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ABSTRACT. These lecture notes are an introduction to the space of Bridgeland
stability conditions on derived categories, based on lecture series by the author at
various summer schools. They are geared towards graduate students interested
in working on stability conditions. Besides many pictures and exercises we also
include a simpler proof of Bridgeland’s deformation result.

Preliminary version with many omissions, errors, and almost no motivation.
Comments are very welcome.

1. INTRODUCTION

Stability conditions on derived categories were introduced by Bridgeland in
[Bri07] in order to understand the work of Douglas on π-stability in supercon-
formal field theories [Dou02]. A SCFT as considered by Douglas depends both
on the complex structure on a Calabi-Yau threefold X and the choice of a Kähler
parameter. D-Branes in this theory can be understood as objects in the derived cat-
egory Db(X) of X , and in fact the SCFT knows Db(X) completely. A stability
condition in the sense of Bridgeland captures the additional structure on Db(X)
given by the choice of a Kähler parameter.

Despite what the previous paragraph might suggest, these notes give a purely
mathematical introduction to the space of Bridgeland stability conditions.

1.1. On these notes. These notes are intended for readers with some familiarity
of basic algebraic geometry1 and perhaps some previous exposure to derived cate-
gories.2 They are probably better described as trying to prepare the reader to work
with stability conditions, rather than an expository overview for bedtime reading.

Exercises marked with (*) require additional knowledge beyond basic algebraic
geometry knowledge or the material presented here (most often related to Fourier-
Mukai transforms).

The only part of our notes that might have a small claim of originality is perhaps
our proof of Bridgeland’s deformation result in section 5.5. I would like to thank
Dan Grayson for bringing his quite beautiful Harder-Narasimhan filtration to my
attention, on which our deformation proof is based. Both that proof and the entire
notes are based on the viewpoint that in order to understand stability conditions

Date: June 27, 2011.
1smooth projective curves, coherent sheaves, degree of a line bundle on a curve
2We do give a review of the aspects that are most relevant for stability conditions.

1



2 AREND BAYER

on derived categories, it is enough to understand stability conditions on abelian
categories, and to understand tilting of an abelian category at a torsion pair.3

2. STABILITY IN ABELIAN CATEGORIES

2.1. Stable vector bundles on algebraic curves. Stability in algebraic geometry
is a very classical concept, in the two (closely related) contexts of geometric in-
variant theory, and stability of vector bundles and coherent sheaves. We will say
nothing about the former, and take a short through the latter.

Let X be a smooth, projective curve over C (a compact Riemann surface). If E
is a vector bundle, it has two numerical invariants: the rank rk(E), and the degree4

deg(E). We define its slope to be the quotient

µ(E) =
deg(E)

rk(E)

its slope. In fact, this definition also makes sense for any coherent sheaf F on X ,
if we set µ(F) = +∞ for any torsion-sheaf F .

The following lemma, called the see-saw property, is extremely crucial:

Lemma 2.1.1. Let 0 → A → E → B → 0 be a short exact sequence coherent
sheaves on X . Then

µ(A) < µ(E) ⇔ µ(E) < µ(B)

µ(A) > µ(E) ⇔ µ(E) > µ(B)

This follows by simple algebra, but even more convincingly from the picture
in figure 1, where we have set Z( ) = i rk( ) − deg( ): The ordering of
slopes is equivalent to the ordering of the complex numbers Z( ) by their ar-
guments. By additivity of degree and rank on short exact sequence, we have
Z(E) = Z(A) + Z(B). The two cases correspond to the two possible orien-
tations of the parallelogram 0, Z(A), Z(E), Z(B) (and equality to the case of a
degenerate parallelogram).

Z(A)

Z(B)

Z(E)

FIGURE 1. See-saw property

3The author was partially supported by the NSF grant DMS-0801356/DMS-1001056.
4The degree of a vector bundle can be characterized by as follows: for a line bundle L ∼=

OX(
∑
aiPi), the degree is d(L) =

∑
i ai, and for higher-rank bundles it is determined by ad-

ditivity on short exact sequences.
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Remark 2.1.2. What we used in the above “proof by picture” are just two proper-
ties of the function Z:

(1) Z is additive on short exact sequences; in other words, Z is a group homo-
morphism Z : K(A)→ C from the K-group5 to C.

(2) The image of Z is contained in a half-plane in C, so that we can meaning-
fully compare the slopes of objects.

Definition 2.1.3. A vector bundle is slope-(semi-)stable if for all subbundles A ↪→
E we have µ(A) < (≤)µ(E).

Due to the see-saw property, we could ask equivalently that for all quotients
E � B we have µ(E) > (≥)µ(B).

Example 2.1.4. (1) Any line bundle is stable.
(2) Let L1 be a line bundle of degree one. An extension 0 → OX → E →

L1 → 0 of L1 by OX is stable if and only if the extension does not split.
Such extensions always exist when g > 1.

Lemma 2.1.5. If E, E′ are semistable and µ(E) > µ(E′), then Hom(E,E′) = 0.

Proof. Given a non-zero morphism φ : E → E′, consider the image imφ fitting
into the maps E � imφ ↪→ E′. By the semistability of E and E′, we get a
contradiction from µ(E) ≤ µ(imφ) ≤ µ(E′) < µ(E). 2

Classically, a lot of interest in stable vector bundles is due to the fact that sta-
bility allows the study of moduli of vector bundles via nicely behaved (finite type,
separated) moduli spaces. In particular, the moduli of stable vector bundles of
fixed Chern class is “bounded”, which is not true for the moduli of arbitrary vector
bundles: the bundlesOP1(n)⊕OP1(−n) form an unbounded set of vector bundles
or rank 2 and degree 0 on P1, i.e. there can never be a family of vector bundles pa-
rameterized by a scheme of finite type such that each of the above bundles appear
in the family. Further, one can construct a moduli space of (semi-)stable vector
bundles by geometric invariant theory.

However, for our purposes the existence of Harder-Narasimhan filtration is the
most interesting aspect:

Theorem 2.1.6. For any coherent sheaf F there is a unique increasing filtration

0 = F0 ⊂ F1 ⊂ F2 ⊂ · · · ⊂ Fn = F
such that the filtration quotients Fi/Fi−1 are semistable of slope µi, with µ1 >
µ2 > · · · > µn.

The beautiful proof we reproduce here is due to Dan Grayson, [Gra84] and will
apply in many similar situations. We will only prove the existence of the HN-
filtration—the uniqueness follows by purely formal arguments from Lemma 2.1.5.

Proof. To visualize the slope function, we again use the complex plane by setting
Z(F) = i rk(F)− deg(F).

5The K-group of an abelian category is the quotient of the free abelian group generated by its
objects by the relation [B] = [A] + [C] for any short exact sequence A ↪→ B � C.
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Consider the subset {Z(A) |A ⊂ F} of the complex plane, and let HZ(F) be
its convex hull. By Lemma 2.1.7, it is bounded from the left. As the image of Z
is contained in the discrete subset Z ⊕ iZ, it follows that there is a finite set of
extremal points 0 = v0, v1, . . . , vn = Z(F) of the set HZ(F) that lie on or to
the left the straight line through the origin containing Z(F) (i.e, the intersection
of HZ(F) with the half-plane lying on or to the left of the line is the convex hull
of v0, . . . , vn). Let Fi ⊂ F be an arbitrary subobject of F with Z(Fi) = vi. We
make the following claims:

(1) Fi ⊂ Fi+1

(2) The slopes µ(Fi+1/Fi) are decreasing.
(3) Fi+1/Fi is semistable.

0v1

v2

v3

v4 = Z(F)

FIGURE 2. The setHZ(F) and its extremal points

To prove claim (1), consider the intersection Fi ∩ Fi+1 ⊂ F and the span
Fi + Fi+1 ⊂ F of Fi,Fi+1 inside F . Since Z(Fi) and Z(Fi+1) are adjacent
extremal points of the set HZ(F), both Z(Fi ∩ Fi+1) and Z(Fi + Fi+1) lie on
the line segment vivi+1 or to the right of the straight line (vivi+1). On the other
hand, as Fi ∩ Fi+1 ⊂ Fi, the imaginary part of Z(Fi ∩ Fi+1) is bounded by
=Z(Fi ∩ Fi+1) ≤ =vi; similarly =Z(Fi + Fi+1) ≥ =vi+1; see fig. 3.

vi

vi+1

Z(Fi ∩ Fi+1)

Z(Fi + Fi+1)

FIGURE 3. The location of Z(Fi ∩Fi+1), Z(Fi +Fi+1) relative
to vi, vi+1

The short exact sequence

0→ Fi ∩ Fi+1 ↪→ Fi ⊕Fi+1 � Fi + Fi+1 → 0

implies
Z(Fi ∩ Fi+1) + Z(Fi + Fi+1) = vi + vi+1.
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As can be seen from the picture, this is only possible if Z(Fi ∩ Fi+1) = vi, i.e. if
Fi ∩ Fi+1 = Fi, i.e. if Fi is a subobject of Fi+1 .

The slope µ(Fi+1/Fi) is determined by the slope of the line segment vivi+1,
and claim (2) holds by convexity.

Finally, if A ⊂ Fi+1/Fi is a destabilizing subobject, consider its preimage
A ⊂ Fi+1. By additivity we have Z(A) = Z(A) + vi. As Z(A) has bigger slope
than Z(Fi+1/Fi) = vi+1 − vi, this means that Z(A) lies to the left of the straight
line (vivi+1), in contradiction to the convexity ofHZ(F). 2 As the proof shows,
the existence of an HN-filtration of F is equivalent to HZ(F) having only finitely
many extremal points on the left.

Lemma 2.1.7. Let F be a coherent sheaf on X . Then there exists an integer d ∈ Z
such that for any subsheaf F ′ ⊂ F we have

deg(F ′) ≤ d
2.2. Stability for quiver representations. In the previous section we used ex-
tremely few ingredients of the specific situation of the category CohX of coherent
sheaves on a curve:

(1) We have invariants rk(F), deg(F) that are additive on short exact se-
quences.

(2) They satisfy a positivity property given by rk(F) ≥ 0 and rk(F) = 0 ⇒
deg(F) > 0.

(3) Finally, we used the boundedness property of Lemma 2.1.7 and the dis-
creteness of rk,deg in the proof of the existence of HN-filtration.

It is easy to generalize this to other situations:

Definition 2.2.1. Given an abelian category A, we say Z is a stability function for
A if Z : K(A) → C is a group homomorphism from the K-group of A to C such
that for any 0 6= E ∈ A we have

Z(E) ∈ H =
{
z = m · eiπφ

∣∣∣m > 0, φ ∈ (0, 1])
}

The positivity property of rk,deg is replaced by the semi-closed half-plane H.
Then we can define the phase φ(E) of a non-zero object by φ(E) = 1

π arg(Z(E)) ∈
(0, 1], and we say an objectE is Z-semistable if the inequality φ(A) ≤ φ(E) holds
for all subobjects A ⊂ E.

Now consider a finite quiver Q = (Q0, Q1), i.e. a directed graph with vertices
Q0 = {0, . . . , n} and arrows Q1. We may also allow relations R; a relation is
a linear equation between directed paths starting and ending at the same vertex.
Suppressing R from the notation, let RepQ be the abelian category of its repre-
sentations.

Example 2.2.2. The Kronecker quiver P2 is given by two vertices {0, 1} and two
arrows x, y : 0 → 1. A representation V of P2 is a pair of vector spaces (V0, V1)
together with morphisms φx, φy : V0 → V1.
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Example 2.2.3. TheA1-quiver has two vertices {0, 1}with two morphisms x0, y0 : 0→
1 going from 0 to 1 and two morphisms x1, y1 : 1 → 0 going in the other direc-
tion; it has relations x1y0 = y1x0 and x0y1 = y0x1. A representation of A1

is a pair of vector spaces V0, V1 together with morphisms φ0, ψ0 : V0 → V1 and
φ1, ψ1 : V1 → V0 satisfying the relations φ1 ◦ψ0 = ψ1 ◦φ0 and φ0 ◦ψ1 = ψ0 ◦φ1.

Pick a complex numbers z0, . . . , zn ∈ H in the semi-closed upper half-plane
H =

{
R>0 · eiπφ

∣∣φ ∈ (0, 1]
}

. Then we can define a stability function Z by

Z(V ) =
n∑
i=0

dimVi · zi

The positivity properties of rank and degree are replaced by Z(V ) ∈ H, and
the boundedness property is evident from the fact that subrepresentations W of a
given representation V can only have a finite number of possible dimension vectors
(dimWi).

2.3. Exercises.

Exercise 1. (Schur’s Lemma) Let A be an abelian category and Z a stability
function. Assume that E is Z-stable; show that any non-zero endomorphism
φ ∈ End(E) is an automorphism.

When A is a linear category over an algebraically closed field k = k, it follows
that EndE consists only of scalars k · Id.

Exercise 2. (1) Consider the Kronecker quiver P2 of example 2.2.2, and sta-
bility conditions given by z0, z1 ∈ H.
(a) Show that if the phase of z1 is bigger than the phase of z0, then the

only stable objects are the two simple representations, i.e. the repre-
sentations with dimension vectors (1, 0) and (0, 1).

(b) Now assume that the phase of z0 is bigger than the phase of z1. Show
that the there is a 1:1-correspondence between isomorphism classes
of stable objects of dimension vector (1, 1) and points on P1.6

(2) Consider the same problem with Pn+1, the Kronecker quiver with n + 1
arrows and two vertices, and Pn.

(3) (*) For the second part of the above problem, consider the same situation
for the A1-quiver with relations of Example 2.2.3, and the blow-up X of
the affine plane A2

C at the origin.

Exercise 3. Let L1 be a line bundle of degree 1 on a smooth projective curve X .
Show that an extension 0→ OX → E → L1 is stable if and only if the extension
is non-split. (Note that such extensions exist for any L1 whenever the genus of X
is at least 2.)

6If you are familiar with the notion of moduli spaces in algebraic geometry, try to formulate the
precise moduli problem and prove that P1 is a moduli space of stable objects with dimension vector
(1, 1).
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Exercise 4. Show that the tangent bundle on P2 is slope-stable. (Note that to define
slope-stability for a torsion-free sheaf on a variety of dimension two or higher, one
only allows “saturated” subsheaves to test stability, i.e. subsheaves such that the
quotient is also torsion-free.)

Exercise 5. Show that in the construction of the proof of Theorem 2.1.6, the choice
of Fi with Z(Fi) = vi is actually unique.

3. DERIVED CATEGORIES AND T-STRUCTURES

3.1. Basics of derived categories. It is probably an exaggeration to call this sec-
tion even a crash-course on derived categories, but we do review some aspects of
its construction that are particularly important in the context of stability conditions.
For an expository overview we recommend [Căl05] instead, for details on derived
categories in general [Wei94], and for a summary of the construction in case of
Db(X) the first three chapters of [Huy06].

We start with an abelian category A, which could be
• the category CohX of coherent sheaves on a projective algebraic variety
X ,
• the category RepQ of finite-dimensional representations of a quiver Q.

Although this isn’t actually true,7 we will always pretend the category A has
“enough injectives” (i.e., any objects A can be embedded A ↪→ I into an injec-
tive object I).

Its bounded derived category Db(A) is constructed in three steps:
(1) We let Cb(A) be the category of bounded complexes: Objects are com-

plexes

E• = · · · → Ei →di Ei+1 →di+1
Ei+2 → . . .

with di+1 ◦ di = 0 and H i(E) = 0 for all but finitely many i, and mor-
phisms f • : E• → F • are morphism fi : E

i → F i that are commute with
the differential.

(2) The homotopy category Kb(A) has the same objects Cb(A), except that
two morphisms f •, g• : E• → F • are considered identical if the difference
f − g is homotopic to zero: i.e. there exist maps hi : Ei → F i−1 s.th.
fi − gi = d ◦ hi − hi+1 ◦ d.

(3) Db(A) is the category obtained by inverting quasi-isomorphisms: a mor-
phism f • is considered a quasi-isomorphism if f∗ : H i(E•) → H i(F •) is
an isomorphism for all i. Then morphisms in Db(A) are formal composi-
tions f−1 ◦ g where f is a quasi-isomorphism.

However, when actually working with derived categories one almost never has
to refer back to these definitions. Partly, this is due to the following fact:

7It is true for quasi-coherent sheaves on a projective variety, not for coherent sheaves. To remedy
this problem, it is better to define Db(X) by complexes of quasi-coherent sheaves for which every
cohomology sheaf is coherent. As this category is equivalent to Db(CohX), we can ignore this
distinction.
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Proposition 3.1.1. (1) If A• is any complex in Db(A) and I• is a complex
consisting of injectives, then

HomDb(A)(A
•, I•) = HomKb(A)(A

•, I•)

(2) If P • is a complex in Db(A) consisting of projective objects, andB• is any
complex, then

HomDb(A)(P
•, B•) = HomKb(A)(P

•, B•)

This fact is so useful because in the situation whereA has enough injectives, any
complex is quasi-isomorphic to a complex consisting of injectives. As an example,
one can easily deduce the following fact:

Remark 3.1.2. Given an object F ∈ A, we write F [i] for the complex that is equal
to F in degree −i, and 0 otherwise. Assuming that A has enough injectives, then

HomDb(A)(F [p], G[q]) =

{
0 if p > q

Extq−p(F,G) if p ≤ q

Here is a first example how the derived category helps to organize homological
algebra:

Remark 3.1.3. Let 0 → A• → B• → C• → 0 be a short exact sequence of
complexes in Cb(A). Then there exists a map C• → A•[1] in Db(A).

So the boundary maps familiar from derived functors between abelian category
is induced by an actual morphism once we pass to the derived category. In the case
where the complexes are all concentrated in degree zero, i.e. we have a short exact
sequence 0→ A[0]→ B[0]→ C[0]→ 0 of objects in A, the morphism is easy to
understand: the complex C[0] is quasi-isomorphic to the complex A ↪→ B (with A
in degree −1 and B in degree 0), which has a natural map to A[1].

In the general case, one has to show that C• can be replaced with the cone of
the morphism A• → B•. We omit the definition of the mapping cone here; see e.g.
[Wei94, section 1.8] instead. We will just note that it is an extension ofA•[1] byB•,
and the extension is determined by the map f ∈ Hom(A•, B•) = Ext1(A•[1], B•).
In particular, the cone decomposes as cone(f) = A•[1]⊕B if and only if the map
f is zero.

This notion of a triple of maps A → B → C → A[1] coming from short exact
sequences is so useful that it is axiomatized in the notion of “exact triangles” in
triangulated category: an exact triangle is a sequence of maps A : B : C → A[1]
that is quasi-isomorphic to a triangle A →g B → cone(g) → A[1] coming from
the cone construction.

In some sense exact triangles are the replacement of short exact sequences in
abelian categories; in another sense this analogy is rather misleading as any notion
of injectivity or surjectivity is lost in the derived category. Instead, it seems better to
think of B as an extension of C by A. For example, the long exact Hom-sequence

· · · → Hom(F,A)→ Hom(F,B)→ Hom(F,C)→ Hom(F,A[1])→ . . .
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tells us that if Hom(F,A) = Hom(F,C) = 0, then also Hom(F,B) = 0, exactly
what the intuition would tell us by analogy from extensions in abelian categories.

3.2. Octahedral axiom. The octahedral axiom is often glossed over in introduc-
tions to derived categories, which might give the impressions that it is too compli-
cated to understand (given that it is already so difficult to draw on 2-dimensional
paper), and not very useful. The latter definitely ceases to be true when dealing
with stability conditions and t-structures, but fortunately the former is also a mis-
conception.

The octahedral axiom answers a simple question: Given a composition

A→f B →g C,

is there any way to relate the three cones cone(f), cone(g) and cone(g ◦ f)?
Phrased this way, the axiom is easy to guess: they form an exact triangle. More pre-
cisely, there is the following commutative diagram, where all the (almost) straight
lines are part of an exact triangle:

D

��1
111111111111

B

FF














g

  @@@@@@@ E

��0
00000000000000

C

>>~~~~~~~

''PPPPPPPPPPPPPPP

A

f

GG��������������

g◦f
77nnnnnnnnnnnnnnn

F

In the special case where D = Db(A) is the derived category of an abelian
category A, and A,B,C are objects concentrated in degree zero (identified with
objects in A, and f, g are inclusions, then the octahedral axiom specializes to a
very familiar statement:

(C/A)/(B/A) = C/B

More generally, in the same spirit in which exact triangles are a replacement of
exact sequences, the use of the octahedral axiom replaces abelian category proofs
based on diagram chasing.

3.3. Filtration by cohomology. It is very crucial that a complex E• ∈ Db(A)
still has more information than its cohomology. The formal reason is that if E•

and F • have isomorphic cohomology groups H i(E•) ∼= H i(F •), then there may
not exist a morphism of complexes f • : E• → F • that induces these isomorphism.
However, the following proposition gives a more satisfactory way to think about
the additional information:



10 AREND BAYER

Proposition 3.3.1. Given a complex E ∈ Db(A), there exists a sequence of maps

0 // Ek //

yysssssss
Ek−1 //

vvmmmmmmmm
· · · // Ej+1 // Ej = E

wwoooooo

H−k(E)[k]

dd

H−k+1(E)[k − 1]

hh

H−j(E)[j]

ff

where all triangles are exact.

We will refer to this as the filtration of E by its cohomology objects. In other
words, E may be a non-trivial extension, rather than the direct sum of its cohomol-
ogy objects H−i(E)[i].

This cohomology filtration is extremely useful and arguably not applied as often
it should. For example, most proofs that rely on an elementary spectral sequence
argument can be an argument based on the cohomology filtration.

3.4. Bounded t-structures. The notion of a t-structure can be motivated by the
following question: Assuming we have an equivalence of derived categories Db(A) ∼=
Db(B), can we understand the image of A = A[0] in Db(B)? In interesting ex-
amples, typically A does not get mapped to B, so we would like to understand
what structure the image of A in Db(B) satisfies. It turns out that one can get
a satisfactory and interesting concept by considering subcategories satisfying the
Hom-vanishing of Remark 3.1.2 and the filtration of Proposition 3.3.1:

Definition 3.4.1. The heart of a bounded t-structure in a triangulated category D
is a full additive subcategory A] ⊂ D such that

(1) For k1 > k2, we have Hom(A][k1],A][k2]) = 0.
(2) For every object E in D there are integers k1 > k2 > · · · > kn and a

sequence of exact triangles

0 = E0 // E1 //

��~~~~~
E2 //

}}{{{{
· · · En−1 // En = E

yyssssss

A1

dd

A2

aa

An

cc

with Ai ∈ A][ki].
The concept of t-structures was introduced in [BBD82], which is required read-

ing for anyone interested in details about t-structures.

3.5. Remarks.
(1) A bounded t-structure is uniquely determined by its heart, which allows us

to omit the definition bounded t-structure in this note.
(2) By Remark 3.1.2 and Proposition 3.3.1, the subcategory A[0] ⊂ Db(A) is

the heart of a t-structure.
(3) The heart A] is automatically abelian: A morphism A → B between two

objects in A] is defined to be an inclusion if its cone is also in A], and it is
defined to be a surjection if the cone is in A][1].

(4) The objectsAi are called the cohomology objectsH i
](E) ofE with respect

to A]. They are functorial and induce a long exact cohomology sequence
for any exact triangle A→ B → C → A[1] (see Exercise 10).
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One can construct many non-trivial t-structures are given by tilting at a torsion
pair.

Definition 3.5.1. A torsion pair in an abelian category A is a pair (T ,F) of full
additive subcategories with

(1) Hom(T ,F) = 0.
(2) For all E ∈ A there exists a short exact sequence

0→ T → E → F → 0

with T ∈ T , F ∈ F .

Property (1) implies that that the filtration in (2) is automatically unique and
functorial.

3.6. Examples.
(1) The canonical example of a torsion pair is A = CohX , where we define
T to be the torsion sheaves and F the torsion-free sheaves.

(2) Consider a finite quiver Q = (Q0, Q1) with relations R, and assume that
the vertex n is a sink, i.e. it has no outgoing arrows. Then let T be the sub-
category of representations V concentrated at vertex n, i.e. with Vi = C0

for i 6= n, and F be the subcategory of representations V with Vn = C0.
As n is assumed to be a sink, any representation V has a subrepresentation
(C0, . . . ,C0, Vn), inducing the short exact sequence (2).

(3) There are two ways to generalize the previous construction to the case
where n is allowed to have outgoing arrows; for simplicity we will assume
that there are no loops going from the vertex n to itself:
(a) Let T consist of representation generated by Vn, and F of representa-

tions with Vn = C0 as before.
(b) Let T consist of representations concentrated at the vertex n, i.e. it

consists of the direct sums S⊕kn where Sn is the simple one-dimensional
representation concentrated at vertex n. Let F be the subcategory of
representations with Hom(Sn, V ) = 0 for the equivalently, we can
characterize F as the set of representations for which the intersection
of the kernels of all maps φj : Vn → Vi going out of Vn is trivial.

(4) Again consider a finite quiver Q = (Q0, Q1), possibly with relations R,
and again assume that the vertex n has no loops. This time we letF consist
of S⊕kn , and T consist of representations with Hom(V , Sn) = 0; more
explicitly, V belongs to F if the images of the ingoing maps φj : Vi → Vn
span Vn.

(5) Let A = CohX be the category of coherent sheaves on a smooth pro-
jective curve X , and µ ∈ R a real number. Let A≥µ be the subcategory
generated by torsion sheaves and vector bundles all of whose HN-filtration
quotients have slope ≥ µ, and A<µ the category of vector bundles all of
whose filtration quotients have slope < µ. Then (A≥µ,A<µ) is a torsion
pair: property (1) follows from Lemma 2.1.5, and (2) is obtained by col-
lapsing the HN-filtration into two parts: we let T = Ei for i maximal such
that µi ≥ µ.
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Proposition 3.6.1. Given a torsion pair (T ,F) in A, the following defines the
heart of a bounded t-structure in Db(A):

A] :=
{
E ∈ Db(A)

∣∣∣H0(E) ∈ T , H−1(E) ∈ F , H i(E) = 0 for i 6= 0,−1
}

Objects in A can be thought of as an extension of F by T , with T ∈ T , F ∈ F ,
determined by an element in Ext1(F, T ). Objects inA] are instead an extension of
some T by some F [1], determined by an element in Ext1(T, F [1]) = Ext2(T, F ).
More concretely, every object in A] can be represented by a two-term complex
E−1 →d E0 with ker d ∈ F and cok d ∈ T . It is worth to keep the picture in fig.
4 in mind:

A[2]

T [2] F [2]

A[1]

T [1] F [1]

A[0]

T [0] F [0]

A[−1]

T [−1] F [−1]

A♯[1] A♯[0] A♯[−1]

FIGURE 4. Schematic relation between A and its tilt A]

In this picture, there are no morphisms going from the left to the right, and
any object can be written as a successive extension of objects contained in one of
the building blocks, starting with its right-most building block and extending it by
objects further and further to the left.

The picture also suggests how to prove the proposition: the Hom-vanishing fol-
lows by extending known Hom-vanishings to extensions, and the filtration step E]k
of E with respect to A] is given by an extension of the filtration step Ek+1 with
respect to A and the torsion part of Hk(E).

In fact, the proposition holds in a more general situation, with the same proof:
instead of working with Db(A), we could have just assumed thatA is the heart of a
bounded t-structure inside a triangulated category D, and used the same definition
with H i standing for the cohomology objects with respect to this t-structure. In
particular, starting with the standard t-structure we can repeat this process multiple
times. It seems that any bounded t-structure of interest in Db(A) can be constructed
by means of this process; in particular, in Bridgeland’s space of stability conditions
it will turn out that if we know the heart at one point in the space, then all other
hearts appearing in the same component can be obtained by a sequence of tilts. The
following Lemma, which we give without proof, gives an idea how such statements
could be proved:

Lemma 3.6.2 ([Pol07, Lemma 1.1.2]). If A,A] ⊂ D are the hearts of bounded
t-structures in a triangulated categoryD such thatA] is contained in the extension
closure 〈A,A[1]〉 of A and its shift A[1], then A] is obtained from A by a tilt.

The torsion pair is given by T = A ∩A] and F = A ∩A][−1].
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3.7. Exercises.

Exercise 6. Proof Remark 3.1.2.

Exercise 7. Translate the lemma of 9 to a triangulated category, and prove it!

Exercise 8. Pick a spectral sequence proof in a derived categories textbook and
replace it by an argument using the filtration by cohomology.

Exercise 9. Use the filtration by cohomology to show that for a smooth projec-
tive curve X , every object in Db(X) is the direct sum of its cohomology sheaves.
(The same statement holds for the category RepQ of representations of a quiver Q
without relations.)

Exercise 10. (1) Prove that ifA] ⊂ D the heart of a bounded t-structure,A→
B → C is an exact triangle in D with A,B ∈ A, then the cohomology
objects H i

](C) C with respect to A] can be non-zero only for i = −1, 0.
(2) Show that A] is an abelian category if we define the kernel of f : A → B

to be H−1] (cone f) and the cokernel to be H0
] (cone f).

(3) Show that with this definition, any exact triangle A → B → C induces a
long exact cohomology sequence among the cohomology objects H i

]( ).

Exercise 11. Consider one of the examples (3a), (3b) or (4) of a torsion pair in the
category RepQ of representations of a quiver Q. Prove that it is indeed a torsion
pair, and verify the explicit descriptions of F , T .

Exercise 12. (*) Let X = P1,A = CohX , and let A] be the tilted heart for
the torsion pair (A≥0,A<0). Let Q be the Kronecker quiver (the directed quiver
with tow vertices and two arrows), and let ΦT : Db(P1) → Db(repC(Q)) be the
equivalence induced by the tilting bundle T = O ⊕ O(1). Show that A] is the
inverse image of the heart of the standard t-structure.

Exercise 13. (*) Consider an elliptic curveE, and its auto-equivalence Φ: Db(E)→
Db(E) given by the Fourier-Mukai transform of the Poincaré line bundle. Deter-
mine the image Φ(CohE) of the heart of the standard t-structure.

4. STABILITY CONDITIONS ON A TRIANGULATED CATEGORY

Given a stability functionA, Z on an abelian category for which Harder-Narasimhan
filtrations exist, we can define a stability condition on its derived category Db(A)
by defining an object to be stable if and only if it is the shift E[n] of a Z-stable
object E, and by defining its phase to be φ(E[n]) = φ(E) +n; it will satisfy prop-
erties very similar to the existence of HN-filtrations. In the following section, we
will make this notion precise.

4.1. Definition of Stability conditions. Before putting things together again, it is
worth separating out the properties of phases of stable objects along with the exis-
tence of Harder-Narasimhan filtrations. The idea is that they refine the filtrations
of an object given by a bounded t-structure:
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Definition 4.1.1. A slicing P of a triangulated category D is a collection of full
additive subcategories P(φ) for each φ ∈ R satisfying

(1) P(φ+ 1) = P(φ)[1]
(2) For all φ1 > φ2 we have Hom(P(φ1),P(φ2)) = 0.
(3) For each 0 6= E ∈ D there is a sequence φ1 > φ2 > · · · > φn of real

numbers and a sequence of exact triangles

(1) 0 = E0 // E1 //

��~~~~~
E2 //

}}{{{{
· · · En−1 // En = E

yyssssss

A1

dd

A2

aa

An

cc

with Ai ∈ P(φi) (which we call the Harder-Narasimhan filtration of E).

Remark 4.1.2. (1) We call the objects in P(φ) semistable of phase φ.
(2) Given the slicing P , the sequence of φi and the Harder-Narasimhan fil-

tration are automatically unique. We set φ+P(E) = φ1 and φ−P(E) = φn
(where we sometimes omit the subscript P).

(3) If φ−(A) > φ+(B), the Hom(A,B) = 0.
(4) If P(φ) 6= 0 only for φ ∈ Z, then the slicing is equivalent to the datum of

a bounded t-structure, with heart A = P(0).
(5) More generally, given a slicing P , let A = P((0, 1]) be the full extension-

closed subcategory generated by all P(φ) for φ ∈ (0, 1]; equivalently, A
is the subcategory of objects E with φ+P(E) ≤ 1 and φ−P(E) > 0. Then A
is the heart of a bounded t-structure. In other words, a slicing is always a
refinement of a bounded t-structure.

While this gives a notion of semistable objects and successfully generalizes
Harder-Narasimhan filtrations, it is rather unsatisfactory that we have to specify
the semistable objects explicitly (instead of defining them implicitly by a slope
function as in the case of vector bundles). The remedy for this lies in the following
definition that brings back the stability functions Z used in section 2.

Definition 4.1.3. A stability condition on a triangulated categoryD is a pair (Z,P)
where Z : K(D) → C is a group homomorphism (called central charge) and P is
a slicing, so that for every 0 6= E ∈ P(φ) we have

Z(E) = m(E) · eiπφ

for some m(E) ∈ R>0.

Indeed, the following proposition shows that to some extent (once we identify a
t-structure), stability it intrinsically defined. It also describes how stability condi-
tions are actually constructed:

Proposition 4.1.4 ([Bri07, Proposition 5.3] ). To give a stability condition (Z,P)
on D is equivalent to giving a heart A of a bounded t-structure with a stabil-
ity function ZA : K(A) → C (see Definition 2.2.1) such that (A, ZA) have the
“Harder-Narasimhan property”, i.e. any object in A has a HN-filtration by ZA-
stable objects.



A TOUR TO STABILITY CONDITIONS ON DERIVED CATEGORIES 15

We will focus on how to obtain a stability condition from the datum (A, ZA), as
this is how stability conditions are actually constructed:

Proof. If A is the heart of a bounded t-structure on D, then8 we have K(D) =
K(A), so clearly how to go from Z and ZA determine each other.

Given (A, ZA), we define P(φ) for φ ∈ (0, 1] to be the ZA-semistable objects
in A of phase φ(E) = φ. This is extended to all real numbers by P(φ + n) =
P(φ)[n] ⊂ A[n] for φ ∈ (0, 1] and 0 6= n ∈ Z (as forced by condition 1 of
Definition 4.1.1). The compatibility condition (4.1.3) is satisfied by construction,
so we just need show that P satisfies the remaining properties in Definition 4.1.1.
The Hom-vanishing in condition no. 2 follows from Definition 3.4.1, part (1) in
case bφ1c > bφ2c, and from Lemma 2.1.5 in case bφ1c = bφ2c. Finally, given
E ∈ D, its filtration by cohomology objectsAi ∈ A[ki] according to 3.4.1, and the
HN-filtrations 0 ↪→ Ai1 ↪→ Ai2 ↪→ . . . ↪→ Aimi = Ai given by the HN-property
inside A can be combined into a HN-filtration of E: it begins with as

0→ F1 = A11[k1]→ F2 = A12[k1]→ · · · → Fm1 = A1[k1] = E1,

i.e. with the HN-filtration of A1. Then the following filtration steps Fm1+i are an
extensions of A2i[k2] by E1 that can be constructed as the cone of the composition
A2i[k2]→ A2[k2]→[1] E1—the octahedral axiom shows that these have the same
filtration quotients as 0 → A21[k2] → A22[k2] . . . ; continuing this we obtain a
filtration of E as desired.

Conversely, given the stability condition, we set A = P((0, 1]) as before; by
the compatibility condition in equation (4.1.3), the central charge Z(E) of any P-
semistable object E lies in H; since any object in A is an extension of semistable
ones, this follows for all objects in A by the additivity. Finally, it is fairly straight-
forward to show that Z-semistable objects in A are exactly the semistable objects
with respect to P . 2

4.2. Examples. If X is a smooth projective curve and D = Db(X), let A =
CohX be the heart of the standard t-structure, and Z(E) = −deg(E) + i ·
rk(E). As we have seen in section 2.1, Z is a stability function with the Harder-
Narasimhan property, and thus induces a stability condition on Db(X). Its semistable
objects are the shifts of slope-semistable vector bundles, and the shifts of 0-dimensional
torsion sheaves.

Similarly, the stability conditions on a category of Quiver representations con-
sidered in section 2.2 leads to stability conditions on its derived category.

Remark 4.2.1. It is often highly non-trivial to satisfy the condition that Z sends
objects ofA to the semi-closed upper half plane H. Already for a projective surface
S and its category of coherent sheaves CohS, it is impossible to satisfy, and so far
no one has succeeded in constructing a heart with a stability function in the derived
category of a projective Calabi-Yau threefold.

8even though D might not be equivalent to Db(A)
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5. SPACE OF STABILITY CONDITIONS

5.1. The deformation result. So far, extending a stability condition from an abelian
category to its derived category hasn’t really gained us anything. However, as will
see we will have a lot more freedom to deform stability conditions in the derived
category, leading to an interesting space of such stability conditions.

We will now restrict our attention to stability conditions σ = (Z,P) satisfying
two additional assumptions (in the formulation introduced in [KS08, Section 3.4]):

(1) We fix a finite-dimensional lattice Λ with a map λ : K(D) → Λ, and
restrict our attention to stability conditions for which Z factors via Λ.
Obviously, this is no restriction in case K(D) is finite-dimension; when
it is infinite-dimensional, a typical choice for Λ might be the numerical
Grothendieck group Knum(D).9

(2) Let ‖ · ‖ be an arbitrarily fixed norm on ΛR = Λ ⊗ R. We assume that σ
satisfies the “support property”:10

inf

{ |Z(E)|
‖[E]‖

∣∣∣∣E is σ-semistable
}
> 0

Note that we committed abuse of notation by writing [E] for λ([E]) ∈ Λ. Simi-
larly, we denote by Stab(D) for the set of stability conditions satisfying these two
additional properties (omitting Λ from the notation).

We can define a generalized metric11 on the set of slicings by

dS(P,Q) = sup06=E∈D
{
|φ−
σ2(E)− φ−

σ1(E)|, |φ+
σ2(E)− φ+

σ1(E)|
}
∈ [0,+∞]

Combining this with the metric on Λ∨ := Hom(Λ,C) induced by ‖ · ‖ we obtain a
generalized metric on Stab(D) by

d(σ, τ) = sup{dS(P,Q), ‖Z −W‖}.
In particular, we have defined a topology on Stab(D). The main theorem of
Bridgeland, motivated by Douglas’ work on π-stability, is the following defor-
mation result:

Theorem 5.1.1. [Bri07, Theorem 7.1] The space Stab(D) of stability conditions
is a smooth finite-dimensional complex manifold such that the map

Z : Stab(D)→ Hom(Λ,C) σ = (Z,P)→ Z

is a local homeomorphism at every point of Stab(D).

In other words, we can deform a stability condition (Z,P) (uniquely) by de-
forming Z.12

9The numerical Grothendieck group is the quotient of K(D) by the null-space of the Euler form
χ(E,F ) =

∑
i(−1)

i Hom(E,F [i]).
10Stability conditions satisfying this condition were called “full” in [Bri08].
11It satisfies the triangle inequality and is non-degenerate; however, its value might be infinite.
12A posteriori, this result also tells us how to characterize the complex manifold structure

on Stab(D): it is the unique complex structure such that for every E ∈ D the function
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We have already seen some of these deformations in the stability conditions
for a quiver Q in section 2.2: our stability conditions depended on the choice of
some zi ∈ H for every vertex of Q. Bridgeland’s theorem then says that we can
deform these stability conditions further when zi leave the upper half-plane, if
we are willing to pay the price of working with the derived category Db(RepQ),
and changing our abelian category RepQ ⊂ Db(RepQ) into the heart of a non-
standard t-structure.

5.2. Example 1: Wall-crossing within an abelian category. Assume for a mo-
ment that we deform Z to W in such a way that we don’t have to change the heart
A of our stability condition, i.e. W satisfies condition ??? in ???. Assume now that
there is a short exact sequence 0→ A→ E → B → 0 in A, such that the classes
[A], [B] have no non-trivial subobjects (in particular, A is the only non-trivial sub-
object for Z, W ). We say that there is a “wall” between Z, W if the orientation of
the parallelogram of the central charges of A, E, B is different between Z, W (the
wall consisting of central charges for which the parallelogram is degenerate):

Z(A)

Z(B)

Z(E)

(A) E is stable

W (A)

W (B)

W (E)

(B) E is unstable

FIGURE 5. A simple wall-crossing

Then either E is stable (as in the case of Z in the figure), or E is unstable and
0 ↪→ A ↪→ E is the HN-filtration of E, with filtration quotients A, B. This is of
course the most trivial case of a wall-crossing, but it is still the basic reason why
we can at all hope to get a new stability condition after deforming Z to W .

5.3. Example 2: Stability and tilting for quivers. Now consider the case where
A = RepQ is the category of representations of a quiver Q (possibly with rela-
tions), and stability conditions on Db(RepQ) constructed from the stability con-
ditions on RepQ considered in section 2.2. We want to find out what happens to
A = P((0, 1]) when one of the complex numbers, say zn, leaves the semi-closed
upper half plane H. For simplicity we assume that all other zj , j 6= n are contained
in the open half plane H. Let Sn be the simple one-dimensional representation
supported at the vertex n.

(1) If zn crosses the negative real line, from −x + iε to −x − iε, then A =
P((0, 1]) gets replaced by Q((0, 1]) = A][−1], where A] is the tilt at the
torsion pair TT = {S⊕kn }, F = {V |Hom(Sn, V ) = 0} considered as

ZE : Stab(D) → C,ZE(Z,P) = Z(E) is holomorphic - but of course without the deformation
result we would have no reason to assume that such a complex structure exists, or that it is unique.
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example (3b) of section 3.6. It is easy to see that for ε sufficiently small,
the new central charge W satisfies the positivity property W (E) ∈ H for
E ∈ Q((0, 1]). It is also easy to see that this tilt is the only reasonable
choice for Q((0, 1]): the object Sn is Z-stable, but its phase increases
beyond 1; thus we should instead include Sn[−1]. Similarly, any other Z-
stable object of A will remain stable, and thus should also be included in
Q((0, 1]); the extension closure of these objects is given by F .

(2) IF zn crosses the positive real line, we instead let the new heart Q((0, 1])
be the tilt A] at the torsion pair determined by F = {S⊕kn }; see Example
(4). This time, we are replacing Sn by Sn[1], while keeping all other stable
objects of A.

Typically, the tilted heartA] is again the category of representations of a quiver;
thus the space of stability condition on Db(RepQ) knows about the rich theory of
tilting of quivers.

5.4. Example 3: Stability conditions for P1. We can easily change our stability
conditions of section 2.1 on the category of coherent sheaves CohX on a curve X
to depend on a parameter: We set

Z(F) = −degF + z · rkF
Note that this just a reparametrization of the central charges and of the phases of
stable objects—we do not change the ordering of sheaves by their phases, nor do
we change which objects are stable. We will now study what happens when z
crosses the real line in the case of X = P1.

First, we picture the case where z is close to the real line: by Grothendieck’s
theorem, every sheaf on P1 is the direct sum of line bundles and skyscraper sheaves
of points; thus the only stable objects are line bundles and the skyscraper sheaves
Ox (as well as their shifts); their central charges are picture in fig. 6 (where the
doted arrows denote morphisms between the stable objects).

Z(Ox)

Z(O)Z(O(1))Z(O(2))Z(O(3))

Z(Ox[1])

Z(O[1]) Z(O(1)[1]) Z(O(2)[1])

FIGURE 6. Stability condition for P1 with z ≈ 1.3 + iε

Now consider what happens when z moves on a straight line from x + iε to
x− iε. The first thing to note is that the central charge of a stable object can never
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become zero; hence z can only reach the real line when x ∈ R \ Z, as otherwise
there will be a line bundle with Z(O(n)) = 0. To be specific, let us assume that
1 < x < 2. Now, instead of trying to understand what will happen to the heart
P((0, 1]), it is easier to analyze everything inside the heartA] = P((12 ,

3
2 ]), as this

heart will remain constant along the path we are considering; it is the extension
closure of {O(2),O(3), . . . } ∪ {O(1)[1],O[1],O(−1)[1], . . . }.

Z(Ox)

Z(O(1))Z(O(2))Z(O(3))

Z(O[1]) Z(O(1)[1]) Z(O(2)[1])

FIGURE 7. Stability condition for P1 with z ≈ 1.3− iε

This category contains short exact sequences O(n) ↪→ O(n + 1) � Ox for
n ≥ 2, and O(3), O(4) etc. become unstable for z = x − iε; see fig. 7,
where we have drawn destabilizing morphisms by dashed arrows. Similarly, the
short exact sequences Ox ↪→ O(n)[1] � O(n + 1)[1] for n ≤ 0 destabilize
O[1],O(−1)[1], . . . . Also, O(2) ↪→ Ox � O(1)[1] destabilizes Ox. Thus the
only remaining stable objects are O(2),O(1)[1]. One can also show that these are
the only two stable objects in P((12 ,

3
2 ]). In fact, the heart A] is isomorphic to the

category of representations RepP2 of the Kronecker quiver (Example 2.2.2) with
two arrows, with O(2),O(1)[1] corresponding to the simple objects. One might
say that we moved from a geometric chamber (with heart CohP1, and with the
skyscraper sheaves Ox being stable) to an chamber of algebraic stability condi-
tions.

Now we can also go back and describe the new heart A]] = Q((0, 1]): the only
stable objects with phase between 0 and 1 are O(1)[1] and O(2)[−1]. By defini-
tion, A]] is the extension closure of these two objects; however, as there are no
non-trivial extensions between these two objects (nor self-extensions of one of the
objects), the categoryA]] is equivalent to category of pairs of vector spaces V0, V1.
This is the easiest example I am aware of where the derived category Db(A]]) of
the heart is not isomorphic to the original derived category.

For a complete study of the space of stability conditions on Db(P1), see [Oka06].

5.5. Proof of the deformation result. This section contains a sketch of a proof of
Theorem 5.1.1. We first prove that the map Z is locally injective:13

13Note that 1
4

in the Lemma could be replaced by 1, see [Bri07, Lemma 6.4].
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Lemma 5.5.1. If two stability conditions σ, τ satisfy dS(P,Q) < 1
4 and Z = W

then σ = τ .

Proof. Consider a σ-semistable object E ∈ P(φ). It follows directly from the
definition of dS that we have chain of subcategories

P(φ) ⊂ Q((φ− 1

4
, φ+

1

4
)) ⊂ P((φ− 1

2
, φ+

1

2
]) =: A

of the abelian category A. Any semistable HN-factor of E with respect to τ will
have central charge lying in the sector of angle π

2 centered on the ray R>0 · Eiπφ.
Thus, ifE is not τ -semistable, and ifA→ E is first object of its HN-filtration with
respect to τ , then

(1) the morphism A→ E is an inclusion in A, and
(2) the phase of Z(A) is bigger than the phase of E.

(Both statement follow from the observation that the cone of A → E has as HN-
filtration factors exactly the remaining HN-factors of E.) This contradicts Propo-
sition 4.1.4, as E is not Z-stable in A. 2

So it remains to prove the local surjectivity. To prove surjectivity onto an open
ball in Λ∨ we may have to make this ball arbitrarily small; its size will be de-
termined by the following quantity (which is positive by our assumption that σ
satisfies the support property):

S(σ) := inf

{ |Z(E)|
‖[E]‖

∣∣∣∣E is σ-semistable
}
> 0

The quantity S(σ) controls how fast the central charges Z(E) of a stable object
can vary, relative to the absolute value of the original central charge:

Remark 5.5.2. If E is σ-stable and W is a central charge close by Z satisfying
‖W − Z‖ < S(σ) · ε, then W (E) is contained in a ball Bε·|Z(E)|(Z(E)) of radius
ε · |Z(E)| around Z(E).

We will need one more definition:

Definition 5.5.3. Given a stability condition σ = (Z,P) and an objectE, the mass
mσ(E) is defined by

mσ(E) =
∑
i

|Z(Ai)|,

where Ai are the HN-factors of E.

Note that in the picture used in the proof of Theorem 2.1.6, the mass ofF equals
the length of the path 0→ v1 → v2 → · · · → vn boundingHZ(F) from the left.

Lemma 5.5.4. The function S(σ) : Stab(D)→ R>0 is continuous.

Proof. By the symmetry of the situation, it is enough to prove that given δ, then
for any τ = (W,Q) sufficiently close by σ = (Z,P), we have S(τ) > S(σ)− δ.

So let us assume that dS(P,Q) < ε and ‖W − Z‖ < ε. Assume that E is
τ -stable of phase ψ(E). By the definition of the norm ‖ · ‖ applied to W − Z, we
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have
|W (E)|
‖E‖ ≥ |Z(E)|

‖E‖ −
|W (E)− Z(E)|

‖E‖ ≥ |Z(E)|
‖E‖ − ε

So it suffices to prove that |Z(E)|
‖E‖ can be bound from below arbitrarily close to

S(σ). Let A1, . . . , An be the HN-factors of E respect to σ. By definition of dS
we have ψ + ε > φ(Ai) > ψ − ε for all i; hence the complex numbers Z(Ai) and
Z(E) all lie in a sector of the complex plane of angle 2πε. Hence

|Z(E)|
‖E‖ >

∑
i|Z(Ai)| · cos(2πε)

‖E‖ > cos(2πε)

∑
i|Z(Ai)|∑
i ‖Ai‖

> cos(2πε)

∑
i S(σ)‖Ai‖∑

i ‖Ai‖
= cos(2πε) · S(σ)

2

It follows that it suffices to prove the following:

Lemma 5.5.5. There exists ε > 0 such that for any stability condition σ =
(Z,P) ∈ Stab(D) and any group homomorphism W : Λ → C with ‖W − Z‖ <
ε · S(σ) and either

(1) =W = =Z or
(2) <W = <Z,

then there exists a stability condition τ = (W,Q) with dS(P,Q) < ε.

In fact, the proof below works for any ε < 1, but it is psychologically easier to
imagine ε being small.

The continuity of S(σ) is crucial for this reduction: we obtain a ball of stability
conditions τ = (W,Q) nearby σ mapping isomorphically to an ε · S(σ)-sized
neighborhood of Z + Hom(Λ,R). Then, using the second case of the Lemma,
the unions of the neighborhoods of τ inside W + iHom(Λ,R) will form an open
neighborhood of the original σ.

Proof. We consider the first case (the proof of the second case works in ex-
actly the same way by replacing P((0, 1]) with P((12 ,

3
2 ]) and swapping real and

imaginary parts of complex numbers in every argument below.) The convenience
of this assumption =W = =Z lies in the fact that W is still a stability function
for A] = P((0, 1]): this is evident for objects with =Z(E) > 0, and follows
from ‖W − Z‖ < S(σ) for objects in P(1) (which are automatically semistable).
So it remains to prove that under the assumptions, the pair (A],W ) has the HN-
property:

We proceed as in the proof of 2.1.6: let HW (E) be the convex hull of the set
W (A) for all subobjects A ↪→ E. We have to prove thatHW (E) is bounded to the
left, and that it has a finite number of extremal points to the left of the line segment
connection 0 and W (E).

Given A ↪→ E, consider the set HZ(E), its subset HZ(A), and the piecewise-
linear path 0 → v1 → v2 → · · · → vn = Z(A) bounding HZ(A) which corre-
sponds to the the HN-filtration of A.
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Its length mσ(A) is bounded by the length of the path that follows the boundary
ofHZ(E) up to the height =(A) and then moves horizontally to Z(A); see fig. 8.

v1

v2

v3
v4 = Z(A)

Z(E)

FIGURE 8. The convex setsHZ(A) andHZ(E)

It follows that there is a constant C(E) such that any subobjectA ↪→ E satisfies

<Z(A) ≥ C(E) +mσ(A)

Since the real parts of W (Ai) and Z(Ai) for any HN-filtration quotient Ai of A
can differ by at most ε · |Z(Ai)| (see Remark 5.5.2), we obtain

<W (A) ≥ <Z(A)− εmσ(A) ≥ C(E) + (1− ε)mσ(A) > C(E)

Also note that if A ↪→ E is an extremal point of the set HW (A), then in par-
ticular max(0,<W (E)) > <W (A), which means the mass mσ(A) is bounded
from above by a constant D(E) = max(0,<W (E))−C(E)

(1−ε) , a constant depending only
on E. In particular, the central charge of every Harder-Narasimhan filtration fac-
tor Ai is bounded from above by |Z(Ai)| < D(E); by the support property, the
norm ‖Ai‖ < D(E)

S(σ) is also bounded, and hence there are only finitely many classes
[Ai] ∈ Λ that can appear as the class of a HN-factor of such an object. It follows
that there are only finitely many extremal points of the set HW (A), and we can
conclude as in the proof of Theorem 2.1.6.

Finally, it is easy enough to verify the support property for the stability condition
(W,Q) that we obtained; it also follows from Lemma 5.5.4 for small enough ε. 2

5.6. Exercises.

Exercise 14. Prove claim (5) in Remark 4.1.2.

Exercise 15. Giving a slicing P with heart A = P((0, 1]), and φ ∈ (0, 1), prove
that T = P((φ, 1]),F = P((0, φ]) define a torsion pair in A. Show that the heart
A] obtained by tilting at T ,F is equal to P((φ, φ+ 1]).

Exercise 16. Find the Harder-Narasimhan filtrations of allOP1(n) in the algebraic
stability condition considered in section 5.4.
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