ON THE EXISTENCE AND CLASSIFICATION OF
DIFFERENTIABLE EMBEDDINGS

ANDRE HAErFLIGER and MORRIS W. HirsCcH

(Received 3 January 1963)

§1. INTRODUCTION

LET M be a compact k-connected differential n-manifold without boundary. Our object is
to prove, under suitable restrictions on & and »n, an existence theorem for embedding M in
the Euclidean space R*"~*~!(Theorem (2.3)), and a classification theorem for isotopy classes
of embeddings of M in R?"~*if M isorientable (Theorem (2.4)). Thisis done by first proving
Theorems (2.1) and (2.2) which reduce the embedding problems to questions involving
immersions, and then applying the theory of immersions [2].

A particular case of (2.3) is the following:

TueoreM (1.1). If n > 4, M is embeddable in R*"~' if and only if its normal Stiefel-
Whitney class W™~ " vanishes.

Massey [5, 6, 7] has shown that if W""!3 0, then M is non-orientable and # is a
power of 2. Thus we obtain:

TueoreM (1.2). If n> 4 and M is orientable, M is embeddable in R*"~".

This is also true if n = 3; see [4]. The case n =4 is unsolved, even if M is simply
connected. However, Smale has proved (unpublished) that every homotopy 4-sphere is
embeddable in R®.

It should be remarked that the existence Theorems (2.1) and (2.3) apply to both
orientable and non-orientable manifolds, but the classification Theorems (2.2) and (2.4)
apply only to orientable manifolds.

(1.3). DEFiNITIONS AND NoOTATION. All manifolds considered here are differential. The
boundary of a manifold X is 2X. We put X — X =int X.

An immersion of an n-manifold X in Euclidean r-space R" is a differentiable map
f: X — R’ of rank n everywhere. An embedding is an immersion which is 1-1. If fand g
are immersions of X in R”, a regular homotopy connecting f to g is a differentiable homotopy
F: X x [— RYsuch that F, =/, F, =g, and each F, is an immersion. If in addition each
F, is an embedding, then F is an isotopy.
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IfF, G: X x I— R’are regular homotopies, we say that Fand G are regularly homotopic
if there is a differentiable map H: X x I x I - K’ such that for each ¢ € [ the map H, isa
regular homotopy, where H,(x,s) = H(x,s, 1), and if H, = F, H, = G.

An immersion of X in R® with a normal vector field is a pair (g, u) where g : X — R* is
an immersion, and u: X - R” is a differentiable map such that for each xe X, u(x) is a
unit vector orthogonal to the image (under the differential of g) of the tangent plane to
X at x. Two such pairs (f, v) and (g, y) are regularly homotopic if there is a regular homo-
topy A, connecting f to g, and a homotopy 4, : M — R” connecting v to y, such that for
each ¢, (f,, 4,) is an immersion with normal vector field.

If a cycle « bounds, we write u ~ 0.

Homology and cohomology groups have integer coefficients unless other coefficients
are indicated.

If X is a manifold, the normal Stiefel-Whitney classes of X are denoted by W'. These
are i-dimensional cohomology classes with coefficients as follows: Z, if i is even, Z if i is
odd and X is orientable, twisted integers if / is odd and X is non-orientable.

§2. THE MAIN RESULTS

Let M be a compact k-connected differential manifold without boundary. Let M,
denote M minus a point.

THEOREM (2.1). Assume 0 < k < ¥(n — 4). If M, can be immersed in R*~*~! with a
normal vector field, then M can be embedded in R**~*~ 1.

It is easy to prove the converse if M is orientable, without any restriction on k, using
(2.3) below.

THEOREM (2.2). Assume 0 <k <¥(n—4). If M is orientable there is a 1-1 corre-
spondence between the isotopy classes of embeddings of M in R*"~* and the regular homotopy
classes of immersions of My in R*"™* with a normal vector field.

The proofs of Theorems (2.1) and (2.2) are postponed until §4.

Let T, ,., be the bundle associated to the frame bundle of M, with fibre the Stiefel
manifold V,, .+, of (n+ 1)-frames in R™, the linear group in n variables acting in the
natural way on the first n vectors of a frame. According to [2], the existence of an immersion
of M, in R™ with a normal vector field is equivalent to the existence of a section of 7,,, ..
Moreover, it is easy to prove, using [2], that the regular homotopy classes of immersions
of M, in R™ with a normal vector field are in 1-1 correspondence with the homotopy
classes of sections of T, ..

If M is k-connected, the only obstruction to constructing a section of Ty, ,+;
is the normal Stiefel-Whitney class W"™*~1 of M, (or M). If M is orientable, the homo-
topy classes of sections of T,,_; .. are in 1-1 correspondence with the elements of
H Y (M, nt, - 1(Vau—x.ns1)). Therefore we obtain the following corollaries of (2.1) and

.2).F

t J. P. Levine has proved a similar theorem in the orientable case (Not. Amer. Math. Soc. 9 (1962),
220).
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THEOREM (2.3). If 0 < k < ¥(n — 4), a compact unbounded k-connected n-manifold M
can be embedded in R**~*1 if and only if its normal Stiefel-Whitney class W"*~! vanishes.

THEOREM (2.4). If 0 < k < ¥(n — 4), the isotopy classes of embeddings of an orientable
compact unbounded k-connected manifold M in R*"~* gre in 1-1 correspondence with the
[ Hisy (M3 Z) ifn— kis odd,;

elements of \Hkn (M;Z,) if n — kis even.

§3. MATERIAL USED

In the proofs of (2.1) and (2.2) we shall use the following two embedding theorems.
Recall that M, = M minus a point.

THeOREM (3.1). Let M be a k-connected n-manifold

(@) If v=2n—k — 1, then M, can be immersed in R®, and any immersion is regulariy
homotopic to an embedding.
(b) If v=2n — k, any two embeddings f and g of M, in R® are regularly homotopic.
If G is a regular homotopy connecting f and g, there is a regular homotopy G, of G
such that G, = G, G| is an isotopy, and for each t, G, connects f to g.
Proof. Part (a) is implicit in [3], and (b) can be proved by using the methods of [3].
The idea of the proofis that M, is diffeomorphic to a small neighborhood of an (n — k£ — 1)-
complex in M. Smale’s theory of handles {8] can be used instead.

THEOREM (3.2). Let X be a v-manifold and E an open n-disk.

(a) Suppose 2v = 3(n+ 1) and X is 2n — v + 1)-connected. Let g:E — X be a proper
map whose restriction to the complement of some compact set is an embedding. Then
there is a homotopy, fixed outside of a compact set, whichdeformsg into anembedding.

(b) Suppose 2v>3(n+ 1) and X is (2n — v + 2)-connected. Let g, and g, E— X be
proper embeddings which are connected by a homotopy fixed outside of a compact
set. Then g, and g, are also connected by an isotopy g, fixed outside of a compact set.

Proof. The proof is similar to the proofs of (4. i) and (5.1) of [1). The only modification
needed is to change remark (4.13) of [1] by replacing 0V with the complement of a suitable
compact disk in E.

Let B be the total space of a disk bundle over a manifold N and let 4 = 8B, so that 4
is fibered by spheres. Identify & with the zero section of B. The following facts are well
known; cf. Thom [9], Whitney [10].

THEOREM (3.3).

(a) The first obstruction to constructing a section of A is the cohomology class of N
dual to the self-intersection of N in B.

(b) The corresponding interpretation for the obstruction d(o,, 6,) to deforming a section
oo of A into a section 6, of A is the cohomology class of N dual to the intersection
in B of N with a homotopy of sections in B connecting ¢, and ;.
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§4. PROOFS OF (2.1) and (2.2)

(4.1). Proof of (2.1), M orientable. Let f: My — R*"~*~! be an immersion with a normal
vector field v. By (3.1a), f is regularly homotopic to an embedding; we can suppose there-
fore that f is an embedding. Let D, < M be an embedded closed disk of radius 2 with
center x,, and let D, be the concentric disk of radius 1. Let E, and E, be the interiors of
D, and Dy. Put M; =M~ E, and M, =M — E,. We claim that f(0M,) is an (n — 1)-
sphere homotopic to zero in X = R**™*~! — f(M,). Let ¢ be a positive number small
enough to be the radius of a tubular neighborhood of f(M,). Let 1:M, —[0,¢] be a
differentiable function equal to € on M, and to 0 on M. Then f(éM,) bounds the image
of M, by the map x — f(x) + A(x)v(x), so that f(OM) ~ Oin X. (We have used the orient-
ability of M to have M, ~ 0 in M,.)

Since M is k-connected, Poincaré and Alexander duality shows that H(X) =0 for
0 <i<n-2,and a general position argument shows that X is simply connected. There-
fore the Hurewicz isomorphism between 7,_,(X) and #,_(X) shows that f(0M,) is homo-
topic to zero in X.

It is now possible to extend the map f|M, to a map g: M — R*™*~! such that
g(M,)ng(E,) = . Applying (3.2) to g|E,: E; » X leads to an embedding of E, in
X = R™ k=1 _ f(M,) which agrees with f outside of a compact neighbourhood of dM,
in E,. This embedding and f|M, thus fit together to form an embedding of M in Rkt

(4.2). Proof of (2.1), M non-orientable. Assume now that & =0 and that M is non-
orientable. Keeping the notation of (4.1), we cannot conclude that f(6M,) is a boundary
in X but only that /(8M,) bounds mod 2. Equivalently, f(0M,) represents an even homology
class in X.

We shall need an explicit cocycle u, representing the cohomology class [u,] € H* (M)
that corresponds to the homology class of f(9M) under Alexander duality. Such a cocycle
is found in the following way. Let C be an oriented singular disk in R**~! bounded by
f(8M,). For any (n — 1)-simplex ¢ in M, put u (o) =C # f(0) = intersection number of
C and f(6). As we observed above, [u,] is an even class; hence there are cochains ¢ and w
such that u, = 2v -+ dw.

We shall prove that there is an embedding g : M; - R*"~! such that U, =u; —2v. It
will follow that [u,] = 0, and the rest of the proof proceeds as in (4.1).

We need the fact that M, can be described as a ‘thickening’ of an (n — 1)-complex.
This can be proved by using the techniques of [3], or Smale’s theory of handles {8]. The
interior of the singular disk C will meet f(A1,) only in the handles. It will then be a simple
matter to change the embedding on one handle at a time, keeping track of the corresponding
change in u,. The point is that every time a handle pierces C, the boundary of f(M,)
intersects C twice.

For simplicity of notation, we assume that M = R*"~!, and that fis the inclusion map.

Let D" be the closed unit n-ball. What we need from the theory of handles is that there
exist a finite number of embeddings A, : D"~ ! x D' — M, with the following properties:
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(1) k(D" x 3D') < IM,;
@ € M, = f(Gnt DY) x D).

(The ‘handles’ are the sets h{D""' x D").) The cochain u, is now defined by the inter-
section numbers C #h (D" ! x 0).

Let us focus attention on a single handle h(D""! x D'). We might as well assume
that 4, is the composite of the inclusion maps D"™! x D' = D"™! x D" < R*"1, since we
can bring this about by an isotopy of R**~!. A new embeddingg : M, — R*""! is described
as follows. Let $*~! = 9D, and let P be the north pole of §"71, so that the handle D"~! % D!
meets D"~ x (3D") in (D" x Py (D" ' x (—=P)). Leta: (D*71, 8D ") 5 (S""!, P) be
a differentiable map, constant near D"~ !. Defineg : M, —» R*"~! by

_fxifxeD"!x D!
g(x) = VO te(y) e D"t x D"if x=(y,1)e D"~! x DY

If « has degree d, then g twists the handle d times around D"™! x 0. (See Fig. | for the
casen=2,d=1)

\
>

Fi1G. 1. Images of a handle under fand ¢

Now dM,; meets D"~! x D" in the union of the images of two antipodal sections, ¢,
and ¢_, of the bundle D"~! x dD"— D"~ !. Likewise, g(8M,) is the union of the images
of two antipodal sections ¥, and ¥ _, namely, ¥ (x) =(x, a(x)) and ¥ _(x) =(x, —a(x)).
The obstruction to deforming ¢, into y, (rel 9D~ ') is the homotopy class {«} e m,_,(S"71),
and so is the obstruction to deforming ¢ _ into ¥ _(rel 3D 1).

To compute u,, we form a singular disk C* bounded by g(éM,) by adjoining to C the
images Y., Y. of two homotopies in D"~! x D" that take ¢, and ¢_ into ¢, and ¥ _
respectively. From (3.3) we see that

CH D' x0)—C # (D' x0) =(Yy # (D' x0))+ (Y. % (D' x 0)) =24,
where d is the degree of «.

Since dis an arbitrary integer, we can choose g so that the homology class [1,] vanishes
(assuming that [u,]} is uneven). This completes the proof of 2.1,
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(4.3). Proof of (2.2). We keep the notation of (4.1), except as otherwise indicated. Let
f: M — R** be an embedding, and let ¢ be the radius of a tubular neighborhood of f(M).
If v is a normal vector field on f(M,), let f,: M — R*"~* be the map defined by
| f(x) + Av(x) if x e M,
MR = rif xeD, .

First of all we have to define the correspondence @ of Theorem (2.2). We claim that
iff : M~ R* ¥ is an embedding, there exists a normal vector field v on f(Mg) such that f,(M)
is homologous to zero in X = R*™* — f(M,), and any two such normal vector fields are
homotopic.

An argument like that in (4.1) shows that X is (n — 1)-connected, and #,(X) <~ H,(X)
x~ H" *"YM,). If v, v are any two vector fields normal to S(M,), the difference class
d(v, vy e H"*~'(M,) corresponds to the homology class [f,(M)] — [fu(M)) e H(X), urder
Alexander duality, according to (3.3). (The orientability of M is used here.) Since the
homotopy classes of normal vector fields on f{M,) are in 1-1 correspondence with
H" %" Y(M,) ~ H"™*"Y(M,) ~ H,(X), there is one and only one normal vector field v, up to
homotopy, such that /(M) is homologous to zero in X.

The correspondence associating to f the couple (f|M,, v) induces a correspondence @
which to the isotopy class of the embedding f : M — R*"~* assigns the regular homotopy
class of the immersion f{M, with the normal vector field v.

(@) @ is injective. Let f,g: M — R*"~* be two embeddings, and let v, u be the normal
vector fields to f° = f[M, and g° = g|M, associated as before to f and g. Suppose that
(f°, v) and (g°, w) are regularly homotopic. By (3.1) we can assume they are isotopic.

Let h,: My, —» R* ¥ be an isotopy such that 4, = f° and k, = g°, and let 4, be a normal
vector field on A,(M,) with A =vand 2, =pu

We may thus assume that fand g agree on M, and that v = g, because an isotopy of
ho(M,) can be extended to an isotopy of R*"™%; cf. [11], [12]. Since f,(M) and g, M) are
homologoustozeroin X = R*"™* — f(M,) = R*"~* — g(M,), weseethat (M) — g (M) ~ 0
and hence f(D,) — g(D,) ~ 0. Thus f|D, and g|D, are homotopic (rel 6D;) in X. By (3.2)
they are isotopic in X by an isotopy fixed on a neighborhood of dD,. Hence fand g are
isotopic.

(b) © is surjective. Let f°: My — R*" ™% be an immersion with a normal vector field v
As in (4.1), we can assumz (by 2.1) that £° is an embedding. Put X = R*"™* — fO(M.,).

Since n,(X) =~ H,(X), the map x— f2(x) + A(x)»(x) of M, in R**~* can be exiended
to a map f, : M — X such that f,(M)~ 0in X. Let g: D, - X be defined by
_[f°(x)if xe D, — D,
9 =\ (oyifxe D,.
As in (4.1), it follows from (3.2) that we can obtain an embedding / : M — R**~*such that
(M)~ 0in X.
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