
 Differentiable embeddings
 of S" in Sn+q for q>2

 By Andre Haefliger

 This paper can be considered as a complement to the fundamental paper of

 J. Levine [10]. Instead of studying the group Oq of isotopy classes of embedded

 homotopy n-spheres in Sn, we are interested here in the group Cn of isotopy

 classes of embeddings of the usual n-sphere Sn in Sn~q. Our main result is the

 isomorphism of Cq with the triad homotopy group wrn,,(G; SO, Gq) for q > 2,
 where Gq is the space of maps of degree one of Sq-, onto itself, and G its stable

 suspension. This isomorphism was suggested to us (cf. 4.12) by the results of

 Levine [10]. We use essentially an extension of the main idea of Levine, namely

 the existence of the homomorphism of Oq in 7rn(Gq, SOq) (cf. [10]). Nevertheless
 this paper is written so that it is independent of the papers of Kervaire-Milnor

 [9] and of Levine [10], except to indicate the relations with these works. On

 the other hand, we use one of the main result of Smale [14] to translate the
 problem of isotopy into a problem of concordance (Th. 1.2), and throughout the

 paper, the theory of handle decomposition.

 We first define in ? 1 the group Cq, and we indicate its relation with the

 group On. In ? 2 and ? 3, we define and prove the isomorphism Cn=1Tn,(G; SOGq)
 for q >2. By using one of the homotopy exact sequences of the triad (G; SOGq)

 and the paper of Smale [13], we theoretically solve in ? 4 a problem posed by

 Smale in [13]: what are the immersions of Sn in Sn+q which are regularly homo-

 topic to an embedding? In ? 5 we study the group of framed embeddings of

 Sn in Sn+q and we show its relation with the classification of handlebodies.

 Let Fq be the space of maps of degree one of Sq onto Sq with a common

 fixed point; by suspension, Gq is identified to a subspace of Fq We prove in

 ? 6 that the suspension homomorphism Cq Cq?7 finds its place in an exact
 sequence:

 Gil + Win~l(Fqg Gq) n >n > n(Fq, Gq) - Ai.
 In ? 7 and ? 8, we prove geometrically the other main result of this paper,

 namely the isomorphism rn(Fq, Gq) = 7rn-q+l(SO, SOq-1) for n ? 3q - 6. This
 establishes the link with our first paper on knots [3] and we use extensively

 here the technique of framed spherical modifications. It is to be expected that

 this last result can be recovered by pure algebraic topology. Our method gives,

 in the above range, an explicit construction (cf. 8.12-13) of those embedded

 spheres whose suspension is trivial.
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 Terminology

 0.1. Dn is the subspace of the Hilbert space H formed by the vectors

 x = (x1, * * * xi, ... ) such that xi = 0 for i > n andi x I _ 1. The n-sphere
 S- = aDn+l is the subspace of vectors of norm 1 in Dn. The interior of DI'

 {x I xe Dn, Ix I 1} is denoted by intDn.
 We define

 D {x I xG S1, xl, 0}

 and

 n ={xIxcSn,xl, 0}

 The natural basis of the Hilbert space H is denoted by e1, **. , ei,

 Everything has the riemmannian metric induced from Hilbert space metric.

 The suspension of a map f: Dn - Dm is the map Ef: Dn+l - Dm - mapping

 the arc of circle going from en+lg by x E Dn, to -en+ on the arc of circle going
 from em,+i, by f(x), to -em+1, and commuting with the projections on R given
 respectively by the n + 1 and m + 1 coordinate. Note that, if f is differentiable

 at x E DI, so is Ef at x E Dn+1. The suspension of a map f of Sn in Sm is defined

 in the same way. The iterated suspension is defined by induction.

 0.2. We shall not be afraid of meeting manifolds with corners like Dn x I,

 or Dn x Dq x I, and most of the time, we shall not round them. An n-manifold

 V with boundary will be locally diffeomorphic to an open subset of the sub-

 space R n of Rn defined by xi > 0, i = 1, ... , n. The points of V which are

 images, by local charts, of points of the boundary of R+i form the boundary
 aV of V. An open q-face of V is an union of connected components of the set

 of points which are images, by local charts, of those points of R n defined by

 x1 > 0, .. *, xq > 0, xi =0 for i > q. A q-face of V is the closure of an open

 q-face. In what follows, we shall only consider (n - 1)-faces which are also

 manifolds.

 A p-submanifold M of a manifold V will be locally diffeomorphic to the

 subspace of R n defined by x,+1 * n = 1, in the case where AMc aV. We
 shall also consider p-submanifolds M of V with a free face, namely a (p - 1)-

 face not contained in aV; in that case, M will be locally diffeomorphic to the

 subspace of R n defined by xp ? 1, x+ = x**= = 1.
 0.3. A framed p-submanifold M of an n-manifold V is a submanifold with

 a differentiable framing f = (f, . * * ,fn-,), i.e. n - p independent differentiable

 vector fields f1, ... , fn-, along M and complementary to M. At a point of AM,
 we shall assume that the framing is the image, by a suitable local chart, of

 the standard framing ep+?, ... , en of the subspace xi = 0 for i > p. If aMc aV,
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 each open (p - 1)-face of M is naturally a framed submanifold of aV. If M
 has a free face A in V, then A will be considered as a framed submanifold of

 V, with the framing (v, f1, **. , fn), where v is normal to A in V and point-
 ing outside. We shall denote by -A the submanifold A with the framing

 ( by9 fig .. 9 fn-P).

 The natural framing of Dn in Dnrq is (enw, ***, e+q) The suspension in
 V x Dn+q of a framed submanifold M of V x Dn is the submanifold M with

 its framing completed by en+1, .., en+q as last vectors.
 0.4. A continuous map g of a manifold V in a manifold X is regular on

 a point x C X (or x is a regular value of g) if g is differentiable on a neigh-
 borhood of g-'(x) and if, at each point of g-'(x), the differential of g (and of

 its restriction to each face of V) is surjective. If s1, **., en is a frame at x,

 then the submanifold g-1(x) will be framed by vector fields f1, * * *, f". such that

 the differential of g maps fi on ej. For instance, if 0 e Dn is a regular value of
 a map g: V-+ Dn, then g-1(0) is a framed submanifold of V (it is understood
 that we take the standard frame at 0).

 Relative Thom construction. Let M be a framed submanifold of V such

 that aMcz aV. Let g: aV > Sq be a map regular on x E Sq and such that g-'(x)
 is AM with the given framing. Then, by [15], there is a map G: V-> Sq, regular

 on x, such that G I aV = g and G-l(x) is the framed submanifold M (it is again
 understood that a frame giving the positive orientation of Sq is given).

 1. Definition of the group C.

 1.1. Two differentiable embeddings f, and fi of a differentiable manifold

 V in a differentiable manifold X are concordant, if there is an embedding

 F: V x I-> X x I such that F(x, i) (fi(x), i) for i = 0, 1; the map F is called
 a concordance connecting fg to ft. If, moreover, F is level preserving, i.e., of

 the form F(x, t) = (f(x), t) for each t E I, then fg and ft are isotopic, and ft is
 an isotopy connecting fg to ft.

 The concordance relation is an equivalence relation, and an equivalence
 class will be called a concordance class. The set of concordance classes of em-

 beddings of Sn in 5nt will be denoted by Cn.

 Two embeddings which are isotopic are of course concordant; it follows
 from a result of Smale [14] that a partial converse is true.

 1.2. THEOREM. For q > 2, two embeddings of Sn in Sn+q which are con-
 cordant are also isotopic.

 PROOF. Let F: Sn x In Snnq x I be a concordance connecting two em-

 beddings fg and ft. For q > 2 and n < 2, all embeddings are isotopic. For
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 q > 2 and n > 2, Smale proves in [14, Cor. 3.2], the existence of a diffeomor-
 phism H of Sn+q X I preserving orientation and such that

 H(fox, t) = F(x, t) for (x, t) E Sn x I.

 Let H1 be the diffeomorphism of Sn+q defined by (Hly, 1) = H(y, 1). We

 have H1f0 = f. Let h be the restriction of H1 to the complement D of the

 interior of a small (n + q)-disk which does not intersect fO(Sn). Then hfo = f,.

 As h is isotopic to the identity, fo and f, are isotopic.

 Group structure on Cq. The following is a consequence of the tubular

 neighborhood theorem.

 1.3. LEMMA. (a) Any embedding of Sn in Sn+q (q > 0) is isotopic to an

 embedding f such that

 (i ) f I D- is the identity map

 ( ii ) flint Do+) int D.+
 (b) If f0, f1: Sn Sn+q are two concordant embeddings satisfying (i) and

 (ii) of (a), there is a concordance F connecting fo to ft such that

 (i) FJ IDT x Iis the identity
 ( ii ) F(int D+ x I ) c- int D+ x I.

 1.4. Definition of the sum. Let R, be the rotation of the Hilbert space
 whose restriction to the plane generated by e1 and e2 is a rotation of angle

 wct and which leaves fixed its orthogonal complement. For any embedding

 f: Sn - Sn+q, the embeddings R-fJR and f are isotopic.
 Let a and ,8 be two elements of Cq. We can represent them by embeddings

 f and g resp. which satisfy condition (i) and (ii) of Lemma 1.4 (a). By defini-

 tion, the class a + ,8 will be represented by the embedding f + g defined by

 f(x) for x E D""
 R1gR1(x) for x E DI .

 According to Lemma 1.3 (b), this definition is independent of the particular

 choice of f and g.

 This sum operation is commutative, because f + g is isotopic to R1(f + g)Rl,

 which is equal to g + f.

 To prove associativity, let us represent three elements aj, i = 1, 2, 3, by
 embeddings fi whose restrictions to the subspace x1 < 0 or x2 < 0 of Si are the
 identity, and which map its complement in the part of Sn+q defined by x, > 0

 and x2 > 0. One has

 fl + R-112(f2 + R-12f3R12)R112

 = Rl12[R 112(fl + R-112f2R112)R112 + R-112f3R112]R-112
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 The first expression is a representative of a1 + (a2 + a3); and the second one,
 of (a, + a2) + a3.

 1.5. It is clear that the identity map of Si in Sn+q represents a unit ele-

 ment. The following lemma is easy to prove.

 LEMMA. An embedding f: Sit Sn+l q is concordant to the identity map

 if and only if there is an embedding F of Dn'+1 in Dn+q+l which is an ex-
 tension of f.

 1.6. Each element a of Cq has an inverse -a. Let f be an embedding

 representing a and satisfying conditions (i) and (ii) of Lemma 1.3 (a). Let ai
 be the symmetry of Hilbert space with respect to the hyperplane xi = 0. Then
 U2fo2 represents -a. Indeed the map f + U2fo2 can be extended to a differ-
 entiable embedding of Dn+1 in Dn+q+l by mapping linearly the segment [x, U1x]

 onto the segment [fx, orfx], x E D+.
 We have proved

 1.7. THEOREM. With the sum operation defined in 1.4, Cq is an abelian

 group.

 1.8. Relations with the group Oq. Let us recall that two embedded ori-

 ented homotopy n-spheres Kcn and K1n in Sn+q are h-cobordant if there is an

 oriented submanifold W of Sn+q X I such that

 ( i ) a W = Kln x 1-lKn X 0

 (ii) the inclusions Kin x i > W, i = 0, 1, are homotopy equivalences.

 These h-cobordism classes form a group Oq (cf. [3]) where the sum opera-

 tion can be defined as in 1.4. The group On of h-cobordism classes of homotopy

 n-spheres (cf. [9]) is isomorphic to Oq for q large enough. According to Smale

 [14], the elements of Oq correspond bijectively to the isotopy classes of em-

 bedded homotopy n-spheres in Sn+q, if q > 2 and n > 5.

 The groups Cq, Oq and Q, are related by the following exact sequence, valid
 at least for n > 5:

 (1.9) Cq > n Cq_

 The homomorphism Cn -a O maps the concordance class of f: Si , n+q on

 the cobordism class of f(Si). The homomorphism Oq -n, is obvious.
 The third one a: O-n C._, is defined by using the fact that, at least for

 n > 5, each element of tOn is represented by a manifold Kn obtained in glueing
 two n-disk along their boundaries by a diffeomorphism h (cf. Smale [14]). The

 image by a of the diffeomorphism class of K" is the concordance class of the

 embedding i o h, where i is the natural inclusion of S-' in Sn-l+q

 Proving exactness is easy, if one changes the definition of Oq and On as
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 DIFFERENTIABLE EMBEDDINGS 407

 follows. We consider embeddings f: DI Dn+q with f (DDn) = Sn-1; two such
 embeddings are concordant if there is an embedding F: Dn x I Dn+q x I

 with F(DDn x I) = S-1 x I which relate them. The concordance classes of
 such embeddings form a group isomorphic to Oq if n > 5. Also the group of

 concordance classes of diffeomorphisms of degree one of Sn-1 is isomorphic to

 on for n > 5 (cf. Smale [14]). With Otn and Oq replaced by these groups, the
 exact sequence (1.9) is valid for all n > 0 and q > 0.

 2. Construction of the homomorphism A: Cn -wn+1(G; SO, Gq).

 2.1. The group wrn+1(G; SO, Gq) (cf. [1]). We shall denote by Gq the space
 of maps of Sq-1 onto itself of degree one. Suspension defines a natural inclu-

 sion of Gq in Gq+1, and G will denote the inductive limit of the Gq under iter-

 ated suspensions. The image of Gq in Gq+N by N-fold suspension will still be
 denoted by Gq.

 SOq is the space of rotations of Dq (or Sq-l) and the inductive limit of the

 SOq by suspensions is denoted by SO. As above, SOq is identified to the sub-

 group of SOq+I leaving fixed the orthogonal complement of R .
 An element of wrn~1(G; SO, Gq) is represented by a continuous map f: Dn+1 x

 S-1 S-, for some N large enough, having the following properties: (for

 x E Dn+ f: S-1 S-1 is the map defined by fx(y) = f (x, y))
 (i) for xEDn f-X XSON
 (ii) for xe Drin fx Gq

 (iii) for x E D 9 fx e GN.
 Note that the suspension Ef: Dn+1 x SN SN of f defined by Efx = suspension
 of fx for each x E Dn+l, also satisfies (i), (ii), (iii).

 Two such maps f: Dn+1 x SN-1 N1 and f': Dn+1 X SN'-1 SN'_1 will

 represent the same element of wUn+1(G; SO, SOq) if there is a map F: Dn+1 x

 S`M X I-)S'-' for some M> N, N', such that the map f,: Dn+1 x S-1 SM-1
 defined by fj(x, y) = F(x, y, t) satisfies (i), (ii) and (iii) (with N replaced by M)
 and that f0, fi are suspensions of f and f ' respectively.

 To define the sum of two elements of wrn+1(G; SO, Gq), one can represent

 the first (resp. the second) by a map f (resp. g) such that fx (resp. gx) is the
 identity for x with x2 < 0 (resp. x2 > 0); then the sum will be represented by
 the map h defined by

 (fX for x with x20 >
 h = gX for x with x2 _ < 0

 From known elementary stability properties of GN and SON we could

 choose throughout a fixed N > n + 2.
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 2.2. Each element of Cq can be represented by a map f: Sn Sn+q such

 that f I DL is the identity and f (int D int D+ (cf. Lemma 1.3). We can
 even choose f such that f(Sn) is contained in the subspace of Sln+q defined by

 (x.+2)2 + * * * + (Xn+q+,)2 ? 1/2. Indeed, F does not meet the (q - 1)-sphere dual
 to Si defined by x1 = **= x 0+, = and by radial expansion we can push f

 outside of the tubular neighborhood defined by (x1)2 + * * * + (x,+,)2 < 1/2. The
 same remarks apply to concordance.

 From now on, we shall identify the subspace of Sn+q defined by

 (X.+2)2 + * * + (Xn+q+l)2 < 1/2

 to Si, x Dq by the diffeomorphism mapping x = (xi, . ., Xn+q+l) on

 (y/ Iy eV z) S x D ,

 where y = (x1, . . ., x,,1) and z (xn+2, * *, X,+q+l). Hence with this identifica-
 tion, we can always represent the elements of Cq by embeddings f: Sni, Si x Dq

 such that f I D! is the natural inclusion D- D! x 0 and that
 flint Do+) (- int (Do+ x D q)

 The similar statement is also true for concordance.

 The inclusion Di c DNi N > q, induces an inclusion

 Si, x D q (- D +1 X D q (- D 1+1 x D' .

 If N is large enough (in fact > n + 2 by Whitney [16]), f can be extended to

 an embedding f: Dn+1 Dn+1 x DN which is orthogonal to D(Dn+' x DN) along

 f(Sn).

 2.3. THEOREM. There is a natural homomorphism A: Cn1-n~?(G; SO, Gq)

 characterized by the following property. Let a be an element of Cq repre-

 sented by an embedding f: Sn-Sn x Dq as in 2.2, and let f: Dn+1Dn+1 x D-Y

 be an embedding which extends f (cf. 2.2). For N large enough, a map

 :Dn+l x SN-l SN-lrepresents (a) if9admitsan extension:Dn+l x DNI )DN
 such that:

 (i) i is regular on 0 E DN and -1(0) - f(Dn+l)
 (ii) A5XESON for xeD_
 (iii) Ax is the suspension of a map Dq Dq for x E D+.
 We first prove the

 2.4. LEMMA. Let g: Dr Dr x Dk be a differentiable embedding such

 that g(Sr-l) Sr-l x int Dk, together with a framing of the submanifold

 1Lr =g(Dr). Let GO: Sr-l x Dk Dk be a map such that

 (i) Gisrerr-1 x Sk-1) 0 Sk-1
 ( ii ) GO is regular on 0 E D I and GO 1(0) = aur as a framed submanifold.
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 Then there is an extension G: Dr x Dk Dk of Go satisfying conditions
 (i) and (ii) with Sr-l replaced by Dr and air by &rk

 PROOF. Let D= {X E Dk with I x ? < e}. Using the framing of g(Dr) and
 the uniqueness of tubular neighborhood, for s small enough, we can con-

 struct an embedding z: Dr x D Dr x D k with z-(x, 0) = g(x) and Goz-(x, y) = y

 for x E ADr. We can extend Go on T -(Dr x Dk) by defining G1 = G. on aDr x Dk
 and Glz-(x, y) = y; we have G-'(0) = Ar. The map G1, restricted to

 B = aDr x D' U (T -int T),

 can be extended as a map G, of A Dr x Dk int T in Dk _ 0; this is because

 the possible obstructions should lie in Hi(A; B) = H%(Dr x Dk; Ar) = 0 for all i.
 We can also make G2(Dr x &Dk) C aD . Define G to be equal to G1 on T and to

 G, on the complement.

 2.5. Proof of the theorem. We first prove that, given f, we can construct

 I. Let us construct a framing of f(Dn+') such that, along f(Dn+), the first q

 vectors are contained in Dm x Dq and the last ones are the restrictions of the

 natural framing of Dq in DI. Along f(Dnh) we assume that the framing is

 orthonormal and gives the natural orientation of DN. The restriction 0- of 0
 to DI x DN is uniquely defined by the condition (ii) and the condition that

 0-'(0) is the framed submanifold f(Dn). The restriction I+ of 0 to Dn x Dq
 will be the (N - q)-fold suspension of a map of D+ x Dq Dq constructed by

 using Lemma 2.4 with the given framing on f(D+) and Go - Dn x Dq.

 Finally, using the lemma again, we extend 0- U I+ to get a map q verifying
 (i)-(iii).

 Let fo,ft: Sn - Sn x Dq c Sn+q be two concordant embeddings; we want to

 prove that two maps qpo, 91: Dn 1 x SN-o SN-i with extensions 00, 01 verifying
 (i)-(iii), represent the same element of wn+1(G; SO, Gq). We first construct a con-

 cordance F: s ) x I - SI x D x I connecting fo to fl, such that F ID x I is
 standard and F(int D+ x I) c int (D+ x Dq) x I. Let

 F: Dn 1 X I - Duel x DN x I

 be an embedding which is an extension of F,. fo and ft. Let us also construct

 a framing of F(D1-+1 x I) such that F(Dn. x I) with this framing is an (N -q)-
 fold suspension and F(Dn+l x i) = ;'1(0) x i as framed submanifolds for =

 0, 1. Using 2.4 twice, a map I: Dn+1 x DN x I-k DN can be constructed satis-

 fying (i)-(iii) with Dn+1 replaced by Dn+1 x I, and extending 0 x i. The re-
 striction of 0 to Dn+ x SN-1 x I - SN-1 gives a homotopy connecting 9o to 91.

 The fact that g is a homomorphism is verified by taking representative

 for f and p which are standard on the parts of Sn or DI+' defined by x2 > 0 or
 X., < 0.
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 3. The homomorphism Cn > wn+l(G; SO, Gq)
 is an isomorphism for q > 2

 3.1. Cobordism interpretation of 7n+l(G; SO, Gq). An element of

 wn+l(G; SO, Gq) can be represented by a map p: Dn+' x SN-1 SN-1 as in 2.1
 which is regular on e1 = (1, 0, *.., 0) E SNe. Hence 9'(ep ) is a framed sub-
 manifold V of DI,+' x SN-1 such that

 (a) vn (DI x SN1) - arV- is the graph of a map s: D S-Sl and we
 can choose the framing at points (x, sx) to be contained in x x SN-1 and ortho-
 normal,

 (b ) V n (D+ x Se N1) = aV+ is the suspension of a framed submanifold

 in DI' x Sq-1.

 If 91, 92: Dnl' x S-1 SN-1 represent the same element of w?+1(G; SO, Gq)
 and are regular on e1, then V, = 91p1(e1) and V2 = 92p1(e1) are framed submani-
 folds satisfying (a) and (b). We can choose a homotopy A: DI+' x SN-1 X I

 S-1 connecting 9o to 9( and which is regular on e1. Hence -1(ej) = Z is a
 framed submanifold of DI+' x SN-1 X I with AZ = (Vo x 0) U (V1 x 1) U X,

 where X is the framed submanifold zn (Dn+l x S-1 x I) and satisfies

 (a') Xn (DI x N-M x I) is the graph of a map s:DI x ID SN1 with
 the same condition on the framing as in (a),

 (b') xn (Dn x SN-1 x I) is the suspension of a framed submanifold in
 DI x Sqv-l x I.

 Conversely, let V be a framed submanifold of DI+' x S-1 satisfying (a)

 and (b). There is a map Ap: DI+' x SN-1 S-1 representing an element of

 wn+i(G; SO, Gq), which is regular on e1, and such that -1(ej) is equal to V as
 a framed submanifold. Indeed, on DI x SN-1 9 is defined uniquely by con-

 dition 2.1 (i); on DI' x Sq', we construct 9 by relative Thom construction

 (cf. 0.4) and on D+ x S-1 by suspension; to get p on DI+' x SN-1i we again
 apply Thom construction.

 Let Z be a framed submanifold of DI+' x S-1 x I as above and let (i be
 maps of DI+' x SN-1 NS-1 as in 2.1 with

 9i'(el) x i = vi x i = zn (D+ x SN-1 x i).

 The same argument shows the existence of a map A: Dn+' x S-1 x I SN-N

 which is a homotopy connecting 9o to 9p, which is regular on el and such that

 1P1(ej) = Z.
 As a conclusion, we can represent elements of w?+,(G; SO, Gq) by framed

 submanifolds V satisfying (a) and (b); two such framed submanifolds VO, V1
 represent the same element if there is a. framed submanifold Z satisfying (a')
 and (b').

This content downloaded from 129.215.149.98 on Thu, 18 Aug 2016 09:32:34 UTC
All use subject to http://about.jstor.org/terms



 DIFFERENTIABLE EMBEDDINGS 411

 3.2. With this interpretation, Theorem 2.3 can be restated as follows. A

 framed submanifold V ci D n+' x S `a verifying (a) and (b) of 3.1 represents

 the element (oa) if there is a framed submanifold W c DI+' x DN such that

 (i) awn (Dni+ x SoN) = V,
 (ii) aWhas a free face in DI+' x DN, namely f(DI+'),

 (iii) a w n (DI x DN) is the radial extension of V n (DI x Sol) av-,
 i.e., the set of points (x, ts(y)) with 0 ?< t < 1 and (x, s(x)) e a V- (cf. 3.1, (a)),

 (iv) a w n (D+ x D N) is the (N - q)-fold suspension of a framed submani-

 fold in D+ x D

 Indeed, let A: Dn+' x SN-i S-1 be a map representing '*(a), regular
 on e1 and such that q-'(el) = V. We can construct I: Dn+' x Dy > DN like
 in 2.3 and such that A, restricted to the complement of f(Dn+l), and composed

 with the map y y/1 y of DN - 0 on SaN, is regular on e1. Then the inverse
 image by 0 of the radius te1, 0 < t < 1, is a framed submanifold W which
 satisfies (i)-(iv).

 Conversely, if there is a framed submanifold W which satisfies (i)-(iv),

 then using relative Thom construction, we can construct a map as in Theorem

 2.3.

 3.3. Two framed submanifolds V0 and V1, with the same boundary, in the

 manifold M are framed cobordant, if there is a framed submanifold W in M x I

 such that

 aW= (V0 x 0) U (V1 x 1) U (DVo x I)

 with their framings.

 LEMMA. Let VO be a compact framed submanifold of dimension n in a
 manifold M of dimension n + q. We assume that M is (n/2 - 1)-connected

 and that q > n/2. Then VO is framed cobordant to a framed submanifold
 which is the union of an n-disk and of handles of indices > n/2 - 1.

 PROOF. V, can be represented as union of handles of increasing indices
 (cf. Smale, Ann. of Math., 74 (1961), 391-406). Assume inductively that this
 handle decomposition of V, has r handles of indices ? n/2 - 1. Let V' be the

 union of the first handle DI and of the second one Dk x Dn-k, where k ? n/2- 1.

 We prove that V' is diff eomorphic to Sk x D n-k. First, V' is an (n -k)-

 disk bundle over Sk (cf. Smale, loc. cit.). The attaching embedding f: aD k X

 D n-k - DI of the handle is isotopic to an embedding g such that g i aD k X 0

 is the natural inclusion in aDDn, because 2(k - 1) + 1 < n - 1; moreover, the

 standard tubular neighborhood of Sk-l in S -' being identified with S k-l x D n-

 as in 2.2, we can assume (by the tubular neighborhood theorem) that g maps

 each x x D n-k isometrically on x x D n-k. Hence W is obtained by glueing

This content downloaded from 129.215.149.98 on Thu, 18 Aug 2016 09:32:34 UTC
All use subject to http://about.jstor.org/terms



 412 ANDRE HAEFLIGER

 two copies of the trivial (n - k)-disk bundle D k x D n-k with g which is fiber

 preserving. But this disk bundle is trivial. Indeed, it is isomorphic to the

 normal bundle v of the zero section; the tangent bundle of M, restricted to

 this zero section, is trivial, because M is k-connected, and it is the direct sum

 of v and of a trivial bundle (V' is framed). Hence v is trivial, because it is

 characterized by an element of the stable group 1k4(SOn-k) whose suspension
 is trivial.

 We now perform on V0 a framed spherical modification of index k + 1

 whose aim is to replace one handle of index k by one of index n - k - 1 (see

 [18]). Following [3] (see also 8.3), this modification will be defined by an em-
 bedding 0 of Dk+i x D nk in M, with a normal framing F2, * a, Fq such that:

 ( i ) 0(aDDk+1 x Dn-k) is the subspace V' - Sk x Dn-k of V0 and the image
 of 0 does not meet V, elsewhere,

 (ii) along (4D Dk+l x D n-k), q is tangent to the first vector ft of the fram-
 ing (ft, ..., f0) of Vand fi = F. for i > 2.

 The edge is suitably smoothed along 0(iDDk+l x aDDn-k) (cf. [3] and 8.3). It
 is possible to construct q I Dk+1 X 0 because M is k-connected and n + k + 1 <

 n + q, and to construct the framing F2, ***, Fq because 2k < n (cf. [8.2]).

 V1 = (VO - V') U O(D k+1 x aD n-k) is a framed submanifold, framed cobor-
 dant to V, (cf. [3]). As Dk+l x Sn-k-1 is diffeomorphic to the union of DI and
 a handle of index n - k - 1, V1 will admit a handle decomposition with r - 1

 handles of indices ? n/2 - 1.

 Hence, after r - 1 such modifications, V will be transformed in a framed

 submanifold satisfying the conclusion of the lemma.

 3.4. MAIN THEOREM. The homomorphism Af: Cq -r w,+?(G; SO, Gq) is an
 isomorphism for q > 2.

 3.5. Proof of surjectivity. Given an element of wr?+1(G; SO, Gq), we can

 represent it by a framed submanifold Vc DIn+' x SN` satisfying 3.1 (a), (b),

 and which is, by 3.3, the union of an (n + 1)-disk A and of handles of indices ?

 (n - 1)/2. Hence, by looking at the dual decomposition, V minus the interior
 A0 of A is diffeomorphic to a tubular neighborhood a V x I of a V with handles

 of indices ? n/2 + 1 attached. We can assume that these handles do not touch
 aV- x 1.

 We want to construct a framed submanifold W as in 3.2.

 Let It: V -A0 O [0, 1] be a differentiable function, with gradient non-
 zero on D(V - A0) and such that 1"'(O) = aV and w-'(1) = 8A; moreover for
 (x, t) e aV x I, we assume 4ce(x, t) = t. Let Z be the submanifold of I x V
 defined by
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 Z {(t, x) I x e V - A, and t ? p(x), or x E A and t e [0, 1]} .
 The boundary AZ is made up of three faces: 0 x V which will be identified

 to V, 1 x A and a face diffeomorphic to V - A0 by the map x - (ax, x).
 The theorem will be proved if we can construct an embedding p of Z in

 Dn+' x DN, with a framing, such that the framed submanifold W= p(Z)

 satisfy all conditions (i)-(iv) of 3.2. This will be done essentially by general

 position argument.

 We shall denote by VI (resp. VJ+) the union of aV x I (resp. aV+ x 1)

 with the first r handles. Vr (resp. Vr+) will be the image of Vr (resp. Vr+) by

 the map x - ([x, x); Zr is the set of points (t, x) E Z with x e Vr and t < p(x).
 Vr is obtained by attaching to Vr_1 a handle Dk X DIn'+-k with an embed-

 ding g': DD k X D n+a-k > & Vr-, and rounding corners along gl(aD k X aD n+1-k)
 (cf. 8.3). Also Zr is diffeomorphic to Zr-j with I x Dk x D n+1-k attached with
 an embedding gr: I x aDk x Dn?1k - aDZr defined by gr(t, z) =([(z)t, gr(z)),
 where z E AD k x D n+1-k. By this diffeomorphism, I x D k X D n+1-k will be iden-

 tified with a subspace of Zr.

 3.6. We shall construct, by induction on r, an embedding Pr: Zr -D n+ x

 DN, with a framing, such that Pr I Vr is the identity, pr(DV x I) is the radial
 extension of a V-, and Pr( V+) is the (N - q)-fold suspension of a framed sub-
 manifold in Dn x D q The framing on pr(Vr) will be the given one.

 The embedding po is easily constructed. Suppose Pr-1 satisfying the pre-
 ceding conditions has been already constructed. The extension pr of pr-1 will
 be done in three steps.

 ( 1) We want to construct an extension of Pr-1 on I x D k x 0. We first

 construct an embedding (p: 1 x D k-1 X 0 - DI' x D q which extends Pr-: near
 the boundary of 1 x Dk x 0, this is always possible and also on the remainder

 by the general position argument of Whitney because 2k < n + q (cf. [16]).

 On the other hand, we can assume that 9l(1 x int D k X 0) does not intersect
 the image of Pr-1; we argue by induction on the number of handles of Vr__: if
 D x D n+1-s is a handle of Vr_1, we can arrange, by general position argument

 because k + 1 < n + q, that 9l(1 x int Dk X 0) does not meet prA(l x D3 x 0)
 and also 9r~(l x DIS X D+'-s) by radial expansion.

 As N is big enough (>n + 2), we can construct an embedding

 9: I x D k x 0 > Dn+' x DN

 which is an extension of Pr-, and such that p i (I x Dk X 0) , i ( X Dk X 0)
 identity and 9(I x int D k X 0) n Prl(Zr-1) = 0.

 ( 2 ) Construction of the framing along cp(I x D k X 0). We can always

 construct a field of N-frames f = (f', .- , f,) along (p(I x Dk x 0), transversal
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 to this submanifold, and which coincide with the framing already given on

 g[(I x aDk X 0) U (O x Dk x 0)]. But on 9(1 x Dk x 0), we want the last
 N - q vector fields to form the restriction of the standard framing eq+,, .. *, e,
 of Dn+' x Dq in D-1' x DN. This will be possible if there is a homotopy in

 the normal bundle of 9(1 x D k x 0) in DI' x DN, fixed on 9(1 x aDk x 0),

 carrying the framing fq+i, ... , f, on eq+,, *.. , eN. As the rank of this bundle
 is N + n - k, the possible obstruction would be an element of 7rk( V+n-k,Nq),
 where VP'-,, is the Stiefel manifold of p-frames in RP+3. This group is trivial
 if k < n - k + q. We can extend this homotopy to the framing f1, ... * ,N;

 hence we can assume that fi = ej for q < i < N on p(l x D k x 0).
 ( 3 ) Using existence and uniqueness of tubular neighborhood, we can con-

 struct an embedding pr of Z, in D,+' x DN which is an extension of p,-l, (P and
 the identity map on 0 x Dk x Dn+1-k, and such that p,(I x Dk x Dn+l-k) is
 transversal to the framing f1, * , fl along qi(I x D k X 0) and that

 PJ(i x D k x Dn+l-k)cDn x Dq

 There is no obstruction to extending the framing on p,(I x D k x D n+l-k).
 Finally p can be constructed on I x A, because N > n + 2. The concor-

 dance classof the embedding x-*(1,x) of DA S in Sn x DqCSn q is mapped

 by r on the element of w?+1(G; SO, Gq) represented by V.

 3.7. Proof of injectivity. Let f: SI > Si, x D q be an embedding as in

 2.2, and let W be a framed submanifold of Dn+l x DI as in 3.2 with

 V = Wq (Dn+l x SN-i).

 We assume that V represents the trivial element of wr,1(G; SO, Gq). Hence we
 can choose W such that V is Dn+' x el c D,+' x SN-1. After rounding the

 corners along Sn x SN-1, we can replace Dn+l x DI by Dn+?N+l, and W will
 now be a framed (n + 2)-submanifold of Dn+N~l such that Wn Sn+N = V' is
 the (N - q)-fold suspension of a framed submanifold contained in S n+q and

 whose boundary is f (SI,); moreover W has a free face contained in D"+Y+
 equal to f(Dn+1).

 After framed spherical modifications (cf. 3.3), we can assume that W is

 diffeomorphic to V' x I with handles of index < n/2 + 3/2 attached. By the

 same method as in 3.6, we can construct an embedding p of W in Dn+q+l

 which is the identity on V'. Then pf will be an embedding of DI+' in Dn+q+l
 which is an extension of f.

 3.8. Remark. It follows from a recent work of Kervaire (cf. [8]) that

 the homomorphism A: C', -n+w(G; SO, G2) = 1+l(G; SO) is also an isomorphism
 for n even.
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 4. Immersions and embeddings of spheres in spheres

 4.1. Let Imq be the group of concordance classes of immersions of SI in

 Sn+q > 0; concordance and group structure are defined as for Cq, except

 that embedding is replaced by immersion. It follows from Smale-Hirsch clas-

 sification theorem [5] that concordance classes and regular homotopy classes

 of immersions of SA in Sn+q are the same for all n and q > 0.

 4.2. We now describe a homomorphism 5? of Imq in wU(SO, SOq). Let

 f: S, - Sn+q be an immersion; we can extend it as an immersion f: D4+1
 Dn+Y+' for N big (in fact N > n + 2). We choose a trivialization of the nor-

 mal bundle of f; with respect to it, the map associating to x e Sn the (N -q)-
 frame e,+q+2, . . . , eN+q+l defines a map of Sn in the Stiefel manifold VNN-q; its
 homotopy class e rn(VN,N-q) =r(SO, SOq) depends only on the concordance
 class of f and defines a homomorphism 75 of Imq in w"(SO, SOq).

 4.3. THEOREM (Smale). The homomorphism 0: Imq - wn(SO, SOq) is an

 isomorphism.

 This theorem follows easily from the classification theorem for immersions

 (cf. [5], [13]) and from the fact that wn( V,+q+j,,,+) is isomorphic to wr,(SO, SOq)
 for q > 0. The details will be left to the reader.

 4.4. We shall be interested in the natural homomorphism of Cq in Imq (an

 embedding is also an immersion). It is easy to check that the following diagram

 commutes up to sign:

 Zn+l(G; SO, Gq) Zn(SO, SOq)

 (4.5) 4 4

 Cq ,IMq

 where a is the boundary homomorphism in the following exact sequence as-

 sociated to the triad (G; SO, Gq) (cf. [1]):

 (4.6) - wnil(G, Gq) - wn+l(G; SO, Gq) > n(SO, SOq) >wn(G, Gq)

 Note that Gq n so = SOq

 As a consequence of 3.4, 4.3, 4.5 and 4.6, we obtain:

 4.7. THEOREM. For q > 2, an immersion f: SA > Sn+q corresponding to

 a E wn(SO, SOq) by the isomorphism 0, is regularly homotopic to an embedding
 if and only if the image of a in wn(G, Gq) is zero. The isotopy classes of em-
 beddings of Sn in S,,+q which are trivial as immersions correspond bijec-

 tively to the cokernel of the homomorphism wr?1(SO, SOq) w+n1(G, Gq).
 4.8. Remark. One can define the notion of combinatorial or piecewise
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 linear immersion of Sn in Sn+q and define as in ? 1 the group Plimq of concor-

 dance classes of such immersions. In a forthcoming paper, we shall prove that

 this group is isomorphic, for q > 2, to the group w"(G, Gq), and that the exact

 sequence 4.6 is isomorphic to the geometric exact sequence:

 (4.9) > n 3 In > P in Cn_1>

 where the homomorphism Imq-* Plimq associates to the class of the diff eren-

 tiable immersion f, the class of a piecewise linear immersion which is piecewise

 differentiably isotopic to f; the homomorphism a measures the obstruction to
 smoothing a piecewise linear immersion.

 4.10. Relations with Kervaire-Milnor and Levine exact sequences. To

 the triad (G; S0, Gq) is also associated the exact sequences

 (4.11) wn+1(G, SO) 3 wrn+1(G; S0, Gq) ) Wn(Gq, SOq) > wn(G, SO) '

 which is related to the exact sequences of Kervaire-Milnor and Levine [10] as

 follows.

 The Levine exact sequence (cf. [10])

 >Pn+1 O ) 7rn(Gq 9SOq) P (n > 5)
 is mapped by stable suspension in the Kervaire-Milnor exact sequence

 > Pn+- > on > wn(G, SO) > P-
 where P. = 0 for n odd, Z2 for n = 2 (mod 4), Z for n = 0 (mod 4).

 These sequences together with 1.9 and 4.11 (where we have replaced

 +r?1(G; S0, Gq) by Cq) form a diagram commutative up to sign, valid for

 n > 4 and q > 2:

 Cn n(GqgSOq) * PS

 (4.12) Oq 7r,(G9 SO)

 Pn+l > n > Q-1

 Checking commutativity will be left to the reader.

 5. Framed embeddings of Sn in Sn+q

 5.1. A framed embedding of So in Sn+q is a differentiable embedding

 f: Sn x D q Sn+q preserving orientation. By Smale [14], concordance classes

 of such embeddings coincide with isotopy classes for q > 2. We can always

 change f by an isotopy so that f I DI x D q is the standard embedding in Dn'+q
 (cf. 2.2.) and f(Dn x Dq) c Dn+q. Hence we can define a sum operation as in

 ?1 and prove that the concordance classes of framed embeddings of So in

 S n+q form an abelian group denoted by FCn.
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 We could also have defined a framed embedding of S' in Sn?+q as an em-

 bedding f0: So -k Sn+q with a framing of f0(S ) giving the right orientation.

 5.2. On the other hand, let us consider simply connected oriented com-
 pact differentiable manifolds V of dimension n + q + 1, with boundary, such

 that Hi(V) = Zfor i = 0, n + 1 and = 0 otherwise. According to Smale [14],
 these manifolds, for n + q + 1 > 6, are handlebodies obtained in glueing to
 Dn+q+l a handle D,+' x D with an embedding f: D n+' x D D

 We consider couples (V, a), where V is such a handlebody and v is a gener-

 ator of H,+,(V); we identify (V, y) and (V', y') if there is a diffeomorphism of
 V on V', preserving orientation, and carrying v on y'. In this way we get the
 set jCin+q+l of diffeomorphism classes of oriented handlebodies of dimension
 n + q + 1, with one handle of index n + 1 and a preferred basis.

 Each framed embedding f: Sn x D q S,+q defines such a handlebody;
 two framed embeddings, whose class in FCq are the same, define the same
 element of Cn+iq+1, for q > 2; this is because concordance = isotopy and we
 can apply the theorem of extension of isotopy.

 5.3. THEOREM. The map FC,-K7C-j%+l+ defined above is bijective for q >2.
 PROOF. Surjectivity is obvious. Injectivity is proved as follows. Let Vi=

 Dn+q+lUfi (Din' x D1), i 0,1 be two handlebodies, where f, f, are framed em-
 beddings of Sn in Sniq. Let h be an orientation preserving diffeomorphism which

 carries the generator of H+?( VT) = Hn+1( V0, Dn+q+l) represented by DJn+l x 0 on

 the generator of H,+?( VT) = Hn+1( V1 Dn+q+l) represented by D1n+l x 0. We have
 to prove that f0 and ft are concordant.

 Let l Dn+q+l be the disk formed by the points x e DA+q+l with i x ? < 1/2.

 We can assume that h I -D "+q+ is the identity. Let A be the (n + 1)-disk in
 V10, union of Dnel x 0 with the annulus formed by the points x e Dn+q+l such

 that x/j x I e f0(aDD0+' x 0) and 1/2 < ? x ? < 1. The intersection number of h(A)
 with 0 x D1q is one. Applying the process of Whitney to eliminate the double
 points [17], after an isotopy, we can assume that the restriction of h to D '+1 x
 Doq is the natural diffeomorphism on DI,+' x 1D q, and that h(x) E D n+q+l if 1 stedfeoopim D~ x 1D

 1/2 ? I x ? l I and x/j x I e fo(DDn+1 x D q).
 Let g: D 1 -int D x I be defined by g(tx) (x,2t-1),

 xe E +q+l t E [1/2, 1]. Then the map gh (t +) f0(x, y)] of S nf x - DqinS+ X I

 is a concordance connecting the restrictions of f0 and ft to Sn x l D qa It is
 then immediate that f0 and ft are also concordant.

 5.4. Remark. The same argument and theorem is valid in the combi-
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 natorial case. One has to replace everywhere differentiable by piecewise linear.

 The group of concordance classes of framed piecewise linear embeddings of SI

 in 5nq is isomorphic, for q > 2 and n > 4, to the group FOn of framed isotopy
 classes of homotopy n-spheres in Sn+q (cf. Levine [10]). This follows easily from

 Cairns-Hirsch theorem. One has the following exact sequence, analogous to 1.9:

 (5.5) ... > FCq > Foq - On > FCq_1 -** *
 5.6. Remark. The same method can be applied to classify handlebodies

 with more than one handle. One has to classify framed links of spheres; this

 will be done in a forthcoming paper.

 Computation of FCq. With a few minor modifications of ? 2 and ? 3, one

 proves the following theorem.

 5.7. THEOREM. There is a natural homomorphism ' of FCq into the

 group jr+,(G; SO, Gq) of homotopy classes of maps g: DI',+' >G such that
 g(DI) ci SO, g(D1t) cE Gq and g (aDOL ADD+) - identity. For q > 2, this homo-

 morphism is an isomorphism.

 + is defined as in ? 2. Let f: So x Dq S+q be a framed embedding;

 after an isotopy, and identification of the canonical tubular neighborhood of

 SI c S,+q with Sn x Dq (cf. 2.2), we can consider f as an embedding of Sn x DI

 in SI x Dq and assume that f I D-o x D q - identity. Let fo: Sn ) Sn+q be de-
 fined by fo(x) = f (x, 0). In Theorem 2.3, one has to replace f by fo and 0 must

 also verify the condition of (x, y) = y for x e D4n.
 5.8. Let (A; B, C) be a triad, where A is a topological space containing B

 and C and let x e B n C be a base point. We denote by rn+?(A; B, C) the group
 of homotopy classes of maps g: Dn+l -> A such that

 g(Dn-) c~ B g(Dn+) c~ C, g(aD!) = x .

 We have three exact sequences which are easy to establish (cf. [1]):

 - w,(B n C) - Trn+i(A; B, C) - Zn+1(A; B, C) - wr,1(B n c) - ;
 - wJ(A, B) -* n+1(A; B, C) ' w1(C )- w&(A, B) '

 The third one is obtained by exchanging B and C.

 Hence if we identify FC q to Tr,1(G; SO, Gq) by A, we get:

 5.9. COROLLARY. For q > 2, we have three exact sequences

 (5.10) > Wn(SOq) > FC > Cq ' 7ni1(SOq) -+***;

 (5.11) ' 7n+1(G, SO) > FCq > 7n(Gq) > wr(G, SO) ,>. ;

 (5.12) 7n 1(G, Gq) FCn > wr(SO) > wr(G, Gq) ....

 The geometric meaning of 5.10 is clear. The homomorphism C.+Wni(SOq)
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 associates to the class of f: sn ) Sn+q the obstruction to trivializing the normal

 bundle of f(Sn). The homomorphism rn(SOq) FCq associates to the homotopy
 class of r: so SOq the framed embedding obtained by composition of the dif-
 feomorphism (x, y) > (x, r(x)y) of Sn x D' with the natural inclusion in S .

 The homomorphism FCq -rn(Gq) in 5.11 (i.e., the composition of ' with
 the homomorphism w7r+l(G, SO, Gq) 7rn(Gq)) is described as follows. An element
 a C FCq can be represented by an embedding f: Sn x D q So x Dq which
 commutes homotopically with the projection on So (cf. 2.2). The natural pro-
 jectionf(x, y)->y off(Sn x S-l) >Sq-l can be extended as a map g: S x Dq
 -f(Sn x 0) -iSq-1. The restriction of g to Sn x S -l represents the image
 of a in rn(Gq). This homomorphism can also be described as follows (cf. Levine

 [10]). Let f: S x D q )Sn+q be a framed embedding and e e Sn. The map
 g: S-1 > S n-q f(Sn x 0) defined by g(y) = f(e, y) is a homotopy equivalence;
 let h be a hornotopic inverse of g. Then hf I So x Sq-1 Sq-1 represents the
 image, up to sign, of the class of f.

 Finally we can get the homomorphism FCq -k w(SO) up to sign as follows.
 Letf: Dn+' x DD +q+l be defined byf(tx, y)= tf(x, y), where x e S, y e Dq and
 t e [0, 1]. We define a map (p of So in the general linear group GL?+q+1 by taking

 the image by the differential of f along Sn x 0, of the constant field el, ... , en+q+l.
 The map cp defines an element of Wrn(GLn+q+l) = Wn(SOn+q+l) = wn(SO).

 Remark. The exact sequences 5.10, 5.11, 4.11 and the homotopy exact
 sequence of the pair (Gq, SOq) form a diagram, commutative up to signs,
 which is analogous to diagram 5 of 2.2 of Levine [10].

 7rn(SOq) 7 W.(Gq) > wn(G, SO)

 (5.13) FCq 7n(Gq, SOq)
 A/ \s /7I

 Un+l(G, SO) * Cn Wnil(SOq)
 We also have the diagram made up of the sequences 5.10, 5.12, 4.6 and of

 the homotopy exact sequence of the pair (SO, SOq):

 7Un(SOq) > 'n (SO) wr.(G9 Gq)

 (5.14) FCq, 7w(SO, SOq)

 Un+l(G, Gq) W Cn n-l(SOq).
 With 5.11, 5.12 and the homotopy exact sequences of the pairs (G, Gq) and

 (G, SO), we have

 Un+l(G, Gq) 7r.n(Gq) wr.(G, SO)

 (5.15) FCG SG(G)

 7rn+l(Gg SO) 7 rT& (SO) 7 rn-l(G9 Gq)
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 5.16. Computation of C1 and FC3. We want to give an explicit construc-

 tion of generators of these groups.

 We have the following diagram:

 w3(G3, F2) =r3(S2) Z

 0 , r4(G, G3) a >4(G; SO, G3) - 3(SO) > 3(G, G3) > 0.
 11 11 11 11

 Z Z +Z Z Z2

 The horizontal sequence is exact (cf. 5.12); the composition -ya is a multiplica-

 tion by 6.

 We identify FC3 with k4(G; SO, G3) by the isomorphism ' of Theorem 5.7.

 The first generator a of FC3 will be represented by the embedded 3-spheres

 in S6 described in [3, 4.1], with the framing obtained by taking the standard
 one on each of the three components S1, S2, S3. This element a generates the

 image of a. It is clear that a is in the kernel of 1S. On the other hand, a(a) is

 obtained up to sign, by computing the element of r3(S2) represented in S6 - S

 by S pushed along the first vector of the framing; we can check that we obtain

 6 times a generator of w3(S2). Hence a is the image by a of a generator of

 w4(G, G3).

 The other generator b of FC3 is represented by the standard S3 in S6 with

 the framing obtained from the natural one by a twist representing the gener-

 ator of r3(SO3) Z. The element a is the image of this generator by the homo-

 morphism _ 7w3(SO3) FC3 defined in 5.10. As Sz is the stable suspension

 which is a multiplication by 2, the element e(b) generates the image of ,8.

 Diagram 5.14 shows that C3 is isomorphic to Z and a generator is repre-

 sented by an embedding f whose image is S.

 The exact sequence 4.11

 C3 > 7r3(G3, SO3) , ws(G, SO)
 11 11 11

 Z Z2 ?

 shows that the generator of C3 has a non-trivial image in r3(G3, SO3). This

 implies, by Levine [10], that S does not bound in S6 a framed submanifold.
 Hence S is not isotopic to the suspension (cf. 6) of a knotted sphere in S5, be-

 cause in codimension 2, any knotted sphere is the boundary of a framed sub-
 manifold.

 On the other hand, any even multiples of S is the boundary of a framed

 submanifold V in S6; using the argument of Wall (Bull. Amer. Math. Soc., 71

 (1965), 566), we can assume, after framed spherical modifications, that V is

 union of handles of index < 2. Hence it is possible to compress V by an isotopy
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 in S5, so that its boundary is isotopic to S'. We have proved:

 5.17. THEOREM. FC3 - Z + Z and C' = Z with generator the one de-
 scribed in [3]. The elements of C3 which are the suspension of elements of

 3are exactly the even multiples of the generator.

 6. The suspension sequence

 6.1. The suspension homomorphism Can Cq+1 is defined by associating

 to the class of f: Sn Sn+q the class of i of: Sn Sn+q+l, where i is the natu-

 ral inclusion of Sn in S,+q+l. Via the isomorphism 1 of ? 2 and ? 3, for q > 2,

 we have to study the homomorphism w71+,(G; SO, Gq) 7r w,+?(G; SO, Gq+j) induced
 by the inclusion of Gq in Gq+1.

 6.2. LEMMA. One has the following exact sequence:

 wn+l(Gq+l; SOq+?1 Gq) > wn+i(G; SO, Gq)

 - > .+1(G; SO, Gq+j) > wn(Gq+l; SOq+jj Gq)

 PROOF. This sequence, together with the exact sequences of the triads

 (Gq+l; SOq+1, Gq), (G; SO, Gq) and (G; SO, Gq+i) form the following diagram,
 commutative up to sign:

 rn+i(Gq+l; SOq+1, Gq) 7rWn(Gq, SOq) 7wn(G, SO)

 un+l(G; SO, Gq) Wn+i(Gq+j9 SOq+1)

 7Uwn+1(G, SO) - 7wn+?(G; SO, Gq+j) 7Wn.+(Gq+l, SOq+19 Gq)
 The exactness of 6.2 follows from the exactness of the three other se-

 quences and the fact that the composion of two consecutive homomorphisms

 is zero.

 6.3. LEMMA. Let Fq be the space of maps of degree one of S onto itself

 with a fixed point e. One has the following isomorphisms:

 Wn(Fq, SOq)= Wn(Gq+1, SOq+l)

 Wn(Fq, Gq) = wn(Fq; SOq Fq-l) = wn(Gq+l; SOq+jj Gq)

 PROOF. In the exact sequence associated to the triad (Gq, SOq, Fqj):

 > wni+(Gq; SOq Fq-l) ) 7n(SOq, SOqj) ) Wn(Gq, Fq-1) ) ... Y

 the second homomorphism is an isomorphism. Hence Wn1+(Gq, SOq, Fq-i) 0.
 The other homotopy exact sequence of this triad gives the isomorphism

 Wn(Fqi, SOq-l) = W7n(Gq, SOq)

 The exact sequence

 ) wn+l(Gq; SOq Fq-l) > wn+l(Fq; SOq, Fq-1) * Wni+(Fq, Gq) A
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 gives the second isomorphism of 6.3.

 Exactness of this last sequence is proved by forming a diagram similar to

 the preceding one (6.2) made up of this sequence, of the exact sequences of the

 triads (Gq; SOq, Fqi-), (Fq; SO,, Fq-), and of the exact sequence of the triple
 Fq, Gq, SOq.

 The inclusion of the triad (Fq; SOq, Fq 1) in (Gq+1; SOq+i, Gq) induces a homo-
 morphism of the exact sequences:

 wn+?(Fq; SOq, Fqj) > Wn(Fqj, SOqj) > Wn(Fq, SOq)

 wn+i(Gq+l; SOq+1, Gq) > W7n(Gq, SOq) > Wn(Gq+j, SOq+l)
 The last two vertical homomorphisms are isomorphisms. Hence by the five

 lemma, so is the first one.

 By Lemmas 6.2, 6.3 and Theorem 3.4, we get:

 6.4. THEOREM. One has the following suspension exact sequence (q > 2)

 Wn+l(Fq, Gq) Cq C+1 * wn(Fq, Gq) >

 Remark. The same sequence is valid if we replace C by 0, namely

 (6.5) 7rn+l(Fq, Gq) fn > n~l >Z(q q- >**

 Here the first homomorphism is the composition W71+,(Fq, Gq)-- Cq-> Oq. The
 last one is the composition

 n I > n(Gq, SOq) > wn(Gq+l; SOq+l, Gq) = Wn(Fqg Gq)

 To prove the exactness of 6.5, we consider the following diagram, com-

 mutative up to sign, made up of 6.5, 6.4 and 1.9 for q and q + 1:

 Wn+1(Fq9 Gq) I -* On

 \ /7 \ /7 Cqn 0 qn+1

 /7 \s ,7\
 ____l > C~q+1 > wn(Fq Gq)

 The exactness of 6.5 follows from the exactness of the three other se-

 quences and because the composition O ~ - -k w:(Fq Gq) is zero; indeed it
 is equal, up to sign, to the composition

 *n W 7n(Gqg SOq) > Wn(Gq+1j SOq+j) > 7n(Gq+jj SOq+jj Gq) - W7n(Fql Gq)

 The argument used at the end of 5.16 is valid in general and shows that

 an element of C', is the suspension of an element of C', if and only if its

 image in wrn(G3, SO3) is zero. Note that wrn(G3, SO3) = wj(F2, G2) = wr,2(S2) for
 n > 2.

 6.6. COROLLARY (cf. [2]). Cq = 0 for n < 2q - 3.
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 This follows from the fact that W7ni+(Fq, Gq) = 0 for n < 2q - 3 (cf. James
 [6]; for a geometrical proof, see 7.7) and that Cq, 0 for q large.

 6.7. COROLLARY (compare Levine [10; 6.7]). Cq is finite except that Cqkl1
 has a Z-component for q ? 2k + 1. The suspension tensored by the rationals

 Q: 4k-i? Q-C4kl1 0 Q is an isomorphism for q < 2k + 1.
 We may check, from the exact sequence

 7r.(Fq 9 Gq) > 7rn_1(Gq9 Fq_j) ) > rn-l(Fqj.Fq_j) y

 and from the known properties of finiteness of 17r(S-l), that rn(Fq, Gq) is finite,

 except that W2(q_1)(Fq, Gq) has one free component of rank one for q odd.
 6.8. Remark. It is easy to check, from the exact sequence 4.6, that the

 immersion class of any element of infinite order in C4k1 is non-trivial for
 q <2k + 1.

 6.9. THEOREM. The elements of Cq which are in the kernel of the sus-

 pension, are trivial as immersions (q > 2).

 PROOF. Consider the commutative diagram

 wni+(Gq+l; SOq+?1 Gq) - wn+l(G; SO, Gq) = C

 Wn(SOq+l, SOq) 7 > n(SO, SOq) Imn.

 By Lemma 6.2 and 6.1, it is sufficient to prove that ja = 0. In fact a is

 already zero. Indeed, in the homotopy exact sequence

 ) Wn+l(Gq+l, SOq+19 Gq) ) 7n(SOq+l, SOq) - Wn(Gq+l, Gq) , ...

 the second homomorphism is injective, because its composition with the homo-

 morphism W7n(Gq+i, Gq) Wrn(Gq+l, Fq) is an isomorphism.

 6.10. COROLLARY (Kervaire [7]). For n < 2q - 1, any element of Cq is
 trivial as immersion.

 Indeed in that range, the suspension of any element of Cq is trivial (cf.

 6.6).

 6.11. Remark. For framed embeddings, we have the exact sequence:

 rnz+i(Gq+l, Gq) > FC -> FC n+1 Wn(Gq+j, Gq)

 From Lemma 6.3, we see that Wr,+l(Gq+l, Gq) = rn+?(Fq, Gq) + n+(S q)

 7. A cobordism interpretation of WU.(Fq, Gq)

 7.1. Definition of the groups Pn, Pn and Qq. We consider framed n-sub-

 manifolds V of D n+q such that a V c aD n+q is a homotopy sphere. Two such
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 framed submanifolds V0 and V1 are cobordant if there is a framed submani-

 fold W in Dn+q x I such that:

 aW= (VO x 0) U (V1 X 1) U X,

 where X is a framed submanifold of Sn+q+l X I and Vi x i, i = 0, 1, is a de-
 formation retract of X. The cobordism classes of such submanifolds form an

 abelian group with respect to the following sum operation.

 We can choose a representative V0 such that its intersection with the
 half-ball defined by {x I x e D n+, with x1 < O} is the half n-ball defined by

 {x I x e D n, x1 < 01 with the standard framing; we denote by VO+ the intersec-
 tion of VO with the half-ball {x I x e Dn+, x1 > O}. We assume that V1 satisfies

 the same conditions. Then we define the sum of the cobordism classes of V,
 and V1 to be the cobordism class of the framed submanifold V which is the

 union of VO+ with R1 V+, where R1 is the rotation defined in 1.4. The fact that
 this sum operation is well defined for cobordism classes, is commutative and

 associative, is proved as in ? 1.

 The zero element is the class of the standard Dn in D n+q A framed sub-

 manifold V c D n+q is cobordant to zero if there is, in the half-ball defined by

 {x I x e Dn+q+l X,+q+l > 0} a framed submanifold W such that its boundary is
 the union of V with a homotopy n-disk in the northern hemisphere of S n+q

 The inverse of the class of V c D n+q is the cobordism class of a V, where

 a is the symmetry of D n+q with respect to the hyperplane x1 = 0.

 This group will be denoted by Pv. By natural inclusion of Dn+q in D ',q+l

 we have the suspension homomorphism Pnq P-,+k . The limit of Pnq by iterated

 suspension is, by definition, the group Pn. The elements of P,, can also be in-
 terpreted as cobordism classes of framed submanifold V of Rn+N, N > n + 2,

 without the condition that a V is contained in aDn+f*

 The group P,, has been computed by Kervaire-Milnor. We shall not need
 their results because we shall be interested in the kernel of the stable suspen-

 sion homomorphism Pnq Pa,, which will be denoted by Qn.
 We have the exact sequence

 0 > Q n > & Pn 0 ?

 and it is well known that this sequence splits.

 7.2. The homomorphism Pnq - wr (Fq, Gq). We denote by 2Dq the disk-

 defined by I x I < 2 in Rq. An element of rn(Fq, Gq) can be represented by a

 map f: Dn x 2DqSq, such that, if f: 2DqS qis defined by f(y)) f(x, y),
 ( i ) fX(a2Dq) north pole eq+l of Sq,

 (ii) for x e ADq, f, is the radial extension of a map of aDq = Sq-1 in the
 equatorial sphere Sq-1 of Sq,
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 (iii) the point e1 of Sq is a regular value of f.

 Then f-'(e1) is a framed submanifold V' of Dn x 2D q such that a V'cz AD x

 ADq, the first vector of the framing on a V' being normal to Dn x S q' and point-

 ing outside.

 Now we can identify Dn x 2D q to D n+q by a diffeomorphism (except along

 the edge &Da x &2D q) whose restriction to ADa x D q is the map described in

 2.2.

 Under this identification, V' will be a framed submanifold of D n + whose

 boundary a V' is contained in ADn x aD c D , the first vector of the fram-

 ing on a V' being normal to Sn-' x Sq-' in Sn+q-1 and pointing outside of

 Sn-1 Dq Sr- xD~.

 Conversely, any such framed submanifold of D n+q represents an element

 of W7(Fq, Gq). Moreover two such framed submanifolds VO, V,' of Dn+q will
 represent the same element if there is a framed submanifold W in Dn+q x I

 such that a W= (V x 0) U (V,' x 1) U X, where X is a framed submanifold
 of Sa-1 x Sq-l x I.

 7.3. The elements of P4, can be represented by framed submanifolds V of
 D n+q such that a V c Sn-1 x int D q c aD n+q.

 The homomorphism Pnq - Wn(Fq, Gq) will associate to the cobordism class

 of V the element represented by a framed submanifold V' in D , like in 7.2,

 which is characterized by the following condition: there is a framed sub-

 manifold W of D n+q such that a W is made up of a framed submanifold X in

 aDn x Dq of - V and V' (cf. 0.4).

 To prove the existence of V, we first construct, as in 2.4-5, the submani-

 fold X in ADn x D q such that AX is the union of a V and of a framed submani-

 fold Y of &Dn x &D q Then W will be the submanifold of D n+q generated by

 X U V pushed inside Dn+q namely V along the first vector of the framing and

 X along the normal to &Dn+ in Dn, Y remaining fixed.

 The uniqueness of the class of V' is proved similarly.

 7.4. Remark. There is a natural homomorphism of Pq,+1 in FOq (framed
 homotopy n-spheres in Sn+q) obtained by taking the boundary a V of the framed

 submanifold V representing an element of Pn2+,.

 We also have a homomorphism of Qq+l in FCq, for n> 5, defined as fol-
 lows. A representative V of an element of Qq+1 is stably cobordant to a framed
 (n + 1)-disk An+l in D n+y N large, and 3An+l = a V. As A3n+l is naturally dif-

 feomorphic to SI up to concordance for n ? 5 (by a diffeomorphism which can

 be extended to the interiors of A"+' and DI~')+ it will define, with its framing,

 a framed embedding of SI' in Sn+q.
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 The following diagram is commutative:

 Wn+l(Fq, Gq) > Tn+'(G; SO, Gq)

 qn~l > FCq

 where * is the restriction to Qq+? of the homomorphism Pnq - Wr(Fq, Gq) defined
 in 7.3.

 7.5. THEOREM. The homomorphism A: Qn>7 rn(Fq, Gq) is an isomorphism
 for q > 2 and n > 5.

 Proof of surjectivity. Let V' c D,+q be a framed submanifold as in 7.2

 representing an element of Wrn(Fq, Gq). We can consider V' as a framed sub-
 manifold of D 1+ by suspension, N large. By framed spherical modifications

 (cf. 3.3), which do not touch aV', we can construct a framed submanifold V"
 of Dn+N with a V" which is the union of a tubular neighborhood a V" x I of

 a V", of handles of indices < (n + 1)/2 and of an n-disk iA. Let VO' be the com-

 plement in V" of the interior of &nk For q > 2, by general position as in 3.5,

 we can construct an isotopy gt: V,' o Dn+N connecting the inclusion to an
 embedding on a submanifold X of ADa x D q gt being fixed on V". Moreover,

 gt can be extended to the framings so that we get on X a framing fl, *... f, 9
 where f,' is normal to Sn?+N-1 inside Dn+', f2', , fq' is the framing of X as a
 submanifold of ADn x Dq, and fq-j = e,+q+j. The boundary of X is the union
 of aV' and of an (n - 1)-sphere g1(iqhjn).

 If we push V' U X inside Dn+q without moving g1(An), we get a framed

 submanifold V in D n+q representing an element of Pnq whose image by the

 homomorphism / is the class of V'. Moreover the class of V is in Qq, because

 V is stably cobordant to the n-disk which is the union of An with the cylinder

 described by Aln during the isotopy gt.

 7.6. Proof of injectivity. Let V be a framed submanifold of Den repre-

 senting an element of Qq whose image in Wn(Fq, Gq) is zero. Hence if Wcz Dn+q
 is as in 7.3 with a W - V' U (- V) U X, there is in Da+q x I a framed submani-

 fold W' such that a W' is the union of a framed submanifold X' in ADn x

 aDqx I, of V' x 0 and of the disk An Dn x e1 x 1 in

 Dn x Dq x 1 = n+q x 1 .

 We identify Dn x 0 with Dn+q and we consider Y = X U X' U An as a

 framed submanifold of (&D n+q x I) U (D n+q x 1) - Dn+q (we complete the fram-

 ing of X by adding as first vector the outside normal to Sn+q+l x I). The union

 W U W' establishes a cobordism between Y and V, hence Y is stably cobor-
 dant to a disk. This means that, in D n+ X IN, for N large, there is a framed
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 submanifold M such that AM is the union of the suspension of Y and a disk.

 We can also assume that M is the union of Y X I with handles of indices <

 n/2 + 1 attached to (Y - An) x 1. Again as in 3.5, we can construct an em-

 bedding g: M - (Dn+q x 1) U (&Dn x D q x I) with a framing such that

 (i) gmapsAn x IinDn+q x 1 =Dn x Dq x I byg(x,e1,t)= (xte1,1)
 (ii) gmapsM -An x Iin&Dn x Dq x I

 (iii) g I Y is the identity and along g(Y) the framing is what is already

 given.

 By pushing slightly W U W' U g(M) inside D n+q x I without moving its

 boundary, we see that V is cobordant in Pnq to the standard Dn.

 7.7. Remark. From this isomorphism, we can deduce easily the result of

 James [6], namely W7n(Fq, Gq) = 0 for q > n/2 + 1.
 We have to prove that Qq = 0 for q > n/2 + 1. Consider a framed sub-

 manifold V c D n+q representing an element of Qq. By hypothesis there is a

 framed submanifold W of Dn+y x I, N large, such that a W is the union of

 V x 0, a V x I and of a disk in Dn+? x 1. We can assume (cf. 3.3) that W is

 the union of V x I with handles of indices ? n/2 + 1. By general position

 as in 3.5, we can construct an embedding of W on a framed submanifold of

 D n+q x I connecting V to a disk in D n+q x 1. Equivalently, V can be trans-

 formed in a disk by a sequence of framed spherical modifications of indexes ?

 n/2 + 1 in Dn+? (cf. 8.4). But all these modifications can be actually performed

 in Dn+q (cf. 8.3).

 8. The isomorphism Qn w nq+j(SO9 SOqj) for n 3q - 6.

 8.1. The homomorphism X. Let V c D n+q be a framed submanifold of

 dimension n, whose boundary is in aDn+. Let j: Sq-1 Dn+q _ V be the in-

 clusion of Sq-l as the boundary of a fiber of a tubular neighborhood of V,

 with the orientation given by the framing. The map j induces a homomor-

 phism j: H7(Sq-l) > H(D - V). By Alexander duality, we have

 H7(Dn?+q- V) = Hr-q+l(V, aV)

 for r > 0. Hence if V and a V are k-connected and q > 2, then j induces an

 isomorphism j*: 17r(Sq-l) > -7 (Dn+qV) for i ? k + q - 1.
 When V and a V are k-connected and q > 2, we can define the homomor-

 phism X: wr(V) ) 7r(Sq-l), for i ? k + q - 1, as follows. Let i be the map

 which pushes V along the first vector f1 of the framing (i.e., (x) = x + ef1(x),

 where s is small); i induces a homomorphism *: wr(V) >r (Dn+q - V). We
 define X by =j1o

 8.2. The function i. Let V be as before, and let fl, * * fq be the
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 framing of V. We consider an embedding f: Sr V representing an element

 a e wr(V). Let ~ e Cr(Vn1q,r1q) be represented by the following map (cf. [3]): to
 each point x C f(Sr), we associate the frame 1(x), * *, S6rl(X), f2(x), *., * W,
 where s1(x), * * *, 6r+,(X) is the natural trivialization of the vector bundle gener-
 ated by the tangent bundle of f(Sr) and the field ft restricted to f(Sr).

 This element e is the obstruction to constructing an immersion AP: Dr+,

 Dn+q together with a normal framing F2, * * *, Fq such that p = f on Sr along

 f(Sr), Ap is tangent tofA andfi = Fi, i > 2.
 If the manifold V is (2r - n + 2)-connected, and if 2n > 3r + 3, then

 any element of Wr(V) is represented by an embedding, and two such embed-

 dings are also regularly homotopic (cf. [2]). Hence under these conditions, the
 element e depends only on the homotopy class of f and we get a map

 : W7r( V) > Wr( Vn+qr+q) - Wr(SOY SOn-r) ,

 This map is not a homomorphism. In fact we have the same formula as

 for the function a in Theorem 1 of the paper: C.T.C. Wall, Classification of

 handlebodies, Topology 2 (1963), 253-261. We shall not need it here.

 We shall note that e is stable, i.e., independent of q.

 8.3. Spherical modifications of framed submanifolds. Let

 P: D k X X D +-k

 be the injective map defined by P(x, y) (xa(y2), ya(x2)), where a(t) is an even

 function differentiable, such that a(O) = 1/2, a(t) =1 for t ? 1, a'(t) > 0 for

 0 < t < 1. Except on the edge AD k X aDn+l-k, P is differentiable of rank n + 1;
 its restriction to aDk X D n+l-k or to Dk X aDn+l-k is a differentiable embedding.

 We shall denote by v (resp. V') the field of unit normal vectors along P(&D k X

 Dn+?-k) (resp. P(Dk X aDn+l-k)) pointing inside (resp. outside) the image of P.

 Let V be a framed n-submanifold of D n+q with a framing f = f1, * * fq.

 Let 0 be a map of Dk X D n+1-k in the interior of D n+q which is the composition

 of the map P with a differentiable embedding 0, of Dk x Dn+l-k in Dn+q; sup-
 pose that

 (i ) 0(aD x D +)cV

 (ii) 0(int Dk x Dn l-k) nzV = 0,
 (iii) the field f1 along 0(DDk x Dn+l-k) is the image of v by the differential

 of 0.

 We suppose moreover that a framing F = F2, ..., Fq of O(Dk x Dn+?-k)
 is given such that:

 (iv) Fj = fs along 0(aDk x D n+l-k).
 The couple (I, F), or simply 0 with F understood, is called a handle of in-
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 dex k attached to the framed submanifold V, or a framed spherical modifica-

 tion of V of index k, killing the element of k1Z-,(V) represented by O(Skl x 0).
 Let V' be the submanifold [V - 0(aDDI x Dn+1-k)] U (Dk x aDn+1-k) and

 let f ' = fg', ... , fq' be the framing of V' equal to J on V f V', such that fi' =
 Fi, i > 1, on O(Dk x aDn+1-k) and that fl' is the image of V' by the differential
 of I. Note that everything is smooth along 0(aD k X aD n+l-k).

 We shall say that the framed submanifold V' is obtained from V by a

 framed spherical modification of index k defined by the handle A.

 Note that V is obtained from V' by a spherical modification of index

 n + 1 - k, also defined by 0.

 It is clear that V and V' are framed cobordant (cf. [3]).

 If a e 7rk1l(V), and if $(a) and X(a) are defined and equal to zero, then we

 have seen in [31 that it is always possible to perform a framed spherical modi-
 fication on V killing a.

 8.4. Finally we indicate the relations between spherical modifications and

 handle decomposition. Let W be a framed submanifold in D1+ x I, N large,

 such that a W is the union of V x 0, V' x 1 and aV x I, where V and V' are

 framed submanifolds of D If". Assume that W is obtained from V x I by

 attaching s handles of indexes ki. Then V' is isotopic, with its framing, to a
 manifold obtained from V by a corresponding sequence of s framed spherical

 modifications of indexes ki. Indeed we can construct an embedding f of W on

 a framed submanifold W' of D'+' such that f I V x 0 is the natural map on

 V, that f (a V x I) c AD n+N and that the suspension of W' x 0 in Dn+N x I is

 isotopic to W with its framing. As N is large, f(V' x 1), with its framing

 completed by the exterior normal to W' as first vector, is isotopic to V' with

 its given framing. On the other hand, it is clear that we pass from f( V x 1)

 to f( V' x 1) by a sequence of spherical modifications defined by the handles

 of the decomposition of W.

 8.5. LEMMA 1. For q - 1 ? n/2 ? 2q - 3, each element of Qq can be

 represented by a framed submanifold Vc Dl+q whose stable suspension can

 be transformed in a disk by just one framed spherical modification of index

 q which kills an element a E Wqi-(V) with X(a) = 1.

 PROOF. After framed spherical modifications, we can assume that V is

 (q - 2)-connected. Moreover we can assume that X: zq-l( V) Wzq_1(Sq-1) = Z
 is surjective, after an eventual framed spherical modification of index q - 1.

 Indeed we can attach trivially to V a handle 0 such that O(D q-1 x 0) is ob-
 tained by joining, with a small tube, V to a (q - 1)-sphere in D n+q _ V with

 linking number 1 with V.
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 As V is stably cobordant to DI,, there exists a framed submanifold W of

 Dn+N such that a W = V U n-disk. After spherical modifications, we can as-

 sume w,( W) = 0 for i ? (n - 1)/2. Hence by Smale [14] and 8.4, we can trans-

 form V c D'+N to an n-disk by a sequence of s + 1 framed spherical modifica-
 tions of indexes r, with q ? r ? n/2 + 1. We can also assume that the handle

 o defining the first modification is attached by a map Sq-l x Dn-q+iV which
 defines an element a e wrq-1(V) with X(a) = 1.

 Now we argue by induction on the number s. It will be sufficient to prove
 that V is cobordant to V', where V' verifies the same conditions as V, but s

 being replaced by s -- 1 (for s > 1).

 Let V0 = V - (Sq-1 x int Dn+1-q) and V= V0 U O(Dq X aDn?-q+). We
 want to prove that we have a split exact sequence:

 (8.6) 0 > Iri(Sq-l) - wri(Vo) -* wz(V) - 0

 for i < 2q - 3, where the first homomorphism is induced by the map x -(x, e}
 of S q- in V0, e e aDD-q+', and the second one by inclusion. For that, we note

 that the pair (Dq, aDq) is mapped by 0 in the pair (V, V0). Hence we have the
 commutative diagram:

 ri+l(V) > 7i+l(V, Vo) > wri(Vo) > wri(V)

 7ri+1(D q) > 7ri+i(D q9 aDq) > 7ri (aD q) > 7ri(D q)

 The homomorphism izj+ (Dq, aDq)-ij+?(V, V0) is surjective for i ? 2q - 3,
 because wij+1( V, V0, D ) = 0, as the pairs (V0, OD ) and (D , aD ) are (q - 1)-
 connected (cf. [1]). On the other hand, the homomorphism wri(DDq) - 7ri(VO)
 is injective for i ? 2q - 3, because its composition with X is the identity.

 The second handle O' is attached to Vby the embedding 0': aDk X Dn-k+1l
 V, and k < n/2 + 1. By 8.6, we can assume, after an isotopy, that 0'(aDk X
 D n?_k) c Vo; this implies that the spherical modifications 0 and O' can be ex-
 changed stably. Moreover we can assume, by 8.6, that the element of rk-l( V)

 represented by 0'(aDk X 0) is in the kernel of X. Hence we can construct an em-

 bedding P: D k D such that p(x) - '(x, 0) for x e aD , p(int D k) n v = 0,
 and q is tangent along p(DD k) to the first vector of the framing of V. We can
 construct an isotopy t: D k X D n+1-k - Dn+N of the second handle O', fixed on
 aDk x Dn+l-k, such that 9z is the suspension of a handle in Dn+q, i.e., 01(Dk X
 D n+1-k) c D n+q and the last N - q vectors of the framing are the restrictions

 of the natural framing of Dln+q in D'+'. First we construct the isotopy on

 Dk X 0 SO that 01(x, 0) = p(x) for x e Dk. Then we extend it to the normal
 framing as in 3.5, and finally to Dk x Dn?1k
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 Now the framed submanifold V' of D n+q deduced from V by the spherical

 modification 01 satisfies the same conditions as V, but s is replaced by s - 1.

 Note that the value of X on the element of rq_1( V') represented by O(Sq-l x 0)
 is still one.

 8.7. LEMMA 2. Let V be a framed submanifold of D n+q satisfying the

 conditions of Lemma 1 and representing the zero element of Qq. Then there

 is a framed submanifold W of the half-ball D n+q-7 defined by {x I x E Dn+q+l1
 Xn q+1 ? O} whose boundary is the union of V with a disk in the northern

 hemisphere of Sn+q, and such that the map S q-1 Vc W representing a is
 a homotopy equivalence of Sq-l with W.

 PROOF. The existence of Wc Dn+q+1, without this last condition, follows
 from the vanishing of the class of V in Qq. If we consider W as a framed sub-

 manifold of Rn+N, N large, by the hypothesis of Lemma 1, we can glue a handle

 A: Dq x D n+l-q R,+' to W along V so that W U O(D q x Dnjl-q) is a framed
 submanifold W of Rn+N whose boundary is a homotopy n-sphere.

 We can assume that W is cobordant to 0 as an element of Pn+?, or equiv-
 alently that there is a sequence of s spherical modifications of indexes r <

 (n + 3)/2 transforming W in an (n + 1)-disk. If this would not be the case,

 we could change W as follows. Let W_ be a framed submanifold of Rn'N with

 boundary a homotopy n-sphere and which represents in Pn?1 the opposite of

 the element represented by W. We can choose W_ such that wz( W4) = 0 for
 i < (n - 1)/2. Hence by the general position argument we often use here,
 W_ is framed isotopic in Rn+N to a submanifold which is the suspension of a

 framed submanifold W' in Dn+q+, such that wfn W'= 0 and aW' is con-

 tained in the northern hemisphere of Sn+q. We can obtain the new W as the

 connected sum of W and W' by means of a small half-tube (cf. for instance

 [3, p. 463]).

 The rest of the proof is very similar to the proof of Lemma 1. We have a

 homomorphism A: wz( W) - jz(Sq-l) defined as in 8.1, and X is the composition
 of the homomorphism wz( V) -w( W) with A. We also have an exact sequence

 0 , Jrj(S q-1) , Jrj(W) 7riz(W) -> O.9

 where the first homomorphism is induced by the map x - O(x, 0) of S q- in
 Vc Wand is an inverse of A. From that we see that the stable framed spherical

 modifications of W can be performed on W itself in D+q+l. Finally W will be

 such that W U O(Dq x D +1-q) is an (n + 1)-disk. Hence W has the homotopy
 type of Sq-l.

 8.8. THEOREM. For n ? 3q - 6, there is a homomorphism

 Qn > Wnq+(SO, SOqj)
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 PROOF. We consider a framed submanifold V of Dn+q as in Lemma 1. We

 first prove that there is an element , e w-q+l( V) such that X(S) = 0, and , has
 intersection number +1 with some element a e q-l(V) for which X(a) = 1.
 The element 8 is unique, except if n/2 q - 1, where it is defined up to sign.

 In the case q - 1 < n/2, we have the split exact sequence:

 0 > 7rn-q+l(Sq-l) > Wrn-q+l(V) > Hn-qil(V) 0> ?

 where the first homomorphism is induced by an embedding j: Sq-1 V repre-

 senting the unique element a e wq-l( V) for which X(a) = 1. The second one is
 the Hurewicz homomorphism. Indeed, if we write the homotopy exact se-

 quence of the pair (V, j(S q-1)), we have:

 0 - wr (Sq-1) - wr (V) > wr (V, j(Sq-1)) > 0

 for i ? 2q - 3, because X is an inverse for j*. Moreover H,(V, j(Sq-l)) = 0

 for i < n-q + 1 and isomorphic to H-q+l?(V) = Z for i = n-q + 1. Hence
 this group is isomorphic to wzi(V, j(S q-1)) for i ? n - q + 1. The element 8 is
 then the unique element which is in the kernel of X and whose image by the

 Hurewicz homomorphism is the dual of a.

 When q - 1 = n/2, then Wrql(V) = Wrn-q~l(V) = Hn/2(V) = Z + Z, and the
 existence of , follows from the fact that X: zq-1( V) 7rq1J(S q-1) - Z is sur-
 jective.

 According to 8.2, for n ? 3q - 6, we define

 i(V) = $(,) G Wn-q+1(SO, SOq-1)

 This element if well defined, because i(S) = -,) when q -1 = n/2. This

 can be checked directly from the definition of $.

 8.9. If V is cobordant to zero, then $( V) = 0. Indeed in Lemma 2, the

 element ,8 e Wrqq+l(V) has a trivial image in 1rW-q11(W), because in the com-
 mutative diagram

 Wn-q+l( V)\2

 7rZn-q+l(S)
 { A/

 Wn-q +l( W)/

 A is an isomorphism and S is in the kernel of X. An embedding q representing

 ,S can be extended as an immersion p: Dn-q2 > J W. We can see it by [2] or as
 follows. We have H%(W, V) = 0 for i # n - q + 2 and

 Hn-q+2( W, V) = Wn-q+2( W, V) = Z

 The element , is a generator of the kernel of X, hence it is the image of a gener-

 ator of the kernel of X, hence it is the image of a generator y of rn-q+2( W9 V).
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 By Smale, W is diffeomorphic to V x I with a handle 0: Dn-q+2 x Dq - W.
 where O(D n-q+2 x 0) represents S; this gives the embedding A. Now consider
 the field of (n + 2)-frames si, * 8n-q+2? fiy . * fq along 3(Dn+q+2) in Rn+q+1,
 where s, , n-q+2 is the image, by the differential of A, of the tangent fram-

 ing of Dn -q-12, and fy, ... , fq the normal framing of W. It is easy to check that
 this map of D n-q+2 in the Stiefel manifold Vn+q+l,n+2 restricted to aD n-q+2 repre-

 sents, up to sign, the suspension of i(8).

 8.10. To prove that i(V) depends only on the cobordism class of V and

 gives a homomorphism E of Qq into w ,,q+1(S0, SOqi), it will be sufficient to
 show the following: if V1 and V2 are as in Lemma 1, then V1 + V2 is cobor-

 dant to a framed submanifold V as in Lemma 1, and such that

 ;(V) =(V) + ?(V2) -

 Let ac e Wq-1( V) and ,8i e Wrnq+1( Vi), i = 1 2, such that X(ao) = 1, d(a^) = 0,

 X(ac) = 0, and (ai, ,8/) - 1 (for p e Er( V) and v E Wn-r( V), the integer (1a, 2)
 denotes the intersection of the homology classes represented by them). The

 group Wrk( V1) + Wrk(V2) is naturally isomorphic to lrk(V1 + V2). We can perform

 a framed spherical modification 0 of index q on V1 + V2 which kills a1 - a2, be-
 cause X(a1 - a2) - X(a1) - X(a2) =, and d(a1 - a2) - (a1) - (a2) = 0. We

 obtain a framed submanifold V = (V1 + V2) - O(D q X int D ,+l-q) which satisfies
 the conditions of Lemma 1. Indeed we can represent a1 by an embedded sphere

 in V0 = (V1 + V2) - 0(aDDq x intDn+l-q) because (a, a, - a2) 0 (i(a1) = 0
 implies (a1, a,1) 0). This sphere represents an element a e wrq-l(V) such that
 X(a) - 1, and i(a) - 0. We can also represent 81 + /82 by an embedded sphere

 in V0, because (/81 + 82, a, - a2) 0. This sphere represents an element

 ,S lrn-q+l(V) such that (a, f) = 1. It is easy to check that X(,) 0 0 because

 (IS) = (81 + /82). Moreover, i(R8) = i(81) + i(,82); indeed the sphere which
 represents /8 is regularly homotopic in V1 + V2 to a sphere obtained by joining

 with a tube two embedded spheres representing ,81 and /82.

 8.11. THEOREM. The homomorphism : Qn n_q+l(SO, SOq_) defined
 above for n ? 3q - 6 is an isomorphism. Hence, by 7.5,

 7Wn(Fqy Gq) = Wrn-q+i(SO, S~qJ) for n ? 3q - 6.

 PROOF. It is immediate to prove that E is injective. Indeed let V c D n+q

 be as in Lemma 1, and suppose that d(8) = 0. As X(/8) = 0, we can perform a
 spherical modification on V defined by a handle which kills 8 (cf. [3]). The

 manifold V' we obtain is an n-disk, because its homology is trivial.

 To prove surjectivity, we construct an explicit framed submanifold V in

 Dn+q such that `(V) is a given element of 7nq+1(SO, SOql).
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 8.12. We give a construction in a more general setting, because it is useful

 in the study of links. Let a, b, c be three positive integers. Let D1 and D2 be

 two disks of dimension a embedded in Da+l, such that D1 and D2 are in D Y1,

 and D1 and D2 intersect orthogonally along a (q - 1)-sphere S in the interior

 or Da+l. Let Ai be the a-disk in Di bounded by Sy i 1, 2.
 We can represent any element of WUa(SObIc, SOb) by a differentiable map

 C: D1 SOb?C such that C(x) E SOb for x e D1 - Al. Let D a+b be the image of
 D1 x Db in Da+1 x Db+c by the embedding P defined by P(x, y) = (x, C(x)y),

 where Db is identified to the disk in Db+c defined by xb,+ ** = 0; C(x)y
 is the natural action of SObC on Db+c.

 On the other hand, let D?a+c be the image of D a x Dc in Da+l x Db+c by
 the embedding Q(x, y) = (x, y), where Dc is identified here to the disk in D b+c

 defined by x1 = * * = Xb = O.

 Dfa+b is a twisted band and D?a+c is a straight band in D a+ x Db+c; they

 intersect transversally along S x 0. The boundaries of these two bands are

 two spheres Sa+b-l and Sa+b-l disjointly embedded in Sa+b+c = D(Da+l X Db+c).

 The reader may check that Sa+-1 represents in Sa+b+c - S~a+c-l s& Sb the image,

 up to sign, of e G Wral(SOb) by the J-homomorphism: Wa-l(SOb) Wra+bl(S),

 where y is the element of Wra(SOb+cy SOb) represented by C.

 8.13. Let v, be the unit vector field normal to D1 in Da+' and pointing
 inside A2 along S; same definition for 22, with 1 and 2 interchanged. We con-

 sider D a+b as a framed submanifold, with framing f1, ***, fl?1, where

 PiXY Y) = (V,(x)y O)

 fijlx, y) = (O. C(x)eb+i)

 (as before, e1, *l*, e, is the natural basis of Rk).
 We perform a framed spherical modification on D a+b defined by a handle

 : A2 x Db+l D a+ x Db+C such that

 ( i ) 0 1 2 X 0 = identity and O(A2 x Db+l) n (Da+l x 0) = O(A2 x D1),
 (ii) the normal framing F2, .*., F,+1 along O(A2 x 0) is defined by

 Fi+l(x, 0) = (0, eb+i),

 (iii) Di ?b-V(A2 X int Db~l) V1 has an empty intersection with D2ab.
 After this framed spherical modification, we get a framed submanifold V1.

 Let a e wb(V1) be represented by O(x0 x aD b+l); this sphere pushed along the
 first vector of the framing bounds a disk which does not intersect V1 and does

 intersect D2a+b in one point and transversally. Let 8 e Wa( V1) be represented by
 the intersection with V1 of the (n + 1)-disk in Da+' bounded by A1 U A2. It is

 clear that this intersection, pushed away from V1 along the first vector of the
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 framing, bounds a disk which does not meet V1 and D a+C. The element i(S),

 whenever it is defined, is represented by the map of A, U A2 into the Stiefel
 manifold of (a + c + 1)-frames in R a+ x Rb+c associating to x E A1 the frame

 (e1, 0), **.., (ea+l, O), (0, ((x)eb+l), *..., (O C(x)eb+C), and to x E A2 the frame

 (el, 0), ... y (early O)y (O. eb+J), . . . (O. ebbs) -

 It follows that d(i8) e Wa(Va+b+c+l, a+c+l) = 7Ua(SO, SOb) is equal, up to an auto-

 morphism, to the suspension of the element of Wa(SOb+c, SOb) represented by

 C. Hence the element d(,R) can be given in advance.
 Now choose a- n - q + 1, b = c q - 1, and assume n ? 3q - 6, so

 that $(8) is well defined. Let V be the framed submanifold in D n+q obtained
 by joining V1 to Da+c with a small half-tube along a path in aDD+q. After

 corners have been rounded, it is clear that V satisfies the conditions of Lemma 1,

 and that d(V) is a given element of 7nq+l(SO, SOql).
 Recall that the boundary of V is an (n - 1) sphere embedded in S '+q-1 and

 whose suspension is trivial (cf. 7.4 and 6.4).

 8.14. COROLLARY. For d > 2, then

 fz d even

 2d-1 -l Z2d odd .

 This follows from 6.4, 6.6, 8.11 for d > 2, because Wa(SO, SOd) = Z or Z2
 according that d is even or odd, and wr(SO, SOd) = 0 for i < d. For the case
 d = 2, see 5.16.

 8.15. COROLLARY (cf. [4]). For d ? 3, one has a surjective homomor-
 phism

 ad+l(SO, SOd) > C0d > . .

 In particular

 C4k2 0 for all k .

 For d > 4, this follows from 6.4, 6.6, 8.11. Recall that Ud+0(SO, SOd) 0 ,.
 Z2, Z2 + Z2 or Z4, according that d -1 J +1, 0 and 2 (mod 4) (see for instance

 Paechter [12]).

 For the case d = 3, we check that w7(F4, G4) = 0 by an easy direct veri-

 fication, so that C4 - 0.

 Note that C' - Z12.

 UNIVERSITY OF GENEVA
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