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Abstract

In this thesis, we study the well-posedness of the modified and generalized Korteweg-de
Vries equations on the one-dimensional torus. We first consider the complex-valued modified
Korteweg-de Vries equation (mKdV). We observe that the momentum, a formally conserved
quantity of the equation, plays a crucial role in the well-posedness theory. In particular, follow-
ing the method by Guo-Oh (2018), we show the ill-posedness of the complex-valued mKdV, in
the sense of non-existence of solutions, when the momentum is infinite. This result motivates the
introduction of a novel renormalization of the equation, which we propose as the correct model
to study at low regularity. Moreover, we establish the global well-posedness of the renormal-
ized equation in the Fourier-Lebesgue spaces following two approaches: the Fourier restriction
norm method and the recent method by Deng-Nahmod-Yue (2020). Lastly, by imposing a new
notion of finite momentum at low regularity, we show the existence of distributional solutions
to the original equation, with the nonlinearity interpreted in a limiting sense. Regarding the
generalized Korteweg-de Vries equations (gKdV), we present a joint work with N. Kishimoto
(RIMS, Kyoto University) on the well-posedness with Gibbs initial data. To bypass the an-
alytical ill-posedness of gKdV in the Sobolev support of the Gibbs measure, we prove local
well-posedness in the Fourier-Lebesgue spaces. Key ingredients are novel bilinear and trilinear
Strichartz estimates adapted to the Fourier-Lebesgue setting. Finally, by applying Bourgain’s
invariant measure argument (1994), we construct almost sure global-in-time dynamics and show
the invariance of the Gibbs measure for gKdV.
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Lay summary

In this thesis, we study the modified and generalized Korteweg-de Vries equations for periodic
initial data, mKdV and gKdV, respectively. These are examples of nonlinear dispersive partial
differential equations (PDEs), which are used to model wave-like phenomena in various branches
of physics and engineering, such as quantum mechanics, nonlinear optics, plasma physics, water
waves, and atmospheric sciences. Broadly speaking, the solutions of these equations spread out
spatially (disperse) as time evolves.

We aim to answer some questions which are essential in the study of PDEs from both the
theoretical and applied points of view: Does the equation always have a solution for a given
initial condition (existence)? If so, is this the only solution (uniqueness)? If we perturb the
initial condition, does this only lead to a small change to the solution at later times (stability
under perturbations)? We hope to find the roughest set of initial data for which we can positively
answer the above questions. For the complex-valued mKdV equation, we show that we can find
initial data for which the equation does not have solutions (non-existence). We then suggest an
alternative model for which solutions do exist for all times. Regarding the gKdV equations, we
find that a very natural class of solutions exists for all times as long as we ignore a negligible
set of initial data. Moreover, we obtain detailed information on how the solutions behave for
very long times.
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Chapter 1

Introduction

This thesis is concerned with the study of the well-posedness and long-time behavior of nonlinear
dispersive partial differential equations (PDEs). In particular, we focus our attention on the
Cauchy problem for the generalized Korteweg-de Vries equations (gKdV):{

∂tu+ ∂3
xu = ±∂x(uk),

u|t=0 = u0,
(t, x) ∈ R×M, (1.1)

where M = R or T = R/(2πZ), and k ≥ 2 and integer. Linear dispersive equations have
wave-like solutions whose speed depends on their frequency, which translates into dispersion
in the absence of boundary conditions: wave components with different frequency evolve at
different speeds. This causes the wave to spread spatially as time evolves (see [107, 102, 35] for
more details on dispersive equations). Another classical example of a dispersive equation is the
nonlinear Schrödinger equation (NLS):

i∂tu+ ∆u = ±|u|k−1u, (1.2)

where k ∈ 2Z + 1. The gKdV and NLS equations are two of the simplest examples of PDEs
combining dispersive and nonlinear effects, and they are widely used in physics and engineering
to describe wave-like phenomena.

The gKdV equations encompass two famous equations: the Korteweg-de Vries (KdV) and
the modified Korteweg-de Vries (mKdV) equations, when k = 2 and k = 3, respectively, whose
study dates back to the 19th century. The KdV equation was proposed by Korteweg and de
Vries in [67], although it appeared earlier in the work of Boussinesq [16], to describe the traveling
waves observed by Scott Russell in 1835 in the Union canal in Edinburgh. Both the KdV and
mKdV equations were derived to model the propagation of gravity waves in shallow water, and
they are strongly related [75, 76]. Since their derivation, the gKdV equations (1.1) have been
used for a wide range of applications, such as water waves, plasma physics, and crystal lattices
(see [67, 108, 30] and references therein). Both KdV and mKdV are known to be completely
integrable [38, 76], and can be solved using inverse scattering/inverse spectral techniques. This
structure does not extend to the gKdV equations (1.1) with k ≥ 4, and we will instead pursue
a harmonic analytic approach.

A fundamental question in the study of PDEs is that of well-posedness: existence and
uniqueness of solutions, and continuous dependence of solutions on the initial data. We are first
concerned with constructing solutions for short times (local well-posedness) at low regularity.
Due to the wave-like nature of their solutions, Fourier analytic tools are well-suited to the study
of dispersive PDEs. Consequently, the Sobolev spaces Hs(M) are a natural choice of spaces
for the initial data. These spaces can be defined through the following norms

‖f‖Hs(R) =
∥∥〈ξ〉sFxf(ξ)

∥∥
L2
ξ(R)

, ‖f‖Hs(T) =
∥∥〈n〉sFxf(n)

∥∥
`2n(Z)

,

where 〈 · 〉 = (1 + | · |2)
1
2 denotes the Japanese brackets, and Fx the Fourier transform. In the

pursuit of the largest possible space for the initial data, we may have to leave the realm of
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the L2-based spaces. A suitable alternative used in this work is the Fourier-Lebesgue spaces
FLs,p(M), s ∈ R, 1 ≤ p ≤ ∞, defined through the following norms

‖f‖FLs,p(R) =
∥∥〈ξ〉sFx(ξ)

∥∥
Lpξ(R)

, ‖f‖FLs,p(T) =
∥∥〈n〉sFxf(n)

∥∥
`pn(Z)

. (1.3)

The main approach to study the well-posedness of dispersive PDEs is through perturbative
methods, i.e., to treat the nonlinear solution as a perturbation of the linear solution. We then
focus on studying the Duhamel formulation, which is better suited than the classical formulation
when considering low regularity initial data,

u(t) = S(t)u0 ±
ˆ t

0

S(t− t′)∂x(uk)(t′) dt, (1.4)

where S(t) denotes the linear propagator. There are two main difficulties in the study of
the periodic gKdV equations (1.1) with M = T: the lack of linear smoothing coming from
dispersion (when compared with the Euclidean setting M = R), and the loss in regularity
due to the derivative nonlinearity (when compared with NLS (1.2), for example). While the
existence of smooth solutions of NLS follows easily from the algebra property of high regularity
Sobolev spaces, this is not sufficient to control the derivative nonlinearity of gKdV. The first
well-posedness results for the gKdV equation followed from the classical energy method, based
on parabolic regularization; see [8, 7, 96, 59]. This method does not rely on the dispersive nature
of the equation and is therefore suitable for bothM = R and T. When pursuing low regularity
well-posedness, harmonic analytic tools have been crucial to exploit dispersion. Oscillatory
integral techniques were used to establish decay estimates, such as those by Strichartz [99], by
exploiting the dispersion of the linear propagator on M = R. These proved useful to study
equations such as NLS, but still insufficient to control the derivative loss of gKdV. This was
overcome through Kato’s observation of a local smoothing effect on R [59, 60] and the maximal
function estimates of Kenig-Ponce-Vega [61]. Due to the oscillatory integral techniques, these
results could not be extended to the periodic settingM = T. This last difficulty was addressed
by Bourgain in [9, 10]. In these works, he introduced Strichartz estimates adapted to the
periodic setting, using analytic number theory. Moreover, he introduced the Fourier restriction
norm method, where the perturbative analysis uses a new class of space-time Sobolev spaces
adapted to the linear solution; the Xs,b(R × T)-spaces. These spaces are defined through the
following norm

‖u‖Xs,b(R×T) =
∥∥〈∂x〉s〈∂t〉bS(−t)u(t)

∥∥
L2
t,x(R×T)

=
∥∥〈n〉s〈τ − n3〉bFt,xu(τ, n)

∥∥
`2n(Z)L2

τ (R)
,

and they capture the dispersive nature of the solutions by accounting for the distance between
the space-time Fourier transform of the linear solution (supported on the curve τ = n3) and of
the nonlinear one. Analogous spaces were also used successfully whenM = R. See Section 1.1.4
for further details.

After establishing local well-posedness for short times, a natural subsequent question is that
of global well-posedness; can we construct unique global-in-time solutions of (1.1) at a given
regularity? Globalization of solutions is often based on conservation laws. A typical contraction
mapping argument, in the subcritical regime, gives a local time of existence that depends on the
size of the initial data. Therefore, if the equation has conserved quantities that control the Hs-
norm of the solution, they can be used to extend solutions globally-in-time. As a consequence
of the completely integrable structure of KdV and mKdV, they have an infinite number of
conserved quantities [76]. However, this structure no longer holds for (1.1) with k ≥ 4. In fact,
the only known conserved quantities shared by all equations of the form (1.1) are the following

• mean:
´
T u(t, x) dx;

• mass:
´
T u

2(t, x) dx;

• energy (Hamiltonian): H
(
u(t)

)
=
´
T
(
∂xu(t, x)

)2
dx± 1

k+1

´
T u

k+1(t, x) dx.

For example, by the conservation of the Hamiltonian, we mean that for solutions u of (1.1) with
sufficient regularity, H

(
u(t)

)
= H(u0) for all t ∈ R. In the absence of suitably low regularity

2



conserved quantities, we must pursue a different strategy, such as the high-low method due
to Bourgain [14], or the I-method (or method of almost conservation laws) due to Colliander-
Keel-Staffilani-Takaoka-Tao, see [27, 28, 29] for example. Another alternative is to exploit
the Hamiltonian structure of (1.1) and the formal invariance of the associated Gibbs measure
to extend solutions globally-in-time. In fact, all the gKdV equations can be understood as
infinite-dimensional Hamiltonian systems with Hamiltonian H:

∂tu = ∂x
δH

δu
,

where δH
δu denotes the Fréchet derivative. As a consequence, we can pursue the study of the

Gibbs measure µ formally defined by

dµ “ = ” Z−1e−H(u) du.

In some limited settings, the formal invariance of the Gibbs measure can be used as a substitute
for a conservation law when globalizing solutions. This was the idea proposed by Bourgain in
[11], where he introduced what is now known as Bourgain’s invariant measure argument. The
method relies on exploiting the invariance of the Gibbs measures for the associated finite-
dimensional systems with truncated dynamics to conclude invariance of the Gibbs measure
and global well-posedness for the original one. Moreover, the invariance of the Gibbs measure
informs us of the typical behavior of solutions of (1.1) with initial data in the support of this
measure.

In this thesis, we study the well-posedness of the periodic complex-valued mKdV equation
and of the periodic gKdV equations.

• In Chapter 2, we prove the ill-posedness of the periodic complex-valued mKdV equation
outside H

1
2 (T) and introduce a new renormalized equation. We then apply the Fourier re-

striction norm method to construct solutions of the renormalized equation outside H
1
2 (T)

and pursue the question of recovering solutions of the original mKdV equation. This is
based on the following work:

[23] A. Chapouto, A remark on the well-posedness of the modified KdV equation in the
Fourier-Lebesgue spaces, Discrete Contin. Dyn. Syst. 41 (2021), no. 8, 3915–3950.

• In Chapter 3, we improve the well-posedness of the new renormalized mKdV equation by
applying the method due to Deng-Nahmod-Yue [34]. This is based on the following work:

[24] A. Chapouto, A refined well-posedness result for the modified KdV equation in the
Fourier-Lebesgue spaces, to appear in J. Dynam. Differential Equations.

• In Chapter 4, we follow Bourgain’s invariant measure argument to show almost sure
global well-posedness of the gKdV equations (1.1) with k ≥ 4 and invariance of the Gibbs
measure. This is based on the following joint work with Nobu Kishimoto (RIMS, Kyoto
University):

[25] A. Chapouto, N. Kishimoto, Invariance of the Gibbs measures for the periodic gen-
eralized KdV equations, preprint.

In the remainder of this introduction, we review the literature on the mKdV and the gKdV
equations, and state our main results. Chapters 2-4 are then devoted to the proofs of these
results.

1.1 The complex-valued mKdV equation

Consider the Cauchy problem for the complex-valued modified Korteweg-de Vries equation
(mKdV): {

∂tu+ ∂3
xu = ±|u|2∂xu,

u|t=0 = u0,
(t, x) ∈ R×M. (1.5)

3



where u : R ×M → C, and M = R or T. We are interested in studying mKdV (1.5) in the
periodic setting, when M = T, or equivalently, by imposing the periodic boundary condition
on the initial data u0. The complex-valued mKdV equation (1.5) appears as a model for the
dynamical evolution of nonlinear lattices, fluid dynamics, and plasma physics (see [95, 51], for
example). This equation, also known as the mKdV equation of Hirota [55], is a completely
integrable complex-valued generalization of the usual mKdV equation

∂tu+ ∂3
xu = ±u2∂xu, (1.6)

or equivalently (1.1) with k = 3. Indeed, for real-valued initial data u0, the solutions of (1.5)
are also solutions of (1.6).

In Chapters 2 and 3, we will pursue a harmonic analytic approach to study the well-posedness
of mKdV (1.5) at low regularity. We show that H

1
2 (T) is the largest space (in terms of L2-based

Sobolev spaces) where the periodic complex-valued mKdV equation (1.5) is well-posed, opposed
to its Euclidean and real-valued periodic counterparts, as we see below. The ill-posedness of the
complex-valued mKdV equation outside H

1
2 (T) is closely related to the momentum, a formally

conserved quantity of the equation (1.5). Exploiting the formal conservation of the momentum,
we introduce a new equation, the second renormalized mKdV equation. We establish its local
well-posedness in the Fourier-Lebesgue spaces FLs,p(T) (see (1.3)) outside H

1
2 (T) and propose

this equation as the correct model to study (1.5) at low regularity. Consequently, we narrow the

gap between the analytical ill-posedness of (1.5) outside H
1
2 (T) and the scaling critical space

H−
1
2 (T) (see Section 1.1.1 for a discussion on scaling). Lastly, by introducing a new notion of

finite momentum at low regularity, we extend the conservation of the momentum to the low
regularity setting and construct solutions of the original complex-valued mKdV equation (1.5).

We start by discussing the scaling symmetry of mKdV (1.5) and its heuristic implication on
the well-posedness theory.

1.1.1 Scaling heuristics

The mKdV equation (1.5) when posed on the real line, M = R, satisfies the following scaling
symmetry; let T > 0. If u : [0, T ] × R → C is a solution of (1.5) with initial data u0 : R → C
then uλ : [0, λ−3T ]× R→ C, given by

uλ(t, x) = λu(λ3t, λx), λ > 0, (1.7)

is also a solution of (1.5) with re-scaled initial data u0,λ(·) = λu0(λ ·).
A direct computation shows the following relation between the homogeneous Ḣs(R)-norms

of the scaled and original initial data

‖u0,λ‖Ḣs(R) = ‖λu0(λ ·)‖Ḣs(R) = λs+
1
2 ‖u0‖Ḣs(R).

In particular, for scrit = − 1
2 we see that the Ḣscrit(R)-norm is left invariant under the scaling

(1.7). The index scrit is called the scaling critical Sobolev index and it motivates the following
classification of the Cauchy problem (1.5):

• subcritical: if u0 ∈ Ḣs(R) with s > scrit, the scaled solution uλ has smaller norm and
longer time of existence λ−3T , as λ → 0. We expect well-posedness in this regime, at
least for short times.

• critical: for u0 ∈ Ḣscrit(R), the size of the initial data is unchanged by the scaling. It may
still be possible to establish local well-posedness for small initial data, but this is a more
delicate case.

• supercritical: if u0 ∈ Ḣs(R) with s < scrit, the rescaled data has a larger norm than the
original data, but a longer time of existence, which is too good to be true. We expect
ill-posedness in this regime.

4



We can conduct a similar scaling analysis on the homogeneous Fourier-Lebesgue spaces
ḞLs,p(R) defined through the norm

‖f‖ḞLs,p(R) =
∥∥|ξ|sFxf(ξ)

∥∥
Lpξ(R)

.

Performing an analogous computation, we have that

‖u0,λ‖ḞLs,p(R) = λs+
1
p ‖u0‖ḞLs,p(R).

Therefore, the ḞLs,p(R)-norm is left invariant under the scaling (1.7) if s = − 1
p . Moreover, we

see that ḞLs,p(R) scales like Ḣσ(R) if

σ = s+
1

p
− 1

2
. (1.8)

From the above comparison, we will classify the scaling criticality in the Fourier-Lebesgue spaces

based on the related scaling in Sobolev spaces. For instance, we say that ḞL0,p
(R) as p → ∞

is almost critical, since from (1.8) it scales like Ḣσ(R) with σ → − 1
2 .

Although the scaling (1.7) does not carry to the periodic setting, M = T, the scaling
heuristics is still relevant. It is commonly conjectured that the periodic mKdV equation (1.5)
is well-posed in Hσ(T) for σ > − 1

2 . We will see that this conjecture is indeed false for the
complex-valued periodic mKdV equation, motivating our attempt to bridge the regularity gap
in the subcritical regime by focusing our analysis on the Fourier-Lebesgue spaces.

1.1.2 Literature review

On the real line, M = R, the complex-valued mKdV equation (1.5) has been a long standing
topic of interest [61, 62, 42, 45, 50] and its well-posedness is now complete. In a recent break-
through, Harrop-Griffiths, Killip, and Vişan [50] showed the optimal global well-posedness of
(1.5) in Hs(R) for s > − 1

2 by exploiting the complete integrability of the equation. In the
Fourier-Lebesgue setting, Grünrock [42] showed the local well-posedness of mKdV (1.5) in
FLs,p(R) for s ≥ 0 and 2 ≤ p < 4, which was extended by Grünrock-Vega [45] to s ≥ 1

2p and
1 ≤ p <∞.

In the periodic setting, M = T, the real-valued mKdV equation (1.6) has garnered more
attention than its complex-valued counterpart (1.5) [10, 13, 26, 100, 58, 83, 82, 77, 57, 78, 97].
In [10], Bourgain introduced the Fourier restriction norm method and proved the local well-
posedness in Hs(T), for s ≥ 1

2 , of the first renormalized1 mKdV equation (mKdV1)

∂tu+ ∂3
xu = ±

(
|u|2 −M(u)

)
∂xu, (1.9)

where M(f) =
ffl
|f(x)|2dx = 1

2π

´
T |f(x)|2dx denotes the mass. The renormalized equation

(1.9) is obtained from mKdV (1.5) through the following gauge transform which exploits the
conservation of mass

G1[u](t, x) = u
(
t, x∓M

(
u(t)

)
t
)
. (1.10)

Note that mKdV1 (1.9) is equivalent to mKdV (1.5) in L2(T) in the following sense; u ∈
C
(
R;L2(T)

)
is a solution of (1.5) if and only if G1[u] is a solution of (1.9). Bourgain’s well-

posedness result also extends to the complex-valued setting. The failure of C3-continuity of the
solution map [13, 26] below H

1
2 (T) implies that we cannot use a contraction mapping argument

to improve the result in [10], hence requiring more robust techniques. See also Proposition 1.1.4
for the failure of local uniform continuity of the solution map in the complex-valued setting.

For the real-valued equation (1.6), Takaoka-Tsutsumi [100] and Nakanishi-Takaoka-
Tsutsumi [82] applied the energy method and proved the local well-posedness of mKdV in
Hs(T) for s > 1

3 . In a recent paper [78], Molinet-Pilod-Vento extended this result to the

1The equation (1.9) is usually referred to as the renormalized mKdV equation. However, we will introduce a
second gauge transform and a second renormalization in Section 1.1.3 which motivates the change in notation.
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end-point s = 1
3 . By exploiting the completely integrable structure of the equation, Kappeler-

Topalov [58] used the inverse spectral method to show existence and uniqueness of solutions of
the real-valued defocusing mKdV (with the + sign in (1.6)) in Hs(T), s ≥ 0. The solutions in
[58] are defined as the (unique) limit of approximating smooth solutions. Therefore, the data-
to-solution map extends continuously from smooth solutions to solutions in Hs(T). However,
these solutions are not necessarily distributional solutions. See [58, 70, 91, 92] for further details
on this notion of solution.

Using the short-time Fourier restriction norm method, Molinet [77] showed that the solutions
in [58] are indeed distributional solutions and proved the ill-posedness of (1.6) below L2(T) in
the sense of failure of continuity of the solution map (see also [97]). This ill-posedness result
shows the sharpness of the well-posedness theory in the L2-based Sobolev spaces. However, the
scaling analysis in Section 1.1.1 suggests that the local well-posedness should hold in Hs(T)
for s > − 1

2 . This ill-posedness result motivated the study of (1.6) in alternative function
spaces, namely in the Fourier-Lebesgue spaces FLs,p(T). Regarding the local-in-time analysis,
Kappeler-Molnar [57] proved the local well-posedness of the real-valued defocusing mKdV1 in
FLs,p(T) for s ≥ 0 and 1 ≤ p <∞ (see also [83]). These solutions are defined to be the unique
limit of classical solutions, as those in [58]. In view of the scaling critical regularity, this result
is almost critical, in the scale of the Fourier-Lebesgue spaces. Unlike the L2(T) solutions of
[58, 77], the solutions in [57] are not yet known to satisfy the equation in the distributional
sense.

Now, we turn our attention to the global aspect of the well-posedness of the periodic mKdV
equation. In [10], Bourgain proved global well-posedness of (1.9) in Hs(T) for s ≥ 1. For the
real-valued mKdV (1.6), Colliander-Keel-Staffilani-Takaoka-Tao [28] showed the global well-
posedness in Hs(T), s ≥ 1

2 , using the I-method. This result was extended to Hs(T) for s ≥ 0
for the real-valued defocusing mKdV by Kappeler-Topalov [58], using the complete integrability
of the equation. In [57], Kappeler-Molnar proved global-in-time existence of solutions of the
real-valued mKdV1, (1.9) with small real-valued initial data in FLs,p(T), s ≥ 0 and 1 ≤ p <∞.
In a recent paper [63], Killip-Vişan-Zhang exploited the completely integrable structure of the
equation and established global-in-time a priori bounds, in the complex-valued setting. These
a priori bounds, combined with the local well-posedness results in [10, 78], yield the global well-
posedness of the real-valued mKdV equation (1.6) in Hs(T) for s ≥ 1

3 and of the complex-valued
mKdV equation (1.5) in Hs(T) for s ≥ 1

2 .

In summary, the only local-in-time result which extends to the complex-valued setting on T
is that of Bourgain in [10]. Therefore, the periodic complex-valued mKdV1 (1.9) is only known

to be globally well-posed in H
1
2 (T). In the following, we will see that this result is actually

sharp in the scale of the L2-based Sobolev spaces, as the equation is ill-posed at lower regularity.

1.1.3 Main results

Our main goal is to study the low regularity Cauchy problem for the complex-valued periodic
mKdV equation (1.5) with M = T. We find that there is an additional difficulty in the low
regularity complex-valued setting, due to the momentum, a formally conserved quantity of (1.5).

At the level of regularity considered in our work, mKdV (1.5) and mKdV1 (1.9) are equiva-
lent. Therefore, we focus on studying the well-posedness of mKdV1 (1.9), as the results easily
extend to (1.5) through the (inverse) gauge transform G1 in (1.10). Omitting time dependence,
the nonlinearity of mKdV1 (1.9) is given by

Fx
(
|u|2∂xu−M(u)∂xu

)
(n)

=
∑

n=n1+n2+n3,
n2+n3 6=0

in1û(n1)û(−n2)û(n3)

=
∑

n=n1+n2+n3,
φ(n123) 6=0

in1û(n1)û(−n2)û(n3)− in|û(n)|2û(n) + i

(
Im

 
T
u∂xu dx

)
û(n), (1.11)

where φ(n123) = 3(n1 +n2)(n1 +n3)(n2 +n3) and n123 = (n1, n2, n3). In the real-valued setting,
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we have Im(u∂xu) ≡ 0 which implies that the last term on the right-hand side of (1.11) is zero.
However, in the complex-valued case, this contribution is not generally zero. We define the
momentum P (u) as follows:

P (u) = Im

 
T
u∂xu dx =

∑
n∈Z

n|û(n)|2,

and rewrite the nonlinearity of mKdV1 (1.9) as(
|u|2 −M(u)

)
∂xu = NR(u, u, u) +R(u, u, u) + iP (u)u,

with each term defined on the Fourier side through (1.11). For a solution u ∈ C
(
R;H

1
2 (T)

)
,

the momentum P
(
u(t)

)
is finite and conserved, but below this regularity it is not clear if it

is finite, let alone conserved. Consequently, a new phenomenon arises in the complex-valued
setting at low regularity, as the nonlinearity (1.11) may be ill-defined. In particular, we see that

the momentum is responsible for the following ill-posedness of mKdV1 (1.9) outside H
1
2 (T).

Theorem 1.1.1. Let s ≥ 1
2 and 2 < p < ∞. Suppose that u0 ∈ FLs,p(T) has infinite

momentum in the sense that

lim sup
N→∞

|P (P≤Nu0)| =∞,

where P≤N denotes the Dirichlet projection onto the spatial frequencies {|n| ≤ N}. Then, for
any T > 0, there exists no distributional solution u ∈ C

(
[−T, T ];FLs,p(T)

)
to the complex-

valued mKdV1 equation (1.9) satisfying the following conditions:

(a) u|t=0 = u0;

(b) the smooth global solutions {uN}N∈N of mKdV1 (1.9), with uN |t=0 = P≤Nu0, satisfy
uN → u in C

(
[−T, T ];D′(T)

)
.

Remark 1.1.2. (i) The condition (b) in Theorem 1.1.1 is a natural one to impose, as we
would expect “good” solutions to have the property of being well-approximated by the smooth
solutions corresponding to the truncated initial data.

(ii) The momentum is identically zero for real-valued solutions. Therefore, it does not play a
role in the low regularity well-posedness of the real-valued mKdV equation (1.6). Consequently,
the ill-posedness result in Theorem 1.1.1 is a phenomenon specific to the complex-valued mKdV
equation (1.5).

(iii) Since H
1
2 (T) ( FL 1

2 ,p(T), for 2 < p < ∞, Theorem 1.1.1 establishes the ill-posedness of

the complex-valued mKdV1 equation (1.9) outside H
1
2 (T). The proof is based on the argument

for the nonlinear Schrödinger equation by Guo-Oh [48], and the result can also be extended to
ill-posedness in Hs(T) for 1

3 < s < 1
2 ; see Remark 1.1.15 for more details. In Remark 1.2 (iii)

in [82], the authors claim that local well-posedness in Hs(T) for s > 1
3 extends to the complex

solutions of mKdV1 (1.9), which does not seem to be the case.

Motivated by the ill-posedness result in Theorem 1.1.1, we propose an alternative model to
the complex-valued mKdV1 equation (1.9), and hence to the complex-valued mKdV equation
(1.5). Analogously to the first gauge transform G1 (1.10), which exploited the conservation of
the mass, we introduce a second gauge transform G2 using the conservation of the momentum
to remove the singular contribution iP (u)u from the nonlinearity. Given u ∈ C

(
R;H

1
2 (T)

)
, we

define the following invertible gauge transform

G2[u](t, x) = e∓iP (u)tu(t, x). (1.12)

The effect of the gauge transform G2 is to remove certain resonant frequency interactions in
the nonlinearity which are responsible for the ill-posedness result in Theorem 1.1.1. If u ∈
C
(
R;H

1
2 (T)

)
is a solution of mKdV (1.5), the momentum is finite and conserved P

(
u(t)

)
=

7



P (u0), and thus the gauge transform G2 is invertible and u solves the original mKdV (1.5) if
and only if G2 ◦ G1[u] solves the second renormalized mKdV equation (mKdV2):

∂tu+ ∂3
xu = ±

(
|u|2∂xu−M(u)∂xu− iP (u)u

)
. (1.13)

Focusing on the Fourier-Lebesgue spaces, for 1 ≤ p < ∞ and s > 1 − 1
p , the gauge transform

G2 is well-defined in C
(
R;FLs,p(T)

)
and the equations mKdV1 (1.9) and mKdV2 (1.13) are

equivalent. However, for 2 ≤ p <∞ and 1
2 ≤ s ≤ 1− 1

p , we have that FLs,p(T) 6↪→ H
1
2 (T). Since

outside H
1
2 (T) the momentum may be infinite, we cannot make sense of the (inverse) gauge

transform G2, and thus cannot, in general, convert solutions of mKdV2 (1.13) into solutions of
mKdV1 (1.9).

Although any renormalization is a matter of choice to some degree, we believe that Theo-
rem 1.1.1 provides evidence for our choice of G2; see also Remark 1.1.13. In particular, since
the assumption of infinite momentum of the initial data u0 can only hold if u0 6∈ H

1
2 (T), we

propose mKdV2 (1.13) as the correct model to study the complex-valued mKdV equation (1.5)

outside H
1
2 (T). To further our evidence, we establish the following local well-posedness result

for mKdV2 (1.13) outside H
1
2 (T).

Theorem 1.1.3. Let s ≥ 1
2 and 1 ≤ p < ∞. Then, mKdV2 (1.13) is locally well-posed in

FLs,p(T). Moreover, the data-to-solution map is locally Lipschitz continuous.

The restriction s ≥ 1
2 is necessary if we require uniform continuity of the solution map, as

shown by the following proposition.

Proposition 1.1.4. Let s < 1
2 and 1 ≤ p < ∞. The data-to-solution map for mKdV2 (1.13)

fails to be locally uniformly continuous in C
(
R;FLs,p(T)

)
.

Remark 1.1.5. (i) The scaling heuristics in Section 1.1.1 allows us to compare the scaling of

the L2-based Sobolev spaces with the Fourier-Lebesgue spaces. In particular, ḞLs,p(R) scales
like Ḣσ(R) for σ = s+ 1

p −
1
2 . From these heuristics, we see that the results in Theorem 1.1.3

are at the scale of L2(T). At this time, we do not know how to prove an almost critical result
for (1.13) in FLs,p(T) with s = 0 and 1 ≤ p < ∞, since Theorem 1.1.3 is sharp with respect
to the method due to Proposition 1.1.4. Without imposing uniform continuous dependence on
the initial data, we expect it to be possible to lower s by combining the method introduced by
Deng-Nahmod-Yue [34] and the energy method in [100, 82, 78].

(ii) To show Theorem 1.1.3 for 1 ≤ p < 4, we apply the Fourier restriction norm method and
the uniqueness holds conditionally in

C
(
[−T, T ];FLs,p(T)

)
∩Xs, 12

p,2 (T ).

See Definition 1.3.2 for the definition of the Xs,b space. For 4 ≤ p < ∞, we follow the
method introduced by Deng-Nahmod-Yue [34], which is based on constructing solutions u with
a particular structure. As a consequence, uniqueness holds conditionally in a sub-manifold of

X
s, 12
p,2−ε determined by the structure imposed on u.

(iii) For the range of (s, p) in Theorem 1.1.3, the mass M(u) is conserved and therefore one
can still establish local well-posedness of mKdV2 (1.13) without removing the term M(u)∂xu
from the nonlinearity at the cost of losing the local Lipschitz continuity of the solution map.
In contrast, this renormalization is essential in [57] when taking data in FL0,p(T) with 2 <
p < ∞, for example. Analogously, the second renormalization introduced by G2 is crucial in
Theorem 1.1.3 when 1

2 ≤ s < 1 and 1
1−s ≤ p <∞. In the remaining regimes for (s, p), since the

initial data is in H
1
2 (T) and the momentum is conserved, the renormalization is only required

to guarantee the local Lipschitz continuity in Theorem 1.1.3. See [35, 52] for analogous proofs,
for example.

(iv) In Sobolev spaces, unconditional uniqueness holds in Hs(T) for s ≥ 1
3 (see [69, 78]). It

would be of interest to consider the problem of unconditional uniqueness of mKdV2 (1.13) in
the Fourier-Lebesgue spaces. See Section 1.1.4 for more details.
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Using the a priori bounds established by Oh-Wang [91], which generalize the result by Killip-
Vişan-Zhang [63] to the Fourier-Lebesgue setting, we extend the solutions in Theorem 1.1.3
globally-in-time.

Theorem 1.1.6. The mKdV2 equation (1.13) is globally well-posed in FLs,p(T) for s ≥ 1
2 and

1 ≤ p <∞.

Remark 1.1.7. (i) For real-valued solutions u, the momentum P (u) ≡ 0 which implies that
G2[u] ≡ u. Consequently, the previous results on the complex-valued mKdV2 equation (1.13)
in Theorems 1.1.3 and 1.1.6 also apply to the real-valued mKdV1 equation (1.9).

(ii) In [57], Kappeler-Molnar established the global well-posedness of the real-valued defocusing
mKdV equation (1.6) with small initial data. Corollary 1.1.6 extends this result (with limited
range of s) to the focusing case (with ‘−’) and to the large data setting. Furthermore, our
solutions satisfy the Duhamel formulation, establishing that the solutions in FLs,p(T) for s ≥ 1

2
constructed in [57] are indeed distributional solutions. The solutions constructed in [57] with
initial data in FLs,p(T) for 0 ≤ s < 1

2 and 1 ≤ p < ∞, are not yet known to be distributional
solutions.

(iii) The proof of Theorem 1.1.6 is based on applying the a priori bound by Oh-Wang in [91] to
iterate the local well-posedness argument. However, the estimate requires a restriction on the
regularity s < 1− 1

p . When 1
2 ≤ s < 1− 1

p , Theorem 1.1.6 follows directly from Theorem 1.1.3

and the a priori bound in [91]. When s ≥ 1− 1
p , we combine the a priori bound with a persistence

of regularity argument.

It remains to answer the question of how to recover solutions of mKdV1 (1.9) from those
constructed in Theorem 1.1.6 for mKdV2 (1.13). To that end, for solutions in C

(
R;FLs,p(T)

)
for 2 ≤ p <∞ and 1

2 ≤ s < 1− 1
p , we must endow the momentum with a notion of conditional

convergence at low regularity. Since the momentum is not a sign definite quantity, we want to
exploit the possible cancellation between positive and negative frequencies. This is achieved in
the following definition, by considering symmetric truncations of the momentum.

Definition 1.1.8. Suppose that

P (P≤Nf) converges as N →∞.

Then, we say that f has finite momentum and denote the limit by P (f).

The following proposition validates our notion of finite momentum as follows; consider initial
data u0 6∈ H

1
2 (T) with finite momentum in the sense of Definition 1.1.8. Then, not only does

the corresponding solution u of mKdV2 (1.13) have finite momentum but the momentum is
also conserved.

Proposition 1.1.9. Let (s, p) satisfy one of the following conditions: (i) 1
2 ≤ s < 5

6 , 2 ≤ p <
6

5−6s ; (ii) s ≥ 5
6 , 2 ≤ p < ∞. In addition, let u0 ∈ FLs,p(T) with finite momentum in the

sense of Definition 1.1.8 and u ∈ C
(
[−T, T ];FLs,p(T)

)
be the corresponding solution of mKdV2

(1.13). Then, we have that

P
(
P≤Nu(t)

)
→ P (u0), N →∞.

We denote the limit by P
(
u(t)

)
and have that P

(
u(t)

)
≡ P (u0), for each t ∈ [−T, T ].

Remark 1.1.10. (i) Proposition 1.1.9 gives an extended notion of conservation of momentum
when (s, p) satisfy 1

2 ≤ s < 5
6 and 1

1−s ≤ p < 6
5−6s , or 5

6 ≤ s < 1 and 1
1−s ≤ p < ∞.

In the remaining cases, i.e., if 1
2 ≤ s < 1 and 1 ≤ p < 1

1−s , or s ≥ 1 and 1 ≤ p < ∞,

then FLs,p(T) ⊂ H
1
2 (T) and the momentum is finite to start with, without the need to apply

Proposition 1.1.9. In this regime, our limiting notion of finite momentum agrees with the
classical one.

(ii) In order to show Proposition 1.1.9, we follow the argument by Takaoka-Tsutsumi [100]
and Nakanishi-Takaoka-Tsutsumi [82] (see Lemma 2.5 in [100] and Lemma 3.1 in [82]) and
estimate the difference of momenta at time t ∈ [−T, T ] and at the initial time. In particular, we
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establish the energy estimate in Proposition 2.5.1, using Strichartz estimates and the normal
form approach.

(iii) In [82], the energy estimate holds in Hσ(T) for σ > 1
3 . Taking into account that the Fourier-

Lebesgue spaces ḞLs,p(R) scale like Ḣσ(R) for σ = s+ 1
p−

1
2 , 2 ≤ p <∞, the condition on (s, p)

in Proposition 1.1.9 agrees with the restriction in [82]. We would like to relax the regularity
constraints to s ≥ 1

2 , to match the local well-posedness of mKdV2 (1.13) (Theorem 1.1.3). In
fact, some contributions in the estimate can be controlled for s ≥ 1

2 and 1 ≤ p < 4. In the most

difficult cases, the normal form approach assures that the estimate holds outside H
1
2 (T), but

it also introduces additional resonances. Consequently, we cannot use the modulations to help
estimate the multiplier, which imposes the condition σ > 1

3 . Nevertheless, these heuristics do
not imply the failure of the estimate for lower regularity, s ≤ 5

6 −
1
p and σ ≤ 1

3 .

Before stating our last result, we introduce the following notation for the nonlinearity of
mKdV2 (1.13). We define the following trilinear operator

N (u1, u2, u3) = ∂xu1 · u2 · u3 − ∂xu1

(  
T
u2 · u3 dx

)
−
(
i Im

 
T
∂xu1 · u2 dx

)
u3.

Thus, the nonlinearity of mKdV2 (1.13) is given by N (u, u, u) and that of mKdV1 (1.9) by
N (u, u, u) + iP (u)u. As a consequence of the conservation of the momentum at low regularity
in Proposition 1.1.9, we have the following result for mKdV1 (1.9).

Theorem 1.1.11. Let (s, p) satisfy one of the following conditions: (i) 1
2 ≤ s < 5

6 , 2 ≤
p < 6

5−6s ; (ii) s ≥ 5
6 , 2 ≤ p < ∞, and u0 ∈ FLs,p(T) with finite momentum, in the sense

of Definition 1.1.8. Then, there exist T > 0 and a function u ∈ C
(
[−T, T ];FLs,p(T)

)
with

u|t=0 = u0 such that u is a distributional solution of the following equation:

∂tu+ ∂3
xu = ±

(
N (u, u, u) + iP (u)u

)
, (1.14)

where P (u) is interpreted as the limit of {P (P≤Nu)}N∈N as N →∞.

We conclude this section by stating some further remarks.

Remark 1.1.12. The solution in Theorem 1.1.11 is the unique limit of the sequence {uN}N∈N
of smooth solutions of mKdV1 (1.9) with truncated initial data uN |t=0 = P≤Nu0. It is of
interest to improve our notion of uniqueness to match that of [58, 57], i.e., to being the unique
limit under any sequence of smooth approximating solutions. Since our interpretation of the
nonlinearity of mKdV1 in (1.14) is tied with the notion of finite momentum in Definition 1.1.8,
one could restrict the latter definition to require convergence of |P (u0,n)| to a unique limit for
any smooth approximating sequence {u0,n}n∈N with u0,n → u0 in FLs,p(T).

Remark 1.1.13. Our choice of gauge transform G2 in (1.12) seems to be the correct one as it
subtracts the right amount of infinity. If we for instance consider the following gauge

G[u](t, x) = e±iγP (u)t,

for some parameter γ ∈ R, we obtain the following renormalized equation (mKdVγ)

∂tu+ ∂3
xu = ±

(
N (u, u, u) + i(1− γ)P (u)u

)
. (1.15)

For initial data u0 ∈ H
1
2 (T), since the momentum is conserved, the two renormalized equations

mKdV2 (1.9) and mKdVγ (1.15) are equivalent. However, for initial data u0 ∈ FLs,p(T) with
1
2 ≤ s < 1 and 1

1−s < p <∞, we can modify the proof of Theorem 1.1.1 to show non-existence
of solutions of mKdVγ (1.15), unless γ = 1. This supports our choice for the gauge G2 and the
second renormalized mKdV equation (1.13).

Remark 1.1.14. In [11], Bourgain proved the invariance of the Gibbs measure under the flow
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of the real-valued mKdV equation (1.6),

dµ “ = ” Z−1 exp

(
∓ 1

4

ˆ
T
u4 dx− 1

2

ˆ
T
(∂xu)2dx

)
du, (1.16)

by establishing the local well-posedness of mKdV (1.5) in Hs(T) ∩ FLs1,∞(T) for some
s < 1

2 < s1 < 1, which includes the support of (1.16). The invariance of the Gibbs measure
on FLs,p(T) follows from the global well-posedness result in the real-valued setting in Theo-
rem 1.1.6, as FLs,p(T) with (s − 1)p < −1 includes the support of µ (1.16). In the complex-
valued setting, we can consider the question of invariance of the Gibbs measure for (1.5) and
the well-posedness of this equation with randomized initial data. In particular, initial data of
the following form

u0(x;ω) =
∑
n6=0

gn(ω)

|n|
einx,

where {gn}n∈N is a family of independent complex-valued standard Gaussian random variables,
i.e., real and imaginary parts are independent Gaussian random variables, with mean 0 and
variance 1. It is known that u0 ∈

⋂
s< 1

2
Hs(T) almost surely. Therefore, it is unclear if the

corresponding solutions would satisfy the conservation of the momentum. However, we can
actually show that it is finite. We can rewrite the momentum as follows

P (u0(ω)) =
∑
n≥1

|gn(ω)|2 − |g−n(ω)|2

n
=
∑
n 6=0

|gn(ω)|2

n
.

Therefore, using Isserlis’ Theorem, we have

E
[
(P (u0))2

]
=
∑
n,m6=0

E
[
gngngmgm

]
nm

=
∑
n 6=0

2E
[
|gn|2

]2
n2

.
∑
n≥1

1

n2
<∞.

Hence, the momentum P (u0) is finite, almost surely, and we have global well-posedness of
mKdV (1.5) for data u0(ω) in the support of the Gibbs measure. Consequently, from Bourgain’s
invariant measure argument, we obtain invariance of the Gibbs measure in (1.16).

Remark 1.1.15. The non-existence result in Theorem 1.1.1 is not particular to the Fourier-
Lebesgue setting and can be extended to other spaces outside H

1
2 (T). In particular, the same

result holds for initial data in Hs(T), 1
3 < s < 1

2 . By adapting the energy method in [82] to
the complex-valued setting, we can show that local well-posedness of mKdV2 (1.13) holds in
Hs(T) for 1

3 < s < 1
2 . This is due to the similarity of the nonlinearity of the real-valued mKdV1

equation (1.9) and of the complex-valued mKdV2 equation (1.13). The same estimates hold,
with some additional care required to handle the conjugate term and the lack of symmetry
in the latter nonlinearity. In addition, for any sequence of smooth functions {u0,n}n∈N with
u0,n → u0 in Hs(T), the corresponding smooth global solutions {un}n∈N of mKdV2 (1.13)
converge to the solution u of mKdV2 (1.13) in C

(
[−T, T ];Hs(T)

)
, for some T > 0. If we focus

on the initial data u0 ∈ Hs(T) \H 1
2 (T) with infinite momentum in the following sense

lim sup
N→∞

|P
(
P≤Nu0

)
| =∞,

we can show that there exists no distributional solution of the complex-valued mKdV1 equation
(1.9) with initial data u0 and with a good approximation property as in Theorem 1.1.1. This
follows the same argument as in the proof of Theorem 1.1.1, using the local well-posedness of
mKdV2 (1.13) in Hs(T), 1

3 < s < 1
2 .

Remark 1.1.16. The question of local well-posedness in the Fourier-Lebesgue spaces has also
been pursued for the derivative nonlinear Schrödinger equation (DNLS):

i∂tu+ ∂2
xu = ∂x(|u|2u), (t, x) ∈ R× T. (1.17)
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This study was initiated by Grünrock-Herr in [44] where they established local well-posedness
of DNLS in FLs,p(T) for s ≥ 1

2 and 1 ≤ p < 4, using the Fourier restriction norm method.
See also the work of Grürock for (1.17) posed on the real-line [43]. In the periodic setting,
an optimal result was later established by Deng-Nahmod-Yue in [34] through a new method
inspired by the paracontrolled approach due to Gubinelli-Imkeller-Perkowski [46]. As in the
case of mKdV (1.5), the main difficulty in the low regularity well-posedness theory for DNLS
is handling the derivative loss from the nonlinearity. In order to overcome this problem, Herr
[53] introduced the following gauge transform

G[u](t, x) = e−iI(u)(t,x)u(t, x),

where I(u) is the mean zero anti-derivative of |u|2−
ffl
T |u|

2dx. The gauge transform G removes
the following singular contribution in the nonlinearity

2

(
Im

 
T
u∂xu dx

)
u. (1.18)

In FL 1
2 ,p(T), 2 < p < ∞, the quantity (1.18) is not well-defined, but the gauge transform G

is continuous and invertible, which allows for the recovery of solutions of DNLS from solutions
of the gauged equation. In our work, to overcome the derivative loss, we introduced a gauge
transform G2 which removes the following contribution

−i
(

Im

 
T
u∂xu dx

)
u.

However, in our case, the gauge transform G2 depends explicitly on the momentum, which is
not well-defined outside H

1
2 (T). Thus, we cannot freely convert solutions of mKdV2 (1.13)

to solutions of mKdV1 (1.9), a problem which is new to the complex-valued mKdV equation,
when compared to DNLS. This additional difficulty, not present for DNLS, lead us to the
introduction of a new notion of finite momentum (Definition 1.1.8) and its conservation at low
regularity (Proposition 1.1.9). Only then could we prove existence of solutions of mKdV1 (1.9)
in Theorem 1.1.11.

Remark 1.1.17. In [65], Kishimoto-Tsutsumi studied the nonlinear Schrödinger equation with
third order dispersion and Raman scattering term:

∂tu = α1∂
3
xu+ iα2∂

2
xu+ iγ1|u|2u+ γ2∂x(|u|2u)− iΓu∂x(|u|2), (t, x) ∈ R× T,

for αj , γj ,Γ ∈ R, j = 1, 2, satisfying Γ > 0, α1 6= 0 and 2α2

3α1
6∈ Z. Note that for α2 = γ1 = 0,

the equation resembles mKdV (1.5), however, this regime is not covered in their analysis. The
last term, the Raman scattering term, is responsible for the ill-posedness of this equation and
can be rewritten as follows

F
(
u∂x(|u|2)

)
(n) =−

∑
n=n1+n2+n3

(n1+n2)(n2+n3) 6=0

i(n1 + n2)û(n1)û(−n2)û(n3)

− in

(∑
n2

|û(n2)|2
)
û(n) +

(∑
n2

in2|û(n2)|2
)
û(n), (1.19)

where û(n) denotes the n-th Fourier coefficient of u. The phase function for this equation is
given by

φ(n123) = α1(n1 + n2 + n3)3 + α2(n1 + n2 + n3)2 − (α1n
3
1 + α2n

3
1)

+ (α1(−n2)3 + α2(n2)2)− (α1n
3
3 + α2n

2
3)

= 3α1(n1 + n2)(n2 + n3)

(
n3 + n1 +

2α2

3α1

)
,

where the last equality holds under the assumption n = n1 + n2 + n3. Therefore, under the
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non-resonant condition 2α2

3α1
/∈ Z, it follows that φ(n123) = 0 if and only if (n1 +n2)(n2 +n3) = 0.

Consequently, the first term on the right-hand side of (1.19) corresponds to the non-resonant
contribution, analogous to NR(u, u, u) in our case (see (1.11)). Delving deeper into the Raman
scattering term, note that the last two contributions on the right-hand side of (1.19) can be
written on the physical side as

( ffl
T |u|

2dx
)
∂xu and iP (u)u, respectively. In [65], it is this Raman

scattering term that is responsible for the ill-posedness. However, since the momentum is not a
conserved quantity of the equation, it is not possible to remove it by applying a gauge transform.
In our work on mKdV (1.5), the ill-posedness comes only from the momentum term, which
introduces higher and higher oscillations through the gauge transform G2. The momentum
plays a role in the ill-posedness of both equations, albeit through different mechanisms.

1.1.4 Methods

The Fourier restriction norm method

In Chapter 2, we prove Theorem 1.1.3 using the Fourier restriction norm method for a restricted
range of (s, p): (i) 1

2 ≤ s < 3
4 and 1 ≤ p < 4

3−4s ; or (ii) s ≥ 3
4 and 1 ≤ p < ∞. Since for the

endpoint s = 1
2 , these conditions impose 1 ≤ p < 4, we will sometimes refer only to the range

s ≥ 1
2 and 1 ≤ p < 4 in later discussions.

This method was introduced by Bourgain in [9, 10] to establish the local well-posedness
of dispersive PDEs on the torus, in the low regularity setting. The solutions are constructed
through a contraction mapping argument on a suitably chosen Banach space. Let us focus
on mKdV1 (1.9). We look for solutions of the equivalent integral equation, the Duhamel
formulation:

u(t) = S(t)u0 ±
ˆ t

0

S(t− t′)N (u, u, u)(t′) dt′ =: S(t)u0 ±DN (u, u, u)(t), (1.20)

where S(t) denotes the linear propagator and D the Duhamel operator. In [9, 10], Bourgain
proposed the use of the so-called Fourier restriction spaces or Xs,b(R×T)-spaces defined through
the following norm

‖u‖Xs,b(R×T) =
∥∥〈n〉s〈τ − n3〉bFt,x(u)(τ, n)

∥∥
`2n(Z)L2

τ (R)
. (1.21)

These spaces appeared earlier in the work of Rauch-Reed [93] and Beals [4] on the wave equation,
but they were first used in the context of local well-posedness by Bourgain in [9, 10] for the
nonlinear Schrödinger equation and the gKdV equations, and by Klainerman-Machedon [66]
for the wave equation. For a survey of these spaces and applications see [39, 101, 102]. In
[42], Grünrock introduced analogous spaces adapted to the Fourier-Lebesgue setting and to the
Euclidean setting. Here, we focus on the corresponding spaces on T introduced by Grünrock-
Herr in [44]: the Xs,b

p,q(R× T)-spaces defined through the following norm

‖u‖Xs,bp,q(R×T) =
∥∥〈n〉s〈τ − n3〉Ft,x(u)(τ, n)

∥∥
`pn(Z)Lqτ (R)

, (1.22)

for 1 ≤ p, q ≤ ∞ and where the iterated norm is understood as ‖ ·‖`pn(Z)Lqτ (R) = ‖‖ ·‖Lqτ (R)‖`pn(Z).

Note that if p = q = 2 we have Xs,b
2,2(R× T) = Xs,b(R× T) defined in (1.21).

These spaces, defined through (1.21) and (1.22), are well-adapted to the dispersive nature
of the equation, in particular, to the linear equation

∂tu+ ∂3
xu = 0,

known as the Airy equation. Note that if we take a space-time Fourier transform of the linear
solution, we see that Ft,x

(
S(t)u0

)
(τ, n) is supported on the curve τ = n3. The twisted temporal

weight of the norm in (1.21) is directly related to this curve and heuristically, for b > 0, it
penalizes functions which are far from being a linear solution. Consequently, the Xs,b

p,q(R× T)-
spaces are particularly suited to look for solutions of (1.20) as nonlinear perturbations of their
linear counterparts.

Since the linear solution can be easily estimated in Xs,b
p,q(R×T)-spaces, after a suitable time
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localization (see Lemma 2.1.1), constructing unique local-in-time solutions of mKdV2 reduces
to establishing a nonlinear estimate of the form

∥∥DN (u1, u2, u3)
∥∥
Xs,bp,q(R×T)

.
3∏
j=1

‖uj‖Xs,bp,q(R×T). (1.23)

The main difficulty resides in controlling the derivative in the nonlinearity. Since the Duhamel
operator D has smoothing in time but not in space, we want to exploit the multilinear dispersion
by using the modulations, i.e., the weights 〈τ − n3〉 in the norm (1.22).

The existence and uniqueness of solutions of mKdV2 (1.13), as well as the local Lipschitz
continuity of the solution map, follow easily from a contraction mapping argument once we
establish (1.23). The restriction on (s, p) in Chapter 2 is imposed by this nonlinear estimate.

The “paracontrolled” approach in [34]

In Chapter 3, we prove Theorem 1.1.3 for s ≥ 1
2 and 4 ≤ p <∞ using the method introduced

by Deng-Nahmod-Yue in [34] in the context of DNLS (1.17). Due to the failure of the main
nonlinear estimate (1.23) for DNLS when s = 1

2 and p > 4 [44], Deng-Nahmod-Yue instead
proposed looking for solutions centered around a suitably chosen object. This structure was
chosen in order to avoid the bad frequency interaction for which the analogue of (1.23) fails. For
mKdV2 (1.13), although we do not know if the nonlinear estimate (1.23) fails, we are unable
to prove it for s = 1

2 and 4 ≤ p <∞, leading us to pursue the method in [34].
Motivated by the paracontrolled approach introduced by Gubinelli-Imkeller-Perkowski [46],

we construct solutions u centered around a smoother-in-time function w. Instead of solving the
Duhamel formulation, we will solve a system of equations{

u = w + F (u,w),

w = S(t)u0 ±DN (u, u, u)− F (u,w),
(1.24)

where F (u,w) is a nonlinear functional to be determined. Centering solutions around a suitably
chosen function was seen in the context of probabilistic PDEs (with random initial data or
stochastic forcing), for example, in the works of Bourgain [12], Da Prato-Debussche [31], and
Gubinelli-Imkeller-Perkowski [46]. In general, the center w is an explicitly known random object
that introduces smoothing in space in the remainder pieces. The lack of randomness in our
setting forces us to consider a moving center and solve the system (1.24). In particular, the first
equation in (1.24) imposes structure to u = u[w] parametrized by w, while the second finds the
correct w for which u solves the Duhamel formulation (1.20).

The main difficulty in this method is choosing the correct structure for u, or equivalently,
the correct nonlinear functional F (u,w). This choice, which is not prescribed by the method,
must allow us to solve the first equation for u while avoiding the bad frequency regions for the
nonlinear estimate (1.23). There are three main points in establishing and solving the system
(1.24): (i) choosing the frequency regions of the nonlinear terms in F (u,w); (ii) modifying the
Duhamel operator to induce smoothing in space; (iii) using the second iteration of the Duhamel
formulation to solve the equation for w.

We first consider (i). In certain regions of the frequency space, the nonlinear estimate (1.23)
holds for any fixed 2 ≤ p < ∞ and some b = 1− and q = ∞− (see Remark 3.5.4 for more
details). These frequency regions will be included in the equation for w in (1.24), which we hope

to solve for w ∈ Xs,1−
p,∞−(R× T) ⊂ Xs, 12

p,2−(R× T) and u ∈ Xs, 12
p,2−(R× T) ⊂ C

(
R;FLs,p(T)

)
. For

the remaining frequency regions, we cannot show the trilinear estimate (1.23) in Xs,b
p,q(R×T) ⊂

C
(
R;FLs,p(T)

)
, regardless of the choice of b and q. These contributions should then appear in

F (u,w), in order to be estimated in the weaker X
s, 12
p,2−-norm. In addition, we require the terms

in F (u,w) to have a smoother w term associated with the derivative and the largest frequency.
Consequently, F (u,w) includes terms that essentially look like the following∑

N

PN∂xw ·P�Nu ·P�Nu,
∑
N

PN∂xw · (PNw ·P�Nu+ PNw ·P�Nu), (1.25)
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where PN and P�N denote the Dirichlet projections onto the spatial frequencies {|n| ∼ N}
and {|n| � N}, respectively. These terms can roughly be seen as ‘paracontrolled’ by w (see
[46] for details on paracontrolled distributions).

Unfortunately, the assumptions imposed on F (u,w) and the terms in (1.25) are not yet
enough to show the estimate (1.23) for any p ≥ 4. This leads us to (ii) and to the introduction
of a modified Duhamel operator which not only has smoothing in time but also in space. The
modification is introduced through a time convolution with a smooth function η parameterized
by the resonance relation φ(n123):

ˆ t

0

S(t− t′)η
(
φ(n123)(t− t′)

)
F (t′) dt′, (1.26)

where φ(n123) = n3−n3
1−n3

2−n3
3. We then choose F (u,w) by applying the modified Duhamel

operator in (1.26) to the terms in (1.25). In the frequency support of F (u,w), we have that
|φ(n123)| & max(|n1|, |n2|, |n3|)2. Therefore, the convolution with η in (1.26) introduces nega-
tive powers of |φ(n123)| and consequently smoothing in space, at the cost of reduced smoothing
in time (see Section 3.2 for more details). This smoothing effect allows us to solve the equation
for u through a fixed point argument, for each fixed w ∈ Xs,1−

p,∞−(R× T). Consequently, we ob-
tain a function u = u[w] parameterized by w that is not yet a solution of the mKdV2 equation
(1.13). This will only follow after we have found the correct center w.

Lastly, we address (iii). To solve the equation for w, we use a ‘partial’ iteration of the
Duhamel formulation. For the terms that cannot be estimated directly in the Xs,1−

p,∞−(R × T)-
norm, we replace u = u[w] by its equation w + F (u,w) first in the entries associated with the
derivative and then the largest frequencies. This strategy induces smoothing, by introducing
terms that depend on the modified Duhamel operator (1.26) and more w terms, at the cost of
increasing the multilinearity of the terms being estimated. This strategy resembles the second
iteration method used by Bourgain [13], Oh [87], and Richards [94], for example. In particular,
this leads to new cubic, quintic, and septic terms that we can estimate in the stronger norm
(see Sections 3.3 and 3.5).

In summary, the choice of F (u,w) requires a delicate balance between being able to solve the
first equation for u, but also inducing sufficient spatial smoothing when using second iteration
to solve the equation for w. This choice allows us to show the relevant estimates for any
2 ≤ p <∞.

1.2 The gKdV equations

We now consider the Cauchy problem for the generalized Korteweg-de Vries equation (gKdV):{
∂tu+ ∂3

xu = ±∂x(uk),

u|t=0 = u0,
(t, x) ∈ R× T, (1.27)

where k ≥ 2 is an integer and u : R × T → R. When k = 2 and k = 3, (1.27) corresponds
to the well-known KdV and mKdV equations, respectively. These two equations are known to
be completely integrable, therefore possessing infinitely many conservation laws, which is no
longer true for (1.27) with k ≥ 4. Our goal is to construct global-in-time solutions for gKdV
(1.27) at low regularity, where there are no suitable conservation laws. We instead pursue a
probabilistic approach introduced by Bourgain in [11], which exploits the Hamiltonian structure
of the equation and the associated Gibbs measure.

The gKdV equation (1.27) can be reformulated as a Hamiltonian system

∂tu = ∂x
δH

δu
,

where δH
δu denotes the Fréchet derivative and the Hamiltonian is given by

H(u) =
1

2

ˆ
T
(∂xu)2 dx± 1

k + 1

ˆ
T
uk+1 dx.
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In particular, H(u) is conserved under the dynamics of (1.27). Note that the mean
´
T u dx and

the mass
´
T u

2 dx are also conserved. Due to the conservation of the mean, we will restrict our
analysis to mean zero initial data.

In view of the Hamiltonian structure of gKdV (1.27), we expect the Gibbs measure µ
formally defined by

dµ = Z−1e−H(u) du = Z−1e∓
1
k+1

´
T u

k+1dxe−
1
2

´
T(∂xu)2dxdu, (1.28)

to be invariant under the dynamics of gKdV (1.27). Note that in the above expression, Z is a
normalizing constant. By the invariance of the Gibbs measure, we mean that

µ
(
Ψ(−t)A

)
= µ(A), (1.29)

for all t ∈ R and measurable A ⊂ L2(T), where Ψ(t) : u0 7→ u(t) denotes the data-to-solution
map of gKdV (1.27). In [11], Bourgain introduced the idea of exploiting the invariance of
the Gibbs measure µ as a substitute for a conservation law. This globalization procedure is
now known as Bourgain’s invariant measure argument. Another interesting consequence of the
invariance property is that it informs of the typical behavior of solutions, such as recurrence
properties, as opposed to that of individual trajectories.

In Chapter 4, we establish the invariance of the Gibbs measure µ (1.28) (under suitable
normalization) for the gKdV equations with k ≥ 4, by following Bourgain’s invariant measure
argument. The main difficulty resides in establishing local well-posedness of gKdV (1.27) in the
support of the Gibbs measure µ, which is not readily available in the literature. In fact, due
to the mild ill-posedness of (1.27) in the L2-based Sobolev spaces which include the support
of µ [29], we instead establish local well-posedness in suitable Fourier-Lebesgue spaces. This
completes the program initiated by Bourgain in [11] on the invariance of the Gibbs measure µ
in (1.28) (under suitable normalization) for the gKdV equations.

1.2.1 Literature review

The construction of Gibbs measures for Hamiltonian PDEs was initiated by Lebowitz-Rose-
Speer [71] in the context of the nonlinear Schrödinger equation; see also the work of Friedlander
for the wave equation [37]. Since then, this construction has been successfully pursued for other
equations; see [109, 11, 110, 12, 13, 104, 20, 105, 21, 85, 86, 106, 103, 80, 18, 15, 6, 33, 94, 88, 90]
and references therein. The expression in (1.28) is only formal, but it can be made rigorous by
interpreting the Gibbs measure µ as a probability measure which is absolutely continuous with
respect to the Gaussian measure ρ

dρ = Z−1
0 e−

1
2

´
T(∂xu)2dxdu, (1.30)

with Z0 a normalizing constant. The measure ρ can be seen as the induced probability measure
under the map

ω 7→ uω(x) =
∑
n∈Z∗

gn(ω)

|n|
einx, (1.31)

where {gn}n∈Z∗ , Z∗ = Z\{0}, is a sequence of complex-valued independent Gaussian random
variables on a probability space (Ω,F ,P), satisfying g−n = gn. The series in (1.31) is essentially
the Fourier-Wiener series for the Wiener measure ρ in (1.30); see [5] for further details. Note that
u defined in (1.31) lies in

⋂
s< 1

2
Hs(T) and in

⋂
s<1− 1

p
FLs,p(T) almost surely. Consequently,

the support of ρ and of µ (when well-defined) is included in these sets.
Before discussing its invariance, we first need to construct the Gibbs measure µ as a well-

defined probability measure on FLs,p(T). In particular, we need the weight e∓
1
k+1

´
T u

k+1dx to
be integrable with respect to the base Gaussian measure ρ in (1.30). In the defocusing case,
with the ‘+’ sign and when k ≥ 3 is odd in (1.27), it follows from the Sobolev embedding
that µ is a well-defined probability measure on FLs,p(T) for 1 ≤ p ≤ ∞ and s < 1 − 1

p .

However, in the non-defocusing case, with the ‘−’ sign or when k ≥ 2 is even in (1.27), the

quantity e∓
1
k+1

´
T u

k+1dx is unbounded in FLs,p(T) and the measure (1.28) is not normalizable.

16



To bypass this difficulty, Lebowitz-Rose-Speer [71] introduced a mass cutoff and proposed to
study the following Gibbs measure

dµ = Z−1
1{‖u‖L2≤R}e

−H(u)du. (1.32)

Lebowitz-Rose-Speer [71] and Bourgain [11] showed that the measure µ in (1.32) is normalizable
for 2 ≤ k ≤ 5 and an appropriate choice of R > 0; see Theorem 1.2.1. The normalizability at
the optimal threshold, for k = 5, was recently shown by Oh-Sosoe-Tolomeo [89]. The following
theorem summarizes their findings. See Section 4.3 for further details on the construction of
the non-defocusing Gibbs measure.

Theorem 1.2.1 ([71, 11, 89]). Let k ≥ 2, R > 0, and define F (u) by

F (u) = e∓
1
k+1

´
T u

k+1dx
1{‖u‖L2<R}, (1.33)

where ‘∓’ above corresponds to ‘±’ in the equation (1.27). Then, for 1 ≤ q <∞, we have that
F (u) ∈ Lq(dρ) if one of the following assumptions hold:

(a) 2 ≤ k ≤ 4 and any finite R > 0;

(b) k = 5 and 0 < R < ‖Q‖L2(R), where Q is the (unique) optimizer for the Gagliardo-
Nirenberg-Sobolev inequality on R with ‖Q‖6L6(R) = 3‖Q′‖2L2(R). If R = ‖Q‖L2(R), then we
further impose q = 1.

Lastly, in order to discuss the invariance of the Gibbs measure µ, we must first construct
a (globally-in-time) well-defined flow for gKdV (1.27) on the support of µ. Before proceeding
further, we recall some known well-posedness results of (1.27). In [10], Bourgain introduced
the Fourier restriction norm method and proved local well-posedness of KdV in L2(T) which
contains the support of the measure µ. Global well-posedness followed immediately due to the
conservation of the mass. Following the same method for mKdV, Bourgain [11] established
its local well-posedness in Hs1(T) ∩ FLs2,∞(T) for some s1 <

1
2 < s2 < 1 which also include

the support of the measure µ. Here, FLs,p(T) denotes the Fourier-Lebesgue space defined in
(1.3). Unfortunately, the conservation laws of mKdV were not sufficient to globalize solutions.
Instead, Bourgain used a probabilistic argument to construct global-in-time solutions of mKdV.
In the seminal work [11], he exploited the invariance of the finite-dimensional Gibbs measures
corresponding to the truncated dynamics to globalize solutions of mKdV. Moreover, he rigor-
ously established the invariance of the Gibbs measure µ for KdV and mKdV. Here, with the
solution map Ψ(t) of (1.27) given at least almost surely with respect to µ, invariance of µ is
understood as

µ
(
Ψ(−t)A

)
= µ(A), (1.34)

for any measurable set A ⊂ L2(T) and t ∈ R. This approach is known as Bourgain’s invariant
measure argument. The main breakthrough in [11] was the globalization argument, in par-
ticular, using the formal invariance of the Gibbs measure µ as a substitute for a conservation
law.

Regarding (1.27) with k ≥ 4, Bourgain [10] proved small data global well-posedness in
Hs(T) for s > 3

2 and local existence of solutions (without uniqueness) for s ≥ 1. These results
were extended to global well-posedness in Hs(T) for s ≥ 1 by Staffilani in [98]. In particular,
they studied the following gauged gKdV equation (G-gKdV):

∂tu+ ∂3
xu = ±∂x

(
uk − kP0(uk−1)u

)
, (1.35)

where P0 denotes the mean P0(f) =
ffl
T f dx. The two equations (1.35) and (1.27) are equivalent

in the following sense: u is a solution of (1.27) if and only if v = G[u] is a solution of (1.35),
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where the gauge transform2 G = G0,t is given by

G0,t[u](t, x) = u
(
t, x∓ k

ˆ t

0

P0

(
uk−1(t′)

)
dt′
)
. (1.36)

In [29], Colliander-Keel-Staffilani-Takaoka-Tao established local well-posedness of (1.35) in
Hs(T) for s ≥ 1

2 and used the I-method to construct global solutions for s > 5
6 and k = 4

(see also [56, 3]). In addition, they showed that (1.27) and (1.35) are analytically ill-posed in
Hs(T) for s < 1

2 , which contains the support of µ. In fact, the data-to-solution map fails to
be Ck-continuous [13, 26, 29]. As a consequence, one cannot use a contraction mapping argu-

ment to extend the local well-posedness of (1.27) below H
1
2 (T) in the L2-based Sobolev scale.

To bypass this difficulty, when k = 4, Richards [94] showed almost sure local well-posedness
of (1.27) with the random initial data in (1.31), and proved invariance of the Gibbs measure
under the flow of (1.35). However, this approach is not suitable to treat the cases k ≥ 5 in a
unified manner. Regarding the Gibbs measure for gKdV with k ≥ 5, Oh-Richards-Thomann
[88] constructed almost sure global dynamics of gKdV (1.27) (without uniqueness) and proved
the following weaker notion of invariance of µ: for every t ∈ R, the law of the random function
u(t) which solves gKdV is given by the Gibbs measure µ. The lack of uniqueness of solutions in
[88] is due to the use of a compactness argument; see [1, 19]. Note that the notion of invariance
in [88] is weaker than (1.34) in the sense that the dynamics constructed there do not satisfy
the group property in (1.38).

1.2.2 Main results

Our main goal is to apply Bourgain’s invariant measure argument to construct global-in-time
dynamics of (1.27) and establish the invariance of the Gibbs measure for any k ≥ 4. The main
difficulty lies in proving local well-posedness in the support of the Gibbs measure. The lack
of analyticity of the data-to-solution map in

⋂
s< 1

2
Hs(T) leads us to pursue the question of

well-posedness in the Fourier-Lebesgue spaces FLs,p(T) in (1.3). In particular, we establish
deterministic local well-posedness of G-gKdV (1.35) in the Fourier-Lebesgue spaces containing
the support of the Gibbs measure µ, i.e., FLs,p(T) with (s− 1)p < −1.

Theorem 1.2.2. For an integer k ≥ 4 and 2 < p <∞, there exists 1
2 < s∗(p) < 1− 1

p such that

G-gKdV (1.35) is locally well-posed in FLs,p(T) for any s > s∗(p). Moreover, by inverting the
gauge transform, we also obtain local well-posedness of the gKdV equation (1.27) in FLs,p(T).

Remark 1.2.3. We start by clarifying our notion of local well-posedness of G-gKdV (1.35) in
FLs,p(T); for any u0 ∈ FLs,p(T), there exists T = T (‖u0‖FLs,p) > 0 and a unique solution u in

X
s, 12
p,2 (T ) ∩Xs,0

p,1(T ) ↪→ C
(
[−T, T ];FLs,p(T)

)
(see Definition 1.3.2) which satisfies the Duhamel

formulation of (1.35):

u(t) = S(t)u0 ±
ˆ t

0

S(t− t′)∂x
(
uk − kP0(uk−1)u

)
(t′) dt′, t ∈ [−T, T ],

where S(t) denotes the linear propagator. Moreover, the data-to-solution map Φ is (locally Lip-
schitz) continuous. Note that G0,t is a bijection on C

(
[−T, T ];FLs,p(T)

)
with inverse given by

G−1
0,t (u)(t, x) = u

(
t, x± k

ˆ t

0

P0

(
uk−1(t′)

)
dt′
)
.

Consequently, Theorem 1.2.2 asserts the following notion of local well-posedness for the original
gKdV equation (1.27); for any u0 ∈ FLs,p(T), there exist T = T (‖u0‖FLs,p) > 0 and a unique

solution u ∈ G−1
0,t

(
X
s, 12
p,2 (T ) ∩ Xs,0

p,1(T )
)
⊂ C

(
[−T, T ];FLs,p(T)

)
which satisfies the Duhamel

formulation (1.4) of (1.27). The same conditional uniqueness applies for the global-in-time

2 Typically, a gauge transform is a transform on the phase space, i.e., acting on spatial functions. However,
G defined in (1.36) is an action on space-time functions. We follow the literature [29, 94, 88] and abuse notation
by referring to it as a gauge transform. We also refer to the transformed equation (1.35) as the gauged equation.
See Remark 1.2.7 (ii) for further discussion.
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results in Theorems 1.2.4 and 1.2.5. The data-to-solution map Ψ of gKdV (1.27) can be defined
as Ψ(t) = Rt ◦ G−1

0,t ◦ Φ, where Rt denotes the evaluation map at time t. The map Ψ(t) is
defined on a neighborhood of the origin in FLs,p(T) and it is continuous, but not Lipschitz or
uniformly continuous in the FLs,p-topology due to the properties of G−1

0,t . Moreover, it satisfies
the group property Ψ(t1 + t2) = Ψ(t2)Ψ(t1) for any t1, t2 ∈ R. See Section 4.4 for more details
on this map.

We prove Theorem 1.2.2 by applying the Fourier restriction norm method adapted to the
Fourier-Lebesgue setting (see Definition 1.3.1). The method reduces to establishing a funda-
mental nonlinear estimate, where the main difficulty lies in controlling the derivative in the
nonlinearity. To overcome this derivative loss, we want to exploit the multilinear dispersion by
analyzing the phase function

φk(n, n1, . . . , nk) = n3 − n3
1 − . . .− n3

k

on the hyperplane n = n1 + . . .+ nk. For KdV (k = 2) and mKdV (k = 3), the corresponding
phase functions φ2 and φ3 are known to factorize, providing an explicit characterization of the
resonant and nearly-resonant sets, where

φk(n, n1, . . . , nk) = 0 and 0 < |φk(n, n1, . . . , nk)| � max(|n1|, . . . , |nk|),

respectively. Unfortunately, such factorizations are no longer available for φk when k ≥ 4, com-
plicating the study of the resonant and nearly-resonant frequency regions. In fact, the failure
of analyticity of the solution map in Hs(T) with s < 1

2 in [29] is due to the failure of the cor-
responding nonlinear estimate in these regions where |φk(n, n1, . . . , nk)| � max(|n1|, . . . , |nk|).

To overcome this difficulty, our approach is inspired by the “bilinear + multilinear” strategy
in the work of Colliander-Keel-Staffilani-Takaoka-Tao [28, 29]. Instead of starting by showing a
bilinear estimate, we first pursue a more careful description of the frequency space by compar-
ing φk(n, n1, . . . , nk) with the phase functions φ2(n, n1, n − n1) and φ3(n, n1, n2, n − n1 − n2)
associated with KdV and mKdV, respectively. Moreover, we further exploit the multilinear
dispersion in the form of bilinear and trilinear Strichartz estimates, which are the Fourier-
Lebesgue analogues of the periodic L4 and L6-Strichartz estimates, respectively. The idea of
multilinearizing periodic Strichartz estimates has also been used in L2-based Sobolev spaces;
see [29] for gKdV, [54] for NLS equation on T3, and [44] for DNLS on T, for example.

Now, let us turn our attention to the global aspect of the well-posedness. Following the
strategy in [11], we start by proving the invariance of the Gibbs measures associated with the
following truncated dynamics{

∂tuN + ∂3
xuN = ±P≤N∂x

(
(P≤NuN )k − kP0

(
(P≤NuN )k−1

)
P≤NuN

)
,

uN |t=0 = u0,
(1.37)

where P≤N denotes the Dirichlet projection onto frequencies {|n| ≤ N}. Unfortunately, the
Hamiltonian structure of (1.37) is disrupted by the gauge transform. Therefore, the invariance
of the corresponding Gibbs measures does not follow immediately from Liouville’s Theorem. A
similar difficulty was found by Nahmod, Oh, Rey-Bellet, and Staffilani when studying the Gibbs
measure for DNLS in [80]. See Remark 1.2.7 for additional details. As a consequence, we must
establish the conservation of the mass and of the Hamiltonian for (1.37) as well as the invariance
of the finite dimensional Lebesgue measures on P≤NL

2(T) under the flow of (1.37). Then, using
the invariance of the finite-dimensional Gibbs measures for (1.37), we extend solutions of (1.35)
globally-in-time and also establish the invariance of µ under its flow.

Theorem 1.2.4. Assume one of the following conditions:

(a) defocusing case: ‘+’ sign in (1.27) and k odd;

(b) non-defocusing case: ‘+’ sign in (1.27) and k = 4, or ‘−’ sign in (1.27) and 3 ≤ k ≤ 5,
with mass 0 < R ≤ ‖Q‖L2(R) if k = 5. Here, Q denotes the (unique) optimizer of the
Gagliardo-Nirenberg-Sobolev inequality on R with ‖Q‖6L6(R) = 3‖Q′‖2L2(R).

19



Then, the G-gKdV equation (1.35) is almost surely globally well-posed with respect to
the Gibbs measure. In particular, for 2 < p < ∞, there exists a µ-measurable set Σ ⊂⋂
s<1− 1

p
FLs,p(T) of full µ-measure such that for every u0 ∈ Σ, the G-gKdV equation (1.35)

with initial data u0 has a uniquely defined global-in-time solution u ∈
⋂
s<1− 1

p
C
(
R;FLs,p(T)

)
.

The obtained solution map Φ(t) : u0 7→ u(t) of G-gKdV defined on Σ is µ-measurable and
satisfies the flow property

Φ(t)Σ = Σ for all t ∈ R, Φ(t1 + t2) = Φ(t2)Φ(t1) for all t1, t2 ∈ R. (1.38)

Moreover, the Gibbs measure µ is invariant under the flow of G-gKdV (1.35) in the sense that
µ
(
Φ(−t)A)

)
= µ(A) for any µ-measurable set A ⊂ Σ and t ∈ R.

By inverting the gauge transform and exploiting the invariance of the Gibbs measure under
spatial translations, we obtain our main result.

Theorem 1.2.5. Under the assumptions of Theorem 1.2.4, the (original) gKdV equation (1.27)
is almost surely globally well-posed with respect to the Gibbs measure. In particular, for every
u0 in the set Σ of full µ-measure given in Theorem 1.2.4, the gKdV equation (1.27) with initial
data u0 has a uniquely defined global-in-time solution u ∈

⋂
s<1− 1

p
C
(
R;FLs,p(T)

)
. Moreover,

the obtained solution map Ψ(t) has the same flow property as (1.38), and the Gibbs measure µ is
invariant under Ψ(t) in the sense that (1.34) holds for any µ-measurable set A ⊂ Σ and t ∈ R.

We complete this section with some further remarks.

Remark 1.2.6. (i) Theorem 1.2.5 extends the result of Richards [94] for k = 4 by showing
invariance of the Gibbs measure under the original dynamics (1.27). Moreover, our work es-
tablishes the first result on the invariance of the Gibbs measure µ in the sense of (1.34) for
arbitrarily large values of k ≥ 5, in the defocusing case.

(ii) A weaker notion of invariance of µ for k ≥ 5 was established by Oh-Richards-Thomann in
[88]. They constructed almost sure global dynamics for gKdV (1.27), without uniqueness, and
established invariance in the following sense: for any t ∈ R, the law L

(
u(t)

)
of the random

variable u(t) which solves (1.27) is given by the Gibbs measure µ. They used the compactness
argument in [1, 19], exploiting the invariance of the truncated measures to construct a tight
sequence of space-time measures. Although their result can be easily extended to the Fourier-
Lebesgue spaces in Theorem 1.2.4, we do not know if our solutions coincide with those in [88].
Due to the lack of uniqueness of solutions in [88] and the conditional uniqueness of our result,
we cannot directly compare these solutions.

Remark 1.2.7. (i) In [80], Nahmod, Oh, Rey-Bellet, and Staffilani studied DNLS on the one-
dimensional torus. In particular, they constructed a weighted Wiener measure, invariant under
the gauged dynamics, and established almost sure global well-posedness of DNLS in the support
of said measure. Unlike for gKdV (1.27), local well-posedness in the support of the measure was
already available in [44]. Consequently, the main difficulty arose in the globalization process.
The energy associated to the gauged dynamics was no longer conserved for truncated solutions,
which required an approach reminiscent of the I-method to instead establish almost invariance
of the truncated measures. In our case, the main difficulty lies in establishing the local well-
posedness of G-gKdV (1.35) in the Fourier-Lebesgue spaces that include the support of the
measure, which was readily available for DNLS. Similarly to [80], we also have to prove the
invariance of the finite-dimensional Lebesgue measure with respect to the truncated dynamics
in (1.37). However, unlike in [80], the Hamiltonian is still conserved and we can easily show
invariance of the Gibbs measures associated to (1.37).

(ii) One additional difficulty in establishing invariance of the Gibbs measure µ under the flow
of (1.27) was due to the gauge transform. The map G0,t for k ≥ 4 is a map on space-time
functions. This is a sharp contrast with DNLS, whose more involved gauge transform is well
defined as a map on FLs,p(T), allowing the authors in [80] to consider the push-forward of the
measure µ by the gauge transform. This topic was further explored for DNLS in a subsequent
work [81]. Here, we bypass the difficulty associated with the gauge transform by exploiting the
invariance of the Gibbs measure under spatial translations.
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1.3 Notations

Before proceeding to the proof of our main results, we introduce some relevant notation. Let
A . B denote an estimate of the form A ≤ CB for some constant C > 0. In addition, A ∼ B
denotes A . B and B . A, while A � B denotes A ≤ εB for some small constant 0 < ε < 1.
We sometimes use .α, ∼α,�α to indicate that the implicit constants depend on a parameter α.
The notations a+ and a− represent a+ ε and a− ε for arbitrarily small ε > 0, respectively.

Our conventions for the Fourier transform are as follows. The Fourier transform of u :
R× T→ C with respect to the space variable is given by

Fxu(t, n) =
1

2π

ˆ
T
u(t, x)e−inx dx.

The Fourier transform of u with respect to the time variable is given by

Ftu(τ, x) =
1

2π

ˆ
R
u(t, x)e−itτ dt.

The space-time Fourier transform is denoted by Ft,x = FtFx. For simplicity, we sometimes drop
the harmless factors of 2π. We often use û to denote Fxu, Ftu and Ft,xu, but it is clear which
one it refers to from context, namely from the use of the spatial and time Fourier variables n
and τ , respectively.

Now, we define the spaces of functions mentioned in the previous sections and used through-
out the thesis. Let S(R×T) denote the space of functions u : R×R→ C, with u ∈ C∞(R×T)
which satisfy

u(t, x+ 2π) = u(t, x), sup
(t,x)∈R×T

|tα∂βt ∂γxu(t, x)| <∞, α, β, γ ∈ N ∪ {0}.

We introduce the Xs,b(R× T) spaces adapted to the Fourier-Lebesgue setting in [42, 44].

Definition 1.3.1. Let s, b ∈ R and 1 ≤ p, q ≤ ∞. The space Xs,b
p,q(R× T), abbreviated Xs,b

p,q, is
defined as the completion of S(R× T) with respect to the norm

‖u‖Xs,bp,q(R×T) =
∥∥〈n〉s〈τ − n3〉bû(τ, n)

∥∥
`pn(Z)Lqτ (R)

=
∥∥∥〈n〉s∥∥〈τ − n3〉bû(τ, n)

∥∥
Lqτ (R)

∥∥
`pn(Z)

. (1.39)

When p = q = 2, the Xs,b
p,q-spaces defined above reduce to the standard Xs,b-spaces intro-

duced by Bourgain in [9, 10] (see also [93, 4, 66]). These spaces satisfy the following embedding
for any 1 ≤ p <∞,

Xs,b
p,q(R× T) ↪→ C(R;FLs,p(T)) for b >

1

q′
= 1− 1

q
.

When b = 1
q′ , this embedding fails. For this reason, we introduce the following space

Zs,bp = Xs,b
p,2 ∩X

s,b− 1
2

p,1 .

Note that Z
s, 12
p ↪→ C

(
R;FLs,p(T)

)
. We will further require the time localized version of the

Fourier restriction spaces.

Definition 1.3.2. Let s, b ∈ R, 1 ≤ p, q < ∞, and I ⊂ R be an interval. We define the
restriction space Xs,b

p,q(I) of all functions u which satisfy

‖u‖Xs,bp,q(I) := inf
{
‖v‖Xs,bp,q : v ∈ Xs,b

p,q(R× T), v|t∈I = u
}
<∞,

with the infimum taken over all extensions v of u. If I = [−T, T ] for some 0 < T ≤ 1, we
denote the space by Xs,b

p,q(T ). The spaces Zs,bp (I) are defined analogously.
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We introduce the linear propagator for the Airy equation S(t), defined by

Fx
(
S(t)u

)
(t, n) = eitn

3

û(t, n).

The norm in (1.39) can be rewritten using the interaction representation

‖u‖Xs,bp,q(R×T) =
∥∥〈∂x〉s〈∂t〉bS(−t)u(t)

∥∥
FL0,p

x (T)FL0,q
t (R)

=
∥∥‖〈∂x〉s〈∂t〉bS(−t)u(t)‖FL0,q

t (R)

∥∥
FL0,p

x (T)
.

For simplicity, we may drop the domains of integration/summation of the norms for Xs,b
p,q(R×T),

Hs(M), FLs,p(M), `p(Z), and Lq(T), M = R or T. Also, we often use a subscript to indicate
the variable associated with the norm. Lastly, we use 1A to denote the characteristic function
on the set A.
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Chapter 2

The modified Korteweg-de Vries
equation

In this chapter, we study the first renormalized mKdV equation (mKdV1)

∂tu+ ∂3
xu =

(
|u|2 −M(u)

)
∂xu, (2.1)

and the second renormalized mKdV equation (mKdV2)

∂tu+ ∂3
xu = |u|2∂xu−M(u)∂xu− iP (u)u, (2.2)

where the mass and the momentum are formally conserved quantities given by

M(f) =

 
T
|f(x)|2 dx,

P (f) = Im

 
T

(
f ∂xf

)
(x) dx =

∑
n∈Z

n|f̂(n)|2.

We consider the defocusing equation (‘+’ in (1.5)), as the sign will not play a role in the analysis.
Recall that these two equations are related by the gauge transform

G2[u](t, x) = e−iP (u)tu(t, x), (2.3)

where the momentum P
(
u(t)

)
is not well-defined outside H

1
2 (T). The first part of this chapter

is devoted to showing the ill-posedness of mKdV1 (2.1) (Theorem 1.1.1) and the well-posedness
of mKdV2 (2.2) (Theorems 1.1.3 and 1.1.6) in FLs,p(T) for s ≥ 1

2 and a restricted range of p.

In order to prove Theorem 1.1.3, we recall known linear estimates and auxiliary results in
Section 2.1, and show the main nonlinear estimate (Proposition 2.2.1) in Section 2.2. As a
consequence, we establish the local well-posedness of mKdV2 (2.2) for 1 ≤ p < 4 using the
Fourier restriction norm method in Section 2.3 and the ill-posedness of mKdV1 (2.1) for this
restricted range of p. Lastly, combining the a priori bounds of Oh-Wang [91] and a persistence
of regularity argument, we extend the solutions of mKdV2 globally-in-time (Theorem 1.1.6) in
Section 2.4.

In the second part of this chapter, we turn our attention to the problem of recovering
solutions of mKdV1 (2.1) from those of mKdV2 (2.2) outside H

1
2 (T). We first establish the

conservation of momentum at low regularity (Proposition 1.1.9) in Section 2.5, by using the
normal form approach to show a useful energy estimate. Lastly, in Section 2.6, we exploit
the conservation of momentum at low regularity to obtain distributional solutions of mKdV1
(Theorem 1.1.11).

Lastly, in Section 2.7, we prove a lemma from which the mild ill-posedness of (1.5) in
FLs,p(T) for s < 1

2 and 1 ≤ p <∞ follows, i.e., Proposition 1.1.4.
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2.1 Linear estimates and auxiliary results

In order to establish the local well-posedness of mKdV2 (2.2), we will apply the Fourier restric-

tion norm method in Z
s, 12
p (T ), for some 0 < T ≤ 1, given by

Z
s, 12
p (T ) = X

s, 12
p,2 (T ) ∩Xs,0

p,1(T ).

See Definition 1.3.2 for the Xs,b
p,q(T ) spaces. Recall that Z

s, 12
p (T ) ↪→ C

(
[−T, T ];FLs,p(T)

)
. We

require the following linear estimates (see [44, Lemma 7.1] for the proof).

Lemma 2.1.1. (i) (Homogeneous linear estimate) Let 1 ≤ p, q ≤ ∞ and s, b ∈ R, then∥∥S(t)u0

∥∥
Xs,bp,q(T )

. ‖u0‖FLs,p ,

for any 0 < T ≤ 1.
(ii) (Inhomogeneous linear estimate) Let 1 ≤ p ≤ ∞ and s ∈ R, then∥∥∥∥ˆ t

0

S(t− t′)F (t′) dt′
∥∥∥∥
Z
s, 1

2
p (T )

. ‖F‖
Z
s,− 1

2
p (T )

,

for any 0 < T ≤ 1.

The following estimate allows us to gain a small power of the time of existence T , needed
to close the contraction mapping argument (see [102, Lemma 2.11] for the proof).

Lemma 2.1.2. Let − 1
2 < b′ ≤ b < 1

2 and 1 ≤ p <∞. The following holds:

‖u‖
Xs,b

′
p,2 (T )

. T b−b
′
‖u‖Xs,bp,2(T ),

for any 0 < T ≤ 1.

We will also need the fact that multiplication by a sharp cut-off is a bounded operation in
Xs,b

2,2 (see [32, Lemma 2.1], for example).

Lemma 2.1.3. Let s ≥ 0, 0 ≤ b < 1
2 and fix T > 0. Then, the following estimate holds

‖1[0,T ](t)u‖Xs,b2,2
. ‖u‖Xs,b2,2

.

We also recall the following well-known tools (see [40, Lemma 4.2] and [79, Lemma 5],
respectively).

Lemma 2.1.4. Let 0 ≤ α ≤ β such that α+ β > 1 and ε > 0. Then, we have

ˆ
R

1

〈x− a〉α〈x− b〉β
dx .

1

〈a− b〉γ
,

where

γ =


α+ β − 1, β < 1,

α− ε, β = 1,

α, β > 1.

Lemma 2.1.5. Let 0 ≤ α, β < 1 such that α+ β > 1. Then, we have∑
n1,n2∈Z
n1+n2=n

1

〈n1〉α〈n2〉β
.

1

〈n〉α+β−1
,

uniformly over n ∈ Z.
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Lastly, we include the periodic L6-Strichartz estimates due to Bourgain [10]

‖ϕ(t)u‖L6
t,x

. ‖u‖
X

0+, 1
2
+

2,2

,

where ϕ denotes a smooth time cutoff. Interpolating the estimate above with the Sobolev

inequality X
1
3 +, 13 +
2,2 ⊂ L6

t,x, we have the following

‖ϕ(t)u‖L6
t,x

. ‖u‖
X

0+, 1
2
−

2,2

. (2.4)

2.2 Nonlinear estimate

In this section, we establish the fundamental trilinear estimates required to show Theorem 1.1.3.
We start by introducing the following multilinear operators, defined on the Fourier side and
omitting time dependence,

Fx
(
NR(u1, u2, u3)

)
(n) =

∑
n=n1+n2+n3,
φ(n123)6=0

in1 û1(n1)û2(n2)û3(n3),

Fx
(
R(u1, u2, u3)

)
(n) = −in û1(n)û2(n)û3(n),

where n123 = (n1, n2, n3) and the phase function is given by φ(n123) = 3(n1 +n2)(n1 +n3)(n2 +
n3). When there is no ambiguity, we will use n to denote n123. Recall from (1.11) that the
nonlinearity of the real-valued mKdV1 equation (2.1) and that of mKdV2 (2.2) can be written
as

N (u, u, u) = NR(u, u, u) +R(u, u, u).

We then establish estimates for the resonant and non-resonant contributions NR and R, re-
spectively.

Proposition 2.2.1. Let (s, p) satisfy one of the following conditions: (i) 1
2 ≤ s < 3

4 ,
1 ≤ p < 4

3−4s ; (ii) s ≥ 3
4 , 1 ≤ p < ∞. For uj : R × T → C, j = 1, 2, 3, the following

estimates hold:

‖NR(u1, u2, u3)‖
Z
s,− 1

2
p (T )

. T δ
3∏
j=1

‖uj‖
X
s, 1

2
p,2 (T )

, (2.5)

‖R(u1, u2, u3)‖
Z
s,− 1

2
p (T )

. T δ
3∏
j=1

‖uj‖
X
s, 1

2
p,2 (T )

, (2.6)

for some 0 < δ � 1 and any 0 < T ≤ 1.

Proof. It suffices to show

‖NR(ũ1, ũ2, ũ3)‖
Z
s,− 1

2
p

. max
k=1,2,3

(
‖ũk‖

X
s, 1

2
p,2

3∏
j=1,
j 6=k

‖ũj‖
X
s, 1

2
−ν

p,2

)
,

‖R(ũ1, ũ2, ũ3)‖
Z
s,− 1

2
p

.
3∏
j=1

‖ũj‖
X
s, 1

2
−ν

p,2

, (2.7)

for any ũj an extension of uj in [−T, T ], j = 1, 2, 3, and some ν > 0. Then, taking an infimum
over all extensions and using Lemma 2.1.2, we get (2.5) and (2.6). For simplicity, denote the
extensions ũj by uj , j = 1, 2, 3, in the remaining of the proof. Let σ0 = τ − n3, µ = (τ, n),
σj = τj − n3

j , and µj = (τj , nj), j = 1, 2, 3.
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We start by estimating the X
s,− 1

2
p,2 -norm of the non-resonant contribution NR

‖NR(u1, u2, u3)‖
X
s,− 1

2
p,2

.

∥∥∥∥ ∑
n=n1+n2+n3,

φ(n) 6=0

ˆ

τ=τ1+τ2+τ3

〈n〉s|n1|
〈τ − n3〉 12

3∏
j=1

|ûj(τj , nj)|
∥∥∥∥
`pnL2

τ

. (2.8)

Note that σ0 − σ1 − σ2 − σ3 = −3(n1 + n2)(n1 + n3)(n2 + n3) = φ(n) which implies that

|φ(n)| . max
j=0,1,2,3

|σj | =: σmax. (2.9)

Let |nmin| ≤ |nmed| ≤ |nmax| denote the increasing rearrangement of the frequencies n1, n2, n3.
We distinguish the following two cases for the phase function φ(n):

|n1| ∼ |n2| ∼ |n3|, |φ(n)| ∼ |nmax|λ1λ2 and, (2.10)

|φ(n)| ∼ |nmax|2λ, (2.11)

where λ, λ1 = min{|n1 + n2|, |n1 + n3|, |n2 + n3|} and λ2 = med{|n1 + n2|, |n1 + n3|, |n2 + n3|}.
From (2.9), we can use the largest modulation σmax to gain powers of the maximum frequency.
Thus, we will consider different cases depending on the value of σmax and on which of the
conditions (2.10) or (2.11) holds.

Case 1.1: σmax = |σ0|

Let fj(τ, n) = 〈n〉s〈τ−n3〉 12−ν |ûj(τ, n)| and note that ‖fj‖`pnL2
τ

= ‖uj‖
X
s, 1

2
−ν

p,2

, j = 1, 2, 3. Then,

we have

(2.8) .

∥∥∥∥∥ ∑
n=n1+n2+n3,

φ(n)6=0

ˆ

τ=τ1+τ2+τ3

〈n〉s|n1|
|φ(n)| 12

∏3
j=1〈nj〉s〈σj〉

1
2−ν

3∏
j=1

fj(τj , nj)

∥∥∥∥∥
`pnL2

τ

.

∥∥∥∥ ∑
n=n1+n2+n3,

φ(n)6=0

〈n〉s|n1|
|φ(n)| 12

∏3
j=1〈nj〉s

J1(τ, n)

( ˆ

τ=τ1+τ2+τ3

3∏
j=1

|fj(τj , nj)|2
) 1

2

∥∥∥∥∥
`pnL2

τ

,

using Hölder’s inequality, where

J1(τ, n) :=

( ˆ

τ=τ1+τ2+τ3

1

(〈σ1〉〈σ2〉〈σ3〉)1−2ν

) 1
2

. 1

from using Lemma 2.1.4 twice and with 0 < ν < 1
6 . Using Minkowski’s and Hölder’s inequalities,

it follows that

(2.8) .

∥∥∥∥ ∑
n=n1+n2+n3,

φ(n) 6=0

〈n〉s|n1|
|φ(n)| 12

∏3
j=1〈nj〉s

3∏
j=1

‖fj(nj)‖L2
τ

∥∥∥∥
`pn

. sup
n

(
J ′1(n)

) 1
p′

3∏
j=1

‖fj‖`pnL2
τ
,

where

J ′1(n) =
∑

n=n1+n2+n3,
φ(n)6=0

(
〈n〉s|n1|

|φ(n)| 12
∏3
j=1〈nj〉s

)p′
. (2.12)
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Since ‖fj‖`pnL2
τ

= ‖uj‖
X
s, 1

2
−ν

p,2

, it only remains to estimate J ′1. If (2.10) holds, then

〈n〉s|n1|
|φ(n)| 12

∏3
j=1〈nj〉s

.
1

〈n1〉2s−
1
2 〈λ1〉

1
2 〈λ2〉

1
2

,

for distinct λ1, λ2 ∈ {|n1 +n2|, |n1 +n3|, |n2 +n3|}. We can write λj = |n−n′j |, j = 1, 2, where
n′1, n

′
2 are distinct frequencies in {n1, n2, n3}. Since λ1, λ2 . |n1|, we have

J ′1(n) .
∑

n=n1+n2+n3,
φ(n)6=0

1

〈n1〉(2s−
1
2 )p′〈n− n′1〉

p′
2 〈n− n′2〉

p′
2

.
∑
n′1,n

′
2

1

〈n− n′1〉(s+
1
4 )p′〈n− n′2〉(s+

1
4 )p′

. 1,

for s ≥ 1
4 , 1 ≤ p < 2 or s > 3

4 −
1
p , 2 ≤ p <∞. If (2.11) holds, then

〈n〉s|n1|
|φ(n)| 12

∏3
j=1〈nj〉s

.
1

〈nmin〉s〈nmed〉sλ
1
2

,

where λ ∈ {|nmin +nmed|, |n−nmin|}. If λ = |nmin +nmed|, since |nmin|, |nmin +nmed| . |nmed|,
we have

J ′1(n) .
∑

n=n1+n2+n3,
φ(n) 6=0

1

〈nmin〉sp′〈nmed〉sp′〈nmin + nmed〉
p′
2

.
∑

nmin,nmed

1

〈nmin〉(s+
1
4 )p′〈nmin + nmed〉(s+

1
4 )p′

. 1

given that s ≥ 1
4 , 1 ≤ p < 2 or s > 3

4−
1
p , 2 ≤ p <∞. If λ = |n−nmin|, since |n−nmin|, |nmin| .

|nmed|, the same estimate follows from using Lemma 2.1.5.

Case 1.2: σmax = |σj |, j ∈ {1, 2, 3}

Assume that σmax = |σ1|, as a similar argument holds in the remaining cases. Let g1(τ, n) =

〈n〉s〈τ −n3〉 12 |û1(τ, n)|, gj(τ, n) = 〈n〉s〈τ −n3〉 12−ν |ûj(τ, n)|, j = 2, 3, and note that ‖g1‖`pnL2
τ

=

‖u1‖
X
s, 1

2
p,2

and ‖gj‖`pnL2
τ

= ‖uj‖
X
s, 1

2
−ν

p,2

, j = 2, 3. Using duality, for g0 ∈ `p
′

n L
2
τ , and Hölder’s

inequality, we have

(2.8) .
∑
n

∑
n=n1+n2+n3,

φ(n)6=0

ˆ

τ

ˆ

τ=τ1+τ2+τ3

〈n〉s|n1|
|φ(n)| 12 〈σ0〉

1
2−ν〈n1〉s

∏3
j=2〈nj〉s〈σj〉

1
2−ν

× g0(τ, n)
3∏
j=1

gj(τj , nj)

.
∑
n

∑
n=n1+n2+n3,

φ(n)6=0

〈n〉s|n1|
|φ(n)| 12

∏3
j=1〈nj〉s

‖g0(n)‖L2
τ

3∏
j=1

‖gj(nj)‖L2
τ
× J2(τ1, n, n),

where

J2(τ1, n, n) =

( ˆ

τ1=τ−τ2−τ3

1

(〈σ0〉〈σ2〉〈σ3〉)1−2ν

) 1
2

. 1,
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by two applications of Lemma 2.1.4 with 0 < ν < 1
6 . Using Hölder’s inequality, we obtain

(2.8) .
(

sup
n
J ′1(n)

)
‖g0‖`p′n L2

τ

3∏
j=1

‖gj‖`pnL2
τ
,

with J ′1(n) defined in (2.12), which is uniformly bounded by following the same arguments in
the previous case. This concludes the estimate for ‖NR(u1, u2, u3)‖

X
s,− 1

2
p,2

.

Next, we consider the Xs,−1
p,1 -norm of NR,

‖NR(u1, u2, u3)‖Xs,−1
p,1

.

∥∥∥∥ ∑
n=n1+n2+n3,

φ(n)6=0

ˆ

τ=τ1+τ2+τ3

〈n〉s|n1|
〈σ0〉

3∏
j=1

|ûj(τj , nj)|
∥∥∥∥
`pnL1

τ

. (2.13)

As when estimating (2.8), we will consider different cases depending on the value of σmax. If
σmax = |σj |, j ∈ {1, 2, 3}, then using Cauchy-Schwarz inequality in τ gives

(2.13) .

∥∥∥∥ ∑
n=n1+n2+n3,

φ(n) 6=0

ˆ

τ=τ1+τ2+τ3

〈n〉s|n1|
〈σ0〉

1
2−ν

3∏
j=1

|ûj(τj , nj)|
∥∥∥∥
`pnL2

τ

and the estimate follows from Case 1.2. Hence, we can assume that |σ0| � |σj |, j = 1, 2, 3,

which implies that |σ0| ∼ |σ0−σ1−σ2−σ3|. Let hj(τ, n) = 〈n〉s〈τ−n3〉 12−2ν |ûj(τ, n)|, j = 1, 2, 3.
Then, using Hölder’s inequality with 1 = 1

q + 1
q′ and q < 2 and Minkowski’s inequality, we have

(2.13) .

∥∥∥∥ ∑
n=n1+n2+n3,

φ(n) 6=0

ˆ

τ=τ1+τ2+τ3

〈n〉s|n1|
|φ(n)| 12 〈σ0〉

1
2

∏3
j=1〈nj〉s〈σj〉

1
2−2ν

3∏
j=1

hj(τj , nj)

∥∥∥∥
`pnL1

τ

.

∥∥∥∥ ∑
n=n1+n2+n3,

φ(n) 6=0

ˆ

τ=τ1+τ2+τ3

〈n〉s|n1|
|φ(n)| 12

∏3
j=1〈nj〉s〈σj〉

1
2−ν

3∏
j=1

hj(τj , nj)

∥∥∥∥
`pnL

q
τ

.

∥∥∥∥ ∑
n=n1+n2+n3,

φ(n) 6=0

〈n〉s|n1|
|φ(n)| 12

∏3
j=1〈nj〉s

J3(τ, n)
3∏
j=1

‖hj(nj)‖Lqτ

∥∥∥∥
`pn

,

where

J3(τ, n) =

( ˆ

τ=τ1+τ2+τ3

1

(〈σ1〉〈σ2〉〈σ3〉)( 1
2−2ν)q′

) 1
q′

. 1,

from two applications of Lemma 2.1.4, for q satisfying 1
q > max

(
4ν, 1

4 + 3ν
)
. Using Hölder’s

inequality, we have

(2.13) .
(

sup
n
J ′1(n)

) 1
p′

3∏
j=1

‖hj‖`pnLqτ ,

for J ′1 defined in (2.12). We know that J ′1 is uniformly bounded in n from Case 1.1 and the
intended estimate follows from Hölder’s inequality

‖hj‖`pnLqτ = ‖uj‖
X
s, 1

2
−2ν

p,q

. ‖uj‖
X
s, 1

2
−ν

p,2

,

given that 1
q <

1
2 +ν. For fixed 0 < ν < 1

8 , we choose q = q(ν) < 2 satisfying max(4ν, 1
4 +3ν) <

1
q <

1
2 + ν. This completes the estimate of ‖NR(u1, u2, u3)‖Xs,−1

p,1
.
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Next, we consider the resonant part R. Since by Cauchy-Schwarz inequality we have

‖R(u1, u2, u3)‖Xs,−1
p,1

. ‖R(u1, u2, u3)‖
X
s,− 1

2
+ν

p,2

,

for any ν > 0, (2.7) follows once we show the following estimate

‖R(u1, u2, u3)‖
X
s,− 1

2
+ν

p,2

.
3∏
j=1

‖uj‖
X
s, 1

2
p,2

.

Using Cauchy-Schwarz inequality, we get

‖R(u1, u2, u3)‖
X
s,− 1

2
+ν

p,2

.

∥∥∥∥ ˆ

τ=τ1−τ2+τ3

〈n〉s|n|
〈τ − n3〉 12−ν

3∏
j=1

|ûj(τj , n)|
∥∥∥∥
`pnL2

τ

.
(

sup
τ,n

J4(τ, n)
)∥∥∥∥〈n〉s|n| 3∏

j=1

‖〈τ − n3〉 12−ν ûj(τ, n)‖L2
τ

∥∥∥∥
`pn

,

where

J4(τ, n) =

( ˆ

τ=τ1−τ2+τ3

1

(〈τ − n3〉〈τ1 − n3〉〈τ2 − n3〉〈τ3 − n3〉)1−2ν

) 1
2

. 1,

by two applications of Lemma 2.1.4, with 0 < ν < 1
4 . Since we want 〈n〉s|n| . 〈n〉3s, we must

impose the condition s ≥ 1
2 . Thus, using Hölder’s inequality we get

‖R(u1, u2, u3)‖
X
s,− 1

2
+ν

p,2

.
3∏
j=1

∥∥〈n〉s〈τ − n3〉 12−ν ûj(τ, n)
∥∥
`3pn

.
3∏
j=1

‖uj‖
X
s, 1

2
−ν

p,2

,

completing the estimate for the resonant contribution.

2.3 Proof of Theorems 1.1.3 and 1.1.1 with 1 ≤ p < 4

In order to prove Theorem 1.1.3, we establish that the right-hand side of the Duhamel formu-
lation for mKdV2 (2.2)

u(t) = S(t)u0 +

ˆ t

0

S(t− t′)N (u, u, u)(t′) dt′

is a contraction in Z
s, 12
p (T ), for some 0 < T ≤ 1. We can then show local well-posedness of (2.2)

for the range of (s, p) where the nonlinear estimate holds. In particular, for (s, p) satisfying one
of the following conditions:

1

2
≤ s < 3

4
, 1 ≤ p < 4

3− 4s
or s ≥ 3

4
, 1 ≤ p <∞. (2.14)

Note that at the endpoint s = 1
2 , we can only cover the range 1 ≤ p < 4.

Proof of Theorem 1.1.3 with (2.14). Let (s, p) satisfying the assumptions in (2.14). Given u0 ∈
FLs,p(T), define the solution map Γu0

as follows

Γu0
[u](t) := S(t)u0 +

ˆ t

0

S(t− t′)N (u, u, u)(t′) dt′.

Let R > 0 and BR :=
{
u ∈ Zs,

1
2

p (T ) : ‖u‖
Z
s, 1

2
p (T )

≤ R
}
. Using Lemma 2.1.1 and Proposition
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2.2.1, for some 0 < δ � 1, we have

‖Γu0(u)‖
Z
s, 1

2
p (T )

≤ C1‖u0‖FLs,p + C2‖N (u, u, u)‖
Z
s,− 1

2
p (T )

≤ C1‖u0‖FLs,p + C3T
δ‖u‖3

X
s, 1

2
p,2 (T )

(2.15)

for constants C1, C2, C3 > 0 and 0 < T ≤ 1. Similarly, since N (u, u, u) − N (v, v, v) = N (u −
v, u, u) +N (v, u− v, v) +N (v, v, u− v), we have

‖Γu0
(u)− Γu0

(v)‖
Z
s, 1

2
p (T )

≤ C4T
δ
(
‖u‖2

X
s, 1

2
p,2 (T )

+ ‖v‖2
X
s, 1

2
p,2 (T )

)
‖u− v‖

X
s, 1

2
p,2 (T )

(2.16)

for a constant C4 > and 0 < T ≤ 1. Choosing R := 2C1‖u0‖FLs,p and 0 < T = T (R) ≤ 1 such
that

C3T
δR3 ≤ 1

2
and C4T

δR2 ≤ 1

4
,

it follows from (2.15) and (2.16) that Γu0
is a contraction on the closed ball BR ⊂ Z

s, 12
p (T ).

Consequently, Γu0
has a unique fixed point u = Γu0

(u) ∈ Zs,
1
2

p (T ).

It only remains to show that Γu0
is locally uniformly continuous with respect to the initial

data u0. Let u0, v0 ∈ FLs,p(T) and u, v be the respective solutions. Following the same strategy
as for (2.15) and (2.16), with the above assumptions on T , we have that

‖u− v‖
Z
s, 1

2
p (T )

= ‖Γu0
(u)− Γv0(v)‖

Z
s, 1

2
p (T )

≤ C1‖u0 − v0‖FLs,p +
1

2
‖u− v‖

X
s, 1

2
p,2 (T )

.

Using the embedding Z
s, 12
p (T ) ↪→ C

(
[−T, T ];FLs,p(T)

)
, we conclude that

sup
t∈[−T,T ]

‖u(t)− v(t)‖FLs,p ≤ 2C1‖u0 − v0‖FLs,p .

Therefore, the data-to-solution map is locally uniformly continuous. This completes the proof
of Theorem 1.1.3 for (s, p) satisfying (2.14).

From the local well-posedness of mKdV2 (2.2), we can show the non-existence of solution of
mKdV1 (2.1) for initial data with infinite momentum. The ill-posedness result in Theorem 1.1.1
follows an argument by Guo-Oh [48]. The proof combines the local well-posedness of mKdV2
(Theorem 1.1.3) and the rapid oscillation of the phase depending on the momentum in the
gauge transform G2 in (2.3).

Proof of Theorem 1.1.1 with (2.14). Consider u0,N := P≤Nu0 and {uN}N∈N the sequence of
smooth global solutions of mKdV1 (2.1) with uN |t=0 = u0,N for N ∈ N. Suppose that there
exist T > 0 and a solution u ∈ C

(
[−T, T ];FLs,p(T)

)
of mKdV1 (2.1) such that:

(a) u|t=0 = u0;

(b) uN → u in C
(
[−T, T ];D′(T)

)
as N →∞.

For the smooth solutions uN , we have conservation of momentum: P (uN (t)) = P (u0,N ), t ∈
[−T, T ], N ∈ N. Thus, the gauge transform G2 is well-defined and invertible. Let vN := G2(uN ),
which is a smooth global solution of mKdV2 (2.2) with initial data u0,N . Then, by the local

well-posedness of mKdV2 (2.2), there exists T ′ = T ′(‖u0‖FLs,p) > 0 such that vN ∈ Z
s, 12
p (T ′),

for some T ≥ T ′ = T ′(‖u0‖FLs,p) > 01. Now, we want to show that {vN}N∈N converges

1From unconditional uniqueness of mKdV2 (2.2) at high regularity, the solutions vN coincide with the
solutions constructed in Theorem 1.1.3 with initial data u0,N . Moreover, there exists T ′ = T ′(‖u0‖FLs,p ) > 0
such that vN ∈ C

(
[−T ′, T ′];FLs,p(T)

)
for every N ∈ N.
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in C
(
[−T ′, T ′];FLs,p(T)

)
. From the local Lipschitz property of the data-to-solution map of

mKdV2 (2.2) in Theorem 1.1.3, it follows that

‖vN − vM‖CTFLs,p . ‖vN − vM‖
Z
s, 1

2
p (T )

. ‖u0,N − u0,M‖FLs,p → 0

as N,M → ∞, since {u0,N}N∈N converges in FLs,p(T). Consequently, there exists v ∈
C
(
[−T ′, T ′];FLs,p(T)

)
such that vN → v.

Now, we want to exploit the rapid oscillation of the phase introduced by G2 to arrive at a
contradiction. Let ϕ ∈ D

(
[−T ′, T ′]×T

)
be any test function. From the convergence of uN → u

in C
(
[−T, T ];D′(T)

)
, we have that

〈uN (t, ·), ϕ(t, ·)〉L2
x
→ 〈u(t, ·), ϕ(t, ·)〉L2

x
as N →∞.

Let F (t) := 〈u(t, ·), ϕ(t, ·)〉L2
x
, which is a continuous function supported on [−T ′, T ′]. Then,

F ∈ L1(R) and by the Riemann-Lebesgue lemma

|F̂ (τ)| → 0 as |τ | → ∞. (2.17)

Since lim supN→∞ |P (u0,N )| =∞, there exists a subsequence u0,Nj such that |P (u0,Nj )| → ∞.
We therefore focus on the corresponding subsequence {vNj}j∈N and in its convergence in the
sense of distributions. Namely, we have∣∣∣∣ˆ

R

ˆ
T
vNj (t, x)ϕ(t, x) dx dt

∣∣∣∣ =

∣∣∣∣ˆ
R

ˆ
T
e−iP (u0,Nj

)tuN (t, x)ϕ(t, x) dx dt

∣∣∣∣
≤
∣∣F̂ (P (u0,Nj )

)∣∣+

ˆ T ′

−T ′

∣∣〈uNj (t, ·)− u(t, ·), ϕ(t, ·)〉L2
x

∣∣dt→ 0

as j →∞. The first term converges to zero as a consequence of (2.17) and the assumption that
|P (u0,Nj )| → ∞, while the second is a consequence of uN → u in C

(
[−T ′, T ′];D′(T)

)
. Hence,

{vNj}j∈N converges to zero in the sense of distributions and to v in C
(
[−T ′, T ′];FLs,p(T)

)
.

Therefore, v ≡ 0. However, 0 = v(0) = u0, which means that P (u0) must be finite, i.e.,
|P (P≤Nu0)| = |P (u0,N )| converges as N →∞, which contradicts the assumption on the initial
data.

Remark 2.3.1. Note that at this point, we have only established the local well-posedness of
mKdV2 (2.2) in FLs,p(T) with (s, p) satisfying (2.14), and therefore must impose the same
regularity restriction on the ill-posedness of mKdV1 (2.1). The same proof holds for s ≥ 1

2 and
4 ≤ p <∞ after we have extended Theorem 1.1.3 to this range (see Chapter 3). We therefore
omit the proof of Theorem 1.1.1 for the remaining choices of (s, p).

2.4 Proof of Theorem 1.1.6 for 1 ≤ p < 4

In this section, we focus on showing the global well-posedness of mKdV2 (2.2). The following
a priori bounds due to Killip-Vişan-Zhang [63] and Oh-Wang [91] are essential to extending
local-in-time solutions to global ones.

Theorem 2.4.1 ([63, 91]). Let 2 < p < ∞ and 0 < s < 1 − 1
p or 1 ≤ p ≤ 2 and 0 < s < 1.

Then, there exist C = C(p) > 0, and γ = γ(s, p) > 0 such that

‖u(t)‖FLs,p ≤ C(1 + ‖u(0)‖FLs,p)γ‖u(0)‖FLs,p , (2.18)

for any smooth solutions u to the complex-valued mKdV1 equation (2.1), for any t ∈ R.

We can easily obtain the equivalent a priori bound for solutions of mKdV2 (2.2).
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Corollary 2.4.2. Let 2 < p < 4 and 1
2 ≤ s < 1− 1

p or 1 ≤ p ≤ 2 and 1
2 ≤ s < 1. Then, there

exist C = C(p) > 0 and γ = γ(s, p) > 0 such that for any u0 ∈ FLs,p(T) we have

‖u‖L∞T FLs,p ≤ C(1 + ‖u0‖FLs,p)γ‖u0‖FLs,p , (2.19)

where u ∈ C
(
[−T, T ];FLs,p(T)

)
is the corresponding solution of the complex-valued mKdV2

equation (2.2).

Proof. Let u0 ∈ FLs,p(T) and consider the corresponding solution u of mKdV2 (2.2) obtained
by Theorem 1.1.3. Consider a smooth approximating sequence {u0,n}n∈N such that u0,n → u0 in
FLs,p(T). Therefore, the smooth solutions of mKdV2 {un}n∈N with initial data un(0) = u0,n

satisfy un → u in C
(
[−T, T ];FLs,p(T)

)
from the Lipschitz property of the solution map in

Theorem 1.1.3. Consequently, for fixed t ∈ [−T, T ], we have the following estimate

‖u‖L∞T FLs,p ≤ ‖u− un‖L∞T FLs,p + ‖un‖L∞T FLs,p

≤ ‖u− un‖L∞T FLs,p + ‖G−1
2 [un]‖L∞T FLs,p

≤ ‖u− un‖L∞T FLs,p + C(1 + ‖G−1
2 [u0,n]‖FLs,p)γ‖G−1

2 [u0,n]‖FLs,p ,

using the fact that G2 is well-defined for smooth functions and an isometry in
L∞
(
[−T, T ];FLs,p(T)

)
, and the a priori bound (2.18). Using the convergence un → u in

C
(
[−T, T ];FLs,p(T)

)
and the isometry property of G2, we conclude that

‖u‖L∞T FLs,p ≤ C(1 + ‖u0‖FLs,p)γ‖u0‖FLs,p ,

as intended.

When 2 < p <∞ and 1
2 ≤ s < 1− 1

p or 1 ≤ p ≤ 2 and 1
2 ≤ s < 1, the global well-posedness

immediately follows from the local well-posedness in Theorem 1.1.3 and the global-in-time
bound (2.19) in Corollary 2.4.2, by iterating the local argument. However, we want to remove
the upper bound on s, using a persistence of regularity argument. Before proving Theorem 1.1.6
for 1 ≤ p < 4, we need to modify the nonlinear estimate in Section 2.2 accordingly.

Corollary 2.4.3. Let s ≥ 1
2 and 1 ≤ p < 4. Then, the following estimate holds

‖N (u, u, u)‖
Z
s,− 1

2
p (T )

. T δ‖u‖
X
s, 1

2
p,2 (T )

‖u‖2
X

1
2
, 1
2

p,2 (T )

for some 0 < δ � 1 and any 0 < T ≤ 1.

The above estimate follows from Proposition 2.2.1 with s = 1
2 and by placing the remaining

s − 1
2 derivatives on the factor with the largest frequency. The above corollary also holds if

(s, p) satisfy (2.14), but we are mostly concerned with the endpoint case and will focus only
on the regime s ≥ 1

2 and 1 ≤ p < 4. It is now possible to prove Theorem 1.1.6 under these
assumptions.

Proof of Theorem 1.1.6 when 1 ≤ p < 4. If 2 < p < 4 and 1
2 ≤ s < 1 − 1

p or 1 ≤ p ≤ 2 and
1
2 ≤ s < 1, the result follows from iterating Theorem 1.1.3. Now, consider the case when

2 < p < 4 and s ≥ 1− 1
p or 1 ≤ p ≤ 2 and s ≥ 1. Then, u0 ∈ FLs,p(T) ⊂ FL 1

2 ,p(T) and there

exists a unique global solution u ∈ C
(
R;FL 1

2 ,p(T)
)

of mKdV2 (2.2). Using the a priori bound

in Corollary 2.4.2 when running a contraction mapping argument in Z
1
2 ,

1
2

p (I), for any interval
I of length T > 0, imposes a local time of existence

T ∼ (1 + ‖u0‖FL 1
2
,p)−θ > 0, (2.20)

for the resulting solution, for some θ > 0. Moreover, by choosing I = [t0, t0 + T ], we get

‖u‖
Z

1
2
, 1
2

p (I)
≤ C‖u(t0)‖

FL
1
2
,p , (2.21)
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for some C > 0. Note that by using the a priori bound, the bounds (2.20) and (2.21) hold
uniformly in t0. Using Corollary 2.4.3 and (2.21), it follow that

‖u‖
Z
s, 1

2
p (I)

≤ C1‖u(t0)‖FLs,p + C2T
δ‖u(t0)‖2

FL
1
2
,p
‖u‖

X
s, 1

2
p,2 (I)

for constants C1, C2 > 0. Using the a priori bound, we have

C2T
δ‖u(t0)‖2

FL
1
2
,p
≤ C3T

δ
(
1 + ‖u0‖FL 1

2
,p

)2γ‖u0‖2FL 1
2
,p
≤ 1

2
,

where the last inequality holds by possibly refining the choice of θ in (2.20), for some C3 > 0.

Using the embedding Z
s, 12
p (I) ↪→ C

(
I;FLs,p(T)

)
, it follows that

sup
t∈I
‖u(t)‖FLs,p ≤ 2C1‖u(t0)‖FLs,p .

Iterating this argument, we obtain

sup
t∈[−T∗,T∗]

‖u(t)‖FLs,p ≤ (2C1)

(
1+‖u0‖FL1/2,p

)θ
T∗‖u0‖FLs,p ,

for any T ∗ > 0. This shows the global well-posedness of mKdV2 (2.2) in FLs,p(T) for 2 < p < 4
and s ≥ 1− 1

p or 1 ≤ p ≤ 2 and s ≥ 1.

2.5 Conservation of momentum outside H
1
2 (T)

In order to show the conservation of momentum at low regularity (Proposition 1.1.9), we estab-
lish an energy estimate on smooth solutions of the mKdV2 equation (2.2). The main idea is to
use the normal form approach (‘integration by parts in time’) to estimate the difference of the
momentum at time t and at the initial time. The normal form approach was first introduced
by Babin-Ilyin-Titi to study the periodic KdV equation [2], and further developed and applied
to many aspects of the well-posedness theory of dispersive equations, see [69, 35, 47, 70, 64] for
example. Here, we closely follow the argument in [82].

Proposition 2.5.1. Let (s, p) satisfy one of the following conditions: (i) 1
2 ≤ s < 5

6 , 1 ≤ p <
6

5−6s ; (ii) s ≥ 5
6 , 1 ≤ p < ∞, and u0 ∈ H∞(T). Let u be a smooth solution of (2.2) with

u|t=0 = u0. Then, the following estimate holds

∣∣P (P>Nu(t))− P (P>Nu(0))
∣∣ . 1

Nε

(
sup
t′∈[0,t]

‖u(t′)‖4FLs,p + ‖u‖4
X
s, 1

2
p,2

+ ‖u‖6
X
s, 1

2
p,2

)
,

for t > 0, any N ∈ N and 0 < ε� 1 small enough, where P>N = Id−P≤N .

Proof. Using the Fundamental Theorem of Calculus and the mKdV2 equation (2.2) on the
Fourier side, we have the following∣∣P (P>Nu(t)

)
− P

(
P>Nu(0)

)∣∣
=

∣∣∣∣∣ ∑
|n|>N

n
(
|û(t, n)|2 − |û(0, n)|2

)∣∣∣∣∣
=

∣∣∣∣∣2 ∑
|n|>N

nRe

ˆ t

0

(∂tû(t′, n))û(t′, n) dt′

∣∣∣∣∣
=

∣∣∣∣∣2 Im

ˆ t

0

∑
|n|>N

∑
n=n1+n2+n3,

φ(n)6=0

nn1û(t′, n1)û(t′,−n2)û(t′, n3)û(t′, n) dt′

∣∣∣∣∣.
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Let |nmin| ≤ |nmed| ≤ |nmax| denote the increasing rearrangement of n1, n2, n3. We will consider
the following 6 cases depending on the relative size of the frequencies:

• Case 1: (i) |nmax| � |nmed| & |n1| or (ii) |nmax| ∼ |nmed| � |n1|

• Case 2: |nmax| � |n1| � |nmin|

• Case 3: |n1| ∼ |nmed| � |nmin|

• Case 4: (i) |n1| � |nmed| ≥ |nmin| & |n1|
1
2 or (ii) |n1| � |nmed| & |n1|

1
2 � |nmin|

• Case 5: |n1| ∼ |n2| ∼ |n3|

• Case 6: |n1|
1
2 � |nmed| & |nmin|

In Cases 1–4, the difference can be estimated directly, while in Cases 5–6 we will require the
normal form approach.

Cases 1–4
Let σj := τj − n3

j , j = 1, 2, 3, and σ0 := τ − n3 denote the modulations. The following relation
holds

−σ0 + σ1 + σ2 + σ3 = n3 − n3
1 − n3

2 − n3
3 = φ(n).

In Cases 1–4, the resonance relation φ(n) satisfies the following

|nmax|2λ ∼ |φ(n)| . σmax := max
j=0,...,3

|σj |,

where λ ∈ {|n1 + n2|, |n1 + n3|, |n2 + n3|}. Let µj = (τj , nj), j = 1, . . . , 3, µ = (τ, n) and
assume that σmax = |σ0|, as the remaining cases can be handled analogously. In order to
extend the integral from [0, t] to the whole real line, we must associate the time-cutoff with one
of the factors. We can always choose one of the three factors which does not have the largest
modulation σmax, for example û(t, n1). Using Parseval’s identity, we have that∣∣P (P>Nu(t)

)
− P

(
P>Nu(0)

)∣∣
∼

∣∣∣∣∣2 Im

ˆ

τ=τ1+τ2+τ3

∑
|n|>N

∑
n=n1+n2+n3,

φ(n)6=0

nn1Ft,x
(
1[0,t]u

)
(µ1)û(−µ2)û(µ3)û(µ) dτ1 dτ2 dτ3

∣∣∣∣∣
.

ˆ

τ=τ1+τ2+τ3

∑
|n|>N

∑
n=n1+n2+n3,

φ(n)6=0

|nn1|
|φ(n)| 12

f̂1(µ1)f̂2(µ2)f̂2(µ3)f̂3(µ) dτ1 dτ2 dτ3, (2.22)

where f̂1(τ, n) =
∣∣Ft,x(1[0,t]u)(τ, n)

∣∣, f̂2(τ, n) = |û(τ, n)|, f̂3(τ, n) = 〈τ−n3〉 12 |û(τ, n)|. We focus
on estimating the spatial multiplier in (2.22).

In Case 1 (i), |φ(n)| ∼ |nmax|2|n1+nmed|, while in Case 1 (ii) we have |φ(n)| ∼ |nmax|2|nmed+
nmax|. Therefore,

|nn1|
|φ(n)| 12

.
|nn1|
|nmax|

. |n| 14 |n1|
3
4 . N0−|nn1n2n3|

1
4 +.

In Case 2, we see that |φ(n)| ∼ |nmax|2|n1|, which implies that

|nn1|
|φ(n)| 12

.
|nn1|

|nmax||n1|
1
2

. |n1|
1
2 . N0−|nn1nmax|

1
6 +.

In Case 3, we have |φ(n)| ∼ |n1|2|n1 + nmed|, from which we get

|nn1|
|φ(n)| 12

.
|nn1|
|n1|

. |n| . N0−|nn1nmed|
1
3 +.
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In Case 4 (i), |φ(n)| ∼ |n1|2|nmin + nmed| and we can estimate the multiplier as

|nn1|
|φ(n)| 12

.
|nn1|
|n1|

. |n1| . N0−|nn1n2n3|
1
3 +. (2.23)

In Case 4 (ii), |φ(n)| ∼ |n1|2|nmed| & |n1|
5
2 . Thus,

|nn1|
|φ(n)| 12

∼ |nn1|
|n1|

5
4

. |n1|
3
4 . N0−|nn1nmed|

3
10 +.

The worst estimate for the multiplier comes from Case 4 (i) in (2.23), where we must associate 1
3

spatial derivatives to each function. Consequently, we can estimate Cases 1–4 by using Hölder’s
inequality, L6-Strichartz (2.4) and Lemma 2.1.3, as follows

(2.22) .
1

N0+
‖D 1

3 +f1 · (D
1
3 +f2)2 ·D 1

3 +f3‖L1
t,x

.
1

N0+
‖D 1

3 +f1‖L6
t,x
‖D 1

3 +f2‖2L6
t,x
‖D 1

3 +f3‖L2
t,x

.
1

N0+
‖1[0,t]u‖

X
1
3
+, 1

2
−

2,2

‖u‖2
X

1
3
+, 1

2
−

2,2

‖u‖
X

1
3
+, 1

2
2,2

.
1

N0+
‖u‖4

X
s, 1

2
p,2

,

for 1 ≤ p <∞ and s > max
(

1
3 ,

5
6 −

1
p

)
.

Cases 5–6
Since P (P>Nu(t)) = P (P>Nv(t)), where v(t) = S(−t)u(t) stands for the interaction represen-
tation, the difference of momenta can be written as follows, in terms of v,

P
(
P>Nv(t)

)
− P

(
P>N (v(0)

)
= −2 Im

ˆ t

0

∑
|n|>N

∑
n=n1+n2+n3,

φ(n)6=0

nn1e
−it′φ(n)v̂(t′, n1)v̂(t′,−n2)v̂(t′, n3)v̂(t′, n) dt′.

Using integration by parts, we obtain

Im

ˆ t

0

∑
|n|>N

∑
n=n1+n2+n3,

φ(n)6=0

nn1
d

dt

(
e−it

′φ(n)

−iφ(n)

)
v̂(t′, n1)v̂(t′,−n2)v̂(t′, n3)v̂(t′, n) dt′

= −Re
∑
|n|>N

∑
n=n1+n2+n3,

φ(n)6=0

nn1

φ(n)

(
e−itφ(n)v̂(t, n1)v̂(t,−n2)v̂(t, n3)v̂(t, n)

− v̂(0, n1)v̂(0,−n2)v̂(0, n3)v̂(0, n)

)
+ Re

ˆ t

0

∑
|n|>N

∑
n=n1+n2+n3

φ(n)6=0

nn1

φ(n)
e−it

′φ(n)∂t
{
v̂(t′, n1)v̂(t′,−n2)v̂(t′, n3)v̂(t′, n)

}
dt′.

In order to estimate the last term on the right-hand side, we use the equation for v again, sub-
stituting the time derivative by the corresponding resonant and non-resonant nonlinear terms.
Therefore, writing the terms depending on u, we are interested in estimating the following
quantities, omitting the time dependence within the integrals,

B(t) = Re
∑
|n|>N

∑
n=n1+n2+n3,

φ(n)6=0

nn1

φ(n)
û(t, n1)û(t,−n2)û(t, n3)û(t, n),
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R0 = Im

ˆ t

0

∑
|n|>N

∑
n=n1+n2+n3,

φ(n)6=0

n2n1

φ(n)
û(n1)û(−n2)û(n3)û(n)|û(n)|2 dt′,

R1 = Im

ˆ t

0

∑
|n|>N

∑
n=n1+n2+n3,

φ(n)6=0

nn2
1

φ(n)
û(n1)|û(n1)|2û(−n2)û(n3)û(n) dt′,

R2 = Im

ˆ t

0

∑
|n|>N

∑
n=n1+n2+n3,

φ(n)6=0

nn1n2

φ(n)
û(n1)û(−n2)|û(−n2)|2û(n3)û(n) dt′,

R3 = Im

ˆ t

0

∑
|n|>N

∑
n=n1+n2+n3,

φ(n)6=0

nn1n3

φ(n)
û(n1)û(−n2)û(n3)|û(n3)|2û(n) dt′,

NR0 = Im

ˆ t

0

∑
|n|>N

∑
n=n1+n2+n3,

φ(n)6=0

∑
−n=m1+m2+m3,

φ(m)6=0

nn1m1

φ(n)
û(n1)û(−n2)û(n3)û(−m1)û(m2)û(−m3) dt′,

NR1 = Im

ˆ t

0

∑
|n|>N

∑
n=n1+n2+n3,

φ(n)6=0

∑
n1=m1+m2+m3,

φ(m) 6=0

nn1m1

φ(n)
û(−n2)û(n3)û(n)û(m1)û(−m2)û(m3) dt′,

NR2 = Im

ˆ t

0

∑
|n|>N

∑
n=n1+n2+n3,

φ(n)6=0

∑
n2=m1+m2+m3,

φ(m) 6=0

nn1m1

φ(n)
û(n1)û(n3)û(n)û(−m1)û(m2)û(−m3) dt′,

NR3 = Im

ˆ t

0

∑
|n|>N

∑
n=n1+n2+n3,

φ(n)6=0

∑
n3=m1+m2+m3,

φ(m) 6=0

nn1m1

φ(n)
û(n1)û(−n2)û(n)û(m1)û(−m2)û(m3) dt′,

where m = (m1,m2,m3) and φ(m) = 3(m1 +m2)(m1 +m3)(m2 +m3).

• Estimate for B(t)

Case 5: |n1| ∼ |n2| ∼ |n3|
Note that |φ(n)| ∼ |n1|λ1λ2, where λ1, λ2 ∈ {|n1 + n2|, |n1 + n3|, |n2 + n3|}, λ1 6= λ2. Assume
that λ1 = |n1 + n3|, λ2 = |n2 + n3|. We will omit the estimate for the remaining choices of
λ1, λ2, as it follows an analogous approach. Therefore, we have that

|nn1|
|φ(n)|(〈n〉〈n1〉〈n2〉〈n3〉)

1
4 +

.
1

N0+〈n1 + n3〉〈n2 + n3〉
.

Hence, with g(t, n) = 〈n〉s|û(t, n)|, using Hölder’s inequality and the fact that |n| . |nj |,
j = 1, 2, 3, it follows that

|B(t)| . 1

N0+

∑
n,n1,n2

g(t, n1)g(t,−n2)g(t, n− n1 − n2)g(t, n)

〈n− n2〉〈n− n1〉〈n〉4(s− 1
4−)

.
1

N0+

( ∑
n,n1,n2

g(t, n)p
′

〈n− n2〉p′〈n− n1〉p′〈n〉4(s− 1
4−)p′

) 1
p′

‖g(t)‖3`pn

.
1

N0+
‖u(t)‖4FLs,p ,

for 1 ≤ p <∞ and s > max
(

1
2 −

1
2p ,

1
4

)
.

Case 6: |n1|
1
2 � |nmed| & |nmin|

Assume that nmed = n2, nmin = n3, as the estimate is analogous otherwise. Since |φ(n)| ∼
|n1|2|n2 + n3|, we control the multiplier as follows

|nn1|
|φ(n)|

.
1

〈n2 + n3〉
.
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Using the fact that |n2| & |n3|, Hölder’s inequality, and Lemma 2.1.5, we have

|B(t)| . 1

N0+

( ∑
n1,n2,n3

g(t, n3)p
′

〈n2 + n3〉p′〈n1〉sp′〈n3〉2sp′〈n1 + n2 + n3〉sp′−

) 1
p′

‖g(t)‖3`pn

.
1

N0+

( ∑
n2,n3

g(t, n3)p
′

〈n2 + n3〉p′〈n3〉2sp′

) 1
p′

‖g(t)‖3`pn

.
1

N0+
‖u(t)‖4FLs,p ,

for 1 ≤ p <∞ and s > 1
2 −

1
2p .

• Estimate for Rj, j = 0, 1, 2, 3
We now focus on estimating R0. The estimate for the remaining contributions follows by a
similar approach. Let the following notation denote the modulations of the 6 factors

σj = τj − n3
j , j = 1, 2, 3,

σ4 = τ4 + n3, σ5 = τ5 − n3, σ6 = τ6 + n3,

which implies that |φ(n)| = |σ1 + . . . + σ6| . maxj=1,...,6 |σj |. Assume that |σ1| is the largest
modulation. Then, we can associate the time cut-off with the second factor. If another |σj | is
the largest modulation, we can associate the cut-off with the first factor, for example, and the
estimate follows analogously. Note that we can rewrite R0 as follows

R0 = Im
∑
|n|>N

∑
n=n1+n2+n3,

φ(n) 6=0

n2n1

φ(n)
Ft
(
û(n1)(1[0,t]û)(−n2)û(n3)û(n)û(n)û(n)

)
(0)

= Im

ˆ

τ1+...+τ6=0

∑
|n|>N

∑
n=n1+n2+n3,

φ(n)6=0

n2n1

φ(n)
û(τ1, n1)F

(
1[0,t]u

)
(−τ2,−n2)

× û(τ3, n3)û(−τ4, n)û(τ5, n)û(−τ6, n) dτ1 · · · dτ5.

Using the following notation

g1(τ, n) = 〈n〉s〈τ − n3〉 12 |û(τ, n)|,

g2(τ, n) = 〈n〉s〈τ − n3〉 12−
∣∣F(1[0,t]u

)
(τ, n)

∣∣,
we apply Cauchy-Schwarz inequality to obtain the following estimate

|R0| .
1

N0+

∑
|n|>N

∑
n=n1+n2+n3,

φ(n)6=0

|n|2+|n1|
|φ(n)| 32 (〈n1〉〈n2〉〈n3〉)s〈n〉3s

‖g2(−n2)‖L2
τ

× ‖g1(n3)‖L2
τ
‖g1(n)‖3L2

τ

( ˆ

τ1+...+τ6=0

|g1(τ1, n1)|2

〈σ2〉1−〈σ3〉 · · · 〈σ6〉
dτ1 . . . dτ5

) 1
2

.

By applying Lemma 2.1.4, we estimate the last factor on the right-hand side by ‖g2(n1)‖L2
τ

and
the problem reduces to showing

∑
|n|>N

∑
n=n1+n2+n3,

φ(n)6=0

|n|2+|n1|
|φ(n)| 32 (〈n1〉〈n2〉〈n3〉)s〈n〉3s

× ‖g1(n1)‖L2
τ
‖g2(−n2)‖L2

τ
‖g1(n3)‖L2

τ
‖g1(n)‖3L2

τ
. ‖g1‖5`pnL2

τ
‖g2‖`pnL2

τ
, (2.24)

since ‖g1‖`pnL2
τ
. ‖u‖

X
s, 1

2
p,2

and ‖g2‖`pnL2
τ

= ‖u‖
X
s, 1

2
−

p,2

, from Lemma 2.1.3 for the second term.
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Case 5: |n1| ∼ |n2| ∼ |n3|
Since |φ(n)| & |n1|λ1λ2, for λj = |n− n′j |, j = 1, 2, and n′1, n

′
2 ∈ {n1, n2, n3} distinct, we have

the following

|n|2+|n1|
|φ(n)| 32 (〈n1〉〈n2〉〈n3〉)

1
4 +〈n〉 34 +

.
1

〈n− n′1〉
3
2 〈n− n′2〉

3
2

.

Then, since |n| . |nj |, j = 1, 2, 3, using Hölder’s inequality gives

LHS of (2.24) .

( ∑
n,n′1,n

′
2

‖g1(n)‖3p
′

L2
τ

〈n− n′1〉1+〈n− n′2〉1+〈n〉6(s− 1
4−)p′

) 1
p′

‖g1‖2`pnL2
τ
‖g2‖`pnL2

τ

.

(∑
n

‖g1(n)‖3p
′

L2
τ

〈n〉6(s− 1
4−)p′

) 1
p′

‖g1‖2`pnL2
τ
‖g2‖`pnL2

τ

where the last inequality follows if 1 ≤ p <∞ and s > max
(

5
12 −

2
3p ,

1
4

)
.

Case 6: |n1|
1
2 � |nmed| & |nmin|

As before, we can assume without loss of generality that nmed = n2 and nmin = n3. Since
|φ(n)| ∼ |n1|2|n2 + n3| and |n1| ∼ |n| � |n2| & |n3|, we have

|n|2+|n1|
|φ(n)| 32

.
|n|0+

〈n2 + n3〉
3
2

.

Using Holder’s inequality, it follows that

LHS of (2.24) .

( ∑
n2,n3,n

‖g1(n)‖3p
′

L2
τ

〈n2 + n3〉1+〈n2〉sp′〈n3〉sp′〈n〉4sp′−

) 1
p′

‖g1‖2`pnL2
τ
‖g2‖`pnL2

τ

.

(∑
n3

1

〈n3〉2sp′−
∑
n

‖g1(n)‖3p
′

L2
τ

〈n〉4sp′−

) 1
p′

‖g1‖2`pnL2
τ
‖g2‖`pnL2

τ

and the estimate follows if 1 ≤ p <∞ and s > 1
2 −

1
2p .

• Estimate for NR0, NR1

We will omit the estimate forNR1 and focus onNR0. Let the following denote the modulations
of the 6 factors

σj = τj − n3
j , j = 1, 2, 3,

σ4 = τ4 −m3
1 σ5 = τ5 −m3

2, σ6 = τ6 −m3
3,

which implies that σ1 + σ2 + σ3 + σ4 + σ5 + σ6 = φ(n) + φ(m). Thus, we will consider two
regions:

|φ(m)| . |φ(n) + φ(m)|, (2.25)

|φ(m)| � |φ(n) + φ(m)|. (2.26)

If (2.25) holds, we can use the largest modulation to gain a power of |φ(m)| 12 . For (2.26), we
have no gain from the largest modulation, so we will use Strichartz estimates and the fact that
|φ(n)| ∼ |φ(m)|. Note that we can rewrite NR0 as follows

NR0 = Im

ˆ

τ1+...+τ6=0

∑
|n|>N

∑
n=n1+n2+n3,

φ(n)6=0

∑
−n=m1+m2+m3,

φ(m)6=0

nn1m1

φ(n)
û(τ1, n1)F

(
1[0,t]u

)
(−τ2,−n2)

× û(τ3, n3)û(−τ4,−m1)û(τ5,m2)û(−τ6,−m3) dτ1 · · · dτ5.
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Consider the case (2.25) and proceed as in the estimate for R0. Assuming that we can
associate the time cut-off with the second factor, we have

|NR0| .
1

N0+

∑
|n|>N

∑
n=n1+n2+n3,

φ(n)6=0

∑
−n=m1+m2+m3,

φ(m)6=0

|n|1+|n1m1|
|φ(n)||φ(m)| 12

∏3
j=1〈nj〉s〈mj〉s

‖g1(n1)‖L2
τ

× ‖g2(−n2)‖L2
τ
‖g1(n3)‖L2

τ
‖g1(−m1)‖L2

τ
‖g1(m2)‖L2

τ
‖g1(−m3)‖L2

τ
. (2.27)

For simplicity, we can apply Lemma 2.1.3 to obtain ‖g2‖L2
τ
. ‖g1‖L2

τ
. In order to control the

multiplier in (2.27), we must take into account the value of φ(m) and the relation between the
frequencies of the first generation n1, n2, n3.

Case 5 and (2.25): |n1| ∼ |n2| ∼ |n3|
If |m1| ∼ |m2| ∼ |m3| and |φ(m)| & |m1||n + m′1||n + m′2|, for some distinct m′1,m

′
2 ∈

{m1,m2,m3}, we have

|n|1+|n1m1|
|φ(n)||φ(m)| 12

.
|n1n2n3|

1
3 +|m1m2|

1
4 +

〈n− n′1〉〈n− n′2〉〈n+m′1〉
1
2 +〈n+m′2〉

1
2 +
,

for some distinct n′1, n
′
2 ∈ {n1, n2, n3}. Using Hölder’s inequality, we get

(2.27) .
1

N0+

∥∥∥∥∥ ∑
n=n1+n2+n3,

φ(n)6=0

‖g1(n1)‖L2
τ
‖g1(−n2)‖L2

τ
‖g1(n3)‖L2

τ

〈n− n′1〉〈n− n′2〉(〈n1〉〈n2〉〈n3〉)s−
1
3−

∥∥∥∥∥
`2n

×

∥∥∥∥∥ ∑
−n=m1+m2+m3,

φ(m)6=0

‖g1(−m1)‖L2
τ
‖g1(m2)‖L2

τ
‖g1(−m3)‖L2

τ

〈n+m′1〉
1
2 +〈n+m′2〉

1
2 +(〈m1〉〈m2〉〈m3〉)s−

1
3−

∥∥∥∥∥
`2n

.
1

N0+
sup
n

( ∑
n′1,n

′
2,m
′
1,m
′
2

1

〈n− n′1〉1+〈n− n′2〉1+〈n+m′1〉1+〈n+m′2〉1+

) 1
2
∥∥∥∥∥ g1

〈n〉s− 1
3−

∥∥∥∥∥
6

`2nL
2
τ

.
1

N0+
‖g1‖6`pnL2

τ
=

1

N0+
‖u‖6

X
s, 1

2
p,2

,

for 1 ≤ p < ∞ and s > max
(

1
3 ,

5
6 −

1
p

)
. In the remaining regions of frequency space for

m1,m2,m3, we have |φ(m)| & |mmax|2λ′, for λ′ ∈ {|mmax +mmed|, |mmed +mmin|}. Thus,

|n|1+|n1m1|
|φ(n)||φ(m)| 12

.
|n1n2n3|

1
3 +

〈n− n′1〉〈n− n′2〉〈λ′〉
1
2

.

Since (〈mmax〉〈mmed〉)−
1
3 + . 〈mmed〉−

2
3−, we can proceed as in the previous case, with

〈λ′〉 12 +〈mmed〉
2
3 + instead of 〈n+m′1〉

1
2 +〈n+m′2〉

1
2 +.

Case 6 and (2.25): |n1|
1
2 � |nmed| & |nmin|

Since we have

|n|1+|n1|
|φ(n)|

.
|n2n3|

1
4 +

〈n2 + n3〉〈nmin〉
1
2 +
,

we can follow the same argument in the previous case, substituting 〈n− n′1〉〈n− n′2〉 by 〈n2 +

n3〉〈nmin〉
1
2 +, and proceeding as before when estimating |φ(m)|.

Now, we must consider (2.26). Since we have |φ(n)+φ(m)| � |φ(m)|, we can no longer trade
the largest modulation by a 1

2 power of |φ(m)|. However, we know that |φ(n)| ∼ |φ(m)|, which
allows us to trade powers of |φ(n)| by powers of |φ(m)|. Consequently, we focus on estimating
the following multiplier

|n|1+|n1m1|
|φ(n)|α|φ(m)|1−α

, (2.28)
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for some 0 ≤ α ≤ 1.

Case 5 and (2.26): |n1| ∼ |n2| ∼ |n3|
Choosing α = 0, we have

(2.28) ∼ |n|
1+|n1m1|
|φ(m)|

.

{
|n1n2n3m1m2m3|

1
3 +, if |m1| ∼ |m2| ∼ |m3|

|n1n2n3|
1
3 +, if |φ(m)| & |mmax|2

.

Let ĥ1(τ, n) = 〈n〉 13 +Ft,x
(
1[0,t]u

)
(τ, n), ĥ2(τ, n) = 〈n〉 13 +|û(τ, n)| and note that we can asso-

ciate the cut-off with any factor. Using Hölder’s inequality, the Strichartz estimate (2.4) and
Lemma 2.1.3, we get

|NR0| .
1

N0+
‖h1h

5
2‖L1

t,x
.

1

N0+
‖h1‖L6

t,x
‖h2‖5L6

t,x
.

1

N0+
‖u‖6

X
s, 1

2
p,2

,

for 1 ≤ p <∞ and s > max
(

1
3 ,

5
6 −

1
p

)
.

Case 6 and (2.26): |n1|
1
2 � |nmed| & |nmin|

If |m1| ∼ |m2| ∼ |m3|, choosing α = 1, gives

(2.28) .
|n|1+|n1m1|
|n1|2

. |m1m2m3|
1
3 +

and the result follows from the previous case. Now, assume that |φ(m)| ∼ |mmax|2λ′ where
λ′ ∈ {|mmax +mmed|, |mmed +mmin|}. We must consider a finer case separation for the second
generation of frequencies. For α = 0, we can estimate the multiplier as follows

(2.28) .
|n|1+|n1m1|
|mmax|2|λ′|

.


|n1m1|

1
3 + max(|m2|, |m3|)

1
3 +, if |m1| . max(|m2|, |m3|)

|n1m1m2m3|
1
3 +, if |m1|

1
2 . |mmin| ≤ |mmed| � |m1|

|n1m1|
1
4 +, if |mmin| � |m1|

1
2 . |mmed| � |m1|

and use the strategy in the previous case. It only remains to consider the case when |m1|
1
2 �

|m2|, |m3|. Consider the following decomposition

NR0 = Im

ˆ t

0

∑
|n|>N

∑
n=n1+n2+n3,

φ(n) 6=0

m1

n2 + n3

∑
−n=m1+m2+m3,

φ(m) 6=0

(
nn1

(n1 + n3)(n1 + n2)
− 1

)

× û(n1)û(−n2)û(n3)û(−m1)û(m2)û(−m3) dt′

+ Im

ˆ t

0

∑
|n|>N

∑
n=n1+n2+n3,

φ(n)6=0

∑
−n=m1+m2+m3,

φ(m) 6=0

m1

n2 + n3

× û(n1)û(−n2)û(n3)û(−m1)û(m2)û(−m3) dt′

=: I 0 + II0.

In order to estimate I 0, note that

nn1 − (n1 + n3)(n1 + n2) = n2
1 + (n2 + n3)n1 − n2

1 − n1(n2 + n3)− n2n3 = −n2n3,

which implies that∣∣∣∣∣ nn1

(n1 + n3)(n1 + n2)
− 1

∣∣∣∣∣ =
|n2n3|

|(n1 + n3)(n1 + n2)|
.
|n1|
|n1|2

.
1

|n1|
.

Hence, using Hölder’s inequality and the L6-Strichartz estimate (2.4), we have

| I 0| .
1

N0+
‖1[0,t]u

6‖L1
t,x

.
1

N0+
‖1[0,t]u‖

X
0+, 1

2
−

2,2

‖u‖5
X

0+, 1
2
−

2,2

.
1

N0+
‖u‖6

X
s, 1

2
p,2
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for 1 ≤ p <∞ and s > max
(

1
2 −

1
p , 0).

Now, we focus on estimating II0. First, assume that n1 +m1 6= 0. Then,

|φ(n) + φ(m)| = |n3 − n3
1 − n3

2 − n3
3 − n3 −m3

1 −m3
2 −m3

3|
= |(n1 + n3 +m1)3 − n3

1 − n3
3 −m3

1 − (n1 + n3 +m1)3 − n3
2 −m3

2 −m3
3|

= |3(n1 +m1)(n1 + n3)(n3 +m1) + 3(n2 +m2)(n2 +m3)(m2 +m3)|
& |n1|2,

since |(n1 +m1)(n1 +n3)(n3 +m1)| & |n1|2 and |(n2 +m2)(n2 +m3)(m2 +m3)| � |n1|
3
2 . Then,

using the largest modulation, we have

|m1|
|φ(n) + φ(m)| 12

. 1.

Proceeding as in (2.27), we first focus on estimating II0 with respect to time

|II0| .
1

N0+

∑
|n|>N

∑
n=n1+n2+n3,

φ(n) 6=0

∑
−n=m1+m2+m3,

φ(m)6=0

1

〈n2 + n3〉
∏3
j=1(〈nj〉〈mj〉)s−

‖g1(n1)‖L2
τ

× ‖g1(−n2)‖L2
τ
‖g1(n3)‖L2

τ
‖g1(−m1)‖L2

τ
‖g1(m2)‖L2

τ
‖g1(−m3)‖L2

τ
. (2.29)

The estimate follows from the approach in Case 5 and (2.25), since

1

〈n2 + n3〉
∏3
j (〈nj〉〈mj〉)

1
3 +

.
1

〈n2 + n3〉〈nmin〉
1
2 +〈mmin〉

1
2 +〈mmed〉

1
2 +
.

On the other hand, if n1 +m1 = 0, we focus on the following quantity

II0 =

ˆ t

0

∑
|n|>N

∑
n=n1+n2+n3,

|n2|,|n3|�|n1|
1
2 ,

φ(n)6=0

∑
−n=m1+m2+m3,

|m2|,|m3|�|n1|
1
2 ,

φ(m)6=0

−n1

n2 + n3

× |û(n1)|2û(−n2)û(n3)û(−n2 − n3 −m3)û(−m3) dt′.

In order to estimate this quantity, we need further assumptions on the frequencies. Let 0 < ε < 1
denote the constant such that |n2|, |n3|, |m2|, |m3| ≤ ε|n1|

1
2 . We will consider two distinct cases:

(i) |n2 + n3| > ε2|n1|
1
2 ; (ii) |n2 + n3| ≤ ε2|n1|

1
2 .

If |n2 + n3| > ε2|n1|
1
2 , then

|n1|
|n2 + n3|〈n1〉

1
2 +

.
1

N0+
.

For simplicity, assume that |n3| ≤ |n2| and |m3| ≤ |m2|. Note that to estimate the multiplier we

only used 1
2+ power of |n1|, which leaves us with 〈n1〉−

1
6− . (〈n3〉〈m3〉)−

1
6− from the relation

between the frequencies. Consequently, following a similar approach to (2.29) to handle the

time integral, with h(τ, n) = 〈n〉 13 +〈τ −n3〉 12−|û(τ, n)|, and using Hölder’s inequality, we obtain

|II0| .
1

N0+
‖h‖2`2nL2

τ

×
∑

n2,n3,m3

‖h(−n2)‖L2
τ
‖h(n3)‖L2

τ
‖h(−m3)‖L2

τ
‖h(−n2 − n3 −m3)‖L2

τ

N0+(〈n2〉〈n3〉〈m3〉〈n2 + n3 +m3〉)
1
3 +(〈n3〉〈m3〉)

1
6 +

.
1

N0+

( ∑
n3,n2,m3

‖h(−n2)‖2L2
τ

〈n3〉1+〈m3〉1+

) 1
2

‖u‖5
X
s, 1

2
p,2
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.
1

N0+
‖u‖6

X
s, 1

2
p,2

,

for 1 ≤ p <∞ and s > max
(

1
3 ,

5
6 −

1
p

)
.

It remains to estimate the case when (ii) |n2 + n3| ≤ ε2|n1|
1
2 . Under this assumption and

|n2|, |n3| ≤ ε|n1|
1
2 , it follows that |nj | ≤ ε|n1|

1
2 −|n2 +n3| or ε|n1|

1
2 −|n2 +n3| < |nj | < ε|n1|

1
2 ,

j = 1, 2. For simplicity, let |n3| ≤ |n2| and |m3| ≤ |n2 + n3 + m3|, as the result follows
from an analogous approach for the remaining cases. We consider the following two regions of
summation

H1 :=
{

(n2, n3,m3) ∈ Z3 : |n3|, |m3| < ε|n1|
1
2 − |n2 + n3|,

|n2|, |n2 + n3 +m3| < ε|n1|
1
2 , |n2 + n3| < ε2|n1|

1
2

}
,

H2 :=
{

(n2, n3,m3) ∈ Z3 : |n2|, |n3|, |m2|, |n2 + n3 +m3| ≤ ε|n1|
1
2 ,

|n3| or |m3| ≥ ε|n1|
1
2 − |n2 + n3|, |n2 + n3| < ε2|n1|

1
2

}
.

We first consider the contribution restricted to the region H2, when |n3| ≥ ε|n1|
1
2 − |n2 + n3|.

Note that the following holds

|n3| ≥ ε|n1|
1
2 − |n2 + n3| ≥ (ε− ε2)|n1|

1
2 .

Therefore, the multiplier can be controlled as follows

|n1|
|n2 + n3|〈n1〉

2
3 +〈n2〉

1
3 +〈n3〉

1
3 +

.
1

N0+|n2 + n3|1+
.

The estimate follows from the previous case for s > max
(

1
3 ,

5
6 −

1
p

)
, 1 ≤ p < ∞, using 〈n2 +

n3〉−1−〈m3〉−
2
3− to sum.

Now, consider the contribution localized on the region H1, with the change of variables
n′2 = n2 + n3,

ˆ t

0

∑
|n|>N,

|n′2|<ε
2|n−n′2|

1
2

n− n′2
n′2

|û(n− n′2)|2

×

(
Im

∑
|n3|,|m3|

<ε|n−n′2|
1
2−|n′2|

û(n3)û(n3 − n′2)û(−m3)û(−n′2 −m3)

)
dt′.

Use J to denote the two inner sums. We can decompose J as follows

J = Im

( ∑
0<n3,m3<ε|n−n′2|

1
2−|n′2|

û(n3)û(n3 − n′2)û(−m3)û(−n′2 −m3)

+
∑

0<n3,m3<ε|n−n′2|
1
2−|n′2|

û(−n3)û(−n3 − n′2)û(−m3)û(−n′2 −m3)

+
∑

0<n3,m3<ε|n−n′2|
1
2−|n′2|

û(n3)û(n3 − n′2)û(m3)û(−n′2 +m3)

+
∑

0<n3,m3<ε|n−n′2|
1
2−|n′2|

û(−n3)û(−n3 − n′2)û(m3)û(−n′2 +m3)

+
∑

0<|n3|<ε|n−n′2|
1
2−|n′2|

û(0)û(−n′2)û(−n3)û(−n′2 − n3)
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+
∑

0<|n3|<ε|n−n′2|
1
2−|n′2|

û(−n3)û(−n3 − n′2)û(0)û(−n′2)

+ û(0)û(−n′2)û(0)û(−n′2)

)
= Im

∑
0<|n3|,|m3|<ε|n−n′2|

1
2−|n′2|,

n3m3>0

û(n3)û(n3 − n′2)û(m3)û(−n′2 +m3)

= Im

(
1

2

∑
0<|n3|,|m3|<ε|n−n′2|

1
2−|n′2|,

n3m3>0,n3 6=m3

û(n3)û(n3 − n′2)û(m3)û(−n′2 +m3)

+
1

2

∑
0<|n3|,|m3|<ε|n−n′2|

1
2−|n′2|,

n3m3>0,n3 6=m3

û(m3)û(m3 − n′2)û(n3)û(−n′2 + n3)

−
∑

0<|n3|<ε|n−n′2|
1
2−|n′2|

û(n3)û(n3 − n′2)û(n3)û(−n′2 + n3)

)
= 0.

This completes the estimate for the contribution NR0.

• Estimate for NR2,NR3

In order to control the contributions NR2,NR3, we will follow a similar approach to that of
NR0. Most cases follow an analogous approach, but the estimate is significantly different in
Case 6, when |φ(m)| & |mmax|2 and (2.26) hold.

In this case, we cannot use the maximum modulation to help estimate the multiplier. How-
ever, we can use the fact that |φ(n)| ∼ |φ(m)| to obtain the following

|nn1m1|
|φ(n)|α|φ(m)|1−α

.
|n|1+|n1m1|

N0+|n1|2α|mmax|2(1−α)
, (2.30)

for some 0 ≤ α ≤ 1. Estimating this multiplier requires more care than for the NR0 contribu-
tion since we cannot directly compare the sizes of |n| ∼ |n1| and |mmax|. We can estimate the
multiplier as follows

(2.30) .

{
|n1m1m2m3|

1
4 +, if |m1| . |m2|, |m3| and α = 7

8 ,

|nn1m1mmax|
1
4 +, if |mmin| � |m1| . |mmax| and α = 3

4 ,

and following the previous arguments, using Hölder’s inequality and the L6-Strichartz estimate
(2.4). If |m1| � |m2|, |m3|, then

|φ(n)| & |n1|2 � |m1|2|m2 +m3| ∼ |φ(m)|

and from our assumption (2.26), we have |φ(m)| � |φ(n) + φ(m)| ∼ |φ(n)|, which cannot
happen.

We can now use the energy estimate in Proposition 2.5.1 to show the conservation of mo-
mentum at low regularity.

Proof of Proposition 1.1.9. Let u0,M = P≤Mu0 and uM be the corresponding smooth global
solution of mKdV2 (2.2). Then, using Theorem 1.1.3, there exist a time T = T

(
‖u0‖FLs,p

)
> 0

and a solution u ∈ C
(
[−T, T ];FLs,p(T)

)
of mKdV2 (2.2) such that

uM → u in C
(
[−T, T ];FLs,p(T)

)
, (2.31)

as M →∞. In order to show convergence of {P (P≤Nu(t))}N∈N, t ∈ [−T, T ], and its conserva-
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tion, we will fix t ∈ [−T, T ] and prove the following

P (P≤Nu(t)) = lim
M→∞

P (P≤NuM (t)), (2.32)

lim
N→∞

lim
M→∞

P (P≤NuM (t)) = lim
M→∞

P (uM (t)). (2.33)

If the two equalities hold, we have

lim
N→∞

P (P≤Nu(t)) = lim
M→∞

P (uM (t)) = lim
M→∞

P (u0,M ) = lim
M→∞

P (P≤Mu0) = P (u0),

using the conservation of momentum for smooth solutions uM and the assumption of finite
momentum of u0, in the sense of Definition 1.1.8.

We start by showing (2.32). Note that, for each fixed N ∈ N,∣∣P (P≤Nu)(t)− P (P≤NuM )(t)
∣∣ ≤ ∑

|n|≤N

|n|
∣∣û(t, n)− ûM (t, n)

∣∣(|û(t, n)|+ |ûM (t, n)|
)

. N
p−2
p ‖u− uM‖CTFLs,p

(
‖u‖CTFLs,p + ‖uM‖CTFLs,p

)
,

which implies (2.32) due to (2.31). Now, we want to show (2.33). Since P (P≤NuM (t)) =
P (uM (t)) − P (P>NuM (t)), we will focus on showing that the second term goes to zero. Note
that

|P (P>NuM (t))| ≤ |P (P>NuM (t))− P (P>Nu0,M )|+ |P (P>Nu0,M )|. (2.34)

Using Proposition 2.5.1, for some 0 < ε� 1, we have

|P (P>NuM (t))− P (P>Nu0,M )| . N−ε
(
‖uM‖4CTFLs,p + ‖uM‖4

X
s, 1

2
p,2

+ ‖uM‖6
X
s, 1

2
p,2

)
. N−ε

(
‖u0‖4FLs,p + ‖u0‖6FLs,p

)
,

which shows that lim
N→∞

lim
M→∞

(
P (P>NuM (t))− P (P>Nu0,M )

)
= 0. Focusing on the last term

of (2.34), we have

P (P>Nu0,M ) = P (P>NP≤Mu0) = P (P≤Mu0)− P (P≤NP≤Mu0).

For M ≥ N , taking a limit as M → ∞ first and then N → ∞, both terms converge to P (u0)
and the result follows.

2.6 Construction of solutions of mKdV1 outside H
1
2 (T)

Proposition 1.1.9 gives a new interpretation of finite momentum and its conservation at low
regularity. Exploiting this conservation, we can make sense of the nonlinearity of the complex-
valued mKdV1 equation (2.1) and show the existence of solutions, outside H

1
2 (T).

Proof of Theorem 1.1.11. Let u0 ∈ FLs,p(T) with finite momentum in the sense of Defini-
tion 1.1.8. Given N ∈ N, let u0,N = P≤Nu0 and vN be the corresponding smooth global
solution of mKdV2 (2.2). From Theorem 1.1.3 and a persistence of regularity argument, we

can show that there exists T = T
(
‖u0‖FLs,p(T)

)
> 0 and a solution v ∈ Z

s, 12
p (T ) of mKdV2

(2.2) such that

vN → v in Z
s, 12
p (T ).

Since {vN}N∈N are smooth solutions, the conservation of momentum holds and P (vN (t)) =
P (u0,N ) for all t ∈ R. Let uN := G−1

2 [vN ] = eiP (u0,N )tvN , which is a smooth global solu-
tion of mKdV1 (2.1) with initial data u0,N , N ∈ N. We want to show that the sequence

{uN}N∈N converges to u := eiP (u0)tv in Z
s, 12
p (T ). The limit u will be our candidate solution in
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C
(
[−T, T ];FLs,p(T)

)
. First, we have that

‖uN − u‖CTFLs,p ≤
∥∥eiP (u0,N )t(vN − v)

∥∥
CTFLs,p

+
∥∥(eiP (u0,N )t − eiP (u0)t

)
v
∥∥
CTFLs,p

≤ ‖vN − v‖CTFLs,p + T
∣∣P (u0,N )− P (u0)

∣∣‖v‖CTFLs,p → 0,

from the mean value theorem, the assumption on the momentum, and the convergence of

{vN}N∈N. Moreover, u ∈ Zs,
1
2

p (T ), since

‖u‖
Z
s, 1

2
p (T )

. 〈P (u0)〉 12 ‖v‖
X
s, 1

2
p,2 (T )

+ ‖v‖Xs,0p,1(T ) <∞.

If we show that the sequence {uN}N∈N is Cauchy in Z
s, 12
p (T∗) for some 0 < T∗ ≤ T , the

convergence to u in this space will follow. For N,M ∈ N, uN and uM are smooth solutions of
mKdV1 (2.1), thus using Lemma 2.1.1 and Proposition 2.2.1, we have

‖uN − uM‖
Z
s, 1

2
p (T )

≤ C1‖u0,N − u0,M‖FLs,p + C2

(∥∥P (u0,N )uN − P (u0,M )uM
∥∥
Z
s,− 1

2
p (T )

+
∥∥N (uN , uN , uN )−N (uM , uM , uM )

∥∥
Z
s,− 1

2
p (T )

)
≤ C1‖u0,N − u0,M‖FLs,p + C3T

δ|P (u0,N )− P (u0,M )|‖uN‖
Z
s, 1

2
p (T )

+ C4T
δ
(
‖uN‖2

X
s, 1

2
p,2 (T )

+ ‖uM‖2
X
s, 1

2
p,2 (T )

+ |P (u0,M )|
)
‖uN − uM‖

X
s, 1

2
p,2 (T )

,

for some constants C1, C2, C3, C4 > 0. By the definition of uN and the continuous dependence
on the initial data for mKdV2 (2.2), for large enough N , we have ‖uN‖

Z
s, 1

2
p (T )

≤ C(‖u0‖FLs,p +

1), for some C > 0. Analogously, for large enough N , |P (u0,N )| ≤ |P (u0)|+ 1. Consequently,

‖uN − uM‖
Z
s, 1

2
p (T )

≤ C1‖u0,N − u0,M‖FLs,p + CC2T
δ(‖u0‖FLs,p + 1)|P (u0,N )− P (u0,M )|

+ C3T
δ
(

4C2
(
‖u0‖FLs,p + 1

)2
+
(
|P (u0)|+ 1)

)
‖uN − uM‖

X
s, 1

2
p,2 (T )

,

for N,M large enough. Choosing 0 < T0 ≤ T such that

C3T
δ
0

(
4C2

(
‖u0‖FLs,p + 1

)2
+
(
|P (u0)|+ 1)

)
<

1

2
,

it follows that

‖uN − uM‖
Z
s, 1

2
p (T0)

≤ 2C1‖u0,N − u0,M‖FLs,p

+ 2CC2T
δ
0 (‖u0‖FLs,p + 1)|P (u0,N )− P (u0,M )|. (2.35)

By iterating this approach, we can cover the whole interval [−T, T ] and the estimate (2.35)

holds with T instead of T0. Thus, {uN}N∈N is a Cauchy sequence in Z
s, 12
p (T ) and uN → u in

Z
s, 12
p (T ).

Now, we want to show that u satisfies mKdV1 (2.1) in the sense of distributions, with the
nonlinearity interpreted as

N(u) := N (u, u, u) + iP (u0)u.

Considering the linear part and any test function ϕ ∈ C∞c ([−T, T ]× T), it follows that∣∣〈u− uN , (∂t + ∂3
x)ϕ〉t,x

∣∣ . ‖u− uN‖
X
s, 1

2
p,2 (T )

→ 0,

as N →∞, which implies that (∂t + ∂3
x)uN → (∂t + ∂3

x)u in the sense of distributions. For the
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nonlinearity, using the fact that N(uN ) = N (uN , uN , uN ) + iP (uN )uN , it follows that∣∣〈N(uN )−N(u), ϕ〉t,x
∣∣ . ‖N (uN , uN , uN )−N (u, u, u)‖

X
s,− 1

2
p,2 (T )

+ |P (u0,N )− P (u0)|‖uN‖
X
s, 1

2
p,2 (T )

+ |P (u0)|‖uN − u‖
X
s, 1

2
p,2 (T )

.

Using the convergence of momentum P (u0,N ) → P (u0) and of {uN}N∈N, it suffices to es-
timate the first term on the right-hand side. We can write N (uN , uN , uN ) − N (u, u, u) =
N (uN − u, uN , uN ) +N (u, uN − u, uN ) +N (u, u, uN − u) and using the nonlinear estimate in
Proposition 2.2.1, we have that

‖N (uN , uN , uN )−N (u, u, u)‖
X
s,− 1

2
p,2 (T )

. ‖uN − u‖
X
s, 1

2
p,2 (T )

(
‖uN‖

X
s, 1

2
p,2 (T )

+ ‖u‖
X
s, 1

2
p,2 (T )

)2

,

and the convergence follows from that of {uN}N∈N. The limit u satisfies the following equation

∂tu+ ∂3
xu = N (u, u, u) + iP (u0)u,

in the sense of distributions, where P (u0) is interpreted in the sense of Definition 1.1.8.

2.7 Mild ill-posedness in FLs,p(T) for s < 1
2

In the following, we show the failure of local uniform continuity of the data-to-solution map
of the complex-valued mKdV (1.5) on bounded sets of FLs,p(T), for 1 ≤ p ≤ ∞ and s < 1

2 .
Proposition 1.1.4 follows once we estalish the following lemma. The proof follows an argument
by Burq-Gérard-Tzvetkov [17] and Christ-Colliander-Tao [26].

Lemma 2.7.1. Let s < 1
2 and 1 ≤ p ≤ ∞. Then, there exist two sequences {u0,n}n∈N,

{ũ0,n}n∈N in C∞(T) satisfying the following conditions:

1. {u0,n}n∈N, {ũ0,n}n∈N are uniformly bounded in FLs,p(T);

2. lim
n→∞

‖u0,n − ũ0,n‖FLs,p = 0;

3. Let un, ũn be the solutions of (2.2) with initial data u0,n, ũ0,n, respectively. Then, there
exists C > 0 such that

lim inf
n→∞

sup
t∈[−T,T ]

‖un(t)− ũn(t)‖FLs,p ≥ C,

for any T > 0.

Proof. Let N ∈ N and a ∈ C. Define uN,a as follows

uN,a(t, x) := N−saei(Nx+N3t±|a|2N1−2st),

a smooth solution of (2.2). Given n ∈ N, let u0,n = uNn,1(0) and ũ0,n = uNn,1+ 1
n (0), for some

Nn ∈ N to be chosen later. Then,

‖u0,n‖FLs,p , ‖ũ0,n‖FLs,p . 1,

uniformly in n ∈ N. Moreover,

‖u0,n − ũ0,n‖FLs,p ∼
1

n
.
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Let un = uNn,1, ũn = uNn,1+ 1
n be the solutions corresponding to initial data u0,n, ũ0,n, respec-

tively. Now, considering the difference between the two solutions at time t ∈ R, we have

‖un(t)− ũn(t)‖FLs,p ∼
∣∣∣∣e±iN1−2s

(
1−(1+ 1

n )2
)
t −
(

1 +
1

n

)∣∣∣∣.
Therefore, the solutions have opposite phases at time tn > 0 defined as follows

tn =
πN2s−1

n(
1 + 1

n

)2 − 1
.

Since s < 1
2 , we can choose Nn large enough, such that tn ≤ 1

n . Consequently, we have

‖un(tn)− ũn(tn)‖FLs,p ∼ 2 +
1

n
≥ 2.

Since tn → 0 as n → ∞, the functions constructed satisfy the intended conditions and the
result follows.
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Chapter 3

Further study of the modified
Korteweg-de Vries equation

In this chapter, we continue the study of the second renormalized mKdV equation (mKdV2):

∂tu+ ∂3
xu = ±

(
|u|2∂xu−M(u)∂xu− iP (u)u

)
. (3.1)

As in the previous chapter, we focus on the defocusing equation (‘+’ in (3.1)), as the sign
will not play a role in the analysis. The main goal of this chapter is to complete the proof of
Theorem 1.1.3, by establishing the local well-posedness of mKdV2 (3.1) in FLs,p(T) for s ≥ 1

2
and 4 ≤ p < ∞. In Chapter 2, we established the local well-posedness under the restriction
1 ≤ p < 4, which was imposed by the main nonlinear estimate in Section 2.2, needed to apply
the Fourier restriction norm method. Here, we apply the method introduced by Deng-Nahmod-
Yue [34] to remove this restriction on p. Moreover, we extend the solutions globally-in-time
by combining the a priori estimates of Oh-Wang [91] and a persistence of regularity argument,
completing the proof of Theorem 1.1.6.

In Section 3.1, we start by decomposing the nonlinearity through localization in the fre-
quency space. Moreover, we choose the Xs,b

p,q-spaces used to conduct the analysis, and relevant
auxiliary estimates. One of the key points of this new method is the introduction of a modified
Duhamel operator for which we can explicitly trade smoothing in time for smoothing in space,
without using the time modulations. This new operator G is introduced in Section 3.2, along-
side the remainder part of the Duhamel operator B. Kernel estimates for the operators D, G,
and B are also established here.

After introducing the needed notation, in Section 3.3, we establish a system of equations for
u and w, and prove local well-posedness of (3.1) from solving the equations for u and w, namely
Propositions 3.3.1 and 3.3.2. In Section 3.4, we establish the main nonlinear estimates needed
to solve the equation for u. These are used in Secion 3.6 to obtain u = u[w]. The process of
finding the correct w is more involved. We describe the partial second iteration procedure and
show the relevant estimates in Section 3.5. Lastly, in Section 3.6, we extend these solutions of
mKdV2 (3.1) globally-in-time.

3.1 Nonlinearity, function spaces, and auxiliary results

We start by rewriting the nonlinearity of mKdV2 (3.1). Recall that, omitting time dependence,
the nonlinearity N (u, u, u) has the following spatial Fourier transform

Fx
(
N (u, u, u)

)
(n) =

∑
n=n1+n2+n3,
φ(n123)6=0

in1û(n1)û(n2)û(n3)− in|û(n)|2û(n),
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where n123 = (n1, n2, n3) and φ(n123) denotes the phase function

φ(n123) = n3 − n3
1 − n3

2 − n3
3 = 3(n1 + n2)(n1 + n3)(n2 + n3),

where the factorization holds if n = n1 + n2 + n3. We will use φ = φ(n123) if the dependence
on n123 is clear from context. In Chapter 2, we wrote N (u, u, u) = NR(u, u, u) + R(u, u, u).
Here, we refine this decomposition to have

N (u, u, u) = NR≥(u, u, u) +NR>(u, u, u) +R(u, u, u),

where

Fx
(
NR≥(u1, u2, u3)

)
(n) =

∑
n=n1+n2+n3,
φ(n123) 6=0,
|n2|≥|n3|

in1û1(n1)û2(n2)û3(n3), (3.2)

Fx
(
R(u1, u2, u3)

)
(n) = −inû1(n)û2(n)û3(n),

and for NR> we impose |n2| > |n3| on the right-hand side of (3.2). Note that NR =
NR≥ + NR>. We want to further decompose these operators to introduce additional fre-
quency assumptions. Let nj denote the spatial frequency corresponding to ûj , j = 1, 2, 3, in
(3.2), then the sum is taken over the following set

X(n) =
{

(n1, n2, n3) ∈ Z3 : n = n1 + n2 + n3, |n2| ≥ |n3|, φ(n123) 6= 0
}
,

with the stronger assumption |n2| > |n3| for NR>. We can therefore consider the following
subregions of X(n):

XA(n) =
{

(n1, n2, n3) ∈ X(n) : |n2| � |n1|
}
,

XB(n) =
{

(n1, n2, n3) ∈ X(n) : |n3| � min(|n|, |n1|) ≤ max(|n|, |n1|) ∼ |n2|
}
,

XC(n) =
{

(n1, n2, n3) ∈ X(n) : |n| . |n3| � |n1|
}
,

XD(n) =
{

(n1, n2, n3) ∈ X(n) : |n1| . |n3|
}
.

For ∗ ∈ {A,B,C,D}, let NR∗,≥,NR∗,> denote the restriction of the operators to X∗(n).
We can write the non-resonant contributions of the nonlinearity as

NR≥ = NRA,≥ +NRB,≥ +NRC,≥ +NRD,≥

and equivalently for NR>. We also introduce the following notation

Xµ∗ (n) :=
{
n123 ∈ X∗(n) : φ(n123) = µ

}
. (3.3)

The following lemma clarifies the relation between the frequencies in the subregions intro-
duced.

Lemma 3.1.1. The sets X∗(n), where ∗ ∈ {A,B,C,D}, satisfy the following properties:

(i) (n1, n2, n3) ∈ XA(n) =⇒ |n3| ≤ |n2| � |n1| ∼ |n|;

(ii) (n1, n2, n3) ∈ XB(n) =⇒ |n3| � |n| . |n1| ∼ |n2| or |n3| � |n1| � |n| ∼ |n2|;

(iii) (n1, n2, n3) ∈ XC(n) =⇒ |n| . |n3| � |n2| ∼ |n1|;

(iv) (n1, n2, n3) ∈ XD(n) =⇒ |n1| . |n3| ≤ |n2|;

(v) (n1, n2, n3) ∈ XA(n) ∪ XB(n) ∪ XC(n) =⇒ |φ(n123)| & max(|n1|, |n2|)2;

(vi) (n1, n2, n3) ∈ XD(n) =⇒ |φ(n123)| & |n2| and 〈n〉 12 |n1| . (〈n1〉〈n2〉〈n3〉)
1
2 .

Remark 3.1.2. Note that the nearly-resonant case when |n1| ∼ |n2| ∼ |n3| and |φ(n123)| &
max(|n1|, |n2|, |n3|) is included in XD(n). There are other frequency interactions allowed in this
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region which are fully non-resonant, i.e., |φ(n123)| & max(|n1|, |n2|, |n3|)2 holds. However, due
to the condition in (vi), the phase function will not play a crucial role when estimating this
contribution.

We want to construct solutions of mKdV2 (3.1) which satisfy the Duhamel formulation

u(t) = S(t)u0 +DNR(u, u, u)(t) +DR(u, u, u)(t), (3.4)

for some T > 0 and |t| ≤ T . Let ϕ be a smooth time cutoff with ϕ ≡ 1 on [−1, 1] and ϕ ≡ 0
outside [−2, 2], and ϕT (·) = ϕ(T−1·) for T > 0. Recall that D denotes the Duhamel operator,

DF (t, x) =
´ t

0
S(t− t′)F (t′) dt′ and let D denote its truncated version

DF (t, x) = ϕ(t) ·D
(
ϕ(t′) · F (t′, x)

)
(t) = ϕ(t)

ˆ t

0

S(t− t′)ϕ(t′)F (t′, x) dt′.

Equivalently, locally-in-time, we can focus on solving the truncated Duhamel formulation

u(t) = ϕ · S(t)u0 + ϕT · DNR(u, u, u)(t) + ϕT · DR(u, u, u)(t), (3.5)

for some 0 < T ≤ 1.
In order to construct solutions of mKdV2 (3.1), we will run a suitable contraction mapping

argument in Xs,b-spaces adapted to the Fourier-Lebesgue setting (see Definition 1.3.1). In the
following, we introduce the relevant parameters and the spaces involved in the argument. Let
0 < δ � 1 be a small parameter to be chosen later, depending on 2 < p < ∞. We introduce
the following parameters

b0 = 1− 2δ, b1 = 1− δ,

q0 =
1

4δ
, q1 =

1

4.5δ
,

1

r0
=

1

2
+ δ,

1

r1
=

1

2
+ 2δ,

1

r2
=

1

2
+ 3δ.

Note that b0 < b1, q1 < q0, and r2 < r1 < r0. We will conduct our analysis in the following
Xs,b
p,q-spaces:

Y s0 = X
s, 12
p,r0(R× T), Y s1 = X

s, 12
p,r1(R× T),

Zs0 = Xs,b0
p,q0 (R× T), Zs1 = Xs,b1

p,q0 (R× T).

Note that Zs0 ⊂ Y s0 ⊂ C
(
R;FLs,p(T)

)
.

Lastly, we introduce auxiliary results needed for the analysis.

Lemma 3.1.3 (Schur’s test). Let X,Y be measurable spaces, K : X × Y → R a non-negative
Schwartz kernel, and 1 ≤ p, q, r ≤ ∞ such that 1 + 1

q = 1
p + 1

r . If for some C > 0 we have

sup
x∈X

ˆ
Y

|K(x, y)|rdy + sup
y∈Y

ˆ
X

|K(x, y)|rdx ≤ Cr,

then ∥∥∥∥ ˆ
Y

K(x, y)f(y) dy

∥∥∥∥
Lq(X)

≤ C‖f‖Lp(Y ).

The following lemma allows us to gain a small power of the time of existence T , needed to
close the contraction mapping argument. Note that the second estimate follows from the same
proof of Lemma 2.1.2.

Lemma 3.1.4. Suppose that F is a smooth space-time function such that F |t=0 = 0. Then,
we have the following estimates

‖ϕT · F‖Y s0 . T θ‖F‖Y s1 , ‖ϕT · F‖Zs0 . T θ‖F‖Zs1 , (3.6)

50



for any 0 < θ ≤ δ
2 and 0 < T ≤ 1.

Proof. We want to estimate the following quantity

‖ϕT · F‖Xs,bp,q =
∥∥∥〈n〉s〈τ〉b(ϕ̂T ∗τ F̂ (·+ n3, n)

)
(τ)
∥∥∥
`pnL

q
τ

.

Both estimates follow once we show

‖〈τ〉bϕ̂T ∗ f(τ)‖Lqτ . T
1
q̃−

1
q ‖〈τ〉bf(τ)‖Lq̃τ , (3.7)

for f satisfying
´
R f(τ) dτ = 0, 1 < q̃ < q <∞, and 0 < b < 1 < b+ 1

q̃ . In fact, from (3.7), we
have

‖ϕT · F‖Xs,bp,q . T
1
q̃−

1
q ‖F‖Xs,bp,q̃ , (3.8)

by choosing f(τ) = F̂ (τ+n3, n) which satisfies
´
R F̂ (τ+n3, n) dτ =

´
R F̂ (τ, n) dτ = 2πF (0, n) =

0, from the assumption on F at time zero. We get the first estimate in (3.6) by setting
q = r0 > r1 = q̃ and b = 1

2 < 1 < 1 + 2δ in (3.8), and the second estimate in (3.6) with
q = q0 > q1 = q̃, b = b0 = 1− 2δ < 1 < 1 + 2.5δ, and Hölder’s inequality.

The estimate (3.7) follows once we prove the following∥∥〈τ〉b(ϕ̂T ∗ (1|τ |≥T−1f)
)
(τ)
∥∥
Lqτ

. T
1
q̃−

1
q ‖〈τ〉bf(τ)‖Lq̃τ ,∥∥〈τ〉b(ϕ̂T ∗ (1|τ |<T−1f)

)
(τ)
∥∥
Lqτ

. T
1
q̃−

1
q ‖〈τ〉bf(τ)‖Lq̃τ . (3.9)

Note that the first inequality is equivalent to the following result∥∥∥∥ˆ
R

〈τ〉b

〈λ〉b
1|λ|≥T−1 ϕ̂T (τ − λ)f(λ) dλ

∥∥∥∥
Lqτ

. T
1
q̃−

1
q ‖f‖Lq̃τ . (3.10)

Since T ≤ 1 and |Tλ| ≥ 1, we have

〈τ〉b

〈λ〉b
.
〈Tτ〉b

〈Tλ〉b
.
〈T (τ − λ)〉b〈Tλ〉b

〈Tλ〉b
. 〈T (τ − λ)〉b.

Using Young’s inequality with 1 + 1
q = 1

q̃ + 1
r gives

LHS of (3.10) .

∥∥∥∥ˆ
R
〈T (τ − λ)〉bT ϕ̂(T (τ − λ))f(λ) dλ

∥∥∥∥
Lqτ

. T‖〈Tτ〉bϕ̂(Tτ)‖Lrτ ‖f‖Lq̃τ .

The estimate follows from T‖〈Tτ〉bϕ̂(Tτ)‖Lrτ .ϕ T 1− 1
r = T

1
q̃−

1
q .

To prove (3.9), using the fact that
´
R f(τ) dτ = 0, we note that

ϕ̂T ∗
(
1|τ |<T−1f

)
(τ) =

ˆ

|λ|<T−1

f(λ)T
[
ϕ̂(T (τ − λ))− ϕ̂(Tτ)

]
dλ− T ϕ̂(Tτ)

ˆ

|λ|≥T−1

f(λ) dλ. (3.11)

For the first contribution in (3.11), we distinguish between the regions {τ : |τ | . T−1} and
{τ : |τ | � T−1}. If |τ | . T−1, then 〈Tτ〉 ∼ 1 and we apply the mean value theorem to obtain

ˆ

|λ|<T−1

T |f̂(λ)||ϕ̂(T (τ − λ))− ϕ̂(Tτ)| dλ .
ˆ
R

T

〈Tτ〉α
|f̂(λ)||Tλ||∂ϕ̂(ξ)| dλ

. ‖∂ϕ̂‖L∞τ

ˆ
R

T |Tλ|
〈Tτ〉α

|f̂(λ)| dλ,

for some ξ between T (τ − λ) and Tτ and any α > 0. In the remaining region, if |τ | � T−1,
then |T (τ − λ)| ∼ |Tτ | ∼ |ξ|, for any ξ between T (τ − λ) and Tτ , and from the mean value
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theorem, we have

ˆ

|λ|<T−1

T |f̂(λ)||ϕ̂(T (τ − λ))− ϕ̂(Tτ)| dλ .
ˆ
R
T |Tλ||f̂(λ)||∂ϕ̂(ξ)| dλ

.
ˆ
R
T |Tλ||f̂(λ)| 〈ξ〉

α

〈Tτ〉α
|∂ϕ̂(ξ)| dλ

. ‖〈τ〉α∂ϕ̂‖L∞τ

ˆ
R

T |Tλ|
〈Tτ〉α

|f̂(λ)| dλ,

for any α > 0. Combining the two estimates, we obtain the following, for any α > 0,

ˆ

|λ|<T−1

T |f(λ)||ϕ̂(T (τ − λ))− ϕ̂(Tτ)| dλ .ϕ
T

〈Tτ〉α

ˆ

|λ|<T−1

|Tλ| |f(λ)| dλ.

For the second contribution in (3.11), we have

ˆ

|λ|≥T−1

|f(λ)|T |ϕ̂(Tτ)|dλ .ϕ
T

〈Tτ〉α

ˆ

|λ|≥T−1

|f(λ)| dλ.

Combining the estimates for the two contributions in (3.11), we obtain∥∥∥∥〈τ〉bϕ̂T ∗ (1|τ |<T−1f
)
(τ)

∥∥∥∥
Lqτ

.

∥∥∥∥ T 〈τ〉b〈Tτ〉α

∥∥∥∥
Lqτ

‖min(1, |Tλ|)〈λ〉−b‖Lrλ‖〈τ〉
bf(τ)‖Lq̃τ ,

by using Hölder’s inequality with 1 = 1
r + 1

q̃ . Thus, we have

∥∥∥∥ T 〈τ〉b〈Tτ〉α

∥∥∥∥
Lqτ

. T 1−b
(ˆ

R
〈Tτ〉−(α−b)q dτ

) 1
q

. T 1−b− 1
q

(ˆ
R
〈τ〉−(α−b)q dτ

) 1
q

. T 1−b− 1
q ,

by choosing α > 0 such that (α− b)q > 1, and

‖min(1, |Tλ|)〈λ〉−b‖rLrλ =

ˆ

T−1≤|λ|

1

〈λ〉br
dλ+

ˆ

T−1>|λ|

|Tλ|r

〈λ〉br
dλ . T br−1 + T r

ˆ

T−1>|λ|

|λ|(1−b)rdλ

. T br−1,

given that b > 1− 1
q̃ and b < 1. Combining the two bounds, we obtain the intended power of T .

Remark 3.1.5. Lemma 3.1.4 will only be applied to functions of the form F (t, x) =´ t
0
G(t′, x) dt′ which satisfy the assumption F |t=0 = 0, namely the Duhamel operator D and

the operators G,B defined in Section 3.2.

We state the well-known divisor counting estimate (see [49, Lemma 315] for the proof).

Lemma 3.1.6. Let n ∈ Z and let d(n) denote the set of divisors of n. Then,

|d(n)| .ε |n|ε,

for any ε > 0.

We also require the following refined divisor counting estimate.

Lemma 3.1.7 ([34, Lemma 3.4]). (i) Fix 0 < ε < 1, ρ ≥ 1 and let k, q ∈ Z such that
|q| & |k|ε > 0. Then, the number of divisors r ∈ Z of k that satisfy |r − q| . ρ is at most
Oε(ρε).
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(ii) Let N1 ≥ N2 ≥ N3 be dyadic numbers, µ, and m be positive integers, and consider the
following set

A(m,µ,N1, N2, N3) =
{

(m1,m2,m3) ∈ Z3 : m1 +m2 +m3 = m, m3
1 +m3

2 +m3
3 = µ,

(m1 +m2)(m1 +m3)(m2 +m3) 6= 0, |mj | ∼ Nj , j = 1, 2, 3
}
.

Then, |A(n, µ,N1, N2, N3)| .ε Nε
2 , for some 0 < ε� 1.

Proof. For the proof of (i), see [34]. To prove (ii), we start by noticing that if (m1,m2,m3) ∈
A(m,µ,N1, N2, N3), then

m3 − µ = m3 −m3
1 −m3

2 −m3
3 = 3(m2 +m3)(m−m2)(m−m3).

If N1 ∼ N2, then |m| = |m1 +m2 +m3| . N2 and |µ| = |m3
1 +m3

2 +m3
3| . N3

2 , from which we
conclude that 1 ≤ |m3−µ| . N3

2 . Using Lemma 3.1.6, we conclude that the number of divisors
m−m2 and m−m3 of m3 − µ is bounded by Nε

2 , for any ε > 0. Since choosing m2,m3 fixes
m1, we obtain

|A(m,µ,N1, N2, N3)| .ε Nε
2

under the assumption N1 ∼ N2. If instead N1 � N2, then |m| ∼ |m1| � |m2|, |m3−µ| . |m|3,

which implies that 1 ≤ |m3−µ|ε ≤ |m3−µ| 13 . |m| for any 0 < ε ≤ 1
3 . Since |(m−m2)−m| ∼ N2

and |(m−m3)−m| ∼ N3, from (i), we conclude that

|A(m,µ,N1, N2, N3)| .ε (N2N3)ε ∼ N2ε
2 .

This concludes the proof.

Lastly, we fix a Schwartz function η satisfying

η̂(−1) = 0, Hη̂(−1) = −1, (3.12)

where H denotes the Hilbert transform, i.e., principal value convolution with 1
τ . See Ap-

pendix A.1 for a possible choice of η.

3.2 Splitting the Duhamel operator and kernel estimates

In this section, we explicitly establish the smoothing-in-time of the Duhamel operator by esti-
mating its kernel. Moreover, we introduce the modified version of the Duhamel operator and
the kernel estimate for the nonlinear contributions localized to XA(n),XB(n).

Proposition 3.2.1. The truncated Duhamel operator D has the following space-time Fourier
transform

Ft,x
(
DF
)
(τ, n) =

ˆ
R
K(τ − n3, λ− n3)F̂ (λ, n) dλ

where the kernel K is given by the following expression

K(τ, λ) = −i
ˆ
R
ϕ̂(µ− λ)

ϕ̂(τ − µ)− ϕ̂(τ)

µ
dµ

and satisfies the following estimates

|K(τ, λ)| .
(

1

〈τ − λ〉α
+

1

〈τ〉α

)
1

〈λ〉
.

1

〈τ〉〈τ − λ〉
(3.13)

for any α > 0 large enough.
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Proof. We start by calculating the space-time Fourier transform of DF ,

Ft,x
(
DF
)
(τ, n) =

ˆ
R
ϕ̂(τ − µ)Ft

(ˆ t

0

ei(t−t
′)n3

ϕ(t′)F̂ (t′, n) dt′
)

(µ) dµ.

Using the fact that
´ t

0
f(t′) dt′ = 1

2

´
R f(t′)

(
sgn(t− t′) + sgn(t′)

)
dt′, we have

Ft
(ˆ t

0

ei(t−t
′)n3

ϕ(t′)F̂ (t′, n) dt′
)

(µ) =
1

4π

ˆ
R
e−it

′µϕ(t′)F̂ (t′, n) dt′
ˆ
R
e−it(µ−n

3) sgn(t)dt

+
1

4π

ˆ
R
e−it

′n3

ϕ(t′)F̂ (t′, n) sgn(t′) dt′
ˆ
R
e−it(µ−n

3) dt.

Consequently, since Ft(sgn)(τ) = 1
iπτ , we have

Ft
(ˆ t

0

ei(t−t
′)n3

ϕ(t′)F̂ (t′, n) dt′
)

(µ) =
−i

µ− n3

ˆ
R
ϕ̂(µ− λ)F̂ (λ, n) dλ

− iδ0(µ− n3)

ˆ
R

ˆ
R
ϕ̂(n3 − λ− µ′) 1

µ′
F̂ (λ, n) dµ′ dλ,

where δ0 denotes the Dirac delta function. Calculating the convolution with ϕ̂, we get

Ft,x
(
DF
)
(τ, n) = −i

ˆ
R

(ˆ
R
ϕ̂(µ+ n3 − λ)

ϕ̂(τ − µ− n3)− ϕ̂(τ − n3)

µ
dµ

)
F̂ (λ, n) dλ,

as intended

It remains to show the estimate on the kernel. In the region {|µ| > 1}, using Cauchy-Schwarz
inequality and Lemma 2.1.4, we have

ˆ

|µ|>1

|ϕ̂(τ − µ)ϕ̂(µ− λ)|
|µ|

dµ .

(ˆ
R

dµ

〈τ − µ〉2α〈µ− λ〉1+2α

) 1
2
( ˆ

R

dµ

〈µ〉2〈µ− λ〉2

) 1
2

.
1

〈λ〉〈τ − λ〉α
,

ˆ

|µ|>1

|ϕ̂(τ)ϕ̂(µ− λ)|
|µ|

dµ .
1

〈τ〉α

ˆ
R

1

〈µ− λ〉α〈µ〉
dµ .

1

〈λ〉〈τ〉α
,

for any α > 0. In the region {|µ| ≤ 1}, we consider two subregions: {|τ | . 1} or {|τ | � 1}. If
|τ | . 1, then 〈τ〉 ∼ 1 and using mean value theorem, where ξ is a number between τ − µ and
τ , we have

ˆ

|µ|≤1

|ϕ̂(µ− λ)| |ϕ̂(τ − µ)− ϕ̂(τ)|
|µ|

dµ =

ˆ

|µ|≤1

|ϕ̂(µ− λ)| |µ||∂ϕ̂(ξ)|
|µ|

dµ

.
1

〈τ〉α

ˆ

|µ|≤1

1

〈µ− λ〉1+〈µ〉
dµ

.
1

〈λ〉〈τ〉α
,

for any α > 0. If |τ | � 1, we once again apply mean value theorem, where ξ is between τ − µ
and τ . Since |µ| ≤ 1, we must have |ξ| ∼ |τ | and 〈µ〉 ∼ 1. Therefore, applying mean value
theorem and Lemma 2.1.4, we get

ˆ

|µ|≤1

|ϕ̂(µ− λ)| |ϕ̂(τ − µ)− ϕ̂(τ)|
|µ|

dµ ∼
ˆ

|µ|≤1

|ϕ̂(µ− λ)| 〈ξ〉
α|∂ϕ̂(ξ)|
〈τ〉α

dµ .
1

〈λ〉α〈τ〉α
,
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for any α > 0. From the estimates for the regions {|µ| > 1} and {|µ| ≤ 1}, we get

|K(τ, λ)| .
(

1

〈τ − λ〉α
+

1

〈τ〉α

)
1

〈λ〉
.

To show (3.13), note that 〈τ〉 . 〈τ − λ〉〈λ〉 and 〈τ − λ〉 . 〈τ〉〈λ〉. Thus, for α ≥ 2,(
1

〈τ − λ〉α
+

1

〈τ〉α

)
1

〈λ〉
.

1

〈τ〉〈τ − λ〉α−1
+

1

〈τ − λ〉〈τ〉α−1
.

1

〈τ〉〈τ − λ〉
.

We want to split each of the non-resonant contributions DNR∗,≥,DNR∗,> for ∗ ∈ {A,B}
into two components:

DNR∗,≥ = G∗,≥ + B∗,≥, DNR∗,> = G∗,> + B∗,>.

The ‘good’ contributions G will depend on the modified Duhamel operator. By introducing
a convolution with a smooth function η parameterized by the resonance relation φ(n123), we
induce sufficient smoothing in space to control the derivative nonlinearity. Consider a Schwartz
function η satisfying

η̂(−1) = 0, Hη̂(−1) = −1,

where H denotes the Hilbert transform, i.e., principal value convolution with 1
τ , as chosen in

Section 3.1. We first define the operators G∗,≥, B∗,≥ through their spatial Fourier transform

Fx
(
G∗,≥(u1, u2, u3)

)
(t, n)

= ϕ(t)
∑

n=n1+n2+n3,
n123∈X∗(n),
|n2|≥|n3|

in1

ˆ t

0

ei(t−t
′)n3

η
(
φ(n123)(t− t′)

)
ϕ(t′)

3∏
j=1

ûj(t
′, nj) dt

′,

Fx
(
B∗,≥(u1, u2, u3)

)
(t, n)

= ϕ(t)
∑

n=n1+n2+n3,
n123∈X∗(n),
|n2|≥|n3|

in1

ˆ t

0

ei(t−t
′)n3[

1− η
(
φ(n123)(t− t′)

)]
ϕ(t′)

3∏
j=1

ûj(t
′, nj) dt

′,

with equivalent definitions for G∗,>,B∗,> imposing the condition |n2| > |n3| to the sum.

In the following, we estimate the kernels for the truncated operators when ∗ ∈ {A,B}.

Proposition 3.2.2. Let ∗ ∈ {A,B}. Then, the convolution operators G∗,≥,G∗,> have the
following space-time Fourier transform

Ft,x
(
G∗, ≥

(>)

(u1, u2, u3)
)
(τ, n)

=
∑

n=n1+n2+n3,
n123∈X∗(n),
|n2| ≥

(>)
|n3|

n1

ˆ
R
KG

(
τ − n3, λ− n3, φ(n123)

) ˆ

λ=τ1+τ2+τ3

3∏
j=1

ûj(τj , nj) dτ1 dτ2 dλ,

where the kernel KG is given by the following expression

KG(τ, λ, φ) =

ˆ
R

(
ϕ̂(τ − µ)ϕ̂(µ− λ)

1

φ
Hη̂
(µ
φ

)
+ ϕ̂(τ − µ)Hϕ̂(µ− λ)

1

φ
η̂
(µ
φ

))
dµ,
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and satisfies the following estimates

|KG(τ, λ, φ)| . 1

〈τ − λ〉α
min

(
1

〈φ〉
,

1

〈λ〉

)
+

1

〈τ − λ〉
min

(
1

〈φ〉
,

1

〈τ〉

)
,

.
1

〈τ − λ〉
min

(
1

〈φ〉
,

1

〈τ〉

)
, (3.14)

where α is a large enough positive number and |φ| ≥ 1.

Proof. Since the relation between |n2| and |n3| will not play an important role in the proof, we
will use G∗ to denote both G∗,≥,G∗,>. We want to calculate the following

Ft,x
(
G∗(u1, u2, u3)

)
(τ, n)

=
∑

n=n1+n2+n3,
n123∈X∗(n)

in1

ˆ
R
ϕ̂(τ − µ)Ft

(ˆ t

0

ei(t−t
′)n3

η
(
φ(n123)(t− t′)

)
F (t′) dt′

)
(µ) dµ,

where F (t) = ϕ(t)
∏3
j=1 ûj(t, nj). Note that |φ(n123)| ≥ 1 for n123 ∈ X∗(n) and denote it by φ,

for simplicity. Proceeding as in the proof of Proposition 3.2.1, we have

Ft
(ˆ t

0

ei(t−t
′)n3

η
(
φ(t− t′)

)
F (t′) dt′

)
(µ)

=
1

4π

ˆ
R
e−it

′n3

F (t′)

ˆ
R
eit(n

3−µ)η(φ(t− t′)) sgn(t− t′) dt dt′

+
1

4π

ˆ
R
e−it

′n3

F (t′) sgn(t′)

ˆ
R
eit(n

3−µ)η(φ(t− t′)) dt dt′. (3.15)

The first contribution in (3.15) equals

1

2

ˆ
R
e−it

′µ′F (t′) dt′
[
Ft
(
η(φ·)

)
∗ Ft

(
sgn(·)

)
(µ− n3)

]
= −iF̂ (µ)

1

φ
Hη̂
(
µ− n3

φ

)
,

while the second gives

1

2

ˆ
R
e−it

′µF (t′) sgn(t′) dt′
[

1

φ
η̂

(
µ− n3

φ

)]
= −iHF̂ (µ)

1

φ
η̂

(
µ− n3

φ

)
.

Consequently, we obtain

Ft,x
(
G∗(u1, u2, u3)

)
(τ, n)

=
∑

n=n1+n2+n3,
n123∈X∗(n)

n1

ˆ
R
ϕ̂(τ − µ)

[
F̂ (µ)

1

φ
Hη̂
(
µ− n3

φ

)
+HF̂ (µ)

1

φ
η̂

(
µ− n3

φ

)]
dµ.

Since

F̂ (τ) =

ˆ
R
ϕ̂(τ − λ)

ˆ

λ=τ1+τ2+τ3

3∏
j=1

ûj(τj , nj) dλ,

HF̂ (τ) =

ˆ
R
Hϕ̂(τ − λ)

ˆ

λ=τ1+τ2+τ3

3∏
j=1

ûj(τj , nj) dλ,

we obtain the intended expression by substituting F̂ (µ) and HF̂ (µ).
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It remains to show the kernel estimate. First, note that for a Schwartz function f , we have

|Hf(ξ)| ≤ lim
ε→0

ˆ

ε<|µ|<1

∣∣∣∣f(ξ − µ)− f(ξ)

µ

∣∣∣∣dµ+

∣∣∣∣ lim
ε→0

ˆ

ε<|µ|<1

f(ξ)

µ
dµ

∣∣∣∣+

ˆ

|µ|≥1

∣∣∣∣f(ξ − µ)

µ

∣∣∣∣∣dµ.
Considering the first contribution, using mean value theorem and distinguishing between the
cases |ξ| . 1 and |ξ| � 1 gives

ˆ

ε<|µ|<1

|f(ξ − µ)− f(ξ)|
|µ|

dµ .
1

〈ξ〉α
,

for any α > 0. The second contribution is equal to zero, so it only remains to control the third
one. Using Lemma 2.1.4, it follows that

ˆ

|µ|≥1

|f(ξ − µ)|
|µ|

dµ .
1

〈ξ〉
.

Consequently, the following holds for any Schwartz function f

|Hf(ξ)| . 1

〈ξ〉
. (3.16)

Since ϕ̂ is a Schwartz function, using (3.16),

1

〈φ〉

∣∣∣∣Hη̂(µφ
)∣∣∣∣ . 1

〈φ〉

(
1|µ|≤|φ| + 1|µ|≥|φ|≥1

〈φ〉
〈µ〉

)
. min

(
1

〈φ〉
,

1

〈µ〉

)
.

Now, considering the kernel and the estimates for Hη̂,Hϕ̂, we have the following

|KG(τ, λ, φ)| .
ˆ
R
|ϕ̂(τ − µ)ϕ̂(µ− λ)|min

(
1

〈φ〉
,

1

〈µ〉

)
dµ

+

ˆ
R

1

〈φ〉〈µ− λ〉

∣∣∣∣ϕ̂(τ − µ)η̂

(
µ

φ

)∣∣∣∣dµ =: I + II.

Applying Lemma 2.1.4 and Cauchy-Schwarz inequality, we have

I .
ˆ
R

1

〈τ − µ〉α+1〈µ− λ〉α+1
min

(
1

〈φ〉
,

1

〈µ〉

)
dµ .

1

〈τ − λ〉α
min

(
1

〈φ〉
,

1

〈λ〉

)
.

For II, applying Lemma 2.1.4 and Cauchy-Schwarz inequality gives the following estimates

II .
ˆ
R

1

〈φ〉〈µ− λ〉〈τ − µ〉1+
dµ .

1

〈φ〉〈τ − λ〉
,

II .

(ˆ
R

dµ

〈τ − µ〉2〈µ〉2

) 1
2
(ˆ

R

dµ

〈τ − µ〉2〈µ− λ〉2

) 1
2

.
1

〈τ〉〈τ − λ〉
.

Consequently, II . 1
〈τ−λ〉 min

(
1
〈φ〉 ,

1
〈τ〉

)
. For (3.14), we consider different cases max(〈φ〉, 〈λ〉) &

max(〈φ〉, 〈τ〉) or max(〈φ〉, 〈λ〉) � max(〈φ〉, 〈τ〉). Note that for the latter, max(〈φ〉, 〈τ〉) = 〈τ〉
and 〈τ − λ〉 ∼ 〈τ〉. The estimate follows by choosing α ≥ 2.

Remark 3.2.3. For ∗ ∈ {A,B}, consider the operators DNR∗,≥(u1, u2, u3) and

57



G∗,≥(u1, u2, u3), and the kernel estimates in Propositions 3.2.1 and 3.2.2. Then,

∣∣Ft,x(DNR∗,≥(u1, u2, u3)
)
(τ, n)

∣∣ . ∑
n=n1+n2+n3,
n123∈X∗(n),
|n2|≥|n3|

ˆ
R

|n1|
〈τ − λ〉〈τ − n3〉

F̂ (λ, n123) dλ,

∣∣Ft,x(G∗,≥(u1, u2, u3)
)
(τ, n)

∣∣ . ∑
n=n1+n2+n3,
n123∈X∗(n),
|n2|≥|n3|

ˆ
R

|n1|
〈τ − λ〉

min

(
1

〈φ(n123)〉
,

1

〈τ − n3〉

)

× F̂ (λ, n123) dλ,

where F̂ (λ, n123) =
(
|û1(·, n1)| ∗ |û2(·, n2)| ∗ |û3(·, n3)|

)
(λ). Thus, for the modified Duhamel

operators G∗,≥ we can ‘exchange’ the smoothing in time through 〈τ − n3〉 for smoothing in
space through 〈φ(n123)〉, unlike the usual Duhamel operator.

Now we estimate the kernel of the remainder ‘bad’ operators B∗,≥,B∗,>, ∗ ∈ {A,B}. The
assumptions on η in (3.12) play an important role in establishing the following kernel estimates.

Proposition 3.2.4. Let ∗ ∈ {A,B}. Then, the convolution operators B∗,≥,B∗,> have the
following space-time Fourier transform

Ft,x
(
B∗, ≥

(>)

(u1, u2, u3)
)
(τ, n)

=
∑

n=n1+n2+n3,
n123∈X∗(n),
|n2| ≥

(>)
|n3|

n1

ˆ
R
KB(τ − n3, λ− n3, φ(n123))

ˆ

λ=τ1+τ2+τ3

3∏
j=1

ûj(τj , nj) dτ1 dτ2 dλ,

where the kernel KB is given by

KB(τ, λ, φ) =

ˆ
R

ϕ̂(τ − µ)− ϕ̂(τ)

µ
ϕ̂(µ− λ) dµ−

ˆ
R
ϕ̂(τ − µ)ϕ̂(µ− λ)

1

φ
Hη̂
(µ
φ

)
dµ

+

ˆ
R
ϕ̂(τ − µ)Hϕ̂(µ− λ)

1

φ
η̂

(
µ

φ

)
dµ,

and satisfies the following estimate

|KB(τ, λ, φ)| .
1

〈τ〉α〈λ〉
+

〈λ+ φ〉
〈τ − λ〉α〈λ〉

min

(
1

〈φ〉
,

1

〈λ〉

)
+
〈τ + φ〉
〈τ − λ〉

min

(
1

〈φ〉
,

1

〈τ〉

)2

,

for any α > 0 and |φ| ≥ 1.

Proof. Let ∗ ∈ {A,B} and let B∗ denote both B∗,≥ and B∗,>. By definition, we have that
B∗ = DNR∗−G∗. Therefore, the kernel KB is given by KB(τ, λ, φ) = −iK(τ, λ)−KG(τ, λ, φ),
and the intended expression follows from Propositions 3.2.1 and 3.2.2.

We now focus on estimating the kernel, by first rewriting KB(τ, λ, φ) as

ˆ

|µ|≤1

(
ϕ̂(τ − µ)− ϕ̂(τ)

)
ϕ̂(µ− λ)

1

µ
dµ−

ˆ

|µ|≤1

ϕ̂(τ − µ)ϕ̂(µ− λ)
1

φ
Hη̂
(
µ

φ

)
dµ

+

ˆ

|µ|>1

ϕ̂(τ − µ)ϕ̂(µ− λ)

{
1

µ
− 1

φ
Hη̂
(
µ

φ

)}
dµ+

ˆ
R
ϕ̂(τ − µ)Hϕ̂(µ− λ)

1

φ
η̂

(
µ

φ

)
dµ

−
ˆ

|µ|>1

ϕ̂(τ)ϕ̂(µ− λ)
1

µ
dµ

=: I 1 + I 2 + I 3 + I 4 + I 5.
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For I 1, mean value theorem gives, for any α > 0,

| I 1| .
ˆ

|µ|≤1

1|τ |.1

dµ

〈τ〉α〈µ〉α〈µ− λ〉1+α
+

ˆ

|µ|≤1

1|τ |�1
dµ

〈τ〉α〈µ〉α〈µ− λ〉1+α
.

1

〈τ〉α〈λ〉α
.

Using (3.16) and Cauchy-Schwarz inequality gives

| I 2| .
ˆ

|µ|≤1

dµ

〈φ〉〈τ − µ〉α〈µ− λ〉α+1〈µ〉α
.

1

〈φ〉〈τ − λ〉α〈λ〉α
.

Before estimating I 3, note that since Hη̂(−1) = −1 and using mean value theorem, we get∣∣∣∣ 1µ − 1

φ
Hη̂
(
µ

φ

)∣∣∣∣ ∼ 1

〈µ〉

∣∣∣∣Hη̂(−1)− µ

φ
Hη̂
(
µ

φ

)∣∣∣∣
. 1〈φ〉&〈µ〉

1

〈µ〉

∣∣∣∣− 1− µ

φ

∣∣∣∣+ 1〈φ〉�〈µ〉
〈µ+ φ〉
〈µ〉2

.
〈µ+ φ〉
〈µ〉

min

(
1

〈φ〉
,

1

〈µ〉

)
.

Using the above estimate, it follows from previous arguments that, for any α > 0,

| I 3| . 1〈φ〉&〈λ〉
〈λ+ φ〉

〈τ − λ〉α〈λ〉〈φ〉
+ 1〈φ〉�〈λ〉

〈λ+ φ〉
〈τ − λ〉α〈λ〉2

.
〈λ+ φ〉
〈τ − λ〉α〈λ〉

min

(
1

〈φ〉
,

1

〈λ〉

)
.

In order to estimate I 4, we start by showing a bound for 1
φ η̂
(
µ
φ

)
. If |φ| & |µ|, we use the fact

that η̂(−1) = 0 and mean value theorem. Otherwise, |φ| � |µ| and 〈µ + φ〉 ∼ 〈µ〉. It follows
that ∣∣∣∣ 1φη̂

(
µ

φ

)∣∣∣∣ . 1|φ|&|µ|
1

〈φ〉

∣∣∣∣η̂(µφ
)
− η̂(−1)

∣∣∣∣+ 1|φ|�|µ|
1

〈µ〉

∣∣∣∣µφη̂
(
µ

φ

)∣∣∣∣
. 〈µ+ φ〉min

(
1

〈φ〉
,

1

〈µ〉

)2

.

Using the above estimate and the fact that |Hϕ̂(µ− λ)| . 〈µ− λ〉−1 in (3.16), we have

| I 4| . 1〈φ〉&〈τ〉
〈τ + φ〉
〈φ〉2〈τ − λ〉

+ 1〈φ〉�〈τ〉
〈τ + φ〉
〈τ − λ〉〈τ〉2

.
〈τ + φ〉
〈τ − λ〉

min

(
1

〈φ〉
,

1

〈τ〉

)2

.

For the last contribution, for any α > 0, we have

| I 5| .
ˆ

|µ|>1

〈τ〉α|ϕ̂(τ)|〈µ− λ〉|ϕ̂(µ− λ)|
〈τ〉α〈µ− λ〉〈µ〉

dµ .
1

〈τ〉α〈λ〉
.

This completes the estimate.

We want to further split the operators B∗,≥,B∗,>, ∗ ∈ {A,B}, to obtain better kernel
estimates. We will split the kernel KB in two pieces: when we can estimate the multiplier
directly, and when we also need to use σmax = max

j=1,2,3
|τj − n3

j |. Let KB = K0 +K+ where the

kernels are defined below

K0(τ, λ, φ) = 1〈λ〉&〈φ〉

( ˆ

|µ|≤1

(
ϕ̂(τ − µ)− ϕ̂(τ)

)
ϕ̂(µ− λ)

1

µ
dµ−

ˆ

|µ|>1

ϕ̂(τ)ϕ̂(µ− λ)
1

µ
dµ

)
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+ 1〈λ+φ〉.〈τ−λ〉

( ˆ

|µ|>1

ϕ̂(τ − µ)ϕ̂(µ− λ)

{
1

µ
− 1

φ
Hη̂
(
µ

φ

)}
dµ

)

+ 1〈τ+φ〉.〈τ−λ〉

(ˆ
R
ϕ̂(τ − µ)Hϕ̂(µ− λ)

1

φ
η̂

(
µ

φ

)
dµ

)
−

ˆ

|µ|≤1

ϕ̂(τ − µ)ϕ̂(µ− λ)
1

φ
Hη̂
(µ
φ

)
dµ,

K+(τ, λ, φ) = 1〈λ〉�〈φ〉

( ˆ

|µ|≤1

(
ϕ̂(τ − µ)− ϕ̂(τ)

)
ϕ̂(µ− λ)

1

µ
dµ−

ˆ

|µ|>1

ϕ̂(τ)ϕ̂(µ− λ)
1

µ
dµ

)

+ 1〈λ+φ〉�〈τ−λ〉

ˆ

|µ|>1

ϕ̂(τ − µ)ϕ̂(µ− λ)

{
1

µ
− 1

φ
Hη̂
(
µ

φ

)}
dµ

+ 1〈τ+φ〉�〈τ−λ〉

( ˆ
R
ϕ̂(τ − µ)Hϕ̂(µ− λ)

1

φ
η̂

(
µ

φ

)
dµ

)
.

Thus, we have the following estimates for the kernels, for any 0 ≤ α ≤ 1,

|K0(τ, λ, φ)| . 1

〈τ〉1+α〈φ〉1−α
, (3.17)

|K+(τ, λ, φ)| . 1〈λ〉�〈φ〉
1

〈τ − λ〉〈τ〉
+
〈λ+ φ〉1−α

〈τ − λ〉〈τ〉
min

(
1

〈φ〉
,

1

〈τ〉

)1−α

. (3.18)

In Section 3.5.1, we will see that the contribution corresponding to the kernel K0 in
B∗,≥,B∗,> can be easily estimated, due to the explicit smoothing in space (i.e., the nega-
tive power of 〈φ〉). However, in order to estimate the one corresponding to K+, we need the
largest modulation σmax. In particular, from (3.18), we see that

∣∣K+

(
τ − n3, λ− n3, φ(n123)

)∣∣ . 〈λ− n3 + φ(n123)〉1−α

〈τ − λ〉〈τ − n3〉〈φ(n123)〉1−α
, (3.19)

for any 0 ≤ α ≤ 1, since λ = τ1 + τ2 + τ3 and

|λ− n3 + φ(n123)| = |τ1 − n3
1 + τ2 − n3

2 + τ3 − n3
3| . max

j=1,2,3
|τj − n3

j | = σmax.

Thus, we can use σmax in order to estimate the numerator of the second contribution in (3.18),
which motivates splitting the operators depending on which modulation is the largest. In
particular, we have

B∗,≥ = B0
∗,≥ + B1

∗,≥ + B2
∗,≥ + B3

∗,≥, (3.20)

where B0
∗,≥ has kernel K0 and Bj

∗,≥ has kernel K+ localized to the region where σmax = |σj |,
j = 1, 2, 3. An analogous decomposition holds for B∗,>.

3.3 System of equations and proof of Theorem 1.1.3 for
4 ≤ p <∞

Instead of running a contraction mapping argument on the integral equation (3.5), we will solve
an ordered system of equations. In this section, we establish the relevant equations for u and
w and the main results needed to show Theorem 1.1.3 for 4 ≤ p < ∞. For a fixed p with
2 ≤ p <∞, we will first focus on showing local well-posedness in FLs,p(T).

Let T > 0 and fix w ∈ Zs0 . Then, we consider the following equation for u

u = w + ϕT
[
GA,≥(w, u, u) + GA,>(w, u, u) + GB,≥(w,w, u) + GB,>(w,w, u)

]
. (3.21)
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We first solve the equation (3.21) obtaining u = u[w], i.e., u parameterized by w.

Proposition 3.3.1. Let s ≥ 1
2 and 2 ≤ p < ∞. There exist T = T (A2) > 0 and A3 =

A3(A2) > 0 such that for any w ∈ Zs0 satisfying ‖w‖Zs0 ≤ A2, there exists a unique u ∈ Y s0 with
‖u‖Y s0 ≤ A3 satisfying (3.21). The mapping w 7→ u[w] is Lipschitz from the A2-ball of Z0 to
the A3-ball of Y0.

We establish the above proposition by running a contraction mapping argument in Y s0 . The
argument then reduces to establishing the nonlinear estimates in Section 3.4. We postpone the
proof of Proposition 3.3.1 until Section 3.6. To guarantee that u = u[w], the solution of (3.21),
satisfies the Duhamel formulation (3.5), then w must satisfy the following equation

w = ϕ(t)S(t)u0 + ϕT · DR(u, u, u)

+ ϕT
[
DNRC,≥(u, u, u) +DNRC,>(u, u, u)

]
+ ϕT

[
DNRD,≥(u, u, u) +DNRD,>(u, u, u)

]
+ ϕT

[
BA,≥(w, u, u) + BA,>(w, u, u)

]
+ ϕT

[
BB,≥(w,w, u) + BB,>(w,w, u)

]
+ ϕT

[
DNRA,≥(u, u, u)−DNRA,≥(w, u, u)

]
+ ϕT

[
DNRA,>(u, u, u)−DNRA,>(w, u, u)

]
+ ϕT

[
DNRB,≥(u, u, u)−DNRB,≥(w,w, u)

]
+ ϕT

[
DNRB,>(u, u, u)−DNRB,>(w,w, u)

]
.

(3.22)

In order to solve the above equation, we use a partial second iteration by replacing u = u[w]
by its equation (3.21). The decomposition on the operators DNR and B, introduced in Sec-
tions 3.1 and 3.2, explicitly identifies which entries have the largest frequencies and the largest
modulations, respectively. This information will guide the second iteration process.

For the terms DNR∗,≥,DNR∗,>, ∗ ∈ {C,D}, we replace the equation for u (3.21) from left
to right to obtain only cubic and quintic terms, as in the following example

DNRC,≥(u, u, u) = DNRC,≥(w, u, u)

+DNRC,≥
(
ϕT ·GA,≥[w, u, u], u, u

)
+DNRC,≥

(
ϕT ·GA,>[w, u, u], u, u

)
+DNRC,≥

(
ϕT ·GB,≥[w,w, u], u, u

)
+DNRC,≥

(
ϕT ·GB,>[w,w, u], u, u

)
,

DNRC,≥(w, u, u) = DNRC,≥(w,w, u)

+DNRC,≥
(
w,ϕT ·GA,≥[w, u, u], u

)
+DNRC,≥

(
w,ϕT ·GA,>[w, u, u], u

)
+DNRC,≥

(
w,ϕT ·GB,≥[w,w, u], u

)
+DNRC,≥

(
w,ϕT ·GB,>[w,w, u], u

)
,

DNRC,≥(w,w, u) = DNRC,≥(w,w,w)

+DNRC,≥
(
w,w, ϕT ·GA,≥[w, u, u]

)
+DNRC,≥

(
w,w, ϕT ·GA,>[w, u, u]

)
,

+DNRC,≥
(
w,w, ϕT ·GB,≥[w,w, u]

)
+DNRC,≥

(
w,w, ϕT ·GB,>[w,w, u]

)
.

This strategy prioritizes the entry with the derivative followed by the one with the largest
frequency between the remaining two factors. For DNR∗,≥,DNR∗,> with ∗ ∈ {A,B}, there
will be no cubic terms after second iteration, due to the differences in (3.22), as seen in the
following

DNRA,≥(u, u, u)−DNRA,≥(w, u, u)

= DNRA,≥
(
ϕT ·GA,≥[w, u, u], u, u

)
+DNRA,≥

(
ϕT ·GA,>[w, u, u], u, u

)
+DNRA,≥

(
ϕT ·GB,≥[w,w, u], u, u

)
+DNRA,≥

(
ϕT ·GB,>[w,w, u], u, u

)
,

DNRB,≥(u, u, u)−DNRB,≥(w,w, u)

= DNRB,≥
(
ϕT ·GA,≥[w, u, u], u, u

)
+DNRB,≥

(
ϕT ·GA,>[w, u, u], u, u

)
+DNRB,≥

(
ϕT ·GB,≥[w,w, u], u, u

)
+DNRB,≥

(
ϕT ·GB,>[w,w, u], u, u

)
+DNRB,≥

(
w,ϕT ·GA,≥[w, u, u], u

)
+DNRB,≥

(
w,ϕT ·GA,>[w, u, u], u

)
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+DNRB,≥
(
w,ϕT ·GB,≥[w,w, u], u

)
+DNRB,≥

(
w,ϕT ·GB,>[w,w, u], u

)
.

For the terms B∗,≥,B∗,>, with ∗ ∈ {A,B}, we split the operators into four pieces Bj
∗,≥,B

j
∗,>,

j = 0, 1, 2, 3, as defined in (3.20). The contributions corresponding to j = 0 are easily estimated,
but for j = 1, 2, 3 the largest modulation plays an important role in estimating the kernel. If
the j-th entry corresponds to a u or u term, we replace it with the equation for u (3.21). For
example, we have

BB,≥(w,w, u) = B0
B,≥(w,w,w) + B1

B,≥(w,w, u) + B2
B,≥(w,w, u) + B3

B,≥(w,w,w)

+ B3
B,≥
(
w,w, ϕT ·GA,≥[w, u, u]

)
+ B3

B,≥
(
w,w, ϕT ·GA,>[w, u, u]

)
+ B3

B,≥
(
w, u, ϕT ·GB,≥[w,w, u]

)
+ B3

B,≥
(
w, u, ϕT ·GB,>[w,w, u]

)
.

Proceeding as detailed above, we obtain a new equation for w. Due to its length, we have
decided to only include it in Appendix A.2.

Proposition 3.3.2. Let s ≥ 1
2 and 2 ≤ p < ∞. Then, for any u0 ∈ FLs,p(T) satisfying

‖u0‖FLs,p ≤ A1, there exist T = T (A1) > 0 and a unique w ∈ Zs0 with ‖w‖Zs0 ≤ A2 satisfying
(3.22), for some A2 = A2(A1) > 0. The mapping u0 7→ w is Lipschitz from the A1-ball of
FLs,p(T) to the A2-ball of Z0.

Remark 3.3.3. (i) In the above proposition, u = u[w] is always understood as being the
solution in Proposition 3.3.1 of equation (3.21).

(ii) In order to show Proposition 3.3.2, we will not run a contraction mapping argument for the
map defined by the right-hand side of (3.22) nor the equation (A.1) included in Appendix A.2.
Some quintic terms in (A.1) require the use of the equation for u (3.21) once again, introducing
new quintic terms but also new septic terms. Given the considerable number of new terms that
this additional step introduces, we have decided to omit them when presenting the equation for
w. The strategy for obtaining the new contributions is described in Section 3.5.2 along with
the estimates needed for both the quintic and septic terms. The terms are given in detail in
Appendix A.3.

Combining Propositions 3.3.1 and 3.3.2, we can now complete the proof of Theorem 1.1.3
by establishing the local well-posedness of mKdV2 (3.1) in FLs,p(T) for s ≥ 1

2 and 4 ≤ p <∞.

Proof of Theorem 1.1.3 for 4 ≤ p <∞. Let s ≥ 1
2 , 4 ≤ p < ∞, and u0 ∈ FLs,p(T). From

Proposition 3.3.1, for any A2 > 0 and w ∈ Zs0 with ‖w‖Zs0 ≤ A2, there exist T1 = T1(A2) > 0,
A3 = A3(A2) > 0, and a unique u = Φ1[w] which satisfies

Φ1[w] = w + ϕT1

[
GA,≥(w,Φ1[w],Φ1[w]) + GA,>(w,Φ1[w],Φ1[w])

+ GB,≥(w,w,Φ1[w]) + GB,>(w,w,Φ1[w])
]
.

For simplicity, let F denote a multilinear operator such that we can rewrite the above equation
as

Φ1[w] = w + ϕT1
· F (w,Φ1[w]). (3.23)

From Proposition 3.3.1, we also know that the map Φ1 is Lipschitz continuous from the A2-ball
of Zs0 to the A3-ball of Y s0 . We now consider the equation for w. First, we can rewrite (3.22) as

w = ϕ(t)S(t)u0 + ϕT1

[
DN

(
Φ1[w],Φ1[w],Φ1[w]

)
− F

(
w,Φ1[w]

)]
.

The operations needed to reach the full equation for w, correspond to substituting certain
instances of Φ1[w] above by the right-hand side of (3.23). Therefore, we get that

w = ϕ(t)S(t)u0 + ϕT1 ·G
(
w,Φ1[w], F

(
w,Φ1[w]

)
, F (w,w), F

(
w,F (Φ1[w])

))
, (3.24)

where G is a multilinear operator with cubic, quintic, and septic terms. Note that the two
equations for w above are equivalent.
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Now let A1 > 0 such that ‖u0‖FLs,p ≤ A1. From Proposition 3.3.2, there exists T2 =
T2(A1) > 0, A2 = A2(A1) > 0, and a unique w = Φ2[u0] ∈ Zs0 with ‖w‖Zs0 ≤ A2 solving (3.24).
Moreover, the map Φ2 is Lipschitz continuous from the A1-ball of FLs,p(T) to the A2-ball of
Zs0 .

Let T = min(T1, T2). We want to show that Φ1 ◦ Φ2[u0] ∈ Y s0 is a solution of mKdV2 (3.1)
in the sense of solving the Duhamel formulation in (3.4) for |t| . T . Using the equivalence
between the w equations above and the fact that Φ2[u0] is a solution, we have that

Φ2[u0] = ϕ(t)S(t)u0 + ϕT ·G
(
w,Φ1[w], F

(
w,Φ1[w]

)
, F (w,w), F

(
w,F (Φ1[w])

))
= ϕ(t)S(t)u0 + ϕT

[
DN

(
Φ1 ◦ Φ2[u0],Φ1 ◦ Φ2[u0],Φ1 ◦ Φ2[u0]

)
− F

(
Φ2[u0],Φ1 ◦ Φ2[u0]

)]
.

Since Φ1 ◦ Φ2[u0] solves (3.23) with w = Φ2[u0], rearranging the above equation, we have

Φ1 ◦ Φ2[u0] = Φ2[u0] + ϕT · F
(
Φ2[u0],Φ1 ◦ Φ2[u0]

)
= ϕ(t)S(t)u0 + ϕT · DN

(
Φ1 ◦ Φ2[u0],Φ1 ◦ Φ2[u0],Φ1 ◦ Φ2[u0]

)
which shows that Φ1 ◦ Φ2[u0] satisfies the Duhamel formulation (3.5) for mKdV2 (3.1), or
equivalently, (3.4) for |t| ≤ T . Lastly, since Φ2 is Lipschitz continuous from the A1-ball of
FLs,p(T) to the A2-ball of Zs0 , and Φ1 is Lipschitz continuous from the A2-ball of Zs0 to the
A3-ball of Y s0 , we conclude that Φ1 ◦ Φ2 is locally Lipschitz continuous from FLs,p(T) to
C
(
R;FLs,p(T)

)
. This completes the proof.

In the remaining sections, we will use the following notation for simplicity: DNR∗ to denote
DNR∗,≥, DNR∗,>, for ∗ ∈ {A,B,C,D}, G∗ to denote G∗,≥,G∗,> for ∗ ∈ {A,B}, and Bj

∗ for

Bj
∗,≥,B

j
∗,> for ∗ ∈ {A,B} and j = 0, 1, 2, 3. In the estimates, there is no distinction between

the frequency regions where |n2| ≥ |n3| and |n2| > |n3|, motivating this simplified notation.

3.4 Nonlinear estimates for u

From Lemma 3.1.4, it suffices to estimate the terms in the equation (3.21) in Y s1 , dropping the
factor of ϕT .

Lemma 3.4.1. The following estimates hold

‖GA(u1, u2, u3)‖
Y
s

1

. ‖u1‖
Z
s

0

‖u2‖
Y

1
2

0

‖u3‖
Y

1
2

0

.

‖GB(u1, u2, u3)‖
Y
s

1

. ‖u1‖
Z

1
2
0

‖u2‖
Z
s

0

‖u3‖
Y

1
2

0

.

Proof. We will prove the above estimates for s = 1
2 , since the additional factor 〈n〉s− 1

2 on

the left-hand side can be controlled by 〈n1〉s−
1
2 if ∗ = A and 〈n2〉s−

1
2 if ∗ = B, due to the

restrictions on the frequencies.

Using (3.14) and the change of variables τj − n3
j = σj , j = 1, 2, 3, it follows that

‖G∗(u1, u2, u3)‖
Y

1
2

1

.

∥∥∥∥ ∑
n=n1+n2+n3,
n123∈X∗(n)

ˆ
R

〈n〉 12 |n1|
〈τ − λ〉〈φ(n123)〉 12

ˆ

λ=τ1+τ2+τ3

3∏
j=1

|ûj(τj , nj)| dλ
∥∥∥∥
`pnL

r1
τ

.

∥∥∥∥ ∑
n=n1+n2+n3,
n123∈X∗(n)

ˆ

σ1,σ2,σ3

〈n〉 12 |n1|
〈τ − n3 − σ̄ + φ(n123)〉〈φ(n123)〉 12

3∏
j=1

|ûj(σj + n3
j , nj)|

∥∥∥∥
`pnL

r1
τ

, (3.25)
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where σ̄ = σ1 + σ2 + σ3. Note that

〈n〉 12 |n1|
〈φ(n123)〉 12

.
〈n〉 12 |n1|
max
j=1,2,3

〈nj〉
. 〈n1〉

1
2 .

Minkowski’s inequality gives

‖G∗(u1, u2, u3)‖
Y

1
2

1

.
ˆ

σ1,σ2,σ3

∥∥∥∥ ∑
n=n1+n2+n3,
n123∈X∗(n)

〈n1〉
1
2

〈τ − n3 − σ̄ + φ(n123)〉

3∏
j=1

|ûj(σj+n3
j , nj)|

∥∥∥∥
`pnL

r1
τ

.

Denoting the inner norm by I , we can rewrite the sum as follows

I .

∥∥∥∥∥∑
µ

1

〈τ − n3 − σ̄ + µ〉

( ∑
n=n1+n2+n3,
n123∈Xµ∗ (n)

〈n1〉
1
2

3∏
j=1

|ûj(σj + n3
j , nj)|

)∥∥∥∥∥
`pnL

r1
τ

,

for Xµ∗ (n) in (3.3). Since the following bounds hold uniformly in σ̄ and n, for any r̃ > 1,∑
µ

1

〈τ − n3 − σ̄ + µ〉r̃
. 1,

ˆ
R

1

〈τ − n3 − σ̄ + µ〉r̃
dτ . 1,

choosing r̃ = 1
1−δ , we have 1

r1
+ 1 = 1

r̃ + 1
r2

and we can apply Schur’s test (Lemma 3.1.3) to
obtain

I .

∥∥∥∥∥ ∑
n=n1+n2+n3,
n123∈Xµ∗ (n)

〈n1〉
1
2

3∏
j=1

|ûj(σj + n3
j , nj)|

∥∥∥∥∥
`pn`

r2
µ

. (3.26)

Let PNj denote the projection onto 〈n〉 ∼ Nj and let f1(σ, n) = 〈n〉 12 |û1(σ+ n3, n)|, fj(σ, n) =

|P̂Njuj(σ + n3, n)|, j = 2, 3. Then, using Minkowski and Hölder’s inequalities, we get

I .
∑
N2,N3

∥∥∥∥|Xµ∗ (n)|
1
r′2

( ∑
n=n1+n2+n3,
n123∈Xµ∗ (n)

3∏
j=1

|fj(σj , nj)|r2
) 1
r2

∥∥∥∥
`pn`

r2
µ

.

If ∗ = A, we have |φ(n123)| . |n1|3 ∼ |n|3, so we use Lemma 3.1.7 to count the divisors
d2 = n− n2, d3 = n− n3 of µ. Since

|d2 − n| = |n2| ≤ N2, |d3 − n| = |n3| ≤ N3

and 1 ≤ |µ|ε ≤ |µ| 13 . |n|, for any 0 < ε ≤ 1
3 , we conclude that there are at most O(Nε

j )
choices for dj , j = 2, 3. Since n is fixed, this determines the choices of n2, n3 and consequently
of n1. If ∗ = B, then |φ(n123)| . |n2|3 and we can use the standard divisor counting estimate
in Lemma 3.1.6 to conclude that there are at most O(Nε

2 ) choices for n2, n3. Consequently,
|Xµ∗ (n)| . (N2N3)ε and we have

I .
∑
N2,N3

(N2N3)ε
∥∥∥∥(∑

µ

∑
n=n1+n2+n3,
n123∈Xµ∗ (n)

3∏
j=1

|fj(σj , nj)|r2
) 1
r2

∥∥∥∥
`pn

.
∑
N2,N3

(N2N3)ε
∥∥∥∥( ∑

n=n1+n2+n3

(∑
µ

1φ(n123)=µ

) 3∏
j=1

|fj(σj , nj)|r2
) 1
r2

∥∥∥∥
`pn

.
∑
N2,N3

(N2N3)ε‖f1‖`pn‖f2‖`r2n ‖f3‖`r2n ,
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where we apply Minkowski’s inequality and the fact that r2 < 2 ≤ p in the last inequality.
Choosing ε < δ, we obtain

I . ‖〈n〉 12 û1(σ1 + n3, n)‖`pn‖〈n〉
δû2(σ2 + n3, n)‖`r2n ‖〈n〉

δû3(σ3 + n3, n)‖`r2n .

Applying this estimate to (3.26) gives

‖G∗(u1, u2, u3)‖
Y

1
2

1

. ‖〈n〉 12 û1(σ + n3, n)‖L1
σ`
p
n

3∏
j=2

‖〈n〉δûj(σ + n3, n)‖L1
σ`
r2
n
.

The estimate follows from Hölder and Minkowski’s inequalities, imposing δ < 1
4p .

Remark 3.4.2. The change of variables from τj to the modulation σj = τj −n3
j , j = 1, 2, 3, in

(3.25) is needed to guarantee that the quantity

1

〈τ − λ〉1−δ
=

1

〈τ − n3 − σ1 − σ2 − σ3 + φ(n123)〉1−δ

has an explicit dependence on the phase function φ(n123) and that when fixing its value,
φ(n123) = µ, there is no longer dependence on the variables n1, n2, n3. Thus, one can con-
sider the quantity inside the norm as a convolution operator in µ, depending on τ :∑

µ

1

〈τ − n3 − σ1 − σ2 − σ3 + µ〉1−δ
F (µ, n1, n2, n3).

This trick allows us to estimate the norm in τ and introduce a restriction on the value of the
phase function. This strategy will be used in other estimates.

3.5 Nonlinear estimates for w

Analogously to the previous section, from Lemma 3.1.4, it suffices to estimate the terms in
the equation (3.22) in Zs1 , dropping the factor of ϕT . In this section, we show the multilinear
estimates needed to prove Proposition 3.3.2 by a contraction mapping argument. In particular,
we estimate the trilinear and quintilinear operators on the right-hand side of (A.1).

In Section 3.5.1, we focus on the cubic terms in (A.1), namely

DR(u1, u2, u3), DNRC(w1, w2, w3), DNRD(w1, w2, w3),

B0
A(w1, u2, u3), B1

A(w1, u2, u3), B2
A(w1, w2, u3), B3

A(w1, u2, w3),

B0
B(w1, w2, u3), B1

B(w1, w2, u3), B2
B(w1, w2, u3), B3

B(w1, w2, w3),

(3.27)

where uj ∈ {u, u}, wj ∈ {w,w}, j = 1, 2, 3.

The quintic terms in (A.1) arise from substituting a u entry by a G#-operator, for # ∈
{A,B}. First, note that∣∣Ft,x(ϕT ·G#(u1, u2, u3)

)
(τ, n)

∣∣
.

∑
n123∈X#(n)

ˆ
R2

T |n1||ϕ̂(T (τ − µ))|
〈µ− µ′〉〈φ(n123)〉

ˆ

µ′=τ1+τ2+τ3

3∏
j=1

|ûj(τj , nj)| dµ′ dµ

.
∑

n123∈X#(n)

ˆ
R2

|n1|‖〈·〉ϕ̂‖L∞
〈µ− µ′〉〈τ − µ〉〈φ(n123)〉

ˆ

µ′=τ1+τ2+τ3

3∏
j=1

|ûj(τj , nj)| dµ′ dµ

.
∑

n123∈X#(n)

ˆ
R

|n1|
〈τ − µ′〉1−θ〈φ(n123)〉

ˆ

µ′=τ1+τ2+τ3

3∏
j=1

|ûj(τj , nj)| dµ′,
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∣∣Ft,x(ϕT ·G#(u1, u2, u3)
)
(τ, n)

∣∣
.

∑
n123∈X#(n)

ˆ
R2

T |n1||ϕ̂(T (−τ − µ))|
〈µ+ µ′〉〈φ(n123)〉

ˆ

µ′=τ1+τ2+τ3

3∏
j=1

|ûj(τj , nj)| dµ′ dµ

.
∑

n123∈X#(n)

ˆ
R

|n1|
〈τ − µ′〉1−θ〈φ(n123)〉

ˆ

µ′=τ1+τ2+τ3

3∏
j=1

|ûj(τj , nj)| dµ′,

for any 0 < θ � 1, by using Lemma 2.1.4. Since ‖u‖Xs,bp,q = ‖u‖Xs,bp,q for any choice of s, b, p, q,

we will omit the contributions that depend on G#, as they can be estimated analogously. We
first calculate the space-time Fourier transform of the quintic contributions arising from the
DN terms. For example, for ∗ ∈ {A,B,C,D} and # ∈ {A,B}, we have the following estimate∣∣Ft,xDNR∗(ϕT ·G#[u1, u2, u3], u4, u5

)
(τ, n)

∣∣
.

∑
n045∈X∗(n),
n123∈X#(n0)

ˆ
R

ˆ

λ=τ1+...+τ5

|n0n1|
〈τ − λ〉1−θ〈τ − n3〉〈φ(n123)〉

5∏
j=1

|ûj(τj , nj)| dλ,

∣∣Ft,xDNR∗(u1, ϕT ·G#[u2, u3, u4], u5

)
(τ, n)

∣∣
.

∑
n105∈X∗(n),
n234∈X#(n0)

ˆ
R

ˆ

λ=τ1+...+τ5

|n1n2|
〈τ − λ〉1−θ〈τ − n3〉〈φ(n234)〉

5∏
j=1

|ûj(τj , nj)| dλ,

∣∣Ft,xDNR∗(u1, u2, ϕT ·G#[u3, u4, u5]
)
(τ, n)

∣∣
.

∑
n120∈X∗(n),
n345∈X#(n0)

ˆ
R

ˆ

λ=τ1+...+τ5

|n1n3|
〈τ − λ〉1−θ〈τ − n3〉〈φ(n345)〉

5∏
j=1

|ûj(τj , nj)| dλ, (3.28)

for any 0 < θ < 1. The main difficulty is controlling the spatial multiplier defined as follows

α(n, n0...5) =



|n0n1|
|φ(n123)|

, if n045 ∈ X∗(n), n123 ∈ X#(n0),

|n1n2|
|φ(n234)|

, if n105 ∈ X∗(n), n234 ∈ X#(n0),

|n1n3|
|φ(n345)|

, if n120 ∈ X∗(n), n345 ∈ X#(n0),

where n0...5 = (n0, n1, . . . , n5). We will refer to the frequencies in X∗(n) as the first generation
of frequencies and those in X#(n0) as the second when discussing the quintic terms.

In Section 3.5.2, we estimate the contributions for which α(n, n0...5) . 1, namely

DNR∗
(
ϕT ·GA[w1, u2, u3], u4, u5

)
, DNR∗

(
ϕT ·GB [w1, w2, u3], u4, u5

)
,

DNR#

(
w1, ϕT ·GA[w2, u3, u4], u5

)
, DNR#

(
w1, ϕT ·GB [w2, w3, u4], u5

)
,

DNRD
(
w1, w2, ϕT ·GA[w3, u4, u5]

)
, DNRD

(
w1, w2, ϕT ·GB [w3, w4, u5]

)
,

(3.29)

where ∗ ∈ {A,B,C,D}, # ∈ {B,C,D} and uj ∈ {u, u}, wj ∈ {w,w}, j = 1, . . . , 5. The
estimate for these contributions follows once we control Q(u1, . . . , u5) defined by its space-time
Fourier transform

Ft,x
(
Q(u1, . . . , u5)

)
(τ, n)

=
∑

n=n1+...+n5

ˆ
R

ˆ

λ=τ1+...+τ5

1

〈τ − λ〉1−θ〈τ − n3〉1−θ
5∏
j=1

|ûj(τj , nj)| dλ. (3.30)

In Section 3.5.2, we establish an estimate for the standard quintic contribution (3.30) under
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particular assumptions on the frequencies. Not all the quintic contributions in (3.29) are of the
form (3.30), which forces us to use the equation for u once again, introducing new septic terms.
In particular, the following quintic contributions will not be estimated directly

DNRC
(
w1, w2, ϕT ·GA[w3, u4, u5]

)
, DNRC

(
w1, w2, ϕT ·GB [w3, w4, u5]

)
,

B2
A

(
w1, ϕT ·GA[w2, u3, u4], u4

)
, B2

A

(
w1, ϕT ·GB [w2, w3, u4], u4

)
,

B3
A

(
w1, u2, ϕT ·GA[w3, u4, u5]

)
, B3

A

(
w1, u2, ϕT ·GB [w3, w4, u5]

)
,

B3
B

(
w1, w2, ϕT ·GA[w3, u4, u5]

)
, B3

B

(
w1, w2, ϕT ·GB [w3, w4, u5]

)
,

(3.31)

where uj ∈ {u, u}, wj ∈ {w,w}, j = 1, . . . , 5. The DNRC contributions are not controlled

by (3.30) and thus need a more refined approach. For the Bj
∗ contributions, not only does the

j-th modulation play an important role, but also the largest modulation of the new functions
in G#. This is detailed in Section 3.5.3.

3.5.1 Cubic terms

We start by estimating the cubic terms in (3.27).

Lemma 3.5.1. The following estimate holds

‖DR(u1, u2, u3)‖
Z
s

1

. ‖u1‖
Y
s

0

‖u2‖
Y

1
2

0

‖u3‖
Y

1
2

0

.

Proof. Using the kernel estimate for D in (3.13) and Young’s inequality, we have

‖DR(u1, u2, u3)‖
Z
s

1

.

∥∥∥∥ˆ
R

1

〈τ − λ〉

ˆ

λ=τ1−τ2+τ3

〈n〉s|û1(τ1, n)|
3∏
j=2

〈n〉 12 |ûj(τj , n)| dλ
∥∥∥∥
`pnL

q0
τ

.

∥∥∥∥ ˆ

τ=τ1−τ2+τ3

〈n〉s|û1(τ1, n)|
3∏
j=2

〈n〉 12 |ûj(τj , n)|
∥∥∥∥
`pnL

r0
τ

,

for δ < 1
6 . Applying Hölder’s inequality gives

‖DR(u1, u2, u3)‖
Z
s

1

. sup
τ,n

J(τ, n)

∥∥∥∥‖〈n〉s〈τ − n3〉 12 û1(τ, n)‖Lr0τ
3∏
j=2

‖〈n〉 12 〈τ − n3〉 12 ûj(τ, n)‖Lr0τ

∥∥∥∥
`pn

,

where

J(τ, n)r
′
0 =

ˆ
R2

dτ1 dτ2

〈τ1 − n3〉
r′0
2 〈τ2 − n3〉

r′0
2 〈τ − τ1 + τ2 − n3〉

r′0
2

. 1

from Lemma 2.1.4. The result follows from Hölder’s inequality.

Remark 3.5.2. As in the estimates in Chapter 2, the resonant contribution is responsible for
the regularity restriction s ≥ 1

2 , since we require s+ 1 ≤ 3s ⇐⇒ s ≥ 1
2 .

Lemma 3.5.3. Let ∗ ∈ {C,D}. Then, the following estimate holds

‖DNR∗(u1, u2, u3)‖
Z
s

1

. ‖u1‖
Z

1
2
0

‖u2‖
Z
s

0

‖u3‖
Z

1
2
0

.

Proof. Let ∗ ∈ {C,D}, then n123 ∈ X∗(n) implies that 〈n〉s|n1| . 〈n1〉
1
2 〈n2〉s〈n3〉

1
2 . Using
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(3.13), we have

‖DNR∗(u1, u2, u3)‖
Z
s

1

.

∥∥∥∥ˆ
R

∑
n=n1+n2+n3,
n123∈X∗(n)

〈n1〉
1
2 〈n2〉s〈n3〉

1
2

〈τ − n3〉δ〈τ − λ〉

ˆ

λ=τ1+τ2+τ3

3∏
j=1

|ûj(τj , nj)|dλ
∥∥∥∥
`pnL

q0
τ

.

Let fj(σ, n) = 〈n〉 12 〈σ〉δ|ûj(σ + n3, n)|, j ∈ {1, 3}, f2(σ, n) = 〈n〉s〈σ〉δ|û2(σ + n3, n)|, σ̄ =
σ1 + σ2 + σ3 and proceed as in (3.25). Using Minkowski’s and Hölder’s inequalities gives

‖DNR∗(u1, u2, u3)‖
Z
s

1

.
ˆ

σ1,σ2,σ3

∥∥∥∥ ∑
n=n1+n2+n3,
n123∈X∗(n)

1

〈φ(n123)〉δ〈τ − n3 − σ̄ + φ(n123)〉1−δ
3∏
j=1

fj(σj , nj)

∥∥∥∥
`pnL

q0
τ

.
ˆ

σ1,σ2,σ3

∥∥∥∥∑
µ

|µ|ε

〈µ〉δ〈τ − n3 − σ̄ + µ〉1−δ

( ∑
n123∈Xµ∗ (n)

3∏
j=1

|fj(σj , nj)|p
) 1
p
∥∥∥∥
`pnL

q0
τ

,

since from the standard divisor counting estimate (Lemma 3.1.6), we have that |Xµ∗ (n)| .ε |µ|ε,
for any ε > 0. Choosing ε ≤ δ and applying Schur’s test with 1 + 1

q0
= 1

p + 1
q , we obtain

‖DNR∗(u1, u2, u3)‖
Z
s

1

.
ˆ

σ1,σ2,σ3

∥∥∥∥( ∑
n123∈Xµ∗ (n)

3∏
j=1

|fj(σj , nj)|p
) 1
p
∥∥∥∥
`pn`

p
µ

.
3∏
j=1

‖fj(σ, n)‖L1
σ`
p
n
,

for δ < 1
5p . Consequently, using Hölder’s and Minkowski’s inequalities, it follows that

‖DNR∗(u1, u2, u3)‖
Z
s

1

.
3∏
j=1

‖〈σ〉1−4δ+f̂j(σ, n)‖Lq0σ `pn . ‖u1‖
Z

1
2
0

‖u2‖
Z
s

0

‖u3‖
Z

1
2
0

.

Remark 3.5.4. (i) The termsDNRA, DNRB cannot be estimated in a similar manner because

〈n〉 12 |n1| is not controlled by (〈n1〉〈n2〉〈n3〉)
1
2 . This motivated the application of the modified

Duhamel operator to introduce smoothing in space needed to control the loss of derivative from
the nonlinearity without using the largest modulation.

(ii) Consider the estimate

∥∥DNRD(u1, u2, u3)
∥∥
X

1
2
,b

p,q

.
3∏
j=1

‖uj‖
X

1
2
,b

p,q

,

for some b ≥ 0, 2 ≤ q < ∞. The region XD(n) includes the case when |n1| ∼ |n2| ∼ |n3|,
max
j=1,2,3

|nj | . |φ(n123)| � max
j=1,2,3

|nj |2. When attempting to show the above estimate under the

nearly-resonant assumption, we must impose the conditions

max

(
1− 1

2q
, 1 +

1

q
− 1

p

)
< b < 1,

which motivate our choice of b = 1− and q =∞− for the definition of the Zs0 space.

Lemma 3.5.5. Let ∗ ∈ {A,B}. The following estimates hold

‖B0
A(u1, u2, u3)‖

Z
s

1

. ‖u1‖
Y
s

0

‖u2‖
Y

1
2

0

‖u3‖
Y

1
2

0

,
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‖B0
B(u1, u2, u3)‖

Z
s

1

. ‖u1‖
Y

1
2

0

‖u2‖
Y
s

0

‖u3‖
Y

1
2

0

.

Proof. It suffices to show

‖B0
∗(u1, u2, u3)‖

Z
1
2
1

. ‖u1‖
Y

1
2

0

‖u2‖
Y

1
2

0

‖u3‖
Y

1
2

0

,

for ∗ ∈ {A,B}, since the intended estimates follow from 〈n〉s− 1
2 . 〈n1〉s−

1
21∗=A+〈n2〉s−

1
21∗=B .

Choosing α = 4δ in the kernel estimate (3.17), gives

‖B0
∗(u1, u2, u3)‖

Z
1
2
1

.

∥∥∥∥ ∑
n=n1+n2+n3,
n123∈X∗(n)

ˆ

τ1,τ2,τ3

〈n〉 12 |n1|
〈τ − n3〉5δ〈φ(n123)〉1−4δ

3∏
j=1

|ûj(τj , nj)|
∥∥∥∥
`pnL

q0
τ

.

∥∥∥∥ ∑
n=n1+n2+n3,
n123∈X∗(n)

〈n〉 12 |n1|
〈φ(n123)〉1−4δ

3∏
j=1

‖ûj(nj)‖L1
τ

∥∥∥∥
`pn

,

by applying Minkowski’s inequality in the last step and integrating in τ . For n123 ∈ X∗(n), we
have |φ(n123)| ∼ max

j=1,2,3
|nj |2 min

`=1,2,3
|n− n`|, which implies

〈n〉 12 |n1|
〈φ(n123)〉1−4δ

.
〈n1〉

1
2

max
j=1,2,3

〈nj〉1−8δ min
`=1,2,3

〈n− n`〉1−4δ
.

Applying Hölder and Minkowski’s inequalities, it follows that

‖B0
∗(u1, u2, u3)‖

Z
1
2
1

.
(

sup
n
J(n)

) 1
p′ ‖〈n〉 12 û1‖`pnL1

τ

3∏
j=2

‖ûj‖`pnL1
τ
,

where J(n) is defined as follows

J(n) :=
∑

n=n1+n2+n3

1

max
j=1,2,3

〈nj〉(1−8δ)p′ min
`=1,2,3

〈n− n`〉(1−4δ)p′
.

Let j, ` ∈ {1, 2, 3} denote the indices at which the maximum and minimum in the definition of
J(n) are attained, respectively. If j = `, we can use the fact that 〈nj〉 & 〈ni〉 for i ∈ {1, 2, 3}\{j}
and sum in ni, nj . If j 6= `, we sum in nj , n`. Thus, J(n) . 1 uniformly in n for δ < 1

8p . The
intended estimate follows from applying Hölder’s inequality in time.

Lemma 3.5.6. Let ∗ ∈ {A,B}. Then, the following estimates hold

‖Bj
∗(u1, u2, u3)‖Zs1 . ‖uj‖Zsj0

3∏
k=1
k 6=j

‖uk‖Y sk0
, j = 1, 2, 3,

for s ≥ 1
2 , (s1, s2, s3) = (s, 1

2 ,
1
2 ) if ∗ = A or (s1, s2, s3) = (1

2 , s,
1
2 ) if ∗ = B.

Proof. We will only show the estimate for j = 1 and s = 1
2 , as the remaining estimates follow

an analogous proof. The conditions on sj , j = 1, 2, 3, follow from the fact that |n| . |n1| when
∗ = A and |n| . |n2| when ∗ = B. Fix ∗ ∈ {A,B}. From (3.19) with 1 − α = b0 − δ and for
n123 ∈ X∗(n) we have

〈n〉 12 |n1|〈τ − n3〉b1
∣∣K+

(
τ − n3, λ− n3, φ(n123)

)∣∣ . 〈n1〉
1
2 〈τ1 − n3

1〉1−3δ

〈τ − λ〉〈φ(n123)〉 12−3δ〈n− n`〉
1
2

,

where |n − n`| = minj=1,2,3 |n − nj |. Let f(τ, n) = 〈n〉 12 〈τ1 − n3
1〉b0−δ|û1(τ, n)|. Then, using
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Minkowski’s and Young’s inequalities, we have∥∥B1
∗(u1, u2, u3)

∥∥
Z

1
2
1

.

∥∥∥∥ ∑
n=n1+n2+n3,
n123∈X∗(n)

1

〈φ(n123)〉 12−3δ〈n− nl〉
1
2

(
1

〈·〉
∗ f(·, n1) ∗j=2,3 |ûj(·, nj)|

)
(τ)

∥∥∥∥
`pnL

q0
τ

.

∥∥∥∥ ∑
n=n1+n2+n3,
n123∈X∗(n)

1

〈φ(n123)〉 12−3δ〈n− nl〉
1
2

‖f(n1)‖Lq1τ
3∏
j=2

‖ûj(nj)‖L1
τ

∥∥∥∥
`pn

.

Using Hölder’s inequality, we obtain

∥∥B1
∗(u1, u2, u3)

∥∥
Z

1
2
1

.
(

sup
n
J(n)

) 1
p′ ‖f‖`pnLq1τ

3∏
j=2

‖uj‖`pnL1
τ
,

where

J(n) =
∑

n=n1+n2+n3

1

〈nmax〉p′(1−6δ)〈n− n`〉p′(1−3δ)
.
∑
ni,n`

1

〈ni〉p′(1−6δ)〈n− n`〉p′(1−3δ)
. 1,

for some distinct ni, n` ∈ {n1, n2, n3} and δ < 1
6p . The intended estimate follows from applying

Hölder’s inequality.

3.5.2 Standard quintic term Q (3.30)

In this section, we focus on estimating the quintic terms in (3.29). Before doing so, we must take
into account the new ‘resonances’ introduced by using the second iteration. For the estimates
to hold, we need the largest frequency to correspond to a w term and to not be in a pairing,
as defined below. Otherwise, we will use the equation for u (3.21), which introduces new
septic terms.

Looking at Q in (3.30) in more detail, note that the sum in (3.30) over n = n1 + . . . + n5

does not exclude all resonances, i.e., we can have ni + nj = 0 for distinct i, j ∈ {1, . . . , 5}. If
this holds, we say that (i, j) is a pairing.

We will show a general estimate for Q in (3.30), given that one of the following holds:

(i) There are no pairings in (n1, . . . , n5) and the largest frequency corresponds to a function
in Zs0 ;

(ii) There is one pairing (i, j) and the largest frequency in {|nk| : 1 ≤ k ≤ 5, k 6= i, j}
corresponds to a function in Zs0 ;

(iii) There are two pairings and the remaining frequency corresponds to a function in Zs0 .

Note that if (i), (ii) or (iii) hold, we can always use the largest frequency which is not in a
pairing to control the spatial weight from the norm 〈n〉s. If the contributions do not satisfy
any of the above conditions, then the largest frequency that is not in a pairing corresponds to
a function u and we want to use the equation for u again. This leads to one quintic term that
satisfies the assumptions above and four septic terms, which are easily estimated.

To further clarify, let Q′(u1, . . . , u5) denote a contribution in (3.29), uj ∈ {u, u, w,w}. Let
nj correspond to the spatial Fourier variable of ûj , j = 1, . . . , 5. If n1 is the largest frequency
that is not in a pairing and u1 ∈ {w,w}, then we keep the contribution as is. Otherwise,
u1 ∈ {u, u} and we will use the equation (3.21) to replace the first entry in Q′. For simplicity,
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assume that u1 = u, then we have

Q′(u, u2, . . . , u5) = Q′(w, u2, . . . , u5)

+Q′
(
ϕT ·GA,≥[w, u, u], u2, . . . , u5

)
+Q′

(
ϕT ·GA,>[w, u, u], u2 . . . , u5

)
+Q′

(
ϕT ·GB,≥[w,w, u], u2, . . . , u5

)
+Q′

(
ϕT ·GB,>[w,w, u], u2, . . . , u5

)
.

By carefully examining the frequencies and pairings of the terms in (3.29) and applying the
above modification, we obtain the final equation for w. Due to its length, we have decided to
not include it in full. All the resulting quintic and septic terms arising from (3.29), can be
estimated by the two following propositions. The details on how to apply these estimates are
included in Appendix A.3.

Proposition 3.5.7. Let Q as defined in (3.30) where the first factor has the largest spatial
Fourier frequency which is not in a pairing and with θ < δ

2 . Then, the following estimate holds

∥∥Q(u1, . . . , u5)
∥∥
Z
s

1

. ‖u1‖
Z
s

0

5∏
j=2

‖uj‖
Y

1
2

0

.

Proof.

Case 1: no pairing

Let PNj denote the Dirichlet projection onto 〈nj〉 ∼ Nj , j = 1, . . . , 5, and assume by symmetry
that N2 ≥ . . . ≥ N5. Since there is no pairing we have |n| . |n1|, therefore using Minkowski’s
inequality gives

‖Q(u1, . . . , u5)‖
Z
s

1

.
∑

N2,...,N5

ˆ

τ1,...,τ5

∥∥∥∥ ∑
n=n1+...+n5

1

〈τ − τ1 − . . .− τ5〉1−θ

× 〈n1〉s|û1(τ1, n1)|
5∏
j=2

|P̂Nju(τj , nj)|
∥∥∥∥
`pnL

q0
τ

.

Using the change of variables σj = τj − n3
j , j = 1, . . . , 5, and Schur’s test (Lemma 3.1.3), we

get

‖Q(u1, . . . , u5)‖
Z
s

1

.
∑

N2,...,N5

ˆ

σ1,...,σ5

∥∥∥∥ ∑
n=n1+...+n5

1

〈τ − n3 − σ1 − . . .− σ5 + ψ(n, n1...5)〉1−θ

× 〈n1〉s|û1(σ1 + n3
1, n1)|

5∏
j=2

|P̂Nju(σj + n3
j , nj)|

∥∥∥∥
`pnL

q0
τ

dσ1 · · · dσ5

.
∑

N2,...,N5

ˆ

σ1,...,σ5

∥∥∥∥ ∑
n=n1+...+n5,
ψ(n,n1...5)=µ

5∏
j=1

fj(σj , nj)

∥∥∥∥
`pn`

q1
µ

,

where ψ(n, n1...5) = n3−n3
1− . . .−n3

5, f1(σ, n) = 〈n〉s|û1(σ+n3, n)| and fj(σ, n) = |P̂Njuj(σ+
n3, n)|, j = 2, . . . , 5. Note that we can trivially restrict µ to the following region

A(n,N2, . . . , N5) =
{
µ ∈ Z : µ = n− (n− n2 − . . .− n5)3 − n3

2 − . . .− n3
5,

|nj | ∼ Nj , j = 2, . . . , 5
}
,

which satisfies |A(n,N2, . . . , N5)| . N4
2 for fixed n. Thus, by taking a supremum inµ, it follows

that

‖Q(u1, . . . , u5)‖Zs1 .
∑

N2,...,N5

ˆ

σ1,...,σ5

∥∥∥∥1µ∈A(n,N2,...,N5)

∑
n=n1+...+n5,
ψ(n,n1...5)=µ

5∏
j=1

fj(σj , nj)

∥∥∥∥
`pn`

q1
µ
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.
∑

N2,...,N5

N
4
q1

2

ˆ

σ1,...,σ5

∥∥∥∥ ∑
n=n1+...+n5,
ψ(n,n1...5)=µ

5∏
j=1

fj(σj , nj)

∥∥∥∥
`pn`∞µ

. (3.32)

Now, we consider two distinct cases depending on the size of the frequencies.

Subcase 1.1: N3 ≥ N4
√
δ

2

Using Cauchy’s inequality with α > 0, omitting the time dependence, we have

∑
n=n1+...+n5,
ψ(n,n1...5)=µ

5∏
j=1

fj(nj) .
∑

n=n1+...+n5,
ψ(n,n1...5)=µ

f1(n1)
(
α|f2(n2)f3(n3)|2 + α−1|f4(n4)f5(n5)|2

)
.
∑
n2,n3

∑
(n1,n4,n5)∈B(n,n2,n3,µ)

αf1(n1)|f2(n2)f3(n3)|2

+
∑
n4,n5

∑
(n1,n2,n3)∈B(n,n4,n5,µ)

α−1f1(n1)|f4(n4)f5(n5)|2,

where

B(k, k1, k2, µ) :=
{

(n1, n2, n3) ∈ Z3 : n1 + n2 + n3 = k − k1 − k2 =: `,

3(n2 + n3)(`− n2)(`− n3) = µ− k3 + k3
1 + k3

2 + `3
}
.

Taking a supremum in n1, we obtain

∑
n=n1+...+n5,
ψ(n,n1...5)=µ

5∏
j=1

fj(nj) . α sup
|n−n1|.N2

f1(n1)
∑
n2,n3

|B(n, n2, n3, µ)| · |f2(n2)f3(n3)|2

+ α−1 sup
|n−n1|.N2

f1(n1)
∑
n4,n5

|B(n, n4, n5, µ)| · |f4(n4)f5(n5)|2.

In order to estimate |B(n, n2, n3, µ)|, |B(n, n4, n5, µ)|, we use Lemma 3.1.7 (i). For the first one,
to count the choices of (n1, n4, n5) it suffices to count the number of divisors `−n4, `−n5, where
` = n−n2−n3, of ψ̃ := 3(n4+n5)(n−n2−n3−n4)(n−n2−n3−n5) = 3(n4+n5)(`−n4)(`−n5).
If |n| � |n2|, then

|ψ̃| ∼ |(n4 + n5)(n− n2 − n3 − n4)(n− n2 − n3 − n5)| . |n|3 =⇒ |ψ̃|ε ≤ |ψ̃| 13 . |n|,

for any ε > 0. Otherwise, |n| . |n2| and we have

|ψ̃| ∼ |(n4 + n5)(n− n2 − n3 − n4)(n− n2 − n3 − n5)| . |n2|3 =⇒ |ψ̃|ε ≤ |ψ̃| 13 . |n2|,

for any ε > 0. Applying the lemma, the number of divisors d4 = n − n2 − n3 − n4, d5 =
n− n2 − n3 − n5 satisfying{

|dj − n| = |n2 + n3 + nj | . N2, if |n| � |n2|,
|dj − n2| = |n− n3 − nj | . N2, if |n| . |n2|,

is bounded by Nε
2 , for j = 4, 5. Thus, |B(n, n2, n3, µ)| . Nε

2 , for any ε > 0. An analogous
approach gives |B(n, n4, n5, µ)| . Nε

2 . Consequently, we have

∑
n=n1+...+n5,
ψ(n,n1...5)=µ

5∏
j=1

fj(nj) . Nε
2 sup
|n−n1|.N2

f1(n1)
5∏
j=2

‖fj‖`2n ,

by choosing α = (‖f2‖`2n‖f3‖`2n)−1‖f4‖`2n‖f5‖`2n . Looking at (3.32), since |n− n1| . N2, taking
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a supremum in n1 gives

‖Q(u1, . . . , u5)‖
Z
s

1

.
∑

N2,...,N5

N
4
q1

+ε

2

ˆ

σ1,...,σ5

∥∥∥∥ sup
|n−n1|.N2

f1(σ1, n1)

∥∥∥∥
`pn

5∏
j=2

‖fj(σj)‖`2n

.
∑

N2,...,N5

N
4
q1

+ε

2

ˆ

σ1,...,σ5

(∑
n1

|f1(σ1, n1)|p
∑

|n−n1|.N2

1

) 1
p

5∏
j=2

‖fj(σj)‖`2n

.
∑

N2,...,N5

N
4
q1

+ 1
p+ε

2 ‖f1‖L1
σ`
p
n

5∏
j=2

‖fj‖L1
σ`

2
n
.

Using Hölder’s and Minkowski’s inequalities, we have

‖Q(u1, . . . , u5)‖
Z
s

1

.
∑

N2,...,N5

N
4
q1

+ 1
p+ε

2 (N2N3N4N5)δ−
1
p+‖u1‖

Z
s

0

5∏
j=2

‖uj‖
Y

1
2

0

.

It only remains to sum in the dyadic numbers Nj . Using the fact that N3 ≥ N4
√
δ

2 , we have∑
N2,...,N5

N
4
q1

+δ+

2 (N3N4N5)δ−
1
p+ .

∑
N2,...,N5

(N2N3N4N5)−δN
2δ+5

√
δ− 1

p+

3 (N4N5)2δ− 1
p+ . 1

for δ < 1
2p and 2δ + 5

√
δ − 1

p < 0 =⇒ 0 <
√
δ < − 5

4 +
√(

5
4

)2
+ 1

2p , and the estimate follows.

Subcase 1.2: N3 ≤ N4
√
δ

2

Using Cauchy-Schwarz inequality, we have

∑
n=n1+...+n5,
ψ(n,n1...5)=µ

5∏
j=1

fj(nj)

=
∑

n3,n4,n5

∑
n1∈C(n,n3,n4,n5,µ)

f1(n1)f2(n− n1 − n3 − n4 − n5)f3(n3)f4(n4)f5(n5)

. Nε
2

∑
n3,n4,n5

f3(n3)f4(n4)f5(n5)
(

sup
n1

f1(n1)f2(n− n1 − n3 − n4 − n5)
)

where

C(n, n3, n4, n5, µ) := {n1 ∈ Z : ` := n3 + n4 + n5, |`| . |n− n1 − `| . |n1|,
|n− n1 − `| . N2, 3(n− `)(n1 + `)(n− n1) = µ− `3 + n3

3 + n3
4 + n3

5},

for which |C(n, n3, n4, n5, µ)| . Nε
2 for any ε > 0 from Lemma 3.1.7 (i). Note that if |n| �

|n − n1 − `|, then ψ̃ := 3(n − `)(n1 + `)(n − n1) satisfies |ψ̃| . |n|3 and |ψ̃|ε ≤ |ψ̃| 13 . |n| for
any 0 < ε < 1

3 . Counting the number of choices for n1 is equivalent to counting the number of
divisors d = n1 + `. Since |d− n| = |n− n1 − `| . N2, from Lemma 3.1.7, there exist at most
Nε

2 values for n1. If |n| . |n−n1− `|, then |ψ̃| . |n−n1− `|3 . N3
2 , so by the standard divisor

counting lemma, there are at most Nε
2 divisors n1 + `. Consequently, |C(n, n3, n4, n5, µ)| . Nε

2 ,
for any 0 < ε < 1

3 . Minkowski’s inequality gives the following∥∥∥∥ ∑
n=n1+...+n5,
ψ(n,n1...5)=µ

5∏
j=1

fj(nj)

∥∥∥∥
`pn`∞µ

. Nε
2‖f1‖`pn‖f2‖`pn

5∏
j=3

‖fj‖`1n .
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Applying the previous estimate to (3.32) and Hölder’s inequality give

‖Q(u1, . . . , u5)‖
Z
s

1

.
∑

N2,...,N5

N
4
q1

+ε

2 ‖f1‖L1
σ`
p
n
‖f2‖L1

σ`
p
n

5∏
j=3

‖fj‖`1nL1
σ

.
∑

N2,...,N5

N
4
q1

+ 1
r0
− 1
p−

1
2 +

2 (N3N4N5)
1
2−

1
p+‖u1‖

Z
s

0

5∏
j=2

‖uj‖
Y

1
2

0

.

It only remains to sum in the dyadics Nj :∑
N2,...,N5

N
4
q1

+δ− 1
p+

2 (N3N4N5)
1
2−

1
p+ .

∑
N2,...,N5

(N3N4N5)−
√
δN

4
q1

+δ− 1
p+12

√
δ( 1

2−
1
p+3
√
δ)

2 . 1

if 4
q1

+ δ − 1
p + 12

√
δ( 1

2 −
1
p + 3

√
δ) < 0 =⇒ 0 <

√
δ < − 6

21

(
1
2 −

1
p

)
+
√

62

212

(
1
2 −

1
p

)2
+ 21

p ,

completing the proof for Case 1.

Case 2: one pairing (4, 5)

In this case, we have n = n1 + n2 + n3, n4 + n5 = 0. Let f1(σ, n) = 〈n〉s|û1(σ + n3, n)| and

fj(σ, n) = |P̂Njuj(σ + n3, n)|, j = 2, 3. Using Cauchy-Schwarz inequality in n4 and proceeding
as in Case 1 gives the following

‖Q(u1, . . . , u5)‖Zs1

.
∑
N2,N3

ˆ

σ1,σ2,σ3

∥∥∥∥∥ ∑
n=n1+n2+n3

φ(n123)=µ

3∏
j=1

fj(σj , nj)

∥∥∥∥∥
`pn`

q1
µ

5∏
k=4

‖ûk‖L1
τ `

2
n

.
∑
N2,N3

ˆ

σ1,σ2,σ3

∥∥∥∥∥1µ∈A(n,N2,N3)

∑
n=n1+n2+n3,
φ(n123)=µ

3∏
j=1

fj(σj , nj)

∥∥∥∥∥
`pn

5∏
k=4

‖ûk‖L1
τ `

2
n

.
∑
N2,N3

N
2
q1

2

ˆ

σ1,σ2,σ3

∥∥∥∥∥ ∑
n=n1+n2+n3,
φ(n123)=µ

3∏
j=1

fj(σj , nj)

∥∥∥∥∥
`pn`∞µ

5∏
k=4

‖ûk‖L1
τ `

2
n
, (3.33)

where A(n,N2, N3) :=
{
µ ∈ Z : µ = n3 − (n− n2 − n3)3 − n3

2 − n3
3, |nj | ∼ Nj , j = 2, 3

}
, which

satisfies |A(n,N2, N3)| . N2
2 uniformly in n.

Subcase 2.1: N4
√
δ

2 ≤ N3

Focusing on the inner sum, we apply Cauchy’s inequality, with α > 0, to obtain the following∑
n=n1+n2+n3,
φ(n123)=µ

f1(n1)f2(n2)f3(n3)

.
∑
n2

∑
n1∈B(n,n2,µ)

αf1(n1)|f2(n2)|2 +
∑
n3

∑
n1∈B(n,n3,µ)

α−1f1(n1)|f3(n3)|2,

where B(n, nj , µ) =
{
n1 ∈ Z : 3(n − n1)(n − nj)(n1 + nj) = µ

}
, j = 2, 3. Note that

|B(n, nj , µ)| ≤ 2 because the given equation is quadratic in n1, since we know that n− nj 6= 0,
otherwise we would have another pairing. Thus, taking a supremum in n1 and using the fact
that |n− n1| . N2, we get

∑
n=n1+n2+n3,
φ(n123)=µ

3∏
j=1

fj(σj , nj) . sup
|n−n1|.N2

f1(σ1, n1)
(
α‖f2(σ2)‖2`2n + α−1‖f3(σ3)‖2`2n

)

. sup
|n−n1|.N2

f1(σ1, n1)

3∏
j=2

‖fj(σj)‖`2n ,
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by choosing α = ‖f2(σ2)‖−1
`2n
‖f3(σ3)‖`2n . Using this estimate on Q gives

‖Q(u1, . . . , u5)‖
Z
s

1

.
∑
N2,N3

N
2
q1

+ 1
p

2 ‖f1‖L1
σ`
p
n

( 3∏
j=2

‖fj‖L1
σ`

2
n

)( 5∏
k=4

‖ûk‖L1
τ `

2
n

)

.
∑
N2,N3

N
2
q1

+ 1
p

2 (N2N3)
1
r0
− 1
p−

1
2 +‖u1‖

Z
s

0

5∏
j=2

‖uj‖
Y

1
2

0

.

The estimate follows from summing in the dyadics.

Subcase 2.2: N4
√
δ

2 ≥ N3

Focusing on the spatial norm on (3.33), we have∥∥∥∥∥ ∑
n=n1+n2+n3,
φ(n123)=µ

3∏
j=1

fj(σj , nj)

∥∥∥∥∥
`pn`∞µ

.

∥∥∥∥∑
n3

( ∑
n1∈C(n,n3,µ)

f1(σ1, n1)f2(σ2, n− n1 − n3)

)
f3(σ3, n3)

∥∥∥∥
`pn`∞µ

.
∑
n3

f3(σ3, n3)
∥∥ sup
n1

f1(σ1, n1)f2(σ2, n− n1 − n3)
∥∥
`pn
,

where C(n, n3, µ) =
{
n1 ∈ Z : 3(n− n1)(n− n3)(n1 + n3) = µ

}
satisfies |C(n, n3, µ)| ≤ 2, since

n− n3 6= 0. Substituting this estimate in (3.33) and using Hölder’s inequality gives

‖Q(u1, . . . , u5)‖
Z
s

1

.
∑
N2,N3

N
2
q1

+ 1
r0
− 1
p−

1
2 +

2 N
1
2−

1
p+

3 ‖u1‖
Z
s

0

5∏
j=2

‖uj‖
Y

1
2

0

.

The estimate follows from summing in the dyadics.

Case 3: two pairings (2, 3), (4, 5)
Using Minkowski’s and Cauchy-Schwarz inequalities, we get the following

‖Q(u1, . . . , u5)‖
Z
s

1

.

∥∥∥∥‖〈n〉sû1(n)‖L1
τ

∑
n2

‖û2(n2)‖L1
τ
‖û3(−n2)‖L1

τ

∑
n4

‖û4(n4)‖L1
τ
‖û5(−n4)‖L1

τ

∥∥∥∥
`pn

. ‖〈n〉sû1‖`pnL1
τ

5∏
j=2

‖ûj‖`2nL1
τ
.

The result follows from Hölder’s inequality.

Remark 3.5.8. Note that the above estimate still holds if we include a factor of 〈nj〉ε in the
multiplier, for some j ∈ {2, . . . , 5} and a small 0 < ε� 1.

Proposition 3.5.9. Let Q be defined as in (3.30), with the highest frequency which is not
associated to a pairing corresponding to the first entry, and θ < δ

2 . Then, the following estimates
hold∥∥Q(ϕT ·GA[u1, u2, u3], u4, . . . , u7

)∥∥
Z
s

1

,
∥∥Q(ϕT ·GA[u1, u2, u3], u4, . . . , u7

)∥∥
Z
s

1

. ‖u1‖
Z
s

0

7∏
j=2

‖uj‖
Y

1
2

0

, (3.34)
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∥∥Q(ϕT ·GB [u1, u2, u3], u4, . . . , u7

)∥∥
Z
s

1

,
∥∥Q(ϕT ·GB [u1, u2, u3], u4, . . . , u7

)∥∥
Z
s

1

. ‖u2‖
Z
s

0

7∏
j=1
j 6=2

‖uj‖
Y

1
2

0

.

Proof. We will only focus on establishing the estimate for the first term in (3.34), as the same
approach holds for the second term. Similarly, we can establish the second set of estimates by
exchanging the roles of u1 and u2. The first term on the left-hand side of (3.34) is controlled
by the following quantity∥∥∥∥ ∑

n=n1+...+n7

ˆ
R

〈n〉s|n1|
〈φ(n123)〉〈τ − λ〉1−θ

ˆ

λ=τ1+...+τ7

7∏
j=1

|ûj(τj , nj)| dλ
∥∥∥∥
`pnL

q0
τ

, (3.35)

with ûj substituted by ûj , j = 1, 2, 3, for the second term. It suffices to estimate (3.35). Since
(n1, n2, n3) ∈ XA(n0) and |n0| = max(|n0|, |n4|, . . . , |n7|), we have

〈n〉s|n1|
〈φ(n123)〉

.
1

max
j=1,2

〈nj〉1−s
.

Consider the change of variables σj = τj−n3
j , j = 1, . . . , 7 and let fj(σ, n) = |P̂Njuj(σ+n3, n)|,

j = 1, . . . , 7. Since |n1 + n2 + n3| ≥ max
j=4,...,7

|nj | and |n1| ∼ |n1 + n2 + n3| � max
j=2,...,7

|nj |, n1

cannot be in a pairing. Moreover, n2 + n3 6= 0. We will consider four cases depending on the
number of pairings.

Case 1: no pairings
Since |n1| ≥ |nj |, j = 2, . . . , 7, using Minkowski’s inequality and Schur’s test (Lemma 3.1.3),
we have

(3.35) .
∑

N1,...,N7

N−1+s
1

ˆ
R7

∥∥∥∥ ∑
n=n1+...+n7

1

〈τ − τ1 − . . .− τ7 + ψ(n, n1...7)〉1−θ
7∏
j=1

fj(σj , nj)

∥∥∥∥
`pnL

q0
τ

.
∑

N1,...,N7

ˆ
R7

N−1+s
1

∥∥∥∥∥ ∑
n=n1+...+n7,
ψ(n,n1...7)=µ

7∏
j=1

fj(σj , nj)

∥∥∥∥∥
`pn`

q1
µ

,

where ψ(n, n1...7) = n3 − n3
1 − . . .− n3

7. Using Hölder’s inequality, it follows that

(3.35) .
∑

N1,...,N7

ˆ
R7

N−1+s
1

∥∥∥∥∥1µ∈A(n,N1,...,N7)

∑
n=n1+...+n7,
ψ(n,n1...7)=µ

7∏
j=1

fj(σj , nj)

∥∥∥∥∥
`pn`

q1
µ

.
∑

N1,...,N7

ˆ
R7

N−1+s
1 (N2 · · ·N7)

1
q1

∥∥∥∥ ∑
n=n1+...+n7,
ψ(n,n1...7)=µ

7∏
j=1

fj(σj , nj)

∥∥∥∥∥
`pn`∞µ

,

where

A(n,N1, . . . , N7) =
{
µ ∈ Z : µ = n3 − (n− n2 − . . .− n7)3 − n3

2 − . . .− n3
7,

|nj | ∼ Nj , j = 2, . . . , 7
}

which satisfies |A(n,N2, . . . , N7)| . N2 · · ·N7, uniformly in n. Focusing on the inner sum and

76



omitting the time dependence, we have for α > 0

∑
n=n1+...+n7,
ψ(n,n1...7)=µ

7∏
j=1

fj(nj) .
∑
n234

∑
n1

f1(n1)
∑
n567

∈B(n,n1,n234,µ)

α|f2(n2)f3(n3)f4(n4)|2

+
∑
n567

∑
n1

f1(n1)
∑
n234

∈B(n,n1,n567,µ)

α−1|f5(n5)f6(n6)f7(n7)|2,

where

B(n, n1, n2, n3, n4, µ) =
{

(n5, n6, n7) ∈ Z3 : n5 + n6 + n7 = n− n1 − n2 − n3 − n4,

n3
5 + n3

6 + n3
7 = n3 − n3

1 − n3
2 − n3

3 − n3
4 − µ, |nj | ∼ Nj , j = 4, 5, 6

}
.

Using Lemma 3.1.7 (ii), we have that |B(n, n1, n2, n3, n4, µ)|, |B(n, n1, n5, n6, n7, µ)| . Nε
2+, for

any ε > 0 and N2+ = max(N2, . . . , N7). In addition, we know that |n− n1| . N2+, giving

∑
n=n1+...+n7,
ψ(n,n1...7)=µ

7∏
j=1

fj(nj) . Nε
2+

( ∑
|n−n1|.N2+

f1(n1)

) 7∏
j=2

‖fj‖`2n ,

by choosing α = (‖f2‖`2n‖f3‖`2n‖f4‖`2n)−1‖f5‖`2n‖f6‖`2n‖f7‖`2n . Consequently, using Hölder’s and
Minkowski’s inequality gives the following

(3.35) .
∑

N1,...,N7

N
s− 1

p+

1 N
1
p+ε

2+ (N2 · · ·N7)
1
q1 ‖f1‖L1

σ`
p
n

7∏
j=1

‖fj‖L1
σ`

2
n

.
∑

N1,...,N7

N
− 1
p+

1 N
1
p+ε

2+ (N2 · · ·N7)
1
q1

+ 1
r0
− 1
p−

1
2 +‖u1‖

Z
s

0

7∏
j=2

‖uj‖
Y

1
2

0

.

The estimate follows from summing in the dyadics.

Case 2: one pairing
In this case, there is only one pairing involving two frequencies in n4, . . . , n7. Let ∗ = A, assume
without loss of generality that n6 + n7 = 0, and N2+ = max(N2, . . . , N5). Proceeding as in the
previous case, we have

(3.35) .
∑

N1,...,N5

ˆ
R7

N−1+s
1

∥∥∥∥∑
n6

∑
n=n1+...+n5,

ψ̃(n,n1...5)=µ

û6(τ6, n6)û7(τ7,−n6)

5∏
j=1

fj(σj , nj)

∥∥∥∥
`pn`

q1
µ

. ‖û6‖`2nL1
τ
‖û7‖`2nL1

τ

∑
N1,...,N5

ˆ
R5

N−1+s
1 N

4
q1

2+

∥∥∥∥ ∑
n=n1+...+n5,

ψ̃(n,n1...5)=µ

5∏
j=1

fj(σj , nj)

∥∥∥∥
`pn`∞µ

,

where ψ̃(n, n1...5) = n3 − n3
1 − . . .− n3

5. Focusing on the inner sum, we have

∑
n=n1+...+n5,

ψ̃(n,n1...5)=µ

5∏
j=1

fj(nj) .
∑

(n4,n5)

∑
n123

∈B(n,n4,n5,µ)

f1(n1)α|f4(n4)f5(n5)|2

+
∑

(n2,n3)

∑
n145

∈B(n,n2,n3,µ)

f1(n1)α−1|f2(n2)f3(n3)|2,

where

B(n, n4, n5, µ) =
{

(n1, n2, n3) ∈ Z3 : n1 + n2 + n3 = n− n4 − n5,
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n3
1 + n3

2 + n3
3 = n3 − n3

4 − n3
5 − µ, |nj | ∼ Nj , j = 1, 2, 3

}
.

Using Lemma 3.1.7 (ii), we have |B(n, n4, n5, µ)|, |B(n, n2, n3, µ)| . Nε
2+, for ε > 0 small

enough, which implies∥∥∥∥ ∑
n=n1+...+n5,

ψ̃(n,n1...5)=µ

5∏
j=1

fj(nj)

∥∥∥∥
`pn`∞µ

. Nε
2+

∥∥∥∥ sup
|n−n1|.N2+

f1(n1)

∥∥∥∥
`pn

5∏
j=2

‖fj‖`2n

. N
1
p+ε

2+ ‖f1‖`pn
5∏
j=2

‖fj‖`2n .

Consequently,

(3.35) . ‖û6‖`2nL1
τ
‖û7‖`2nL1

τ

∑
N1,...,N5

N−1+s
1 N

4
q1

+ 1
p+ε

2+

5∏
j=1

‖fj‖L1
σ`

2
n

. ‖u1‖
Y
s

0

7∏
j=2

‖uj‖
Y

1
2

0

∑
N1,...,N5

N
−1+ 1

r0
− 1
p+

1 N
4
q1

+ 1
p+ε

2+ (N2N3N4N5)
1
r0
− 1
p−

1
2 +

. ‖u1‖
Y
s

0

7∏
j=2

‖uj‖
Y

1
2

0

,

by choosing δ < 1
p and δ < 1

40 , needed to sum in the dyadics

∑
N1,...,N5

N
−1+ 1

r0
− 1
p+

1 N
4
q1

+ 1
r0

+ε− 1
2 +

2 (N3N4N5)
1
r0
− 1
p−

1
2

.
∑

N1,...,N5

(N1N2)−
1
4 +10δ− 1

2p+(N3N4N5)δ−
1
p+ . 1.

Case 3: two pairings
We can assume without loss of generality that n2 + n5 = n6 + n7 = 0. Proceeding as before,
with N3+ = max(N3, N4) we have

(3.35) .
∑

N1,N2,N3

ˆ
R7

N−1+s
1

∥∥∥∥ ∑
n2,n6

|û2(τ2, n2)û5(τ5,−n2)û6(τ6, n6)û7(τ7,−n6)|

×
∑

n=n1+n2+n3,
φ(n123)=µ

∏
j∈{1,3,4}

fj(σj , nj)

∥∥∥∥
`pn`

q1
µ

.
∏

j∈{2,5,6,7}

‖ûj‖`2nL1
τ

∑
N1,N3,N4

ˆ
R3

N−1+s
1 N

2
q1

3+

∥∥∥∥ ∑
n=n1+n3+n4,
φ(n134)=µ

∏
j∈{1,3,4}

fj(σj , nj)

∥∥∥∥
`pn`∞µ

.

Applying Lemma 3.1.7 (ii), we have∥∥∥∥ ∑
n=n1+n3+n4,
φ(n134)=µ

∏
j∈{1,3,4}

fj(σj , nj)

∥∥∥∥
`pn`∞µ

. Nε
3+

∏
j∈{1,3,4}

‖fj‖`pn ,

for any ε > 0. Consequently,

(3.35) .
∏

j∈{2,5,6,7}

‖ûj‖`2nL1
τ

∑
N1,N3,N4

N−1+s
1 N

2
q1

+ε

3+

∏
k∈{1,3,4}

‖fk‖L1
σ`
p
n
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. ‖u1‖
Y
s

0

7∏
j=2

‖uj‖
Y

1
2

0

∑
N1,N3,N4

N
−1+ 1

r0
− 1
p+

1 N
2
q1

+ε

3+ (N3N4)
1
r0
− 1
p−

1
2 +

. ‖u1‖
Y
s

0

7∏
j=2

‖uj‖
Y

1
2

0

,

assuming that δ < 1
10p to sum in the dyadics.

Case 4: three pairings

Assume that n2 + n5 = n3 + n4 = n6 + n7 = 0, then using the weight 〈τ − λ〉−1+θ for the
Lq0τ -norm and Hölder’s inequality, it follows that

(3.35) .

∥∥∥∥ ∑
n2,n3,n6

ˆ
R7

〈n〉s|û1(τ1, n)û2(τ2, n2)û3(τ3, n3)|

× |û4(τ4,−n3)û5(τ5,−n2)û6(τ6, n6)û7(τ7,−n6)|
∥∥∥∥
`pn

. ‖〈n〉sû1‖`pnL1
τ

7∏
j=2

‖ûj‖`2nL1
τ

. ‖u1‖
Y
s

0

7∏
j=2

‖uj‖
Y

1
2

0

.

3.5.3 Remaining quintic terms

It remains to estimate the terms in (3.31). These terms cannot be written as (3.30) and thus
require a finer analysis. For the Bj

∗ terms, we need to use the modulations. For example,
calculating the space-time Fourier transform of the B3

∗ terms in (3.31), ∗ ∈ {A,B}, we have∣∣Ft,xB3
∗
(
u1, u2, ϕT ·G#[u3, u4, u5]

)
(τ, n)

∣∣
.

∑
n120∈X∗(n),
n345∈X#(n0)

ˆ
R3

ˆ

λ=τ1+τ2+τ0,
σ=τ3+τ4+τ5

|n1n3|
∣∣K+(τ − n3, λ− n3, φ(n120))

∣∣〈τ0 − µ〉|ϕ̂T (τ0 − µ)|

×
1|τ0−n3

0|&|λ−n3+φ(n120)|

〈τ0 − µ〉〈µ− σ〉
min

(
1

〈φ(n345)〉
,

1

〈µ− n3
0〉

) 5∏
j=1

|ûj(τj , nj)| dσ dµ dλ

.
∑

n120∈X∗(n),
n345∈X#(n0)

ˆ
R3

ˆ

λ=τ1+τ2+τ0,
σ=τ3+τ4+τ5

|n1n3|〈τ0 − n3
0〉1−α

〈τ − λ〉〈τ − n3〉〈φ(n120)〉1−α

×
1|τ0−n3

0|&|λ−n3+φ(n120)|

〈τ0 − µ〉〈µ− σ〉
min

(
1

〈φ(n345)〉
,

1

〈µ− n3
0〉

) 5∏
j=1

|ûj(τj , nj)| dσ dµ dλ

using (3.14) and (3.19), for 0 ≤ α ≤ 1. In order to control the multiplier, we must consider two
cases depending on the modulations of the second generation:

|τ0 − n3
0| � |σ − n3

0|, (3.36)

|τ0 − n3
0| . |σ − n3

0|. (3.37)

If (3.36) holds, then |τ0 − σ| ∼ |τ0 − n3
0| & |λ− n3 + φ(n120)| and we can obtain powers of the

resonance relation of the first and the second generations. Using Lemma 2.1.4, we get

1|τ0−n3
0|�|σ−n3

0|
∣∣Ft,xB3

∗
(
u1, u2, ϕT ·G#[u3, u4, u5]

)
(τ, n)

∣∣
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.
∑

n120∈X∗(n),
n345∈X#(n0)

ˆ
R2

ˆ

λ=τ1+τ2+τ0,
σ=τ3+τ4+τ5

|n1n3|〈τ0 − n3
0〉1−α

〈τ − λ〉〈τ − n3〉〈φ(n120)〉1−α〈φ(n345)〉〈τ0 − σ〉1−θ
5∏
j=1

|ûj(τj , nj)| dσ dλ

for θ < α ≤ 1. Since |τ0−σ| & |λ−n3 +φ(n120)|, by setting σ′ = σ+τ1 +τ2, changing variables
in the integrals above, and applying Lemma 2.1.4, we have

ˆ
R2

1

〈τ − λ〉〈λ− n3 + φ(n120)〉α−θ

ˆ

λ=τ1+τ2+τ0,
σ=τ3+τ4+τ5

5∏
j=1

|ûj(τj , nj)| dσ dλ

.
1

〈τ − n3 + φ(n120)〉α−2θ

ˆ
R

ˆ

σ′=τ1+...+τ5

5∏
j=1

|ûj(τj , nj)| dσ′.

Substituting this estimate and using the fact that |φ(n120)| . maxj=1,...,5 |nj |3, 〈τ − n3〉 .
〈τ − n3 + φ(n120)〉〈φ(n120)〉, and α = 4δ + 2θ, gives

1|τ0−n3
0|�|σ−n3

0|
∣∣Ft,xB3

∗
(
u1, u2, ϕT ·G#[u3, u4, u5]

)
(τ, n)

∣∣
.

∑
n120∈X∗(n),
n345∈X#(n0)

ˆ
R

max
j=1,...,5

〈nj〉9θ|n1n3|

〈φ(n120)〉〈φ(n345)〉〈τ − n3〉1+4δ

ˆ

σ′=τ1+...+τ5

5∏
j=1

|ûj(τj , nj)| dσ′.

If (3.37) holds, we can only gain a power of the resonance relation of the first generation. We
can use (3.19) to gain a power of 〈φ(n120)〉 at the cost of 〈τ0 − n3

0〉, but we can no longer use
〈τ0−σ〉 to help control this loss, which is why we cannot keep the power of 〈φ(n345)〉 as before:

1|τ0−n3
0|.|σ−n3

0|
∣∣Ft,xB3

∗
(
u1, u2, ϕT ·G#[u3, u4, u5]

)
(τ, n)

∣∣
.

∑
n120∈X∗(n),
n345∈X#(n0)

ˆ
R3

ˆ

λ=τ1+τ2+τ0,
σ=τ3+τ4+τ5

|n1n3|〈τ0 − n3
0〉1−α

〈τ − λ〉〈τ − n3〉〈φ(n120)〉1−α〈τ0 − µ〉〈µ− σ〉〈µ− n3
0〉

×
5∏
j=1

|ûj(τj , nj)| dσ dµ dλ.

Focusing on the integrals, from Cauchy-Schwarz inequality, Lemma 2.1.4, the fact that |λ −
n3 + φ(n120)| . |τ0 − n3

0|, and the change of variables σ′ = σ + τ1 + τ2, we get

ˆ
R3

ˆ

λ=τ1+τ2+τ0,
σ=τ3+τ4+τ5

〈τ0 − n3
0〉1−α

〈τ − λ〉〈τ0 − µ〉〈µ− σ〉〈µ− n3
0〉

5∏
j=1

|ûj(τj , nj)| dσ dµ dλ

.
ˆ
R2

ˆ

λ=τ1+τ2+τ0,
σ=τ3+τ4+τ5

〈τ0 − n3
0〉1−α

〈τ − λ〉〈τ0 − σ〉1−θ〈τ0 − n3
0〉1−θ

5∏
j=1

|ûj(τj , nj)| dσ dλ

.
ˆ
R2

ˆ

σ′=τ1+...+τ5

1

〈τ − λ〉〈λ− σ′〉1−θ〈τ0 − n3
0〉α−θ

5∏
j=1

|ûj(τj , nj)| dσ′ dλ

.
ˆ
R

ˆ

σ′=τ1+...+τ5

〈φ(n120)〉θ〈τ − n3〉θ

〈τ − σ′〉1−θ
5∏
j=1

|ûj(τj , nj)| dσ′,
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by choosing α = 2θ and using 〈τ − λ〉 . 〈τ − n3〉〈λ− n3 + φ(n120)〉〈φ(n120)〉. Substituting the
above estimate, we obtain

1|τ0−n3
0|.|σ−n3

0|
∣∣Ft,xB3

∗
(
u1, u2, ϕT ·G#[u3, u4, u5]

)
(τ, n)

∣∣
.

∑
n120∈X∗(n),
n345∈X#(n0)

ˆ
R

max
j=1,...,5

〈nj〉9θ|n1n3|

〈φ(n120)〉〈τ − n3〉1−θ〈τ − σ′〉1−θ

ˆ

σ′=τ1+...+τ5

5∏
j=1

|ûj(τj , nj)| dσ′

From the above calculation and (3.28), the Bj
∗ and the DNRC terms left to consider, can be

controlled as follows∣∣Ft,xB2
A

(
u1, ϕT ·G#[u2, u3, u4], u5

)
(τ, n)

∣∣
.

∑
n105∈XA(n),
n234∈X#(n0)

ˆ
R

α1(n, n1, . . . , n5)

〈τ − n3〉1+4δ
+

β1(n, n1, . . . , n5)

〈τ − n3〉1−θ〈τ − σ′〉1−θ

ˆ

σ′=τ1+...+τ5

5∏
j=1

|ûj(τj , nj)| dσ′,

∣∣Ft,xB3
∗
(
u1, u2, ϕT ·G#[u3, u4, u5]

)
(τ, n)

∣∣
.

∑
n120∈X∗(n),
n345∈X#(n0)

ˆ
R

α2(n, n1, . . . , n5)

〈τ − n3〉1+4δ
+

β2(n, n1, . . . , n5)

〈τ − n3〉1−θ〈τ − σ′〉1−θ

ˆ

σ′=τ1+...+τ5

5∏
j=1

|ûj(τj , nj)| dσ′,

∣∣Ft,xDNRC(u1, u2, ϕT ·G#[u3, u4, u5]
)
(τ, n)

∣∣
.

∑
n120∈XC(n),
n345∈X#(n0)

ˆ
R

β3(n, n1, . . . , n5)

〈τ − n3〉1−θ〈τ − σ′〉1−θ

ˆ

σ′=τ1+...+τ5

5∏
j=1

|ûj(τj , nj)| dσ′, (3.38)

where ∗,# ∈ {A,B} and the spatial multipliers are given by

α1(n, n1, . . . , n5) =

max
j=1,...,5

〈nj〉9θ|n1n2|

〈φ(n105)〉〈φ(n234)〉
, β1(n, n1, . . . , n5) =

max
j=1,...,5

〈nj〉9θ|n1n2|

〈φ(n105)〉
,

α2(n, n1, . . . , n5) =

max
j=1,...,5

〈nj〉9θ|n1n3|

〈φ(n120)〉〈φ(n345)〉
, β2(n, n1, . . . , n5) =

max
j=1,...,5

〈nj〉9θ|n1n3|

〈φ(n120)〉
,

β3(n, n1, . . . , n5) =
|n1n3|
〈φ(n345)〉

.

In the frequency regions where |βj(n, n1, . . . , n5)| . 1, the corresponding contributions have
the standard quintic form in (3.30). We therefore proceed as in Section 3.5.2. Otherwise, we
can apply the following result.

Proposition 3.5.10. Assume that the frequencies are ordered as follows |n1| ≥ . . . ≥ |n5|. If
|n1| ∼ |n2| � |n3| & |n|, (1, 2) not a pairing, and

β(n, n1, . . . , n5) .
|n1|1+9θ

|n3|
,

then the following estimate holds

∥∥∥∥〈n〉s〈τ − n3〉b1
∑

n=n1+...+n5

ˆ
R

β(n, n1, . . . , n5)

〈τ − n3〉1−θ〈τ − σ′〉1−θ

ˆ

σ′=τ1+...+τ5

5∏
j=1

|ûj(τj , nj)| dσ′
∥∥∥∥
`pnL

q0
τ

. ‖u1‖
Z
s

0

‖u2‖
Z

1
2
0

‖u3‖
Z

1
2
0

‖u4‖
Y

1
2

0

‖u5‖
Y

1
2

0

. (3.39)

Lastly, the Bj
∗ terms in (3.38) with αj multiplier can be estimated by the following propo-
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sition.

Proposition 3.5.11. Let Q′(u1, . . . , u5) be such that∣∣Ft,xQ′(u1, . . . , u5)(τ, n)
∣∣

.
∑

n=n1+n2+n0

∑
n0=n3+n4+n5

ˆ
R5

max
j=1,...,5

〈nj〉9θ

〈n1〉〈n3〉〈τ − n3〉1+θ

5∏
j=1

|ûj(τj , nj)| dτ1 · · · dτ5,

where |n1| ≥ max(|n0|, |n2|) and |n3| ≥ |n4| ≥ |n5|. Then, the following estimate holds∥∥Q′(u1, . . . , u5)‖
Z
s

1

. max
(
‖u1‖

Y
s

0

‖u3‖
Y

1
2

0

, ‖u1‖
Y

1
2

0

‖u3‖
Y
s

0

)
‖u2‖

Y
1
2

0

‖u4‖
Y

1
2

0

‖u5‖
Y

1
2

0

.

See Appendix A.4 for further detail on how to estimate these contributions. We complete
this section by showing Propositions 3.5.10 and 3.5.11.

Proof of Proposition 3.5.10. Due to the θ loss in the largest frequency when estimating α, we
will distinguish two cases: when |n1|

1
2 . |n3| and when |n1|

1
2 � |n3|.

Case 1: |n1|
1
2 . |n3|

Using the notation ψ(n, n1...5) = n3 − n3
1 − . . . − n3

5 and the change of variables σj = τj − n3
j ,

j = 1, . . . , 5, we start by applying Minkowski’s inequality and Schur’s test (Lemma 3.1.3) to
obtain

LHS of (3.39)

.
ˆ

σ1,...,σ5

∥∥∥∥∑
µ

1

〈τ − n3 − σ̄ + µ〉1−θ

( ∑
n=n1+...+n5,
ψ(n,n1...5)=µ

〈n1〉1+9θ〈n〉s− 1
2

max(〈n3〉, 〈n〉)
1
2

5∏
j=1

|ûj(σj + n3
j , nj)|

)∥∥∥∥
`pnL

q0
τ

.
ˆ

σ1,...,σ5

∥∥∥∥ ∑
n=n1+...+n5,
ψ(n,n1...5)=µ

〈n1〉s+
1
2 +9θ

max(〈n3〉, 〈n〉)
1
2

5∏
j=1

|ûj(σj + n3
j , nj)|

∥∥∥∥
`pn`

q1
µ

,

where σ̄ = σ1 + . . . + σ5 and θ < δ
2 . Let f1(σ, n) = 〈n〉s|P̂N1u1(σ + n3, n)|, f2(σ, n) =

〈n〉 12 |P̂N2u2(σ + n3, n)|, and fk(σ, n) = |P̂Nkuk(σ + n3, n)|, k = 3, 4, 5, where N1 ∼ N2 �
N3 ≥ N4 ≥ N5 dyadic numbers with N1 . N2

3 . Omitting the time dependence, using Hölder’s
inequality, the standard divisor counting estimate (Lemma 3.1.6), and Minkowski’s inequality,
we have

N9θ
1 N

− 1
2

3

∥∥∥∥ ∑
n=n1+...+n5,
ψ(n,n1...5)=µ

5∏
j=1

fj(nj)

∥∥∥∥
`pn`

q1
µ

. N9θ+ε
1 N

− 1
2

3

∥∥∥∥ ∑
n4,n5

f4(n4)f5(n5)

( ∑
n1+n2+n3=n−n4−n5,

n3
1+n3

2+n3
3=n3−n3

4−n
3
5−µ

3∏
j=1

|fj(nj)|p
) 1
p
∥∥∥∥
`pn`

p
µ

. N9θ+ε
1 N

− 1
2

3 ‖f1‖`pn‖f2‖`pn‖f3‖`pn‖f4‖`1n‖f5‖`1n .

Note that we can use the divisor counting estimate because (n1 + n2)(n1 + n3)(n2 + n3) 6= 0,
from the assumption that (1, 2) is not a pairing and the fact that |n1| ∼ |n2| � |n3| which does
not allow (1, 3), (2, 3) to be pairings. From this estimate, we get

LHS of (3.39) .
∑

N1,...,N5

N9θ+ε
1 N

− 1
2

3

( 3∏
j=1

‖fj‖L1
σ`
p
n

)( 5∏
k=4

‖fk‖L1
σ`

1
n

)

.
∑

N1,...,N5

N9θ+ε
1 N−1

3 (N4N5)
1
2−

1
p+‖u1‖

Z
s

0

( 3∏
j=2

‖uj‖
Z

1
2
0

)( 5∏
k=4

‖uk‖
Y

1
2

0

)
. (3.40)
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Using the fact that N1 ∼ N2 . N2
3 , for ε, θ < δ

2 and δ small enough, the estimate follows from
summing in the dyadic numbers.

Case 2: |n1|
1
2 � |n3|

In this case, we need a different approach to control the small power of N1 in the multiplier
as well as the ε-loss from using the divisor counting estimate. Note that ψ(n, n1...5) = 3(n1 +
n2)(n1 + n3 + n4 + n5)(n2 + n3 + n4 + n5) + 3(n3 + n4)(n3 + n5)(n4 + n5). Since

|(n3 + n4)(n3 + n5)(n4 + n5)| . |n3|3 � |n1|
3
2 ,

|(n1 + n2)(n1 + n3 + n4 + n5)(n2 + n3 + n4 + n5)| & |n1|2,

then |ψ(n, n1...5)| & |n1|2. Following the previous strategy, we have

LHS of (3.39) .
ˆ

σ1,...,σ5

∥∥∥∥ ∑
n=n1+...+n5

〈n1〉9θ+
1
2 +s

max(〈n〉, 〈n3〉)
1
2

× 1

〈τ − n3 − σ̄ + ψ(n, n1...5)〉1−θ〈τ − n3〉δ−θ
5∏
j=1

|ûj(σj + n3
j , nj)|

∥∥∥∥
`pnL

q0
τ

Thus, in order to control the small powers of 〈n1〉, we use the following fact

|n1|2 . 〈ψ(n, n1...5)〉 . 〈τ − n3 − σ̄ + ψ(n, n1...5)〉〈τ − n3〉〈σ1〉 · · · 〈σ5〉.

To gain a power of 〈τ − n3〉, we impose θ ≤ δ
2 . For 〈τ − n3 − σ̄ + ψ(n, n1...5)〉, when applying

Schur’s test (Lemma 3.1.3), we want to keep δ
4 of this quantity. Thus, with 1 + 1

q0
= 1

q1
+ 1

r ,
we need

1− θ − δ

4
>

1

r
= 1− δ

2
=⇒ θ <

δ

4
.

We can obtain a power of 〈σk〉α for k = 4, 5, given that

‖〈σ〉αfk‖`1nL1
σ
. ‖〈σ〉α+ 1

2−δ+fk‖`1nLr0σ . ‖〈σ〉 12 fk‖`1nLr0σ ,

given that α+ 1
2 −δ <

1
2 =⇒ α < δ, thus we can choose α = δ

4 . Similarly, for 〈σj〉β , j = 1, 2, 3,
we have

‖〈σ〉βfj‖L1
σ`
p
n
. ‖〈σ〉β+1−4δ+fj‖Lq0σ `pn . ‖〈σ〉1−2δfj‖Lq0σ `pn ,

for β = δ
4 . Combining all of these powers, we get 〈ψ(n, n1...5)〉− δ4 . N

− δ2
1 which we use in (3.40)

instead of the condition N1 . N2
3 .

Proof of Proposition 3.5.11. We have the following estimate

‖Q′(u1, . . . , u5)‖Zs1

.

∥∥∥∥ ∑
n=n1+n2+n0

∑
n0=n3+n4+n5

ˆ
R5

maxj〈nj〉9θ〈n〉s

〈n1〉〈n3〉〈τ − n3〉5δ
5∏
j=1

|ûj(τj , nj)| dτ1 · · · dτ5
∥∥∥∥
`pnL

q0
τ

.

∥∥∥∥ ∑
n=n1+n2+n0

∑
n0=n3+n4+n5

maxj〈nj〉9θ〈n〉s

〈n1〉〈n3〉

5∏
j=1

‖ûj(nj)‖L1
τ

∥∥∥∥
`pn

.

Let f1(τ, n) = 〈n〉s|P̂N1
u1(τ, n)| and fj(τ, n) = 〈n〉 12 |P̂Njuj(τ, n)|, j = 2, . . . , 5, for dyadic

numbers Nj , j = 1, . . . , 5. We have that N1 ≥ N2, N3 ≥ N4 ≥ N5, and we will consider
two cases: |n1| ≥ |n3| or |n1| < |n3|. Assume that |n1| ≥ |n3|. Using Young’s and Hölder’s
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inequality, we get

‖Q′(u1, . . . , u5)‖
Z
s

1

.
∑

N1,...,N5

N9θ−1
1 (N2N4N5)−

1
2N
− 3

2
3

∥∥∥∥ ∑
n=n1+...+n5

‖fj(nj)‖L1
τ

∥∥∥∥
`pn

.
∑

N1,...,N5

N9θ−1
1 (N2N4N5)

1
2−

1
p+N

− 1
2−

1
p+

3 ‖u1‖
Y
s

0

5∏
j=2

‖uj‖
Y

1
2

0

.

It only remains to sum in the dyadics∑
N1,...,N5

N9θ−1
1 (N2N4N5)

1
2−

1
p+N

− 1
2−

1
p+

3 .
∑

N1,...,N5

N−θ1 (N2N4)5θ− 1
p+(N3N5)−

1
p+ . 1

for 3δ < θ < 1
5p . If |n1| < |n3|, then by following the same approach we obtain

‖Q′(u1, . . . , u5)‖
Z
s

1

∑
N1,...,N5

N
− 1

2−
1
p+

1 (N2N4N5)
1
2−

1
p+N9θ−1

3 ‖u1‖
Y
s

0

5∏
j=2

‖uj‖
Y

1
2

0

and we sum in the dyadics using the fact that N3 ≥ N1 ≥ N2 and N3 ≥ N4 ≥ N5∑
N1,...,N5

N
− 1

2−
1
p+

1 (N2N4N5)
1
2−

1
p+N9θ−1

3 .
∑

N1,...,N5

(N1N2)−
1
p+(N3N4N5)3θ− 2

3p . 1

by choosing 3δ < θ < 2
9p .

3.6 Solving the system and extending solutions globally
in time

In this section, we use the nonlinear estimates in Section 3.4 to prove Proposition 3.3.1. We can
similarly combine the nonlinear estimates in Section 3.5 to prove Proposition 3.3.2, but we omit
its proof due to the large number of terms involved. In addition, we show how to apply the a
priori estimates in Corollary 2.4.2 to prove global well-posedness of mKdV2 (3.1) in FLs,p(T)
for s ≥ 1

2 and 4 ≤ p <∞, completing the proof of Theorem 1.1.6.

We start by following a contraction mapping argument to construct the solution u = u[w]
of (3.21).

Proof of Proposition 3.3.1. Fix w ∈ Zs0 with ‖w‖Zs0 ≤ A2 and consider the map

Γw(u) := w + ϕT
[
GA,≥(w, u, u) + GA,>(w, u, u) + GB,≥(w,w, u) + GB,>(w,w, u)

]
,

for some 0 < T ≤ 1 to be chosen later. Let ‖u‖Y s0 ≤ A3, for some A3 > 0 to be chosen later.
Using Lemma 3.1.4, Lemma 3.4.1, and the embedding Zs0 ↪→ Y s0 , we have

‖Γw(u)‖
Y
s

0

≤ ‖w‖
Y
s

0

+ C1T
θ
(
‖GA,≥(w, u, u)‖

Y
s

1

+ ‖GA,≥(w, u, u)‖
Y
s

1

+ ‖GB,≥(w,w, u)‖
Y
s

1

+ ‖GB,>(w,w, u)‖
Y
s

1

)
≤ ‖w‖

Z
s

0

+ C1C2T
θ‖w‖

Z
s

0

‖u‖
Y

1
2

0

(
‖u‖

Y
1
2

0

+ ‖w‖
Z

1
2
0

)
≤ A2 + C1C2T

θA2A3(A2 +A3),

for some θ > 0 and constants C1, C2 > 0. By choosing A3 = 2A2 and C1C2T
θ 3

4A
2
3 ≤ 1

2 , we
would obtain that ‖Γw(u)‖Y s0 ≤ A3. Note that we can rewrite the condition on T to see that

it only depends on A2, i.e., we can choose T satisfying 3C1C2T
θA2

2 ≤ 1
2 . Analogously, we can
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establish the difference estimate as follows

‖Γw(u)− Γw(v)‖
Y
s

0

≤ C1T
θ
(∥∥GA,≥(w, u, u)−GA,≥(w, v, v)

∥∥
Y
s

1

+
∥∥GA,>(w, u, u)−GA,>(w, v, v)

∥∥
Y
s

1

+
∥∥GB,≥(w,w, u)−GB,≥(w,w, v)

∥∥
Y
s

1

+
∥∥GB,>(w,w, u)−GB,>(w,w, v)

∥∥
Y
s

1

)
≤ C1T

θ
(∥∥GA,≥(w, u− v, u)

∥∥
Y
s

1

+
∥∥GA,≥(w, v, u− v)

∥∥
Y
s

1

+
∥∥GA,>(w, u− v, u)

∥∥
Y
s

1

+
∥∥GA,>(w, v, u− v)

∥∥
Y
s

1

+
∥∥GB,≥(w,w, u− v)

∥∥
Y
s

1

+
∥∥GB,>(w,w, u− v)

∥∥
Y
s

1

)
≤ C1C2T

θ‖w‖
Z
s

0

(
2‖u‖

Y
1
2

0

+ 2‖v‖
Y

1
2

0

+ 2‖w‖
Z

1
2
0

)
‖u− v‖

Y
1
2

0

≤ 2C1C2T
θA2(2A3 +A2)‖u− v‖

Y
s

0

,

for some θ > 0. Choosing T such that 10C1C2T
θA2

2 ≤ 1
2 , shows that Γw is a contraction on the

A3-ball of Y s0 .
It only remains to show the map w 7→ u = u[w] is Lipschitz from the A2-ball in Zs0 to the

A3-ball in Y s0 . Let w1, w2 belong to the A2-ball and u1, u2 the corresponding fixed points of
Γw1 ,Γw2 . Proceeding as before, we obtain

‖u1 − u2‖Y s0 ≤ ‖w1 − w2‖Y s0 + C1T
θ
(∥∥GA,≥(w1, u1, u1)−GA,≥(w2, u2, u2)

∥∥
Y s1

+
∥∥GA,>(w1, u1, u1)−GA,≥(w2, u2, u2)

∥∥
Y s1

+
∥∥GB,≥(w1, w1, u1)−GB,≥(w2, w2, u2)

∥∥
Y s1

+
∥∥GB,>(w1, w1, u1)−GB,>(w2, w2, u2)

∥∥
Y s1

)
≤ ‖w1 − w2‖Zs0 + 2C1C2T

θ‖w1 − w2‖Zs0‖u1‖Y s0
(
‖u1‖Y s0 + ‖w1‖Y s0 + ‖w2‖Zs0

)
+ 2C1C2T

θ‖u1 − u2‖Y s0 ‖w2‖Zs0
(
‖u1‖Y s0 + ‖u2‖Y s0 + ‖w2‖Zs0

)
≤
(
1 + 2C1C2T

θA3(2A2 +A3)
)
‖w1 − w2‖Zs0 + 2C1C2T

θA2(2A3 +A2)‖u1 − u2‖Y s0 ,

for some θ > 0. Choosing T such that 10C1C2T
θA2

2 ≤ 1
2 , we have that∥∥u1[w1]− u2[w2]

∥∥
Y s0

. ‖w1 − w2‖Zs0 ,

showing that the map is locally Lipschitz, as intended.

A similar proof holds for Proposition 3.3.2, by combining the estimates in Section 3.5 with
the estimate in Lemma 2.1.1 for the linear solution and Lemma 3.1.4 to gain a small power
of T .

It only remains to show that we can extend the solutions of mKdV2 (3.1) with initial data
u0 ∈ FLs,p(T) for s ≥ 1

2 and 4 ≤ p <∞ globally in time. As in Section 2.4, we will apply the
a priori bounds by Oh-Wang [91] when 1

2 ≤ s < 1− 1
p and a persistence of regularity argument

for higher regularity. As before, we can extend these a priori bounds to non-smooth solutions.

Corollary 3.6.1. Let 4 ≤ p <∞ and 1
2 ≤ s < 1− 1

p . There exists C = C(p) > 0 such that for

any u0 ∈ FLs,p(T) we have

‖u‖L∞T FLs,p . (1 + ‖u0‖FLs,p)
p
2−1‖u0‖FLs,p ,

where u ∈ C
(
[−T, T ];FLs,p(T)

)
is the corresponding solution of the complex-valued mKdV2

equation (3.1).

85



In the following, we include a sketch of the proof of global well-posedness in the high
integrability case.

Proof of Theorem 1.1.6 when 4 ≤ p <∞. Let u0 ∈ FLs,p(T), s ≥ 1
2 and 4 ≤ p < ∞, and

consider the corresponding solution u of mKdV2 (3.1) obtained by Theorem 1.1.3. For 1
2 ≤ 1− 1

p ,
we can globalize solutions by iterating the local well-posedness argument, since Corollary 3.6.1
gives a lower bound for the time of existence at each iteration.

Now consider the case when s ≥ 1 − 1
p . Since u0 ∈ FLs,p(T) ⊂ FL 1

2 ,p(T), there exists a

unique global-in-time solution u ∈ C
(
R;FL 1

2 ,p(T)
)
. Proceeding as in Section 2.4, using the a

priori bound in Corollary 3.6.1 when running the contraction mapping arguments for u and w
on I = [t0, t0 + T ], imposes a local time of existence T ∼ (1 + ‖u0‖FL 1

2
,p)−α, for some α > 0,

and the following bounds

‖ϕ̃Iu‖
Y

1
2

0

≤ 2‖ϕ̃Iw‖
Z

1
2
0

≤ 2C‖u(t0)‖
FL

1
2
,p ≤ 2C̃(1 + ‖u0‖FL 1

2
,p)

p
2−1‖u0‖FL 1

2
,p , (3.41)

for some constants C, C̃ > 0, where ϕ̃I(t) = ϕT (·− t0). Note that the above estimate is uniform
in t0. Now we want to establish an estimate similar to that in (3.41) at higher regularity. Using
the nonlinear estimates in Sections 3.4 and 3.5, we have that

‖ϕ̃Iu‖Y s0 ≤ ‖w‖ϕ̃IZs0 + C1C2T
θ‖ϕ̃Iw‖Zs0‖ϕ̃Iu‖Y 1/2

0

(
‖ϕ̃Iu‖Y 1/2

0
+ ‖ϕ̃Iw‖Z1/2

0

)
,

‖ϕ̃Iw‖Zs0 ≤ C3‖u(t0)‖FLs,p + C1C4T
θ
(
‖ϕ̃Iw‖Zs0 + ‖ϕ̃Iu‖Y s0

)
×
{(
‖ϕ̃Iw‖Z1/2

0
+ ‖ϕ̃Iu‖Y 1/2

0

)2
+
(
‖ϕ̃Iw‖Z1/2

0
+ ‖ϕ̃Iu‖Y 1/2

0

)4
+
(
‖ϕ̃Iw‖Z1/2

0
+ ‖ϕ̃Iu‖Y 1/2

0

)6}
,

for some θ > 0. Using (3.41), we have

‖ϕ̃Iu‖Y s0 ≤ ‖ϕ̃Iw‖Zs0 + C5T
θ‖u(t0)‖2

FL
1
2
,p
‖ϕ̃Iw‖Zs0 ,

‖ϕ̃Iw‖Zs0 ≤ C3‖u(t0)‖FLs,p + C6T
θ‖u(t0)‖2

FL
1
2
,p

(
1 + ‖u(t0)‖

FL
1
2
,p

)4(‖ϕ̃Iw‖Zs0 + ‖ϕ̃Iu‖Y s0
)
,

for C5, C6 > 0. Using (3.41), we have

C5T
θ‖u(t0)‖2

FL
1
2
,p
≤ C7T

θ(1 + ‖u0‖FL 1
2
,p)p−2‖u0‖2FL 1

2
,p
≤ 1,

C6T
θ‖u(t0)‖2

FL
1
2
,p

(
1 + ‖u(t0)‖

FL
1
2
,p

)4 ≤ C8T
θ(1 + ‖u0‖FL 1

2
,p)3p−6‖u(t0)‖6

FL
1
2
,p
≤ 1

2
,

where the last inequalities hold by possibly refining the choice of α when choosing the local
time of existence T . Substituting these inequalities, we obtain

‖ϕ̃Iu‖Y s0 ≤ 2‖ϕ̃Iw‖Zs0 and ‖ϕ̃Iw‖Zs0 ≤ 2C3‖u(t0)‖FLs,p ,

from which we conclude that

sup
t∈I
‖u(t)‖FLs,p ≤ ‖ϕ̃Iu‖Y s0 ≤ 4C3‖u(t0)‖FLs,p .

Since the above estimate holds for any I = [t0, t0 +T ] uniformly in t0, we can iterate the above
argument to conclude that

sup
t∈[−T∗,T∗]

‖u(t)‖FLs,p ≤ (4C3)
(1+‖u0‖

FL
1
2
,p

)αT∗

‖u0‖FLs,p

for any T ∗ > 0. This shows the global well-posedness of mKdV2 (3.1) in FLs,p(T) for s ≥ 1
2

and 4 ≤ p <∞.
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Chapter 4

The generalized Korteweg-de
Vries equations

In this chapter, we study the Cauchy problem for the periodic generalized Korteweg-de Vries
equation (gKdV): {

∂tu+ ∂3
xu = ±∂x(uk),

u|t=0 = u0,
(t, x) ∈ R× T, (4.1)

for k ≥ 4. Due to the Hamiltonian structure of gKdV (4.1), we are interested in studying the
corresponding Gibbs measure

dµ = Z−1e−H(u) du = Z−1e∓
1
k+1

´
T u

k+1dxe−
1
2

´
T(∂xu)2dxdu, (4.2)

where the Hamiltonian H is given by

H(u) =
1

2

ˆ
T
(∂xu)2 dx± 1

k + 1

ˆ
T
uk+1 dx.

Our goal is to show almost sure global well-posedness of gKdV (4.1) and the invariance of the
Gibbs measure µ under the gKdV dynamics, i.e.,

µ
(
Ψ(−t)A

)
= µ(A)

for all t ∈ R and A ⊂ L2(T) measurable, where Ψ denotes the data-to-solution map of (4.1).
To this end, we will apply Bourgain’s invariant measure argument to complete the program
initiated in [11] on the invariance of the Gibbs measures for the gKdV equations. There,
Bourgain focused on the mKdV equation (k = 3 in (4.1)) and exploited the invariance of the
Gibbs measure associated with the truncated dynamics to globalize solutions of the original
equation. The main difficulty resides in showing local well-posedness in the support of the
Gibbs measure µ. In the absence of suitable conservation laws, the invariance of the Gibbs
measure is used as a substitute in the globalization argument.

We start by studying the gauged gKdV equation (G-gKdV):

∂tu+ ∂3
xu = ±∂x

(
uk − kP0(uk−1)u

)
, (4.3)

where P0 denotes the mean P0(f) =
ffl
T f(x) dx. The equations (4.1) and (4.3) are related

through the following gauge transform

G[u](t, x) = u
(
t, x∓ k

ˆ t

0

P0

(
uk−1(t′)

)
dt′
)
. (4.4)

In fact, u is a solution of gKdV (4.1) if and only if G[u] is a solution of G-gKdV (4.3). The
effect of the gauge transform (4.4) is to remove certain resonant frequency interactions from the
nonlinearity, allowing us to establish the main nonlinear estimates to obtain local well-posedness
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through the Fourier-restriction norm method. As in Chapters 2 and 3, we will use the Fourier
restriction spaces adapted to the Fourier-Lebesgue setting:

Z
s, 12
p = X

s, 12
p,2 ∩X

s,0
p,1 ↪→ C

(
R;FLs,p(T)

)
.

In Section 4.1, we introduce preliminary estimates on the phase function, needed to guide our
case separation for the nonlinear estimates, which are established in Section 4.2. We start by
decomposing our nonlinearity into resonant and non-resonant contributions, based on our anal-
ysis of the phase function. In Section 4.2.1, we prove multilinear Strichartz estimates adapted
to the Fourier-Lebesgue setting, which are essential for the proof of the nonlinear estimates. We
then prove estimates for the resonant and non-resonant contributions (Sections 4.2.2 and 4.2.3,
respectively) from which the local well-posedness of G-gKdV (4.3) follows. From this result
and by inverting the gauge transform, we obtain local well-posedness of gKdV (4.1) for k ≥ 4
in the Fourier-Lebesgue spaces which include the support of the Gibbs measure µ, obtaining
Theorem 1.2.2. We omit this proof as it follows the strategy in Section 2.3 for the mKdV
equation.

Section 4.3 is dedicated to Bourgain’s invariant measure argument. We first establish al-
most sure global well-posedness and invariance of the Gibbs measure for G-gKdV (4.3) (Theo-
rem 1.2.4), and then extend this result to the original dynamics (4.1) proving Theorem 1.2.5.
Lastly, in Section 4.4, we establish some results on the gauge transform and the solution map
of gKdV (4.1) which are missing from the literature.

4.1 The phase function

Recall the phase function φk(n, n1, . . . , nk) = n3 − n3
1 − . . . − n3

k, which we will denote by
φ for simplicity. When k = 2 (KdV) or k = 3 (mKdV), the phase function restricted to
n = n1 + . . .+ nk satisfies the following factorizations

(n1 + n2)3 − n3
1 − n3

2 = 3(n1 + n2)n1n2, (4.5)

(n1 + n2 + n3)3 − n3
1 − n3

2 − n3
3 = 3(n1 + n2)(n1 + n3)(n2 + n3). (4.6)

Unfortunately, such a factorization no longer holds for k ≥ 4. We recall the well-known upper
bound for φ.

Lemma 4.1.1 ([29, Lemma 4.1]). If |n1| ≥ . . . ≥ |nk| and n1 + . . .+ nk = 0, then

|n3
1 + . . .+ n3

k| . |n1n2n3|.

In order to exploit the multilinear dispersion to establish the main nonlinear estimates for
the local well-posedness, we want to gain a better understanding of the phase function, and
the above upper bound is insufficient. In particular, we want to identify suitable non-resonant
regions where φ is large enough to control the derivative loss in the nonlinearity, while imposing
strong restrictions to the frequencies in the remaining resonant regions. The following lemma
gives us additional information on the phase function φ.

Lemma 4.1.2. Let k ≥ 4, n = n1 + . . .+ nk and |n1| ≥ . . . ≥ |nk| > 0.

A. If |n| ∼ |n1| � |n2|, n 6= n1, then one of the following holds

A.1. |n1|2|n− n1| . |φ|;

A.2. |n1|2|n− n1| . |n2n3n4|.

B. If |n1| ∼ |n2| � |n3|, n 6= n1, n 6= n2, n1 + n2 6= 0, then one of the following holds

B.1. |n1|2|n1 + n2| . |φ|;

B.2. |n1 + n2| � |n4|.

88



Proof. We start by proving A. Assume that |n1|2|n − n1| � max(|φ|, |n2n3n4|). Using (4.5),
we can rewrite φ as follows

φ = 3nn1(n− n1) + (n− n1)3 − n3
2 − . . .− n3

k.

Since |nn1(n− n1)| ∼ |n1|2|n− n1| and using Lemma 4.1.1, we have

|n1|2|n− n1| ∼ |(n− n1)3 − n3
2 − . . .− n3

k| . |n2n3|max(|n− n1|, |n4|).

From the above estimate, we must have |n1|2|n − n1| . |n2n3n4| which contradicts our initial
assumption. To prove B, assume that |n1|2|n1 + n2| � |φ| and |n1 + n2| & |n4|. Using (4.6),
we can rewrite φ as follows

φ = 3(n− n1)(n− n2)(n1 + n2) + (n3 + . . .+ nk)3 − n3
3 − . . .− n3

k.

Since |(n− n1)(n− n2)(n1 + n2)| ∼ |n1|2|n1 + n2|, using Lemma 4.1.1, we have

|n1|2|n1 + n2| ∼ |(n3 + . . .+ nk)3 − n3
3 − . . .− n3

k| . |n3|2|n4|.

From the above estimate, since |n1 + n2| & |n4|, we must have |n1| . |n3| which contradicts
out assumptions on the frequencies.

4.2 Nonlinear estimates

In this section, we state and prove the nonlinear estimates needed to show the local well-
posedness of G-gKdV (4.3) in Theorem 1.1.3. We will establish a nonlinear estimate for the
more general multilinear operator

N (u0, . . . , um) = P(u1 . . . um)∂xu0 −
m∑
j=1

P0(uj∂xu0)

m∏
i=1
i 6=j

ui, (4.7)

where m = k − 1 ≥ 3 and P = Id−P0. Note that ±kN (u, . . . , u) coincides with the non-
linearity of G-gKdV (4.3) and that the quantities subtracted on the right-hand side of (4.7)
effectively remove certain resonant frequency interactions. In fact, the spatial Fourier transform
of N (u0, . . . , um) at n, omitting time dependence, is given by

∑
n=n0+...+nm
nn0···nm 6=0

(
1− 1{n=n0} −

m∑
j=1

1{n0+nj=0}

)
in0û0(n0) · · · ûm(nm).

The main difficulty in estimating N (u0, . . . , um) lies in controlling the derivative. To
that end, we want to exploit the multilinear dispersion through the phase function φ and
use Lemma 4.1.2 to guide our case separation in the nonlinearity. Due to the restrictions in
Lemma 4.1.2, consider the following resonant regions in frequency space:

Aj(n) =

{{
(n0, . . . , nm) ∈ Zm+1

∗ : n = nj
}
, j = 0, . . . ,m,{

(n0, . . . , nm) ∈ Zm+1
∗ : n0 + n` = 0

}
, −j = ` = 1, . . . ,m,

where Z∗ = Z \ {0}. Note that the terms on the right-hand side of (4.7) are localized to A0

and A−j , j = 1, . . . ,m, respectively. We are further interested in removing the resonances
associated with the sets Aj , j = 1, . . . ,m, when defining the non-resonant contribution N0.
We then decompose the nonlinearity as N = N0 + R, where the non-resonant and resonant
contributions are respectively defined as

Fx
(
N0(u0, . . . , um)

)
(n) =

∑
n=n0+...+nm
nn0···nm 6=0

1 m⋂
j=−m

Acj
in0û0(n0) · · · ûm(nm), (4.8)
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Fx
(
R(u0, . . . , um)

)
(n) =

∑
n=n0+...+nm
nn0···nm 6=0

[∑
J∈C

(−1)|J|+1
1

⋂
j∈J

Aj

]
in0û0(n0) · · · ûm(nm), (4.9)

where J ∈ C if J = {j}, j = 1, . . . ,m, or J ⊂ {−m, . . . ,m} and |J | ≥ 2.

The following proposition states the main nonlinear estimates, from which the local well-
posedness of G-gKdV (4.3) follows.

Proposition 4.2.1. For 2 < p <∞ there exists 1
2 < s∗(p) < 1− 1

p such that for any s > s∗(p)
the following estimates hold

‖N0(u0, . . . , um)‖
Z
s,− 1

2
p (T )

. T δ
m∏
j=0

‖uj‖
Z
s, 1

2
p (T )

,

‖R(u0, . . . , um)‖
Z
s,− 1

2
p (T )

. T δ
m∏
j=0

‖uj‖
Z
s, 1

2
p (T )

,

for some 0 < δ < 1 and any 0 < T ≤ 1.

Remark 4.2.2. It will suffice to show the above estimates for v0, . . . , vm extensions of
u0, . . . , um on [−T, T ]. Consequently, in the remaining of this section we will show the estimates

in Z
s,− 1

2
p and Z

s, 12
p , instead of the time localized versions Z

s,− 1
2

p (T ) and Z
s, 12
p (T ). Moreover,

we will establish stronger estimates which allow us to gain a small power of T by applying
Lemma 2.1.2.

4.2.1 Bilinear and trilinear Strichartz estimates

In order to show Proposition 4.2.1, we first establish bilinear and trilinear Strichartz estimates
adapted to the Fourier-Lebesgue setting. Recall that P0(f) =

ffl
T f dx denotes the mean and

P = Id−P0 the projection onto mean zero functions. The following lemma generalizes the
periodic L4-Strichartz of Bourgain in [10] to the Fourier-Lebesgue setting.

Lemma 4.2.3. The following estimate holds for any 2 ≤ p ≤ ∞ and b > max
(

1
3 ,

3p−2
8p

)
‖P
(
Pu1 ·Pu2

)
‖X0,0

p,2
. ‖u1‖X0,b

p,2
‖u2‖X0,b

2,2
. (4.10)

Proof. The proof is adapted from the standard bilinear argument for p = 2 by Nikolay Tzvetkov
(see [102, Proposition 2.13], for instance). Let M1,M2 ≥ 1 denote dyadic numbers, PMj the
projection onto space-time frequencies {〈τ − n3〉 ∼ Mj} and uM1 = PM1u1, vM2 = PM2u2.
Since ∥∥P(Pu1 ·Pu2

)∥∥
X0,0
p,2
≤

∑
M1,M2

∥∥P(PuM1 ·PvM2

)∥∥
X0,0
p,2
,

it suffices to show that∥∥P(PuM1 ·PvM2

)∥∥
X0,0
p,2

.M b
1M

b
2‖uM1‖X0,0

p,2
‖vM2‖X0,0

2,2
. (4.11)

for any b > max
(

1
3 ,

3p−2
8p

)
. We assume M1 ≤ M2, while the same proof applies to the other

case. Using Hölder’s inequality, we get

∥∥P(PuM1 ·PvM2

)∥∥
X0,0
p,2

.
∥∥∥M 1

q

1

∣∣A(τ, n)
∣∣ 1q [|ûM1 |q

′
∗τ,n |v̂M2 |q

′
] 1
q′
∥∥∥
`pnL2

τ

, (4.12)

for q > 1, where

A(τ, n) =
{
n1 ∈ Z∗ : 0 6= 3nn1(n− n1) = −τ + n3 +O(M2)

}
.
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Since n1(n− n1) = −
(
n1 − n

2

)2
+ n2

4 , we can rewrite the set above as

A(τ, n) =

{
n1 ∈ Z∗ :

(
n1 −

n

2

)2

=
1

3n

(
τ − n3

4

)
+O

(M2

3|n|

)}
,

then we conclude that there are at most O
(
1 + (M2

|n| )
1
2

)
elements in A(τ, n). We first consider

the case when |n| > M2 and thus |A(τ, n)| . 1. From (4.12) with q = 2 and Young’s inequality,
we have

RHS of (4.12) .M
1
2

1

∥∥|ûM1 |2 ∗ |v̂M2 |2
∥∥ 1

2

`
p
2
n L1

τ

≤M
1
2

1

∥∥|ûM1
|2
∥∥ 1

2

`
p
2
n L1

τ

∥∥|v̂M2
|2
∥∥ 1

2

`1nL
1
τ

= M
1
2

1

∥∥ûM1

∥∥
`pnL2

τ

∥∥v̂M2

∥∥
`2nL

2
τ
,

which implies (4.11), since M1 ≤M2 and 1
4 ≤ max

(
1
3 ,

3p−2
8p

)
. For the case when |n| ≤M2 and

|A(τ, n)| .
(
M2

|n|
) 1

2 , we set

(1

q
,

1

r

)
=

{(
1
3 + ε, 1

p −
1
6 + ε

)
for 2 ≤ p ≤ 6,(

1
2 −

1
p , 0
)

for 6 < p ≤ ∞,

with sufficiently small ε > 0. Note that

1

p
− 1

r
<

1

2q
,

q′

r
+ 1 =

q′

p
+
q′

2
, 1 < q′ ≤ 2 ≤ p ≤ r ≤ ∞.

Applying first Hölder’s inequality in n, then following the above computation, and using
Hölder’s inequality in τ , we have

RHS of (4.12) .M
1
q

1 M
1
2q

2

∥∥∥|n|− 1
2q

[
|ûM1

|q
′
∗ |v̂M2

|q
′
] 1
q′
∥∥∥
`pnL2

τ

.M
1
q

1 M
1
2q

2

∥∥∥[|ûM1
|q
′
∗ |v̂M2

|q
′
] 1
q′
∥∥∥
`rnL

2
τ

≤M
1
q

1 M
1
2q

2

∥∥ûM1

∥∥
`pnL

q′
τ

∥∥v̂M2

∥∥
`2nL

2
τ

.M
1
2

1 M
1
2q

2

∥∥ûM1

∥∥
`pnL2

τ

∥∥v̂M2

∥∥
`2nL

2
τ
.

Since M1 ≤ M2 and 1
2 + 1

2q ≤ 2 max
(

1
3 ,

3p−2
8p

)
+ ε

2 , we obtain (4.11), from which the estimate
follows.

We can then establish the following estimate.

Lemma 4.2.4. The following estimate holds for any 2 ≤ p ≤ ∞∥∥P(Pu1 ·Pu2

)∥∥
X

0,− 1
2
+

2,2

. ‖u1‖
X

0, 1
2
−

p,2

‖u2‖X0,0

p′,2
. (4.13)

Proof. Using duality, Hölder’s inequality, and (4.10) we obtain

∥∥P(Pu1 ·Pu2

)∥∥
X

0,− 1
2
+

2,2

. sup
‖u3‖

X
0, 1

2
−

2,2

≤1

∣∣∣∣ ˆ

0=τ1+τ2+τ3

∑
0=n1+n2+n3
n1n2n3 6=0

û1(τ1, n1)û2(τ2, n2)û3(τ3, n3)

∣∣∣∣
≤ sup
‖u3‖

X
0, 1

2
−

2,2

≤1

‖u2‖X0,0

p′,2
‖P
(
Pu1 ·Pu3

)
‖X0,0

p,2

. sup
‖u3‖

X
0, 1

2
−

2,2

≤1

‖u2‖X0,0

p′,2
‖u1‖

X
0, 1

2
−

p,2

‖u3‖
X

0, 1
2
−

2,2
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. ‖u1‖
X

0, 1
2
−

p,2

‖u2‖X0,0

p′,2
,

as intended.

Lemma 4.2.5. The following estimate holds for any 1 ≤ p, q ≤ ∞

‖P0(u1u2)u3‖X0,0
p,2

. ‖u1‖
X

0, 1
3
+

q,2

‖u2‖
X

0, 1
3
+

q′,2

‖u3‖
X

0, 1
3
+

p,2

. (4.14)

Proof. By Young’s and Hölder’s inequalities, it follows that

‖P0(u1u2)u3‖X0,0
p,2

.

∥∥∥∥∑
n1

ˆ

τ=τ1+τ2+τ3

û1(τ1, n1)û2(τ2,−n1)û3(τ3, n)

∥∥∥∥
`pnL2

τ

. ‖u1‖X0,0

q, 6
5

‖u2‖X0,0

q′, 6
5

‖u3‖X0,0

p, 6
5

. ‖u1‖
X

0, 1
3
+

q,2

‖u2‖
X

0, 1
3
+

q′,2

‖u3‖
X

0, 1
3
+

p,2

for any 1 ≤ q ≤ ∞.

The following trilinear estimate can be seen as a multilinear analogue of Bourgain’s L6-
Strichartz in [10] adapted to the Fourier-Lebesgue spaces.

Lemma 4.2.6. Let 2 ≤ p ≤ ∞, nj denote the spatial frequency corresponding to ûj, j = 1, 2, 3,
and assume that (n1 + n2)(n1 + n3)(n2 + n3) 6= 0. We have the following estimate

‖u1u2u3‖X0,0
p,2

. ‖u1‖
X

0+, 1
2

p,2

‖u2‖
X

0+, 1
2

2,2

‖u3‖
X

0+, 1
2

2,2

. (4.15)

Proof. Let φ = 3(n1 + n2)(n1 + n3)(n2 + n3). Note that by using Cauchy-Schwarz inequality
and Lemma 2.1.4, we have

‖u1u2u3‖X0,0
p,2

=

∥∥∥∥ ∑
n=n1+n2+n3

ˆ

τ=τ1+τ2+τ3

3∏
j=1

ûj(τj , nj)

∥∥∥∥
`pnL2

τ

.

∥∥∥∥ ∑
n=n1+n2+n3

1

〈τ − n3 + φ〉 12 (1−ε)

∥∥∥∥ 3∏
j=1

〈τj − n3
j 〉

1
2 ûj(nj , τj)

∥∥∥∥
L2
τ2
L2
τ3

∥∥∥∥
`pnL2

τ

,

for any ε > 0. Since 〈x+ y〉 . 〈x〉〈y〉 for any x, y, we have the following

1

〈n1〉2θ〈n2〉2θ〈n3〉2θ
=

1

〈n− n2 − n3〉2θ〈n2〉2θ〈n3〉2θ
.

1

〈n2 + n3〉θ〈n− n2〉θ〈n− n3〉θ
.

for θ > 0. Letting θ = 2ε and using Cauchy-Schwarz inequality, we obtain

‖u1u2u3‖X0,0
p,2

. sup
τ,n

(
I (τ, n)

) 1
2

∥∥∥∥ 3∏
j=1

〈nj〉4ε〈τj − n3
j 〉

1
2 ûj(nj , τj)

∥∥∥∥
`pnL2

τ `
2
n2
`2n3

L2
τ2
L2
τ3

,

where

I (τ, n) =
∑
n2,n3

1

〈n2 + n3〉4ε〈n− n2〉4ε〈n− n3〉4ε〈τ − n3 + φ〉1−ε
.

The estimate follows from Minkowski’s inequality and showing a uniform bound on I (τ, n). Let
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a = τ − n3 fixed, then we can rewrite I (τ, n) and estimate it as follows

I (τ, n) .
∑
n2,n3

1

〈n2 + n3〉4ε〈n− n2〉4ε〈n− n3〉4ε〈a+ φ〉1−ε

=
∑

ξ1,ξ2 6=0
2n−ξ1−ξ2 6=0

1

〈2n− ξ1 − ξ2〉4ε〈ξ1〉4ε〈ξ2〉4ε〈a+ 3(2n− ξ1 − ξ2)ξ1ξ2〉1−ε

.
∑
r 6=0

∑
(ξ1,ξ2)

r=(2n−ξ1−ξ2)ξ1ξ2

1

〈r〉4ε〈a+ 3r〉1−ε

.
∑
r 6=0

1

〈r〉4ε〈a+ 3r〉1−ε
∣∣{(ξ1, ξ2) ∈ Z2

∗ : r = (2n− ξ1 − ξ2)ξ1ξ2
}∣∣

.
∑
r 6=0

1

〈r〉4ε〈a+ 3r〉1−ε
|r|ε

′
,

from the standard divisor counting estimate (Lemma 3.1.6), for any ε′ > 0. Choosing ε′ ≤ 2ε
gives

I (τ, n) .
∑
r 6=0

1

〈r〉2ε〈a+ 3r〉1−ε
.

Let a ∈ R. Then we can write a = 3m+ b, where m ∈ Z and b ∈ [0, 3). Then, it follows that∑
r 6=0

1

〈r〉2ε〈a+ 3r〉1−ε

=
∑
r 6=0

1

〈r〉2ε〈3m+ 3r + b〉1−ε

≤
∑

|m+r|≥2

1

〈r〉2ε〈3m+ 3r + b〉1−ε

+
1

〈m− 1〉2ε〈3 + b〉1−ε
+

1

〈m+ 1〉2ε〈−3 + b〉1−ε
+

1

〈m〉2ε〈b〉1−ε

≤ 3 +
∑
r

1

〈r〉2ε〈m+ r〉1−ε
,

since 2|m + r| ≥ 4 ≥ |b| =⇒ |3(m + r) + b| ≥ 3|(m + r)| − |b| ≥ |m + r|. Consequently, from
Lemma 2.1.5, we get I (τ, n) . 1 uniformly, from which the estimate follows.

Lastly, we include a lemma which will not be required to establish the nonlinear estimates
in Proposition 4.2.1 but which we have established while considering this problem.

Lemma 4.2.7. The following estimates hold for 2 ≤ p <∞ and any 0 < ε′(ε), ε� 1

‖u1u2u3‖
X

0,− 1
2
+ε′

p,2

. min
(
‖u1‖

X
0, 1

2
p,2

‖u2‖
X

0, 1
2

2,2

, ‖u1‖
X

0, 1
2

2,2

‖u2‖
X

0, 1
2

p,2

)
‖u3‖X0,ε

p′,2
,

‖u1u2u3‖
X

0,− 1
2
+ε′

p,2

. ‖u1‖
X

0, 1
2

2,2

‖u2‖
X

0, 1
2

2,2

‖u3‖X0,ε
2,2
,

where |σ3| & |σ|, |σ1|, |σ2| and (n1 + n2)(n1 + n3)(n2 + n3) 6= 0, for σj and nj the modulation
and spatial frequency associated with uj, respectively, j = 1, 2, 3.

Proof. Let fj(τ, n) = 〈τ − n3〉 12 |ûj(τ, n)|, j = 1, 2, f3(τ, n) = 〈τ − n3〉ε|û3(τ, n)| and g ∈ `p′n L2
τ .

From the assumption on the modulations, we have 0 6= |φ| = |3(n1 + n2)(n1 + n3)(n2 + n3)| =
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|σ − σ1 − σ2 − σ3| . |σ3|. Using duality and Cauchy-Schwarz inequality, we have

‖u1u2u3‖
X

0,− 1
2
+ε′

p,2

.
∑

n,n=n1+n2+n3

ˆ

τ,τ=τ1+τ2+τ3

1

〈σ〉 12−ε′〈σ1〉
1
2 〈σ2〉

1
2 〈φ〉ε

g(τ, n)
3∏
j=1

fj(τj , nj)

.
∑

n,n=n1+n2+n3

ˆ

τ3

f3(τ3, n3)

〈φ〉ε〈τ3 − n3
3 + φ〉 12−ε′

( ˆ

τ1,τ2

|f1f2g|2
) 1

2

.
∑
n3

ˆ

τ3

f3(τ3, n3)

( ∑
n1,n2

1

〈φ〉2ε〈τ3 − n3
3 + φ〉1−2ε′

) 1
2
( ∑
n1,n2

ˆ

τ1,τ2

|f1f2g|2
) 1

2

from Lemma 2.1.4. Choosing 2ε′ = ε and with a = τ3 − n3
3, we have

∑
n1,n2

1

〈a− φ〉1−ε〈φ〉2ε
.
∑
r 6=0

∑
n1,n2

(n1+n2)(n−n1)(n−n2)=r

1

〈a− 3r〉1−ε〈r〉2ε
.
∑
r 6=0

|r|ε′′

〈a− 3r〉1−ε〈r〉2ε
,

by applying the standard divisor counting estimate (Lemma 3.1.6), for any 0 < ε′′ � 1, which
we will choose to be ε′′ < ε. Since we can write a = 3m+ b for some m ∈ Z and b ∈ [0, 3) and
〈a− 3r〉 = 〈b+ 3(m− r)〉 ∼ 〈m− r〉, the sum in r converges by applying Lemma 2.1.5. Using
the above estimate and Cauchy-Schwarz inequality, we have

‖u1u2u3‖
X

0,− 1
2
+ε′

p,2

.
∑
n3

ˆ

τ3

f3

( ∑
n1,n2

ˆ

τ1,τ2

|f1f2g|2
) 1

2

.
∑
n3

‖f3(n3)‖L2
τ

( ∑
n1,n2

‖f1(n1)‖2L2
τ
‖f2(n2)‖2L2

τ
‖g(n1 + n2 + n3)‖2L2

τ

) 1
2

. ‖u1‖
X

0, 1
2

p,2

‖u2‖
X

0, 1
2

2,2

‖u3‖X0,ε

p′,2
,

from Hölder’s and Minkowski’s inequalities.

4.2.2 Resonant contributions

We start by considering the terms in R (4.9) where J satisfies {0, j} ⊂ J , {−j, 0} ⊂ J or
{−j, j} ⊂ J , for some j = 1, . . . ,m. The intended estimate essentially follows from the stronger
estimate in Lemma 4.2.8.

Lemma 4.2.8. Let 2 ≤ p <∞ and s > 1− 1
p −

p−2
mp . Then the following estimate holds

∥∥∥∥ ˆ

τ=τ0+...+τm

∑
n=n2+...+nm

〈n〉s+1|û0(τ0, n)û1(τ1, n)|
m∏
j=2

|ûj(τj , nj)|
∥∥∥∥
`pnL2

τ

.
m∏
j=0

‖uj‖Xs,0p,2∩Xs,0p,1 . (4.16)

Proof. Assume that |n2| ≥ . . . ≥ |nm|, without loss of generality. Then |n| . |n2|. Using
Young’s and Hölder’s inequalities, we have

LHS of (4.16) . ‖u0‖Xs,0∞,2‖u1‖Xs,0∞,1

∥∥∥∥〈n〉1−s ∑
n=n2+...+nm

m∏
j=2

‖ûj(nj)‖L1
τ

∥∥∥∥
`pn
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. sup
n

( ∑
n=n2+...+nm

∣∣∣∣ 1

〈n2〉2s−1〈n3〉s · · · 〈nm〉s

∣∣∣∣p′) 1
p′

‖u0‖Xs,0p,2

m∏
j=1

‖uj‖Xs,0p,1 .

The estimate follows from Lemma 2.1.5 for s > max( 1
2 , 1−

1
p −

p−2
mp ) = 1− 1

p −
p−2
mp .

The following lemma establishes an estimate for R in (4.9) when J ⊂ {−m, . . . ,−1}.

Lemma 4.2.9. For 2 < p <∞ and s > 1− 1
p −min

(
1
p ,

p−2
mp ,

1
2(m−3)1m>4

)
, we have

∥∥∥∥ ˆ

τ=τ0+...+τm

∑
n=n2+...+nm

〈n〉s|n2| |û0(τ0,−n2)û1(τ1, n2)û2(τ2, n2)|
m∏
j=3

|ûj(τj , nj)|
∥∥∥∥
`pnL2

τ

.
m∏
j=0

‖uj‖Xs,0p,2∩Xs,0p,1 . (4.17)

Proof. Assume that |n3| ≥ . . . ≥ |nm|, without loss of generality. We will consider two cases:
|n2| & |n3| and |n2| � |n3|. If |n2| & |n3|, using Young’s and Hölder’s inequalities gives

LHS of (4.17) . sup
n

( ∑
n=n2+...+nm

∣∣∣∣ 1

〈n2〉2s−1〈n3〉s · · · 〈nm〉s

∣∣∣∣p′) 1
p′

‖u0‖Xs,0p,2

m∏
j=1

‖uj‖Xs,0p,1 .

The estimate follows from Lemma 2.1.5 if

s > 1− 1

p
− p− 2

mp
. (4.18)

If |n2| � |n3|, then |n| . |n3|. Let v(t, x) = F−1
x

(
〈·〉û0(t,−·)û1(t, ·)û2(t, ·)

)
. If m = 3, from

Young’s inequality, we have

LHS (4.17) . ‖v ·Dsu3‖X0,0
p,2

. ‖v‖X0,0
1,1
‖u3‖Xs,0p,2 .

Note that using Young’s inequality in time and Hölder’s in space, we have

‖v‖X0,0
1,1

.
2∏
j=0

‖〈n〉 13 ûj(τ, n)‖`3nL1
τ
.

2∏
j=0

‖uj‖Xs,0p,1 , (4.19)

for s ≥ 1
3 , 2 ≤ p ≤ 3 or s > 2

3 −
1
p , p > 3, which are less restrictive than (4.18). If m ≥ 4 and

n3 + n4 6= 0, we use Young’s inequality to obtain

LHS of (4.17) .
∥∥v P(Dsu3 · u4)u5 · · ·um

∥∥
X0,0
p,2

. ‖v‖X0,0
1,1
‖P
(
Dsu3 · u4

)
‖X0,0

p,2

m∏
j=5

‖uj‖X0,0
1,1
.

The first factor is estimated as in (4.19). For the remaining factors we use the bilinear estimate
(4.10) and Hölder’s inequality, and the fact that |n4| ≥ . . . ≥ |nm|,

‖P
(
Dsu3 · u4

)
‖X0,0

p,2

m∏
j=5

‖uj‖X0,0
1,1

. ‖u3‖
X
s, 1

2
−

p,2

‖u4‖
X

0, 1
2
−

2,2

m∏
j=5

‖uj‖X0,0
1,1

. ‖u3‖
X
s, 1

2
p,2

‖u4‖
X

1
2
− 1
p
+, 1

2
p,2

m∏
j=5

‖uj‖
X

1− 1
p
+,0

p,1

.

The estimate follows if s > 1
2 −

1
p and, for m > 4, if s > 1− 1

p −
1

2(m−3) . If n3 +n4 = 0, applying
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Young’s inequality in τ and Hölder’s inequality in n, we have the following

LHS of (4.17) .

∥∥∥∥ ∑
n=n2+n5+
...+nm

‖v̂(n2)‖L1
τ

m∏
j=5

‖ûj(nj)‖L1
τ

(∑
n3

〈n3〉s‖û3(n3)‖L2
τ
‖û4(−n3)‖L1

τ

)∥∥∥∥
`pn

.
(

sup
n
J(n)

) 1
p′ ‖v‖X3s−1,0

p,1
‖u3‖

X
s
2
,0

2,2

‖u4‖
X
s
2
,0

2,1

m∏
j=5

‖uj‖Xs,0p,1 .

From Hölder’s and Young’s inequalities, we obtain ‖v‖X3s−1,0
p,1

. ‖u0‖Xs,0p,1‖u1‖Xs,0p,1‖u2‖Xs,0p,1 and

‖uj‖
X
s
2
,0

2,q

. ‖uj‖
X
s
2
+ 1

2
− 1
p
+,0

p,q

. ‖uj‖Xs,0p,q for s > 1 − 2
p , j = 3, 4. Lastly, from Lemma 2.1.5, if

s > 1
3 and, additionally if s > 1− 1

p −
2p−3

(m−1)p when m > 4, we have

J(n) =
∑

n=n2+n5+...+nm

∣∣∣∣ 1

〈n2〉3s−1〈n5〉s · · · 〈nm〉s

∣∣∣∣p′ . 1.

The estimate follows.

Lastly, we consider R restricted to J = J+ ∪ (−J−), where J+, J− ⊂ {1, . . . ,m} are disjoint
sets and |J+| ≥ 1. The following lemma estimates the case when J+ = {1, . . . ,m}.

Lemma 4.2.10. The following estimate holds for any 1 ≤ p <∞ and s ≥ 1
m∥∥∥∥ ˆ

τ=τ0+...+τm

〈n〉s|(m− 1)n| |û0(τ0,−(m− 1)n)|
m∏
j=1

|ûj(τj , n)|
∥∥∥∥
`pnL2

τ

.
m∏
j=0

‖uj‖Xs,0p,2∩Xs,0p,1 .

Proof. Using Young’s inequality in time and taking a supremum in n, we can estimate the

intended quantity by placing u0 in Xs,0
p,2 and the remaining terms in X

1
m ,0
∞,1 . The estimate

follows for s ≥ 1
m .

For the remaining cases, we fix J+ and gather the contributions from J− ⊂ {1, . . . ,m} \J+.
Appealing to symmetry, let J+ = {1, . . . , `} for some 1 ≤ ` ≤ m−1. Then, the net contribution
can be rewritten as follows

R`(u0, . . . , um) :=

ˆ

τ=τ0+...+τm

∑
n=n0+...+nm

[ ∑
J−⊂{`+1,...,m}

(−1)`+|J−|+1
1( ⋂̀

i=1
Ai

)
∩
( ⋂
j∈J−

A−j

)]

× in0û0(τ0, n0) · · · ûm(τm, nm)

= (−1)`+1

ˆ

τ=τ0+...+τm

∑
n=n0+...+nm

1( ⋂̀
i=1

Ai

)
∩
( m⋂
j=`+1

Ac−j

)in0û0(τ0, n0) · · · ûm(τm, nm),

which is estimated in the following lemma.

Lemma 4.2.11. Let 1 ≤ ` ≤ m − 1, 2 < p < ∞, and s > 1 − 1
p −min

(
p−2
4p ,

p−2
mp ,

1
2m

)
. Then,

the following holds ∥∥∥∥〈n〉sR`(u0, . . . , um)

∥∥∥∥
`pnL2

τ

.
m∏
j=0

‖uj‖
Z
s, 1

2
p

. (4.20)

Proof. Fix 1 ≤ ` ≤ m − 1 and assume without loss of generality that |n`+1| ≥ . . . ≥ |nm|. If
` = 1, then 0 = n0 +n2 + . . .+nm, n0 +nj 6= 0 for j = 2, . . . ,m and |n0| . |n2|. Using Young’s
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inequality, we obtain

LHS of (4.20) .

∥∥∥∥ ˆ

τ=τ0+...+τm

〈n〉sû1(τ1, n)
∑

0=n0+n2+...+nm
n0+n2 6=0

n0û0(τ0, n0)
m∏
j=2

û(τj , nj)

∥∥∥∥
`pnL2

τ

. ‖u1‖Xs,0p,1
∥∥∥P(Dsu0 ·D1−su2) · u3 · · ·um

∥∥∥
X0,0
∞,2

. ‖u1‖Xs,0p,1
∥∥P(Dsu0 ·D1−su2

)∥∥
X0,0
p,2

m∏
j=3

‖uj‖X0,0
q,1

where (m− 2) = 1
p + m−2

q . Using the bilinear estimate (4.10) and Hölder’s inequality, we have

∥∥P(Dsu0 ·D1−su2

)∥∥
X0,0
p,2

m∏
j=3

‖uj‖X0,0
q,1

. ‖u0‖
X
s, 1

2
p,2

‖u2‖
X

1−s, 1
2

2,2

m∏
j=3

‖uj‖X0,0
q,1

. ‖u0‖
X
s, 1

2
p,2

‖u2‖
X

3
2
−s− 1

p
+, 1

2
p,2

m∏
j=3

‖uj‖
X

1
q
− 1
p
+,0

p,1

and we must impose

s > max
(1

2
, 1− 1

p
− p− 2

4p
, 1− 1

p
− 1

2m

)
= 1− 1

p
−min

(p− 2

4p
,

1

2m

)
. (4.21)

Now, let 1 < ` < m. Then, (1− `)n = n0 +n`+1 + . . .+nm and n0 +nj 6= 0 for j = `+1, . . . ,m.
Assuming that |n| ∼ |n0| � |n`+1| and using Hölder’s and Young’s inequalities, we have

LHS of (4.20) .

∥∥∥∥ ˆ

τ=τ0+...+τm

〈n〉s
∏̀
i=1

ûi(τi, n)
∑

(1−`)n=n0
+n`+1+...+nm

|n0|û0(τ0, n0)
m∏

j=`+1

ûj(τj , nj)

∥∥∥∥
`pnL2

τ

.
∏̀
i=1

‖ui‖Xs,0∞,1

∥∥∥∥ ∑
(1−`)n=n0

+n`+1+...+nm

|n0|1−(`−1)s‖û0(n0)‖L2
τ

m∏
j=`+1

‖ûj(nj)‖L1
τ

∥∥∥∥
`pn

. ‖u0‖Xs,0p,2
(∏̀
i=1

‖ui‖Xs,0p,1
)( m∏

j=`+1

‖uj‖X−α,01,1

)
,

where α = `s−1
m−` > 0, since s > 1

` , for ` ≥ 2. The estimate follows from Young’s inequality if

s > max
(

1
` , 1−

1
p −

(`−1)p−`
mp

)
, which is less restrictive than

s > max
(1

2
, 1− 1

p
− p− 2

mp

)
= 1− 1

p
− p− 2

mp
.

If |n0| . |n`+1|, then we proceed as in the case when ` = 1,

LHS of (4.20) .
∏̀
i=1

‖ui‖Xs,0p,1
∥∥P(Dsu0 ·D1−su`+1

)
· u`+2 · · ·um

∥∥
X0,0
∞,2

.
∥∥P(Dsu0 ·D1−su`+1

)∥∥
X0,0
p,2

(∏̀
i=1

‖ui‖Xs,0p,1

)( m∏
j=`+2

‖uj‖X0,0
q,1

)
,

where (m− `− 1) = 1
p + m−`−1

q . Using the bilinear estimate (4.10) and Hölder’s inequality, we
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obtain

LHS of (4.20) . ‖u0‖
X
s, 1

2
p,2

‖u`+1‖
X

1−s, 1
2

2,2

(∏̀
i=1

‖ui‖Xs,0p,1

)( m∏
j=`+2

‖uj‖X0,0
q,1

)

. ‖u0‖
X
s, 1

2
p,2

‖u`+1‖
X

3
2
−s− 1

p
+, 1

2
p,2

(∏̀
i=1

‖ui‖Xs,0p,1

)( m∏
j=`+2

‖uj‖
X

1
q
− 1
p
+,0

p,1

)

and the estimate follows if s > 1 − 1
p − min(p−2

4p ,
1

2(m−`+1)1`+2≤m
), which is less restrictive

than (4.21).

4.2.3 Non-resonant contributions

In this section, we establish the estimate for the non-resonant contribution N0 in (4.8). Without
loss of generality, we can assume that |n1| ≥ . . . ≥ |nm|. We further split the non-resonant
contribution as follows

N0 = N1 +N3 + . . .+Nm if m is odd,

N0 = N1 +N3 + . . .+Nm−1 if m is even,

where Nα, for odd 1 ≤ α ≤ m− 1, corresponds to N0 further restricted to the region

Λα(n) =
{

(n0, . . . , nm) ∈ Zm+1
∗ : |n1| ≥ . . . ≥ |nm|,

nj + nj+1 = 0, 1 ≤ j ≤ α− 1 odd,

nα + nα+1 6= 0
}

and Λm(n) =
{

(n0, . . . , nm) ∈ Zm+1
∗ : |n1| ≥ . . . ≥ |nm|, n1+n2 = . . . = nm−2+nm−1 = 0

}
, for

odd m. We will start by estimating the most difficult contribution N1. Guided by Lemma 4.1.2,
we will consider the following case separation:

• Case 1: |n| ∼ |n0| � |n1|

– Case 1.1: |n0|2|n− n0| . |φ|
– Case 1.2: |n0|2|n− n0| . |n1n2n3|

• Case 2: |n0| ∼ |n1| � |n2|

– Case 2.1: |n0|2|n0 + n1| . |φ|
– Case 2.2: |n0 + n1| � |n3|

• Case 3: |n0| ∼ |n1| ∼ |n2| � |n3|

– Case 3.1: |(n− n1)(n− n2)(n1 + n2)| . |φ|
– Case 3.2: |(n− n1)(n− n2)(n1 + n2)| . |n0|2|n3|

• Case 4: |n| ∼ |n1| � |n2|, |n1| � |n0| � |n3|

– Case 4.1: |n1|2|n− n1| . |φ|
– Case 4.2: |n1|2|n− n1| . |n0n2n3|

• Case 5: |n1| ∼ |n2| � |n0| � |n3|

– Case 5.1: |n1|2|n1 + n2| . |φ|
– Case 5.2: |n1 + n2| � |n3|

• Case 6: |n0| . |n3|
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We see that this covers all the cases. First, the frequency region |n0| � |n3| divides into Cases
1,2,3/4,5 according to |n0| ∼/� max(|n0|, |n1|), respectively. Then, Lemma 4.1.2 divides each
of Cases 1,2,4,5 into the two subcases mentioned above, while the division of Case 3 is based
on the fact that φ = 3(n−n1)(n−n2)(n1 +n2) + (n0 +n3 + . . .+nm)3− (n3

0 +n3
3 + . . .+n3

m) =
O(|n0|2|n3|). We also observe that in Case 3 we have

max(|n− n1|, |n− n2|, |n1 + n2|) & |n0|.

Cases 1.1–5.1:
Let σ = τ − n3 and σj = τj − n3

j , j = 0, . . . ,m, denote the modulations. Then, we have the
following upper bound for the resonance relation

|φ| = |σ − σ0 − . . .− σm| . max(|σ|, |σ0|, . . . , |σm|) = σmax,

which we can use to gain a power of φ. First, let σmax = |σ|. Using Cauchy-Schwarz inequality
and Lemma 2.1.4, we have

‖N1(u0, . . . , um)‖Xs,−1
p,1

.

∥∥∥∥ ∑
n=n0+...+nm

〈n〉s|n0|
〈φ〉 12

( ˆ

τ,τ=τ0+...+τm

1

〈σ〉〈σ0〉1− · · · 〈σm〉1−

) 1
2

×
m∏
j=0

‖〈σj〉
1
2−ûj(nj)‖L2

τ

∥∥∥∥
`pn

.

∥∥∥∥ ∑
n=n0+...+nm

〈n〉s|n0|
〈φ〉 12

m∏
j=0

‖〈σj〉
1
2−ûj(nj)‖L2

τ

∥∥∥∥
`pn

. (4.22)

For the X
s,− 1

2
p,2 -norm, the same approach holds. When σmax = |σj | for some j = 0, . . . ,m,

since X
s,− 1

2 +
p,2 ⊂ Z

s,− 1
2

p , it suffices to estimate the X
s,− 1

2 +
p,2 -norm of N1. Using duality and

Hölder’s inequality, we can estimate the X
s,− 1

2 +
p,2 -norm by (4.22) with 〈σj〉

1
2 instead of 〈σj〉

1
2−.

Consequently, it suffices to estimate (4.22). By using Hölder’s inequality, we obtain

(4.22) . sup
n

(
Iφ(n)

) 1
p′

max
j=0,...,k

(
‖uj‖

X
s, 1

2
p,2

m∏
i=0
i6=j

‖ui‖
X
s, 1

2
−

p,2

)
,

where

Iφ(n) =
∑

n=n0+...+nm

∣∣∣∣ 〈n〉s|n0|
〈φ〉 12 〈n0〉s〈n1〉s · · · 〈nm〉s

∣∣∣∣p′ ,
and it suffices to bound Iφ(n) uniformly in n. To this end, we must consider the lower bound
for φ. In Case 1.1, we have

Iφ(n) .
∑

n1,...,nm

1

〈n1 + . . .+ nm〉
p′
2 〈n1〉sp′ · · · 〈nm〉sp′

. 1

by applying Lemma 2.1.5, given that s > 1− 1
p −

1
2m . In Case 2.1, we have |n0| ∼ |n1| � |n2|.

If |n| . |n0 + n1|, then

Iφ(n) .
∑

n1,...,nm

1

〈n1〉(s+
1
2 )p′〈n2〉sp′ · · · 〈nm〉sp′

.
(∑

n

1

〈n〉(s+ 1
2m )p′

)m
. 1,

under the following assumption

s > max
(1

2
, 1− 1

p
− 1

2m

)
. (4.23)

99



If |n| � |n0 + n1|, then |n| ∼ |n2 + . . .+ nm| . |n2| and we have

Iφ(n) .
∑

n=n0+...+nm

1

〈n0 + n1〉
p′
2 〈n0〉2sp′〈n3〉sp′ · · · 〈nm〉sp′

.

( ∑
n0,n1

1

〈n0 + n1〉(s+
1

2m )p′〈n0〉(s+
1

2m )p′

)(∑
n

1

〈n〉(s+ 1
2m )p′

)m−2

. 1,

if (4.23) holds. In Case 3.1, |n0| ∼ |n1| ∼ |n2| � |n3| and at least one of the factors
|(n − n1)(n − n2)(n1 + n2)| must be comparable to |n0|. If |n0||n − n1||n − n2| . |φ|, we use
Lemma 2.1.5 to obtain

Iφ(n) .
∑

n0,n2,...,nm

1

〈n0 + n2 + . . .+ nm〉
p′
2 〈n− n2〉

p′
2 〈n0〉(2s−

1
2 )p′〈n3〉sp′ · · · 〈nm〉sp′

.
∑

n0,n3,...,nm

1

〈n+ n0 + n3 + . . .+ nm〉p′−1〈n0〉β〈n3〉β · · · 〈nm〉β
. 1,

for β = 1
m−1 (ms− 1

2 )p′ and the estimate follows from Lemma 2.1.5 if (4.23) holds. If |n0||n1 +
n2||n− n1| . |φ|, then

Iφ(n) .
∑

n1,...,nm

1

〈n1 + n2〉
p′
2 〈n− n1〉

p′
2 〈n2〉(2s−

1
2 )p′〈n3〉sp′ · · · 〈nm〉sp′

.
∑

n2,...,nm

1

〈n+ n2〉p′−1〈n2〉(2s−
1
2 )p′〈n3〉sp′ · · · 〈nm〉sp′

. 1,

proceeding as in the previous cases by splitting the power of 〈n2〉 between the other frequencies.
By exchanging the roles of n1 and n2, we obtain the estimate when |n0||n1 + n2||n− n2| . |φ|.
In Case 4.1, since |n1| � |n0| and |φ| & |n1|2|n− n1|, we have

Iφ(n) .
∑

n0,n2,...,nm

1

〈n0 + n2 + . . .+ nm〉
p′
2 〈n0〉sp′〈n2〉sp′ · · · 〈nm〉sp′

. 1

and the estimate follows from that of Case 1.1, by exchanging the roles of n0 and n1. Similarly,
the estimate in Case 5.1 follows Case 2.1 by exchanging the roles of (n0, n1) with (n1, n2).

In Cases 1.2–5.2 and Case 6, we can no longer use the largest modulation. However, note

that it suffices to control the stronger norm X
s,− 1

2 +
p,2 .

Case 1.2:
Here we have |n| ∼ |n0| � |n1| and |n0|2|n−n0| . |n1n2n3|, thus we can control the multiplier
as follows

〈n〉s|n0| . 〈n0〉s
|n1n2n3|

1
2

|n1 + . . .+ nm|
1
2

.

Using Lemma 4.2.4, we have

‖N1(u0, . . . , um)‖
X
s,− 1

2
+

p,2

.
∥∥(Dsu0) ·D− 1

2

(
P(D

1
2u1 ·D

1
2u2) ·D 1

2u3 · u4 · · ·um
)∥∥
X

0,− 1
2
+

p,2

. ‖u0‖
X
s, 1

2
p,2

∥∥P(D
1
2u1 ·D

1
2u2) ·D 1

2u3 · u4 · · ·um
∥∥
X
− 1

2
,0

p′,2

.

Using Hölder’s and Young’s inequality (if m ≥ 4), we get∥∥N1(u0, . . . , um)‖
X
s,− 1

2
+

p,2

. ‖u0‖
X
s, 1

2
p,2

∥∥P(D
1
2u1 ·D

1
2u2) ·D 1

2u3 · u4 · · ·um
∥∥
X0,0
q,2

. ‖u0‖
X
s, 1

2
p,2

∥∥P(D
1
2u1 ·D

1
2u2) ·D 1

2u3

∥∥
X0,0
q,2

m∏
j=4

‖uj‖X0,0
1,1
,
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where q = p for 2 < p < 4 and q = 2p
p−2− for 4 ≤ p < ∞. Applying the trilinear estimates

(4.14) or (4.15), we obtain∥∥D 1
2u2 ·P0(D

1
2u1 ·D

1
2u3)

∥∥
X0,0
q,2

+
∥∥D 1

2u1 ·P0(D
1
2u2 ·D

1
2u3)

∥∥
X0,0
q,2

+
∥∥D 1

2u1 ·D
1
2u2 ·D

1
2u31φ′ 6=0

∥∥
X0,0
q,2

. ‖u1‖
X

1
2
, 1
2

q,2

‖u2‖
X

1
2
, 1
2

q,2

‖u3‖
X

1
2
, 1
2

q′,2

+ ‖u1‖
X

1
2
+, 1

2
q,2

‖u2‖
X

1
2
+, 1

2
2,2

‖u3‖
X

1
2
+, 1

2
2,2

, (4.24)

where φ′ = (n1 + n2)(n1 + n3)(n2 + n3). Using the fact that |n1| ≥ . . . ≥ |nm|, the estimate
follows from Hölder’s inequality if 2 < p < 4 and s > 1 − 1

p −
p−2
2pm , or 4 ≤ p < ∞ and

s > 1− 1
p −

1
pm .

Case 2.2:
In this case we have |n0| ∼ |n1| � |n2| and |n0 + n1| � |n3|. Thus, |n| . |n2|, |n0 + n1 + n3 +
. . .+ nm| . |n3|, and we can estimate the multiplier as

〈n〉s|n0| . 〈n2〉s〈n0〉
1
2 〈n1〉

1
2 .

〈n2〉s〈n0〉
1
2 〈n1〉

1
2 〈n3〉

1
2

〈n0 + n1 + n3 + . . .+ nm〉
1
2

.

Using (4.13) since nn2(n− n2) 6= 0 and applying Young’s inequality, we have

‖N1(u0, . . . , um)‖
X
s,− 1

2
+

p,2

.
∥∥(Dsu2)D−

1
2

(
D

1
2u0 ·D

1
2u1 ·D

1
2u3 · u4 · · ·um

)∥∥
X

0,− 1
2
+

p,2

. ‖u2‖
X
s, 1

2
p,2

∥∥D 1
2u0 ·D

1
2u1 ·D

1
2u3 · u4 · · ·um

∥∥
X
− 1

2
,0

p′,2

.

We apply Hölder’s inequality and Young’s inequality (if m ≥ 4), to obtain

‖N1(u0, . . . , um)‖
X
s,− 1

2
+

p,2

. ‖u2‖
X
s, 1

2
p,2

∥∥D 1
2u0 ·D

1
2u1 ·D

1
2u3

∥∥
X0,0
q,2

m∏
j=4

‖uj‖X0,0
1,1

where 1
q >

1
2 −

1
p . Since (n0 + n1)(n0 + n3)(n1 + n3) 6= 0, with the last factor nonzero because

|n1| � |n3|, we only need to apply the trilinear estimate (4.15) and the estimate follows from
Case 1.2 exchanging the roles of (u0, u1, u2, u3) by (u2, u0, u1, u3).

Case 3.2:
Since |n0| ∼ |n1| ∼ |n2| � |n3| and |(n − n1)(n − n2)(n1 + n2)| . |n0|2|n3|, for Nmin =
min(|n− n1|, |n− n2|, |n1 + n2|), we get

N2
min|n0| . |n0|2|n3| =⇒ Nmin . |n0n3|

1
2 .

If Nmin = |n1 + n2|, then |n1 + . . .+ nm| . |n1 + n2|+ |n3| . |n0n3|
1
2 and we can estimate the

multiplier as follows

〈n〉s|n0| . 〈n0〉s|n1n2|
1
2

|n0n3|
δ
2

|n1 + . . .+ nm|δ
∼ 〈n0〉s

|n1|
1
2 + δ

4 |n2|
1
2 + δ

4 |n3|
δ
2

|n1 + . . .+ nm|δ
,

where δ = 3
2 −

3
p+ for 2 < p < 4 and δ = 1 − 1

p+ for 4 ≤ p < ∞. Using (4.13) and Young’s
inequality, we obtain the following

‖N1(u0, . . . , um)‖
X
s,− 1

2
+

p,2

.

∥∥∥∥Dsu0 ·D−δ
(
D

1
2 + δ

4u1 ·D
1
2 + δ

4u2 ·D
δ
2u3 · u4 · · ·um

)∥∥∥∥
X

0,− 1
2
+

p,2

. ‖u0‖
X
s, 1

2
p,2

∥∥D 1
2 + δ

4u1 ·D
1
2 + δ

4u2 ·D
δ
2u3 · u4 · · ·um

∥∥
X−δ,0
p′,2

. ‖u0‖
X
s, 1

2
p,2

∥∥D 1
2 + δ

4u1 ·D
1
2 + δ

4u2 ·D
δ
2u3

∥∥
X0,0
q,2

m∏
j=4

‖uj‖X0,0
1,1
,
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where q = 2p
4−p for 2 < p < 4 and q = ∞ for 4 ≤ p < ∞, which satisfies 1

p′ −
1
q < δ and

2 < q ≤ ∞. Since n1 + n2 6= 0 and |n1| ∼ |n2| � |n3|, then (n1 + n2)(n1 + n3)(n2 + n3) 6= 0
and we can apply the trilinear estimate (4.15) to obtain∥∥D 1

2 + δ
4u1 ·D

1
2 + δ

4u2 ·D
δ
2u3

∥∥
X0,0
q,2

. min
(
‖u1‖

X
1
2
+ δ

4
+, 1

2
q,2

‖u2‖
X

1
2
+ δ

4
+, 1

2
2,2

, ‖u1‖
X

1
2
+ δ

4
+, 1

2
2,2

‖u2‖
X

1
2
+ δ

4
+, 1

2
q,2

)
‖u3‖

X
δ
2
+, 1

2
2,2

. ‖u1‖
X

1
2
+ δ

4
+, 1

2
r,2

‖u2‖
X

1
2
+ δ

4
+, 1

2
r,2

‖u3‖
X
δ
2
+, 1

2
2,2

,

using multilinear interpolation for the last inequality, where r = p for 2 < p < 4 and r = 4 for
4 ≤ p <∞. The estimate follows if 2 < p < 4 and

s > 1− 1

p
−min

(p− 2

8p
,

1

3p
,

1

1m≥4mp

)
= 1− 1

p
−min

(p− 2

8p
,

1

mp

)
,

or 4 ≤ p <∞ and

s > 1− 1

p
min

( 1

4p
,

1

3p
,

1

1m≥4mp

)
= 1− 1

p
−min

( 1

4p
,

1

mp

)
.

If Nmin = |n− n1| = |n0 + n2 + . . .+ nm|, then

〈n〉s|n0| . 〈n1〉s|n0n2|
1
2

|n0n3|
δ
2

|n0 + n2 + . . .+ nm|δ
∼ 〈n1〉s

|n0|
1
2 + δ

4 |n2|
1
2 + δ

4 |n3|
δ
2

|n0 + n2 + . . .+ nm|δ
,

and the estimate follows from the previous argument, exchanging the roles of u0 and u1. Simi-
larly, if Nmin = |n− n2| = |n0 + n1 + n3 + . . .+ nm|, we can control the multiplier as follows

〈n〉s|n0| . 〈n2〉s|n0n1|
1
2

|n0n3|
δ
2

|n0 + n1 + n3 + . . .+ nm|δ
∼ 〈n2〉s

|n0|
1
2 + δ

4 |n1|
1
2 + δ

4 |n3|
δ
2

|n0 + n1 + n3 + . . .+ nm|δ
,

and the estimate follows from the same arguments.

Case 4.2:
Since |n| ∼ |n1| � |n2|, |n1| � |n0| � |n3| and |n1|2|n − n1| . |n0n2n3|, we estimate the
multiplier as follows

〈n〉s|n0| . 〈n1〉s
|n0n2n3|

1
2

|n0 + n2 + . . .+ nm|
1
2

.

The estimate follows the strategy in Case 1.2, exchanging the roles of u0 and u1, considering
the cases (n0 + n2)(n0 + n3)(n2 + n3) 6= 0, and n2 + n3 = 0, |n0| � |n2|, when applying the
trilinear estimates in (4.24).

Case 5.2:
In this case we have |n1| ∼ |n2| � |n0| � |n3| and |n1 + n2| � |n3|. Then, |n| ∼ |n0|,
|n1 + . . .+ nm| . |n3| and we estimate the multiplier as follows

〈n〉s|n0| . 〈n0〉s
|n1n2n3|

1
2

|n1 + . . .+ nm|
1
2

.

The estimate follows from the approach in Case 1.2, with (n1 + n2)(n1 + n3)(n2 + n3) 6= 0.

Case 6:
Let |n0| . |n3|. Let us first consider the case when n2 + n3 = 0. Using Young’s and Hölder’s
inequalities, we obtain the following

‖N1(u0. . . . , um)‖
X
s,− 1

2
+

p,2

.

∥∥∥∥Ds+ 1
p−

1
2−u0 ·Dsu1 ·P0(D

3
2−

1
p−s+u2 · u3) · u4 · · ·um

∥∥∥∥
X

0,− 1
2
+

p,2
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.
∥∥Ds+ 1

p−
1
2−u0 ·Dsu1

∥∥
X0,0
p,2
‖u2‖Xs,0p,1‖u3‖

X
5
2
− 3
p
−2s+,0

p,1

m∏
j=4

‖uj‖X0,0
1,1
.

Using (4.10) and Hölder’s inequality, we have∥∥Ds+ 1
p−

1
2−u0 ·Dsu1

∥∥
X0,0
p,2

. ‖u0‖
X
s+ 1

p
− 1

2
−, 1

2
2,2

‖u1‖
X
s, 1

2
p,2

. ‖u0‖
X
s, 1

2
p,2

‖u1‖
X
s, 1

2
p,2

.

Then, the estimate follows from |n3| ≥ . . . ≥ |nm| given that s > max( 1
2 −

1
p , 1 −

1
p −

1
2m ) =

1 − 1
p −

1
2m . If n2 + n3 6= 0, note that |n0 + n2 + . . . + nm| . |n2|, so we can estimate the

multiplier as follows

〈n〉s|n0| . 〈n1〉s|n0n3|
1
2 . 〈n1〉s

|n0n2n3|
1
2

|n0 + n2 + . . .+ nm|
1
2

.

Then, we can proceed as in Case 1.2, exchanging the roles of (u0, u1, u2, u3) by (u1, u2, u3, u0),
and using the fact that (n0 + n2)(n0 + n3)(n2 + n3) 6= 0.

This completes the estimate of N1.

Lastly, we want to estimate Nα for odd 3 ≤ α ≤ m. Note that

Nα(u0, . . . , um) = P0(u1u2) · · ·P0(uα−2uα−1)N ′α(u0, uα, . . . , um),

where
Fx
(
N ′α(u0, . . . , um)

)
(t, n) =

∑
n=n0+nα+...+nm

nn0···nm 6=0
nα+nα+1 6=0

in0û0(n0)ûα(nα) · · · ûm(nm).

For α = m or α = m − 1, the phase function satisfies |φ| ∼ |nn0nm| and |φ| ∼ |(n −
n0)(n − nm−1)(n − nm)|, respectively. Thus, we can proceed as in Cases 1.1–5.1, follow-
ing the same strategy in time and using Cauchy-Schwarz inequality in space on the terms
P0(u1u2), . . . ,P0(uα−2uα−1). For 3 ≤ α ≤ m − 2, we follow a case separation analogous to
α = 1 by replacing (n1, n2, n3) with (nα, nα+1, nα+2). In Cases 1.1–5.1 we follow the strategy
mentioned above. To illustrate the strategy in the remaining cases, consider Case 1.2. Following
the strategy for N1, we have
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X
s,− 1

2
+

p,2

.

∥∥∥∥(Dsu0) ·D− 1
2

(( α−2∏
j=1
odd

P0(ujuj+1)
)
·P(D

1
2uα ·D

1
2uα+1) ·D 1

2uα+2 ·
m∏

i=α+3

ui

)∥∥∥∥
X

0,− 1
2
+

p,2

. ‖u0‖
X
s, 1

2
p,2

∥∥∥∥( α−2∏
j=1
odd

P0(ujuj+1)
)
·P(D

1
2uα ·D

1
2uα+1) ·D 1

2uα+2 ·
m∏

i=α+3

ui

∥∥∥∥
X
− 1

2
,0

p′,2

. ‖u0‖
X
s, 1

2
p,2

( α−1∏
j=1

‖uj‖
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X
− 1

2
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,

using Young’s and Cauchy-Schwarz inequalities in the last step. The last term can be estimated
following the same approach as for N1.

This completes the estimate for the non-resonant contribution N0 in Proposition 4.2.1.

4.3 Almost sure global well-posedness and invariance of
the Gibbs measure

In this section, we start by extending the solutions of G-gKdV (4.3) in Theorem 1.2.2 globally-
in-time and show invariance of the Gibbs measure under the dynamics of G-gKdV (4.1). We
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closely follow the argument in [80]. In addition, we establish the invariance of the Gibbs measure
under the dynamics of the original gKdV equation (4.1).

Recall that (Ω,F ,P) is a probability space and {gn}n∈Z∗ , Z∗ = Z \ {0}, a sequence of
complex-valued standard Gaussian random variables with g−n = gn. We can define the Gaus-
sian measure ρ as the induced probability measure under the map

ω 7→ uω(x) =
∑
n∈Z∗

gn(ω)

|n|
einx ∈

⋂
s<1− 1

p

FLs,p(T) a.s.,

or equivalently, as ρ = P ◦ u−1 the push-forward of the map above, with the following density

dρ = Z−1e−
1
2

´
T(∂xu)2du,

with a normalizing constant Z. Further details on the construction of Gaussian measures in
Banach spaces can be found in [41, 68], for example. Before discussing the construction of the
Gibbs measure µ, we recall the following tail estimate for ρ. This lemma follows from the fact
that FLs,p(T) is an abstract Wiener space for (s− 1)p < −1 (see [5, 80]) and from Fernique’s
theorem [36]. We also give a direct proof using Chebyshev’s inequality.

Lemma 4.3.1. Let (s, p) satisfy (s− 1)p < −1 and K > 0. Then, the following estimate holds

ρ
(
‖u‖FLs,p > K

)
≤ Ce−cK

2

,

for some constants C, c > 0 depending only on s and p.

Proof. Using Chebyshev’s inequality and Minkowski’s integral inequality, we have

ρ
(
‖u‖FLs,p > K

)
= P

(
‖uω‖FLs,p > K

)
≤ K−qE

[
‖uω‖qFLs,p

]
≤ K−q

∥∥〈n〉s−1‖gn(ω)‖Lq(Ω)

∥∥q
`pn
,

for q ≥ p. Since {gn}n∈Z∗ are standard Gaussian random variables, we know that

E
[
|gn|2m

]
. Cmm! ≤ Cmmm

for any m ∈ N, which implies that

ρ
(
‖u‖FLs,p > K

)
≤
(C
K

)q(q
2

) q
2 ∥∥〈n〉s−1

∥∥q
`pn
≤
( C̃q 1

2

K

)q
.

Since ρ is a probability measure, we may assume K � C̃p
1
2 , so that we can choose q ∈ 2N

satisfying q ≥ p and

e−2 ≤ C̃q
1
2

K
≤ e−1 =⇒ e−4K2

C̃2
≤ q ≤ e−2K2

C̃2
.

Then,

ρ
(
‖u‖FLs,p > K

)
≤ e−q ≤ e−C0K

2

,

for a constant C0 = C0(s, p) > 0, from which the intended estimate follows.

Now, we view the Gibbs measure µ in (4.2) as a weighted Gaussian measure

dµ = Z−1e∓
1
k+1

´
T u

k+1

dρ(u),

with a normalizing constant Z. In the defocusing case (‘+’ in (4.1)) and for odd k ≥ 3, the
measure µ is a well-defined probability measure in FLs,p(T) for 1 ≤ p ≤ ∞ and s < 1 − 1

p ,
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and it is absolutely continuous with respect to ρ. This follows easily from Sobolev and Hölder’s
inequalities, since

‖u‖Lk+1(T) . ‖u‖
H

1
2
− 1
k+1

+
(T)

. ‖u‖
FL1− 1

p
− 1
k+1

+
(T)
.

The non-defocusing case is more challenging, i.e., when we have ‘−’ in (4.1) or k ≥ 2 is even.
In this case, Lebowitz-Rose-Speer [71] and Bourgain [11] proposed the introduction of a mass
cutoff and instead studied the following Gibbs measure

dµ = Z−1
1{‖u‖L2≤R}e

∓ 1
k+1

´
T u

k+1dxdρ(u),

for some R > 0. This new measure is known to be normalizable under certain additional
assumptions, as stated in the following theorem, which we restate from Chapter 1.

Theorem 4.3.2 ([71, 11, 89]). Let k ≥ 2, R > 0, and define F (u) by

F (u) = e∓
1
k+1

´
T u

k+1dx
1{‖u‖L2<R}, (4.25)

where ‘∓’ above corresponds to ‘±’ in the equation (1.27). Then, for 1 ≤ q <∞, we have that
F (u) ∈ Lq(dρ) if one of the following assumptions hold:

(a) 2 ≤ k ≤ 4 and any finite R > 0;

(b) k = 5 and 0 < R < ‖Q‖L2(R), where Q is the (unique) optimizer for the Gagliardo-
Nirenberg-Sobolev inequality on R with ‖Q‖6L6(R) = 3‖Q′‖2L2(R). If R = ‖Q‖L2(R), then we
further impose q = 1.

Remark 4.3.3. (i) Theorem 4.3.2 was first claimed in [71]. Unfortunately, there was a gap in
the argument for (b) as remarked in [22]. In [11], Bourgain presented a more analytic proof
of Theorem 4.3.2 (a) for any finite R and (b) for small enough R. The optimal threshold
R = ‖Q‖L2(R) for k = 5 and q = 1 was only recently established by Oh-Sosoe-Tolomeo in [89].

(ii) The gKdV equations (4.1) and the nonlinear Schrödinger equation (NLS) share a Hamil-
tonian. Consequently, they have the same associated Gibbs measure. An analogue of Theo-
rem 4.3.2 for NLS was also shown in [89]. In fact, the critical threshold k = 5 is related to the
existence of finite time blow-up solutions of NLS on T due to Ogawa-Tsutsumi [84]. Although
the quintic focusing gKdV equation (4.1) exhibits finite time blow-up solutions on the real line
[72, 74, 73], such a result is not known on T.

(iii) Note that the assumptions in Theorem 1.2.4 (b) follow from those in Theorem 4.3.2 needed
to rigorously construct the Gibbs measure µ in the non-defocusing case. In fact, the measure
is not normalizable in the non-defocusing case when k > 5 or when k = 5 and R > ‖Q‖L2(R)

[71, 89].

(iv) It follows from Theorem 4.3.2 that, for FN (u) := F (P≤Nu) and any 1 ≤ q < ∞, the
estimate

‖FN‖Lq(dρ) ≤ C <∞, (4.26)

holds uniformly in N .

For simplicity, we choose to take the ‘−’ sign in the definition of µ, as it will not play a role
in the results. Lastly, we state the following known result on the convergence of the truncated
measures µN defined by

dµN (u) = Z−1
N FN (u)dρ(u),

with Z−1
N a normalization constant.

Lemma 4.3.4. For all 1 ≤ q <∞, we have

FN (u)→ F (u) in Lq(dρ) as N →∞.
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Moreover, for all ε > 0, there exists N0 ∈ N such that for N ≥ N0 and any measurable set
A ⊂ FLs,p(T), for 1 ≤ p <∞ and s < 1− 1

p , the following holds

|µN (A)− µ(A)| < ε.

Proof. We first note that

1{‖P≤Nu‖L2≤R} → 1{‖u‖L2≤R} ρ-a.s.,

as N → ∞. From the continuity of the exponential function, it suffices to show that´
T(P≤Nu))k+1dx →

´
T u

k+1dx ρ-a.s. Using Sobolev embedding and Hölder’s inequality, the

convergence follows from FLs,p(T) ↪→ Lk+1(T) for s ∈ (1 − 1
p −

1
k+1 , 1 −

1
p ). Since ρ is a

probability measure, almost sure convergence implies convergence in measure

lim
N→∞

ρ
(
|FN (u)− F (u)| ≥ ε

)
= 0, for every ε > 0. (4.27)

Fix ε > 0 and let ΩN,ε = {u ∈ FLs,p(T) : |FN (u)− F (u)| < ε
2}. Then, we have

‖FN − F‖Lq(dρ) ≤ ‖(FN − F )1ΩN,ε‖Lq(dρ) + ‖(FN − F )1ΩcN,ε
‖Lq(dρ)

≤ ε

2
ρ(ΩN,ε)

1
q +

(
‖FN‖L2q(dρ) + ‖F‖L2q(dρ)

)
ρ(ΩcN,ε)

1
2q

≤ ε

2
+ Cρ(ΩcN,ε)

1
2q

from Hölder’s inequality and the uniform bound in (4.26) from Theorem 4.3.2 for any 1 ≤ q <∞.

From (4.27), we see that ρ(ΩcN,ε)
1
2q < ε

2C , for N large enough, proving the intended convergence
of FN in Lq(dρ). Lastly, let A ∈ FLs,p(T) be any measurable set. Then, we have

|µN (A)− µ(A)| =
∣∣∣∣ ˆ
A

(
FN (u)

‖FN‖L1(dρ)
− F (u)

‖F‖L1(dρ)

)
dρ(u)

∣∣∣∣ . ‖FN − F‖L1(dρ) → 0

as N →∞.

Consider the following truncated gauged gKdV equation (G-gKdVN ){
∂tuN + ∂3

xuN = kP≤N

(
∂x(P≤NuN ) ·P(P≤NuN )k−1

)
,

uN |t=0 = u0.
(4.28)

The local well-posedness of (4.28) follows from the proof of Theorem 1.2.2, with the same time
of existence δ ∼ (1 + ‖u0‖FLs,p)−γ as the solution u of (4.3). Moreover, as we see below,
(4.28) is globally well-posed. Note that we can decompose uN into high and low frequencies
uN = ulow + uhigh, which solve the following equations

∂tuhigh + ∂3
xuhigh = 0,

∂tulow + ∂3
xulow = kP≤N

(
∂xulow ·P(ulow)k−1

)
,

allowing us to discuss the two decoupled flows Φhigh and Φlow, respectively. The high frequency
part evolves linearly, therefore Φhigh(t) = S(t)P>N . We can view the low frequency part as
a finite-dimensional system of nonlinear ODEs on the Fourier coefficients of uN . In fact, for
0 < |n| ≤ N and cn = ûN (n), we want to solve the following system for c = {cn}0<|n|≤N ∈ C2N

with c−n = cn,

d

dt
cn = in3cn + k

∑
n=n0+...+nk−1

n 6=n0

in0cn0
· · · cnk−1

= Nn(c). (4.29)

Since N = {Nn}0<|n|≤N is Lipschitz, we can conclude by the Cauchy-Lipschitz theorem that
the system of ODEs is locally well-posed. Furthermore, we can extend these solutions globally-
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in-time since the L2-norm of uN is conserved:

d

dt
M
(
uN (t)

)
= 2

ˆ
T
uN

(
− ∂3

xuN + kP≤N
(
∂xP≤NuN ·P(P≤NuN )k−1

))
dx

=

ˆ
T
∂x

(
∂xuN

)2

dx+
2k

k + 1

ˆ
T
∂x
(
P≤NuN

)k+1
dx

− kP0

(
P≤NuN

)k−1
ˆ
T
∂x
(
P≤NuN

)2
dx = 0. (4.30)

Thus, M
(
uN (t)

)
= M(u0). In addition, the mass is also conserved for ulow, M

(
ulow(t)

)
=

M(P≤Nu0), and the solution of (4.29) exists globally-in-time, proving that uN extends to a
global solution of (4.28).

We now focus on proving invariance of the Gibbs measure associated with G-KdVN (4.28).
We first decompose the measure ρ = ρN ⊗ ρ⊥N , where

dρN = Z−1
N e−

1
2

∑
0<|n|≤N |gn|

2 ∏
0<|n|≤N

dgn,

dρ⊥N = Z̃−1
N e−

1
2

∑
|n|>N |gn|

2 ∏
|n|>N

dgn,

for normalization constants ZN , Z̃N . Note that ρN and ρ⊥N are also probability measures in
FLs,p(T) for s < 1− 1

p . Let µ̃N denote the finite-dimensional Gibbs measure with density

dµ̃N (u) = Z−1
N FN (u)dρN (u).

Then, µN = µ̃N ⊗ ρ⊥N is the Gibbs measure associated with G-gKdVN (4.28).

Proposition 4.3.5. The finite-dimensional Gibbs measure µ̃N is invariant under the flow Φlow.
Moreover, the Gibbs measure µN is invariant under the flow of G-gKdVN (4.28).

Proof. We follow the strategy in [80]. We start by establishing the invariance of µ̃N under
the flow of Φlow. The conservation of mass for ulow follows from the calculation in (4.30) by
replacing uN by ulow = P≤NuN . An analogous straightforward computation establishes the
conservation of the Hamiltonian for ulow. It remains to show the invariance of the Lebesgue
measure on C2N with respect to the system defined in (4.29). We can rewrite the system as

d

dt
an = Re

(
Nn({an, bn})

)
,

d

dt
bn = Im

(
Nn({an, bn})

)
,

where cn = an + ibn. Thus, the invariance of the Lebesgue measure follows from Liouville’s
theorem once we establish that the divergence of the vector field vanishes:∑

1≤|n|≤N

(∂ Re(Nn)

∂an
+
∂ Im(Nn)

∂bn

)
= 0. (4.31)

For 1 ≤ |n| ≤ N , we have

∂ Re(Nn)

∂an
=

∂

∂an

(
− n3bn +

k

2

∑
n=n0+...+nk−1

n6=n0

(
in0cn0

· · · cnk−1
− in0cn0

· · · cnk−1

))

=
k

2

∑
n=n0+...+nk−1

n 6=n0

k−1∑
j=1

(
in0cn0

δ(n− nj)
k−1∏
i=1
i 6=j

cni − in0cn0
δ(n− nj)

k−1∏
i=1
i 6=j

cni

)

=
k(k − 1)

2

∑
0=n0+...+nk−2

n 6=n0

(
in0cn0 · · · cnk−2

− in0cn0 · · · cnk−2

)
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= k(k − 1) Re

( ∑
0=n0+...+nk−2

n 6=n0

in0cn0
· · · cnk−2

)
.

Similarly, we have

∂ Im(Nn)

∂bn
=

∂

∂bn

(
n3an +

k

2i

∑
n=n0+...+nk−1

n 6=n0

(
in0cn0

· · · cnk + in0cn0
· · · cnk−1

))

= k(k − 1) Re

( ∑
0=n0+...+nk−2

n 6=n0

in0cn0
· · · cnk−2

)
.

Since ∑
0=n0+...+nk−2

in0cn0
· · · cnk−2

=

ˆ
T
∂xulow · uk−2

low dx = 0,

we conclude (4.31). Lastly, the invariance of µN = µ̃N ⊗ ρ⊥N under the flow ΦN (t) =(
Φlow(t),Φhigh(t)

)
follows from that of µ̃N under the flow of Φlow and the invariance of Gaussian

measures under rotation.

Let 2 < p < ∞ and s∗ = s∗(p) given by Theorem 1.2.2 such that gKdV (4.1) and G-gKdV
(4.3) are locally well-posed in FLs,p(T) for s∗ < s < 1− 1

p . The following two lemmas can be

shown through the method in [11] (see also [20, 105, 85, 80]). The proof of Lemma 4.3.6 requires
the tail estimate in Lemma 4.3.1, Theorem 1.2.2, Proposition 4.3.5 and (4.26). Lemma 4.3.7 is
purely deterministic and follows from the local theory for G-gKdV (4.3).

Lemma 4.3.6. Let s∗ < s < 1− 1
p . Then, there exists C0 > 0 (independent of s) and Cs > 0

such that: for all N ∈ N, T ≥ 1, 0 < ε ≤ 1
2 , A ≥ 1, there exists ΩsN (T, ε, A) ⊂ FLs,p(T) such

that:

(a) µN
(
FLs,p(T) \ ΩsN (T, ε, A)

)
< ε.

(b) For u0 ∈ ΩsN (T, ε, A), the solution uN of (4.28) satisfies∥∥uN (t)
∥∥
FLs,p ≤ AC0Cs

(
log T

ε

) 1
2 , |t| ≤ T.

(c) For u0 ∈ FLs,p(T), if the solution uN of (4.28) satisfies∥∥uN (t)
∥∥
FLs,p ≤ ACs

(
log T

ε

) 1
2 , |t| ≤ T,

then u0 ∈ ΩsN (T, ε, A).

Proof. From Theorem 1.2.2, we know that for u0 ∈ FLs,p(T) with ‖u0‖FLs,p ≤ K, the corre-
sponding solution uN of G-gKdVN (4.28) satisfies∥∥uN (t)

∥∥
FLs,p ≤ C0K,

for |t| ≤ δ ∼ K−γ , for some γ > 0, where C0 > 0 does not depend on s. Note also that the
constants can be taken uniformly in N . We want to establish a bound on uN (t) for all |t| ≤ T .
Let [x] denote the integer part of a real number x and define

ΩsN (T, ε, A) =

[
T
δ

]⋂
j=−

[
T
δ

]ΦN (jδ)
({
‖u0‖FLs,p ≤ K

})
,

where ΦN (t) denotes the solution map for (4.28) and K = ACs
(

log T
ε

) 1
2 with a constant Cs > 0

to be chosen later.

108



We start by showing (a). Let BK = {‖u0‖FLs,p ≤ K}. From the uniqueness of solution of
(4.28) in each time interval [jδ, (j + 1)δ], we see that the solution map is invertible and[

ΦN (jδ)(BK)
]c

= ΦN (jδ)(BcK).

Consequently,

µN
(
[ΩsN (T, ε, A)]c

)
= µN

( [
T
δ

]⋃
j=−

[
T
δ

]ΦN (jδ)(BcK)

)

≤

[
T
δ

]∑
j=−

[
T
δ

]µN(ΦN (jδ)(BcK)
)

= 2
[T
δ

]
µN (BcK)

from the invariance of µN under the flow of (4.28) in Proposition 4.3.5. From Cauchy-Schwarz
inequality, Lemma 4.3.1, and (4.26), we have

µN
(
[ΩsN (T, ε, A)]c

)
.
T

δ

ˆ
BcK

FN (u) dρ(u) .
T

δ
‖FN‖L2(dρ)ρ(BcK)

1
2 .

T

δ
e−cK

2

∼ TKγe−cK
2

.

Since log T
ε ≥ log 2 by the assumption, there exists Cs > 0 such that if K ≥ Cs

(
log T

ε

) 1
2 , then

TKγe−cK
2 ≤ Te− c2K2 � ε. Hence, the above estimate, for K = ACs

(
log T

ε

) 1
2 with A ≥ 1 and

such a constant Cs, ensures that µN
(
[ΩsN (T, ε, A)]c

)
< ε, establishing (a). With the invertibility

of the solution map, (b) is a consequence of the local bound mentioned at the beginning, and
(c) immediately follows from the definition of ΩsN (T, ε, A).

Lemma 4.3.7. For any s∗ < s < σ < 1− 1
p , T ≥ 1, and K ≥ 1, there exists N0 ∈ N such that:

(a) Let N ≥ N0 and uN ∈ C
(
R;FLσ,p(T)

)
be the solution of G-gKdVN (4.28) with initial

data u0 ∈ FLσ,p(T). Assume that ‖uN (t)‖FLσ,p ≤ K for |t| ≤ T . Then, there exists

a unique solution u ∈ C
(
[−T, T ];FLs,p(T)

)
∩ Zs,

1
2

p (T ) of G-gKdV (4.3) with u(0) = u0

satisfying

‖u(t)−P≤NuN (t)‖FLs,p ≤
(
N0

N

)σ−s
K, |t| ≤ T.

In particular, ‖u(t)‖FLs,p ≤ 2K for |t| ≤ T .

(b) Let u ∈ C
(
[−T, T ];FLσ,p(T)

)
∩ Zσ,

1
2

p (T ) be a solution of G-gKdV (4.3) with u(0) = u0

satisfying ‖u(t)‖FLσ,p ≤ K for |t| ≤ T . Then, for any N ≥ N0, the solution uN of
G-gKdVN (4.28) with initial data u0 satisfies

‖u(t)−P≤NuN (t)‖FLs,p ≤
(
N0

N

)σ−s
K, |t| ≤ T.

In particular, ‖uN (t)‖FLs,p ≤ 3K for |t| ≤ T .

Proof. We only consider the positive time direction. We start by showing (a). Let N (u) :=
kP(uk−1)∂xu. By the local theory, with δ ∼ (1 +K)−γ the solution uN of (4.28) satisfies

‖uN‖
Z
σ, 1

2
p ([jδ,(j+1)δ])

≤ C2K, 0 ≤ j < [Tδ ] (4.32)

for some C2 > 0. Note that the solution of (4.28) in C
(
[−T, T ];FLσ,p(T)

)
coincides on each

interval [jδ, (j + 1)δ] with the solution constructed by the iteration argument in Z
σ, 12
p , and also

that

P≤NuN (t) = S(t− jδ)P≤NuN (jδ) +

ˆ t

jδ

S(t− t′)P≤NN (P≤NuN (t′)) dt′, t ∈ [jδ, (j + 1)δ]
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for any 0 ≤ j < [Tδ ]. We want to construct a solution u of

u(t) = S(t− jδ)u(jδ) +

ˆ t

jδ

S(t− t′)N (u(t′)) dt′, t ∈ [jδ, (j + 1)δ]

for each j = 0, 1, . . . , [Tδ ] − 1. This amounts to constructing w(t) := u(t) − P≤NuN (t), which
solves

w(t) = Ξj [w](t) := S(t− jδ)w(jδ) +

ˆ t

jδ

S(t− t′)P>NN (P≤NuN )(t′) dt′

+

ˆ t

jδ

S(t− t′)
{
N (w + P≤NuN )−N (P≤NuN )

}
(t′) dt′. (4.33)

By the nonlinear estimates in Z
s, 12
p and Z

σ, 12
p , together with (4.32), we have

‖Ξj [w]‖
Z
s, 1

2
p ([jδ,(j+1)δ])

≤ C0‖w(jδ)‖FLs,p + C1δ
θ
(
‖w‖

Z
s, 1

2
p ([jδ,(j+1)δ])

+ C2K
)k−1

‖w‖
Z
s, 1

2
p ([jδ,(j+1)δ])

+ C1N
−(σ−s)δθ(C2K)k,

‖Ξj [w]− Ξj [w̃]‖
Z
s, 1

2
p ([jδ,(j+1)δ])

≤ C1δ
θ
(
‖w‖

Z
s, 1

2
p ([jδ,(j+1)δ])

+ ‖w̃‖
Z
s, 1

2
p ([jδ,(j+1)δ])

+ C2K
)k−1

‖w − w̃‖
Z
s, 1

2
p ([jδ,(j+1)δ])

,

for some C0 > 0, C1 = C1(s, p) > 0, and θ = θ(s, p) > 0. Therefore, taking smaller δ ∼s,p
(1 +K)−γ if necessary (γ = k−1

θ ), we can show that Ξj is a contraction on{
w ∈ Zs,

1
2

p ([jδ, (j + 1)δ]) : ‖w‖
Z
s, 1

2
p ([jδ,(j+1)δ])

≤ 2C0‖w(jδ)‖FLs,p +N−(σ−s)K
}

as long as
‖w(jδ)‖FLs,p ≤ K.

Starting from ‖w(0)‖FLs,p ≤ N−(σ−s)K, we obtain the solution w of (4.33) on [jδ, (j + 1)δ]
with

‖w((j + 1)δ)‖FLs,p ≤ C̃j+1
0 N−(σ−s)K, j = 0, 1, . . . ,

[T
δ

]
− 1,

for some C̃0 > 0. In particular, the solution can be extended up to t = T if N satisfies

Nσ−s ≥ eC3(1+K)γT (≥ C̃ [Tδ ]
0 )

for some C3 = C3(s, p) > 0. Consequently, for N large enough, we obtain

max
0≤t≤T

‖w(t)‖FLs,p ≤ max
0≤j<[Tδ ]

C̃j+1
0 N−(σ−s)K ≤ eC3(1+K)γTN−(σ−s)K.

The estimate follows by further imposing N ≥ N0 where N0 ∼ exp
(
CKγT
σ−s

)
.

To establish (b), note that we can also write w(t) as follows

w(t) = Ξ̃j [w](t) := S(t− jδ)w(jδ) +

ˆ t

jδ

S(t− t′)P>NN (u)(t′) dt′

+

ˆ t

jδ

S(t− t′)P≤N
{
N (u)−N (u− w)

}
(t′) dt′.

The estimate then follows from the same arguments as for (a).

Remark 4.3.8. We can choose N0 ∼ exp
(
CKγT
σ−s

)
, for example.
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Using Lemma 4.3.6 and Lemma 4.3.7, we establish almost a.s. global well-posedness of the
G-gKdV equation (4.3).

Proposition 4.3.9. Let s∗ < s < 1 − 1
p , T ≥ 1, and 0 < ε ≤ 1

2 . For any A ≥ 1, there exists

N1 = N1(A) ∈ N such that the set ΣsT,ε(A) := ΩσN1
(T, ε2 , A), with σ = 1

2 (s+ 1− 1
p ), satisfies:

(a) µ
(
FLs,p(T) \ ΣsT,ε(A)

)
< ε;

(b) For u0 ∈ ΣsT,ε(A), there exists a unique corresponding solution u ∈ C
(
[−T, T ];FLs,p(T)

)
∩

Z
s, 12
p (T ) of G-gKdV (4.3) on [−T, T ] such that

‖u(t)‖FLs,p ≤ 2
√

2AC0Cσ
(

log T
ε

) 1
2 , |t| ≤ T.

Proof. Lemma 4.3.6 (b) shows that for u0 ∈ ΣsT,ε(A) we have

‖ΦN1
(t)(u0)‖FLσ,p ≤ AC0Cσ

(
log 2T

ε

) 1
2 , |t| ≤ T.

From Lemma 4.3.7 (a), there exists a unique solution u of G-gKdV on [−T, T ] with u(0) = u0

satisfying

‖u(t)‖FLs,p ≤ 2AC0Cσ
(

log 2T
ε

) 1
2 , |t| ≤ T,

provided N1 is large enough. The intended estimate follows from log(2x) ≤ 2 log x for x ≥ 2.
Note that from Lemma 4.3.4 there exists N2 ∈ N such that

ˆ
|FN (u)− F (u)|dρ(u) < ε

2 ,

for N ≥ N2. By taking N1 larger so that the previous bound holds, using Lemma 4.3.6 (a) and
the fact that FLs,p(T), FLσ,p(T) have full µ-measure, we have

µ
(
FLs,p(T) \ ΣsT,ε(A)

)
≤ µN1

(
FLσ,p(T) \ ΩσN1

(T, ε2 , A)
)

+

ˆ
|FN1

(u)− F (u)|dρ(u) < ε,

which completes the proof.

We can now show Theorem 1.2.4.

Proof of Theorem 1.2.4. This proof follows the approaches in [105, 80]. We first establish almost
sure global well-posedness of G-gKdV. Define an increasing sequence {sj}j∈N by s1 = 1

2 (s∗ +
1 − 1

p ) and sj+1 = 1
2 (sj + 1 − 1

p ), which converges to 1 − 1
p as j → ∞. Fix 0 < ε ≤ 1 and let

Tj = 2j , εj = 2−jε, j ∈ N. For Σ
sj
Tj ,εj

(2k) as defined in Proposition 4.3.9, with s = sj and
σ = sj+1, let

Σε =
∞⋂
j=1

Σ
sj
Tj ,εj

=
∞⋂
j=1

( ∞⋃
k=1

Σ
sj
Tj ,εj

(2k)
)
.

Lastly, let Σ =
⋃∞
n=1 Σ 1

n
.

First note that Σ ⊂
⋂
s<1− 1

p
FLs,p(T). From Lemma 4.3.6 and Proposition 4.3.9, Σ

sj
Tj ,εj

⊂
FLsj+1,p(T), which implies that

Σ 1
n

=

∞⋂
j=1

Σ
sj
Tj ,εj

⊂
∞⋂
j=1

FLsj+1,p(T) ⊂
⋂

s<1− 1
p

FLs,p(T).

The last inclusion follows from the fact that FLs,p(T) ⊂ FLσ,p(T) for σ ≤ s, and for each fixed
s < 1− 1

p , since (sj)j∈N is an increasing sequence converging to 1− 1
p , there exists j∗ ∈ N such

that s ≤ sj∗ < 1− 1
p . The conclusion for Σ follows from taking a union over n ∈ N.
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Let u0 ∈ Σ. Then, for some n, k ∈ N and for any j ∈ N, we have u0 ∈ Σ
sj
Tj ,εj

(2k) where

εj = 2−j 1
n . Hence, by Proposition 4.3.9, there exists a solution u ∈ C

(
[−Tj , Tj ];FLsj ,p(T)

)
∩

Z
sj ,

1
2

p (Tj) of G-gKdV with u(0) = u0. By uniqueness of local solutions in Z
s, 12
p (T ), we obtain

a unique global solution u ∈
⋂
s<1− 1

p
C
(
R;FLs,p(T)

)
. Moreover, since Σ

sj
Tj ,εj

(2k) is closed in

FLs1,p(T) and

µ
(
Σc1
n

)
≤
∞∑
j=1

µ
(
(Σ

sj
Tj ,εj

)c
)
<
∞∑
j=1

2−j
1

n
<

1

n
.

Therefore, Σ is µ-measurable and µ(Σc) ≤ lim inf
n→∞

1
n = 0.

We now establish that Φ(t)Σ = Σ for any t ∈ R, where Φ(t) : u0 7→ u(t) denotes the solution
map of G-gKdV defined above. Fixing τ ∈ R, we focus on showing that Φ(τ)Σ ⊂ Σ. Note from
this property and the reversibility of the flow, we have that Σ = Φ(−τ)

[
Φ(τ)Σ

]
⊂ Φ(−τ)Σ,

from which we can conclude the equality of the sets. From the definition of Σ, it suffices to
show that Φ(τ)Σε ⊂ Σε, for each fixed ε = 1

n , n ∈ N. In fact, we will establish that if |τ | ≤ T`
for some ` ∈ N, then for every i ∈ N,

Φ(τ)Σ
sj
Tj ,εj

⊂ ΣsiTi,εi , for j = max(i+ 2, `+ 1),

from which the intended result follows, since this implies that

Φ(τ)Σε ⊂
∞⋂
j=1

Φ(τ)Σ
sj
Tj ,εj

⊂
∞⋂
i=1

Φ(τ)Σ
sj(i,`)
Tj(i,`),εj(i,`)

⊂
∞⋂
i=1

ΣsiTi,εi .

Let u0 ∈ Σ
sj
Tj ,εj

. Then, there exists k ∈ N such that u0 ∈ Σ
sj
Tj ,εj

(2k). From Proposition 4.3.9,

there exists a solution u(t) of G-gKdV for |t| ≤ Tj satisfying

‖u(t)‖FLsj,p ≤ (2
√

2) 2kC0Csj+1

(
log

Tj
εj

) 1
2 , |t| ≤ Tj .

Note that uτ (t) = u(τ+t) is a solution of G-gKdV with uτ (0) = u(τ) = Φ(τ)u0, which belongs to

C
(
[−Tj−1, Tj−1];FLsj ,p(T)

)
∩Zsj ,

1
2

p (Tj−1), because ` ≤ j−1 and then |t+τ | ≤ Tj−1 +T` ≤ Tj .
Since the above estimate holds for uτ (t) if |t| ≤ Tj−1, from Lemma 4.3.7 (b), it follows that

‖ΦN (t)Φ(τ)u0‖FLsj−1,p ≤ (6
√

2) 2kC0Csj+1

(
log

Tj
εj

) 1
2 , |t| ≤ Tj−1,

for any N ≥ N0. Since i ≤ j − 2 and
Tj
εj
≤
(

2Ti
εi

)j/i
for 0 < ε ≤ 1, we get that

‖ΦN (t)Φ(τ)u0‖FLsi+1,p ≤ (6
√

2j/i) 2kC0Csj+1

(
log 2Ti

εi

) 1
2 , |t| ≤ Ti+1.

Consequently, by choosing k̃ ∈ N such that (6
√

2j/i) 2kC0Csj+1
≤ 2k̃Csi+1

and N1(k̃) ≥ N0,

and applying Lemma 4.3.6 (c), we conclude that Φ(τ)u0 ∈ ΣsiTi,εi(k̃). The group property of

Φ(t) follows from uniqueness of local solutions in Z
s, 12
p (T ).

Before showing the invariance of µ under the flow map Φ(t), we show that Φ(t) is µ-
measurable for every t ∈ R. It suffices to show the continuity of the map in the topology
induced by FLs1,p(T). Fix t ∈ R and u0 ∈ Σ. Consider a sequence {u0,k}k∈N ⊂ Σ converging
to u0 in FLs1,p(T). Let j ∈ N such that |t| ≤ Tj . Then, u0 ∈ Σ

sj
Tj ,εj

(A) for some ε = 1
n and

some A. By Proposition 4.3.9, we have

sup
|t|≤Tj

‖Φ(t)u0‖FLsj,p ≤ 2
√

2AC0Csj+1
log
(Tj
εj

) 1
2 =: Λ.

Let T be the local time of existence for data of size 2Λ in FLs1,p(T). From the Lipschitz
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continuity of the solution map, we obtain

‖Φ(t)u0 − Φ(t)u0,k‖FLs1,p ≤ C[ |t|T ]‖u0 − u0,k‖FLs1,p ,

as long as the right-hand side is bounded by Λ, which holds for k large enough. Consequently,
by taking k →∞, we conclude that Φ(t)u0,k → Φ(t)u0 in FLs1,p(T).

It remains to show the invariance of the Gibbs measure µ under the flow Φ(t) of G-
gKdV (4.3). Having established the flow property of Φ(t), it suffices to show that for all
G ∈ L1

(
FLs1,p(T), dµ

)
and t ∈ R, we have

ˆ
Σ

G
(
Φ(t)u

)
dµ(u) =

ˆ
Σ

G(u)dµ(u). (4.34)

Moreover, it suffices to show (4.34) for G in a dense subset H of L1
(
FLs1,p(T), dµ

)
. In partic-

ular, we choose H as the set of continuous and bounded functions on FLs1,p(T). Fix G ∈ H,
t ∈ R and κ > 0. We have the following∣∣∣∣ ˆ

Σ

G
(
Φ(t)u

)
dµ(u)−

ˆ
Σ

G(u)dµ(u)

∣∣∣∣ ≤ ∣∣∣∣ˆ
Σ

G
(
Φ(t)u

)
dµ(u)−

ˆ
Σ

G
(
Φ(t)u

)
dµN (u)

∣∣∣∣
+

∣∣∣∣ˆ
Σ

G
(
Φ(t)u

)
dµN (t)−

ˆ
Σ

G
(
ΦN (t)u

)
dµN (u)

∣∣∣∣
+

∣∣∣∣ˆ
Σ

G
(
ΦN (t)u

)
dµN (t)−

ˆ
Σ

G(u)dµN (u)

∣∣∣∣
+

∣∣∣∣ˆ
Σ

G(u)dµN (u)−
ˆ

Σ

G(u)dµ(u)

∣∣∣∣
= I + II + III + IV.

From Lemma 4.3.4, we have

ˆ
G̃(u)dµN (u)−

ˆ
G̃(u)dµ(u) =

ˆ
G̃(u)

( FN (u)

‖FN‖L1(dρ)
− F (u)

‖F‖L1(dρ)

)
dρ(u)→ 0, N →∞

for every bounded measurable function G̃ on FLs1,p(T). Consequently, since G is bounded and
continuous and Φ(t) is measurable, there exists N0 ∈ N such that I + IV < κ

2 , for N ≥ N0.
From Proposition 4.3.5, the measure µN is invariant under the flow ΦN (t), thus III = 0. It only
remains to estimate II. For 0 < ε ≤ 1

2 , consider the set Σ(t, ε) = Σs21+|t|,ε(1) ⊂ FLs3,p(T). From

Lemma 4.3.4, there exists N1 ∈ N such that µN (Σ(t, ε)c) < µ(Σ(t, ε)c) + ε for N ≥ N1. Since
µ(Σ(t, ε)c) < ε by Proposition 4.3.9, we see that∣∣∣∣ ˆ

Σ\Σ(t,ε)

G
(
Φ(t)u

)
dµN (u)−

ˆ
Σ\Σ(t,ε)

G
(
ΦN (t)u

)
dµN (u)

∣∣∣∣ ≤ 2‖G‖L∞
(
µ
(
Σ(t, ε)c

)
+ ε
)
<
κ

4
,

for N ≥ N1 and by choosing ε ≤ κ
16‖G‖L∞ . In order to estimate the contribution restricted to

Σ(t, ε), we want to exploit the continuity of G. In particular, we want to use the fact that there
exists γ > 0 such that if

∥∥Φ(t)u0 − ΦN (t)u0

∥∥
FLs1,p < γ, then∣∣G(Φ(t)u0)−G(ΦN (t)u0)

∣∣ < κ

4
. (4.35)

Consequently, we want to show that we can choose N large enough such that the difference of
the flows is less than γ. For u0 ∈ Σ ∩ Σ(t, ε), from Proposition 4.3.9 and uniqueness, we have

‖u0‖FLs2,p , ‖Φ(s)u0‖FLs2,p ≤ 2
√

2C0Cs3
(

log 1+|t|
ε

) 1
2 , |s| ≤ 1 + |t|.

Then, from Lemma 4.3.7 (b) we have∥∥Φ(t)u0 −P≤NΦN (t)u0

∥∥
FLs1,p ≤ C(t, ε)N−(s2−s1)
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for any N large enough. Thus, it follows that∥∥Φ(t)u0 − ΦN (t)u0

∥∥
FLs1,p ≤

∥∥Φ(t)u0 −P≤NΦN (t)u0

∥∥
FLs1,p +

∥∥P>NΦN (t)u0

∥∥
FLs1,p

≤ C(t, ε)N−(s2−s1) +N−(s2−s1)‖u0‖FLs2,p

≤ C(t, ε)N−(s2−s1) < γ,

by choosing N large enough, say N ≥ N2, for some N2 ∈ N. Consequently, (4.35) holds and we
can estimate the remaining piece of II∣∣∣∣ ˆ

Σ∩Σ(t,ε)

G
(
Φ(t)u

)
dµN (u)−

ˆ
Σ∩Σ(t,ε)

G
(
ΦN (t)u

)
dµN (u)

∣∣∣∣ ≤ ˆ
κ

4
dµN (u) =

κ

4
.

Combining all the estimates, we obtain∣∣∣∣ˆ
Σ

G
(
Φ(t)u

)
dµ(u)−

ˆ
Σ

G
(
u
)
dµ(u)

∣∣∣∣ < κ.

Since κ is arbitrarily small, we obtain (4.34), as intended.

Before we establish the invariance of the Gibbs measure µ under the dynamics of the original
gKdV equation (4.1), we must consider its solution map Ψ(t). We can define the map Ψ(t1, t2)
for t1, t2 ∈ R as

Ψ(t1, t2)u0 =
[
Φ(t2 − t1)u0

](
x± k

ˆ t2

t1

P0

(
Φ(t′ − t1)u0

)k−1
dt′
)
,

which is a solution of gKdV (4.1) at time t2, with initial data u0 at time t1. Since Ψ(t1, t2) =
Ψ(0, t2 − t1), we can denote the solution map of gKdV (4.1) at time t as Ψ(t) := Ψ(0, t). The
following lemma establishes that the solution map Ψ(t) satisfies the group property.

Lemma 4.3.10. For any t, s ∈ R we have that Ψ(t+ s) = Ψ(t)Ψ(s).

Proof. Let u0 ∈ FLs,p(T) and t1, t2 ∈ R. From the definition of Ψ, we have

Ψ(t1 + t2)u0 =
[
Φ(t1 + t2)u0

](
x± k

ˆ t1+t2

0

P0

(
Φ(t′)u0

)k−1
dt′
)
.

Using the group property of Φ and a change of variables, we obtain

Ψ(t2)Ψ(t1)u0 = Ψ(t2)

[[
Φ(t1)u0

](
x± k

ˆ t1

0

P0

(
Φ(t′)u0

)k−1
dt′
)]

=
[
Φ(t1 + t2)u0

](
x± k

ˆ t1

0

P0

(
Φ(t′)u0

)k−1
dt′ ± k

ˆ t2

0

P0

(
Φ(t1 + t′)u0

)k−1
dt′
)

=
[
Φ(t1 + t2)u0

](
x± k

ˆ t1+t2

0

P0

(
Φ(t′)u0

)k−1
dt′
)
,

which is equal to Ψ(t1 + t2)u0, establishing the group property of the map.

We can now establish the intended invariance of the Gibbs measure under the original
flow Ψ(t).

Proof of Theorem 1.2.5. Let Σ be the subset of
⋂
s<1− 1

p
FLs,p(T) constructed in Theorem 1.2.4

and denote by T (y), for y ∈ T, the spatial translation operator f(x) 7→ f(x−y). Note that Σ is
invariant under T (y). Consequently, we can establish the global-in-time dynamics on Σ for the
gKdV equation (4.1) with the solution map Ψ(t) satisfying the flow property in Lemma 4.3.10.

It remains to prove the invariance of the Gibbs measure (4.34).1 Let m denote the Haar
measure on T. Fix A ⊂ Σ and t ∈ R. Using the invariance of µ under T (y), the fact that T (y)

1This argument was suggested by Terence Tao and Rowan Killip.
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and Ψ(t) commute, and Fubini’s Theorem, we have

µ
(
Ψ(−t)A

)
=

1

2π

ˆ
T
µ
(
T (−y)Ψ(−t)A

)
dm(y)

=
1

2π

ˆ
T

ˆ
Σ

1A

(
T (y)Ψ(t)u0

)
dµ(u0) dm(y)

=
1

2π

ˆ
Σ

ˆ
T
1A

[
T
(
y ∓ k

ˆ t

0

P0(Φ(t′)u0)k−1dt′
)

Φ(t)u0

]
dm(y) dµ(u0).

From the translation invariance of m, Fubini’s Theorem, and the fact that Φ(t) commutes with
T (y), we have that

µ
(
Ψ(−t)A

)
=

1

2π

ˆ
Σ

ˆ
T
1A

(
T (y)Φ(t)u0

)
dm(y) dµ(u0)

=
1

2π

ˆ
T
µ
(
T (−y)Φ(−t)A

)
dm(y).

Since µ is invariant under T (y) and under the flow map Φ(t) of (4.3) from Theorem 1.2.4, we
get µ

(
Ψ(−t)A

)
= µ

(
Φ(−t)A

)
= µ(A), as intended.

4.4 Gauge transform

We start by establishing continuity of the (inverse) gauge transform.

Lemma 4.4.1. The (inverse) gauge transform in (4.4) is a continuous map on
C
(
[−T, T ];FLs,p(T)

)
given that 1 ≤ p <∞ and s > 1− 1

p −
1

k−1 .

Proof. Let u be any function in C
(
[−T, T ];FLs,p(T)

)
. Consider {um}m∈N ⊂

C
(
[−T, T ];FLs,p(T)

)
a sequence converging to u and fix t ∈ [−T, T ]. Then,∥∥G0,t

(
u(t)

)
− G0,t

(
um(t)

)∥∥
FLs,p

=
∥∥〈n〉s(eink ´ t0 P0(uk−1(t′))dt′ û(t, n)− eink

´ t
0
P0(uk−1

m (t′))dt′ ûm(t, n)
)∥∥
`pn

≤ 2
∥∥1|n|>N 〈n〉sû(t, n)

∥∥
`pn

+ ‖u(t)− um(t)‖FLs,p

+ ‖u(t)‖FLs,p
∥∥1|n|≤N(eink ´ t0 P0(uk−1(t′))dt′ − eink

´ t
0
P0(uk−1

m (t′))dt′
)∥∥
`∞n
.

The first two terms on the right-hand side of the estimate converge to zero as N → ∞ and
m → ∞. Thus, it only remains to consider the last one. Using the mean-value theorem, we
have ∥∥1|n|≤N(eink ´ t0 P0(uk−1(t′))dt′ − eink

´ t
0
P0(uk−1

m (t′))dt′
)∥∥
`∞n
≤ |t|N‖uk−1 − uk−1

m ‖C|t|L1 .

Since FLs,p(T) ↪→ Lk−1(T) for s > 1− 1
p −

1
k−1 , then the above quantity converges to zero for

each fixed N , establishing the continuity of G0,t. An analogous proof works for G−1
0,t .

Following the argument in [44], we establish the following result for the (inverse) gauge
transform in (4.4).

Proposition 4.4.2. Let 1 ≤ p <∞ and s > 1− 1
p −

1
k−1 . Then, the (inverse) gauge transform

in (4.4) is not uniformly continuous on arbitrarily small balls of C
(
[−T, T ];FLs,p(T)

)
centered

at the origin.

Proof. Let R > 0 and N ∈ N. Define {uN,j}N∈N for j = 1, 2 as follows

uN,1(t, x) = RN−s(eiNx + e−iNx) +N−
1
k−1 (eiMx + e−iMx),

uN,2(t, x) = RN−s(eiNx + e−iNx),
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with M = 0 for k even, and M = 1 for k odd. Note that

‖uN,1‖CTFLs,p . R,

for N large enough, and ‖uN,2‖CTFLs,p ∼ R. Moreover,

‖uN,1 − uN,2‖CTFLs,p ∼ N−
1
k−1 → 0,

as N →∞. Using mean value theorem, we obtain

‖G0,t(uN,1)− G0,t(uN,2)‖CTFLs,p ≥ TN
∣∣∣ˆ

T

(
uk−1
N,1 (x)− uk−1

N,2 (x)
)
dx
∣∣∣.

Calculating
´
T(uk−1

N,1 − u
k−1
N,2 ) dx, we have

∼
∑

1≤j≤k−1
0≤l≤k−1−j

0≤m≤j

(
k − 1

j

)
N−s(k−1−j)− j

k−1

ˆ
T
eiNx(k−j−2l−1)+iMx(j−2m).

Thus, the nonzero contributions correspond to the choices of indices satisfying k − 1 − j = 2l
and M(j − 2m) = 0 , since N � M . Consequently, we see that the quantity is dominated by
the contribution at j = k − 1, therefore

‖G0,t(uN,1)− G0,t(uN,2)‖CTFLs,p & 1,

which does not decay as N →∞.

116



Appendix A

Appendix

A.1 Choice of η

We can, for example, choose η as follows. Consider another function ψ satisfying ψ(t) = eitη(t).

Then, ψ̂(τ) = η̂(τ − 1) and the conditions on η impose

ψ̂(0) = 0,

Hψ̂(0) = −1.

The first one means that ψ is a mean-zero function, i.e.,

ψ̂(0) =
1

2π

ˆ

R

ψ(t) dt = 0.

To understand the second condition, note that

Fτ (Hψ̂(τ))(t) = i sgn(t)Fτ (ψ̂(τ))(t) =
i

2π
sgn(t)ψ(−t).

Then, from the second condition we have

−1 = Hψ̂(0) = F−1
τ

(
i

2π
sgn(t)ψ(−t)

)
(0)

=
1

2π

ˆ

R

i sgn(t)ψ(−t) dt

=
i

2π

(ˆ 0

−∞
ψ(t) dt−

ˆ ∞
0

ψ(t) dt

)
=

i

2π

(ˆ 0

−∞
ψ(t) dt+

ˆ

R

ψ(t) dt

︸ ︷︷ ︸
=0

−
ˆ ∞

0

ψ(t) dt

)

=
i

π

ˆ 0

−∞
ψ(t) dt.

Thus, we have ˆ ∞
0

ψ(t) dt = −iπ.

Rewriting these assumptions with respect to η, we get

ˆ

R

eitη(t) dt = 0,
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ˆ ∞
0

eitη(t) dt = −iπ.

An example of a function ψ satisfying the conditions above is ψ(t) = − 4πi√
2π
te−t

2

.

A.2 First step of the second iteration process for w

Here we present the equation for w after using second iteration once, following the strategy
described in Section 3.3.

w = ϕ(t)S(t)u0 + ϕT · DR(u, u, u)

+ ϕT
(
DNRC,≥ +DNRD,≥

)
(w,w,w) + ϕT

(
DNRC,> +DNRD,>

)
(w,w,w)

+ ϕT
(
B0
A,≥(w, u, u) + B1

A,≥(w, u, u) + B2
A,≥(w,w, u) + B3

A,≥(w, u,w)
)

+ ϕT
(
B0
A,>(w, u, u) + B1

A,>(w, u, u) + B2
A,>(w,w, u) + B3

A,>(w, u,w)
)

+ ϕT
(
B0
B,≥(w,w, u) + B1

B,≥(w,w, u) + B2
B,≥(w,w, u) + B3

B,≥(w,w,w)
)

+ ϕT
(
B0
B,>(w,w, u) + B1

B,>(w,w, u) + B2
B,>(w,w, u) + B3

B,>(w,w,w)
)

+ ϕT (DNRA,≥ +DNRB,≥ +DNRC,≥ +DNRD,≥)
(
ϕT ·GA,≥[w, u, u], u, u

)
+ ϕT (DNRA,≥ +DNRB,≥ +DNRC,≥ +DNRD,≥)

(
ϕT ·GA,>[w, u, u], u, u

)
+ ϕT (DNRA,≥ +DNRB,≥ +DNRC,≥ +DNRD,≥)

(
ϕT ·GB,≥[w,w, u], u, u

)
+ ϕT (DNRA,≥ +DNRB,≥ +DNRC,≥ +DNRD,≥)

(
ϕT ·GB,>[w,w, u], u, u

)
+ ϕT (DNRA,> +DNRB,> +DNRC,> +DNRD,>)

(
ϕT ·GA,≥[w, u, u], u, u

)
+ ϕT (DNRA,> +DNRB,> +DNRC,> +DNRD,>)

(
ϕT ·GA,>[w, u, u], u, u

)
+ ϕT (DNRA,> +DNRB,> +DNRC,> +DNRD,>)

(
ϕT ·GB,≥[w,w, u], u, u

)
+ ϕT (DNRA,> +DNRB,> +DNRC,> +DNRD,>)

(
ϕT ·GB,>[w,w, u], u, u

)
+ ϕT (DNRB,≥ +DNRC,≥ +DNRD,≥)

(
w,ϕT ·GA,≥[w, u, u], u

)
+ ϕT (DNRB,≥ +DNRC,≥ +DNRD,≥)

(
w,ϕT ·GA,>[w, u, u], u

)
+ ϕT (DNRB,≥ +DNRC,≥ +DNRD,≥)

(
w,ϕT ·GB,≥[w,w, u], u

)
+ ϕT (DNRB,≥ +DNRC,≥ +DNRD,≥)

(
w,ϕT ·GB,>[w,w, u], u

)
+ ϕT (DNRB,> +DNRC,> +DNRD,>)

(
w,ϕT ·GA,≥[w, u, u], u

)
+ ϕT (DNRB,> +DNRC,> +DNRD,>)

(
w,ϕT ·GA,>[w, u, u], u

)
+ ϕT (DNRB,> +DNRC,> +DNRD,>)

(
w,ϕT ·GB,≥[w,w, u], u

)
+ ϕT (DNRB,> +DNRC,> +DNRD,>)

(
w,ϕT ·GB,>[w,w, u], u

)
+ ϕT (DNRC,≥ +DNRD,≥)

(
w,w, ϕT ·GA,≥[w, u, u]

)
+ ϕT (DNRC,≥ +DNRD,≥)

(
w,w, ϕT ·GA,>[w, u, u]

)
+ ϕT (DNRC,≥ +DNRD,≥)

(
w,w, ϕT ·GB,≥[w,w, u]

)
+ ϕT (DNRC,≥ +DNRD,≥)

(
w,w, ϕT ·GB,>[w,w, u]

)
+ ϕT (DNRC,> +DNRD,>)

(
w,w, ϕT ·GA,≥[w, u, u]

)
+ ϕT (DNRC,> +DNRD,>)

(
w,w, ϕT ·GA,>[w, u, u]

)
+ ϕT (DNRC,> +DNRD,>)

(
w,w, ϕT ·GB,≥[w,w, u]

)
+ ϕT (DNRC,> +DNRD,>)

(
w,w, ϕT ·GB,>[w,w, u]

)
+ ϕT

(
B2
A,≥
(
w,ϕT ·GA,≥[w, u, u], u

)
+ B2

A,≥
(
w,ϕT ·GA,>[w, u, u], u

))
+ ϕT

(
B2
A,≥
(
w,ϕT ·GB,≥[w,w, u], u

)
+ B2

A,≥
(
w,ϕT ·GB,>[w,w, u], u

))
+ ϕT

(
B2
A,>

(
w,ϕT ·GA,≥[w, u, u], u

)
+ B2

A,>

(
w,ϕT ·GA,>[w, u, u], u

))
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+ ϕT

(
B2
A,>

(
w,ϕT ·GB,≥[w,w, u], u

)
+ B2

A,>

(
w,ϕT ·GB,>[w,w, u], u

))
+ ϕT

(
B3
A,≥
(
w, u, ϕT ·GA,≥[w, u, u]

)
+ B3

A,≥
(
w, u, ϕT ·GA,>[w, u, u]

))
+ ϕT

(
B3
A,≥
(
w, u, ϕT ·GB,≥[w,w, u]

)
+ B3

A,≥
(
w, u, ϕT ·GB,>[w,w, u]

))
+ ϕT

(
B3
A,>

(
w, u, ϕT ·GA,≥[w, u, u]

)
+ B3

A,>

(
w, u, ϕT ·GA,>[w, u, u]

))
+ ϕT

(
B3
A,>

(
w, u, ϕT ·GB,≥[w,w, u]

)
+ B3

A,>

(
w, u, ϕT ·GB,>[w,w, u]

))
+ ϕT

(
B3
B,≥
(
w,w, ϕT ·GA,≥[w, u, u]

)
+ B3

B,≥
(
w,w, ϕT ·GA,>[w, u, u]

))
+ ϕT

(
B3
B,≥
(
w,w, ϕT ·GB,≥[w,w, u]

)
+ B3

B,≥
(
w,w, ϕT ·GB,>[w,w, u]

))
+ ϕT

(
B3
B,>

(
w,w, ϕT ·GA,≥[w, u, u]

)
+ B3

B,>

(
w,w, ϕT ·GA,>[w, u, u]

))
+ ϕT

(
B3
B,>

(
w,w, ϕT ·GB,≥[w,w, u]

)
+ B3

B,>

(
w,w, ϕT ·GB,>[w,w, u]

))
. (A.1)

A.3 Second step of the second iteration process for w

We recall how to control the contributions in Section 3.5.2. In Proposition 3.5.7, we establish
an estimate which can be applied to these terms given that one of the following conditions is
satisfied:

1. There are no pairings in (n1, . . . , n5) and the largest frequency corresponds to a function
in Zs0 ;

2. There is one pairing ni + nj = 0 and the largest frequency in {|nk| : 1 ≤ k ≤ 5, k 6= i, j}
corresponds to a function in Zs0 ;

3. There are two pairings and the remaining frequency corresponds to a functions in Zs0 .

If the contributions do not satisfy any of the above conditions, then the largest frequency that
is not in a pairing corresponds to a function u and we want to use the equation for u again.
This leads to one quintic term that satisfies the assumptions above and four septic terms. In
the following, we decompose the contributions in (3.29), indicating when it suffices to apply
Proposition 3.5.7 and when we have to substitute a particular term by the equation for u. The
resulting cubic term can be estimated by Proposition 3.5.7 and we apply Proposition 3.5.9 to
the four septic terms.

Let XB = XB1
∪ XB2

where

XB1
(n) =

{
(n1, n2, n3) ∈ Z3 : n = n1 + n2 + n3, |n3| � |n| . |n1| ∼ |n2|

}
,

XB2(n) =
{

(n1, n2, n3) ∈ Z3 : n = n1 + n2 + n3, |n3| � |n1| � |n| ∼ |n2|
}
.

• DNRA
(
ϕT ·GA[w1, u2, u3], u4, u5): The frequencies satisfy the following

|n5| ≤ |n4| � |n0| ∼ |n1| ∼ |n|,
|n3| ≤ |n2| � |n0|,

with possible pairings (2, 4), (2, 5), (3, 4), (3, 5). Since |n| ∼ |n1| and n1 is never part of pairing
we can apply Proposition 3.5.7 directly, with w1 ∈ Zs0 .

• DNRA
(
ϕT ·GB [w1, w2, u3], u4, u5

)
: If (n1, n2, n3) ∈ XB1(n0), then

|n4| ≤ |n5| � |n0| ∼ |n| . |n1| ∼ |n2|,
|n3| � |n0|,
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so the only pairings are (3, 4), (3, 5) and |n| . |n1| ∼ |n2|, so we can apply Proposition 3.5.7
with w1 ∈ Zs0 . If (n1, n2, n3) ∈ XB2

(n0), then

|n4| ≤ |n5| � |n0| ∼ |n2| ∼ |n|,
|n3| � |n1| � |n0|,

so the possible pairings are (1, 4), (1, 5), (3, 4), (3, 5) and |n| ∼ |n2|, so we can apply Proposi-
tion 3.5.7 with w2 ∈ Zs0 .

• DNRB
(
ϕT ·GA[w1, u2, u3], u4, u5

)
: If (n0, n4, n5) ∈ XB1

(n), then

|n5| � |n| . |n0| ∼ |n1| ∼ |n4|,
|n3| ≤ |n2| � |n0|,

so the possible pairings are (1, 4), (2, 5), (3, 5). We proceed as follows:

• (1, 4) not a pairing: |n| ∼ |n1|, use Proposition 3.5.7 and with w1 ∈ Zs0 ;

• (1, 4) only pairing: |n| . max(|n2|, |n3|, |n5|) = |n2|, use equation on u2;

• (1, 4), (2, 5) pairings: n = n3, use equation on u3;

• (1, 4), (3, 5) pairings: n = n2, use equation on u2.

Now consider (n0, n4, n5) ∈ XB2
(n), then

|n5| � |n0| ∼ |n1| � |n| ∼ |n4|,
|n3| ≤ |n2| � |n0|,

so the possible pairings are (2, 5), (3, 5) and |n| ∼ |n4|. Since u4 6∈ Zs0 but n4 is never in a
pairing, it suffices to use the equation on u4.

• DNRB
(
ϕT ·GB [w1, w2, u3], u4, u5

)
: If (n0, n4, n5) ∈ XB1

(n), (n1, n2, n3) ∈ XB1
(n0), we have

|n5| � |n| . |n0| ∼ |n4| . |n1| ∼ |n2|,
|n3| � |n0|,

with possible pairings (1, 4), (2, 4), (3, 5). Since |n| . |n1| ∼ |n2|, and n1, n2 cannot be in a
pairing at the same time, we can use Proposition 3.5.7 and place w1 or w2 in Zs0 .

If (n0, n4, n5) ∈ XB1
(n), (n1, n2, n3) ∈ XB2

(n0), we have

|n5| � |n| . |n0| ∼ |n2| ∼ |n4|,
|n3| � |n1| � |n0|,

with possible pairings (2, 4), (1, 5), (3, 5). We proceed as follows:

• (2, 4) not a pairing: |n| . |n2| and use Proposition 3.5.7 with w2 ∈ Zs0 ;

• (2, 4) only pairing: |n| ∼ |n1| and use Proposition 3.5.7 with w1 ∈ Zs0 ;

• (2, 4), (1, 5) pairings: n = n3 and use the equation on u3;

• (2, 4), (3, 5) pairings: n = n1 and use Proposition 3.5.7 with w1 ∈ Zs0 .

If (n0, n4, n5) ∈ XB2
(n), (n1, n2, n3) ∈ XB1

(n0), then

|n5| � |n0| � |n| ∼ |n4|,
|n3| � |n0| . |n1| ∼ |n2|,

so the possible pairings are (1, 4), (2, 4), (3, 5). We proceed as follows:

• (1, 4) and (2, 4) not a pairing: |n| ∼ |n4| and use equation on u4;
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• (1, 4) is a pairing: |n| ∼ |n2| and use Proposition 3.5.7 with w2 ∈ Zs0 ;

• (2, 4) is a pairing: |n| ∼ |n1| and use Proposition 3.5.7 with w1 ∈ Zs0 .

If (n0, n4, n5) ∈ XB2
(n), (n1, n2, n3) ∈ XB2

(n0), then

|n5| � |n0| ∼ |n2| � |n| ∼ |n4|,
|n3| � |n1| � |n0|,

with possible pairings (1, 5), (3, 5). Since |n| ∼ |n4| and n4 is never in a pairing, we use the
equation on u4.

• DNRC
(
ϕT ·GA[w1, u2, u3], u4, u5

)
: The frequencies satisfy the following:

|n| . |n5| � |n0| ∼ |n1| ∼ |n4|,
|n3| ≤ |n2| � |n0|,

with possible pairings (1, 4), (2, 5), (3, 5). We proceed as follows:

• (1, 4) is not a pairing: |n| ∼ |n1| and use Proposition 3.5.7 with w1 ∈ Zs0 ;

• (1, 4) only pairing: |n| . |n5| and use equation on u5;

• (1, 4), (2, 5) pairings: n = n3 and use equation on u3;

• (1, 4), (3, 5) pairings: n = n2 and use equation on u2.

• DNRC
(
ϕT ·GB [w1, w2, u3], u4, u5

)
: If (n1, n2, n3) ∈ XB1(n0):

|n| . |n5| � |n0| ∼ |n4| . |n1| ∼ |n2|,
|n3| � |n0|,

with possible pairings (1, 4), (2, 4), (3, 5). Since |n| . |n1| ∼ |n2| and n1, n2 are never in a
pairing at the same time, we can apply Proposition 3.5.7 and place the function in {w1, w2}
whose frequency is not in a pairing in Zs0 .

If (n1, n2, n3) ∈ XB2
(n0), then:

|n| . |n5| � |n0| ∼ |n2| ∼ |n4|,
|n3| � |n1| � |n0|,

with possible pairings (2, 4), (1, 5), (3, 5). We proceed as follows:

• (2, 4) not a pairing: |n| . |n2| and use Proposition 3.5.7 with w2 ∈ Zs0 ;

• (2, 4) only pairing: |n| . |n5| and use the equation on u5;

• (2, 4), (1, 5) pairings: n = n3 and use the equation on u3;

• (2, 4), (3, 5) pairings: n = n1 and use Proposition 3.5.7 with w1 ∈ Zs0 .

• DNRD
(
ϕT ·GA[w1, u2, u3], u4, u5

)
: The frequencies satisfy the following:

|n3| ≤ |n2| � |n1| ∼ |n0| . |n5| ≤ |n4|,

with possible pairings (1, 4), (1, 5) and |n| . |n4|. Thus, we use the equation on u4.

• DNRD
(
ϕT ·GB [w1, w2, u3], u4, u5

)
: If (n1, n2, n)3 ∈ XB1(n0):

|n0| . |n5| ≤ |n4|,
|n3| � |n0| . |n1| ∼ |n2|,

with possible pairings (1, 4), (1, 5), (2, 4), (2, 5). We proceed as follows:
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• (1, 4) and (2, 4) are not pairings: |n| . |n4| and we use the equation on u4;

• (1, 4) or (2, 4) only pairing: |n| . |n5| and we use the equation on u5;

• Two pairings: use the equation on u3.

If (n1, n2, n4) ∈ XB2
(n0):

|n3| � |n1| � |n0| ∼ |n2| . |n5| ≤ |n4|,

with possible pairings (2, 4), (2, 5). We proceed as follows:

• (2, 4) is a pairing: |n| . |n5| and use the equation on u5;

• (2, 5) is a pairing: |n| . |n4| and use the equation on u4.

• DNRB
(
w1, ϕT ·GA[w2, u3, u4], u5

)
: If (n1, n0, n5) ∈ XB1

(n):

|n5| � |n| . |n0| ∼ |n1| ∼ |n2|,
|n4| ≤ |n3| � |n0|,

with pairings (1, 2), (3, 5), (4, 5). We proceed as follows:

• (1, 2) not a pairing: |n| . |n1| and we use Proposition 3.5.7 with w1 ∈ Zs0 ;

• (1, 2) only pairing: |n| . |n3| and use the equation on u3;

• (1, 2), (3, 5) pairings: n = n4 and use the equation on u4;

• (1, 2), (4, 5) pairings: n = n3 and use the equation on u3.

If (n1, n0, n5) ∈ XB2
(n):

|n5| � |n1| � |n0| ∼ |n2| ∼ |n|,
|n4| ≤ |n3| � |n0|,

with pairings (1, 3), (1, 4), (3, 5), (4, 5). Since |n| ∼ |n2| and n2 is not in a pairing, we can use
Proposition 3.5.7 with w2 ∈ Zs0 .

• DNRB
(
w1, ϕT ·GB [w2, w3, u4], u5

)
: If (n1, n0, n5), (n2, n3, n4) ∈ XB1

(n):

|n5| � |n| . |n0| ∼ |n1| . |n2| ∼ |n3|,
|n4| � |n0|,

with possible pairings (1, 2), (1, 3), (4, 5). Since |n| . |n1| ∼ |n2| ∼ |n3| and n1, n2, n3 are not all
in a pairing at the same time, we apply Proposition 3.5.7 with the term in {w1, w2, w3} which
is not in a pairing placed in Zs0 . If (n1, n0, n5) ∈ XB1

(n), (n2, n3, n4) ∈ XB2
(n0):

|n5| � |n| . |n0| ∼ |n1| ∼ |n3|,
|n4| � |n2| � |n0|,

with possible pairings (1, 3), (2, 4), (2, 5). We proceed as follows:

• (1, 3) not a pairing: |n| . |n1| and we use Proposition 3.5.7 with w1 ∈ Zs0 ;

• (1, 3) is a pairing but not (2, 5): |n| . |n2| and we use Proposition 3.5.7 with w2 ∈ Zs0 ;

• If (1, 3), (2, 5) pairings: n = n4 and we use the equation on u4.

If (n1, n0, n5) ∈ XB2(n), (n2, n3, n4) ∈ XB1(n0):

|n5| � |n1| � |n| ∼ |n0| . |n2| ∼ |n3|,
|n4| � |n|,

122



with possible pairings (1, 2), (1, 3), (4, 5). Since n2, n3 are not in a pairing at the same time and
|n| ∼ |n2| ∼ |n3|, we can apply Proposition 3.5.7 with w2 or w3 in Zs0 .

If (n1, n0, n5) ∈ XB2
(n), (n2, n3, n4) ∈ XB2

(n0):

|n5| � |n1| � |n0| ∼ |n3| ∼ |n|,
|n4| � |n2| � |n0|,

with possible pairings (1, 2), (1, 4), (2, 5), (4, 5). Since |n| ∼ |n3| and n3 is never in a pairing, we
apply Proposition 3.5.7 with w3 ∈ Zs0 .

• DNRC
(
w1, ϕT ·GA[w2, u3, u4], u5

)
: We have the following assumptions:

|n| . |n5| � |n0| ∼ |n1| ∼ |n2|,
|n4| ≤ |n3| � |n0|,

with possible pairings (1, 2), (3, 5), (4, 5). We proceed as follows:

• (1, 2) not a pairing: |n| . |n1| and we use Proposition 3.5.7 with w1 ∈ Zs0 ;

• (1, 2) only pairing: |n| . |n5| and we use the equation on u5;

• (1, 2), (3, 5) pairings: n = n4 and we use the equation on u4;

• (1, 2), (4, 5) pairings: n = n3 and we use the equation on u3.

• DNRC
(
w1, ϕT ·GB [w2, w3, u4], u5

)
: If (n2, n3, n4) ∈ XB1

(n0):

|n| . |n5| � |n0| ∼ |n1| . |n2| ∼ |n3|,
|n4| � |n0|,

with possible pairings (1, 2), (1, 3), (4, 5). We proceed as follows:

• (1, 2) and (1, 3) are not pairings: |n| . |n1| and we use Proposition 3.5.7 with w1 ∈ Zs0 ;

• (1, 2) is a pairing: |n| . |n3| and we use Proposition 3.5.7 with w3 ∈ Zs0 ;

• (1, 3) is a pairing: |n| . |n2| and we use Proposition 3.5.7 with w2 ∈ Zs0 .

If (n2, n3, n4) ∈ XB2
(n0):

|n| . |n5| � |n0| ∼ |n1| ∼ |n3|,
|n4| � |n2| � |n0|,

with possible pairings (1, 3), (2, 5), (4, 5). We proceed as follows:

• (1, 3) not a pairing: |n| . |n1| and use Proposition 3.5.7 with w1 ∈ Zs0 ;

• (1, 3) pairing but not (2, 5): |n| . |n2| and we can use Proposition 3.5.7 with w2 ∈ Zs0 ;

• (1, 3), (2, 5) are pairings: n = n4 and we use the equation on u4.

• DNRD
(
w1, ϕT ·GA[w2, u3, u4], u5

)
: We have the following:

|n1| . |n5| ≤ |n0| ∼ |n2|,
|n4| ≤ |n3| � |n0|,

with possible pairings (1, 2), (1, 3), (1, 4), (2, 5), (3, 5), (4, 5) We proceed as follows:

• (1, 2) and (2, 5) not pairings: |n| . |n2| and use Proposition 3.5.7 with w2 ∈ Zs0 ;

• (1, 2) is a pairing but not (2, 5): |n| . |n1| = |n5| = |n0| = |n2| � |n3| ≥ |n4|, so n5 is not
in a pairing and we use the equation on u5;

123



• (2, 5) only pairing: |n| . |n1| use Proposition 3.5.7 with w1 ∈ Zs0 ;

• (2, 5), (1, 3) pairings: n = n4 and use the equation on u4;

• (2, 5), (1, 4) pairings: n = n3 and use the equation on u3.

• DNRD
(
w1, ϕT ·GB [w2, w3, u4], u5

)
: If (n2, n3, n4) ∈ XB1(n0):

|n1| . |n5| ≤ |n0| . |n2| ∼ |n3|,
|n4| � |n0|,

with possible pairings (1, 2), (1, 3), (1, 4), (2, 5), (3, 5), (4, 5). We proceed as follows:

• (1, 2) and (2, 5) not pairings: |n| . |n2| and use Proposition 3.5.7 with w2 ∈ Zs0 ;

• (1, 3) and (3, 5) not pairings: |n| . |n3| and use Proposition 3.5.7 with w3 ∈ Zs0 ;

• (1, 2), (3, 5) or (1, 3), (2, 5) pairings: n = n4 and use the equation on u4.

If (n2, n3, n4) ∈ XB2
(n0):

|n1| . |n5| ≤ |n0| ∼ |n3|,
|n4| � |n2| � |n0|,

with possible pairings (1, 2), (1, 3), (1, 4), (2, 5), (3, 5), (4, 5). We proceed as follows:

• (1, 3) and (3, 5) not pairings: |n| . |n3| and use Proposition 3.5.7 with w3 ∈ Zs0 ;

• (1, 3) pairing but not (4, 5), (1, 4): |n| . |n2| and use Proposition 3.5.7 with w2 ∈ Zs0 ;

• (1, 3), (4, 5) or (3, 5), (1, 4) pairings: n = n2 and use Proposition 3.5.7 with w2 ∈ Zs0 ;

• (3, 5) pairing but not (2, 5), (1, 2): |n| . max(|n1|, |n2|) and use Proposition 3.5.7 with w1

or w2 in Zs0 ;

• (1, 3), (2, 5) or (3, 5), (1, 2) pairings: n = n4 and use the equation on u4.

• DNRD
(
w1, w2, ϕT ·GA[w3, u4, u5]

)
: We have the following:

|n1| . |n0| ∼ |n3| ≤ |n2|,
|n5| ≤ |n4| � |n0|

with possible pairings (1, 3), (1, 4), (1, 5), (2, 3). We proceed as follows:

• (2, 3) not a pairing: |n| . |n2| and use Proposition 3.5.7 with w2 ∈ Zs0 ;

• (2, 3) only pairing: |n| . |n1| and use Proposition 3.5.7 with w1 ∈ Zs0 ;

• (2, 3), (1, 4) pairings: n = n5 and use the equation on u5;

• (1, 5), (2, 3) pairings: n = n4 and use the equation on u4.

• DNRD
(
w1, w2, ϕT ·GB [w3, w4, u5]

)
: If (n3, n4, n5) ∈ XB1

(n0):

|n1| . |n0| ≤ |n2|,
|n5| � |n0| . |n3| ∼ |n4|,

with possible pairings (1, 3), (1, 4), (1, 5), (2, 3), (2, 4). We proceed as follows:

• (2, 3) and (2, 4) not pairings: |n| . |n2| and use Proposition 3.5.7 with w2 ∈ Zs0 ;

• (2, 3) pairing but not (1, 4): |n| . |n4| and use Proposition 3.5.7 with w4 ∈ Zs0 ;
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• (2, 4) pairing but not (1, 3): |n| . |n3| and use Proposition 3.5.7 with w3 ∈ Zs0 ;

• (2, 3), (1, 4) or (2, 4), (1, 3) pairings: n = n5 and use the equation on u5;

If (n3, n4, n5) ∈ XB2
(n0):

|n1| . |n0| ∼ |n4| ≤ |n2|,
|n5| � |n3| � |n0|,

with possible pairings (1, 4), (1, 3), (1, 5), (2, 4). We proceed as follows:

• (2, 4) not a pairing: |n| . |n2| and use Proposition 3.5.7 with w2 ∈ Zs0 ;

• (2, 4) pairing but not (1, 3): |n| . |n1| and use Proposition 3.5.7 with w1 ∈ Zs0 ;

• (1, 3), (2, 4) pairings: n = n5 and use the equation on u5.

A.4 Remaining quintic terms

It remains to consider the terms in (3.31). Looking at the terms in (3.38), we want to determine
the frequency regions where we can apply the standard quintic estimate (Proposition 3.5.7) or
Propositions 3.5.10 or 3.5.11.

We start by considering the terms on the right-hand side of the inequalities in (3.38)
with α1, α2. Note that for ∗,# ∈ {A,B}, we have

α1(n, n1, . . . , n5) =

max
j=1,...,5

〈nj〉9θ|n1n2|

〈φ(n105〉〈φ(n234)〉
.

max
j=1,...,5

〈nj〉9θ

〈n1〉 max
j=2,3,4

〈nj〉
, n105 ∈ XA(n), n234 ∈ X#(n0),

α2(n, n1, . . . , n5) =

max
j=1,...,5

〈nj〉9θ|n1n3|

〈φ(n120〉〈φ(n345)〉
.

max
j=1,...,5

〈nj〉9θ

max
j=1,2

〈nj〉 max
k=3,4,5

〈nk〉
, n120 ∈ X∗(n), n345 ∈ X#(n0),

due to the lower bounds on the phase functions. Consequently, we can apply Proposition 3.5.11.

Now, we consider the terms on the right-hand side of the inequalities in (3.38) with β1, β2, β3.

• B2
A

(
w1, ϕT ·GA[w2, u3, u4], u5

)
: In this case, we have that

|n4| ≤ |n3| � |n2| ∼ |n0| � |n1| ∼ |n|,

which implies that β1(n, n1, . . . , n5) . 〈n2〉9θ. Since n1 is not in a pairing, we can apply
Proposition 3.5.7 with w1 ∈ Zs0 .

• B2
A

(
w1, ϕT ·GB [w2, w3, u4], u5

)
: In this case, we have that

β1(n, n1, . . . , n5) .
max

j=1,...,5
〈nj〉9θ|n2|

|n1|
,

|n| ∼ |n1| � |n0| ≥ |n5| and |n3| ∼ max(|n0|, |n2|) ≥ min(|n0|, |n2|) � |n4|. We consider the
following cases:

• |n1| ∼ |n2|: then we have |n4| � |n0| � |n1| ∼ |n2| ∼ |n3| ∼ |n| and |n5| ≤ |n0|, so

β1(n, n1, . . . , n5) . 〈n1〉9θ ∼ 〈n2〉9θ ∼ 〈n3〉9θ. Since n1, n2, n3 cannot all be in pairings at
the same time, we can apply Proposition 3.5.7 with wj ∈ Zs0 , for some j ∈ {1, 2, 3}.

• |n1| � |n2|: since β1(n, n1, . . . , n5) . 〈n2〉9θ and n1 is never in a pairing, we use Proposi-
tion 3.5.7 with w1 ∈ Zs0 .

• |n1| � |n2|: we have |n5| ≤ |n0|, |n4| � |n0| � |n| ∼ |n1| � |n2| ∼ |n3|, (2, 3) is not a

pairing, β1(n, n1, . . . , n5) . |n2|1+9θ

|n1| , and we can use Proposition 3.5.10 with w2 ∈ Zs0 and

w1, w3 ∈ Z
1
2
0 .
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• B3
A

(
w1, u2, ϕT ·GA[w3, u4, u5]

)
: In this case, we have that

|n5| ≤ |n4| � |n3| ∼ |n0| ≤ |n2| � |n1| ∼ |n|,

which implies that β2(n, n1, . . . , n5) . 〈n3〉9θ. Since n1 is not in a pairing, we can apply
Proposition 3.5.7 with w1 ∈ Zs0 .

• B3
A

(
w1, u2, ϕT ·GB [w3, w4, u5]

)
: In this case, we have that

β2(n, n1, . . . , n5) .
max

j=1,...,5
〈nj〉9θ|n3|

|n1|
,

|n| ∼ |n1| � |n2| ≥ |n0| and |n4| ∼ max(|n0|, |n3|) ≥ min(|n0|, |n3|) � |n5|. We consider the
following cases:

• |n1| ∼ |n3|: we must have |n1| ∼ |n3| ∼ |n4| � |n0| � |n5| and β2(n, n1, . . . , n5) .

〈n1〉9θ ∼ 〈n3〉9θ ∼ 〈n4〉9θ. Since the possible pairings are (1, 3), (1, 4), (2, 5), there is
always one function in u1, u3, u4 which is not in a pairing and we can use Proposition 3.5.7
with wj ∈ Zs0 for j ∈ {1, 3, 4}.

• |n1| � |n3|: then |n1| ∼ |n| � |n4| & |n3| and β2(n, n1, . . . , n5) . 〈n3〉9θ. Since n1 is
never in a pairing, we can use Proposition 3.5.7 with w1 ∈ Zs0 .

• |n1| � |n3|: we have |n3| ∼ |n4| � |n1| ∼ |n| � |n2| ≥ |n0| � |n5|, (3, 4) is not a

pairing, β2(n, n1, . . . , n5) . |n3|1+9θ

|n1| , and we can use Proposition 3.5.10 with w3 ∈ Zs0 and

w1, w4 ∈ Z
1
2
0 .

• B3
B

(
w1, w2, ϕT ·GA[w3, w4, u5]

)
: In this case, we have

|n5| ≤ |n4| � |n3| ∼ |n0| � min(|n|, |n1|) ≤ max(|n|, |n1|) ∼ |n2|,

and β2(n, n1, . . . , n5) . 〈n3〉9θ. Since n2 is never in a pairing, we can apply Proposition 3.5.7
with w2 ∈ Zs0 .

• B3
B

(
w1, w2, ϕT ·GB [w3, w4, u5]

)
: In this case, we have

β2(n, n1, . . . , n5) .
max

j=1,...,5
〈nj〉9θ|n3|

max(|n1|, |n2|)
,

|n2| ∼ max(|n|, |n1|) ≥ min(|n|, |n1|)� |n0| and |n4| ∼ max(|n0|, |n3|) ≥ min(|n0|, |n3|)� |n5|.

• |n4| ∼ |n3| ∼ |n0| � |n5| or |n4| ∼ |n0| � |n3| � |n5|: then β2(n, n1, . . . , n5) . 〈n3〉9θ and
since n1 is not in a pairing, we can use Proposition 3.5.7 with w1 ∈ Zs0 .

• |n1| ∼ |n2| & |n| � |n0| and |n3| ∼ |n4| � |n0| � |n5|:

– |n2| ∼ |n3|: then β2(n, n1, . . . , n5) . 〈n1〉9θ ∼ 〈n2〉9θ ∼ 〈n3〉9θ ∼ 〈n4〉9θ, with possi-
ble pairings (1, 3), (1, 4), (2, 3), (2, 4). We cannot have |n| = |n5| under these assump-
tions, thus we cannot have two pairings. Consequently, we can use Proposition 3.5.7
with wj ∈ Zs0 for some j ∈ {1, 2, 3, 4}.

– |n2| � |n3|: then β2(n, n1, . . . , n5) . 〈n1〉9θ ∼ 〈n2〉9θ and n1, n2 are not in any
pairings, so apply Proposition 3.5.7 with w2 ∈ Zs0 .

– |n2| � |n3|: then |n3| ∼ |n4| � |n2| & |n|, (3, 4) is not a pairing, and

β2(n, n1, . . . , n5) . |n3|1+9θ

|n2| . Thus, we can apply Proposition 3.5.11 with w3 ∈ Zs0
and w2, w4 ∈ Z

1
2
0 .
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• DNRC
(
w1, w2, ϕT ·GA[w3, u4, u5]

)
: In this case, we have that

|n| . |n3| ∼ |n0| � |n1| ∼ |n2|,
|n5| ≤ |n4| � |n3|,

and β3(n, n1, . . . , n5) . |n1|
|n3| . Since (1, 2) is not a pairing, we can apply Proposition 3.5.10 with

w1 ∈ Zs0 and w2, w3 ∈ Z
1
2
0 .

• DNRC
(
w1, w2, ϕT ·GB [w3, w4, u5]

)
: In this case, we have that

β3(n, n1, . . . , n5) .
max

j=1,...,5
〈nj〉9θ|n1|

max(|n3|, |n4|)
,

|n1| ∼ |n2| � |n0| & |n| and |n4| ∼ max(|n0|, |n3|) ≥ min(|n0|, |n3|)� |n5|.

• |n0| ∼ |n4| � |n1| ∼ |n2|: then β3(n, n1, . . . , n5) . |n1|
|n4| . Since (1, 2) is not a pairing, we

can use Proposition 3.5.10 with w1 ∈ Zs0 and w2, w4 ∈ Z
1
2
0 .

• |n5| � |n0| � |n3| ∼ |n4|: if |n3| & |n1|, then β3(n, n1, . . . , n5) . 1 and n3 is not in a
pairing, so we can apply Proposition 3.5.7 with w3 ∈ Zs0 . Otherwise |n3| � |n1| which

implies |n| . |n3| � |n2| ∼ |n1|. Since β3(n, n1, . . . , n5) . |n1|
|n3| and (1, 2) is not a pairing,

we can apply Proposition 3.5.10 with w1 ∈ Zs0 and w2, w3 ∈ Z
1
2
0 .
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