THE RISE, FALL AND RISE OF SIMPLICIAL COMPLEXES

Andrew Ranicki (Edinburgh)
http://www.maths.ed.ac.uk/ aar
Warwick
2nd February, 2018

Simplicial complexes

- A simplicial complex is a combinatorial scheme K for building a topological space $\|K\|$ from simplices - such spaces are called polyhedra.
- Combinatorial topology: polyhedra are the easiest spaces to construct. On the syllabus of every introductory course of algebraic topology, including Warwick!
- Piecewise linear topology of polyhedra, especially PL manifolds.

Some of the branches of topology which feature simplicial complexes

- Homotopy theory: simplicial complexes are special cases of simplicial sets.
- Algebraic topology of finite sets.
- Algebraic topology of groups and categories.
- Topological data analysis: simplicial complexes in persistence homology, arising as the nerves of covers of clouds of point data in Euclidean space.
- Surgery theory of topological manifolds: the homotopy types of spaces with Poincaré duality.

A combinatorial proof of the Poincaré duality theorem

- The theorem: for any n-dimensional homology manifold K with fundamental class $[K] \in H_{n}(K)$ the cap products

$$
[K] \cap-: H^{n-*}(K) \rightarrow H_{*}(K)
$$

are \mathbb{Z}-module isomorphisms.

- There have been many proofs of the duality theorem, but none as combinatorial as the one involving the " (\mathbb{Z}, K)-module" category.

The first converse of Poincaré duality

- Converse 1 "When is a topological space a manifold?" A simplicial complex K is an n-dimensional homology manifold with fundamental class $[K] \in H_{n}(K)$ if and only if the " (\mathbb{Z}, K)-module" chain map

$$
[K] \cap-: C(K)^{n-*} \rightarrow C\left(K^{\prime}\right)
$$

is a chain equivalence, with $K^{\prime}=$ barycentric subdivision of K.

- Proof is purely combinatorial, and is relatively straightforward.
- If an n-dimensional topological manifold is homeomorphic to a polyhedron $\|K\|$ then K is an n-dimensional homology manifold.
- For $n \geqslant 5$ an n-dimensional topological manifold is homotopy equivalent but not in general homeomorphic to the polyhedron $\|K\|$ of an n-dimensional homology manifold K.

The second converse of Poincaré duality

- Converse 2 "When is a topological space homotopy equivalent to a manifold?"
For $n \geqslant 5$ a polyhedron $\|K\|$ is homotopy equivalent to an n-dimensional topological manifold if and only if it has just the right amount of " (\mathbb{Z}, K)-module" Poincaré duality.
- Proof requires both all of the geometric surgery theory of Browder-Novikov-Sullivan-Wall, the topological manifold structure theory of Kirby and Siebenmann, as well as my algebraic theory of surgery on chain complexes with Poincaré duality.

Simplicial complexes

- A simplicial complex K consists of an ordered set $K^{(0)}$ and a collection $\left\{K^{(m)} \mid m \geqslant 0\right\}$ of m-element subsets $\sigma \leqslant K^{(0)}$, such that if $\sigma \in K$ and $\tau \leqslant \sigma$ is non-empty then $\tau \in K$.
- Call $\tau \leqslant \sigma$ a face of σ. Also written $\sigma \geqslant \tau$.
- For any $m \geqslant 0$ the standard m-simplex Δ^{m}, the simplicial complex consisting of all the non-empty subsets

$$
\sigma \leqslant\left(\Delta^{m}\right)^{(0)}=\{0,1, \ldots, m\}
$$

- The polyhedron (or realization) of a simplicial complex K is the topological space

$$
\|K\|=\left(\bigcup_{m=0}^{\infty} K^{(m)} \times\left\|\Delta^{m}\right\|\right) / \sim
$$

with $\left\|\Delta^{m}\right\|$ the convex hull of the $(m+1)$ unit vectors $\mathbf{e}_{i}=(0, \ldots, 0,1,0, \ldots, 0) \in \mathbb{R}^{m+1}$.

Combinatorial sheaf theory: the (\mathbb{Z}, K)-category I.

- In 1990, R.+Weiss introduced an additive category $\mathbb{A}(\mathbb{Z}, K)$ of " (\mathbb{Z}, K)-modules".
- Convenient for the "local K-controlled algebraic topology" of spaces X with a map $X \rightarrow\|K\|$.
- $\mathrm{A}(\mathbb{Z}, K)$-module is a f.g. free \mathbb{Z}-module M with a direct sum decomposition

$$
M=\sum_{\sigma \in K} M(\sigma)
$$

Combinatorial sheaf theory: the (\mathbb{Z}, K)-category II.

- $\mathrm{A}(\mathbb{Z}, K)$-module morphism $f: M \rightarrow N$ is a collection of \mathbb{Z}-module morphisms $f(\sigma, \tau): M(\sigma) \rightarrow N(\tau)(\sigma \leqslant \tau)$, i.e. a \mathbb{Z}-module morphism f such that

$$
f(M(\sigma)) \subseteq \sum_{\tau \geqslant \sigma} N(\tau) .
$$

- In terms of matrices, f is upper triangular.
- f is a (\mathbb{Z}, K)-module isomorphism if and only if each $f(\sigma, \sigma): M(\sigma) \rightarrow N(\sigma)(\sigma \in K)$ is a \mathbb{Z}-module isomorphism.

$C(K)$ is not a (\mathbb{Z}, K)-module chain complex \mathbb{I}.

- The \mathbb{Z}-module chain complex $C(K)$ is defined using the ordering of $K^{(0)}$, with

$$
\begin{gathered}
d: C(K)_{m}=\mathbb{Z}\left[K^{(m)}\right] \rightarrow C(K)_{m-1}=\mathbb{Z}\left[K^{(m-1)}\right] ; \\
\left(v_{0} v_{1} \ldots v_{m}\right) \mapsto \sum_{i=0}^{m}(-)^{i+1}\left(v_{0} v_{1} \ldots v_{i-1} v_{i+1} \ldots v_{m}\right) \\
\left(v_{0}<v_{1}<\cdots<v_{m} \in K^{(0)}\right) .
\end{gathered}
$$

$C(K)$ is not a (\mathbb{Z}, K)-module chain complex II.

- $C(K)$ used to define the homology \mathbb{Z}-modules of K and $\|K\|$

$$
\begin{aligned}
H_{m}(K) & =H_{m}(\|K\|) \\
& =\frac{\operatorname{ker}\left(d: C(K)_{m} \rightarrow C(K)_{m-1}\right)}{\operatorname{im}\left(d: C(K)_{m+1} \rightarrow C(K)_{m}\right)}
\end{aligned}
$$

- $C(K)$ is not a (\mathbb{Z}, K)-module chain complex, since
$\left(v_{0} v_{1} \ldots v_{m}\right)$ is not a face of $\left(v_{0} v_{1} \ldots v_{i-1} v_{i+1} \ldots v_{m}\right)$.

$C(K)^{*}$ is a (\mathbb{Z}, K)-module cochain complex \mathbf{I}.

- The \mathbb{Z}-module cochain complex

$$
C(K)^{*}=\operatorname{Hom}_{\mathbb{Z}}(C(K), \mathbb{Z})
$$

dual to $C(K)$ has

$$
\begin{aligned}
d^{*}: C(K)^{m}= & \operatorname{Hom}_{\mathbb{Z}}\left(C(K)_{m}, \mathbb{Z}\right)=\mathbb{Z}\left[K^{(m)}\right] \\
& \rightarrow C(K)^{m+1}=\mathbb{Z}\left[K^{(m+1)}\right] ; f \mapsto f d
\end{aligned}
$$

with

$$
d^{*}(\sigma)=\sum \pm \tau\left(\sigma \in K^{(m)}, \tau \in K^{(m+1)}, \sigma<\tau\right)
$$

$C(K)^{*}$ is a (\mathbb{Z}, K)-module cochain complex II.

- $C(K)^{*}$ used to define the cohomology \mathbb{Z}-modules of K and $\|K\|$

$$
\begin{aligned}
H^{m}(K) & =H^{m}(\|K\|) \\
& =\frac{\operatorname{ker}\left(d^{*}: C(K)^{m} \rightarrow C(K)^{m+1}\right)}{\operatorname{im}\left(d^{*}: C(K)^{m-1} \rightarrow C(K)^{m}\right)}
\end{aligned}
$$

- $C(K)^{*}$ is a (\mathbb{Z}, K)-module cochain complex.

The barycentric subdivision K^{\prime}

- The barycentric subdivision of a simplicial complex K is the simplicial complex K^{\prime} with one 0 -simplex $\widehat{\sigma} \in\left(K^{\prime}\right)^{0}=K$ for each simplex $\sigma \in K$ and one m-simplex $\widehat{\sigma}_{0} \widehat{\sigma}_{1} \ldots \widehat{\sigma}_{m} \in\left(K^{\prime}\right)^{(m)}$ for each $(m+1)$ term sequence $\sigma_{0}<\sigma_{1}<\cdots<\sigma_{m} \in K$ of proper faces in K.
- Homeomorphism $\left\|K^{\prime}\right\| \rightarrow\|K\|$ sending $\widehat{\sigma} \in K^{\prime(0)}$ of $\sigma \in K^{(m)}$ to the barycentre of $\|\sigma\|$.

Dual cells

- The dual cell of $\sigma \in K$ is the subcomplex

$$
D(\sigma, K)=\left\{\widehat{\sigma}_{0} \widehat{\sigma}_{1} \ldots \widehat{\sigma}_{m} \mid \sigma \leqslant \sigma_{0}<\sigma_{1}<\cdots<\sigma_{m}\right\} \subseteq K^{\prime}
$$

- The boundary of the dual cell is the subcomplex

$$
\partial D(\sigma, K)=\left\{\widehat{\sigma}_{0} \widehat{\sigma}_{1} \ldots \widehat{\sigma}_{m} \mid \sigma<\sigma_{0}<\sigma_{1}<\cdots<\sigma_{m}\right\} \subset D(\sigma, K) .
$$

- Proposition $C\left(K^{\prime}\right)$ is a (\mathbb{Z}, K)-module chain complex which is \mathbb{Z}-module chain equivalent to $C(K)$.

The second barycentric subdivision $K^{\prime \prime}$

Christopher Zeeman, Colin Rourke and Brian Sanderson, 1965

Homology manifolds

- For any simplicial complex K and m-simplex $\sigma \in K^{(m)}$ there are isomorphisms

$$
\begin{aligned}
& H_{*}(D(\sigma, K)) \cong \mathbb{Z} \text { if } *=0,=0 \text { otherwise }, \\
& H_{*}(D(\sigma, K), \partial D(\sigma, K)) \cong H_{*+m}(\|K\|,\|K\|-\{\widehat{\sigma}\}) .
\end{aligned}
$$

- K is an n-dimensional homology manifold if for each $x \in\|K\|$

$$
H_{*}(\|K\|,\|K\|-\{x\}) \cong \mathbb{Z} \text { if } *=n,=0 \text { otherwise }
$$

- Equivalent to each $\partial D(\sigma, K)$ being a homology ($n-m-1$)-sphere
$H_{*}(\partial D(\sigma, K)) \cong \mathbb{Z}$ if $*=0$ or $=n-m-1,=0$ otherwise.

The assembly functor $A:(\mathbb{Z}, K)$-modules $\rightarrow \mathbb{Z}\left[\pi_{1}(K)\right]$-modules

- Let K be a connected simplicial complex with universal covering projection $p: \widetilde{K} \rightarrow K$.
- The assembly of a (\mathbb{Z}, K)-module $M=\sum_{\sigma \in K} M(\sigma)$ is the f.g. free $\mathbb{Z}\left[\pi_{1}(K)\right]$-module

$$
A(M)=\sum_{\widetilde{\sigma} \in \widetilde{K}} M(p(\widetilde{\sigma}))
$$

- The assembly functor A : $M \mapsto A(M)$ sends K-local to $\mathbb{Z}\left[\pi_{1}(K)\right]$-global algebraic topology.
- The assembly $A\left(C\left(K^{\prime}\right)\right)$ is $\mathbb{Z}\left[\pi_{1}(K)\right]$-module chain equivalent to $C(\widetilde{K})$.

The chain duality

- The proof of Poincaré duality will now be expressed as an assembly of K-local to $\mathbb{Z}\left[\pi_{1}(K)\right]$-global, using a "chain duality" on $\mathbb{A}(\mathbb{Z}, K)$.
- The chain dual of a (\mathbb{Z}, K)-module chain complex C is the (\mathbb{Z}, K)-module chain complex

$$
T C=\operatorname{Hom}_{\mathbb{Z}}\left(\operatorname{Hom}_{(\mathbb{Z}, K)}\left(C(K)^{-*}, C\right), \mathbb{Z}\right)
$$

- $T C$ is \mathbb{Z}-module chain equivalent to $C^{-*}=\operatorname{Hom}_{\mathbb{Z}}(C, \mathbb{Z})^{-*}$. However, even if C is concentrated in dimension 0 , then $T C$ is not concentrated in dimension 0 .
- Combinatorial version of Verdier duality in sheaf theory.

Homology $=(\mathbb{Z}, K)$-module chain maps

- For any simplicial complex K the (\mathbb{Z}, K)-module chain complexes $C\left(K^{\prime}\right), C(K)^{-*}$ are chain dual, with chain equivalences

$$
T C\left(K^{\prime}\right) \simeq C(K)^{-*}, T C(K)^{-*} \simeq C\left(K^{\prime}\right) .
$$

- The \mathbb{Z}-module morphism

$$
H_{n}(K) \rightarrow H_{0}\left(\operatorname{Hom}_{(\mathbb{Z}, K)}\left(C(K)^{n-*}, C\left(K^{\prime}\right)\right)\right) ;[K] \mapsto[K] \cap-
$$

sending a homology class $[K] \in H_{n}(K)$ to the chain homotopy classes of the (\mathbb{Z}, K)-module chain map $[K] \cap-: C(K)^{n-*} \rightarrow C\left(K^{\prime}\right)$ is an isomorphism.

(\mathbb{Z}, K)-proof of Poincaré duality

- Theorem A simplicial complex K is an n-dimensional homology manifold if and only if there exists a homology class

$$
[K] \in H_{n}(K)=H_{0}\left(\operatorname{Hom}_{(\mathbb{Z}, K)}\left(C(K)^{n-*}, C\left(K^{\prime}\right)\right)\right)
$$

which is a (\mathbb{Z}, K)-module chain equivalence.

- Proof For any homology class $[K] \in H_{n}(K)$ the \mathbb{Z}-module chain maps

$$
\begin{aligned}
& ([K] \cap-)(\sigma, \sigma): C(K)^{n-*}(\sigma) \simeq C(D(\sigma, K))^{n-m-*} \\
& \rightarrow C\left(K^{\prime}\right)(\sigma) \simeq C(D(\sigma, K), \partial D(\sigma, K))\left(\sigma \in K^{(m)}\right)
\end{aligned}
$$

are chain equivalences if and only if each $\partial D(\sigma, K)$ is a homology ($n-m-1$)-sphere.

Poincaré complexes

- The assembly of a (\mathbb{Z}, K)-module chain map
$[K] \cap-: C(K)^{n-*} \rightarrow C\left(K^{\prime}\right)$ is a $\mathbb{Z}\left[\pi_{1}(K)\right]$-module chain map

$$
\begin{gathered}
A([K] \cap-): A\left(C(K)^{n-*}\right)=\operatorname{Hom}_{\mathbb{Z}\left[\pi_{1}(K)\right]}\left(C(\widetilde{K}), \mathbb{Z}\left[\pi_{1}(K)\right]\right)^{n-*} \\
\rightarrow A\left(C\left(K^{\prime}\right)\right)=C\left(\widetilde{K}^{\prime}\right)
\end{gathered}
$$

- An n-dimensional Poincaré complex K is a simplicial complex with a homology class $[K] \in H_{n}(K)$ such that $A([K] \cap-)$ is a $\mathbb{Z}\left[\pi_{1}(K)\right]$-module chain equivalence.
- If the polyhedron $\|K\|$ is an n-dimensional topological manifold then K is an n-dimensional Poincaré complex.
- For each $n \geqslant 4$ there exist n-dimensional topological manifolds which are not polyhedra of simplicial complexes.

Homotopy types of topological manifolds

- If $\|K\|$ is homotopy equivalent to an n-dimensional topological manifold then K is an n-dimensional Poincaré complex.
- The total surgery obstruction $s(K) \in \mathbb{S}_{n}(K)$ of an n-dimensional Poincaré complex K is a homotopy invariant taking value in an abelian group, such that $s(K)=0$ if (and for $n \geqslant 5$ only if) $\|K\|$ is homotopy equivalent to an n-dimensional topological manifold.
- The total rigidity obstruction $s(f) \in \mathbb{S}_{n+1}(f)$ of a homotopy equivalence $f: M \rightarrow N$ of n-dimensional topological manifolds is a homotopy invariant such that $s(f)=0$ if (and for $n \geqslant 5$ only if) f is homotopic to a homeomorphism.

The algebraic surgery exact sequence

- The \mathbb{S}-groups of a simplicial complex K are defined to fit into long exact sequence of abelian groups, cobordism groups of chain complexes C with Poincaré duality (generalized Witt groups)

$$
\begin{aligned}
\cdots \longrightarrow H_{n}(K ; \mathbb{L} \bullet(\mathbb{Z})) \xrightarrow{A} L_{n}\left(\mathbb{Z}\left[\pi_{1}(K)\right]\right) \longrightarrow \\
\mathbb{S}_{n}(K) \longrightarrow H_{n-1}\left(K ; \mathbb{L}_{\bullet}(\mathbb{Z})\right) \longrightarrow \ldots
\end{aligned}
$$

- The total surgery obstruction $s(K) \in \mathbb{S}_{n}(K)$ is the cobordism class of the $\mathbb{Z}\left[\pi_{1}(K)\right]$-module contractible (\mathbb{Z}, K)-module chain complex

$$
C=\mathcal{C}\left([K] \cap-: C(K)^{n-*} \rightarrow C\left(K^{\prime}\right)\right)_{*+1}
$$

with $(n-1)$-dimensional quadratic Poincaré duality.

- Underlying homotopy theory developed in book with Michael Crabb.

The future

Nico Marcel Vallauri
Dedicatee of The geometric Hopf invariant and surgery theory (2018)

References

- (with M. Weiss) Chain complexes and assembly, Mathematische Zeitschrift 204, 157-185 (1990)
- Algebraic L-theory and topological manifolds, Cambridge Tracts in Mathematics 102, CUP (1992)
- Singularities, double points, controlled topology and chain duality, Documenta Math. 4, 1-59 (1999)
- (with M. Crabb) The geometric Hopf invariant and surgery theory, Springer Mathematical Monograph (2018)

