## 

Volume X: Volume name goes here
Pages 1-XXX

# Algebraic and combinatorial codimension 1 transversality 

Andrew Ranicki


#### Abstract

The Waldhausen construction of Mayer-Vietoris splittings for chain complexes over an injective generalized free product is extended to Seifert-van Kampen splittings for $C W$ complexes with fundamental group an injective generalized free product.


AMS Classification 57R67, 19J25
Keywords transversality, $C W$ complex, chain complex
13th August, 2003

Dedicated to Andrew Casson

## Introduction

The close relationship between the topological properties of codimension 1 submanifolds and the algebraic properties of groups with a generalized free product structure first became apparent with the Seifert-van Kampen Theorem on the fundamental group of a union, the work of Kneser on 3-dimensional manifolds with fundamental group a free product, and the topological proof of Grushko's theorem by Stallings.

This paper describes two abstractions of the geometric codimension 1 transversality properties of manifolds (in all dimensions) :
(1) the algebraic transversality construction of Mayer-Vietoris splittings of chain complexes of free modules over the group ring of an injective generalized free product,
(2) the combinatorial transversality construction of Seifert-van Kampen splittings for $C W$ complexes with fundamental group an injective generalized free product.

By definition, a group $G$ is a generalized free product if it has one of the following structures :
(A) $G=G_{1} *_{H} G_{2}$ is the amalgamated free product determined by group morphisms $i_{1}: H \rightarrow G_{1}, i_{2}: H \rightarrow G_{2}$, so that there is defined a pushout square of groups


The amalgamated free product is injective if $i_{1}, i_{2}$ are injective, in which case so are $j_{1}, j_{2}$, with

$$
G_{1} \cap G_{2}=H \subseteq G
$$

The amalgamated free product is finitely presented if the groups $G_{1}, G_{2}, H$ are finitely presented, in which case so is $G$. (If $G$ is finitely presented, it does not follow that $G_{1}, G_{2}, H$ need be finitely presented).
(B) $G=G_{1} *_{H}\{t\}$ is the $H N N$ extension determined by group morphisms $i_{1}, i_{2}: H \rightarrow G_{1}$

$$
H \xrightarrow[i_{2}]{\stackrel{i_{1}}{\longrightarrow}} G_{1} \xrightarrow{j_{1}} G
$$

with $t \in G$ such that

$$
j_{1} i_{1}(h) t=t j_{1} i_{2}(h) \in G \quad(h \in H) .
$$

The $H N N$ extension is injective if $i_{1}, i_{2}$ are injective, in which case so is $j_{1}$, with

$$
G_{1} \cap t G_{1} t^{-1}=i_{1}(H)=t i_{2}(H) t^{-1} \subseteq G .
$$

The $H N N$ extension is finitely presented if the groups $G_{1}, H$ are finitely presented, in which case so is $G$. (If $G$ is finitely presented, it does not follow that $G_{1}, H$ need be finitely presented).
A subgroup $H \subseteq G$ is 2-sided if $G$ is either an injective amalgamated free product $G=G_{1} *_{H} G_{2}$ or an injective $H N N$ extension $G=G_{1} *_{H}\{t\}$. (See Stallings [13] and Hausmann [5] for the characterization of 2-sided subgroups in terms of bipolar structures.) If $G$ is an injective generalized free product $\left\{\begin{array}{l}\text { with } i_{1}, i_{2} \text { not isomorphisms } \\ --\end{array}\right.$ then $G$ is an infinite gro
$\left\{\begin{array}{l}G_{1}, G_{2}, H \\ G_{1}\end{array}\right.$ are of infinite index in $G=\left\{\begin{array}{l}G_{1} *_{H} G_{2} \\ G *_{H}\{t\} .\end{array}\right.$

A $C W$ pair $(X, Y \subset X)$ is 2-sided if $Y$ has an open neighbourhood $Y \times \mathbb{R} \subset X$. The pair is connected if $X$ and $Y$ are connected. By the Seifert-van Kampen Theorem $\pi_{1}(X)$ is a generalized free product :
(A) if $Y$ separates $X$ then $X-Y$ has two components, and

$$
X=X_{1} \cup_{Y} X_{2}
$$

for connected $X_{1}, X_{2} \subset X$ with

$$
\pi_{1}(X)=\pi_{1}\left(X_{1}\right) *_{\pi_{1}(Y)} \pi_{1}\left(X_{2}\right)
$$

the amalgamated free product determined by the morphisms $i_{1}: \pi_{1}(Y) \rightarrow$ $\pi_{1}\left(X_{1}\right), i_{2}: \pi_{1}(Y) \rightarrow \pi_{1}\left(X_{2}\right)$ induced by the inclusions $i_{1}: Y \rightarrow X_{1}$, $i_{2}: Y \rightarrow X_{2}$.

(B) if $Y$ does not separate $X$ then $X-Y$ is connected and

$$
X=X_{1} \cup_{Y \times\{0,1\}} Y \times[0,1]
$$

for connected $X_{1} \subset X$, with

$$
\pi_{1}(X)=\pi_{1}\left(X_{1}\right) *_{\pi_{1}(Y)}\{t\}
$$

the $H N N$ extension determined by the morphisms $i_{1}, i_{2}: \pi_{1}(Y) \rightarrow$
$\pi_{1}\left(X_{1}\right)$ induced by the inclusions $i_{1}, i_{2}: Y \rightarrow X_{1}$.


The generalized free product is injective if and only if the morphism $\pi_{1}(Y) \rightarrow$ $\pi_{1}(X)$ is injective, in which case $\pi_{1}(Y)$ is a 2 -sided subgroup of $\pi_{1}(X)$.

A codimension 1 submanifold $N^{n-1} \subset M^{n}$ is 2-sided if the normal bundle is trivial, in which case $(M, N)$ is a 2 -sided $C W$ pair.

For a 2-sided $C W$ pair $(X, Y)$ every map $f: M \rightarrow X$ from an $n$-dimensional manifold $M$ is homotopic to a map (also denoted by $f$ ) which is transverse at $Y \subset X$, with

$$
N^{n-1}=f^{-1}(Y) \subset M^{n}
$$

a 2-sided codimension 1 submanifold, by the Sard-Thom theorem.
By definition, a Seifert-van Kampen splitting of a connected $C W$ complex $W$ with $\pi_{1}(W)=G=\left\{\begin{array}{l}G_{1} *_{H} G_{2} \\ G_{1} *_{H}\{t\}\end{array} \quad\right.$ an injective generalized free product is a connected 2-sided $C W$ pair $(X, Y)$ with a homotopy equivalence $X \rightarrow W$ such that

$$
\operatorname{im}\left(\pi_{1}(Y) \rightarrow \pi_{1}(X)\right)=H \subseteq \pi_{1}(X)=\pi_{1}(W)=G
$$

The splitting is injective if $\pi_{1}(Y) \rightarrow \pi_{1}(X)$ is injective, in which case

$$
X=\left\{\begin{array}{l}
X_{1} \cup_{Y} X_{2} \\
X_{1} \cup_{Y \times\{0,1\}} Y \times[0,1]
\end{array}\right.
$$

with

$$
\left\{\begin{array}{l}
\pi_{1}\left(X_{1}\right)=G_{1}, \pi_{1}\left(X_{2}\right)=G_{2} \\
\pi_{1}\left(X_{1}\right)=G_{1}
\end{array} \quad, \pi_{1}(Y)=H\right.
$$

The splitting is finite if the complexes $W, X, Y$ are finite, and infinite otherwise.

A connected $C W$ complex $W$ with $\pi_{1}(W)=G=\left\{\begin{array}{l}G_{1} *_{H} G_{2} \\ G_{1} *_{H}\{t\}\end{array} \quad\right.$ an injective generalized free product is a homotopy pushout

with $\widetilde{W}$ the universal cover of $W$ and $\left\{\begin{array}{l}i_{1}, i_{2}, j_{1}, j_{2} \\ i_{1}, i_{2}, j_{1}\end{array}\right.$ the covering projections. (See Proposition $\left\{\begin{array}{l}2.6 \\ 2.14\end{array}\right.$ for proofs). Thus $W$ has a canonical infinite injective Seifert-van Kampen splitting $(X(\infty), Y(\infty))$ with

$$
\left\{\begin{array}{l}
Y(\infty)=\widetilde{W} / H \times\{1 / 2\} \subset X(\infty)=\widetilde{W} / G_{1} \cup_{i_{1}} \widetilde{W} / H \times[0,1] \cup_{i_{2}} \widetilde{W} / G_{2} \\
Y(\infty)=\widetilde{W} / H \times\{1 / 2\} \subset X(\infty)=\widetilde{W} / G_{1} \cup_{i_{1} \cup i_{2}} \widetilde{W} / H \times[0,1] .
\end{array}\right.
$$

For finite $W$ it is easy to obtain finite injective Seifert-van Kampen splittings by codimension 1 manifold transversality. In fact, there are two ways of doing so :
(i) Consider a regular neighbourhood $(M, \partial M)$ of $W \subset S^{N}$ ( $N$ large), apply codimension 1 manifold transversality to a map

$$
\left\{\begin{array}{l}
f: M \rightarrow B G=B G_{1} \cup_{B H \times\{0\}} B H \times[0,1] \cup_{B H \times\{1\}} B G_{2} \\
f: M \rightarrow B G=B G_{1} \cup_{B H \times\{0,1\}} B H \times[0,1]
\end{array}\right.
$$

inducing the identification $\pi_{1}(M)=G$ to obtain a finite Seifert-van Kampen splitting ( $M, f^{-1}(B H \times\{1 / 2\})$ ), and then make the splitting injective by low-dimensional handle exchanges.
(ii) Assume inductively that the $n$-skeleton $W^{(n)}$ already has a Seifert-van Kampen splitting $(X, Y)$. For each $(n+1)$-cell $D^{n+1} \subset W^{(n+1)}$ make the attaching map $S^{n} \rightarrow W^{(n)} \simeq X$ transverse at $Y \subset X$, and make the composite $f: D^{n+1} \rightarrow W^{(n+1)} \rightarrow B G$ transverse at $B H \subset B G$. The
transversality gives $D^{n+1}$ a $C W$ structure in which $f^{-1}(B H) \subseteq D^{n+1}$ is a subcomplex, and

$$
\left(X^{\prime}, Y^{\prime}\right)=\left(X \cup \bigcup_{D^{n+1} \subset W^{(n+1)}} D^{n+1}, Y \cup \bigcup_{D^{n+1} \subset W^{(n+1)}} f^{-1}(B H)\right)
$$

is an extension of the Seifert-van Kampen splitting to the $(n+1)$-skeleton $W^{(n+1)}$. Again, the finite splitting can be made injective by low-dimensional handle exchanges.

However, the geometric nature of manifold transversality does not give any insight into the $C W$ structures of the splittings $(X, Y)$ of $W$, let alone into the algebraic analogue of transversality for $\mathbb{Z}[G]$-module chain complexes. Here, we obtain Seifert-van Kampen splittings combinatorially, in the following converse of the Seifert-van Kampen Theorem.

Combinatorial Transversality Theorem Let $W$ be a finite connected $C W$ complex with $\pi_{1}(W)=G=\left\{\begin{array}{l}G_{1} *_{H} G_{2} \\ G_{1} *_{H}\{t\}\end{array} \quad\right.$ an injective generalized free product.
(i) The canonical infinite Seifert-van Kampen splitting $(X(\infty), Y(\infty))$ of $W$ is a union of finite Seifert-van Kampen splittings $(X, Y) \subset(X(\infty), Y(\infty))$

$$
(X(\infty), Y(\infty))=\bigcup(X, Y)
$$

(ii) If $\pi_{1}(W)$ is a finitely presented generalized free product then for any finite Seifert-van Kampen splitting $(X, Y)$ of $W$ it is possible to attach a finite number of 2- and 3-cells to obtain a finite injective Seifert-van Kampen splitting ( $X^{\prime}, Y^{\prime}$ ) such that the inclusion $X \rightarrow X^{\prime}$ is a homotopy equivalence and the inclusion $Y \rightarrow Y^{\prime}$ is a $\mathbb{Z}[H]$-coefficient homology equivalence.

The Theorem is proved in $\S 2$. The main ingredient of the proof is the construction of a finite Seifert-van Kampen splitting of $W$ from a finite domain of the universal cover $\widetilde{W}$, as given by finite subcomplexes $\left\{\begin{array}{l}W_{1}, W_{2} \subseteq \widetilde{W} \\ W_{1} \subseteq \widetilde{W}\end{array}\right.$ such that $\left\{\begin{array}{l}G_{1} W_{1} \cup G_{2} W_{2}=\widetilde{W} \\ G_{1} W_{1}=\widetilde{W} .\end{array}\right.$

Algebraic transversality makes much use of the induction and restriction functors associated to a ring morphism $i: A \rightarrow B$

$$
\begin{aligned}
& i_{!}:\{A \text {-modules }\} \rightarrow\{B \text {-modules }\} ; M \mapsto i_{!} M=B \otimes_{A} M, \\
& i^{!}:\{B \text {-modules }\} \rightarrow\{A \text {-modules }\} ; N \mapsto i^{!} N=N .
\end{aligned}
$$

Let $G=\left\{\begin{array}{l}G_{1} *_{H} G_{2} \\ G_{1} *_{H}\{t\}\end{array} \quad\right.$ be a generalized free product. By definition, a MayerVietoris splitting (or presentation) $\mathcal{E}$ of a $\mathbb{Z}[G]$-module chain complex $C$ is :
(A) an exact sequence of $\mathbb{Z}[G]$-module chain complexes

$$
\mathcal{E}: 0 \rightarrow k_{!} D \xrightarrow{\binom{1 \otimes e_{1}}{1 \otimes e_{2}}}\left(j_{1}\right)!C_{1} \oplus\left(j_{2}\right)!C_{2} \rightarrow C \rightarrow 0
$$

with $C_{1}$ a $\mathbb{Z}\left[G_{1}\right]$-module chain complex, $C_{2}$ a $\mathbb{Z}\left[G_{2}\right]$-module chain complex, $D$ a $\mathbb{Z}[H]$-module chain complex, $e_{1}:\left(i_{1}\right)!D \rightarrow C_{1}$ a $\mathbb{Z}\left[G_{1}\right]$-module chain map and $e_{2}:\left(i_{2}\right)!D \rightarrow C_{2}$ a $\mathbb{Z}\left[G_{2}\right]$-module chain map,
(B) an exact sequence of $\mathbb{Z}[G]$-module chain complexes

$$
\mathcal{E}: 0 \rightarrow\left(j_{1} i_{1}\right)!D \xrightarrow{1 \otimes e_{1}-t \otimes e_{2}}\left(j_{1}\right)!C_{1} \rightarrow C \rightarrow 0
$$

with $C_{1}$ a $\mathbb{Z}\left[G_{1}\right]$-module chain complex, $D$ a $\mathbb{Z}[H]$-module chain complex, and $e_{1}:\left(i_{1}\right)!D \rightarrow C_{1}, e_{2}:\left(i_{2}\right)!D \rightarrow C_{1} \mathbb{Z}\left[G_{1}\right]$-module chain maps.
A Mayer-Vietoris splitting $\mathcal{E}$ is finite if every chain complex in $\mathcal{E}$ is finite f.g. free, and infinite otherwise.

Let $X$ be a connected $C W$ complex with fundamental group $\pi_{1}(X)=G$ and universal covering projection $p: \widetilde{X} \rightarrow X$, with $G$ acting on the left of $\widetilde{X}$. Let $C(\widetilde{X})$ be the cellular free (left) $\mathbb{Z}[G]$-module chain complex. For any subgroup $H \subseteq G$ the covering $Z=\widetilde{X} / H$ of $X$ has universal cover $\widetilde{Z}=\widetilde{X}$ with cellular $\mathbb{Z}[H]$-module chain complex

$$
C(\widetilde{Z})=k^{!} C(\widetilde{X})
$$

with $k: \mathbb{Z}[H] \rightarrow \mathbb{Z}[G]$ the inclusion. If $H=\pi_{1}(Y)$ for a connected subcomplex $Y \subseteq X$ then $p^{-1}(Y) \subseteq \widetilde{X}$ is a disjoint union of copies of the universal cover $\widetilde{Y}$ of $Y$

$$
p^{-1}(Y)=\bigcup_{g \in[G ; H]} g \widetilde{Y} \subset \widetilde{X}
$$

with $[G ; H]$ the set of right $H$-cosets $g=x H \subseteq G(x \in G)$. The cellular $\mathbb{Z}[G]$ module chain complex of $p^{-1}(Y)$ is induced from the cellular $\mathbb{Z}[H]$-module chain complex of $\widetilde{Y}$

$$
C\left(p^{-1}(Y)\right)=k_{!} C(\tilde{Y})=\mathbb{Z}[G] \otimes_{\mathbb{Z}[H]} C(\tilde{Y}) \subseteq C(\widetilde{X}) .
$$

Furthermore, if $(X, Y)$ is a connected 2 -sided $C W$ pair then $C(\widetilde{X})$ has a MayerVietoris splitting with respect to the injective generalized free product structure on $\pi_{1}(X)$ :
(A) By the Mayer-Vietoris Theorem applied to

$$
\begin{aligned}
\widetilde{X} & =p^{-1}\left(X_{1}\right) \cup_{p^{-1}(Y)} p^{-1}\left(X_{2}\right) \\
& =\bigcup_{g_{1} \in\left[G ; G_{1}\right]} g_{1} \widetilde{X}_{1} \cup \bigcup_{h \in[G ; H]} h \widetilde{Y} \bigcup_{g_{2} \in\left[G ; G_{2}\right]} g_{2} \widetilde{X}_{2}
\end{aligned}
$$

$C(\widetilde{X})$ has a Mayer-Vietoris splitting

$$
\begin{aligned}
0 \rightarrow k_{!} C(\widetilde{Y}) \xrightarrow{\binom{1 \otimes e_{1}}{1 \otimes e_{2}}}\left(j_{1}\right)_{!} C\left(\widetilde{X}_{1}\right) \oplus\left(j_{2}\right)_{!} C\left(\widetilde{X}_{2}\right) \\
\stackrel{\left(f_{1}-f_{2}\right)}{ } C(\widetilde{X}) \rightarrow 0
\end{aligned}
$$

with $\tilde{X}_{1}, \widetilde{X}_{2}$ the universal covers of $X_{1}, X_{2}$ and $e_{1}: Y \rightarrow X_{1}, e_{2}: Y \rightarrow$ $X_{2}, f_{1}: X_{1} \rightarrow X, f_{2}: X_{2} \rightarrow X$ the inclusions.
(B) By the Mayer-Vietoris Theorem applied to

$$
\begin{aligned}
\widetilde{X} & =p^{-1}\left(X_{1}\right) \cup_{p^{-1}(Y \times\{0,1\})} p^{-1}(Y \times[0,1]) \\
& =\bigcup_{g_{1} \in\left[G ; G_{1}\right]} g_{1} \widetilde{X}_{1} \cup \bigcup_{h \in[G ; H]}(h \widetilde{Y}, 0) \cup(t h \widetilde{Y}, 1) \bigcup_{h \in[G ; H]} h \widetilde{Y} \times[0,1]
\end{aligned}
$$

(with $H=i_{1}(H) \subseteq G$ ) there is defined a short exact sequence of $\mathbb{Z}[G]$ module chain complexes

$$
\begin{aligned}
& 0 \rightarrow k_{!} C(\widetilde{Y}) \oplus k_{!} C(\widetilde{Y}) \xrightarrow{\left(\begin{array}{cc}
1 \otimes e_{1} & t \otimes e_{2} \\
1 & 1
\end{array}\right)}\left(j_{1}\right)!C\left(\widetilde{X}_{1}\right) \oplus k_{!} C(\widetilde{Y}) \\
& \xrightarrow{\left(f_{1}-f_{1}\left(1 \otimes e_{1}\right)\right)} C(\widetilde{X}) \rightarrow 0
\end{aligned}
$$

with $\widetilde{X}_{1}$ the universal cover of $X_{1}$, and $e_{1}, e_{2}: Y \rightarrow X_{1}, f_{1}: X_{1} \rightarrow X$ the inclusions, so that $C(\widetilde{X})$ has a Mayer-Vietoris splitting

$$
\mathcal{E}: 0 \rightarrow k_{!} C(\tilde{Y}) \xrightarrow{1 \otimes e_{1}-t \otimes e_{2}}\left(j_{1}\right)_{!} C\left(\widetilde{X}_{1}\right) \xrightarrow{f_{1}} C(\tilde{X}) \rightarrow 0
$$

If $(X, Y)$ is a finite $C W$ pair the above Mayer-Vietoris splittings are finite.
For any injective generalized free product $G=\left\{\begin{array}{l}G_{1} *_{H} G_{2} \\ G *_{H}\{t\}\end{array}\right.$ every free $\mathbb{Z}[G]-$ module chain complex $C$ has a canonical infinite Mayer-Vietoris splitting

$$
\begin{aligned}
& \text { (A) } \mathcal{E}(\infty): 0 \rightarrow k_{!} k^{!} C \rightarrow\left(j_{1}\right)!j_{1}^{!} C \oplus\left(j_{2}\right)!j_{2}^{!} C \rightarrow C \rightarrow 0 \\
& \text { (B) } \mathcal{E}(\infty): 0 \rightarrow k_{!} k^{!} C \rightarrow\left(j_{1}\right)!j_{1}^{j} C \rightarrow C \rightarrow 0 .
\end{aligned}
$$

For finite $C$ we shall obtain finite Mayer-Vietoris splittings in the following converse of the Mayer-Vietoris Theorem.

Algebraic Transversality Theorem Let $G=\left\{\begin{array}{l}G_{1} *_{H} G_{2} \\ G_{1} *_{H}\{t\}\end{array} \quad\right.$ be an injective generalized free product. For a finite f.g. free $\mathbb{Z}[G]$-module chain complex $C$ the canonical infinite Mayer-Vietoris splitting $\mathcal{E}(\infty)$ of $C$ is a union of finite Mayer-Vietoris splittings $\mathcal{E} \subset \mathcal{E}(\infty)$

$$
\mathcal{E}(\infty)=\bigcup \mathcal{E}
$$

The existence of finite Mayer-Vietoris splittings was first proved by Waldhausen [14], [15]. The proof of the Theorem in $\S 1$ is a simplification of the original argument, using chain complex analogues of the $C W$ domains.

Suppose now that ( $X, Y$ ) is the finite 2 -sided $C W$ pair defined by a (compact) connected $n$-dimensional manifold $X^{n}$ together with a connected codimension 1 submanifold $Y^{n-1} \subset X$ with trivial normal bundle. By definition, a homotopy equivalence $f: M^{n} \rightarrow X$ from an $n$-dimensional manifold splits at $Y \subset X$ if $f$ is homotopic to a map (also denoted by $f$ ) which is transverse at $Y$, such that the restriction $f \mid: N^{n-1}=f^{-1}(Y) \rightarrow Y$ is also a homotopy equivalence. In general, homotopy equivalences do not split. For $(X, Y)$ with injective $\pi_{1}(Y) \rightarrow \pi_{1}(X)$ there are algebraic $K$ - and $L$-theory obstructions to splitting, involving the Nil-groups of Waldhausen [14], [15] and the UNil-groups of Cappell [2], and for $n \geqslant 6$ these are the complete obstructions to splitting. As outlined in Ranicki [8, §8], algebraic transversality for chain complexes is an essential ingredient for a systematic treatment of both the algebraic $K$ - and $L$-theory obstructions. Although the algebraic $K$ - and $L$-theory of generalized free products will not actually be considered here, it is worth noting that the early results of Higman [6], Bass, Heller and Swan [1] and Stallings [12] on the Whitehead groups of polynomial extensions and free products were followed by the work of the dedicatee on the Whitehead group of amalgamated free products (Casson [4]) prior to the general results of Waldhausen [14], [15] on the algebraic $K$-theory of generalized free products.

## 1 Algebraic transversality

We shall deal separately with the amalgamated free and $H N N$ cases.

### 1.1 Algebraic transversality for amalgamated free products

Given an injective amalgamated free product $G=G_{1} *_{H} G_{2}$ with $G \neq\{1\}$ let $T$ be the infinite tree defined by

$$
T^{(0)}=\left[G ; G_{1}\right] \cup\left[G ; G_{2}\right], T^{(1)}=[G ; H]
$$

(Serre [11], Waldhausen [15]). The edge $h \in[G ; H]$ joins the unique vertices $g_{1} \in\left[G ; G_{1}\right], g_{2} \in\left[G ; G_{2}\right]$ with

$$
g_{1} \cap g_{2}=h \subset G .
$$

The group $G$ acts on $T$ by

$$
G \times T \rightarrow T ;(g, x) \mapsto g x
$$

with $T / G=[0,1], G_{i} \subseteq G$ the isotropy subgroup of $G_{i} \in T^{(0)}$ and $H \subseteq G$ the isotropy subgroup of $H \in T^{(1)}$. Conversely, if a group $G$ acts on a tree $T$ with $T / G=[0,1]$ then $G=G_{1} *_{H} G_{2}$ is an injective amalgamated free product with tree $T$.

As before write the injections as

$$
\begin{aligned}
& i_{1}: H \rightarrow G_{1}, i_{2}: H \rightarrow G_{2}, j_{1}: G_{1} \rightarrow G, j_{2}: G_{2} \rightarrow G, \\
& k=j_{1} i_{1}=j_{2} i_{2}: H \rightarrow G .
\end{aligned}
$$

Definition 1.1 (i) A domain $\left(C_{1}, C_{2}\right)$ of a $\mathbb{Z}[G]$-module chain complex $C$ is a pair of subcomplexes ( $C_{1} \subseteq j_{1}^{\prime} C, C_{2} \subseteq j_{2}^{!} C$ ) such that the chain maps

$$
\begin{aligned}
& e_{1}:\left(i_{1}\right)_{!}\left(C_{1} \cap C_{2}\right) \rightarrow C_{1} ; b_{1} \otimes y_{1} \mapsto b_{1} y_{1}, \\
& e_{2}:\left(i_{2}\right)!\left(C_{1} \cap C_{2}\right) \rightarrow C_{2} ; b_{2} \otimes y_{2} \mapsto b_{2} y_{2}, \\
& f_{1}:\left(j_{1}\right)_{!} C_{1} \rightarrow C ; a_{1} \otimes x_{1} \mapsto a_{1} x_{1}, \\
& f_{2}:\left(j_{1}\right)_{!} C_{2} \rightarrow C ; a_{2} \otimes x_{2} \mapsto a_{2} x_{2}
\end{aligned}
$$

fit into a Mayer-Vietoris splitting of $C$

$$
\mathcal{E}\left(C_{1}, C_{2}\right): 0 \rightarrow k_{!}\left(C_{1} \cap C_{2}\right) \xrightarrow{e}\left(j_{1}\right)_{!} C_{1} \oplus\left(j_{2}\right)!C_{2} \xrightarrow{f} C \rightarrow 0
$$

with $e=\binom{e_{1}}{e_{2}}, f=\left(f_{1}-f_{2}\right)$.
(ii) A domain $\left(C_{1}, C_{2}\right)$ is finite if $C_{i}(i=1,2)$ is a finite f.g. free $\mathbb{Z}\left[G_{i}\right]$-module chain complex, $C_{1} \cap C_{2}$ is a finite f.g. free $\mathbb{Z}[H]$-module chain complex, and infinite otherwise.

Proposition 1.2 Every free $\mathbb{Z}[G]$-module chain complex $C$ has a canonical infinite domain $\left(C_{1}, C_{2}\right)=\left(j_{1}^{!} C, j_{2}^{!} C\right)$ with

$$
C_{1} \cap C_{2}=k!C,
$$

so that $C$ has a canonical infinite Mayer-Vietoris splitting

$$
\mathcal{E}(\infty)=\mathcal{E}\left(j_{1}^{!} C, j_{2}^{!} C\right): 0 \rightarrow k_{!} k^{!} C \rightarrow\left(j_{1}\right)!j_{1}^{!} C \oplus\left(j_{2}\right)!j_{2}^{!} C \rightarrow C \rightarrow 0 .
$$

Proof It is enough to consider the special case $C=\mathbb{Z}[G]$, concentrated in degree 0 . The pair

$$
\left(C_{1}, C_{2}\right)=\left(j_{1}^{!} \mathbb{Z}[G], j_{2}^{!} \mathbb{Z}[G]\right)=\left(\bigoplus_{\left[G ; G_{1}\right]} \mathbb{Z}\left[G_{1}\right], \bigoplus_{\left[G ; G_{2}\right]} \mathbb{Z}\left[G_{2}\right]\right)
$$

is a canonical infinite domain for $C$, with

$$
\mathcal{E}(\infty)=\mathcal{E}\left(C_{1}, C_{2}\right): 0 \rightarrow k_{!} k^{\prime} \mathbb{Z}[G] \rightarrow\left(j_{1}\right)!j_{1}^{\prime} \mathbb{Z}[G] \oplus\left(j_{2}\right)!!_{2}^{\prime} \mathbb{Z}[G] \rightarrow \mathbb{Z}[G] \rightarrow 0
$$

the chain complex of $C(T \times G)=C(T) \otimes_{\mathbb{Z}} \mathbb{Z}[G]$, along with its augmentation to $H_{0}(T \times G)=\mathbb{Z}[G]$.

Definition 1.3 (i) For a based f.g. free $\mathbb{Z}[G]$-module $B=\mathbb{Z}[G]^{b}$ and a subtree $U \subseteq T$ define a domain for $B$ (regarded as a chain complex concentrated in degree 0)

$$
\left(B(U)_{1}, B(U)_{2}\right)=\left(\sum_{U_{1}^{(0)}} \mathbb{Z}\left[G_{1}\right]^{b}, \sum_{U_{2}^{(0)}} \mathbb{Z}\left[G_{2}\right]^{b}\right)
$$

with

$$
\begin{aligned}
& U_{1}^{(0)}=U^{(0)} \cap\left[G ; G_{1}\right], U_{2}^{(0)}=U^{(0)} \cap\left[G ; G_{2}\right] \\
& B(U)_{1} \cap B(U)_{2}=\sum_{U^{(1)}} \mathbb{Z}[H]^{b} .
\end{aligned}
$$

The associated Mayer-Vietoris splitting of $B$ is the subobject $\mathcal{E}(U) \subseteq \mathcal{E}(\infty)$ with

$$
\mathcal{E}(U): 0 \rightarrow k_{!} \sum_{U^{(1)}} \mathbb{Z}[H]^{b} \rightarrow\left(j_{1}\right)!\sum_{U_{1}^{(0)}} \mathbb{Z}\left[G_{1}\right]^{b} \oplus\left(j_{2}\right)!\sum_{U_{2}^{(0)}} \mathbb{Z}\left[G_{2}\right]^{b} \rightarrow B \rightarrow 0
$$

the chain complex of $C(U \times G)^{b}=C(U) \otimes_{\mathbb{Z}} B$, along with its augmentation to $H_{0}(U \times G)^{b}=B$. If $U \subset T$ is finite then $\left(B(U)_{1}, B(U)_{2}\right)$ is a finite domain.
(ii) Let $C$ be an $n$-dimensional based f.g. free $\mathbb{Z}[G]$-module chain complex, with $C_{r}=\mathbb{Z}[G]^{c_{r}}$. A sequence $U=\left\{U_{n}, U_{n-1}, \ldots, U_{1}, U_{0}\right\}$ of subtrees $U_{r} \subseteq T$ is realized by $C$ if the differentials $d: C_{r} \rightarrow C_{r-1}$ are such that

$$
d\left(C_{r}\left(U_{r}\right)_{i}\right) \subseteq C_{r-1}\left(U_{r-1}\right)_{i} \quad(1 \leqslant r \leqslant n, i=1,2),
$$

so that there is defined a Mayer-Vietoris splitting of $C$
$\mathcal{E}(U): 0 \rightarrow k_{!} \sum_{U^{(1)}} C(U)_{1} \cap C(U)_{2} \rightarrow\left(j_{1}\right)!\sum_{U_{1}^{(0)}} C(U)_{1} \oplus\left(j_{2}\right)!\sum_{U_{2}^{(0)}} C(U)_{2} \rightarrow C \rightarrow 0$
with $C(U)_{i}$ the free $\mathbb{Z}\left[G_{i}\right]$-module chain complex defined by

$$
\left(C(U)_{i}\right)_{r}=C_{r}\left(U_{r}\right)_{i} \quad(i=1,2) .
$$

The sequence $U$ is finite if each subtree $U_{r} \subseteq T$ is finite, in which case $\mathcal{E}(U)$ is finite.

Proposition 1.4 For a finite based f.g. free $\mathbb{Z}[G]$-module chain complex $C$ the canonical infinite domain is a union of finite domains

$$
\left(j_{1}^{!} C, j_{2}^{!} C\right)=\bigcup_{U}\left(C(U)_{1}, C(U)_{2}\right)
$$

with $U$ running over all the finite sequences which are realized by $C$. The canonical infinite Mayer-Vietoris splitting of $C$ is thus a union of finite MayerVietoris splittings

$$
\mathcal{E}(\infty)=\bigcup_{U} \mathcal{E}(U)
$$

Proof The proof is based on the following observations :
(a) for any subtrees $V \subseteq U \subseteq T$

$$
\mathcal{E}(V) \subseteq \mathcal{E}(U) \subseteq \mathcal{E}(T)=\mathcal{E}(\infty)
$$

(b) the infinite tree $T$ is a union

$$
T=\bigcup U
$$

of the finite subtrees $U \subset T$,
(c) for any finite subtrees $U, U^{\prime} \subset T$ there exists a finite subtree $U^{\prime \prime} \subset T$ such that $U \subseteq U^{\prime \prime}$ and $U^{\prime} \subseteq U^{\prime \prime}$,
(d) for any finite subtree $U \subset T$ and any element $d \in \mathbb{Z}[G]$ there exists a finite subtree $U^{\prime} \subset T$ such that the $\mathbb{Z}[G]$-module morphism $d: \mathbb{Z}[G] \rightarrow \mathbb{Z}[G]$ is resolved by a morphism $d: \mathcal{E}(U) \rightarrow \mathcal{E}\left(U^{\prime}\right)$ of finite Mayer-Vietoris splittings.

Assume $C$ is $n$-dimensional, with $C_{r}=\mathbb{Z}[G]^{c_{r}}$. Starting with any finite subtree $U_{n} \subseteq T$ let

$$
U=\left\{U_{n}, U_{n-1}, \ldots, U_{1}, U_{0}\right\}
$$

be a sequence of finite subtrees $U_{r} \subset T$ such that the f.g. free submodules

$$
\begin{aligned}
& C_{r}(U)_{1}=\sum_{U_{r, 1}^{(0)}} \mathbb{Z}\left[G_{1}\right]^{c_{r}} \subset j_{1}^{!} C_{r}=\sum_{T_{1}^{(0)}} \mathbb{Z}\left[G_{1}\right]^{c_{r}}, \\
& C_{r}(U)_{2}=\sum_{U_{r, ~}^{(0)}} \mathbb{Z}\left[G_{2}\right]^{c_{r}} \subset j_{2}^{!} C_{r}=\sum_{T_{2}^{(0)}} \mathbb{Z}\left[G_{2}\right]^{c_{r}}, \\
& D(U)_{r}=\sum_{U_{r}^{(1)}} \mathbb{Z}[H]^{c_{r}} \subset k^{!} C_{r}=\sum_{T^{(1)}} \mathbb{Z}[H]^{c_{r}}
\end{aligned}
$$

define subcomplexes $C(U)_{1} \subset j_{1}^{!} C, C(U)_{2} \subset j_{2}^{!} C, D(U) \subset k!C$. Then $\left(C(U)_{1}\right.$, $\left.C(U)_{2}\right)$ is a domain of $C$ with $C(U)_{1} \cap C(U)_{2}=D(U)$, and $U$ is realized by $C$.

Remark 1.5 (i) The existence of finite Mayer-Vietoris splittings was first proved by Waldhausen [14],[15], using essentially the same method. See Quinn [7] for a proof using controlled algebra. The construction of generalized free products by noncommutative localization (cf. Ranicki [10]) can be used to provide a different proof.
(ii) The construction of the finite Mayer-Vietoris splittings $\mathcal{E}(U)$ in 1.4 as subobjects of the universal Mayer-Vietoris splitting $\mathcal{E}(T)=\mathcal{E}(\infty)$ is taken from Remark 8.7 of Ranicki [8].

This completes the proof of the Algebraic Transversality Theorem for amalgamated free products.

### 1.2 Algebraic transversality for $H N N$ extensions

The proof of algebraic transversality for $H N N$ extensions proceeds exactly as for amalgamated free products, so only the statements will be given.

Given an injective $H N N$ extension $G=G_{1} *_{H}\{t\}$ with $G \neq\{1\}$ let $T$ be the infinite tree defined by

$$
T^{(0)}=\left[G ; G_{1}\right], T^{(1)}=[G ; H]
$$

identifying $H=i_{1}(H) \subseteq G$. The edge $h \in[G ; H]$ joins the unique vertices $g_{1}, g_{2} \in\left[G ; G_{1}\right]$ with

$$
g_{1} \cap g_{2} t^{-1}=h \subset G
$$

The group $G$ acts on $T$ by

$$
G \times T \rightarrow T ; \quad(g, x) \mapsto g x
$$

with $T / G=S^{1}, G_{1} \subseteq G$ the isotropy subgroup of $G_{1} \in T^{(0)}$ and $H \subseteq G$ the isotropy subgroup of $H \in T^{(1)}$. Conversely, if a group $G$ acts on a tree $T$ with $T / G=S^{1}$ then $G=G_{1} *_{H}\{t\}$ is an injective $H N N$ extension with tree $T$. As before, write the injections as

$$
i_{1}, i_{2}: H \rightarrow G_{1}, j: G_{1} \rightarrow G, k=j_{1} i_{1}=j_{1} i_{2}: G_{1} \rightarrow G
$$

Definition 1.6 (i) A domain $C_{1}$ of a $\mathbb{Z}[G]$-module chain complex $C$ is a subcomplex $C_{1} \subseteq j_{1}^{!} C$ such that the chain maps

$$
\begin{aligned}
& e_{1}:\left(i_{1}\right)!\left(C_{1} \cap t C_{1}\right) \rightarrow C_{1} ; b_{1} \otimes y_{1} \mapsto b_{1} y_{1} \\
& e_{2}:\left(i_{2}\right)_{!}\left(C_{1} \cap t C_{1}\right) \rightarrow C_{1} ; b_{2} \otimes y_{2} \mapsto b_{2} t^{-1} y_{2} \\
& f:\left(j_{1}\right)!C_{1} \rightarrow C ; a \otimes x \mapsto a x
\end{aligned}
$$

fit into a Mayer-Vietoris splitting of $C$

$$
\mathcal{E}\left(C_{1}\right): 0 \rightarrow k_{!}\left(C_{1} \cap t C_{1}\right) \xrightarrow{1 \otimes e_{1}-t \otimes e_{2}}\left(j_{1}\right)!C_{1} \xrightarrow{f} C \rightarrow 0
$$

(ii) A domain $C_{1}$ is finite if $C_{1}$ is a finite f.g. free $\mathbb{Z}\left[G_{1}\right]$-module chain complex and $C_{1} \cap t C_{1}$ is a finite f.g. free $\mathbb{Z}[H]$-module chain complex.

Proposition 1.7 Every free $\mathbb{Z}[G]$-module chain complex $C$ has a canonical infinite domain $C_{1}=j_{1}^{!} C$ with

$$
C_{1} \cap t C_{1}=k^{!} C_{1}
$$

so that $C$ has a canonical infinite Mayer-Vietoris splitting

$$
\mathcal{E}(\infty)=\mathcal{E}\left(j_{1}^{!} C\right): 0 \rightarrow k_{!} k^{!} C \rightarrow\left(j_{1}\right)!j_{1}^{!} C \rightarrow C \rightarrow 0
$$

Definition 1.8 For any subtree $U \subseteq T$ define a domain for $\mathbb{Z}[G]$

$$
C(U)_{1}=\sum_{U^{(0)}} \mathbb{Z}\left[G_{1}\right]
$$

with

$$
C(U)_{1} \cap t C(U)_{1}=\sum_{U^{(1)}} \mathbb{Z}[H]
$$

The associated Mayer-Vietoris splitting of $\mathbb{Z}[G]$ is the subobject $\mathcal{E}(U) \subseteq \mathcal{E}(\infty)$ with

$$
\mathcal{E}(U): 0 \rightarrow k_{!} \sum_{U^{(1)}} \mathbb{Z}[H] \rightarrow\left(j_{1}\right)!\sum_{U^{(0)}} \mathbb{Z}\left[G_{1}\right] \rightarrow \mathbb{Z}[G] \rightarrow 0
$$

If $U \subset T$ is finite then $C(U)_{1}$ is finite.

Proposition 1.9 For a finite f.g. free $\mathbb{Z}[G]$-module chain complex $C$ the canonical infinite domain is a union of finite domains

$$
j_{1}^{!} C=\bigcup C_{1}
$$

The canonical infinite Mayer-Vietoris splitting of $C$ is thus a union of finite Mayer-Vietoris splittings

$$
\mathcal{E}(\infty)=\bigcup \mathcal{E}\left(C_{1}\right) .
$$

This completes the proof of the Algebraic Transversality Theorem for $H N N$ extensions.

## 2 Combinatorial transversality

The Combinatorial Transversality Theorem stated in the Introduction will now be proved, treating the cases of an amalgamated free product and an $H N N$ extension separately.

### 2.1 Mapping cylinders

We review some basic mapping cylinder constructions.
The mapping cylinder of a map $e: V \rightarrow W$ is the identification space

$$
\mathcal{M}(e)=(V \times[0,1] \cup W) /\{(x, 0) \sim e(x) \mid x \in V\}
$$

such that $V=V \times\{1\} \subset \mathcal{M}(e)$, and the projection

$$
p: \mathcal{M}(e) \rightarrow W ; \begin{cases}(x, s) \mapsto e(x) & \text { for } x \in V, s \in[0,1] \\ y \mapsto x & \text { for } y \in W\end{cases}
$$

is a homotopy equivalence.
If $e$ is a cellular map of $C W$ complexes then $\mathcal{M}(e)$ is a $C W$ complex, such that cellular chain complex $C(\mathcal{M}(e))$ is the algebraic mapping cylinder of $e$ : $C(V) \rightarrow C(W)$ with

$$
\begin{aligned}
d_{C(\mathcal{M}(e))} & =\left(\begin{array}{ccc}
d_{C(W)} & (-1)^{r} e & 0 \\
0 & d_{C(V)} & 0 \\
0 & (-1)^{r-1} & d_{C(V)}
\end{array}\right): \\
C(\mathcal{M}(e))_{r} & =C(W)_{r} \oplus C(V)_{r-1} \oplus C(V)_{r} \\
& \rightarrow C(\mathcal{M}(e))_{r-1}=C(W)_{r-1} \oplus C(V)_{r-2} \oplus C(V)_{r-1} .
\end{aligned}
$$

The chain equivalence $p: C(\mathcal{M}(e)) \rightarrow C(W)$ is given by

$$
p=\left(\begin{array}{lll}
1 & 0 & e
\end{array}\right): C(\mathcal{M}(e))_{r}=C(W)_{r} \oplus C(V)_{r-1} \oplus C(V)_{r} \rightarrow C(W)_{r}
$$

The double mapping cylinder $\mathcal{M}\left(e_{1}, e_{2}\right)$ of maps $e_{1}: V \rightarrow W_{1}, e_{2}: V \rightarrow W_{2}$ is the identification space

$$
\begin{aligned}
\mathcal{M}\left(e_{1}, e_{2}\right) & =\mathcal{M}\left(e_{1}\right) \cup_{V} \mathcal{M}\left(e_{2}\right) \\
& =W_{1} \cup_{e_{1}} V \times[0,1] \cup_{e_{2}} W_{2} \\
& =\left(W_{1} \cup V \times[0,1] \cup W_{2}\right) /\left\{(x, 0) \sim e_{1}(x),(x, 1) \sim e_{2}(x) \mid x \in V\right\}
\end{aligned}
$$

Given a commutative square of spaces and maps

define the map
$f_{1} \cup f_{2}: \mathcal{M}\left(e_{1}, e_{2}\right) \rightarrow W ;\left\{\begin{array}{l}(x, s) \mapsto f_{1} e_{1}(x)=f_{2} e_{2}(x) \quad(x \in V, s \in[0,1]) \\ y_{i} \mapsto f_{i}\left(y_{i}\right)\left(y_{i} \in W_{i}, i=1,2\right) .\end{array}\right.$
The square is a homotopy pushout if $f_{1} \cup f_{2}: \mathcal{M}\left(e_{1}, e_{2}\right) \rightarrow W$ is a homotopy equivalence.

If $e_{1}: V \rightarrow W_{1}, e_{2}: V \rightarrow W_{2}$ are cellular maps of $C W$ complexes then $\mathcal{M}\left(e_{1}, e_{2}\right)$ is a $C W$ complex, such that cellular chain complex $C\left(\mathcal{M}\left(e_{1}, e_{2}\right)\right)$ is the algebraic mapping cone of the chain map

$$
\binom{e_{1}}{e_{2}}: C(V) \rightarrow C\left(W_{1}\right) \oplus C\left(W_{2}\right)
$$

with

$$
\begin{aligned}
& d_{C\left(\mathcal{M}\left(e_{1}, e_{2}\right)\right)}=\left(\begin{array}{ccc}
d_{C\left(W_{1}\right)} & (-1)^{r} e_{1} & 0 \\
0 & d_{C(V)} & 0 \\
0 & (-1)^{r} e_{2} & d_{C\left(W_{2}\right)}
\end{array}\right): \\
& C\left(\mathcal{M}\left(e_{1}, e_{2}\right)\right)_{r}=C\left(W_{1}\right)_{r} \oplus C(V)_{r-1} \oplus C\left(W_{2}\right)_{r} \\
& \rightarrow C\left(\mathcal{M}\left(e_{1}, e_{2}\right)\right)_{r-1}=C\left(W_{1}\right)_{r-1} \oplus C(V)_{r-2} \oplus C\left(W_{2}\right)_{r-1} .
\end{aligned}
$$

### 2.2 Combinatorial transversality for amalgamated free products

In this section $W$ is a connected $C W$ complex with fundamental group an injective amalgamated free product

$$
\pi_{1}(W)=G=G_{1} *_{H} G_{2}
$$

with tree $T$. Let $\widetilde{W}$ be the universal cover of $W$, and let

be the commutative square of covering projections.
Definition 2.1 (i) Suppose given subcomplexes $W_{1}, W_{2} \subseteq \widetilde{W}$ such that

$$
G_{1} W_{1}=W_{1}, G_{2} W_{2}=W_{2}
$$

so that

$$
H\left(W_{1} \cap W_{2}\right)=W_{1} \cap W_{2} \subseteq \widetilde{W} .
$$

Define a commutative square of $C W$ complexes and cellular maps

with

$$
\begin{aligned}
& \left(W_{1} \cap W_{2}\right) / H \subseteq \widetilde{W} / H, W_{1} / G_{1} \subseteq \widetilde{W} / G_{1}, W_{2} / G_{2} \subseteq \widetilde{W} / G_{2}, \\
& e_{1}=i_{1}\left|:\left(W_{1} \cap W_{2}\right) / H \rightarrow W_{1} / G_{1}, e_{2}=i_{2}\right|:\left(W_{1} \cap W_{2}\right) / H \rightarrow W_{2} / G_{2}, \\
& f_{1}=j_{1}\left|: W_{1} / G_{1} \rightarrow W, f_{2}=j_{2}\right|: W_{2} / G_{2} \rightarrow W .
\end{aligned}
$$

(ii) A domain $\left(W_{1}, W_{2}\right)$ for the universal cover $\widetilde{W}$ of $W$ consists of connected subcomplexes $W_{1}, W_{2} \subseteq \widetilde{W}$ such that $W_{1} \cap W_{2}$ is connected, and such that for each cell $D \subseteq \widetilde{W}$ the subgraph $U(D) \subseteq T$ defined by

$$
\begin{aligned}
& U(D)^{(0)}=\left\{g_{1} \in\left[G ; G_{1}\right] \mid g_{1} D \subseteq W_{1}\right\} \cup\left\{g_{2} \in\left[G ; G_{2}\right] \mid g_{2} D \subseteq W_{2}\right\} \\
& U(D)^{(1)}=\left\{h \in[G ; H] \mid h D \subseteq W_{1} \cap W_{2}\right\}
\end{aligned}
$$

is a tree.
(iii) A domain $\left(W_{1}, W_{2}\right)$ for $\widetilde{W}$ is fundamental if the subtrees $U(D) \subseteq T$ are either single vertices or single edges, so that

$$
\begin{aligned}
& g_{1} W_{1} \cap g_{2} W_{2}= \begin{cases}h\left(W_{1} \cap W_{2}\right) & \text { if } g_{1} \cap g_{2}=h \in[G ; H] \\
\emptyset & \text { if } g_{1} \cap g_{2}=\emptyset,\end{cases} \\
& W=\left(W_{1} / G_{1}\right) \cup\left(W_{1} \cap W_{2}\right) / H\left(W_{2} / G_{2}\right) .
\end{aligned}
$$

Proposition 2.2 For a domain $\left(W_{1}, W_{2}\right)$ of $\widetilde{W}$ the pair of cellular chain complexes $\left(C\left(W_{1}\right), C\left(W_{2}\right)\right)$ is a domain of the cellular chain complex $C(\widetilde{W})$.

Proof The union of $G W_{1}, G W_{2} \subseteq \widetilde{W}$ is

$$
G W_{1} \cup G W_{2}=\widetilde{W}
$$

since for any cell $D \subseteq \widetilde{W}$ there either exists $g_{1} \in\left[G ; G_{1}\right]$ such that $g_{1} D \subseteq W_{1}$ or $g_{2} \in\left[G ; G_{2}\right]$ such that $g_{2} D \subseteq W_{2}$. The intersection of $G W_{1}, G W_{2} \subseteq \widetilde{W}$ is

$$
G W_{1} \cap G W_{2}=G\left(W_{1} \cap W_{2}\right) \subseteq \widetilde{W} .
$$

The Mayer-Vietoris exact sequence of cellular $\mathbb{Z}[G]$-module chain complexes

$$
0 \rightarrow C\left(G W_{1} \cap G W_{2}\right) \rightarrow C\left(G W_{1}\right) \oplus C\left(G W_{2}\right) \rightarrow C(\widetilde{W}) \rightarrow 0
$$

is the Mayer-Vietoris splitting of $C(\widetilde{W})$ associated to ( $C\left(W_{1}\right), C\left(W_{2}\right)$ )

$$
0 \rightarrow k_{!} C\left(W_{1} \cap W_{2}\right) \rightarrow\left(j_{1}\right)!C\left(W_{1}\right) \oplus\left(j_{2}\right)!C\left(W_{2}\right) \rightarrow C(\widetilde{W}) \rightarrow 0
$$

with $C\left(W_{1} \cap W_{2}\right)=C\left(W_{1}\right) \cap C\left(W_{2}\right)$.
Example 2.3 $W$ has a canonical infinite domain $\left(W_{1}, W_{2}\right)=(\widetilde{W}, \widetilde{W})$ with $\left(W_{1} \cap W_{2}\right) / H=\widetilde{W} / H$, and $U(D)=T$ for each cell $D \subseteq \widetilde{W}$.

Example 2.4 (i) Suppose that $W=X_{1} \cup_{Y} X_{2}$, with $X_{1}, X_{2}, Y \subseteq W$ connected subcomplexes such that the isomorphism

$$
\pi_{1}(W)=\pi_{1}\left(X_{1}\right) *_{\pi_{1}(Y)} \pi_{1}\left(X_{2}\right) \stackrel{\cong}{\cong} G=G_{1} *_{H} G_{2}
$$

preserves the amalgamated free structures. Thus $(X, Y)$ is a Seifert-van Kampen splitting of $W$, and the morphisms

$$
\pi_{1}\left(X_{1}\right) \rightarrow G_{1}, \pi_{1}\left(X_{2}\right) \rightarrow G_{2}, \pi_{1}(Y) \rightarrow H
$$

are surjective. (If $\pi_{1}(Y) \rightarrow \pi_{1}\left(X_{1}\right)$ and $\pi_{1}(Y) \rightarrow \pi_{1}\left(X_{2}\right)$ are injective these morphisms are isomorphisms, and the splitting is injective). The universal cover of $W$ is

$$
\widetilde{W}=\bigcup_{g_{1} \in\left[G ; G_{1}\right]} g_{1} \widetilde{X}_{1} \cup \bigcup_{h \in[G ; H]} h \widetilde{Y} \bigcup_{g_{2} \in\left[G ; G_{2}\right]} g_{2} \widetilde{X}_{2}
$$

with $\widetilde{X}_{i}$ the regular cover of $X_{i}$ corresponding to $\operatorname{ker}\left(\pi_{1}\left(X_{i}\right) \rightarrow G_{i}\right)(i=1,2)$ and $\widetilde{Y}$ the regular cover of $Y$ corresponding to $\operatorname{ker}\left(\pi_{1}(Y) \rightarrow H\right)$ (which are the universal covers of $X_{1}, X_{2}, Y$ in the case $\pi_{1}\left(X_{1}\right)=G_{1}, \pi_{1}\left(X_{2}\right)=G_{2}$, $\left.\pi_{1}(Y)=H\right)$. The pair

$$
\left(W_{1}, W_{2}\right)=\left(\widetilde{X}_{1}, \widetilde{X}_{2}\right)
$$

is a fundamental domain of $\widetilde{W}$ such that

$$
\begin{aligned}
& \left(W_{1} \cap W_{2}\right) / H=Y, \\
& g_{1} W_{1} \cap g_{2} W_{2}=\left(g_{1} \cap g_{2}\right) \widetilde{Y} \subseteq \widetilde{W}\left(g_{1} \in\left[G ; G_{1}\right], g_{2} \in\left[G ; G_{2}\right]\right) .
\end{aligned}
$$

For any cell $D \subseteq \widetilde{W}$

$$
U(D)= \begin{cases}\left\{g_{1}\right\} & \text { if } g_{1} D \subseteq \widetilde{X}_{1}-\underset{h_{1} \in\left[G_{1} ; H\right]}{\bigcup} h_{1} \widetilde{Y} \text { for some } g_{1} \in\left[G ; G_{1}\right] \\ \left\{g_{2}\right\} & \text { if } g_{2} D \subseteq \widetilde{X}_{2}-\bigcup_{h_{2} \in\left[G_{2} ; H\right]} h_{2} \widetilde{Y} \text { for some } g_{2} \in\left[G ; G_{1}\right] \\ \left\{g_{1}, g_{2}, h\right\} & \text { if } h D \subseteq \widetilde{Y} \text { for some } h=g_{1} \cap g_{2} \in[G ; H] .\end{cases}
$$

(ii) If ( $W_{1}, W_{2}$ ) is a fundamental domain for any connected $C W$ complex $W$ with $\pi_{1}(W)=G=G_{1} *_{H} G_{2}$ then $W=X_{1} \cup_{Y} X_{2}$ as in (i), with

$$
X_{1}=W_{1} / G_{1}, X_{2}=W_{2} / G_{2}, Y=\left(W_{1} \cap W_{2}\right) / H
$$

Definition 2.5 Suppose that $W$ is $n$-dimensional. Lift each cell $D^{r} \subseteq W$ to a cell $\widetilde{D}^{r} \subseteq \widetilde{W}$. A sequence $U=\left\{U_{n}, U_{n-1}, \ldots, U_{1}, U_{0}\right\}$ of subtrees $U_{r} \subseteq T$ is realized by $W$ if the subspaces

$$
W(U)_{1}=\bigcup_{r=0}^{n} \bigcup_{D^{r} \subset W} \bigcup_{g_{1} \in U_{r, 1}^{(0)}} g_{1} \widetilde{D}^{r}, W(U)_{2}=\bigcup_{r=0}^{n} \bigcup_{D^{r} \subset W} \bigcup_{g_{2} \in U_{r, 2}^{(0)}} g_{2} \widetilde{D}^{r} \subseteq \widetilde{W}
$$

are connected subcomplexes, in which case $\left(W(U)_{1}, W(U)_{2}\right)$ is a domain for $\widetilde{W}$ with

$$
W(U)_{1} \cap W(U)_{2}=\bigcup_{r=0}^{n} \bigcup_{D^{r} \subset W} \bigcup_{h \in U_{r}^{(1)}} h \widetilde{D}^{r} \subseteq \widetilde{W}
$$

a connected subcomplex. Thus $U$ is realized by $C(\widetilde{W})$ and

$$
\left(C\left(W(U)_{1}\right), C\left(W(U)_{2}\right)\right)=\left(C(\widetilde{W})(U)_{1}, C(\widetilde{W})(U)_{2}\right) \subseteq(C(\widetilde{W}), C(\widetilde{W}))
$$

is the domain for $C(\widetilde{W})$ given by $\left(C_{r}(\widetilde{W})_{1}\left(U_{r}\right), C_{r}(\widetilde{W})(U)_{2}\right)$ in degree $r$.
If a sequence $U=\left\{U_{n}, U_{n-1}, \ldots, U_{1}, U_{0}\right\}$ realized by $W$ is finite (i.e. if each $U_{r} \subseteq T$ is a finite subtree) then $\left(W(U)_{1}, W(U)_{2}\right)$ is a finite domain for $\widetilde{W}$.

Proposition 2.6 (i) For any domain $\left(W_{1}, W_{2}\right)$ there is defined a homotopy pushout

with $e_{1}=i_{1}\left|, e_{2}=i_{2}\right|, f_{1}=j_{1}\left|, f_{2}=j_{2}\right|$. The connected 2-sided $C W$ pair

$$
(X, Y)=\left(\mathcal{M}\left(e_{1}, e_{2}\right),\left(W_{1} \cap W_{2}\right) / H \times\{1 / 2\}\right)
$$

is a Seifert-van Kampen splitting of $W$, with a homotopy equivalence

$$
f=f_{1} \cup f_{2}: X=\mathcal{M}\left(e_{1}, e_{2}\right) \xrightarrow{\simeq} W
$$

(ii) The commutative square of covering projections

is a homotopy pushout. The connected 2-sided $C W$ pair

$$
(X(\infty), Y(\infty))=\left(\mathcal{M}\left(i_{1}, i_{2}\right), \widetilde{W} / H \times\{1 / 2\}\right)
$$

is a canonical injective infinite Seifert-van Kampen splitting of $W$, with a homotopy equivalence $j=j_{1} \cup j_{2}: X(\infty) \rightarrow W$ such that

$$
\pi_{1}(Y(\infty))=H \subseteq \pi_{1}(X(\infty))=G_{1} *_{H} G_{2}
$$

(iii) For any (finite) sequence $U=\left\{U_{n}, U_{n-1}, \ldots, U_{0}\right\}$ of subtrees of $T$ realized by $W$ there is defined a homotopy pushout

with

$$
\begin{aligned}
& X(U)_{1}=W(U)_{1} / G_{1}, X(U)_{2}=W(U)_{2} / G_{2} \\
& Y(U)=\left(W(U)_{1} \cap W(U)_{2}\right) / H \\
& e_{1}=i_{1}\left|, e_{2}=i_{2}\right|, f_{1}=j_{1}\left|, f_{2}=j_{2}\right|
\end{aligned}
$$

Thus

$$
(X(U), Y(U))=\left(\mathcal{M}\left(e_{1}, e_{2}\right), Y(U) \times\{1 / 2\}\right)
$$

is a (finite) Seifert-van Kampen splitting of $W$.
(iv) The canonical infinite domain of a finite $C W$ complex $W$ with $\pi_{1}(W)=$ $G_{1} *_{H} G_{2}$ is a union of finite domains

$$
(\widetilde{W}, \widetilde{W})=\bigcup_{U}\left(W(U)_{1}, W(U)_{2}\right)
$$

with $U$ running over all the finite sequences realized by $W$. The canonical infinite Seifert-van Kampen splitting of $W$ is thus a union of finite Seifert-van Kampen splittings

$$
(X(\infty), Y(\infty))=\bigcup_{U}(X(U), Y(U))
$$

Proof (i) Given a cell $D \subseteq W$ let $\widetilde{D} \subseteq \widetilde{W}$ be a lift. The inverse image of the interior $\operatorname{int}(D) \subseteq W$

$$
f^{-1}(\operatorname{int}(D))=U(\widetilde{D}) \times \operatorname{int}(D) \subseteq \mathcal{M}\left(i_{1}, i_{2}\right)=T \times_{G} \widetilde{W}
$$

is contractible. In particular, point inverses are contractible, so that $f: X \rightarrow W$ is a homotopy equivalence. (Here is a more direct proof that $f: X \rightarrow W$ is a $\mathbb{Z}[G]$-coefficient homology equivalence. The Mayer-Vietoris Theorem applied to the union $\widetilde{W}=G W_{1} \cup G W_{2}$ expresses $C(\widetilde{W})$ as the cokernel of the $\mathbb{Z}[G]$-module chain map
$e=\binom{1 \otimes e_{1}}{1 \otimes e_{2}}: \mathbb{Z}[G] \otimes_{\mathbb{Z}[H]} C\left(W_{1} \cap W_{2}\right) \rightarrow \mathbb{Z}[G] \otimes_{\mathbb{Z}\left[G_{1}\right]} C\left(W_{1}\right) \oplus \mathbb{Z}[G] \otimes_{\mathbb{Z}\left[G_{2}\right]} C\left(W_{2}\right)$
with a Mayer-Vietoris splitting

$$
\begin{array}{r}
0 \rightarrow \mathbb{Z}[G] \otimes_{\mathbb{Z}[H]} C\left(W_{1} \cap W_{2}\right) \xrightarrow{e} \mathbb{Z}[G] \otimes_{\mathbb{Z}\left[G_{1}\right]} C\left(W_{1}\right) \oplus \mathbb{Z}[G] \otimes_{\mathbb{Z}\left[G_{2}\right]} C\left(W_{2}\right) \\
\longrightarrow C(W) \rightarrow 0 .
\end{array}
$$

The decomposition $X=\mathcal{M}\left(e_{1}, e_{2}\right)=X_{1} \cup_{Y} X_{2}$ with

$$
X_{i}=\mathcal{M}\left(e_{i}\right)(i=1,2), Y=X_{1} \cap X_{2}=\left(W_{1} \cap W_{2}\right) / H \times\{1 / 2\}
$$

lifts to a decomposition of the universal cover as

$$
\widetilde{X}=\bigcup_{g_{1} \in\left[G ; G_{1}\right]} g_{1} \widetilde{X}_{1} \cup \bigcup_{h \in[G ; H]} h \widetilde{Y} \bigcup_{g_{2} \in\left[G ; G_{2}\right]} g_{2} \widetilde{X}_{2} .
$$

The Mayer-Vietoris splitting
$0 \rightarrow \mathbb{Z}[G] \otimes_{\mathbb{Z}[H]} C(\widetilde{Y}) \longrightarrow \mathbb{Z}[G] \otimes_{\mathbb{Z}\left[G_{1}\right]} C\left(\widetilde{X}_{1}\right) \oplus \mathbb{Z}[G] \otimes_{\mathbb{Z}\left[G_{2}\right]} C\left(\widetilde{X}_{2}\right) \rightarrow C(\widetilde{X}) \rightarrow 0$, expresses $C(\widetilde{X})$ as the algebraic mapping cone of the chain map $e$ $C(\widetilde{X})=\mathcal{C}\left(e: \mathbb{Z}[G] \otimes_{\mathbb{Z}[H]} C\left(W_{1} \cap W_{2}\right) \rightarrow \mathbb{Z}[G] \otimes_{\mathbb{Z}\left[G_{1}\right]} C\left(W_{1}\right) \oplus \mathbb{Z}[G] \otimes_{\mathbb{Z}\left[G_{2}\right]} C\left(W_{2}\right)\right)$.
Since $e$ is injective the $\mathbb{Z}[G]$-module chain map

$$
\widetilde{f}=\text { projection : } C(\widetilde{X})=\mathcal{C}(e) \rightarrow C(\widetilde{W})=\operatorname{coker}(e)
$$

induces isomorphisms in homology.)
(ii) Apply (i) to $\left(W_{1}, W_{2}\right)=(\widetilde{W}, \widetilde{W})$.
(iii) Apply (i) to the domain $\left(W(U)_{1}, W(U)_{2}\right)$.
(iv) Assume that $W$ is $n$-dimensional. Proceed as for the chain complex case in the proof of Proposition 1.4 for the existence of a domain for $C(\widetilde{W})$, but use only the sequences $U=\left\{U_{n}, U_{n-1}, \ldots, U_{0}\right\}$ of finite subtrees $U_{r} \subset T$ realized by $W$. An arbitrary finite subtree $U_{n} \subset T$ extends to a finite sequence $U$ realized by $W$ since for $r \geqslant 2$ each $r$-cell $\widetilde{D}^{r} \subset \widetilde{W}$ is attached to an ( $r-1$ )-dimensional finite connected subcomplex, and every 1-cell $\widetilde{D}^{1} \subset \widetilde{W}$ is contained in a 1dimensional finite connected subcomplex. Thus finite sequences $U$ realized by $W$ exist, and can be chosen to contain arbitrary finite collections of cells of $\widetilde{W}$, with

$$
(\widetilde{W}, \widetilde{W})=\bigcup_{U}\left(W(U)_{1}, W(U)_{2}\right) .
$$

This completes the proof of part (i) of the Combinatorial Transversality Theorem, the existence of finite Seifert-van Kampen splittings. Part (ii) deals with existence of finite injective Seifert-van Kampen splittings: the adjustment of fundamental groups needed to replace $(X(U), Y(U))$ by a homology-equivalent finite injective Seifert-van Kampen splitting will use the following rudimentary version of the Quillen plus-construction.

Lemma 2.7 Let $K$ be a connected $C W$ complex with a finitely generated fundamental group $\pi_{1}(K)$. For any surjection $\phi: \pi_{1}(K) \rightarrow \Pi$ onto a finitely
presented group $\Pi$ it is possible to attach a finite number $n$ of 2 - and 3-cells to $K$ to obtain a connected $C W$ complex

$$
K^{\prime}=K \cup \bigcup_{n} D^{2} \cup \bigcup_{n} D^{3}
$$

such that the inclusion $K \rightarrow K^{\prime}$ is a $\mathbb{Z}[\Pi]$-coefficient homology equivalence inducing $\phi: \pi_{1}(K) \rightarrow \pi_{1}\left(K^{\prime}\right)=\Pi$.

Proof The kernel of $\phi: \pi_{1}(K) \rightarrow \Pi$ is the normal closure of a finitely generated subgroup $N \subseteq \pi_{1}(K)$ by Lemma I. 4 of Cappell [3]. (Here is the proof. Choose finite generating sets

$$
g=\left\{g_{1}, g_{2}, \ldots, g_{r}\right\} \subseteq \pi_{1}(K), h=\left\{h_{1}, h_{2}, \ldots, h_{s}\right\} \subseteq \Pi
$$

and let $w_{k}\left(h_{1}, h_{2}, \ldots, h_{s}\right)(1 \leqslant k \leqslant t)$ be words in $h$ which are relations for $\Pi$. As $\phi$ is surjective, can choose $h_{j}^{\prime} \in \pi_{1}(K)$ with $\phi\left(h_{j}^{\prime}\right)=h_{j}(1 \leqslant j \leqslant s)$. As $h$ generates $\Pi \phi\left(g_{i}\right)=v_{i}\left(h_{1}, h_{2}, \ldots, h_{s}\right)(1 \leqslant i \leqslant r)$ for some words $v_{i}$ in $h$. The kernel of $\phi$ is the normal closure $N=\left\langle N^{\prime}\right\rangle \triangleleft \pi_{1}(K)$ of the subgroup $N^{\prime} \subseteq \pi_{1}(K)$ generated by the finite set $\left.\left\{v_{i}\left(h_{1}^{\prime}, \ldots, h_{s}^{\prime}\right) g_{i}^{-1}, w_{k}\left(h_{1}^{\prime}, \ldots, h_{s}^{\prime}\right)\right\}.\right)$ Let $x=\left\{x_{1}, x_{2}, \ldots, x_{n}\right\} \subseteq \pi_{1}(K)$ be a finite set of generators of $N$, and set

$$
L=K \cup_{x} \bigcup_{i=1}^{n} D^{2}
$$

The inclusion $K \rightarrow L$ induces

$$
\phi: \pi_{1}(K) \rightarrow \pi_{1}(L)=\pi_{1}(K) /\left\langle x_{1}, x_{2}, \ldots, x_{n}\right\rangle=\pi_{1}(K) /\langle N\rangle=\Pi .
$$

Let $\widetilde{L}$ be the universal cover of $L$, and let $\widetilde{K}$ be the pullback cover of $K$. Now

$$
\pi_{1}(\widetilde{K})=\operatorname{ker}(\phi)=\left\langle x_{1}, x_{2}, \ldots, x_{n}\right\rangle=\langle N\rangle
$$

so that the attaching maps $x_{i}: S^{1} \rightarrow K$ of the 2-cells in $L-K$ lift to nullhomotopic maps $\widetilde{x}_{i}: S^{1} \rightarrow \widetilde{K}$. The cellular chain complexes of $\widetilde{K}$ and $\widetilde{L}$ are related by

$$
C(\widetilde{L})=C(\widetilde{K}) \oplus \bigoplus_{n}(\mathbb{Z}[\Pi], 2)
$$

where ( $\mathbb{Z}[\Pi], 2$ ) is just $\mathbb{Z}[\Pi]$ concentrated in degree 2 . Define

$$
x^{*}=\left\{x_{1}^{*}, x_{2}^{*}, \ldots, x_{n}^{*}\right\} \subseteq \pi_{2}(L)
$$

by
$x_{i}^{*}=(0,(0, \ldots, 0,1,0, \ldots, 0)) \in \pi_{2}(L)=H_{2}(\widetilde{L})=H_{2}(\widetilde{K}) \oplus \mathbb{Z}[\Pi]^{n}(1 \leqslant i \leqslant n)$,
and set

$$
K^{\prime}=L \cup_{x^{*}} \bigcup_{i=1}^{n} D^{3}
$$

The inclusion $K \rightarrow K^{\prime}$ induces $\phi: \pi_{1}(K) \rightarrow \pi_{1}\left(K^{\prime}\right)=\pi_{1}(L)=\Pi$, and the relative cellular $\mathbb{Z}[\Pi]$-module chain complex is

$$
C\left(\widetilde{K^{\prime}}, \widetilde{K}\right): \cdots \rightarrow 0 \rightarrow \mathbb{Z}[\Pi]^{n} \xrightarrow{1} \mathbb{Z}[\Pi]^{n} \rightarrow 0 \rightarrow \ldots
$$

concentrated in degrees 2,3. In particular, $K \rightarrow K^{\prime}$ is a $\mathbb{Z}[\Pi]$-coefficient homology equivalence.

Proposition 2.8 Let $(X, Y)$ be a finite connected 2-sided $C W$ pair with $X=X_{1} \cup_{Y} X_{2}$ for connected $X_{1}, X_{2}, Y$, together with an isomorphism

$$
\pi_{1}(X)=\pi_{1}\left(X_{1}\right) *_{\pi_{1}(Y)} \pi_{1}\left(X_{2}\right) \xrightarrow{\cong} G=G_{1} *_{H} G_{2}
$$

preserving amalgamated free product structures, with the structure on $G$ injective. It is possible to attach a finite number of 2- and 3-cells to $(X, Y)$ to obtain a finite injective Seifert-van Kampen splitting $\left(X^{\prime}, Y^{\prime}\right)$ with $X^{\prime}=X_{1}^{\prime} \cup_{Y^{\prime}} X_{2}^{\prime}$ such that
(i) $\pi_{1}\left(X^{\prime}\right)=G, \pi_{1}\left(X_{i}^{\prime}\right)=G_{i}(i=1,2), \pi_{1}\left(Y^{\prime}\right)=H$,
(ii) the inclusion $X \rightarrow X^{\prime}$ is a homotopy equivalence,
(iii) the inclusion $X_{i} \rightarrow X_{i}^{\prime}(i=1,2)$ is a $\mathbb{Z}\left[G_{i}\right]$-coefficient homology equivalence,
(iv) the inclusion $Y \rightarrow Y^{\prime}$ is a $\mathbb{Z}[H]$-coefficient homology equivalence.

Proof Apply the construction of Lemma 2.7 to the surjections $\pi_{1}\left(X_{1}\right) \rightarrow G_{1}$, $\pi_{1}\left(X_{2}\right) \rightarrow G_{2}, \pi_{1}(Y) \rightarrow H$, to obtain

$$
\begin{aligned}
X_{i}^{\prime} & =\left(X_{i} \cup_{x_{i}} \bigcup_{m_{i}} D^{2}\right) \cup_{x_{i}^{*}} \bigcup_{m_{i}} D^{3}(i=1,2) \\
Y^{\prime} & =\left(Y \cup_{y} \bigcup_{n} D^{2}\right) \cup_{y^{*}} \bigcup_{n} D^{3}
\end{aligned}
$$

for any $y=\left\{y_{1}, y_{2}, \ldots, y_{n}\right\} \subseteq \pi_{1}(Y)$ such that $\operatorname{ker}\left(\pi_{1}(Y) \rightarrow H\right)$ is the normal closure of the subgroup of $\pi_{1}(Y)$ generated by $y$, and any

$$
x_{i}=\left\{x_{i, 1}, x_{i, 2}, \ldots, x_{i, m_{i}}\right\} \subseteq \pi_{1}\left(X_{i}\right)
$$

such that $\operatorname{ker}\left(\pi_{1}\left(X_{i}\right) \rightarrow G_{i}\right)$ is the normal closure of the subgroup of $\pi_{1}\left(X_{i}\right)$ generated by $x_{i}(i=1,2)$. Choosing $x_{1}, x_{2}$ to contain the images of $y$, we obtain the required 2-sided $C W$ pair $\left(X^{\prime}, Y^{\prime}\right)$ with $X^{\prime}=X_{1}^{\prime} \cup_{Y^{\prime}} X_{2}^{\prime}$.

This completes the proof of the Combinatorial Transversality Theorem for amalgamated free products.

### 2.3 Combinatorial transversality for $H N N$ extensions

The proof of combinatorial transversality for $H N N$ extensions proceeds exactly as for amalgamated free products, so only the statements will be given.
In this section $W$ is a connected $C W$ complex with fundamental group an injective $H N N$ extension

$$
\pi_{1}(W)=G=G_{1} *_{H}\{t\}
$$

with tree $T$. Let $\widetilde{W}$ be the universal cover of $W$, and let

$$
\widetilde{W} / H \xrightarrow[i_{2}]{\stackrel{i_{1}}{\longrightarrow}} \widetilde{W} / G_{1} \xrightarrow{j_{1}} W
$$

be the covering projections, and define a commutative square

where

$$
\begin{aligned}
& i_{3}=\text { inclusion }: \widetilde{W} / H \times\{0,1\} \rightarrow \widetilde{W} / H \times[0,1] \\
& j_{2}: \widetilde{W} / H \times[0,1] \rightarrow W ;(x, s) \mapsto j_{1} i_{1}(x)=j_{1} i_{2}(x)
\end{aligned}
$$

Definition 2.9 (i) Suppose given a subcomplex $W_{1} \subseteq \widetilde{W}$ with

$$
G_{1} W_{1}=W_{1}
$$

so that

$$
H\left(W_{1} \cap t W_{1}\right)=W_{1} \cap t W_{1} \subseteq \widetilde{W}
$$

Define a commutative square of $C W$ complexes and cellular maps

with

$$
\begin{aligned}
& \left(W_{1} \cap t W_{1}\right) / H \subseteq \widetilde{W} / H, W_{1} / G_{1} \subseteq \widetilde{W} / G_{1} \\
& e_{1}=\left(i_{1} \cup i_{2}\right) \mid:\left(W_{1} \cap t W_{1}\right) / H \times\{0,1\} \rightarrow W_{1} / G_{1} \\
& e_{2}=i_{3} \mid:\left(W_{1} \cap t W_{1}\right) / H \times\{0,1\} \rightarrow\left(W_{1} \cap t W_{1}\right) / H \times[0,1] \\
& f_{1}=j_{1}\left|: W_{1} / G_{1} \rightarrow W, f_{2}=j_{2}\right|:\left(W_{1} \cap t W_{1}\right) / H \times[0,1] \rightarrow W
\end{aligned}
$$

(ii) A domain $W_{1}$ for the universal cover $\widetilde{W}$ of $W$ is a connected subcomplex $W_{1} \subseteq \widetilde{W}$ such that $W_{1} \cap t W_{1}$ is connected, and such that for each cell $D \subseteq \widetilde{W}$ the subgraph $U(D) \subseteq T$ defined by

$$
\begin{aligned}
& U(D)^{(0)}=\left\{g_{1} \in\left[G ; G_{1}\right] \mid g_{1} D \subseteq W_{1}\right\} \\
& U(D)^{(1)}=\left\{h \in\left[G_{1} ; H\right] \mid h D \subseteq W_{1} \cap t W_{1}\right\}
\end{aligned}
$$

is a tree.
(iii) A domain $W_{1}$ for $\widetilde{W}$ is fundamental if the subtrees $U(D) \subseteq T$ are either single vertices or single edges, so that

$$
\begin{aligned}
& g_{1} W_{1} \cap g_{2} W_{1}= \begin{cases}h\left(W_{1} \cap t W_{1}\right) & \text { if } g_{1} \cap g_{2} t^{-1}=h \in\left[G_{1} ; H\right] \\
g_{1} W_{1} & \text { if } g_{1}=g_{2} \\
\emptyset & \text { if } g_{1} \neq g_{2} \text { and } g_{1} \cap g_{2} t^{-1}=\emptyset\end{cases} \\
& W=\left(W_{1} / G_{1}\right) \cup_{\left(W_{1} \cap t W_{1}\right) / H \times\{0,1\}}\left(W_{1} \cap t W_{1}\right) / H \times[0,1]
\end{aligned}
$$

Proposition 2.10 For a domain $W_{1}$ of $\widetilde{W}$ the cellular chain complex $C\left(W_{1}\right)$ is a domain of the cellular chain complex $C(\widetilde{W})$.

Example 2.11 $W$ has a canonical infinite domain $W_{1}=\widetilde{W}$ with

$$
\left(W_{1} \cap t W_{1}\right) / H=\widetilde{W} / H
$$

and $U(D)=T$ for each cell $D \subseteq \widetilde{W}$.
Example 2.12 (i) Suppose that $W=X_{1} \cup_{Y \times\{0,1\}} Y \times[0,1]$, with $X_{1}, Y \subseteq W$ connected subcomplexes such that the isomorphism

$$
\pi_{1}(W)=\pi_{1}\left(X_{1}\right) *_{\pi_{1}(Y)}\{t\} \stackrel{\cong}{\cong} G=G_{1} *_{H}\{t\}
$$

preserves the $H N N$ extensions. The morphisms $\pi_{1}\left(X_{1}\right) \rightarrow G_{1}, \pi_{1}(Y) \rightarrow H$ are surjective. (If $i_{1}, i_{2}: \pi_{1}(Y) \rightarrow \pi_{1}\left(X_{1}\right)$ are injective these morphisms are also injective, allowing identifications $\left.\pi_{1}\left(X_{1}\right)=G_{1}, \pi_{1}(Y)=H\right)$. The universal cover of $W$ is

$$
\widetilde{W}=\bigcup_{g_{1} \in\left[G: G_{1}\right]} g_{1} \widetilde{X}_{1} \cup \bigcup_{h \in\left[G_{1} ; H\right]}(h \tilde{Y} \cup h t \tilde{Y}) \bigcup_{h \in\left[G_{1} ; H\right]} h \tilde{Y} \times[0,1]
$$

with $\widetilde{X}_{1}$ the regular cover of $X_{1}$ corresponding to $\operatorname{ker}\left(\pi_{1}\left(X_{1}\right) \rightarrow G_{1}\right)$ and $\tilde{Y}$ the regular cover of $Y$ corresponding to $\operatorname{ker}\left(\pi_{1}(Y) \rightarrow H\right)$ (which are the universal
covers of $X_{1}, Y$ in the case $\left.\pi_{1}\left(X_{1}\right)=G_{1}, \pi_{1}(Y)=H\right)$. Then $W_{1}=\widetilde{X}_{1}$ is a fundamental domain of $\widetilde{W}$ such that

$$
\begin{aligned}
& \left(W_{1} \cap t W_{1}\right) / H=Y, W_{1} \cap t W_{1}=\widetilde{Y} \\
& g_{1} W_{1} \cap g_{2} W_{1}=\left(g_{1} \cap g_{2} t^{-1}\right) \widetilde{Y} \subseteq \widetilde{W} \quad\left(g_{1} \neq g_{2} \in\left[G: G_{1}\right]\right) .
\end{aligned}
$$

For any cell $D \subseteq \widetilde{W}$
$U(D)= \begin{cases}\left\{g_{1}\right\} & \text { if } g_{1} D \subseteq \widetilde{X}_{1}-\bigcup_{h \in\left[G_{1} ; H\right]}(h \widetilde{Y} \cup h t \widetilde{Y}) \text { for some } g_{1} \in\left[G: G_{1}\right] \\ \left\{g_{1}, g_{2}, h\right\} & \text { if } h D \subseteq \widetilde{Y} \times[0,1] \text { for some } h=g_{1} \cap g_{2} t^{-1} \in\left[G_{1} ; H\right] .\end{cases}$
(ii) If $W_{1}$ is a fundamental domain for any connected $C W$ complex $W$ with $\pi_{1}(W)=G=G_{1} *_{H}\{t\}$ then $W=X_{1} \cup_{Y \times\{0,1\}} Y \times[0,1]$ as in (i), with

$$
X_{1}=W_{1} / G_{1}, Y=\left(W_{1} \cap t W_{1}\right) / H
$$

Definition 2.13 Suppose that $W$ is $n$-dimensional. Lift each cell $D^{r} \subseteq W$ to a cell $\widetilde{D}^{r} \subseteq \widetilde{W}$. A sequence $U=\left\{U_{n}, U_{n-1}, \ldots, U_{1}, U_{0}\right\}$ of subtrees $U_{r} \subseteq T$ is realized by $W$ if the subspace

$$
W(U)_{1}=\bigcup_{r=0}^{n} \bigcup_{D^{r} \subset W} \bigcup_{g_{1} \in U_{r}^{(0)}} g_{1} \widetilde{D}^{r} \subseteq \widetilde{W}
$$

is a connected subcomplex, in which case $W(U)_{1}$ is a domain for $\widetilde{W}$ with

$$
W(U)_{1} \cap t W(U)_{1}=\bigcup_{r=0}^{n} \bigcup_{D^{r} \subset W} \bigcup_{h \in U_{r}^{(1)}} h \widetilde{D}^{r} \subseteq \widetilde{W}
$$

a connected subcomplex. Thus $U$ is realized by $C(\widetilde{W})$ and

$$
C\left(W(U)_{1}\right)=C\left(\widetilde{W}(U)_{1} \subseteq j_{1}^{\prime} C(\widetilde{W})\right.
$$

is the domain for $C(\widetilde{W})$ given by $C_{r}(\widetilde{W})_{1}\left(U_{r}\right)$ in degree $r$.
Proposition 2.14 (i) For any domain $W_{1}$ there is defined a homotopy pushout

with $e_{1}=i_{1} \cup i_{2}\left|, e_{2}=i_{3}\right|, f_{1}=j_{1}\left|, f_{2}=j_{2}\right|$. The connected 2-sided $C W$ pair

$$
(X, Y)=\left(\mathcal{M}\left(e_{1}, e_{2}\right),\left(W_{1} \cap t W_{1}\right) / H \times\{1 / 2\}\right)
$$

is a Seifert-van Kampen splitting of $W$, with a homotopy equivalence

$$
f=f_{1} \cup f_{2}: X=\mathcal{M}\left(e_{1}, e_{2}\right) \xrightarrow{\simeq} W .
$$

(ii) The commutative square of covering projections

is a homotopy pushout. The connected 2-sided $C W$ pair

$$
(X(\infty), Y(\infty))=\left(\mathcal{M}\left(i_{1} \cup i_{2}, i_{3}\right), \widetilde{W} / H \times\{0\}\right)
$$

is a canonical injective infinite Seifert-van Kampen splitting of $W$, with a homotopy equivalence $j=j_{1} \cup j_{2}: X(\infty) \rightarrow W$ such that

$$
\pi_{1}(Y(\infty))=H \subseteq \pi_{1}(X(\infty))=G_{1} *_{H}\{t\}
$$

(iii) For any (finite) sequence $U=\left\{U_{n}, U_{n-1}, \ldots, U_{0}\right\}$ of subtrees of $T$ realized by $W$ there is defined a homotopy pushout

with

$$
\begin{aligned}
& Y(U)=\left(W(U)_{1} \cap t W(U)_{1}\right) / H, X(U)_{1}=W(U)_{1} / G_{1}, \\
& e_{1}=i_{1} \cup i_{2}\left|, e_{2}=i_{3}\right|, f_{1}=j_{1}\left|, f_{2}=j_{2}\right| .
\end{aligned}
$$

Thus

$$
(X(U), Y(U))=\left(\mathcal{M}\left(e_{1}, e_{2}\right), Y(U) \times\{1 / 2\}\right)
$$

is a (finite) Seifert-van Kampen splitting of $W$.
(iv) The canonical infinite domain of a finite $C W$ complex $W$ with $\pi_{1}(W)=$ $G_{1} *_{H}\{t\}$ is a union of finite domains $W(U)_{1}$

$$
\widetilde{W}=\bigcup_{U} W(U)_{1}
$$

with $U$ running over all the finite sequences realized by $W$. The canonical infinite Seifert-van Kampen splitting is thus a union of finite Seifert-van Kampen splittings

$$
(X(\infty), Y(\infty))=\bigcup_{U}(X(U), Y(U))
$$

Proposition 2.15 Let $(X, Y)$ be a finite connected 2-sided $C W$ pair with $X=X_{1} \cup_{Y \times\{0,1\}} Y \times[0,1]$ for connected $X_{1}, Y$, together with an isomorphism

$$
\pi_{1}(X)=\pi_{1}\left(X_{1}\right) *_{\pi_{1}(Y)}\{t\} \xrightarrow{\cong} G=G_{1} *_{H}\{t\}
$$

preserving the $H N N$ structures, with the structure on $G$ injective. It is possible to attach a finite number of 2- and 3-cells to the finite Seifert-van Kampen splitting $(X, Y)$ of $X$ to obtain a finite injective Seifert-van Kampen splitting $\left(X^{\prime}, Y^{\prime}\right)$ with $X^{\prime}=X_{1}^{\prime} \cup_{Y^{\prime} \times\{0,1\}} Y^{\prime} \times[0,1]$ such that
(i) $\pi_{1}\left(X^{\prime}\right)=G, \pi_{1}\left(X_{1}^{\prime}\right)=G_{1}, \pi_{1}\left(Y^{\prime}\right)=H$,
(ii) the inclusion $X \rightarrow X^{\prime}$ is a homotopy equivalence,
(iii) the inclusion $X_{1} \rightarrow X_{1}^{\prime}$ is a $\mathbb{Z}\left[G_{1}\right]$-coefficient homology equivalence,
(iv) the inclusion $Y \rightarrow Y^{\prime}$ is a $\mathbb{Z}[H]$-coefficient homology equivalence.

This completes the proof of the Combinatorial Transversality Theorem for $H N N$ extensions.

## References

[1] H. Bass, A. Heller and R. Swan, The Whitehead group of a polynomial extension, Inst. Hautes Études Sci. Publ. Math. 22, 61-79 (1964)
[2] S. Cappell, Unitary nilpotent groups and hermitian $K$-theory I., Bull. A.M.S. 80, 1193-1198 (1974)
[3] $\qquad$ , A splitting theorem for manifolds, Inv. Math. 33, 69-170 (1976)
[4] A.J. Casson, Whitehead groups of free products with amalgamation, Proc. 1972 Battelle Seattle Algebraic K-theory Conf., Vol. II, Springer Lecture Notes 342, 144-154 (1973)
[5] J.-C. Hausmann, Sur l'usage de critères pour reconnaître un groupe libre, un produit amalgamé ou une HNN extension, Enseign. Math. (2) 27, 221-242 (1981)
[6] G. Higman, The units of group-rings, Proc. London Math. Soc. (2) 46, 231-248 (1940)
[7] F. Quinn, Geometric Algebra, Algebraic and Geometric Topology, Proc. 1983 Rutgers Conference, Springer Lecture Notes 1126, 182-198 (1985)
[8] A.A. Ranicki, On the Novikov Conjecture, Proceedings 1993 Oberwolfach Conference on the Novikov Conjectures, Rigidity and Index Theorems, Vol. 1, LMS Lecture Notes 226, 272-337, Cambridge (1995)
[9] _ High Dimensional Knot Theory, Springer (1998)
[10] $\qquad$ , Noncommutative localization in topology, to appear in Proc. 2002 ICMS Edinburgh conference on Noncommutative Localization in Algebra and Topology, e-print http://arXiv.org/abs/math.AT/0303046, 19 pp.
[11] J.-P. Serre, Trees, Springer (1980)
[12] J. Stallings, Whitehead torsion of free products, Ann. of Math. (2) 82 354-363 (1965)
[13] , Group theory and three-dimensional manifolds, Yale (1971)
[14] F. Waldhausen, Whitehead groups of generalized free products, Proc. 1972 Battelle Algebraic $K$-theory Conf., Vol. II., Lecture Notes in Math. 342, Springer, 155-179 (1973)
[15] , Algebraic K-theory of generalized free products, Ann. of Maths. 108, 135-256 (1978)

School of Mathematics
University of Edinburgh
King's Buildings
Edinburgh EH9 3JZ
SCOTLAND, UK
Email: aar@maths.ed.ac.uk

