DERIVED AUTOMORPHISM GROUPS OF K3 SURFACES OF PICARD RANK 1

ARENDBAYERANDTOM BRIDGELAND

We dedicate this paper to Professor Mukai on the occasion of his 60th birthday.

Abstract. We give a complete description of the group of exact autoequivalences of the bounded derived category of coherent sheaves on a K3 surface of Picard rank 1. We do this by proving that a distinguished connected component of the space of stability conditions is preserved by all autoequivalences, and is contractible.

Contents
1. Introduction 1
2. Preliminaries 6
3. Walls and chambers 14
4. Flow 21
5. Avoiding holes 26
6. Conclusion of the proof 30
7. Relation with mirror symmetry 33
Appendix A. Calabi-Yau autoequivalences 36
References 37

1. Introduction

Let X be a smooth complex projective variety. We denote by $D(X) = D^b \text{Coh}(X)$ the bounded derived category of coherent sheaves on X, and by $\text{Aut} D(X)$ the group of triangulated, \mathbb{C}-linear autoequivalences of $D(X)$, considered up to isomorphism of functors. There is a subgroup

$$\text{Aut}_{\text{st}} D(X) \cong \text{Aut} X \ltimes \text{Pic}(X) \times \mathbb{Z}$$

of $\text{Aut} D(X)$ whose elements are called standard autoequivalences: it is the subgroup generated by the operations of pulling back by automorphisms of X and tensoring by line bundles, together with the shift functor.

The problem of computing the full group $\text{Aut} D(X)$ is usually rather difficult. Bondal and Orlov proved that when the canonical bundle ω_X or its inverse is ample, all autoequivalences are standard: $\text{Aut} D(X) = \text{Aut}_{\text{st}} D(X)$. The group $\text{Aut} D(X)$ is also known explicitly when X is an abelian variety, due to work of Orlov [Orl02].
Broomhead and Ploog [BP10] treated many rational surfaces (including most toric surfaces). However, no other examples are known to date.

The aim of this paper is to determine the group $\text{Aut} D(X)$ in the case when X is a K3 surface of Picard rank 1.

Mukai lattice. For the rest of the paper X will denote a complex algebraic K3 surface. In analogy to the strong Torelli theorem, which describes the group $\text{Aut} X$ via its action on $H^2(X)$, one naturally starts studying $D(X)$ via its action on cohomology. We will briefly review the relevant results, see [Huy06, Section 10] for more details.

The cohomology group $H^*(X, \mathbb{Z}) = H^0(X, \mathbb{Z}) \oplus H^2(X, \mathbb{Z}) \oplus H^4(X, \mathbb{Z})$, comes equipped with a polarized weight two Hodge structure, whose algebraic part is given by $\mathcal{N}(X) = H^0(X, \mathbb{Z}) \oplus \text{NS}(X) \oplus H^4(X, \mathbb{Z})$, $\text{NS}(X) = H^2(X, \mathbb{Z}) \cap H^{1,1}(X, \mathbb{C})$, and whose polarization is given by the Mukai symmetric form $\langle (r_1, D_1, s_1), (r_2, D_2, s_2) \rangle = D_1 \cdot D_2 - r_1 s_2 - r_2 s_1$.

The lattice $H^*(X, \mathbb{Z})$ has signature $(4, 20)$, and the subgroup $\mathcal{N}(X)$ has signature $(2, \rho(X))$, where the Picard rank $\rho(X)$ is the rank of the Néron-Severi lattice $\text{NS}(X)$.

Any object of $D(X)$ has a Mukai vector $v(E) = \text{ch}(E)\sqrt{\text{td}X} \in \mathcal{N}(X)$, and Riemann-Roch takes the form

$$\chi(E, F) = \sum_{i \in \mathbb{Z}} (-1)^i \dim_{\mathbb{C}} \text{Hom}^i_X(E, F) = -(v(E), v(F)).$$

Since any autoequivalence is of Fourier-Mukai type, the Mukai vector of its kernel induces a correspondence; its action on cohomology preserves the Hodge filtration, the integral structure and the Mukai pairing. We thus get a map

$$\varpi: \text{Aut} D(X) \longrightarrow \text{Aut} H^*(X)$$

to the group of Hodge isometries.

The group $\text{Aut} H^*(X)$ contains an index 2 subgroup $\text{Aut}^+ H^*(X)$ of Hodge isometries preserving the orientation of positive definite 4-planes. Classical results due to Mukai and Orlov ([Muk87, Orl97]) imply that the image of ϖ contains $\text{Aut}^+ H^*(X)$, see [HLOY04, Plo05]. A much more difficult recent result due to Huybrechts, Macrì and Stellari [HMS09] is that the image of ϖ is contained in (and hence equal to) $\text{Aut}^+ H^*(X)$. Our results in this paper give an alternative, very different proof of this fact in the case when X has Picard rank 1.

To determine the group $\text{Aut} D(X)$ it thus remains to study the kernel of ϖ, which we will denote by $\text{Aut}^0 D(X)$. This group is highly non-trivial due to the existence
of spherical twist functors. Recall that an object $S \in D(X)$ is called spherical if

$$\text{Hom}_{D(X)}(S, S[i]) = \begin{cases} \mathbb{C} & \text{if } i \in \{0, 2\}, \\ 0 & \text{otherwise.} \end{cases}$$

Associated to any such object there is a corresponding reflection functor $\text{Tw}_S \in \text{Aut} D(X)$, which appeared implicitly already in [Muk87], and which was studied in detail (and generalized) in [ST01]. The functor Tw_S acts on cohomology by a reflection in the hyperplane orthogonal to $v(S)$, and hence its square Tw_S^2 defines an element of the group $\text{Aut}^0 D(X)$.

Stability conditions. Following the approach introduced by the second author in [Bri08], we study $\text{Aut}^0 D(X)$ using a second group action, namely its action on the space of stability conditions.

We denote by $\text{Stab}(X)$ the space of (full, locally-finite) numerical stability conditions (Z, P) on $D(X)$. This is a finite-dimensional complex manifold with a faithful action of the group $\text{Aut} D(X)$. The central charge of a numerical stability condition takes the form

$$Z(-) = (\Omega, v(-)) : K(D) \to \mathbb{C}$$

for some $\Omega \in \mathcal{N}(X) \otimes \mathbb{C}$, and the induced forgetful map $\text{Stab}(X) \to \mathcal{N}(X) \otimes \mathbb{C}$ is a local homeomorphism by [Bri07].

Let $\text{Stab}^\dagger(X) \subset \text{Stab}(X)$ be the connected component containing the set of geometric stability conditions, for which all skyscraper sheaves O_x are stable of the same phase. The main result of [Bri08] is a description of this connected component, which we now review.

Recall that $\mathcal{N}(X)$ has signature $(2, \rho(X))$. Define the open subset

$$\mathcal{P}(X) \subset \mathcal{N}(X) \otimes \mathbb{C}$$

consisting of vectors $\Omega \in \mathcal{N}(X) \otimes \mathbb{C}$ whose real and imaginary parts span a positive definite 2-plane in $\mathcal{N}(X) \otimes \mathbb{R}$. This subset has two connected components, distinguished by the orientation induced on this 2-plane; let $\mathcal{P}^+(X)$ to be the component containing vectors of the form $(1, i\omega, -\frac{1}{2}\omega^2)$ for an ample class $\omega \in NS(X) \otimes \mathbb{R}$. Consider the root system

$$\Delta(X) = \{ \delta \in \mathcal{N}(X) : (\delta, \delta) = -2 \},$$

and the corresponding hyperplane complement

$$\mathcal{P}_{\text{st}}^+(X) = \mathcal{P}^+(X) \setminus \bigcup_{\delta \in \Delta(X)} \delta^\perp.$$

We note that $\Delta(X)$ is precisely the set of Mukai vectors of spherical objects in $D(X)$.
Theorem 1.1 ([Bri08, Theorem 1.1]). The forgetful map sending a stability condition to the associated vector $\Omega \in \mathcal{N}(X) \otimes \mathbb{C}$ induces a covering map

$$\pi : \text{Stab}^\dagger(X) \rightarrow \mathcal{P}_0^+(X),$$

The covering is normal, and the group of deck transformations can be identified with the subgroup of Aut$^0 D(X)$ which preserves the connected component Stab$^\dagger(X)$.

The Galois correspondence for the normal covering π then gives a map

$$\pi_1 \mathcal{P}_0^+(X) \rightarrow \text{Aut}^0 D(X),$$

which is injective if and only if Stab$^\dagger(X)$ is simply-connected, and surjective if and only if Stab$^\dagger(X)$ is preserved by Aut$^0 D(X)$. This suggests the following conjecture of the second author:

Conjecture 1.2 ([Bri08, Conjecture 1.2]). The group Aut$^0 D(X)$ preserves the connected component Stab$^\dagger(X)$. Moreover, Stab$^\dagger(X)$ is simply-connected. Hence there is a short exact sequence of groups

$$1 \rightarrow \pi_1 \mathcal{P}_0^+(X) \rightarrow \text{Aut}^0 D(X) \overset{\varpi}{\rightarrow} \text{Aut}^+ H^* \rightarrow 1.$$

Let us write Stab$^\ast(X) \subset \text{Stab}(X)$ to denote the union of those connected components which are images of Stab$^\dagger(X)$ under an autoequivalence of $D(X)$. The content of Conjecture 1.2 is then that the space Stab$^\ast(X)$ should be connected and simply-connected.

Main result. The main result of this paper is the following:

Theorem 1.3. Assume that X has Picard rank $\rho(X) = 1$. Then Stab$^\ast(X)$ is contractible. In particular, Conjecture 1.2 holds in this case.

As has been observed previously by Kawatani [Kaw12, Theorem 1.3], when combined with a description of the fundamental group of $\mathcal{P}_0^+(X)$, Theorem 1.3 implies:

Theorem 1.4. Assume that X has Picard rank $\rho(X) = 1$. Then the group Aut$^0 D(X)$ is the product of \mathbb{Z} (acting by even shifts) with the free group generated by the autoequivalences Tw^2_μ for all spherical vector bundles S.

As we will explain in Section 2, the assumption $\rho(X) = 1$ implies that any spherical coherent sheaf S on X is necessarily a μ-stable vector bundle.

To prove Theorem 1.3, we start with the observation that the set of geometric stability conditions is contractible (this easily follows from the results in [Bri08, Section 10–11]). Now pick a point $x \in X$, and consider the width

$$w_{\mathcal{O}_x}(\sigma) = \phi^+(\mathcal{O}_x) - \phi^-(\mathcal{O}_x),$$

where $\phi^\pm(\mathcal{O}_x)$ is the maximal and minimal phase appearing in the Harder-Narasimhan filtration of \mathcal{O}_x; this defines a continuous function

$$w_{\mathcal{O}_x} : \text{Stab}^\ast(X) \rightarrow \mathbb{R}_{\geq 0}.$$
We then construct a flow on $\text{Stab}^\ast(X)$ which decreases $w_{\mathcal{O}_x}$, and use it to contract $\text{Stab}^\ast(X)$ onto the subset $w_{\mathcal{O}_x}^{-1}(0)$ of geometric stability conditions.

Remarks 1.5.
(a) We do not currently know how to generalize our methods to higher Picard rank. Note that in the general case it is not known whether the universal cover of $P^+_0(X)$ is contractible, although this statement is implied by a special case of a conjecture of Allcock, see [All11, Conjecture 7.1].
(b) Many of the questions relevant to this article were first raised in [Sze01].
(c) There are various examples of derived categories of non-projective manifolds Y for which it has been shown that a distinguished connected component of the space $\text{Stab}(Y)$ is simply-connected, see [IUU10, BT11, BM11, Qiu11, Sut13]. In each of these cases, the authors used the faithfulness of a specific group action on $D(Y)$ to deduce simply-connectedness of (a component of) $\text{Stab}(Y)$, whereas our logic runs in the opposite direction: a geometric proof of simply-connectedness implies the faithfulness of a group action.

Relation to mirror symmetry. We will briefly explain the relation of Conjecture 1.2 to mirror symmetry; the details can be found in Section 7. The reader is also referred to [Bri09] for more details on this. The basic point is that the group of autoequivalences of $D(X)$ as a Calabi-Yau category coincides with the fundamental group of a mirror family of K3 surfaces.

A stability condition $\sigma \in \text{Stab}^\ast(X)$ will be called reduced if the corresponding vector $\Omega \in \mathcal{N}(X) \otimes \mathbb{C}$ satisfies $(\Omega, \Omega) = 0$. This condition defines a complex submanifold

$$\text{Stab}^\ast_{\text{red}}(X) \subset \text{Stab}^\ast(X).$$

As explained in [Bri09], this is the first example of Hodge-theoretic conditions on stability conditions: it is not known how such a submanifold should be defined for higher-dimensional Calabi-Yau categories.

Define a subgroup

$$\text{Aut}_{\text{CY}}^+ H^\ast(X) \subset \text{Aut}^+ H^\ast(X)$$

consisting of Hodge isometries whose complexification acts trivially on the complex line $H^{2,0}(X, \mathbb{C})$, and let

$$\text{Aut}_{\text{CY}} D(X) \subset \text{Aut} D(X)$$

denote the subgroup of autoequivalences Φ for which $\varpi(\Phi)$ lies in $\text{Aut}_{\text{CY}}^+ H^\ast(X)$. Such autoequivalences are usually called symplectic, but we prefer the term Calabi-Yau since, as we explain in the Appendix, this condition is equivalent to the statement that Φ preserves all Serre duality pairings

$$\text{Hom}_X(E, F) \times \text{Hom}_X^{2-i}(F, E) \longrightarrow \mathbb{C}.$$

Let us now consider the quotient stack

$$\mathcal{L}_{\text{Kah}}(X) = \text{Stab}^\ast_{\text{red}}(X)/ \text{Aut}_{\text{CY}}(X).$$
There is a free action of the group \mathbb{C} on $\text{Stab}^*(X)$, given by rotating the central charge Z and adjusting the phases of stable objects in the obvious way. The action of $2n \in \mathbb{Z} \subset \mathbb{C}$ coincides with the action of the shift functor $[2n] \in \text{Aut}_{\text{CY}} D(X)$. In this way we obtain an action of $\mathbb{C}^* = \mathbb{C}/2\mathbb{Z}$ on the space $\mathcal{L}_{\text{Kah}}(X)$, and we can also consider the quotient

$$\mathcal{M}_{\text{Kah}}(X) = \mathcal{L}_{\text{Kah}}(X)/\mathbb{C}^*.$$

We view this complex orbifold as a mathematical version of the stringy Kähler moduli space of the K3 surface X.

Using Theorem 1.1 one easily deduces the following more concrete description for this orbifold. Define period domains

$$\Omega^\pm(X) = \{ \Omega \in \mathbb{P}(\mathcal{N}(X) \otimes \mathbb{C}) : (\Omega, \Omega) = 0, (\Omega, \overline{\Omega}) > 0 \},$$

$$\Omega^\pm_0(X) = \Omega^\pm(X) \setminus \bigcup_{\delta \in \Delta(X)} \delta^\perp,$$

and let $\Omega^+_0(X) \subset \Omega_0(X)$ be the connected component containing classes $(1, i\omega, \frac{1}{2} \omega^2)$ for $\omega \in \text{NS}(X)$ ample. Then there is an identification

$$\mathcal{M}_{\text{Kah}}(X) = \Omega^+_0(X)/\text{Aut}_{\text{CY}} H^*(X).$$

The mirror phenomenon in this context is the fact that this orbifold also arises as the base of a family of lattice-polarized K3 surfaces. More precisely, under mild assumptions (which always hold when X has Picard number $\rho(X) = 1$), the stack $\mathcal{M}_{\text{Kah}}(X)$ can be identified with the base of Dolgachev’s family of lattice-polarized K3 surfaces mirror to X [Dol96].

Conjecture 1.2 is equivalent to the statement that the natural map

$$\pi_1^{\text{orb}}(\mathcal{M}_{\text{Kah}}(X)) \longrightarrow \text{Aut}_{\text{CY}} D(X)/[2]$$

is an isomorphism. Our verification of this Conjecture in the case $\rho(X) = 1$ thus gives a precise incarnation of Kontsevich’s general principle that the group of derived autoequivalences of a Calabi-Yau variety should be related to the fundamental group of the base of the mirror family.

Acknowledgements. Thanks to Chris Brav, Heinrich Hartmann, Daniel Huybrechts, Ludmil Katzarkov, Kotaro Kawatani and Emanuele Macrì for useful discussions. Special thanks are due to Daniel Huybrechts for persistently encouraging us to work on this problem.

It is a pleasure to dedicate this article to Professor Mukai on the occasion of his 60th birthday. The intellectual debt this article owes to his work, starting with [Muk87], can’t be overstated.

2. Preliminaries

Let X be a complex algebraic K3 surface.
Stability conditions. Recall that a numerical stability condition σ on X is a pair (Z, \mathcal{P}) where $Z: \mathcal{N}(X) \to \mathbb{C}$ is a group homomorphism, and

$$\mathcal{P} = \bigcup_{\phi \in \mathbb{R}} \mathcal{P}(\phi) \subset D(X)$$

is a full subcategory. The homomorphism Z is called the central charge, and the objects of the subcategory $\mathcal{P}(\phi)$ are said to be semistable of phase ϕ. We refer to [Bri07] and [Bri08, Section 2] for a complete definition. Any object $E \in D(X)$ admits a unique Harder-Narasimhan (HN) filtration

$$0 = E_0 \rightarrow E_1 \rightarrow E_2 \rightarrow \cdots \rightarrow E_{n-1} \rightarrow E_n = E$$

with $A_i \in \mathcal{P}(\phi_i)$ semistable, and $\phi_1 > \phi_2 > \cdots > \phi_n$. We refer to the objects A_i as the semistable factors of E. We write $\phi_+(E) = \phi_1$ and $\phi_-(E) = \phi_n$ for the maximal and minimal phase appearing in the HN filtration respectively.

Using the non-degenerate Mukai pairing on $\mathcal{N}(X)$ we can write the central charge in the form

$$Z(\cdot) = (\Omega, v(\cdot)) : \mathcal{N}(X) \to \mathbb{C}$$

for some uniquely defined $\Omega \in \mathcal{N}(X) \otimes \mathbb{C}$. Fix a norm $\| \cdot \|$ on the finite-dimensional vector space $\mathcal{N}(X) \otimes \mathbb{R}$. A numerical stability condition $\sigma = (Z, \mathcal{P})$ is said to satisfy the support condition [KS08] if there is a constant $K > 0$ such that for any semistable object $E \in \mathcal{P}(\phi)$ there is an inequality

$$|Z(E)| \geq K \cdot \|E\|.$$

As shown in [BM11, Proposition B.4], this is equivalent to the condition that σ be locally-finite [Bri07, Defn. 5.7] and full [Bri08, Defn. 4.2].

If the stability condition $\sigma = (Z, \mathcal{P})$ is locally-finite, each subcategory $\mathcal{P}(\phi)$ is a finite length abelian category; the simple objects of $\mathcal{P}(\phi)$ are said to be stable of phase ϕ. Each semistable factor A_i of a given object $E \in D(X)$ has a Jordan-Hölder filtration in $\mathcal{P}(\phi_i)$. Putting these together gives a (non-unique) filtration of E whose factors S_j are stable, with phases taken from the set $\{\phi_1, \cdots, \phi_n\}$. These objects S_j are uniquely determined by E (up to reordering and isomorphism); we refer to them as the stable factors of E.

We let $\text{Stab}(X)$ denote the set of all numerical stability conditions on $D(X)$ satisfying the support condition. This set has a natural topology induced by a (generalized) metric $d(\cdot, \cdot)$. We refer to [Bri07, Proposition 8.1] for the full definition, and simply list the following properties:

(a) For any object $E \in D(X)$, the functions $\phi^\pm(E) : \text{Stab}(X) \to \mathbb{R}$ are continuous.
(b) Take $0 < \epsilon < 1$ and consider two stability conditions $\sigma_i = (P_i, Z_i)$ such that $d(\sigma_1, \sigma_2) < \epsilon$. Then if an object $E \in D(X)$ is semistable in one of the stability conditions σ_i, the arguments of the complex numbers $Z_i(E)$ differ by at most $\pi \epsilon$.

(c) The forgetful map $\text{Stab}(X) \to \mathcal{N}(X) \otimes \mathbb{C}$ sending a stability condition to the vector Ω is a local homeomorphism [Bri07].

Let $\text{GL}_2^+(\mathbb{R})$ be the group of orientation-preserving automorphisms of \mathbb{R}^2. The universal cover $\hat{\text{GL}}_2^+(\mathbb{R})$ of this group acts on $\text{Stab}(X)$ by post-composition on the central charge $Z: \mathcal{N}(X) \to \mathbb{C} \cong \mathbb{R}^2$ and a suitable relabelling of the phases (see [Bri07]). There is a subgroup $\mathbb{C} \subset \hat{\text{GL}}_2^+(\mathbb{R})$ which acts freely; explicitly this action is given by $\lambda \cdot (Z, P) = (Z', P')$ with $Z' = e^{\pi i \lambda} \cdot Z$ and $P'(\phi) = P(\phi - \text{Re} \lambda)$. There is also an action of the group $\text{Aut} D(X)$ on $\text{Stab}(X)$ by $\Phi \cdot (Z, P) = (Z', P')$ with $Z' = Z \circ \varpi(\Phi)^{-1}$ and $P'(\phi) = \Phi(P(\phi))$.

Period domains. Recall the definitions of the open subsets

$$\mathcal{P}^\pm_0(X) \subset \mathcal{P}^\pm(X) \subset \mathcal{N}(X) \otimes \mathbb{C}$$

from the introduction. Now consider the corresponding subsets

$$\mathcal{Q}^\pm(X) = \{ \Omega \in \mathcal{N}(X) \otimes \mathbb{C}; \langle \Omega, \Omega \rangle = 0, \langle \Omega, \mathcal{M} \rangle > 0 \},$$

$$\mathcal{Q}^\pm_0(X) = \mathcal{Q}^\pm(X) \setminus \bigcup_{\delta \in \Delta(X)} \delta^\perp.$$

These are invariant under the rescaling action of \mathbb{C}^* on $\mathcal{N}(X) \otimes \mathbb{C}$. As with $\mathcal{P}^\pm(X)$, the subset $\mathcal{Q}^\pm(X)$ consists of two connected components, and we let $\mathcal{Q}^+(X) = \mathcal{Q}^\pm(X) \cap \mathcal{P}^+(X)$ be the one containing classes $(1, i\omega, \frac{1}{2} \omega^2)$ for $\omega \in \text{NS}(X)$ ample.

The normalization condition $\langle \Omega, \Omega \rangle = 0$ is equivalent to the statement that $\text{Re} \Omega, \text{Im} \Omega$ are a conformal basis of the 2-plane in $\mathcal{N}(X) \otimes \mathbb{R}$ which they span:

$$\langle \text{Re} \Omega, \text{Im} \Omega \rangle = 0, \quad (\text{Re} \Omega)^2 = (\text{Im} \Omega)^2 > 0.$$

From this, one easily sees that each $\text{GL}_2(\mathbb{R})$-orbit in $\mathcal{P}^\pm(X)$ intersects $\mathcal{Q}^\pm(X)$ in a unique \mathbb{C}^*-orbit. It follows that

$$\mathcal{P}^\pm_0(X)/ \text{GL}_2^+(\mathbb{R}) = \mathcal{Q}^\pm_0(X)/\mathbb{C}^*,$$

and further that $\mathcal{Q}^\pm_0(X) \subset \mathcal{P}^\pm_0(X)$ is a deformation retract.

Let $\mathcal{T}^\pm(X) \subset \mathcal{N}(X) \otimes \mathbb{C}$ be the two components of the tube domain

$$\mathcal{T}^\pm(X) = \{ \beta + i\omega; \beta, \omega \in \text{NS}(X) \otimes \mathbb{R}, \langle \omega, \omega \rangle > 0 \},$$

where $\mathcal{T}^+(X)$ denotes the component containing $i\omega$ for ample classes ω. The map $\Omega = \exp(\beta + i\omega)$ defines an embedding

$$\mathcal{T}^+(X) \hookrightarrow \mathcal{Q}^+(X)$$
which gives a section of the \mathbb{C}^*-action on $\mathcal{Q}^+(X)$; this identifies $\mathcal{T}^+(X)$ with the quotients in (2). We set

$$\mathcal{T}_0^+(X) = \mathcal{T}^+(X) \cap \mathcal{Q}_0^+(X)$$

for the corresponding hyperplane complement.

Consider the case when X has Picard number $\rho(X) = 1$. The ample generator of $\text{NS}(X)$ allows us to identify $\mathcal{T}^+(X)$ canonically with the upper half plane \mathcal{h}. The hyperplane complement $\mathcal{T}_0^+(X) \subset \mathcal{T}^+(X)$ then corresponds to the open subset

$$\mathcal{h}_o = \mathcal{h}\{\beta + i\omega \in \mathcal{h} : \langle \exp(\beta + i\omega), \delta \rangle \in \mathbb{R} \leq 0 \text{ when } \delta \in \Delta(X)\}.$$

Since the root system $\Delta(X)$ is discrete in the projectivization $\mathcal{C}^+/\mathbb{R}^+$ of the negative cone, the holes \mathcal{h}_o are discrete in the upper half plane. Therefore, the fundamental group $\pi_1(\mathcal{h}_o)$ is the free group with the obvious generators.\footnote{Let us briefly sketch a proof. For $\epsilon > 0$, let $\mathcal{h}_o^0 = \mathcal{h}_o^0 \cap \{\text{Im } z > \epsilon, |\text{Re } z| < 1/\epsilon\}$. Then \mathcal{h}_o^0 is homeomorphic to a disc with finitely many holes. Applying Seifert-van Kampen, one shows that the fundamental group is the free group with finitely many generators. On the other hand, using compactness of loops and homotopies one can show that $\pi_1(\mathcal{h}_o)$ is the union of the fundamental groups $\pi_1(\mathcal{h}_o^0)$ as $\epsilon \to 0$.}

Now $\mathcal{P}_0^+(X)$ is a $\text{GL}_2^+(\mathbb{R})$-bundle over \mathcal{h}_o, and this bundle is trivial since the map (3) defines a section. We therefore obtain

$$\pi_1(\mathcal{P}_0^+(X)) = \mathbb{Z} \times \pi_1(\mathcal{h}_o).$$

Geometric stability conditions. A stability condition in $\text{Stab}(X)$ is said to be reduced if the corresponding vector $\Omega \in \mathcal{N}(X) \otimes \mathbb{C}$ satisfies $\langle \Omega, \Omega \rangle = 0$. The set of reduced stability conditions forms a complex submanifold $\text{Stab}_{\text{red}}(X) \subset \text{Stab}(X)$.

Restricted to the components $\text{Stab}^*(X) \subset \text{Stab}(X)$, the reduced condition is precisely that the vector Ω lies in $\mathcal{Q}^+(X) \subset \mathcal{P}^+(X)$.

The starting point in the description of $\text{Stab}^1(X)$ given in [Bri08] is a characterization of the set of stability conditions $U(X) \subset \text{Stab}_{\text{red}}(X)$, for which all skyscraper sheaves \mathcal{O}_x of points $x \in X$ are stable of the same phase. Such stability conditions are called geometric. Note that the subset $U(X)$ is invariant under the \mathbb{C}-action on $\text{Stab}(X)$, and each orbit contains a unique stability condition for which the objects \mathcal{O}_x are stable of phase 1.

To describe the set $U(X)$ we first note that the set $\Delta(X)$ of (-2)-classes splits as a disjoint union

$$\Delta(X) = \Delta^+(X) \cup -\Delta^+(X),$$

where $\Delta^+(X) \subset \Delta(X)$ consists of Mukai vectors of spherical sheaves. Consider the open subset

$$\mathcal{V}(X) = \{\beta + i\omega \in T^+(X) : \delta \in \Delta^+(X) \implies \langle \exp(\beta + i\omega), \delta \rangle \notin \mathbb{R}_{\leq 0}\}.$$

The following result is proved in [Bri08, Sections 10-12].
Theorem 2.1. The forgetful map $\text{Stab}(X) \to N(X) \otimes \mathbb{C}$ induces a bijection between the set of reduced, geometric stability conditions in which the objects O_x have phase 1, and the set of vectors of the form $\Omega = \exp(\beta + i\omega)$ with $\beta + i\omega \in \mathcal{V}(X)$. Thus there is an isomorphism

$$U(X) \cong \mathbb{C} \times \mathcal{V}(X).$$

Let us again consider the case when X has Picard number $\rho(X) = 1$. The subset $\Delta^+(X)$ consists of (-2)-classes (r, Δ, s) with $r > 0$. The subset $\mathcal{V}(X) \subset \mathfrak{h}^0$ is obtained by removing the vertical line segment between the real line and each hole $\mathfrak{h} \setminus \mathfrak{h}^0$, see Figure 1. For each $\delta \in \Delta^+(X)$ there is a unique spherical sheaf $S_\delta \in \text{Coh} X$ with $v(S_\delta) = \delta$, and this sheaf S_δ is automatically a μ-stable vector bundle.\(^2\)

Proposition 2.2. Let $\delta \in \Delta^+(X)$ be a spherical class with positive rank, and S_δ the spherical vector bundle with Mukai vector δ. The deck transformation of the normal covering π associated to the loop in \mathfrak{h}^0 around δ^\perp is induced by the square $\text{Tw}_{S_\delta}^2$ of twist functor associated to S_δ.

\(^2\)The existence is part of [Yos99, Theorem 0.1]. Mukai already proved that a spherical torsion-free sheaf is automatically locally free and μ-stable see [Muk87, Prop. 3.3 and Prop. 3.14]; the torsion-freeness in the case $\rho(X) = 1$ follows with the same argument, see Remark 6.7. Finally, the uniqueness is elementary from stability, see [Muk87, Corollary 3.5].
Proof. Given the line segment in $\mathfrak{h} \setminus \mathcal{V}(X)$ associated to such δ, there are two corresponding walls W^+_δ and W^-_δ of the geometric chamber, depending on whether we approach the line segment from the left or the right, respectively. Let S_δ be the corresponding spherical vector bundle, with $Z(S_\delta) \in \mathbb{R}_{<0}$ for $(Z, P) \in W^\pm_\delta$. These walls are described by the cases $(A^+), (A^-)$ of [Bri08, Theorem 12.1], respectively (where the vector bundle A in the citation is exactly our vector bundle S_δ).

In the proof of [Bri08, Proposition 13.2], it is shown that crossing these walls leads into the image of the geometric chamber under the spherical twist $\text{Tw}^\pm_\delta S_\delta$.

Now consider the loop γ around the hole corresponding to δ, and lift it to a path starting in the geometric chamber $U(X)$. It follows from the preceding discussion that its endpoint will lie in $\text{Tw}^\pm_\delta S_\delta U(X)$, with the sign depending on the orientation of the loop. This proves our claim. \qed

Rigid and semirigid objects. The following important definition generalizes the notions of rigid and semirigid coherent sheaves from [Muk87]:

Definition 2.3. An object $E \in D(X)$ will be called rigid or semirigid if

(a) $\dim_{\mathbb{C}} \text{Hom}^1_X(E, E) = 0$ or 2, respectively, and

(b) $\text{Hom}^i_X(E, E) = 0$ for all $i < 0$.

We say that an object $E \in D(X)$ is (semi)rigid if it is either rigid or semirigid. It follows from Riemann-Roch and Serre duality that if E is (semi)rigid, then the Mukai vector $v(E)$ satisfies $(v(E), v(E)) \leq 0$, with strict inequality in the rigid case.

We will need a derived category version of [Muk87, Corollary 2.8]:

Lemma 2.4. Suppose $A \rightarrow E \rightarrow B$ is an exact triangle and $\text{Hom}_X(A, B) = 0$. Then

$$
\dim_{\mathbb{C}} \text{Hom}^1_X(E, E) \geq \dim_{\mathbb{C}} \text{Hom}^1_X(A, A) + \dim_{\mathbb{C}} \text{Hom}^1_X(B, B).
$$

Proof. Consider the space V of maps of triangles

$$
\begin{array}{cccc}
A & \xrightarrow{f} & E & \xrightarrow{g} & B & \xrightarrow{h} & A[1] \\
\alpha \downarrow & & \gamma \downarrow & & \beta \downarrow & & \alpha[1] \downarrow \\
\end{array}
$$

There are obvious maps

$$
F : V \rightarrow \text{Hom}^1_X(A, A) \oplus \text{Hom}^1_X(B, B), \quad G : V \rightarrow \text{Hom}^1_X(E, E).
$$

The result follows from the two claims that F is surjective and G is injective.

For the first claim, note that given maps $\alpha : A \rightarrow A[1]$ and $\beta : B \rightarrow B[1]$ we obtain a map of triangles as above, because the difference

$$
h[1] \circ \beta - \alpha[1] \circ h : B \rightarrow A[2]
$$

is in the image of F. The result follows from the two claims that F is surjective and G is injective.
vanishes by the assumption and Serre duality. For the second claim, a simple diagram chase using the assumption $\text{Hom}_X(A, B) = 0$ shows that any map of triangles as above in which $\gamma = 0$ is necessarily zero. \qed

The next result is a consequence of [HMS08, Proposition 2.9]. For the reader’s convenience we include the easy proof here.

Lemma 2.5. Let σ be a stability condition on $D(X)$, and E an object of $D(X)$.

(a) If E is rigid, then all stable factors of E are rigid.

(b) If E is semirigid, then all stable factors of E are rigid or semirigid, and at most one of them is semirigid.

Proof. First note that applying Lemma 2.4 repeatedly to the HN filtration of E allows us to reduce to the case when the object $E \in \mathcal{P}(\phi)$ is in fact semistable.

If E has more than one non-isomorphic stable factor, then by taking a maximal subobject whose Jordan-Hölder factors are all isomorphic, we can find a nontrivial short exact sequence

$$0 \rightarrow A \rightarrow E \rightarrow B \rightarrow 0$$

in $\mathcal{P}(\phi)$ with $\text{Hom}_X(A, B) = 0$. Applying Lemma 2.4 shows that A and B are also either rigid or semirigid, with at most one being semirigid, and we can then proceed by induction on the length of E in the finite length category $\mathcal{P}(\phi)$.

Thus we can assume that all stable factors of E are the same object S. If E is stable the claim is trivial. Otherwise there are non-identity maps $E \rightarrow E$ obtained by factoring through a copy of S. In particular $\dim \text{Hom}_X(E, E) > 1$. Since E is semirigid it follows that $v(E)^2 < 0$. But $v(E)^2 = n^2 \cdot v(S)^2$ so also $v(S)^2 < 0$, and it follows from Riemann-Roch and Serre duality that S is rigid. \qed

Wall-crossing. Fix a stability condition $\sigma_0 = (Z_0, P_0) \in \text{Stab}(X)$ and a phase $\phi \in \mathbb{R}$. Recall that the category $\mathcal{P}_0(\phi)$ of semistable objects of phase ϕ is a finite length abelian category whose simple objects are the stable objects of phase ϕ. Let us now fix a Serre subcategory $\mathcal{A} \subset \mathcal{P}_0(\phi)$: this corresponds to choosing some subset of the stable objects of phase ϕ and considering only those objects of $\mathcal{P}_0(\phi)$ whose stable factors lie in this subset. Let

$$U = B_{1/2}(\sigma_0) \subset \text{Stab}(X)$$

be the ball of radius $1/2$ at σ_0 with respect to the standard metric on $\text{Stab}(X)$. Given a stability condition $\sigma = (Z, \mathcal{P}) \in U$, the restriction of the central charge Z defines a (tilted) stability function on the abelian category \mathcal{A}. We then have two notions of stability for objects $F \in \mathcal{A}$, namely stability with respect to the stability condition σ, and stability with respect to the stability function Z. The following useful result addresses the relationship between these two notions.

Lemma 2.6. For every $R > 0$ there is a neighbourhood $\sigma_0 \in U(R) \subset U$ with the following property: if $\sigma = (Z, \mathcal{P}) \in U(R)$ and $F \in \mathcal{A}$ satisfies $|Z_0(F)| < R$, then F is σ-semistable (resp. σ-stable) precisely if it is Z-semistable (resp. Z-stable).
Proof. We prove the result for semistability; the corresponding statement for stability follows in exactly the same way. First consider an arbitrary $\sigma = (Z, P) \in U$. If $F \in A$ is Z-unstable, then there is a short exact sequence

$$0 \to A \to F \to B \to 0$$

in A such that $\phi(A) > \phi(F) > \phi(B)$. Since $\sigma \in U$ there is an inclusion $A \subset \mathcal{P}(\phi - \frac{1}{2}, \phi + \frac{1}{2})$, and it follows easily that F is also σ-unstable (see [Bri07, Prop. 5.3]).

For the converse, take $0 < \epsilon < \frac{1}{8}$ and consider triangles

$$A \to F \to B \to A\{1\}$$

in $D(X)$, all of whose objects lie in the subcategory $\mathcal{P}_0(\phi - 2\epsilon, \phi + 2\epsilon)$, and such that $F \in A$ satisfies $|Z_0(F)| < R$. Semistability of F in σ_0 ensures that for any such triangle there are inequalities

$$\phi_0(A) \leq \phi_0(F) \leq \phi_0(B),$$

where ϕ_0 denotes the phase function for the stability condition σ_0. Moreover, it is easy to see that equality holds in (6) precisely if $A, B \in A$.

By the support property for σ_0, the set of possible Mukai vectors $v(A)$ and $v(B)$ is finite. Thus we can choose $U(R)$ small enough so that whenever the inequality (6) is strict, the same inequality of phases holds for all $\sigma \in U(R)$. We can also assume that $U(R) \subset B_\epsilon(\sigma_0)$ is contained in the ϵ-ball centered at σ_0.

Now suppose that $F \in A$ satisfies $|Z_0(F)| < R$ and take a stability condition $\sigma = (Z, \mathcal{P}) \in U(R)$. Then $F \in \mathcal{P}(\phi - \epsilon, \phi + \epsilon)$. Suppose that F is not σ-semistable. Then we can find a triangle (5) with all objects lying in $\mathcal{P}(\phi - \epsilon, \phi + \epsilon)$, and such that $\phi(A) > \phi(F) > \phi(B)$. All objects of this triangle then lie in $\mathcal{P}_0(\phi - 2\epsilon, \phi + 2\epsilon)$, so our assumption ensures that $A, B \in A$. It follows that F is not Z-semistable. \(\square\)

Remark 2.7. It follows immediately that for objects $F \in A$ with $|Z_0(F)| < R$ and for stability conditions $\sigma = (Z, \mathcal{P}) \in U(R)$, the HN filtration of F with respect to σ coincides with the HN filtration of F in A with respect to the stability function Z (note that this latter filtration automatically exists because $A \subset \mathcal{P}(\phi)$ is of finite length). A similar remark applies to Jordan-Hölder filtrations.

In studying wall-crossing behaviour, the following definition is often useful.

Definition 2.8. An object $F \in D(X)$ is said to be quasistable in a stability condition σ if it is semistable, and all its stable factors have Mukai vectors lying on the same ray $\mathbb{R}_{>0} \cdot v \subset \mathcal{N}(X) \otimes \mathbb{R}$.

Note that if $v(F) \in \mathcal{N}(X)$ is primitive, then F is quasistable precisely if it is stable. The following result is a mild generalization of [Bri08, Prop. 9.4], and can be proved using the same argument given there. Instead we give an easy proof using Lemma 2.6.

Proposition 2.9. The set of points $\sigma \in \text{Stab}(X)$ for which a given object $F \in D(X)$ is stable (respectively quasistable) is open.
Proof. Let F be semistable in some stability condition $\sigma_0 = (Z_0, \mathcal{P}_0)$. Choose $R > |Z_0(F)|$ and apply Lemma 2.6 with $\mathcal{A} \subset \mathcal{P}(\phi)$ being the subcategory generated by the stable factors of F. When F is quasistable all these stable factors have proportional Mukai vectors, so the stability functions on \mathcal{A} induced by stability conditions in $U(R)$ map $K(\mathcal{A})$ onto a line in \mathbb{C}. For such stability functions all objects of \mathcal{A} are Z-semistable, and an object is Z-stable precisely if it is simple. The result therefore follows from Lemma 2.6. □

3. Walls and chambers

From now on, let X be a complex K3 surface of Picard rank 1. We shall also fix a (semi)rigid object $E \in D(X)$ satisfying $\text{Hom}_X(E,E) = \mathbb{C}$. Eventually in Section 6 we will take E to be a skyscraper sheaf \mathcal{O}_X.

Stable objects of the same phase. Let $\sigma \in \text{Stab}(X)$ be a stability condition. We first gather some simple results about the relationship between (semi)rigid stable objects in $\mathcal{N}(X)$ of some fixed phase.

Lemma 3.1. Suppose that S_1, S_2 are non-isomorphic stable objects of the same phase, at least one of which is rigid. Then the Mukai vectors $v(S_i)$ are linearly independent in $N(X)$.

Proof. Since the S_i are stable of the same phase, $\text{Hom}_X(S_i, S_j) = 0$ for $i \neq j$, and Serre duality and Riemann-Roch then show that $(v_1, v_2) \geq 0$. Suppose there is a non-trivial linear relation between the vectors $v_i = v(S_i)$. Since the central charges $Z(S_i)$ lie on the same ray it must take the form $\lambda_1 v_1 = \lambda_2 v_2$ with $\lambda_1, \lambda_2 > 0$. But then $(v_i, v_i) \geq 0$ which contradicts the assumption that one of the S_i is rigid. □

Since X has Picard number $\rho(X) = 1$, the lattice $\mathcal{N}(X)$ has signature $(2, 1)$. The cone

$$C = \{ v \in \mathcal{N}(X) \otimes \mathbb{R} \setminus \{0\} : (v, v) \leq 0 \}.$$

is therefore a disjoint union of two connected components C^\pm exchanged by the inverse map $v \mapsto -v$. By convention we take C^+ to be the component containing the class $(0, 0, 1)$. The following elementary observation will be used frequently:

Lemma 3.2. Suppose $\alpha, \beta \in C^+$. Then $(\alpha, \beta) \leq 0$. Moreover

$$(\alpha, \beta) = 0 \implies (\alpha, \alpha) = 0 = (\beta, \beta),$$

in which case α, β are proportional.

Proof. We can take co-ordinates (x, y, z) on $\mathcal{N}(X) \otimes \mathbb{R} \cong \mathbb{R}^3$ so that the quadratic form associated to $(-,-)$ is $x^2 + y^2 - z^2$. Then C is the set of nonzero vectors with $x^2 + y^2 < z^2$. This set has two connected components given by $\pm z > 0$. For signature reasons, if $\alpha, \beta \in C$ satisfy $(\alpha, \beta) = 0$, then α, β must be linearly dependent and satisfy $(\alpha, \alpha) = 0 = (\beta, \beta)$. Suppose $\alpha \in C^+$ satisfies $(\alpha, \alpha) < 0$.
Since \((\alpha, \beta)\) varies continuously as \(\beta\) varies in \(C\) it follows that \((\alpha, \beta) \leq 0\) for all \(\beta\) in \(C^+\).

We note the following simple consequence:

Lemma 3.3. If there are three non-isomorphic stable (semi)rigid objects of the same phase, then at most one of them is rigid.

Proof. Denote the three objects by \(S_1, S_2, S_3\) and their Mukai vectors by \(v_i = v(S_i)\). As in the proof of Lemma 3.1 we have \((v_i, v_j) \geq 0\) for \(i \neq j\). We can assume that one of the objects, say \(S_1\), is rigid. Then by Lemma 3.2, we have \((v_1, v_i) > 0\) for \(i = 2, 3\) and we conclude that \(v_1\) lies in one cone, say \(C^+\), and that \(v_2, v_3\) lie in the opposite cone, \(C^-\). Suppose now that one of the objects \(S_2\) or \(S_3\) is also rigid. Then we can apply the same argument and conclude that \(v_2\) and \(v_3\) lie in opposite cones. This gives a contradiction. □

This leads to the following useful description of semistable (semi)rigid objects.

Proposition 3.4. Suppose that \(F\) is a semistable (semi)rigid object. Then exactly one of the following holds:

(a) \(F \cong S^{\oplus k}\) with \(S\) a stable spherical object and \(k \geq 1\);
(b) \(F\) is stable and semirigid;
(c) exactly 2 stable objects \(S_1, S_2\) occur as stable factors of \(F\), and their Mukai vectors \(v(S_i)\) are linearly independent in \(N(X)\).

Proof. Lemma 2.5 implies that \(F\) has at most one semirigid stable factor, the others being rigid. Therefore Lemma 3.3 shows that \(F\) has at most 2 stable factors. If there is just 1 then we are in cases (a) or (b) according to whether it is rigid or semirigid. If there are 2 then Lemma 3.1 shows that we are in case (c). □

Note that in the situation of Prop. 3.4 the object \(F\) is quasistable in cases (a) and (b), but not in case (c).

Codimension one walls. Suppose that

\[
\sigma_0 = (Z_0, P_0) \in \text{Stab}(X)
\]

is a stability condition, and that \(F \in P_0(\phi)\) is a (semi)rigid semistable object which is not quasistable. Prop. 3.4 shows that \(F\) has exactly two stable factors \(S_1, S_2\) up to isomorphism, whose Mukai vectors \(v(S_i)\) are linearly independent. Lemma 2.6 shows that to understand stability of \(F\) near \(\sigma_0\) it is enough to consider stability functions on the abelian subcategory \(A \subset P_0(\phi)\) consisting of those objects all of whose stable factors are isomorphic to one of the \(S_i\). Note that the inclusion \(A \subset D(X)\) induces an injective group homomorphism \(\mathbb{Z}^2 \cong K(A) \hookrightarrow N(X)\), so we can identify \(K(A)\) with the sublattice of \(N(X)\) spanned by the \(v(S_i)\). For future reference we make the following observation:
Lemma 3.5. Suppose that Z is a stability function on \mathcal{A} and let $\Theta \subset (0, 1]$ be the set of phases of Z-stable objects of \mathcal{A}. Suppose that $F \in \mathcal{A}$ is Z-stable and rigid. Then $\phi(F) \in \Theta$ is not an accumulation point.

Proof. We can assume that $\text{Im} Z(S_1)/Z(S_2) \neq 0$ since otherwise Θ consists of a single point. Then Z induces an isomorphism of real vector spaces $K(\mathcal{A}) \otimes \mathbb{R} \cong \mathbb{C}$, and we can think of Θ as a subset of $(K(\mathcal{A}) \otimes \mathbb{R} - \{0\})/\mathbb{R}_{>0} \cong S^1$. If F is a stable object of \mathcal{A}, its Mukai vector $v \in K(\mathcal{A}) \subset \mathcal{N}(X)$ satisfies $(v, v) \geq -2$, with equality precisely if F is rigid. Thus Θ has no accumulation points in the open subset of $(K(\mathcal{A}) \otimes \mathbb{R} \setminus \{0\})/\mathbb{R}_{>0}$ defined by the inequality $(v, v) < 0$. \hfill \square

Let us now consider the abstract situation where \mathcal{A} is a finite length abelian category with two simple objects S_1, S_2, and $Z : K(\mathcal{A}) \to \mathbb{C}$ is a stability function. We note the following trivial statement.

Lemma 3.6. Suppose that

$$\text{Im} Z(S_1)/Z(S_2) \neq 0.$$

Then any Z-semistable object \mathcal{A} is automatically Z-quasistable.

Proof. Since Z induces an isomorphism of real vector spaces $K(\mathcal{A}) \otimes \mathbb{R} \cong \mathbb{C}$, two objects have the same phase precisely if their classes lie on a ray in $K(\mathcal{A})$. \hfill \square

Later on we shall need the following more difficult result.

Lemma 3.7. Suppose $F_1, F_2 \in \mathcal{A}$ are Z-stable and satisfy

$$\text{Hom}_{\mathcal{X}}(F_1, F_2) = 0 = \text{Hom}_{\mathcal{X}}(F_2, F_1).$$

Let $\Theta \subset (0, 1]$ be the set of phases of stable objects of \mathcal{A}, and assume that at least one of the phases $\phi(F_i)$ is not an accumulation point of Θ. Then, possibly after reordering the F_i, we have $F_i \cong S_i$.

Proof. The pair (Z, \mathcal{A}) induces a stability condition (Z, \mathcal{P}) on the bounded derived category $D = D^b(\mathcal{A})$ in the usual way. Set $\phi_i = \phi(F_i) \in (0, 1]$, and reorder the objects F_i so that $\phi_1 \leq \phi_2$. We treat first the case when ϕ_1 is not an accumulation point of Θ.

Consider the heart $\mathcal{C} = \mathcal{P}([\phi_1, \phi_1 + 1)) \subset D$. Note that $F_1, F_2 \in \mathcal{C}$, and F_1 is a simple object of \mathcal{C}. The assumption that ϕ_1 is not an accumulation point of Θ implies that $\mathcal{C} = \mathcal{P}([\phi_1, \phi_1 + 1 - \epsilon])$ for some $\epsilon > 0$. Thus, the central charges $Z(E)$ for $E \in \mathcal{C}$ are contained in a strictly convex sector of the complex plane. Also note that $K(\mathcal{C}) = K(\mathcal{A}) = \mathbb{Z}^{\oplus 2}$, and thus the set of central charges $Z(E)$ for $E \in \mathcal{C}$ is discrete in this sector. It follows that \mathcal{C} is of finite length, and that there is exactly one other simple object in \mathcal{C} up to isomorphism, say T. The effective cone in $K(\mathcal{C})$ is then generated by the classes of the simple objects F_1 and T, and it follows that $\phi(F_1) \leq \phi(F_2) \leq \phi(T)$.

The assumption $\text{Hom}_{\mathcal{A}}(F_1, F_2) = 0$ shows that F_1 is not a subobject of F_2 in \mathcal{C}. It follows that T is a subobject of F_2, and in particular there is a nonzero map $T \to F_2$.

But since F_2 is \mathbb{Z}-stable this is only possible if $F_2 = T$. Then $\mathcal{C} = \mathcal{P}([\phi_1, \phi_2])$ is a subcategory of \mathcal{A}. But since \mathcal{A} and \mathcal{C} are both hearts in D, this implies that $\mathcal{A} = \mathcal{C}$, and therefore F_1 and F_2 are the two simple objects of \mathcal{A} up to isomorphism.

If we instead assume that ϕ_2 is not an accumulation point of Θ, then we can consider the finite length heart $\mathcal{C} = \mathcal{P}((\phi_2 - 1, \phi_2)) \subset D$ in which F_2 is simple, and apply a similar argument. □

Width function. Recall our fixed (semi)rigid object $E \in D(X)$. Given a stability condition $\sigma \in \text{Stab}(X)$, we define the width of E by

$$w_E(\sigma) = \phi^+_\sigma(E) - \phi^-_\sigma(E) \in \mathbb{R}_{\geq 0},$$

which we view as a continuous function

$$w: \text{Stab}(X) \to \mathbb{R}_{\geq 0}.$$

It is evidently invariant under the \mathcal{C}-action.

We denote by $E_{\pm} = E_{\pm}(\sigma)$ the HN factors of E with maximal and minimal phase ϕ_{\pm}. We denote by $n = \lfloor w_\sigma(E) \rfloor \geq 0$, and define A_{\pm} by $A_+ = E_+$ and $A_- = E_-[n]$. Note that A_{\pm} are semistable and

$$0 \leq \phi(A_+) - \phi(A_-) < 1.$$

We shall repeatedly use the following result.

Lemma 3.8. Assume that $w_E(\sigma) > 0$. Then

(a) the objects A_{\pm} are both either rigid or semirigid, and at most one of them is semirigid, and

(b) $\text{Hom}^i_X(A_-, A_+) = 0$ unless $i \in \{1, 2\};$

if we assume in addition that $w_E(\sigma) \notin \mathbb{Z}$, we also have

(c) $\text{Hom}^i_X(A_-, A_+) = 0$ unless $i = 1$, and

(d) $(v(A_+), v(A_-)) > 0.$

Proof. Applying Lemma 2.4 repeatedly to the HN filtration of E gives (a). The objects A_{\pm} lie in the heart $\mathcal{A} = \mathcal{P}((\phi_+ - 1, \phi_+))$ on $D(X)$ and hence, using Serre duality, satisfy

$$\text{Hom}^i_X(A_{\pm}, A_{\pm}) = 0 \text{ unless } i \in \{0, 1, 2\}. \tag{7}$$

For (b) we must show that $\text{Hom}_X(A_-, A_+) = 0$. Note that taking cohomology with respect to the above heart \mathcal{A} we have $H^i_A(E) = 0$ unless $0 \leq i \leq n$. Moreover, there is an epimorphism $H^i_A(E) \to A_-$ and a monomorphism $A_+ \to H^0_A(E)$. Suppose there is a nonzero map $f: A_- \to A_+$. Using the spectral sequence

$$E^{p,q}_2 = \bigoplus_{i \in \mathbb{Z}} \text{Hom}^p_X(H^i_A(E), H^{i+q}_A(E)) \Rightarrow \text{Hom}^{p+q}_X(E, E) \tag{8}$$

it follows that there is a nonzero map $E \to E[-n]$ which if $n > 0$ contradicts the fact that E is semirigid. In the case $n = 0$ we have that $E \in \mathcal{A}$ and an epimorphism
$g: E \rightarrow A_-$ and a monomorphism $h: A_+ \rightarrow E$. Then $h \circ f \circ g$ is a nonzero map $E \rightarrow E$ which by assumption must be a multiple of the identity. It follows that $E \cong A_+ \cong A_-$ which contradicts the assumption that $w_E(\sigma) > 0$.

For (c), note first that since $\phi(A_+) > \phi(A_-)$, and since the objects A_\pm are semistable, there are no nonzero maps $A_+ \rightarrow A_-$. Then apply Serre duality. The inequality of part (d) then follows by Riemann-Roch. Equality is impossible, since the vectors $v(A_\pm)$ would then span a rank two negative semi-definite sublattice of $N(X)$, which has signature $(2,1)$. \hfill \Box

(\pm)-walls. We say that a stability condition $\sigma \in \text{Stab}(X)$ is $(+)$-generic if E_+ is quasistable, and similarly $(-)$-generic if E_- is quasistable.

Lemma 3.9. The subset of $(+)$-generic stability conditions is the complement of a real, closed submanifold $W_+ \subset \text{Stab}(X)$ of codimension 1. The object E_+ is locally constant on W_+, as well as on the complement of W_-. Similarly for $(−)$-generic stability conditions and E_-.\hfill\Box

Proof. The first claim is that being $(+)$-generic is an open condition. Indeed, the first step in the HN filtration of E in a stability condition $\sigma_0 = (Z_0, P_0)$ is a triangle
\begin{equation}
E_+ \rightarrow E \rightarrow F
\end{equation}
with $E_+ \in P_0(\phi_+)$ and $F \in P_0(\phi_+).$ If E_+ is moreover quasistable Prop. 2.9 shows that E_+ remains semistable in a neighbourhood of σ_0. It follows that (9) remains the first step in the HN filtration of E, so that the object E_+ is locally constant, and the claim follows then from Prop. 2.9.

Suppose now that $\sigma_0 \in \text{Stab}(X)$ is not $(+)$-generic. By Prop. 3.4 there are then exactly two stable factors S_1, S_2 of E_+, whose Mukai vectors $v(S_i)$ are linearly independent. These objects generate a Serre subcategory $\mathcal{A} \subset P_0(\phi_+)$ as in Section 3. Lemma 2.6 and the argument above show that for stability conditions $\sigma = (Z, P)$ in a neighbourhood of σ_0, the maximal HN factor of E in σ is precisely the maximal HN factor of the object $E_+ \in \mathcal{A}$ with respect to the stability function Z. The locus of non $(+)$-generic stability conditions is therefore the set of points satisfying
\begin{equation}
\text{Im } Z(S_1)/Z(S_2) = 0.
\end{equation}
Indeed, when this condition is satisfied, E_+ itself is semistable but not quasistable. On the other hand, when (10) does not hold, Lemma 3.6 shows that the maximal HN factor is automatically quasistable. \hfill \Box

We refer to the connected components of the submanifold W_+ as $(+)$-walls. Similarly for $(−)$-walls. A connected component of the complement
\begin{equation}
\text{Stab}(X) \setminus (W_+ \cup W_-)
\end{equation}
will be called a chamber. Lemma 3.9 shows both objects E_\pm are constant on every chamber. In particular, the function w_E is smooth on every chamber. In fact, it is also smooth on the closure of each chamber: as σ approaches a $(+)$-wall, the object
E_+ may change, but their phases \(\phi(E_+) \) agree on the wall; thus \(\phi(E_+) \) extends as a smooth function to the closure of the chamber.

Remarks 3.10.

(a) The union of the submanifolds \(W_+ \) and \(W_- \) need not be a submanifold since \((+)\) and \((-)\) walls can intersect each other.

(b) The object \(A_- \) need not be locally-constant on the complement \((11)\) since its definition involves the function \(\lfloor w_E \rfloor \) which is discontinuous at points of \(w^{-1}(Z) \).

Integral walls. Consider now the subset

\[
W_Z = \{ \sigma \in \text{Stab}^*(X) : w_\sigma(E) \in \mathbb{Z} \text{ and } E \text{ is not } \sigma\text{-quasistable} \}.
\]

Remark 3.11. The condition that \(E \) is not \(\sigma\)-quasistable is essential for the following result to hold. For example, when \(E = \mathcal{O}_x \) is a skyscraper sheaf there is an open region \(U \) where \(E \) is stable (this coincides with the subset of geometric stability conditions, see Lemma 6.9): we do not want \(W_Z \) to contain the closure of this subset, but rather its boundary (see also Prop. 3.15 below).

We call the connected components of \(W_Z \) integral walls.

Lemma 3.12. The subset \(W_Z \) is a real, closed submanifold of \(\text{Stab}^*(X) \) of codimension 1.

Proof. Since \(w \) is continuous, the subset \(w^{-1}(Z) \) is closed. The fact that \(W_Z \) is closed then follows from Prop. 2.9. If \(\sigma \in \text{Stab}(X) \) satisfies \(w_E(\sigma) = 0 \) then \(\sigma \) lies on \(W_Z \) precisely if \(\sigma \) is not \((\pm)\)-generic, so for these points the result follows from Lemma 3.9. Thus we can work in a neighbourhood of a point \(\sigma_0 \in W_Z \) for which \(w_E(\sigma_0) > 0 \).

Consider the stable factors \(S_i \) of \(A_\pm \). By Lemma 2.5 they are all (semi)rigid, and at most one is semirigid. Lemma 3.3 shows that there at most two of them. But if there is only one then there is a nonzero map \(A_- \to A_+ \) contradicting Lemma 3.8 (b). Hence the objects \(A_\pm \) have exactly 2 stable factors \(S_1, S_2 \) between them, and by Lemma 3.1 the Mukai vectors \(v(S_i) \) are linearly independent.

We claim that in a neighbourhood of \(\sigma_0 \) the closed subset \(W_Z \) is cut out by the equation

\[
(12) \quad \text{Im } Z(S_1)/Z(S_2) = 0.
\]

Certainly, if this condition is satisfied, the stable factors of \(A_\pm \) remain stable by Proposition 3.4, and of equal phases; hence the objects \(E_\pm \) remain semistable, and continue to be the extremal HN factors of \(E \). Thus \(w_E(\sigma) \) remains integral.

For the converse, we apply Lemma 2.6 to conclude that for any \(\sigma = (Z, P) \) in a neighbourhood of \(\sigma_0 \), the extremal HN factors of \(E \) (up to shift) are just given by the extremal HN factors of the objects \(A_\pm \in \mathcal{A} \) with respect to the stability function \(Z \). Call these objects \(C_\pm \). Assume that \(\phi(C_+) = \phi(C_-) \). By Lemma 3.1 the Mukai vectors of the distinct stable factors of \(\phi(C_\pm) \) are linearly independent.
in \(\mathcal{N}(X) \). There must be more than one of them by Lemma 3.8(b). Since \(Z \) maps these different stable factors onto a ray, condition (12) must hold. \(\square \)

Remarks 3.13.

(a) It follows from the local descriptions given in Lemmas 3.9 and 3.12 that if a \((\pm)\)-wall \(W_1 \) intersects an integral wall \(W_2 \) then in fact \(W_1 = W_2 \) is simultaneously a \((+)-wall \) and an integral wall.

(b) It is easy to check that if a \((+)-wall \) and a \((-)-wall \) coincide then this wall is also an integral wall.

No local minima. Using the action of the universal cover of \(\text{GL}_2^+(\mathbb{R}) \) on \(\text{Stab}(X) \), it is easy to see that if the width function \(w_E \) had a local minimum \(\sigma_0 \in \text{Stab}(X) \), then this would have to satisfy \(w_E(\sigma_0) \in \mathbb{Z} \). The following crucial result then shows that in fact the function \(w_E \) has no positive local minima on \(\text{Stab}(X) \).

Proposition 3.14. Let \(\sigma_0 \in W_\mathbb{Z} \subset \text{Stab}(X) \) satisfy \(w_E(\sigma_0) = n \in \mathbb{Z}_{>0} \). Locally near \(\sigma_0 \) the submanifold \(W_\mathbb{Z} \) splits \(\text{Stab}(X) \) into two connected components, with \(w_E(\sigma) < n \) in one component and \(w_E(\sigma) > n \) in the other.

Proof. As in the proof of Lemma 3.12, the objects \(A_\pm \) have two stable factors \(S_1, S_2 \) between them; we again consider the finite length abelian subcategory \(A \subset \mathcal{P}_0(\phi) \) generated by \(S_1 \) and \(S_2 \). Considering the Jordan-Hölder filtration of \(A_+ \) and relabelling the objects \(S_i \) if necessary, we can assume that there is a monomorphism \(S_1 \to A_+ \) in \(A \). It follows from Lemma 3.8(b) that \(\text{Hom}_X(A_-, S_1) = 0 \), and hence there must also be an epimorphism \(A_- \to S_2 \) in \(A \). Using Lemma 3.8(b) again, this in turn implies that \(\text{Hom}_X(S_2, A_+) = 0 \).

Locally near \(\sigma_0 \) the submanifold \(W_\mathbb{Z} \) is cut out by the equation \(Z(S_1)/Z(S_2) \in \mathbb{R}_{>0} \). Note that there are no other relevant walls near \(\sigma_0 \), since any \((\pm)\)-wall which intersects \(W_\mathbb{Z} \) coincides with a component of \(W_\mathbb{Z} \). Hence it makes sense to speak of the new objects \(A_\pm \) for stability conditions \(\sigma = (Z, P) \) on either side of the wall. By Lemma 2.6, the new \(A_+ \) is the maximal HN factor of \(A_+ \) with respect to the slope function \(Z \), and, up to shift, the new \(A_- \) is the minimal HN factor of \(A_- \) with respect to \(Z \).

On one side of the wall \(\phi(S_1) > \phi(S_2) \). Then the new \(A_+ \) is in the subcategory generated by \(S_1 \), and the new \(A_- \) is in the subcategory generated by \(S_2 \). The width \(w_\sigma(E) \) has increased to \(n + \phi(S_1) - \phi(S_2) \). On the other side of the wall \(\phi(S_1) < \phi(S_2) \). Write \(C_\pm \) for the new objects \(A_\pm \). Suppose that the width has also increased on this side. Then \(n = \lfloor w_E \rfloor \) is constant near \(\sigma_0 \), and so \(C_- \) is precisely the minimal HN factor of \(A_- \).

By Lemma 3.6, the object \(C_+ \) is quasistable. Lemma 3.4 then shows that it has a single stable factor, call it \(T_+ \). Similarly, \(C_- \) has a single stable factor \(T_- \). By Lemma 3.8 we have \(\text{Hom}_X^k(C_+, T_-) = 0 \) unless \(k = 1 \), and it follows that

\[
\text{Hom}_A(T_-, T_+) = 0 = \text{Hom}_A(T_+, T_-).
\]
Applying Lemma 3.5 and Lemma 3.7 we conclude that \(\{T_-, T_+\} = \{S_1, S_2\} \). The assumption that the width has increased implies that in fact \(T_- = S_1 \) and \(T_+ = S_2 \). We thus get a chain of inclusions \(T_+ = S_2 \subset C_+ \subset A_+ \) in \(A \), in contradiction to \(\text{Hom}_X(S_2, A_+) = 0 \) observed above. \(\square \)

A similar result holds at points of \(W_Z \) of width zero.

Proposition 3.15. Let \(\sigma_0 \in W_Z \subset \text{Stab}(X) \) satisfy \(w_E(\sigma_0) = 0 \). Locally near \(\sigma_0 \) the submanifold \(W_Z \) splits \(\text{Stab}(X) \) into two connected components. In one \(E \) is quasistable, and in the other \(w_E(\sigma) > 0 \).

Proof. The proof is very similar to that of Prop. 3.14, and we just indicate the necessary modifications. In the first paragraph, note that \(A_+ = A_- = E \). Considering the Jordan-Hölder filtration of \(E \) we can assume that there is a monomorphism \(S_1 \to E \) as before. By assumption \(\sigma_0 \in W_Z \), this is not an isomorphism, as \(E \) cannot be stable. If there were a nonzero map \(E \to S_1 \) this would contradict the assumption that \(\text{Hom}_X(E, E) = \mathbb{C} \). It follows that there is an epimorphism \(E \to S_2 \) in \(A \). The rest of the proof of Prop. 3.14 applies without change and shows that on one side of the wall \(w_E(\sigma) = 0 \) (i.e. \(E \) is semistable), and on the other \(w_E(\sigma) > 0 \). Finally, note that on the first side we must in fact have \(E \) quasistable, since if it is not, \(\sigma \) lies on \(W_Z \). \(\square \)

4. Flow

Let us fix a complex K3 surface \(X \) and an object \(E \in D(X) \) with assumptions as in Section 3. In particular, the surface \(X \) has Picard rank \(\rho(X) = 1 \) and the object \(E \) is (semi)rigid and satisfies \(\text{Hom}_X(E, E) = \mathbb{C} \). The aim of this section is to construct a flow on the space \(\text{Stab}^*_{\text{red}}(X) \) that decreases the width \(w_E \) to the nearest integer \(\lfloor w_E \rfloor \).

Construction. Let \(\sigma = (Z, \mathcal{P}) \in \text{Stab}^*_{\text{red}}(X) \) be a reduced stability condition, and write \(Z(E) = (\Omega, v(E)) \) for some vector \(\Omega \in \mathcal{N}(X) \otimes \mathbb{C} \). Recall that \(\Omega \in \mathcal{Q}^+_0(X) \), so in particular

\[
(\Omega, \Omega) = 0, \quad (\Omega, \bar{\Omega}) = 2d > 0,
\]

and the orthogonal to the 2-plane in \(\mathcal{N}(X) \otimes \mathbb{R} \) spanned by the real and imaginary parts of \(\Omega \) is a negative definite line. Let \(\Theta = \Theta(\sigma) \in \mathcal{N}(X) \otimes \mathbb{R} \) be the unique vector satisfying

\[
(\Theta, \Omega) = 0, \quad -(\Theta, \Theta) = d = \frac{1}{2}(\Omega, \bar{\Omega}), \quad \Theta \in \mathcal{C}^+.
\]

For any stability condition \(\sigma \), we define a sign \(\epsilon = \epsilon(\sigma) \in \{\pm 1\} \) by the condition that \(v(E_+) = v(A_+) \) lies in \(\mathcal{C}^+(\sigma) \).

Lemma 4.1. The sign \(\epsilon(\sigma) \) is locally constant on the complement of \(W_Z \).
Proof. By Lemma 3.9, the object A_+ is locally constant along any (+)-wall, and on the complement of the set of (+)-walls. By definition, it follows that ϵ is locally constant along both types of strata.

Similarly, E_- is locally constant on (−)-walls and their complement; if we restrict further to the complement of W_Z, the same holds for A_-. But due to Lemma 3.8, (d) and Lemma 3.2, the object A_- determines in which cone C^\pm the object A_+ is contained in; therefore, $\epsilon(\sigma)$ is also locally constant along these strata.

Now recall from Remark 3.13, (b) that a (+)-wall can only coincide with a (−)-wall if they are contained in W_Z. This implies that $\epsilon(\sigma)$ is locally constant on $Stab(X) \setminus W_Z$. □

Define a complex number of unit modulus by
\[
\zeta = \zeta(\sigma) = i \cdot \exp \left(\frac{i\pi}{2} (\phi(A_+) + \phi(A_-)) \right).
\]

Finally, define a nonzero vector
\[
v = v(\sigma) = \epsilon(\sigma) \cdot \zeta(\sigma) \cdot \Theta(\sigma) \in N(X) \otimes \mathbb{C}.
\]

Lemma 4.2. The flow
\[
\frac{d}{dt} \Omega = v(\sigma)
\]
of the vector field $v(\sigma)$ exists locally uniquely on $\text{Stab}^*_\text{red}(X) \setminus w^{-1}_E(\mathbb{Z})$, the space of reduced stability conditions of non-integral width. It preserves the positive real number $2d = (\Omega, \overline{\Omega})$.

Proof. The vector $v(\sigma)$ varies continuously on $\text{Stab}^*_\text{red}(X)$ by the above Lemma. Since the set of (±)-walls is locally finite, the resulting vector field is Lipschitz continuous on every compact subset; by the Picard-Lindelöf Theorem, the flow then exists locally and is unique.

From $(\Omega, \Theta) = 0 = (\overline{\Omega}, \Theta)$ one obtains $\frac{d}{dt} (\Omega, \Omega) = \frac{d}{dt} (\Omega, \overline{\Omega}) = 0$; thus the condition of being reduced is preserved, and $(\Omega, \overline{\Omega})$ is constant. □

Flow decreases width. Simple sign observations show that the flow defined in the last subsection moves moves $Z(A_\pm)$ in the direction $\mp \zeta(\sigma)$ and hence decreases the width, see Figure 2. To make this observation precise, we first point out that since w_E is smooth on the closure of each chamber, the function $w_E(\sigma(t))$ will be piecewise differentiable. Thus we can defined $\frac{dw}{dt}_E(\sigma)(t)$ at time t to be the derivative of w_E restricted to the interval $[t, t + \epsilon)$.

Lemma 4.3. Under the flow of $v(\sigma)$, the functions $\phi(A^+)$ and $\phi(A^-)$ are decreasing and increasing, respectively, and the derivative $\frac{dw}{dt}_E(\sigma(t))$ is negative. Moreover, setting $\theta = w_E(\sigma) - \lfloor w_E(\sigma) \rfloor$, one has
\[
- \frac{d}{dt} w_E(\sigma) \geq \frac{4}{\pi} \cos \left(\frac{\pi \theta}{2} \right) > 0.
\]
Proof. Note that
\[\epsilon(\sigma) \cdot (\Theta, A_+) < 0, \quad \epsilon(\sigma) \cdot (\Theta, A_-) > 0. \]
Indeed, since \(\Theta \in \mathbb{C}^+ \) we have \((\Theta, A_+) \in \epsilon(\sigma) \cdot \mathbb{R}_{<0} \), and the objects \(A_\pm \) have classes in opposite cones by Lemma 3.8. Thus the flow has the effect of adding negative multiples of the vector \(\zeta \) to \(Z(A_+) \) and positive multiples to \(Z(A_-) \). It is then clear that this decreases \(\phi(A_+) \) and increases \(\phi(A_-) \).

Writing \(\Omega = X + iY \) and \(\Theta = W \), the vectors \((W, X, Y) \) form an orthogonal basis for \(\mathcal{N}(X) \otimes \mathbb{R} \) such that
\[(X, X) = (Y, Y) = -(W, W) = d > 0. \]
It follows that for any vector \(v \in \mathcal{N}(X) \otimes \mathbb{R} \) one has
\[|(\Omega, v)|^2 - (\Theta, v)^2 = d(v, v). \]
In particular, if \(v = v(E) \) is the Mukai vector of a (semi)rigid object, then \((v, v) \leq 0 \) gives
\[(16) \quad |(\Theta, E)| \geq |Z(E)|. \]

We will prove the inequality at time \(t = 0 \). Consider a stability condition \(\sigma \) with width \(w \). Set \(|w| = n \) and put \(\theta = w - |w| \). Rotating by a fixed scalar \(z \in \mathbb{C} \), we can assume that at time \(t = 0 \), we have \(\zeta = -1 \) and \(\phi(A_\pm) = \frac{(1 \pm \theta)}{2} \). Set \(Z(A_\pm) = x_\pm + iy_\pm \). As we flow, there are angles \(0 \leq \theta_\pm < \frac{\pi}{2} \) such that
\[\frac{x_\pm}{y_\pm} = \mp \tan(\theta_\pm), \quad \frac{y_\pm}{|Z(A_\pm)|} = \cos(\theta_\pm), \]
see also Figure 3. At time \(t = 0 \), we have \(\theta_\pm = \frac{\pi \theta}{2} \).
Since ζ(0) is real, the derivatives $\frac{d}{dt} y_{\pm}$ vanish at $t = 0$, and so

$$\mp \sec^2(\theta_{\pm}) \frac{d\theta_{\pm}}{dt} \bigg|_{t=0} = \frac{1}{\cos(\theta_{\pm}) \cdot |Z(A_{\pm})|} \frac{dx_{\pm}}{dt} \bigg|_{t=0}.$$

But $\frac{d}{dt} x_{\pm}$ is just (Θ, A_{\pm}) up to sign, so by the above inequality (16) we get

$$0 \geq \cos(\theta_{\pm}) \geq \frac{d\theta_{\pm}}{dt}.$$

Writing $w - n = \pi (\theta_+ + \theta_-)$ gives the result. \qed

In particular, unless the flow ceases to exist at an earlier point in time, it takes a point with non-integral width w to a point of width $\lfloor w \rfloor$ in finite time less than $\pi \left(\cos(\frac{1}{2} \pi \theta) \right)^{-1}$.

Global properties. We now study the flow $\sigma(t)$ defined above in more detail. Let $\sigma \in \text{Stab}_{\text{red}}^*(X)$ be a stability condition with $w_E(\sigma) \in (n, n+1)$, and let I be the maximal interval of definition of the flow in $w_E^{-1}(n, n+1)$ starting at σ. By Lemma 4.3, this interval is necessarily finite. Moreover I must be of the form $I = [0, t_0)$ since the flow can always be extended in the neighbourhood of any given stability condition. Thus we have a flow

$$\sigma: [0, t_0) \longrightarrow \text{Stab}_{\text{red}}^*(X) \setminus w^{-1}(\mathbb{Z}).$$

Let $\Omega(t) \in Q^+(X)$ be the underlying flow of central charges, and let us shorten notation by writing $\Theta(t) := \Theta(\sigma(t)) \in \mathbb{C}^+$ and $\zeta(t) = \zeta(\sigma(t)) \in \mathbb{C}$ for the quantities defined above in (13) and (14); in addition, recall from Lemma 4.1 that $\epsilon = \epsilon(\sigma(t))$ is constant along the flow line.

Lemma 4.4. The vector $\Theta(t)$ satisfies $(\Theta(t), \Theta(t)) = -d$ for all t, and obeys the differential equation

$$\frac{d\Theta}{dt}(t) = \epsilon \Re \zeta(t) \Re \Omega(t) + \epsilon \Im \zeta(t) \Im \Omega(t).$$

Proof. Write $\Psi(t)$ for the right-hand side of the above equation. It is sufficient to show that $\frac{d\Theta}{dt}(t)$ and $\Psi(t)$ have the same pairing with each vector in the orthogonal basis $\Theta(t), \Re \Omega(t)$ and $\Im \Omega(t)$ of $\text{NS}(X) \otimes \mathbb{R}$. This follows from

$$\left(\frac{d\Theta(t)}{dt}, \Theta(t) \right) = \frac{1}{2} \frac{d}{dt} \left(\Theta(t), \Theta(t) \right) = 0 = \left(\Psi(t), \Theta(t) \right)$$

and

$$0 = \frac{d}{dt} (\Theta(t), \Omega(t)) = \left(\frac{d\Theta(t)}{dt}, \Omega(t) \right) + \epsilon \zeta(\Theta(t), \Theta(t))$$

$$= \left(\frac{d\Theta(t)}{dt}, \Omega(t) \right) - \epsilon \zeta d = \left(\frac{d\Theta(t)}{dt}, \Omega(t) \right) - (\Psi(t), \Omega(t)).$$

\qed
Note that $(\xi, \xi) = -d$ defines the Minkowski model of the hyperbolic plane as a subset $H \subset \mathbb{C}^+$. Up to rescaling by $\frac{1}{\sqrt{d}}$, the standard invariant metric on H is induced by the quadratic form on $N(X) \otimes \mathbb{R}$. In particular, the vectors $\text{Re} \Omega, \text{Im} \Omega$ form an orthonormal basis of the tangent space to H at Θ. Since $|\zeta| = 1$, the vector $\Theta(t)$ is moving in H with constant speed. Since H is complete, the limit $\lim_{t \to t_0} \Theta(t)$ exists, and Θ extends to a continuous function on the closed interval $[0, t_0]$.

It follows that $\Omega(t)$ also extends to a continuous function on $[0, t_0]$, as it is the integral of the continuous function $\epsilon \cdot \zeta(t) \cdot \Theta(t)$. Since $(\Omega(t), \overline{\Omega(t)})$ is constant, we also have $\Omega_0 := \Omega(t_0) \in Q^+(X)$. If Ω_0 lies in the subset $Q^+_0(X) \subset Q^+_0(X)$, then by Theorem 1.1, the path $\Omega(t)$ lifts to a continuous path $\sigma: [0, t_0] \rightarrow \text{Stab}^*_{\text{red}}(X)$.

By the maximality of the interval $[0, t_0]$ it follows that $w^E(\sigma(t_0)) = n$, as desired. The only other possibility is $(\Omega_0, \delta) = 0$ for some root $\delta \in \Delta(X)$; we prove that this cannot happen in the next section.

Later on we shall also need the following simple statement:

Lemma 4.5. The vector field $v(\sigma)$ on the open set $U = w_E^{-1}(n, n + 1)$ extends continuously to the closure \overline{U} of U in $w_E^{-1}([n, n + 1])$, and is transversal to the boundary wall where $w_E = n$.

Proof. While A_+ and A_- may change as $w_E(\sigma)$ approaches n from above, their phases extend continuously (becoming equal at the wall $w_E(\sigma) = n$). Therefore, locally we can extend equations (14) and (15) continuously to \overline{U}. Locally, the equation of the wall is given by $\text{Im} Z(A_+) / Z(A_-) = 0$. Since ζ becomes orthogonal to the ray spanned by $Z(A_\pm)$ at the wall, it follows with the same sign considerations as used in the proof of Lemma 4.3 that the derivative of the equation with respect to $v(\sigma)$ does not vanish. In other words, the vector field is transversal to the wall. □

We will use the following consequence:

Lemma 4.6. With the same notation as in the previous lemma, let $W \subset w_E^{-1}(n)$ be an integral wall bordering U, and let σW. Then there is a neighborhood $V \subset \overline{U}$ of σ with a homeomorphism $V \rightarrow (V \cap W) \times [0, \epsilon)$ that identifies the flow on V with the flow on the right-hand side induced by the constant flow $(V \cap W)$ and the obvious flow $-\frac{d}{dt}$ on $[0, \epsilon)$.

Proof. We choose a neighborhood $V' \subset W$ of σ small enough such that the inverse flow, associated to $-v$, exists until time ϵ for all $\sigma' \in V'$. Since v is transversal to the wall, and since the flow is locally unique, the flow induces and injective local homeomorphism $V' \times [0, \epsilon) \hookrightarrow \overline{U}$.
We continue to assume that X is a K3 surface of Picard rank $\rho(X) = 1$, and that E is a semirigid object with $\text{Hom}(E, E) = \mathbb{C}$. In this section we will prove that the flow constructed in the previous section cannot fall down any of the holes $Q^+(X) \setminus Q^+_0(X)$. More precisely, suppose that the vector field $v(\sigma)$ gives rise to a flow (17) defined on an interval $[0, t_0)$. As we proved in the last section, the underlying flow of central charges $\Omega(t)$ extends to a flow

$$\Omega(t) : [0, t_0] \rightarrow Q^+(X).$$

In this section we prove that in fact $\Omega_0 = \Omega(t_0) \in Q^+_0(X)$.

Lemma 5.1. There exists $\varepsilon > 0$ with the following property: for all $t \in [t_0 - \varepsilon, t_0]$, the vector $\zeta(t)$ lies in the interior of the convex cone spanned by $Z(A_+)$ and $-Z(A_-)$ at time $t = t_0 - \varepsilon$.

Proof. We write $\tilde{\phi}(t)$ for the phases $\phi(A_\pm)$ as a function of t, and recall that $\tilde{\phi}^+ < \tilde{\phi}^- + 1$. We have to show that

$$\psi(t) := \frac{1}{\pi} \arg(\zeta(t))$$

can be chosen to lie strictly between $\tilde{\phi}^+(t_0 - \varepsilon)$ and $\tilde{\phi}^-(t_0 - \varepsilon) + 1$, see also figure 4. By Lemma 4.3, the functions $\tilde{\phi}^+(t)$ and $\tilde{\phi}^-(t)$ are bounded monotone increasing and decreasing, respectively, and thus extend to continuous function on $[0, t_0]$. By definition of $\zeta(t)$, we have

$$\tilde{\phi}^+(t) < \psi(t) = \frac{1}{2}(\tilde{\phi}^+(t) + \tilde{\phi}^-(t) + 1) < \tilde{\phi}^-(t) + 1$$

for all $0 \leq t \leq t_0$. The claim then follows by continuity. □

Assume for a contradiction that $(\Omega_0, \delta) = 0$ for some root $\delta \in \Delta(X)$. Write Z_0 for the central charge $Z(\cdot) = (\Omega_0, \cdot)$.

\begin{figure}[h]
\centering
\includegraphics[width=0.5\textwidth]{figure4}
\caption{Restraining $\zeta(t)$ as t approaches a boundary point}
\end{figure}
Lemma 5.2. Consider a sufficiently small neighbourhood V of Z_0 in $\mathcal{P}^+(X)$, and let $U \subset \text{Stab}_{\text{red}}(X)$ be a connected component of its inverse image. Then there is an object S of class $v(S) = \delta$ that is stable for all stability conditions in U.

Proof. For a generic stability condition, there is a unique stable object of class δ, up to shift. Therefore, it is enough to choose V such that its preimage does not intersect any walls for the class δ.

Any Jordan-Hölder factor of S would have to be a spherical class δ'. But a simple geometric argument in $\mathcal{N}(X)$ shows that for Z sufficiently close to Z_0, we have $|Z(\delta)| < |Z(\delta')|$ for every class $\delta' \in \Delta(X)$, a contradiction. □

Furthermore, we have local finiteness of walls near such a hole:

Lemma 5.3. Let $[\phi_1, \phi_2]$ be an interval of length less than 2, and $\| \cdot \|$ some norm on $\mathcal{N}(X) \otimes \mathbb{R}$. Then there exists $\epsilon > 0$ with the following property: if $V_{\epsilon, \phi_1, \phi_2} \subset \mathcal{P}^+_0(X)$ is the subset of central charges Z satisfying

$$\|Z - Z_0\| \leq \epsilon \quad \text{and} \quad Z(\delta) \in \mathbb{R}_{<0} \cdot e^{i\pi\phi} \text{for some } \phi \in [\phi_1, \phi_2],$$

and if $U_{\epsilon, \phi_1, \phi_2}$ is any connected component of the preimage of $V_{\epsilon, \phi_1, \phi_2}$, then there are only finitely many (\pm)-walls intersecting $U_{\epsilon, \phi_1, \phi_2}$.

Here $\| \cdot \|$ also denotes the induced operator norm on $\text{Hom}(\mathcal{N}(X), \mathbb{C})$.

Proof. Given a stability condition σ, recall that the mass of our object E with respect to σ is defined by

$$m_E(\sigma) := \sum_i |Z(A_i)|.$$

From the support condition it follows easily that m_E is a continuous function on $\text{Stab}(X)$ (see proof of [Bri07, Proposition 8.1]). Further, we make the following

Claim: The mass $m_E(\sigma)$ is bounded on $U_{\epsilon, \phi_1, \phi_2}$.

To prove the claim, first note that by compactness, it evidently holds on the intersection U_N of $U_{\epsilon, \phi_1, \phi_2}$ with the set defined by $|Z(\delta)| \geq \frac{1}{N}$ for any $N > 0$. We choose N large enough such that U_N contains central charges Z such that $Z(S)$ attains any possible phase $\phi \in [\phi_1, \phi_2]$. From the proof of the support property for $\text{Stab}(X)$, we can deduce that there exists a constant K such that

$$|Z(v)| \geq K\|v\|$$

(18)

for all $v \in \mathcal{N}(X)_Z$ with $v^2 \geq -2$ with $v \neq \pm \delta$, and all $Z \in V_{\epsilon, \phi_1, \phi_2}$. Now let $\sigma_1 = (P_1, Z_1), \sigma_2 = (P_2, Z_2)$ be two stability conditions that are contained in the same chamber for E, and that satisfy $|Z_2(\delta)| \leq |Z_1(\delta)|$. Let A_i be the HN filtration
quotients of E in the interior of the chamber. Then

$$m_E(\sigma_2) = \sum_{i=1}^{m} |Z_2(A_i)| \leq \sum_i |Z_1(A_i)| + \sum_{i: \nu(A_i) \neq m} |(Z_2 - Z_1)(A_i)|$$

$$\leq m_E(\sigma_1) + \sum_{i: \nu(A_i) \neq m} \|Z_2 - Z_1\| \cdot \|\nu(A_i)\|$$

$$\leq m_E(\sigma_1) + \|Z_2 - Z_1\| \frac{1}{K} m_E(\sigma_1) \leq m_E(\sigma_1) e^{\frac{\|Z_2 - Z_1\|}{K}}$$

It follows by continuity and induction on the number of chambers traversed that if σ_1, σ_2 can be connected by path of length D along which $|Z(S)|$ is decreasing, then

$$m_E(\sigma_2) \leq m_E(\sigma_1) e^{\frac{D}{K}}$$

Now let M be the maximum of m_E on the compact set U_N. Any point in $\sigma' \in U_{e,\phi_1,\phi_2}$ can be reached from a point in U_N along a path of bounded length $\leq 2\epsilon$ along which $|Z(S)|$ is decreasing: indeed, the subset of U_{e,ϕ_1,ϕ_2} where $Z(S)$ has constant phase is connected, and (by assumption on N) contains a point σ'' that is also in U_N; then we can just use the straight line segment between the central charges Z'' and Z' of σ'' and σ', respectively. It follows that m_E is bounded on U_{e,ϕ_1,ϕ_2} by $Me^{\frac{D}{K}}$, proving the claim.

On the other hand, there are only finitely many $v \in N(X)$ with $v^2 \geq -2$, such that $|Z(v)| \leq Me^{\frac{D}{K}}$ can hold for any $Z \in V_{e,\phi_1,\phi_2}$. Therefore, there are only finitely many classes that can appear as the Mukai vector of a stable factor of E for any stability condition in U_{e,ϕ_1,ϕ_2}. The loci where pairs of these classes have equal phase defines a finite set of walls, outside of which the HN filtration of E has to be constant.

Lemma 5.4. Let $\sigma \in \text{Stab}_{\text{red}}(X)$ be a stability condition whose central charge Z is sufficiently close to Z_0, such that $Z(S)$ is contained in the interior of the sector bounded by $-Z(A_+)$ and $Z(A_-)$. Then we can deform σ along a path on which S remains stable, which does not meet any integral walls, and such that at the endpoint, $Z(S)$ and $Z(A_-)$ are aligned.

Proof. We will use Lemmas 5.2 and 5.3. Choose $\epsilon > 0$ sufficiently small. Then for any $\sigma = (Z, P)$ near the hole with $Z \in B_\epsilon(Z_0)$ in an ϵ-neighbourhood of Z_0,

- S is σ-stable,
- the inequality (18) holds, and
- there is no wall separating σ from the hole Z_0.

From the support condition (18) we deduce for $Z, Z' \in B_\epsilon(Z_0)$ and $v^2 \geq -2, v \neq \pm \delta$:

$$\frac{|Z'(v) - Z(v)|}{|Z(v)|} \leq \frac{\|Z - Z'\| \|v\|}{K \|v\|} = \frac{\|Z - Z'\|}{K}$$

Hence we can always increase the phase of $Z(S) = Z(\delta)$ arbitrarily fast compared to the phases of $Z(A_\pm)$.

Consider a path within this ϵ-neighborhood that increases the phase of $Z(S)$ until it aligns with $Z(A_-)$; by Lemma 5.3, we can choose it to avoid any walls other than those whose closure contains Z_0.

Assume for contradiction that this path ends on or crosses an integral wall W. Consider the two objects A_{\pm} at a point shortly before hitting W. The wall is given by $\text{Im} \frac{Z(A_+)}{Z(A_-)} = 0$; this is equivalent to the condition that the (always one-dimensional) kernel of Z is contained in the span of $v(A_+), v(A_-)$. By the choice of our path, the closure of W contains Z_0 with kernel $\mathbb{R} \cdot v(S)$. Therefore, $v(S)$ is a linear combination of $v(A_{\pm})$, and $Z(S)$ also aligns with $Z(A_{\pm})$ along the wall W.

However, by Lemma 3.8 and Lemma 3.7, the objects A_{\pm} would have to be two simple objects on the wall; however, $S \neq A_{\pm}$ is also simple, a contradiction to Lemma 3.3. This proves the claim. \hfill \Box

Proposition 5.5. Consider a stability condition σ with $w_{E}(\sigma) \notin \mathbb{Z}$. Then the flow of the vector field $v(\sigma)$ starting at σ ends at a stability condition of integral width $\lfloor w_{E}(\sigma) \rfloor$.

Proof. Assume otherwise. By the results of section 4, this means that the path $\Omega(t) \in \mathbb{Q}^+(X)$ leads to a point Ω_0 as above. By Lemma 5.2, there is a spherical object S with $Z_0(S) = 0$ that is $\sigma(t)$-stable for t sufficiently close to t_0. Up to shift, we may assume that $(\Theta,s) > 0$ along the path. Assume that $t < t_0$ is sufficiently close to t_0, such that Lemma 5.1 applies. Under the assumptions, $Z_0(S) - Z(S) = -Z(S)$ is an integral of a positive multiple of $\zeta(t)$; the Lemma thus implies that $Z(S)$ lies in the interior of the cone spanned by $-Z(A_+)$ and $Z(A_-)$, see figure 5. Up to replacing S via an even shift, we may also assume that S, A_- and A_+ are all contained in a common heart.

Now deform this stability condition by deforming the central charge along a path that remains sufficiently close to Z_0, and ends at a central charge for which $Z(S)$ and $Z(A_-)$ align, see Lemma 5.4. Note that while the objects A_{\pm} may change along the path, by Lemma 4.1 they each remain in the same half $C^{\pm}(\sigma)$ of the negative cone.

At the endpoint of the path, there are two possibilities: If S and A_- are both stable, then $(S,A_-) \geq 0$ implies that S and A_- lie in opposite cones. Otherwise,
we are on a $-k$-wall, and there is a short exact sequence

$$0 \rightarrow S^{\oplus \kappa} \rightarrow A_{-} \rightarrow T \rightarrow 0$$

with T is quasistable. After crossing this wall, T will be the new A_{-}, so Lemma 3.4 gives $(T, A_{+}) > 0$. Since we also have $(T, S) > 0$ it follows that A_{+} and S lie in the same cone, and A_{-} in the opposite one. Thus, in both cases S is in the same cone as A_{+}. By the construction of the sign $\epsilon(\sigma)$, this means that $(v(\sigma), S)$ is pointing in the direction of $-\zeta$, in contradiction to $Z(S) \rightarrow 0$ as $t \rightarrow t_{0}$.

6. Conclusion of the proof

In this section we complete the proofs of our main Theorems. Take assumptions as in the previous sections: thus X is a complex K3 surface of Picard rank $\rho(X) = 1$, and $E \in D(X)$ is a (semi)rigid object satisfying $\text{Hom}_{X}(E, E) = \mathbb{C}$.

Retraction onto width 0. The aim of this section is to combine the flows of Proposition 5.5 defined on $w_{E}^{-1}(n, n + 1)$ for all n to retract $\text{Stab}_{\text{red}}(X)$ onto a subset of the geometric chamber.

We write $W_{\leq n}$, $W_{= n}$, $W_{< n}$ and $W_{(n, n + 1)}$ for the subsets of $\text{Stab}_{\text{red}}(X)$ defined by $w_{E} \leq n$, etc. (Note that W_{\leq} is a strict subset of $\cup_{n \in \mathbb{Z}} W_{= n}$, as we make no assumptions about quasistability of E in $W_{= 0}$.)

Lemma 6.1. The inclusion $W_{\leq n} \subset W_{< n + 1}$ is a deformation retract.

Proof. Consider the map $r_{n}: W_{(n, n + 1)} \setminus W_{\leq n} \rightarrow W_{= n}$ that sends any stability condition σ with $w_{E}(\sigma) \in (n, n + 1)$ to the endpoint of the flow of the vector field v starting at σ. Lemma 4.6 shows that the identity on $W_{\leq n}$ extends this map continuously to give a retract $W_{< n + 1} \rightarrow W_{\leq n}$.

We claim that the homotopy between the identity on $W_{< n + 1}$ and r_{n} is induced by the flow itself, after renormalizing such that w_{E} to have constant derivative -1, and continuing it stationary once the flow reaches $W_{= n}$; we will now explain the details.

Let $U \subset W_{(n, n + 1)} \times \mathbb{R}_{\geq 0}$ be the union of all maximal intervals of definition of the flow of $v(\sigma)$, and let

$$\text{Flow}: U \rightarrow W_{(n, n + 1)}$$

be the the induced continuous map: $\text{Flow}(\sigma, t)$ is the position of the flow line starting at σ after time t. It follows from the construction of the flow and Lemma 4.3 that the map

$$\Gamma: U \rightarrow W_{(n, n + 1)} \times [0, 1), \quad (\sigma, t) \mapsto (\sigma, w_{E}(\sigma) - w_{E}(\text{Flow}(\sigma, t)))$$

is a homeomorphism onto its image

$$V = \{(\sigma, s): 0 \leq s \leq w_{E}(\sigma) - n\} \subset W_{(n, n + 1)} \times [0, 1).$$

Thus we can defined a normalized flow

$$\text{Flow}': W_{(n, n + 1)} \times [0, 1] \rightarrow W_{(n, n + 1)}$$

as follows: first set $\text{Flow}’|_V = \text{Flow} \circ \Gamma^{-1}$, and then extend it continuously by $\text{Flow}’(\sigma, s) = r_n(s)$ for $(\sigma, s) \notin V$. This is a homotopy between the inclusion $W_{(n, n+1)} \hookrightarrow \text{Stab}_{\text{red}}(X)$ and r_n.

Another application of Lemma 4.6 then shows that this homotopy extends continuously to $W_{<n+1}$, as desired. □

Lemma 6.2. For each $n \geq 0$, there is a subset $U \subset W_{<n+1}$, containing $W_{\leq n}$, such that U is a deformation retract of $W_{\leq n+1}$.

Proof. The set $W_{=n+1}$ is a locally finite set of walls. Each wall is bordering $W_{<n+1}$ on one side by Lemma 3.14. In other words, $W_{\leq n+1}$ is a manifold with boundary, and the boundary is $W_{=n+1}$. Therefore, we can find a tubular neighbourhood homeomorphic to $B \times [0, \epsilon)$ for each component $B \subset W_{=n+1}$, such that they are pairwise disjoint, and let U be the complement of $\bigcup B \times [0, \frac{1}{2}\epsilon)$. □

Combining Lemmas 6.1 and 6.2, we obtain a retraction $R_n: W_{\leq n+1} \to W_{\leq n}$, and a homotopy $H_n: [0, 1] \times W_{\leq n+1} \to W_{\leq n+1}$ between the identity and R_n.

Lemma 6.3. The subset $W_{=0} \subset \text{Stab}_{\text{red}}(X)$ is a deformation retract.

Proof. We define a left inverse R_∞ to the inclusion by the infinite composition $R_\infty = R_0 \circ R_1 \circ R_2 \circ \cdots : \text{Stab}_{\text{red}}(X) \to W_{=0}$.

Of course, on each $W_{<n+1}$, this map is a finite composition and continuous. It follows that it is well-defined and continuous on $\text{Stab}_{\text{red}}(X)$.

Similarly, to define the homotopy choose any infinite decreasing sequence $t_0 = 1 > t_1 > t_2 > \cdots > 0$; we can define a homotopy H_∞ between the identity and R_∞ as the infinite composition of the homotopies that apply H_n in the interval $[t_{n+1}, t_n]$. The same argument as before shows that H_∞ is well-defined and continuous after restriction to $[0, 1] \times W_{\leq n+1}$, and therefore well-defined and continuous on all of $[0, 1] \times \text{Stab}_{\text{red}}(X)$. □

Detour. Before continuing the main proof, we point out two consequences for spherical objects; they may be of independent interest, e.g. in relation to [Huy12].

Corollary 6.4. Let $S \in D(X)$ be a spherical object. Then there exists a stability condition $\sigma \in \text{Stab}^\dagger(X)$ such that S is σ-stable.

Proof. This is immediate from Lemma 6.3, applied to $E = S$. □

Remark 6.5. Based on the above Corollary, one can also prove the following statement: $\text{Aut}^0 D(X)$ acts transitively on the set of spherical objects S with fixed Mukai vector $v(S) = \delta$.
(As a consequence, Aut $D(X)$ acts transitively on the set of spherical objects in $D(X)$ if and only if if $\text{Aut}^+ H^*(X, \mathbb{Z})$ acts transitively on the set $\Delta(X)$ of spherical classes. Similar results have been proved for spherical vector bundles and mutations in [Kul89].)

By the above Corollary, our claim follows if for any wall W where stability for the class δ changes, we can prove that the two stable objects E^+, E^- of class $v(T^\pm) = \delta$ on either side of the wall are related by $T^- = \Phi(T^+)$, for some autoequivalence in $\Phi \in \text{Aut}^0 D(X)$. This can, for example, be shown with the same arguments as in the proof of [BM13, Proposition 6.8].

Geometric stability conditions. We now fix our object E to be some skyscraper sheaf $E = \mathcal{O}_x$. To prove Theorem 1.3 it remains to prove that $W_{=0}$ is connected and contractible. In fact, in the case of Picard rank 1, the interior of the subset $W_{=0}$ coincides with the subset of geometric stability conditions, as we now demonstrate.

Lemma 6.6. Assume that $F \in \text{Coh} X$ is a semirigid sheaf. Then either $F \cong \mathcal{O}_x$ for some $x \in X$, or the support of F is all of X.

Proof. Otherwise, F has one-dimensional support, and $v(F) = (0, D, s)$ with D an effective curve class. But this is impossible, since $\text{Pic}(X) = \mathbb{Z}$ implies that $(v(F), v(F)) = D^2 > 0$ contradicting the assumption that F is semirigid. □

Remark 6.7. Combined with Lemma 2.4, this immediately shows that any rigid sheaf is automatically torsion-free.

The following is due to Hartmann [Har12, Proposition 7.9].

Lemma 6.8. Given $\phi \in \text{Aut}^+ H^*(X, \mathbb{Z})$, there exists an autoequivalence $\Phi \in \text{Aut} D(X)$ whose induced map in cohomology is given by ϕ, and such that Φ preserves the connected component $\text{Aut}^1(X)$.

Lemma 6.9. Suppose $\sigma \in \text{Stab}^*(X)$ is such that some \mathcal{O}_x is stable. Then all skyscraper sheaves are stable of the same phase.

Proof. We first assume that σ is not on a wall with respect to the class $v(\mathcal{O}_x)$.

By definition of $\text{Stab}^*(X)$, there is an autoequivalence $\Phi \in \text{Aut} D(X)$ such that $\Phi(\sigma) \in \text{Stab}^1(X)$. By the previous Lemma, we may assume that Φ acts as the identity on cohomology; in particular, it leaves the class $v(\mathcal{O}_x)$ invariant. Composing with squares of spherical twists, we may further assume that $\Phi(\sigma)$ is in the geometric chamber.

Then the stable objects in σ of class $v(\mathcal{O}_x)$ and the correct phase are exactly the objects $E_y = \Phi^{-1}(\mathcal{O}_y)$ for $y \in X$. The objects E_y are pairwise orthogonal. By assumption one of these objects is \mathcal{O}_x; hence all the others have support disjoint from x. Using Lemma 2.4 repeatedly, it follows that each cohomology sheaf of E_y is rigid or semirigid, and at most one is semirigid. By Lemma 6.6, this is only possible
if E_y the shift of a skyscraper sheaf: $E_y \cong \mathcal{O}_z[n]$ for some $z \in X$ and $n \in \mathbb{Z}$. Using the representability of Φ as a Fourier-Mukai transform, standard arguments (see [Huy06, Corollary 5.23 and Corollary 6.14]) show that n is independent of y, and that Φ is the composition of an automorphism of X with a shift. In particular, all \mathcal{O}_y are stable of the same phase.

Finally, if σ is on a wall, then the previous arguments show that σ is in the boundary of the geometric chamber. However, it follows from [Bri07, Theorem 12.1] that in the case of Picard rank one, every wall of the geometric chamber destabilizes every skyscraper sheaf \mathcal{O}_x. □

Final steps. We can now complete the proofs of our main Theorems.

Lemma 6.10. Assume that the width function w is defined by a skyscraper sheaf of a point $E = \mathcal{O}_x$. Then $W_{=0}$ is contractible.

Proof. By the previous Lemma, the set $W_{=0}$ coincides with the closure of the geometric chamber. Recall from Theorem 2.1 that is interior is homeomorphic to $\mathbb{C} \times \mathcal{V}(X)$. It is immediate to see that $\mathcal{V}(X)$ is contractible. With arguments as in Lemma 6.2 one also shows that there is an open subset of the geometric chamber that is a deformation retract of its closure $W_{=0}$. □

Proof of Theorem 1.3. The result is immediate from Lemmas 6.10 and 6.3. □

Proof of Theorem 1.4. As discussed in the introduction, since $\text{Stab}^*(X)$ is simply-connected, there is an isomorphism

$$
\pi_1(\mathcal{P}_0^+(X)) \cong \text{Aut}^0 D(X).
$$

Recall that $\pi_1(\mathcal{P}_0^+(X))$ is the product of $\pi_1(\text{GL}^+_2(\mathbb{R})) \cong \mathbb{Z}$ with the fundamental group of $\mathfrak{h}^0 \subset \mathfrak{h}$, which in turn is a free group generated by loops around the holes δ^2 (see equation (4) and the surrounding discussion).

By Proposition 2.2, these loops act by squares of spherical twists. Finally, from the definition of the $\text{GL}^+_2(\mathbb{R})$-action, it is obvious that the generator of $\pi_1(\text{GL}^+_2(\mathbb{R}))$ acts by an even shift. □

7. Relation with mirror symmetry

Return to the case of a general algebraic K3 surface X. We will describe a precise relation between the group of autoequivalences and the monodromy group of the mirror family implied by Conjecture 1.2.

Stringy Kähler moduli space. We start by reviewing the construction of an interesting subgroup of $\text{Aut} D(X)$, which we learnt about from Daniel Huybrechts. Let us write

$$
\text{Aut}^+_\text{CY} H^*(X) \subset \text{Aut}^+ H^*(X)
$$

for the subgroup of Hodge isometries ϕ whose complexification acts trivially on the line $H^{2,0}(\mathbb{C}) \subset H^*(X, \mathbb{C})$. This is equivalent to the statement that ϕ acts trivially
on the transcendental lattice \(T(X) := \mathcal{N}(X)^\perp \subset H^*(X, \mathbb{Z}) \): for any integral class \(\alpha \in T(X) \), the difference \(\phi(\alpha) - \alpha \) is integral, and in the orthogonal complement of both \(H^{2,0}(\mathbb{C}) \) and \(\mathcal{N}(X) \), and thus equals zero. In particular,

\[
\text{Aut}_\text{CY}^+ H^*(X) \subset \text{Aut} \mathcal{N}(X)
\]

is the subgroup of index two preserving orientations of positive definite two-planes.

Definition 7.1. We call an autoequivalence \(\Phi \in \text{Aut} D(X) \) Calabi-Yau if the induced Hodge isometry \(\varpi(\Phi) \) lies in the subgroup \(\text{Aut}_\text{CY} H^*(X) \).

Write \(\text{Aut}_\text{CY} D(X) \subset \text{Aut} D(X) \) for the group of Calabi-Yau autoequivalences. In the Appendix we explain how the Calabi-Yau condition can be interpreted as meaning that \(\Phi \) is an autoequivalence of the category \(D(X) \) as a Calabi-Yau category.

Now consider the quotient stack

\[
\mathcal{L}_\text{Kah}(X) = \text{Stab}_{\text{red}}^*(X)/ \text{Aut}_{\text{CY}}(X).
\]

The action of \(\mathbb{C} \) on \(\text{Stab}^*(X) \) induces an action of \(\mathbb{C}^* \) on \(\mathcal{L}_\text{Kah}(X) \) and we also consider the quotient

\[
\mathcal{M}_\text{Kah}(X) = \mathcal{L}_\text{Kah}(X)/\mathbb{C}^* \cong (\text{Stab}_{\text{red}}^*(X)/\mathbb{C})/(\text{Aut}_{\text{CY}}(X)/[2]),
\]

which we view as a mathematical version of the stringy Kähler moduli space of the K3 surface \(X \).

Remark 7.2. If Conjecture 1.2 holds then \(\text{Stab}_{\text{red}}^*(X) \) is the universal cover of \(\mathcal{L}_{\text{red}}(X) \), and there are isomorphisms

\[
\pi_1^\text{orb}(\mathcal{L}_\text{Kah}(X)) \cong \text{Aut}_{\text{CY}} D(X), \quad \pi_1^\text{orb}(\mathcal{M}_\text{Kah}(X)) \cong \text{Aut}_{\text{CY}} D(X)/[2].
\]

In particular, by Theorem 1.3, this is the case whenever \(\rho(X) = 1 \).

We have the following more concrete descriptions of these stacks

Proposition 7.3. There are isomorphisms

\[
\mathcal{L}_\text{Kah}(X) \cong Q_0^+(X)/ \text{Aut}_\text{CY}^+ H^*(X), \quad \mathcal{M}_\text{Kah}(X) \cong \Omega_0^+(X)/ \text{Aut}_\text{CY}^+ H^*(X).
\]

Moreover, these stacks are Deligne-Mumford and have quasi-projective coarse moduli spaces.

Proof. There is a short exact sequence

\[
1 \rightarrow \text{Aut}^0 D(X) \rightarrow \text{Aut}_{\text{CY}} D(X) \rightarrow \text{Aut}_{\text{CY}}^+ H^*(X) \rightarrow 1.
\]

Together with Theorem 1.1 this leads to the given isomorphisms. The stabilizer of \(\Omega \in Q_0^+(X) \) acts faithfully on \(\Omega^\perp \cap \mathcal{N}(X) \); since \(\text{Re} \Omega, \text{Im} \Omega \) span a positive definite 2-plane in \(\mathcal{N}(X) \otimes \mathbb{R} \), this lattice is negative definite, and thus has finite automorphism groups. Therefore, the stabilizer of \(\Omega \in Q_0^+(X) \) is finite. Also recall from above that \(\text{Aut}_{\text{CY}}^+ H^*(X) \) has finite index two in \(\text{Aut} \mathcal{N}(X) \). Thus, the Baily-Borel theorem applies, and the above stacks have quasi-projective coarse moduli spaces. \(\square \)
Mirror families. We now relate the space $\mathcal{M}_{\text{Kah}}(X)$ to moduli spaces of lattice-polarised K3 surfaces. For this we need to make

Assumption 7.4. Suppose that the transcendental lattice $T(X)$ contains a sub-lattice isomorphic to the hyperbolic plane.

This condition is automatic if $\rho(X) = 1$ cf. [Dol96, Section 7]. Note that the lattice $N(X)$ contains a canonical sublattice $H = H^0(X, \mathbb{Z}) \oplus H^4(X, \mathbb{Z})$ isomorphic to the hyperbolic plane. Given the assumption, we can choose another such sublattice $H' \subset T(X)$. Then there are orthogonal direct sums

$$N(X) = H \oplus M, \quad T(X) = H' \oplus M^\vee,$$

where $M = \text{NS}(X)$ and M^\vee is some lattice of signature $(1, 18 - \rho)$.

Now recall the notion of an ample M^\vee-polarized K3 surface from [Dol96, Section 1]; this includes the data of a K3 surface \tilde{X} together with a primitive isometric embedding $\rho: M^\vee \to \text{NS}(\tilde{X})$ whose image contains an ample class. (The notion depends on additional choices of data; different choices are equivalent up to pre-composing the embedding ρ with an isometry of M^\vee.)

Remark 7.5. There is no separated moduli stack of ample M^\vee-polarized K3 surfaces for the following well-known reason: Consider a smooth family $Y \to B$ of K3 surfaces over a one-dimensional base B, and assume that a special fiber $b \in B$ contains a $(−2)$-curve C that does not deform as an algebraic class. Then flopping at C produces a non-isomorphic family $\tilde{Y} \to B$ that is isomorphic to Y after restricting to the complement of b. Note that the central fibers are isomorphic as K3 surfaces, but not isomorphic as ample M^\vee-polarized K3 surfaces.

Lemma 7.6. The orbifold $\mathcal{M}_{\text{Kah}}(X)$ admits a family of M^\vee-polarized K3 surfaces, and its coarse moduli space is the coarse moduli space M^\vee-polarized K3 surfaces.

Proof. Consider the orthogonal complement $L = H^\perp \subset H^*(X, \mathbb{Z})$. Note that L is isomorphic to the K3 lattice $H^2(K3, \mathbb{Z})$. We have an orthogonal decomposition (not necessarily a direct sum)

$$L = H \oplus M \perp M^\vee.$$

In particular, inside L we have $(M^\vee)^\perp = N(X)$. Note also that $\text{Aut}_{\text{CY}} H^*(X, \mathbb{Z})$ can be identified with the group of automorphisms of L which fix every element of M^\vee.

This is exactly the situation considered by Dolgachev in [Dol96, Section 6]: in terms of his notation $N(X)$ becomes identified with the lattice N, the space $\mathbb{P}Q_0^0(X)$ becomes D_M^0, and the group $\text{Aut}_{\text{CY}} H^*(X, \mathbb{Z})$ becomes $\Gamma(M^\vee)$. In particular, the statement regarding coarse moduli is proved there. In order to construct a family, let us choose in addition a class $l \in M^\vee$ with $l^2 > 0$ such that l is not orthogonal to any spherical class $\delta \in L \setminus N(X)$; requiring l to be ample avoids the non-Hausdorff issue explained above.
Now we use the strong global Torelli theorem: given $\Omega \in \mathcal{Q}^+_0(X)$, there exists a unique K3 surfaces \hat{X} with a marking $L \curvearrowright H^2(\hat{X}, \mathbb{Z})$ such that $H^{2,0}(X, \mathbb{C})$ is spanned by Ω, and such that l is an ample class. These fit together into a family over the period domain, on which $\text{Aut}_{\text{CY}} D(X)$ acts. Taking the quotient by this action produces a family over $\mathcal{M}(X^\vee)$, and remembers the marking by the sublattice M^\vee as claimed. □

Following Dolgachev, we consider this family of M^\vee-polarised K3 surfaces as a mirror family to the family of (ample) M-polarized K3 surfaces, of which our surface X is a member. Thus in the case $\rho = 1$ we can conclude that the group $\text{Aut}_{\text{CY}} D(X)/[2]$ is isomorphic to the fundamental group of the base of the mirror family. Alternatively, note that the full group $\text{Aut}_{\text{CY}} D(X)$ is isomorphic to the fundamental group of this augmented mirror moduli space $L_{\text{Kah}}(X)$ parameterizing pairs consisting of an ample M^\vee-polarized K3 surfaces together with a choice of nonzero holomorphic 2-form.

Remark 7.7. The lattice M^\vee and its embedding in the K3 lattice L depends on our choice $H^\vee \subset T(X)$. Different choices lead to different equivalence classes of embeddings and hence different families of M^\vee-polarised K3 surfaces. The bases of these families are all identified with the space $\mathcal{M}_{\text{Kah}}(X)$, but as families of M^\vee-polarised K3 surfaces they are different. All should be considered as mirror families of X. It is easy to check that the families of derived categories given by these different mirror families are all the same.

Remark 7.8. Finally, we want make to make explicit a relation of Conjecture 1.2 to Homological Mirror Symmetry. Given an ample M^\vee-polarized K3 surface \hat{X}, choose a K"ahler form ω with a very general class $[\omega] \in M^\vee \otimes \mathbb{R}$. Consider (\hat{X}, ω) as a symplectic manifold, and denote its symplectic mapping class group by $\text{Map}(\hat{X}, \omega)$.

The monodromy representation induces a map
$$\pi_1(\mathcal{L}(X^\vee)) \to \text{Map}(\hat{X}, \omega).$$
Moreover, if ω is sufficiently generic, then we can identify $\text{Map}(\hat{X}, \omega)$ with the mapping class group of diffeomorphism preserving the embedding $M^\vee \hookrightarrow H^2(\hat{X})$; it follows that the above map is an isomorphism of groups.

The symplectic mapping class group acts on the Fukaya category of (\hat{X}, ω) via autoequivalences. If both Conjecture 1.2 and Homological Mirror Symmetry hold, then $\text{Map}(\hat{X}, \omega)$ is equal to the group of CY-autoequivalences of the Fukaya category.

Appendix A. Calabi-Yau Autoequivalences

In this Appendix we explain that an autoequivalence $\Phi \in \text{Aut} D(X)$ is Calabi-Yau in the sense used above precisely if Φ respects the Serre duality pairings
\begin{equation}
\text{Hom}^i(E, F) \times \text{Hom}^{-i}(F, E[2]) \to \mathbb{C}
\end{equation}
induced by a choice of holomorphic volume form $\omega \in H^{2,0}(X, \mathbb{C})$.

A proof would be more natural in the setting of dg-categories; thus we restrict ourselves to a sketch of the arguments. First we recall some basic definitions and results on Serre functors from [BO01, Section 1]:

- A graded autoequivalence is an autoequivalence Φ together with a natural transformation $\Phi \circ [1] \Rightarrow [1] \circ \Phi$. Any exact autoequivalence has the structure of a graded autoequivalence.
- A Serre functor is a graded autoequivalence S together with functorial isomorphisms
 \[\text{Hom}(A, B) \cong \text{Hom}(B, S(A))^* \]
 satisfying an extra condition.
- A Serre functor is unique up to a canonical graded natural transformation.
- Given an equivalence Φ, there is a canonical natural isomorphism
 \[\Phi \circ S \Rightarrow S \circ \Phi. \]

Let us define a Calabi-Yau-2 category to be a triangulated category together with natural isomorphism $\tau : [2] \Rightarrow S$, where S is a Serre functor. By the canonical uniqueness of Serre functors, this is equivalent to specifying functorial Serre duality pairings as in (19).

A graded autoequivalence acts on the set of natural transformations $[2] \Rightarrow S$ via conjugation, and the given natural transformations $\Phi \circ [2] \Rightarrow [2] \circ \Phi$ and $\Phi \circ S \Rightarrow S \circ \Phi$. From the construction of the latter transformation, it follows that Φ leaves τ invariant if and only if it respects the Serre duality pairings (19).

On the other hand, the induced actions of Φ on the cohomology $H^*(X, \mathbb{C})$ of X and the Hochschild homology of $D(X)$ are compatible with the HKR isomorphism, see [MS09, Theorem 1.2]. Therefore, Φ is Calabi-Yau in the sense of Definition 7.1 if and only if it leaves the second Hochschild homology group (20)

\[\text{HH}_2(X) = \text{Hom}_{D(X \times X)}(\mathcal{O}_\Delta[2], \omega_\Delta[2]) \]

invariant.

Passing to Fourier-Mukai transforms induces a natural map

\[\text{Hom}_{D(X \times X)}(\mathcal{O}_\Delta[2], \omega_\Delta[2]) \to \text{Hom}([2], S), \]

compatible with the action of Φ. While it is not true (without passing to dg-categories) for any pair of kernels that the above map is an isomorphism, it does hold in our situation: both sides are (non-canonically) isomorphic to scalars \mathbb{C}, and the map is non-trivial. Thus, Φ is Calabi-Yau in the sense of Definition 7.1 if and only if it respects the natural transformation $[2] \Rightarrow S$, or, equivalently, respects the Serre duality pairings (19).

References

School of Mathematics and Maxwell Institute, The University of Edinburgh, James Clerk Maxwell Building, The King’s Buildings, Mayfield Road, Edinburgh, Scotland EH9 3JZ, United Kingdom

E-mail address: arend.bayer@ed.ac.uk
URL: http://www.maths.ed.ac.uk/~abayer/

Department of Pure Mathematics, The University of Sheffield, The Hicks Building, Hounsfield Road, Sheffield, England S3 7RH, United Kingdom.

E-mail address: t.bridgeland@shef.ac.uk
URL: http://www.tom-bridgeland.staff.shef.ac.uk/