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Introduction

The close relationship between the topological properties of codimension 1 sub-
manifolds and the algebraic properties of groups with a generalized free product
structure first became apparent with the Seifert-van Kampen Theorem on the
fundamental group of a union, the work of Kneser on 3-dimensional manifolds
with fundamental group a free product, and the topological proof of Grushko’s
theorem by Stallings.

This paper describes two abstractions of the geometric codimension 1 transver-
sality properties of manifolds (in all dimensions) :

(1) the algebraic transversality construction of Mayer-Vietoris splittings of
chain complexes of free modules over the group ring of an injective gen-
eralized free product,

(2) the combinatorial transversality construction of Seifert-van Kampen split-
tings for CW complexes with fundamental group an injective generalized
free product.
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2 Andrew Ranicki

By definition, a group G is a generalized free product if it has one of the following
structures :

(A) G = G1 ∗H G2 is the amalgamated free product determined by group
morphisms i1 : H → G1 , i2 : H → G2 , so that there is defined a pushout
square of groups

H
i1 //

i2
²²

G1

j1
²²

G2
j2 // G

The amalgamated free product is injective if i1, i2 are injective, in which
case so are j1, j2 , with

G1 ∩G2 = H ⊆ G .

The amalgamated free product is finitely presented if the groups G1, G2,H
are finitely presented, in which case so is G. (If G is finitely presented,
it does not follow that G1, G2,H need be finitely presented).

(B) G = G1 ∗H {t} is the HNN extension determined by group morphisms
i1, i2 : H → G1

H
i1 //
i2

// G1
j1 // G

with t ∈ G such that

j1i1(h)t = tj1i2(h) ∈ G (h ∈ H) .

The HNN extension is injective if i1, i2 are injective, in which case so is
j1 , with

G1 ∩ tG1t
−1 = i1(H) = ti2(H)t−1 ⊆ G .

The HNN extension is finitely presented if the groups G1,H are finitely
presented, in which case so is G. (If G is finitely presented, it does not
follow that G1,H need be finitely presented).

A subgroup H ⊆ G is 2-sided if G is either an injective amalgamated free
product G = G1 ∗H G2 or an injective HNN extension G = G1 ∗H {t}. (See
Stallings [13] and Hausmann [5] for the characterization of 2-sided subgroups
in terms of bipolar structures.) If G is an injective generalized free product{

with i1, i2 not isomorphisms
−− then G is an infinite group and the subgroups

{
G1, G2,H

G1

are of infinite index in G =

{
G1 ∗H G2

G ∗H {t} .
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Algebraic and combinatorial codimension 1 transversality 3

A CW pair (X,Y ⊂ X) is 2-sided if Y has an open neighbourhood Y ×R ⊂ X .
The pair is connected if X and Y are connected. By the Seifert-van Kampen
Theorem π1(X) is a generalized free product :

(A) if Y separates X then X − Y has two components, and

X = X1 ∪Y X2

for connected X1, X2 ⊂ X with

π1(X) = π1(X1) ∗π1(Y ) π1(X2)

the amalgamated free product determined by the morphisms i1 : π1(Y ) →
π1(X1), i2 : π1(Y ) → π1(X2) induced by the inclusions i1 : Y → X1 ,
i2 : Y → X2 .

X1 X2Y × [0, 1]

(B) if Y does not separate X then X − Y is connected and

X = X1 ∪Y×{0,1} Y × [0, 1]

for connected X1 ⊂ X , with

π1(X) = π1(X1) ∗π1(Y ) {t}

the HNN extension determined by the morphisms i1, i2 : π1(Y ) →
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4 Andrew Ranicki

π1(X1) induced by the inclusions i1, i2 : Y → X1 .

Y × [0, 1]

X1

The generalized free product is injective if and only if the morphism π1(Y ) →
π1(X) is injective, in which case π1(Y ) is a 2-sided subgroup of π1(X).

A codimension 1 submanifold Nn−1 ⊂ Mn is 2-sided if the normal bundle is
trivial, in which case (M, N) is a 2-sided CW pair.

For a 2-sided CW pair (X,Y ) every map f : M → X from an n-dimensional
manifold M is homotopic to a map (also denoted by f ) which is transverse at
Y ⊂ X , with

Nn−1 = f−1(Y ) ⊂ Mn

a 2-sided codimension 1 submanifold, by the Sard-Thom theorem.

By definition, a Seifert-van Kampen splitting of a connected CW complex W

with π1(W ) = G =

{
G1 ∗H G2

G1 ∗H {t} an injective generalized free product is a

connected 2-sided CW pair (X, Y ) with a homotopy equivalence X → W such
that

im(π1(Y ) → π1(X)) = H ⊆ π1(X) = π1(W ) = G .

The splitting is injective if π1(Y ) → π1(X) is injective, in which case

X =

{
X1 ∪Y X2

X1 ∪Y×{0,1} Y × [0, 1]

with {
π1(X1) = G1 , π1(X2) = G2

π1(X1) = G1

, π1(Y ) = H .

The splitting is finite if the complexes W,X, Y are finite, and infinite otherwise.
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Algebraic and combinatorial codimension 1 transversality 5

A connected CW complex W with π1(W ) = G =

{
G1 ∗H G2

G1 ∗H {t} an injective

generalized free product is a homotopy pushout




W̃/H

i2
²²

i1 // W̃/G1

j1

²²
W̃/G2

j2 // W

W̃/H × {0, 1}

²²

i1∪i2 // W̃/G1

j1

²²
W̃/H × [0, 1] // W

with W̃ the universal cover of W and

{
i1, i2, j1, j2

i1, i2, j1

the covering projections.

(See Proposition

{
2.6
2.14

for proofs). Thus W has a canonical infinite injective

Seifert-van Kampen splitting (X(∞), Y (∞)) with




Y (∞) = W̃/H × {1/2} ⊂ X(∞) = W̃/G1 ∪i1 W̃/H × [0, 1] ∪i2 W̃/G2

Y (∞) = W̃/H × {1/2} ⊂ X(∞) = W̃/G1 ∪i1∪i2 W̃/H × [0, 1] .

For finite W it is easy to obtain finite injective Seifert-van Kampen splittings
by codimension 1 manifold transversality. In fact, there are two ways of doing
so :

(i) Consider a regular neighbourhood (M, ∂M) of W ⊂ SN (N large), apply
codimension 1 manifold transversality to a map

{
f : M → BG = BG1 ∪BH×{0} BH × [0, 1] ∪BH×{1} BG2

f : M → BG = BG1 ∪BH×{0,1} BH × [0, 1]

inducing the identification π1(M) = G to obtain a finite Seifert-van Kam-
pen splitting (M, f−1(BH×{1/2})), and then make the splitting injective
by low-dimensional handle exchanges.

(ii) Assume inductively that the n-skeleton W (n) already has a Seifert-van
Kampen splitting (X,Y ). For each (n + 1)-cell Dn+1 ⊂ W (n+1) make
the attaching map Sn → W (n) ' X transverse at Y ⊂ X , and make the
composite f : Dn+1 → W (n+1) → BG transverse at BH ⊂ BG. The
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6 Andrew Ranicki

transversality gives Dn+1 a CW structure in which f−1(BH) ⊆ Dn+1 is
a subcomplex, and

(X ′, Y ′) =
(

X ∪
⋃

Dn+1⊂W (n+1)

Dn+1 , Y ∪
⋃

Dn+1⊂W (n+1)

f−1(BH)
)

is an extension of the Seifert-van Kampen splitting to the (n+1)-skeleton
W (n+1) . Again, the finite splitting can be made injective by low-dimensional
handle exchanges.

However, the geometric nature of manifold transversality does not give any
insight into the CW structures of the splittings (X, Y ) of W , let alone into the
algebraic analogue of transversality for Z[G]-module chain complexes. Here, we
obtain Seifert-van Kampen splittings combinatorially, in the following converse
of the Seifert-van Kampen Theorem.

Combinatorial Transversality Theorem Let W be a finite connected CW

complex with π1(W ) = G =

{
G1 ∗H G2

G1 ∗H {t} an injective generalized free product.

(i) The canonical infinite Seifert-van Kampen splitting (X(∞), Y (∞)) of W is
a union of finite Seifert-van Kampen splittings (X,Y ) ⊂ (X(∞), Y (∞))

(X(∞), Y (∞)) =
⋃

(X,Y ) .

(ii) If π1(W ) is a finitely presented generalized free product then for any finite
Seifert-van Kampen splitting (X, Y ) of W it is possible to attach a finite number
of 2- and 3-cells to obtain a finite injective Seifert-van Kampen splitting (X ′, Y ′)
such that the inclusion X → X ′ is a homotopy equivalence and the inclusion
Y → Y ′ is a Z[H]-coefficient homology equivalence.

The Theorem is proved in §2. The main ingredient of the proof is the construc-
tion of a finite Seifert-van Kampen splitting of W from a finite domain of the

universal cover W̃ , as given by finite subcomplexes

{
W1,W2 ⊆ W̃

W1 ⊆ W̃
such that

{
G1W1 ∪G2W2 = W̃

G1W1 = W̃ .

Algebraic transversality makes much use of the induction and restriction func-
tors associated to a ring morphism i : A → B

i! : {A-modules} → {B-modules} ; M 7→ i!M = B ⊗A M ,

i! : {B-modules} → {A-modules} ; N 7→ i!N = N .
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Algebraic and combinatorial codimension 1 transversality 7

Let G =

{
G1 ∗H G2

G1 ∗H {t} be a generalized free product. By definition, a Mayer-

Vietoris splitting (or presentation) E of a Z[G]-module chain complex C is :

(A) an exact sequence of Z[G]-module chain complexes

E : 0 → k!D


1⊗ e1

1⊗ e2




// (j1)!C1 ⊕ (j2)!C2 → C → 0

with C1 a Z[G1]-module chain complex, C2 a Z[G2]-module chain com-
plex, D a Z[H]-module chain complex, e1 : (i1)!D → C1 a Z[G1]-module
chain map and e2 : (i2)!D → C2 a Z[G2]-module chain map,

(B) an exact sequence of Z[G]-module chain complexes

E : 0 → (j1i1)!D
1⊗ e1 − t⊗ e2 // (j1)!C1 → C → 0

with C1 a Z[G1]-module chain complex, D a Z[H]-module chain com-
plex, and e1 : (i1)!D → C1 , e2 : (i2)!D → C1 Z[G1]-module chain maps.

A Mayer-Vietoris splitting E is finite if every chain complex in E is finite f.g.
free, and infinite otherwise.

Let X be a connected CW complex with fundamental group π1(X) = G and
universal covering projection p : X̃ → X , with G acting on the left of X̃ . Let
C(X̃) be the cellular free (left) Z[G]-module chain complex. For any subgroup
H ⊆ G the covering Z = X̃/H of X has universal cover Z̃ = X̃ with cellular
Z[H]-module chain complex

C(Z̃) = k!C(X̃)

with k : Z[H] → Z[G] the inclusion. If H = π1(Y ) for a connected subcomplex
Y ⊆ X then p−1(Y ) ⊆ X̃ is a disjoint union of copies of the universal cover Ỹ
of Y

p−1(Y ) =
⋃

g∈[G;H]

gỸ ⊂ X̃

with [G; H] the set of right H -cosets g = xH ⊆ G (x ∈ G). The cellular Z[G]-
module chain complex of p−1(Y ) is induced from the cellular Z[H]-module
chain complex of Ỹ

C(p−1(Y )) = k!C(Ỹ ) = Z[G]⊗Z[H] C(Ỹ ) ⊆ C(X̃) .

Furthermore, if (X, Y ) is a connected 2-sided CW pair then C(X̃) has a Mayer-
Vietoris splitting with respect to the injective generalized free product structure
on π1(X) :

Geometry & Topology Monographs, Volume X (20XX)



8 Andrew Ranicki

(A) By the Mayer-Vietoris Theorem applied to

X̃ = p−1(X1) ∪p−1(Y ) p−1(X2)

=
⋃

g1∈[G;G1]

g1X̃1 ∪ ⋃
h∈[G;H]

hỸ

⋃
g2∈[G;G2]

g2X̃2

C(X̃) has a Mayer-Vietoris splitting

0 → k!C(Ỹ )


1⊗ e1

1⊗ e2




// (j1)!C(X̃1)⊕ (j2)!C(X̃2)

(f1 − f2) // C(X̃) → 0

with X̃1, X̃2 the universal covers of X1, X2 and e1 : Y → X1 , e2 : Y →
X2 , f1 : X1 → X , f2 : X2 → X the inclusions.

(B) By the Mayer-Vietoris Theorem applied to

X̃ = p−1(X1) ∪p−1(Y×{0,1}) p−1(Y × [0, 1])

=
⋃

g1∈[G;G1]

g1X̃1 ∪ ⋃
h∈[G;H]

(hỸ ,0)∪(thỸ ,1)

⋃
h∈[G;H]

hỸ × [0, 1]

(with H = i1(H) ⊆ G) there is defined a short exact sequence of Z[G]-
module chain complexes

0 → k!C(Ỹ )⊕ k!C(Ỹ )


1⊗ e1 t⊗ e2

1 1




// (j1)!C(X̃1)⊕ k!C(Ỹ )

(f1 − f1(1⊗ e1))// C(X̃) → 0

with X̃1 the universal cover of X1 , and e1, e2 : Y → X1 , f1 : X1 → X
the inclusions, so that C(X̃) has a Mayer-Vietoris splitting

E : 0 → k!C(Ỹ )
1⊗ e1 − t⊗ e2// (j1)!C(X̃1)

f1 // C(X̃) → 0 .

If (X,Y ) is a finite CW pair the above Mayer-Vietoris splittings are finite.

For any injective generalized free product G =

{
G1 ∗H G2

G ∗H {t} every free Z[G]-

module chain complex C has a canonical infinite Mayer-Vietoris splitting

(A) E(∞) : 0 → k!k
!C → (j1)!j!

1C ⊕ (j2)!j!
2C → C → 0

(B) E(∞) : 0 → k!k
!C → (j1)!j!

1C → C → 0 .

Geometry & Topology Monographs, Volume X (20XX)



Algebraic and combinatorial codimension 1 transversality 9

For finite C we shall obtain finite Mayer-Vietoris splittings in the following
converse of the Mayer-Vietoris Theorem.

Algebraic Transversality Theorem Let G =

{
G1 ∗H G2

G1 ∗H {t} be an injective

generalized free product. For a finite f.g. free Z[G]-module chain complex C
the canonical infinite Mayer-Vietoris splitting E(∞) of C is a union of finite
Mayer-Vietoris splittings E ⊂ E(∞)

E(∞) =
⋃
E .

The existence of finite Mayer-Vietoris splittings was first proved by Waldhausen
[14], [15]. The proof of the Theorem in §1 is a simplification of the original
argument, using chain complex analogues of the CW domains.

Suppose now that (X, Y ) is the finite 2-sided CW pair defined by a (compact)
connected n-dimensional manifold Xn together with a connected codimension
1 submanifold Y n−1 ⊂ X with trivial normal bundle. By definition, a ho-
motopy equivalence f : Mn → X from an n-dimensional manifold splits at
Y ⊂ X if f is homotopic to a map (also denoted by f ) which is transverse
at Y , such that the restriction f | : Nn−1 = f−1(Y ) → Y is also a homotopy
equivalence. In general, homotopy equivalences do not split. For (X,Y ) with
injective π1(Y ) → π1(X) there are algebraic K - and L-theory obstructions to
splitting, involving the Nil-groups of Waldhausen [14], [15] and the UNil-groups
of Cappell [2], and for n > 6 these are the complete obstructions to splitting.
As outlined in Ranicki [8, §8], algebraic transversality for chain complexes is
an essential ingredient for a systematic treatment of both the algebraic K - and
L-theory obstructions. Although the algebraic K - and L-theory of generalized
free products will not actually be considered here, it is worth noting that the
early results of Higman [6], Bass, Heller and Swan [1] and Stallings [12] on the
Whitehead groups of polynomial extensions and free products were followed by
the work of the dedicatee on the Whitehead group of amalgamated free prod-
ucts (Casson [4]) prior to the general results of Waldhausen [14], [15] on the
algebraic K -theory of generalized free products.

1 Algebraic transversality

We shall deal separately with the amalgamated free and HNN cases.

Geometry & Topology Monographs, Volume X (20XX)



10 Andrew Ranicki

1.1 Algebraic transversality for amalgamated free products

Given an injective amalgamated free product G = G1 ∗H G2 with G 6= {1} let
T be the infinite tree defined by

T (0) = [G; G1] ∪ [G; G2] , T (1) = [G; H]

(Serre [11], Waldhausen [15]). The edge h ∈ [G; H] joins the unique vertices
g1 ∈ [G; G1], g2 ∈ [G; G2] with

g1 ∩ g2 = h ⊂ G .

The group G acts on T by

G× T → T ; (g, x) 7→ gx

with T/G = [0, 1], Gi ⊆ G the isotropy subgroup of Gi ∈ T (0) and H ⊆ G the
isotropy subgroup of H ∈ T (1) . Conversely, if a group G acts on a tree T with
T/G = [0, 1] then G = G1 ∗H G2 is an injective amalgamated free product with
tree T .

As before write the injections as

i1 : H → G1 , i2 : H → G2 , j1 : G1 → G , j2 : G2 → G ,

k = j1i1 = j2i2 : H → G .

Definition 1.1 (i) A domain (C1, C2) of a Z[G]-module chain complex C is
a pair of subcomplexes (C1 ⊆ j!

1C, C2 ⊆ j!
2C) such that the chain maps

e1 : (i1)!(C1 ∩ C2) → C1 ; b1 ⊗ y1 7→ b1y1 ,

e2 : (i2)!(C1 ∩ C2) → C2 ; b2 ⊗ y2 7→ b2y2 ,

f1 : (j1)!C1 → C ; a1 ⊗ x1 7→ a1x1 ,

f2 : (j1)!C2 → C ; a2 ⊗ x2 7→ a2x2

fit into a Mayer-Vietoris splitting of C

E(C1, C2) : 0 → k!(C1 ∩ C2)
e // (j1)!C1 ⊕ (j2)!C2

f // C → 0

with e =
(

e1

e2

)
, f = (f1 − f2).

(ii) A domain (C1, C2) is finite if Ci (i = 1, 2) is a finite f.g. free Z[Gi]-module
chain complex, C1 ∩ C2 is a finite f.g. free Z[H]-module chain complex, and
infinite otherwise.

Geometry & Topology Monographs, Volume X (20XX)



Algebraic and combinatorial codimension 1 transversality 11

Proposition 1.2 Every free Z[G]-module chain complex C has a canonical
infinite domain (C1, C2) = (j!

1C, j!
2C) with

C1 ∩ C2 = k!C ,

so that C has a canonical infinite Mayer-Vietoris splitting

E(∞) = E(j!
1C, j!

2C) : 0 → k!k
!C → (j1)!j!

1C ⊕ (j2)!j!
2C → C → 0 .

Proof It is enough to consider the special case C = Z[G], concentrated in
degree 0. The pair

(C1, C2) = (j!
1Z[G], j!

2Z[G]) = (
⊕

[G;G1]

Z[G1],
⊕

[G;G2]

Z[G2])

is a canonical infinite domain for C , with

E(∞) = E(C1, C2) : 0 → k!k
!Z[G] → (j1)!j!

1Z[G]⊕ (j2)!j!
2Z[G] → Z[G] → 0

the chain complex of C(T ×G) = C(T )⊗Z Z[G], along with its augmentation
to H0(T ×G) = Z[G].

Definition 1.3 (i) For a based f.g. free Z[G]-module B = Z[G]b and a subtree
U ⊆ T define a domain for B (regarded as a chain complex concentrated in
degree 0)

(B(U)1, B(U)2) = (
∑

U
(0)
1

Z[G1]b,
∑

U
(0)
2

Z[G2]b)

with
U

(0)
1 = U (0) ∩ [G; G1] , U

(0)
2 = U (0) ∩ [G; G2] ,

B(U)1 ∩B(U)2 =
∑
U(1)

Z[H]b .

The associated Mayer-Vietoris splitting of B is the subobject E(U) ⊆ E(∞)
with

E(U) : 0 → k!

∑

U(1)

Z[H]b → (j1)!
∑

U
(0)
1

Z[G1]b ⊕ (j2)!
∑

U
(0)
2

Z[G2]b → B → 0

the chain complex of C(U ×G)b = C(U)⊗ZB , along with its augmentation to
H0(U ×G)b = B . If U ⊂ T is finite then (B(U)1, B(U)2) is a finite domain.

(ii) Let C be an n-dimensional based f.g. free Z[G]-module chain complex,
with Cr = Z[G]cr . A sequence U = {Un, Un−1, . . . , U1, U0} of subtrees Ur ⊆ T
is realized by C if the differentials d : Cr → Cr−1 are such that

d(Cr(Ur)i) ⊆ Cr−1(Ur−1)i (1 6 r 6 n, i = 1, 2) ,

Geometry & Topology Monographs, Volume X (20XX)



12 Andrew Ranicki

so that there is defined a Mayer-Vietoris splitting of C

E(U) : 0 → k!

∑

U(1)

C(U)1∩C(U)2 → (j1)!
∑

U
(0)
1

C(U)1⊕(j2)!
∑

U
(0)
2

C(U)2 → C → 0

with C(U)i the free Z[Gi]-module chain complex defined by

(C(U)i)r = Cr(Ur)i (i = 1, 2) .

The sequence U is finite if each subtree Ur ⊆ T is finite, in which case E(U) is
finite.

Proposition 1.4 For a finite based f.g. free Z[G]-module chain complex C
the canonical infinite domain is a union of finite domains

(j!
1C, j!

2C) =
⋃

U

(C(U)1, C(U)2) ,

with U running over all the finite sequences which are realized by C . The
canonical infinite Mayer-Vietoris splitting of C is thus a union of finite Mayer-
Vietoris splittings

E(∞) =
⋃

U

E(U) .

Proof The proof is based on the following observations :

(a) for any subtrees V ⊆ U ⊆ T

E(V ) ⊆ E(U) ⊆ E(T ) = E(∞)

(b) the infinite tree T is a union

T =
⋃

U

of the finite subtrees U ⊂ T ,

(c) for any finite subtrees U,U ′ ⊂ T there exists a finite subtree U ′′ ⊂ T
such that U ⊆ U ′′ and U ′ ⊆ U ′′ ,

(d) for any finite subtree U ⊂ T and any element d ∈ Z[G] there exists a finite
subtree U ′ ⊂ T such that the Z[G]-module morphism d : Z[G] → Z[G]
is resolved by a morphism d : E(U) → E(U ′) of finite Mayer-Vietoris
splittings.

Assume C is n-dimensional, with Cr = Z[G]cr . Starting with any finite subtree
Un ⊆ T let

U = {Un, Un−1, . . . , U1, U0}

Geometry & Topology Monographs, Volume X (20XX)



Algebraic and combinatorial codimension 1 transversality 13

be a sequence of finite subtrees Ur ⊂ T such that the f.g. free submodules

Cr(U)1 =
∑
U

(0)
r,1

Z[G1]cr ⊂ j!
1Cr =

∑
T

(0)
1

Z[G1]cr ,

Cr(U)2 =
∑
U

(0)
r,2

Z[G2]cr ⊂ j!
2Cr =

∑
T

(0)
2

Z[G2]cr ,

D(U)r =
∑
U

(1)
r

Z[H]cr ⊂ k!Cr =
∑
T (1)

Z[H]cr

define subcomplexes C(U)1 ⊂ j!
1C , C(U)2 ⊂ j!

2C , D(U) ⊂ k!C . Then (C(U)1,
C(U)2) is a domain of C with C(U)1 ∩ C(U)2 = D(U), and U is realized by
C .

Remark 1.5 (i) The existence of finite Mayer-Vietoris splittings was first
proved by Waldhausen [14],[15], using essentially the same method. See Quinn
[7] for a proof using controlled algebra. The construction of generalized free
products by noncommutative localization (cf. Ranicki [10]) can be used to
provide a different proof.

(ii) The construction of the finite Mayer-Vietoris splittings E(U) in 1.4 as sub-
objects of the universal Mayer-Vietoris splitting E(T ) = E(∞) is taken from
Remark 8.7 of Ranicki [8].

This completes the proof of the Algebraic Transversality Theorem for amalga-
mated free products.

1.2 Algebraic transversality for HNN extensions

The proof of algebraic transversality for HNN extensions proceeds exactly as
for amalgamated free products, so only the statements will be given.

Given an injective HNN extension G = G1 ∗H {t} with G 6= {1} let T be the
infinite tree defined by

T (0) = [G; G1] , T (1) = [G; H] ,

identifying H = i1(H) ⊆ G. The edge h ∈ [G;H] joins the unique vertices
g1, g2 ∈ [G; G1] with

g1 ∩ g2t
−1 = h ⊂ G .

The group G acts on T by

G× T → T ; (g, x) 7→ gx
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14 Andrew Ranicki

with T/G = S1 , G1 ⊆ G the isotropy subgroup of G1 ∈ T (0) and H ⊆ G the
isotropy subgroup of H ∈ T (1) . Conversely, if a group G acts on a tree T with
T/G = S1 then G = G1 ∗H {t} is an injective HNN extension with tree T .
As before, write the injections as

i1 , i2 : H → G1 , j : G1 → G , k = j1i1 = j1i2 : G1 → G .

Definition 1.6 (i) A domain C1 of a Z[G]-module chain complex C is a
subcomplex C1 ⊆ j!

1C such that the chain maps

e1 : (i1)!(C1 ∩ tC1) → C1 ; b1 ⊗ y1 7→ b1y1 ,

e2 : (i2)!(C1 ∩ tC1) → C1 ; b2 ⊗ y2 7→ b2t
−1y2 ,

f : (j1)!C1 → C ; a⊗ x 7→ ax

fit into a Mayer-Vietoris splitting of C

E(C1) : 0 → k!(C1 ∩ tC1)
1⊗ e1 − t⊗ e2// (j1)!C1

f // C → 0 .

(ii) A domain C1 is finite if C1 is a finite f.g. free Z[G1]-module chain complex
and C1 ∩ tC1 is a finite f.g. free Z[H]-module chain complex.

Proposition 1.7 Every free Z[G]-module chain complex C has a canonical
infinite domain C1 = j!

1C with

C1 ∩ tC1 = k!C1 ,

so that C has a canonical infinite Mayer-Vietoris splitting

E(∞) = E(j!
1C) : 0 → k!k

!C → (j1)!j!
1C → C → 0 .

Definition 1.8 For any subtree U ⊆ T define a domain for Z[G]

C(U)1 =
∑

U(0)

Z[G1]

with
C(U)1 ∩ tC(U)1 =

∑

U(1)

Z[H] .

The associated Mayer-Vietoris splitting of Z[G] is the subobject E(U) ⊆ E(∞)
with

E(U) : 0 → k!

∑

U(1)

Z[H] → (j1)!
∑

U(0)

Z[G1] → Z[G] → 0 .

If U ⊂ T is finite then C(U)1 is finite.
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Proposition 1.9 For a finite f.g. free Z[G]-module chain complex C the
canonical infinite domain is a union of finite domains

j!
1C =

⋃
C1 .

The canonical infinite Mayer-Vietoris splitting of C is thus a union of finite
Mayer-Vietoris splittings

E(∞) =
⋃
E(C1) .

This completes the proof of the Algebraic Transversality Theorem for HNN
extensions.

2 Combinatorial transversality

The Combinatorial Transversality Theorem stated in the Introduction will now
be proved, treating the cases of an amalgamated free product and an HNN
extension separately.

2.1 Mapping cylinders

We review some basic mapping cylinder constructions.

The mapping cylinder of a map e : V → W is the identification space

M(e) = (V × [0, 1] ∪W )/{(x, 0) ∼ e(x) |x ∈ V }
such that V = V × {1} ⊂ M(e), and the projection

p : M(e) → W ;

{
(x, s) 7→ e(x) for x ∈ V , s ∈ [0, 1]
y 7→ x for y ∈ W

is a homotopy equivalence.

If e is a cellular map of CW complexes then M(e) is a CW complex, such
that cellular chain complex C(M(e)) is the algebraic mapping cylinder of e :
C(V ) → C(W ) with

dC(M(e)) =




dC(W ) (−1)re 0
0 dC(V ) 0
0 (−1)r−1 dC(V )


 :

C(M(e))r = C(W )r ⊕ C(V )r−1 ⊕ C(V )r

→ C(M(e))r−1 = C(W )r−1 ⊕ C(V )r−2 ⊕ C(V )r−1 .
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16 Andrew Ranicki

The chain equivalence p : C(M(e)) → C(W ) is given by

p = (1 0 e) : C(M(e))r = C(W )r ⊕ C(V )r−1 ⊕ C(V )r → C(W )r .

The double mapping cylinder M(e1, e2) of maps e1 : V → W1 , e2 : V → W2 is
the identification space

M(e1, e2) = M(e1) ∪V M(e2)

= W1 ∪e1 V × [0, 1] ∪e2 W2

= (W1 ∪ V × [0, 1] ∪W2)/{(x, 0) ∼ e1(x), (x, 1) ∼ e2(x) |x ∈ V } .

Given a commutative square of spaces and maps

V
e1 //

e2

²²

W1

f1

²²
W2

f2 // W

define the map

f1∪f2 : M(e1, e2) → W ;

{
(x, s) 7→ f1e1(x) = f2e2(x) (x ∈ V, s ∈ [0, 1])
yi 7→ fi(yi) (yi ∈ Wi , i = 1, 2) .

The square is a homotopy pushout if f1 ∪ f2 : M(e1, e2) → W is a homotopy
equivalence.

If e1 : V → W1 , e2 : V → W2 are cellular maps of CW complexes then
M(e1, e2) is a CW complex, such that cellular chain complex C(M(e1, e2)) is
the algebraic mapping cone of the chain map

(
e1

e2

)
: C(V ) → C(W1)⊕ C(W2)

with

dC(M(e1,e2)) =




dC(W1) (−1)re1 0
0 dC(V ) 0
0 (−1)re2 dC(W2)


 :

C(M(e1, e2))r = C(W1)r ⊕ C(V )r−1 ⊕ C(W2)r

→ C(M(e1, e2))r−1 = C(W1)r−1 ⊕ C(V )r−2 ⊕ C(W2)r−1 .
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Algebraic and combinatorial codimension 1 transversality 17

2.2 Combinatorial transversality for amalgamated free prod-
ucts

In this section W is a connected CW complex with fundamental group an
injective amalgamated free product

π1(W ) = G = G1 ∗H G2

with tree T . Let W̃ be the universal cover of W , and let

W̃/H
i1 //

i2
²²

W̃/G1

j1

²²
W̃/G2

j2 // W

be the commutative square of covering projections.

Definition 2.1 (i) Suppose given subcomplexes W1,W2 ⊆ W̃ such that

G1W1 = W1 , G2W2 = W2

so that
H(W1 ∩W2) = W1 ∩W2 ⊆ W̃ .

Define a commutative square of CW complexes and cellular maps

(W1 ∩W2)/H
e1 //

e2

²²

W1/G1

f1

²²

Φ

W2/G2
f2 // W

with

(W1 ∩W2)/H ⊆ W̃/H , W1/G1 ⊆ W̃/G1 , W2/G2 ⊆ W̃/G2 ,

e1 = i1| : (W1 ∩W2)/H → W1/G1 , e2 = i2| : (W1 ∩W2)/H → W2/G2 ,

f1 = j1| : W1/G1 → W , f2 = j2| : W2/G2 → W .

(ii) A domain (W1,W2) for the universal cover W̃ of W consists of connected
subcomplexes W1,W2 ⊆ W̃ such that W1 ∩W2 is connected, and such that for
each cell D ⊆ W̃ the subgraph U(D) ⊆ T defined by

U(D)(0) = {g1 ∈ [G; G1] | g1D ⊆ W1} ∪ {g2 ∈ [G; G2] | g2D ⊆ W2}
U(D)(1) = {h ∈ [G; H] |hD ⊆ W1 ∩W2}
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is a tree.

(iii) A domain (W1,W2) for W̃ is fundamental if the subtrees U(D) ⊆ T are
either single vertices or single edges, so that

g1W1 ∩ g2W2 =

{
h(W1 ∩W2) if g1 ∩ g2 = h ∈ [G; H]
∅ if g1 ∩ g2 = ∅ ,

W = (W1/G1) ∪(W1∩W2)/H (W2/G2) .

Proposition 2.2 For a domain (W1,W2) of W̃ the pair of cellular chain

complexes (C(W1), C(W2)) is a domain of the cellular chain complex C(W̃ ).

Proof The union of GW1, GW2 ⊆ W̃ is

GW1 ∪GW2 = W̃

since for any cell D ⊆ W̃ there either exists g1 ∈ [G;G1] such that g1D ⊆ W1

or g2 ∈ [G; G2] such that g2D ⊆ W2 . The intersection of GW1, GW2 ⊆ W̃ is

GW1 ∩GW2 = G(W1 ∩W2) ⊆ W̃ .

The Mayer-Vietoris exact sequence of cellular Z[G]-module chain complexes

0 → C(GW1 ∩GW2) → C(GW1)⊕ C(GW2) → C(W̃ ) → 0

is the Mayer-Vietoris splitting of C(W̃ ) associated to (C(W1), C(W2))

0 → k!C(W1 ∩W2) → (j1)!C(W1)⊕ (j2)!C(W2) → C(W̃ ) → 0

with C(W1 ∩W2) = C(W1) ∩ C(W2).

Example 2.3 W has a canonical infinite domain (W1,W2) = (W̃ , W̃ ) with
(W1 ∩W2)/H = W̃/H , and U(D) = T for each cell D ⊆ W̃ .

Example 2.4 (i) Suppose that W = X1 ∪Y X2 , with X1, X2, Y ⊆ W con-
nected subcomplexes such that the isomorphism

π1(W ) = π1(X1) ∗π1(Y ) π1(X2)
∼= // G = G1 ∗H G2

preserves the amalgamated free structures. Thus (X, Y ) is a Seifert-van Kam-
pen splitting of W , and the morphisms

π1(X1) → G1 , π1(X2) → G2 , π1(Y ) → H
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Algebraic and combinatorial codimension 1 transversality 19

are surjective. (If π1(Y ) → π1(X1) and π1(Y ) → π1(X2) are injective these
morphisms are isomorphisms, and the splitting is injective). The universal cover
of W is

W̃ =
⋃

g1∈[G;G1]

g1X̃1 ∪ ⋃
h∈[G;H]

hỸ

⋃

g2∈[G;G2]

g2X̃2

with X̃i the regular cover of Xi corresponding to ker(π1(Xi) → Gi) (i = 1, 2)
and Ỹ the regular cover of Y corresponding to ker(π1(Y ) → H) (which are
the universal covers of X1, X2, Y in the case π1(X1) = G1 , π1(X2) = G2 ,
π1(Y ) = H ). The pair

(W1,W2) = (X̃1, X̃2)

is a fundamental domain of W̃ such that

(W1 ∩W2)/H = Y ,

g1W1 ∩ g2W2 = (g1 ∩ g2)Ỹ ⊆ W̃ (g1 ∈ [G; G1], g2 ∈ [G;G2]) .

For any cell D ⊆ W̃

U(D) =





{g1} if g1D ⊆ X̃1 −
⋃

h1∈[G1;H]

h1Ỹ for some g1 ∈ [G;G1]

{g2} if g2D ⊆ X̃2 −
⋃

h2∈[G2;H]

h2Ỹ for some g2 ∈ [G;G1]

{g1, g2, h} if hD ⊆ Ỹ for some h = g1 ∩ g2 ∈ [G; H].

(ii) If (W1,W2) is a fundamental domain for any connected CW complex W
with π1(W ) = G = G1 ∗H G2 then W = X1 ∪Y X2 as in (i), with

X1 = W1/G1 , X2 = W2/G2 , Y = (W1 ∩W2)/H .

Definition 2.5 Suppose that W is n-dimensional. Lift each cell Dr ⊆ W to
a cell D̃r ⊆ W̃ . A sequence U = {Un, Un−1, . . . , U1, U0} of subtrees Ur ⊆ T is
realized by W if the subspaces

W (U)1 =
n⋃

r=0

⋃

Dr⊂W

⋃

g1∈U
(0)
r,1

g1D̃
r , W (U)2 =

n⋃

r=0

⋃

Dr⊂W

⋃

g2∈U
(0)
r,2

g2D̃
r ⊆ W̃

are connected subcomplexes, in which case (W (U)1,W (U)2) is a domain for
W̃ with

W (U)1 ∩W (U)2 =
n⋃

r=0

⋃

Dr⊂W

⋃

h∈U
(1)
r

hD̃r ⊆ W̃
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a connected subcomplex. Thus U is realized by C(W̃ ) and

(C(W (U)1), C(W (U)2)) = (C(W̃ )(U)1, C(W̃ )(U)2) ⊆ (C(W̃ ), C(W̃ ))

is the domain for C(W̃ ) given by (Cr(W̃ )1(Ur), Cr(W̃ )(U)2) in degree r .

If a sequence U = {Un, Un−1, . . . , U1, U0} realized by W is finite (i.e. if each
Ur ⊆ T is a finite subtree) then (W (U)1,W (U)2) is a finite domain for W̃ .

Proposition 2.6 (i) For any domain (W1,W2) there is defined a homotopy
pushout

(W1 ∩W2)/H
e1 //

e2

²²

W1/G1

f1

²²

Φ

W2/G2
f2 // W

with e1 = i1|, e2 = i2|, f1 = j1|, f2 = j2|. The connected 2-sided CW pair

(X, Y ) = (M(e1, e2), (W1 ∩W2)/H × {1/2})
is a Seifert-van Kampen splitting of W , with a homotopy equivalence

f = f1 ∪ f2 : X = M(e1, e2)
' // W .

(ii) The commutative square of covering projections

W̃/H
i1 //

i2
²²

W̃/G1

j1

²²
W̃/G2

j2 // W

is a homotopy pushout. The connected 2-sided CW pair

(X(∞), Y (∞)) = (M(i1, i2), W̃ /H × {1/2})
is a canonical injective infinite Seifert-van Kampen splitting of W , with a ho-
motopy equivalence j = j1 ∪ j2 : X(∞) → W such that

π1(Y (∞)) = H ⊆ π1(X(∞)) = G1 ∗H G2 .

(iii) For any (finite) sequence U = {Un, Un−1, . . . , U0} of subtrees of T realized
by W there is defined a homotopy pushout

Y (U)
e1 //

e2

²²

X(U)1

f1

²²
X(U)2

f2 // W
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with
X(U)1 = W (U)1/G1 , X(U)2 = W (U)2/G2 ,

Y (U) = (W (U)1 ∩W (U)2)/H ,

e1 = i1| , e2 = i2| , f1 = j1| , f2 = j2| .

Thus

(X(U), Y (U)) = (M(e1, e2), Y (U)× {1/2})
is a (finite) Seifert-van Kampen splitting of W .

(iv) The canonical infinite domain of a finite CW complex W with π1(W ) =
G1 ∗H G2 is a union of finite domains

(W̃ , W̃ ) =
⋃

U

(W (U)1,W (U)2)

with U running over all the finite sequences realized by W . The canonical
infinite Seifert-van Kampen splitting of W is thus a union of finite Seifert-van
Kampen splittings

(X(∞), Y (∞)) =
⋃

U

(X(U), Y (U)) .

Proof (i) Given a cell D ⊆ W let D̃ ⊆ W̃ be a lift. The inverse image of the
interior int(D) ⊆ W

f−1(int(D)) = U(D̃)× int(D) ⊆M(i1, i2) = T ×G W̃

is contractible. In particular, point inverses are contractible, so that f : X → W
is a homotopy equivalence. (Here is a more direct proof that f : X → W is a
Z[G]-coefficient homology equivalence. The Mayer-Vietoris Theorem applied to
the union W̃ = GW1∪GW2 expresses C(W̃ ) as the cokernel of the Z[G]-module
chain map

e =
(

1⊗ e1

1⊗ e2

)
: Z[G]⊗Z[H]C(W1∩W2) → Z[G]⊗Z[G1]C(W1)⊕Z[G]⊗Z[G2]C(W2)

with a Mayer-Vietoris splitting

0 → Z[G]⊗Z[H] C(W1 ∩W2)
e // Z[G]⊗Z[G1] C(W1)⊕ Z[G]⊗Z[G2] C(W2)

// C(W̃ ) → 0 .

The decomposition X = M(e1, e2) = X1 ∪Y X2 with

Xi = M(ei) (i = 1, 2) , Y = X1 ∩X2 = (W1 ∩W2)/H × {1/2}
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lifts to a decomposition of the universal cover as

X̃ =
⋃

g1∈[G;G1]

g1X̃1 ∪ ⋃
h∈[G;H]

hỸ

⋃

g2∈[G;G2]

g2X̃2 .

The Mayer-Vietoris splitting

0 → Z[G]⊗Z[H]C(Ỹ ) // Z[G]⊗Z[G1]C(X̃1)⊕Z[G]⊗Z[G2]C(X̃2) → C(X̃) → 0 ,

expresses C(X̃) as the algebraic mapping cone of the chain map e

C(X̃) = C(e : Z[G]⊗Z[H]C(W1∩W2) → Z[G]⊗Z[G1]C(W1)⊕Z[G]⊗Z[G2]C(W2)) .

Since e is injective the Z[G]-module chain map

f̃ = projection : C(X̃) = C(e) → C(W̃ ) = coker(e)

induces isomorphisms in homology.)

(ii) Apply (i) to (W1,W2) = (W̃ , W̃ ).

(iii) Apply (i) to the domain (W (U)1,W (U)2).

(iv) Assume that W is n-dimensional. Proceed as for the chain complex case
in the proof of Proposition 1.4 for the existence of a domain for C(W̃ ), but use
only the sequences U = {Un, Un−1, . . . , U0} of finite subtrees Ur ⊂ T realized by
W . An arbitrary finite subtree Un ⊂ T extends to a finite sequence U realized
by W since for r > 2 each r -cell D̃r ⊂ W̃ is attached to an (r−1)-dimensional
finite connected subcomplex, and every 1-cell D̃1 ⊂ W̃ is contained in a 1-
dimensional finite connected subcomplex. Thus finite sequences U realized by
W exist, and can be chosen to contain arbitrary finite collections of cells of W̃ ,
with

(W̃ , W̃ ) =
⋃

U

(W (U)1,W (U)2) .

This completes the proof of part (i) of the Combinatorial Transversality Theo-
rem, the existence of finite Seifert-van Kampen splittings. Part (ii) deals with
existence of finite injective Seifert-van Kampen splittings: the adjustment of
fundamental groups needed to replace (X(U), Y (U)) by a homology-equivalent
finite injective Seifert-van Kampen splitting will use the following rudimentary
version of the Quillen plus-construction.

Lemma 2.7 Let K be a connected CW complex with a finitely generated
fundamental group π1(K). For any surjection φ : π1(K) → Π onto a finitely
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presented group Π it is possible to attach a finite number n of 2- and 3-cells
to K to obtain a connected CW complex

K ′ = K ∪
⋃
n

D2 ∪
⋃
n

D3

such that the inclusion K → K ′ is a Z[Π]-coefficient homology equivalence
inducing φ : π1(K) → π1(K ′) = Π.

Proof The kernel of φ : π1(K) → Π is the normal closure of a finitely gen-
erated subgroup N ⊆ π1(K) by Lemma I.4 of Cappell [3]. (Here is the proof.
Choose finite generating sets

g = {g1, g2, . . . , gr} ⊆ π1(K) , h = {h1, h2, . . . , hs} ⊆ Π

and let wk(h1, h2, . . . , hs) (1 6 k 6 t) be words in h which are relations for
Π. As φ is surjective, can choose h′j ∈ π1(K) with φ(h′j) = hj (1 6 j 6 s).
As h generates Π φ(gi) = vi(h1, h2, . . . , hs) (1 6 i 6 r) for some words vi in
h. The kernel of φ is the normal closure N = 〈N ′〉 / π1(K) of the subgroup
N ′ ⊆ π1(K) generated by the finite set {vi(h′1, . . . , h

′
s)g

−1
i , wk(h′1, . . . , h

′
s)}.)

Let x = {x1, x2, . . . , xn} ⊆ π1(K) be a finite set of generators of N , and set

L = K ∪x

n⋃

i=1

D2 .

The inclusion K → L induces

φ : π1(K) → π1(L) = π1(K)/〈x1, x2, . . . , xn〉 = π1(K)/〈N〉 = Π .

Let L̃ be the universal cover of L, and let K̃ be the pullback cover of K . Now

π1(K̃) = ker(φ) = 〈x1, x2, . . . , xn〉 = 〈N〉
so that the attaching maps xi : S1 → K of the 2-cells in L − K lift to null-
homotopic maps x̃i : S1 → K̃ . The cellular chain complexes of K̃ and L̃ are
related by

C(L̃) = C(K̃)⊕
⊕

n

(Z[Π], 2)

where (Z[Π], 2) is just Z[Π] concentrated in degree 2. Define

x∗ = {x∗1, x∗2, . . . , x∗n} ⊆ π2(L)

by

x∗i = (0, (0, . . . , 0, 1, 0, . . . , 0)) ∈ π2(L) = H2(L̃) = H2(K̃)⊕Z[Π]n (1 6 i 6 n) ,
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and set

K ′ = L ∪x∗

n⋃

i=1

D3 .

The inclusion K → K ′ induces φ : π1(K) → π1(K ′) = π1(L) = Π, and the
relative cellular Z[Π]-module chain complex is

C(K̃ ′, K̃) : · · · → 0 → Z[Π]n 1 // Z[Π]n → 0 → . . .

concentrated in degrees 2,3. In particular, K → K ′ is a Z[Π]-coefficient ho-
mology equivalence.

Proposition 2.8 Let (X,Y ) be a finite connected 2-sided CW pair with
X = X1 ∪Y X2 for connected X1, X2, Y , together with an isomorphism

π1(X) = π1(X1) ∗π1(Y ) π1(X2)
∼= // G = G1 ∗H G2

preserving amalgamated free product structures, with the structure on G injec-
tive. It is possible to attach a finite number of 2- and 3-cells to (X, Y ) to obtain
a finite injective Seifert-van Kampen splitting (X ′, Y ′) with X ′ = X ′

1 ∪Y ′ X ′
2

such that

(i) π1(X ′) = G , π1(X ′
i) = Gi (i = 1, 2) , π1(Y ′) = H ,

(ii) the inclusion X → X ′ is a homotopy equivalence,

(iii) the inclusion Xi → X ′
i (i = 1, 2) is a Z[Gi]-coefficient homology equiva-

lence,

(iv) the inclusion Y → Y ′ is a Z[H]-coefficient homology equivalence.

Proof Apply the construction of Lemma 2.7 to the surjections π1(X1) → G1 ,
π1(X2) → G2 , π1(Y ) → H , to obtain

X ′
i = (Xi ∪xi

⋃
mi

D2) ∪x∗i
⋃
mi

D3 (i = 1, 2) ,

Y ′ = (Y ∪y
⋃
n

D2) ∪y∗
⋃
n

D3

for any y = {y1, y2, . . . , yn} ⊆ π1(Y ) such that ker(π1(Y ) → H) is the normal
closure of the subgroup of π1(Y ) generated by y , and any

xi = {xi,1, xi,2, . . . , xi,mi} ⊆ π1(Xi)

such that ker(π1(Xi) → Gi) is the normal closure of the subgroup of π1(Xi)
generated by xi (i = 1, 2). Choosing x1, x2 to contain the images of y , we
obtain the required 2-sided CW pair (X ′, Y ′) with X ′ = X ′

1 ∪Y ′ X
′
2 .

This completes the proof of the Combinatorial Transversality Theorem for amal-
gamated free products.
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2.3 Combinatorial transversality for HNN extensions

The proof of combinatorial transversality for HNN extensions proceeds exactly
as for amalgamated free products, so only the statements will be given.

In this section W is a connected CW complex with fundamental group an
injective HNN extension

π1(W ) = G = G1 ∗H {t}
with tree T . Let W̃ be the universal cover of W , and let

W̃/H
i1 //
i2

// W̃/G1

j1 // W

be the covering projections, and define a commutative square

W̃/H × {0, 1} i1∪i2 //

i3
²²

W̃/G1

j1

²²
W̃/H × [0, 1]

j2 // W

where
i3 = inclusion : W̃/H × {0, 1} → W̃/H × [0, 1] ,

j2 : W̃/H × [0, 1] → W ; (x, s) 7→ j1i1(x) = j1i2(x) .

Definition 2.9 (i) Suppose given a subcomplex W1 ⊆ W̃ with

G1W1 = W1

so that
H(W1 ∩ tW1) = W1 ∩ tW1 ⊆ W̃ .

Define a commutative square of CW complexes and cellular maps

(W1 ∩ tW1)/H × {0, 1} e1 //

e2

²²

W1/G1

f1

²²

Φ

(W1 ∩ tW1)/H × [0, 1]
f2 // W

with
(W1 ∩ tW1)/H ⊆ W̃/H , W1/G1 ⊆ W̃/G1 ,

e1 = (i1 ∪ i2)| : (W1 ∩ tW1)/H × {0, 1} → W1/G1 ,

e2 = i3| : (W1 ∩ tW1)/H × {0, 1} → (W1 ∩ tW1)/H × [0, 1] ,

f1 = j1| : W1/G1 → W , f2 = j2| : (W1 ∩ tW1)/H × [0, 1] → W .
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(ii) A domain W1 for the universal cover W̃ of W is a connected subcomplex
W1 ⊆ W̃ such that W1 ∩ tW1 is connected, and such that for each cell D ⊆ W̃
the subgraph U(D) ⊆ T defined by

U(D)(0) = {g1 ∈ [G; G1] | g1D ⊆ W1}
U(D)(1) = {h ∈ [G1; H] |hD ⊆ W1 ∩ tW1}

is a tree.

(iii) A domain W1 for W̃ is fundamental if the subtrees U(D) ⊆ T are either
single vertices or single edges, so that

g1W1 ∩ g2W1 =





h(W1 ∩ tW1) if g1 ∩ g2t
−1 = h ∈ [G1; H]

g1W1 if g1 = g2

∅ if g1 6= g2 and g1 ∩ g2t
−1 = ∅ ,

W = (W1/G1) ∪(W1∩tW1)/H×{0,1} (W1 ∩ tW1)/H × [0, 1] .

Proposition 2.10 For a domain W1 of W̃ the cellular chain complex C(W1)
is a domain of the cellular chain complex C(W̃ ).

Example 2.11 W has a canonical infinite domain W1 = W̃ with

(W1 ∩ tW1)/H = W̃/H

and U(D) = T for each cell D ⊆ W̃ .

Example 2.12 (i) Suppose that W = X1∪Y×{0,1} Y × [0, 1], with X1, Y ⊆ W
connected subcomplexes such that the isomorphism

π1(W ) = π1(X1) ∗π1(Y ) {t}
∼= // G = G1 ∗H {t}

preserves the HNN extensions. The morphisms π1(X1) → G1 , π1(Y ) → H are
surjective. (If i1, i2 : π1(Y ) → π1(X1) are injective these morphisms are also
injective, allowing identifications π1(X1) = G1 , π1(Y ) = H ). The universal
cover of W is

W̃ =
⋃

g1∈[G:G1]

g1X̃1 ∪ ⋃
h∈[G1;H]

(hỸ ∪htỸ )

⋃

h∈[G1;H]

hỸ × [0, 1]

with X̃1 the regular cover of X1 corresponding to ker(π1(X1) → G1) and Ỹ the
regular cover of Y corresponding to ker(π1(Y ) → H) (which are the universal
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covers of X1, Y in the case π1(X1) = G1 , π1(Y ) = H ). Then W1 = X̃1 is a
fundamental domain of W̃ such that

(W1 ∩ tW1)/H = Y , W1 ∩ tW1 = Ỹ ,

g1W1 ∩ g2W1 = (g1 ∩ g2t
−1)Ỹ ⊆ W̃ (g1 6= g2 ∈ [G : G1]) .

For any cell D ⊆ W̃

U(D) =




{g1} if g1D ⊆ X̃1 −

⋃
h∈[G1;H]

(hỸ ∪ htỸ ) for some g1 ∈ [G : G1]

{g1, g2, h} if hD ⊆ Ỹ × [0, 1] for some h = g1 ∩ g2t
−1 ∈ [G1;H].

(ii) If W1 is a fundamental domain for any connected CW complex W with
π1(W ) = G = G1 ∗H {t} then W = X1 ∪Y×{0,1} Y × [0, 1] as in (i), with

X1 = W1/G1 , Y = (W1 ∩ tW1)/H .

Definition 2.13 Suppose that W is n-dimensional. Lift each cell Dr ⊆ W
to a cell D̃r ⊆ W̃ . A sequence U = {Un, Un−1, . . . , U1, U0} of subtrees Ur ⊆ T
is realized by W if the subspace

W (U)1 =
n⋃

r=0

⋃

Dr⊂W

⋃

g1∈U
(0)
r

g1D̃
r ⊆ W̃

is a connected subcomplex, in which case W (U)1 is a domain for W̃ with

W (U)1 ∩ tW (U)1 =
n⋃

r=0

⋃

Dr⊂W

⋃

h∈U
(1)
r

hD̃r ⊆ W̃

a connected subcomplex. Thus U is realized by C(W̃ ) and

C(W (U)1) = C(W̃ (U)1 ⊆ j!
1C(W̃ )

is the domain for C(W̃ ) given by Cr(W̃ )1(Ur) in degree r .

Proposition 2.14 (i) For any domain W1 there is defined a homotopy pushout

(W1 ∩ tW1)/H × {0, 1} e1 //

e2

²²

W1/G1

f1

²²

Φ

(W1 ∩ tW1)/H × [0, 1]
f2 // W
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with e1 = i1∪ i2|, e2 = i3|, f1 = j1|, f2 = j2|. The connected 2-sided CW pair

(X, Y ) = (M(e1, e2), (W1 ∩ tW1)/H × {1/2})
is a Seifert-van Kampen splitting of W , with a homotopy equivalence

f = f1 ∪ f2 : X = M(e1, e2)
' // W .

(ii) The commutative square of covering projections

W̃/H × {0, 1} i1∪i2 //

i3
²²

W̃/G1

j1

²²
W̃/H × [0, 1]

j2 // W

is a homotopy pushout. The connected 2-sided CW pair

(X(∞), Y (∞)) = (M(i1 ∪ i2, i3), W̃ /H × {0})
is a canonical injective infinite Seifert-van Kampen splitting of W , with a ho-
motopy equivalence j = j1 ∪ j2 : X(∞) → W such that

π1(Y (∞)) = H ⊆ π1(X(∞)) = G1 ∗H {t} .

(iii) For any (finite) sequence U = {Un, Un−1, . . . , U0} of subtrees of T realized
by W there is defined a homotopy pushout

Y (U)× {0, 1} e1 //

e2

²²

X(U)1

f1

²²
Y (U)× [0, 1]

f2 // W

with

Y (U) = (W (U)1 ∩ tW (U)1)/H , X(U)1 = W (U)1/G1 ,

e1 = i1 ∪ i2| , e2 = i3| , f1 = j1| , f2 = j2| .

Thus

(X(U), Y (U)) = (M(e1, e2), Y (U)× {1/2})
is a (finite) Seifert-van Kampen splitting of W .

(iv) The canonical infinite domain of a finite CW complex W with π1(W ) =
G1 ∗H {t} is a union of finite domains W (U)1

W̃ =
⋃

U

W (U)1
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with U running over all the finite sequences realized by W . The canonical infi-
nite Seifert-van Kampen splitting is thus a union of finite Seifert-van Kampen
splittings

(X(∞), Y (∞)) =
⋃

U

(X(U), Y (U)) .

Proposition 2.15 Let (X, Y ) be a finite connected 2-sided CW pair with
X = X1 ∪Y×{0,1} Y × [0, 1] for connected X1, Y , together with an isomorphism

π1(X) = π1(X1) ∗π1(Y ) {t}
∼= // G = G1 ∗H {t}

preserving the HNN structures, with the structure on G injective. It is possible
to attach a finite number of 2- and 3-cells to the finite Seifert-van Kampen
splitting (X,Y ) of X to obtain a finite injective Seifert-van Kampen splitting
(X ′, Y ′) with X ′ = X ′

1 ∪Y ′×{0,1} Y ′ × [0, 1] such that

(i) π1(X ′) = G , π1(X ′
1) = G1 , π1(Y ′) = H ,

(ii) the inclusion X → X ′ is a homotopy equivalence,

(iii) the inclusion X1 → X ′
1 is a Z[G1]-coefficient homology equivalence,

(iv) the inclusion Y → Y ′ is a Z[H]-coefficient homology equivalence.

This completes the proof of the Combinatorial Transversality Theorem for
HNN extensions.
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