solution of the islanding optimization
and pre-islanded outputs of the generator. Ifζd = 1 the unit
remains fully operational, and its output may vary within
some region around the pre-islanded operating point; most
generally(pG

g , q
G
g ) ∈ Og

(

pG∗
g , qG∗

g

)

, where
(

pG∗
g , qG∗

g

)

is the
pre-islanding operating point andOg is defined by the output
capabilities of the generating unit. If real and reactive power
are independent,pG

g ∈
[

PG−
g , PG+

g

]

and qG
g ∈

[

QG−
g , QG+

g

]

.
If, conversely, the islanding optimization has setζg = 0, then
real power output is set to zero:pG

g = 0. In that case, the
unit may remain electrically connected to the network, with
reactive power output free vary within some specified interval
[

QG−
g , QG+

g

]

. Loads are assumed to be homogeneous; real and
reactive components are shed in equal proportions.

The AC-OLS is a nonlinear programming (NLP) problem
and may be solved efficiently by interior point methods.

V. NUMERICAL SIMULATIONS

This section presents numerical simulation results using the
above islanding formulation.

A. IEEE 24-bus Reliability Test System

The IEEE RTS [19] comprises24 buses and38 lines. Of
the buses,17 have loads attached. All loads are assumed to be
constant, and total load demand is2850 MW. Total generation
capacity is3405 MW from 32 synchronous generators.

The failure scenario we simulate is the consecutive tripping
of line (15, 24) followed by line(3, 9). Hazra and Sinha [20]
showed this to be the most probable collapse sequence for this
network. We consider the network immediately after the first
line trip, and our objective is to avoid total network failure by
using controlled islanding.

TABLE I
ISLANDING SOLUTIONS FOR DIFFERENT LOSS MODELS, WITH βd = 0.75.

Loss Buses in
section0

Cut lines(Fl, Tl) Disconnected
generation

None 1, 3, 24 (1, 2), (1, 5), (3, 9) 155 MW at bus23
Constant 1, 3, 24 (1, 2), (1, 5), (3, 9),

(3, 24)
155 MW at bus23

Linear 3, 24 (1, 2), (1, 3), (3, 9),
(3, 24), (9, 12), (15, 24)

None

PWL 1, 3, 24 (1, 2), (1, 5), (3, 9) 155 MW at bus23

Immediately following the failure of line(15, 24) the flow
through (3, 9) rises quickly from 25 MVA to 123 MVA.
Furthermore, the voltage at bus3 falls from 1.014 p.u. to
0.883 p.u; similarly, bus24 has falls from 1.006 p.u. to
0.857 p.u. We suspect that further failures may occur and are
uncertain about the status of buses3 and24 and line(3, 9).

In taking preventative action, the generator limits are set
to allow a small movement from the pre-islanding operating
point,pG∗

g . Ramp rates,RG
g (MW/min), for the generators may

be found in [21]. A time limit of two minutes is assumed for
ramping to any new real power level. Thus, limits are set as

PG+
g = min

{

pG∗
g + 2RG

g , P
max
g

}

, (13a)

PG−
g = max

{

pG∗
g − 2RG

g , P
min
g

}

. (13b)

1) Load shedding without islanding:Solving an AC-OLS
on the post-failure network sees44.1 MW of the 180 MW
load at bus3 shed. The voltages at buses3 and 24 rise to
0.979 p.u. and0.950 p.u. respectively, and the power through
line (3, 9) falls to 93 MVA.

If, however, the uncertain line(3, 9) subsequently trips, then
more load must be shed. A second AC-OLS sheds a further
68.0 MW of the bus3 load. However, line(6, 10) is at capacity
(175 MVA) and—moreover—the uncertain buses3 and 24
have not been isolated, leaving the operation of the whole
network prone to further failures.

2) Islanding: We assign buses3 and24 toB0 and line(3, 9)
to L0, and solve the islanding optimization. The solutions for
the four different loss models are described in Table I for a
load loss penaltyβd = 0.75. An 8-piece approximation was
used for the PWL model. Common to all but one loss model
is the islanding of buses1, 3 and 24; the linear loss model
opts to island only buses3 and24. The former choice retains
bus1’s generation capability in section0, while the latter does
not. Nevertheless, in all cases the “unhealthy” section hasbeen
isolated; furthermore, line(3, 9) has been cut, and so none of
the solutions is sensitive to failure of this line.

Table II shows generation levels, load supplied, losses and
objective values for the post-islanding DC and AC solutions,
and for each of the loss models. Three of the four models elect
to island bus1 in addition to3 and24. The linear loss model
islands only buses3 and24, with no generation capability in
that island, and as a consequence theJ∗ values (both from
the islanding optimization and the AC-OLS) are lower.

The PWL model best estimates the losses, with a small over-
estimation, and shows the smallest mismatch between DC and
AC objective values. The lossless DC and constant-loss models
under-estimate losses. However, all three loss models deliver
the same AC-OLS objective value.
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TABLE II
DC AND AC SOLUTION DATA FOR THE ISLANDED NETWORK.

Post-islanding DC Post-islanding AC
Loss model

∑
g pG

g

∑
d pD

d

∑
l h

L
l

J∗

DC

∑
g pG

g

∑
d pD

d

∑
l h

L
l

J∗

AC

None 2754.0 2754.0 0.0 2706.0 2800.6 2750.3 50.3 2703.3
Constant 2795.8 2753.9 41.9 2705.9 2800.6 2750.3 50.3 2703.3
Linear 2726.2 2670.0 56.2 2670.0 2723.4 2670.0 53.4 2670.0
PWL 2804.8 2749.9 55.0 2702.9 2800.6 2750.3 50.3 2703.3

B. Larger networks

1) Computational results:The speed with which islanding
decisions have to be made depends on whether the decision is
being made before a fault has occurred as part of contingency
planning within secure OPF, or after a problem has occurred,
in which case the time scale depends on the cause of the
contingency. Especially in the second case it is important to
be able to produce feasible solutions within short time periods
even if these are not necessarily optimal.

Fig. 2 shows the times required to find obtain feasible
islanding solutions to varying proven levels of optimality.
Times are recorded for different networks ranging from a9-
bus system to a300-bus system. Three of the four loss models
are compared; the linear model is omitted. For each network,
50 scenarios were generated by assigning a single randomly-
chosen bus toB0. The same set of scenarios is simulated for
each loss model. No pre-assignments were made to eitherB1

or G1. For the networks with no ramp rates or spinning reserve
data available, it is assumed that each generator may vary its
output by±5% of the pre-islanding level. Where no line limits
are present for a network, a maximum phase angle difference
of 0.4 rad is imposed for each line. The PWL model assumes
an8-piece approximation to the line loss over the phase angle
difference interval[−0.4, 0.4] rad. In the objective function,
the values ofǫ1 andǫ2 in (9) and (10)—the penalties on line
cuts and generator disconnection respectively—are0.1 and
0.0001, with Wg = PG+

g in the latter. This penalizes line
disconnection more heavily.

Problems are solved on a dual quad-core 64-bit Linux
machine with8 GiB RAM, using AMPL 11.0 with parallel
CPLEX 12.3 to formulate and solve MILP problems. Compu-
tation times quoted include only the time taken to solve the
islanding optimization to the required level of optimality, and
not the AC-OLS, and are obtained as total elapsed seconds
used by CPLEX during thesolve command. The required
levels of optimality for each problem are ‘feasible’—an integer
feasible solution—and relative MIP gaps of5% and1%. The
PWL loss model is implemented using AMPL’s piecewise
linear function builder notation and special ordered sets of
type 2 (SOS-2) in CPLEX. An additional penalty of10−4

times the total line loss (MW) is imposed in the PWL case,
to encourage the SOS-2 conditions to be met in solutions of
the LP relaxations at nodes in the branch and bound (B&B)
tree. This was found to significantly aid computation.

Examining first the times required to find a feasible island-
ing solution, the results in fig. 2 show a rise in solve time as the
network size increases. The lossless and constant-loss models
perform well: all problems are solved to feasibility well within
1 s. In every case tested, a feasible solution is found at the
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(b) Constant-loss model

nB

t c
o

m
p

(s
)

Feasible
5% MIP gap
1% MIP gap

9 14 24 30 39 57 118 300
10−2

10−1

100

101

102

103

104

(c) PWL model

Fig. 2. Mean, max and min times for finding, to different levels of optimality,
islanding solutions using each of the loss models.

root note, aided by CPLEX’s cut generation, without requiring
branching; thus, the rise in computation time is largely owing
to the increasing size of the LP relaxation problem.

For the PWL model, while times less than one second are
recorded for networks up and including to the39-bus system,
solution times to feasibility rise thereafter. In particular, the
mean and maximum times to feasibility for the300-bus net-
work are approaching30 seconds. An immediate observation
is that the LP relaxation problems are larger, since each line
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TABLE III
RELATIVE ERRORS BETWEEN OPTIMAL AND RETURNED SOLUTIONS.

Feasible 5% gap 1% gap

Lossless 10.79% 0.31% 0.03%
Constant loss 9.12% 0.37% 0.04%
PWL 2.31% 0.50% 0.05%

has an additional8 SOS variables. Secondly, more branching is
required, in order to satisfy the SOS-2 conditions on every line,
as the network size increases. In the worst case, for example,
10, 794 B&B nodes were required to find a feasible solution
for one300-bus problem.

For a MILP problem solved by branching, the optimal
integer solution is bounded from below (for maximization)
by the highest integer objective value found so far during
the solution process, and from above by an objective value
deduced from all node subproblems solved so far. The relative
MIP gap is the relative error between these two bounds. Fig. 2
indicates the progress made by the CPLEX solver, in terms
of the times required to reach relative MIP gaps of5% and
1% respectively. Performance of the lossless and constant-loss
models is again good; the majority of problems are solved to
1% optimality within ten seconds. The exception is the57-bus
network. While all57-bus lossless and constant-loss problems
are solved to5% optimality within two seconds, the times to
1% MIP gap can be significantly longer.

Future work will investigate heuristics and techniques for
exploiting network topology and improving solution times.
One practical consideration is that it may be desirable to make
assignments to the setsB1 andG1, leaving fewer free variables
in each optimization and reducing computation times further.

For practical application in real time—with the network in a
stressed condition—a good, but possibly sub-optimal, integer
solution may be acceptable, given that islanding is a last
resort course of action and fast decision making is required.
Moreover, because the DC model is an approximation of
the AC model, it may make little sense to pursue proven
optimal DC solutions. Table III shows the means of the relative
errors between the solution value returned at termination of
the solver and the actual optimum, where known. The ‘real’
gaps between early termination solutions and the true optima
are nearer zero than5% or 1%. Therefore, good islanding
solutions—at least with respect to the DC model—can be
provided even when the solver is terminated early. Moreover,
these solutions can be found quickly with either the lossless
or constant-loss models. The PWL model generally requires
longer solve times; one question is whether the extra compu-
tation time, and more accurate loss modelling, provides better
islanding solutions. In the following subsection, we investigate
the quality of these solutions with respect to the AC model.

2) AC performance:Fig. 3 provides two comparisons; the
mean values of the post-islanding AC objective and, secondly,
the error between the objectives as predicted by the DC
islanding optimization and the post-islanding AC-OLS. For
the former, to enable easier comparison the AC objective is
expressed relative to the total load; a value of100% means
that no load has been shed or assigned to section0—the
best possible outcome. The adopted islanding solution in each
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Fig. 3. AC performance—absolute and relative objective values obtained
from post-islanding DC and post-islanding AC optimizations.

TABLE IV
NUMBER OF UNIQUE PROBLEMS INCLUDED IN THE COMPARISONS.

nB 9 14 24 30 39 57 118 300

Problems compared 8 11 10 16 15 20 30 23
MIP gap> 0% 0 0 1 0 0 5 5 14
AC infeasible 0 2 10 6 8 4 5 8

Total 8 13 21 22 23 29 40 45

case is that from solving the problem to full optimality. Since
some PWL problems require a long time to solve, only those
problems solved to optimality within104 seconds, for all mod-
els, are included. Furthemore, a number of islanding solutions
were found to be AC infeasible, and so were removed from
the comparison. (The AC infeasibility problem is discussedin
the next section.) Tab. IV indicates the number of problems
included in the comparison for each network.

Examining the relative performance of the loss models in
fig. 3(a), with the exception of the9-bus network, there is very
little difference between the islands formed by the different
models with respect to the AC objective.

The comparison of DC and AC objective values, shown in
fig. 3(b), illustrates that the ability of the DC model to predict
the AC objective depends on the loss model. The measure
J∗

AC − J∗
DC indicates an over-estimation of the load shed/lost

if positive, and an under-estimation if negative. The PWL
model is generally nearer zero and in one case is positive; on
the other hand, the lossless and constant-loss models always
under-estimate the load shed or lost.

In conclusion, despite the more accurate modelling of
line losses, the PWL model rarely provides better islanding
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solutions with respect to AC power flow. In comparison,
the simpler loss models allow solutions to be found quickly,
without degradation in the quality of the resulting AC solution.
Accurate modelling of line losses, then, should not be a
primary consideration in designing network islands; a more
pressing concern, as indicated by tab. IV, is the AC feasibility
of the network after islanding.

C. Network voltage profile

A number of islanding solutions obtained by solving the
MILP problem were subsequently found to be AC infeasible;
that is, there was no solution to the AC-OLS lying within
normal voltage bounds. In fact, by softening the normal
voltage bounds a solution was found to all of the ‘infeasible’
instances in tab. IV. This subsection analyses a case study
of such voltage-infeasible situation. The conclusion is that
designing network partitions by consideration of real and
reactive power balances in each island is not sufficient to
produce solutions with a good voltage profile.

Consider the24-bus network with bus6 assigned toB0 and
βd = 0.75. The optimal islanding solution obtained isolates
buses1, 2 and 6 by disconnecting lines(1, 3), (1, 5), (2, 4)
and (6, 10). Though two19-MW units are switched off at
buses1 and2 respectively, there remains sufficient real power
capacity in both islands to meet demand, and no load is shed.
Moreover, there is sufficient reactive power capacity in each
island to meet the total reactive power demand. Even though
the islands are balanced, the AC-OLS fails to find a feasible
solution. Softening the voltage constraints allows a solution to
be recovered, but with out-of-bound voltages at buses2 and
6 (v2 = 1.1461 andv6 = 0.8452). This results in95.5 MVAr
being extracted from the line(2, 6) at bus6, yet the power
demand there is only24.1 MVAr. However, a shunt reactor
at bus6 consumes100v26 MVAr. To meet this demand, an
abnormally large voltage drop is required across the line(2, 6).
If the shunt reactor is removed, or if a synchronous condenser
is placed at the bus, a feasible AC-OLS solution with voltages
within limits can be found.

Further inspection of the network reveals that this situation
has arisen because of the disconnection of line(6, 10), an
underground cable with high shunt capacitance. In normal
operation, the passive reactor at bus6 would locally balance
the reactive power and maintain a satisfactory voltage profile.

This is just one example of where an islanding solution
formed by considering only real power—even if network
constraints are included—is unsatisfactory. However, it also
shows that even if a global reactive power balance is achieved,
local shortages or surpluses of reactive power can lead to an
abnormal voltage profile. Many of the IEEE test networks are
prone to the same problem, as observed from our results.

VI. CONCLUSION

In this paper, an optimization-based approach to controlled
islanding and load shedding has been presented. The proposed
method uses MILP to determine which lines to cut, loads to
shed, and generators to switch in order to isolate an uncertain
or failure-prone region of the network. The optimization

framework allows linear network constraints—a loss-modified
DC power flow model, line limits, generator outputs—to be
explicitly included in decision making, and produces balanced,
steady-state feasible DC islands. AC islanding solutions are
found via the subsequent solving of an AC optimal load shed-
ding problem. The approach has been demonstrated through
simulations on the24-bus IEEE system. Simulations on larger
networks have indicated the practicality of the method, in
terms of computational time, and have shown that the quality
of islanding solutions does not benefit from the accurate
modelling of real power losses. Thus, line loss modelling
has been found to be less important than the modelling of
reactive power to ensure a healthy voltage profile in all parts
of the network after islanding. Future research will investigate
methods for improving computation times for islanding, and
techniques for finding feasible and optimal AC solutions.

REFERENCES

[1] “Final Report of the Investigation Committee on the 28 September 2003
Blackout in Italy,” UCTE, Final Report, April 2004.

[2] S. Larsson and A. Danell, “The black-out in southern Sweden and
eastern Denmark, September 23, 2003,” inIEEE PSCE, 2006.

[3] U.S.-Canada Power System Outage Task Force, “Final Report on the
August 14, 2003 Blackout in the United States and Canada: Causes and
Recommendations,” Final Report, Apr 2004.

[4] “Final Report System Disturbance on 4 November 2006,” UCTE, Final
Report, 2007.

[5] “Report of the National Grid Investigation into the Frequency Deviation
and Automatic Demand Disconnection that occurred on the 27th May
2008,” National Grid, Final Report, February 2009.

[6] J. W. Bialek, “Are blackouts contagious?”IEE Power Engineer, vol. 17,
no. 6, p. 10, Dec/Jan 2003.

[7] ——, “Blackouts in the US/Canada and continental Europe in 2003: is
liberalisation to blame?” inIEEE PowerTech Conf., 2005.

[8] G. Andersson et al., “Causes of the 2003 major grid blackouts in
North America and Europe, and recommended means to improve system
dynamic performance,”IEEE T. Power Syst., pp. 1922–1928, 2005.

[9] D. E. Newman, B. A. Carreras, M. Kirchner, and I. Dobson, “The impact
of distributed generation on power transmission grid dynamics,” in Int.
Conf. Syst. Sci., 2011.

[10] B. Yang, V. Vittal, and G. T. Heydt, “Slow-coherency-based controlled
islanding—a demonstration of the approach on the August 14,2003
blackout scenario,”IEEE T. Power Syst., vol. 21, pp. 1840–1847, 2006.

[11] K. Sun, D.-Z. Zheng, and Q. Lu, “Splitting strategies for islanding
operation of large-scale power systems using obdd-based methods,”
IEEE T. Power Syst., vol. 18, pp. 912–923, 2003.

[12] H. You, V. Vittal, and X. Wang, “Slow coherency-based islanding,” IEEE
T. Power Syst., vol. 19, no. 1, pp. 483–491, Feb 2004.

[13] X. Wang and V. Vittal, “System islanding using minimal cutsets with
minimum net flow,” in IEEE PSCE, 2004.

[14] G. Xu and V. Vittal, “Slow coherency based cutset determination
algorithm for large power systems,”IEEE T. Power Syst., vol. 25, no. 2,
pp. 877–884, May 2010.

[15] M. Jin, T. S. Sidhu, and K. Sun, “A new system splitting scheme based
on the unified stability control framework,”IEEE T. Power Syst., vol. 22,
pp. 433–441, 2007.

[16] C. G. Wang, B. H. Zhang, Z. G. Hao, J. Shu, P. Li, and Z. Q. Bo, “A
novel real-time searching method for power system splitting boundary,”
IEEE T. Power Syst., vol. 25, pp. 1902–1909, 2010.

[17] D. Bienstock and S. Mattia, “Using mixed-integer programming to solve
power grid blackout problems,”Discrete Optim., pp. 115–141, 2007.

[18] E. B. Fisher, R. P. O’Neill, and M. C. Ferris, “Optimal transmission
switching,” IEEE T. Power Syst., vol. 23, no. 3, pp. 1346–1355, 2008.

[19] Reliability Test System Task Force of the Application of Probability
Methods Subcommittee, “IEEE reliability test system,”IEEE T. Power
Ap. Syst., vol. PAS-98, no. 6, pp. 2047–2054, 1979.

[20] J. Hazra and A. K. Sinha, “Prognosis of catastrophic failures in electric
power systems,” inIEEE Int. Conf. Ind. Tech., 2006, pp. 1349–1354.

[21] Reliability Test System Task Force of the Application of Probability
Methods Subcommittee, “IEEE reliability test system – 1996,” IEEE T.
Power Syst., vol. 14, no. 3, pp. 1010–1020, 1999.


