NONCOMMUTATIVE
 LOCALIZATION AND MANIFOLD TRANSVERSALITY

ANDREW RANICKI (Edinburgh)
http://www.maths.ed.ac.uk/~aar

- A group is a generalized free product if it is either an $H N N$ extension or an amalgamated free product. Likewise for rings.
- The noncommutative localization of triangular matrix rings can be used to relate :

1. the topology of manifolds with fundamental group a generalized free product, and
2. the algebraic properties of modules and quadratic forms over a generalized free product.

The Seifert-van Kampen theorem

Let W be a space with a decomposition

$$
W=X \times[0,1] \cup_{X \times\{0,1\}} Y
$$

such that W and X are connected.
Theorem Y has either 1 or 2 components, and the fundamental group $\pi_{1}(W)$ is a generalized free product :

1. If Y is connected then $\pi_{1}(W)$ is an $H N N$ extension

$$
\begin{aligned}
& \pi_{1}(W)=\pi_{1}(Y) * i_{1}, i_{2}\{z\} \\
& \quad=\pi_{1}(Y) *\{z\} /\left\{i_{1}(x) z=z i_{2}(x) \mid x \in \pi_{1}(X)\right\}
\end{aligned}
$$

with $i_{1}, i_{2}: \pi_{1}(X) \rightarrow \pi_{1}(Y)$ induced by the two inclusions $i_{1}, i_{2}: X \rightarrow Y$.
2. If Y is disconnected, $Y=Y_{1} \cup Y_{2}$, then $\pi_{1}(W)$ is an amalgamated free product

$$
\pi_{1}(W)=\pi_{1}\left(Y_{1}\right) *_{\pi_{1}(X)} \pi_{1}\left(Y_{2}\right)
$$

with $i_{1}: \pi_{1}(X) \rightarrow \pi_{1}\left(Y_{1}\right), i_{2}: \pi_{1}(X) \rightarrow \pi_{1}\left(Y_{2}\right)$ induced by the inclusions $i_{1}: X \rightarrow Y_{1}, i_{2}: X \rightarrow$ Y_{2}.

Mayer-Vietoris and transversality

- The homology groups of $W=X \times[0,1] \cup Y$ fit into the Mayer-Vietoris exact sequence

$$
\begin{aligned}
\cdots \rightarrow H_{n}(X) & \stackrel{i_{1}-i_{2}}{ } H_{n}(Y) \\
& \rightarrow H_{n}(W) \xrightarrow{\partial} H_{n-1}(X) \rightarrow \ldots .
\end{aligned}
$$

- A map $f: V \rightarrow W$ is transverse at $X \subset W$ if

$$
V=T \times[0,1] \cup U
$$

with $T=f^{-1}(X), U=f^{-1}(Y)$.

- A homotopy equivalence $f: V \rightarrow W$ splits if it is homotopic to a transverse map such that the restrictions $f|: T \rightarrow X, f|: U \rightarrow Y$ are also homotopy equivalences.

Geometric transversality

- Every map $f: V^{n} \rightarrow W=X \times[0,1] \cup Y$ from a manifold V is homotopic to a transverse map, with $T^{n-1}=f^{-1}(X) \subset V^{n}$ a codimension 1 submanifold.
- A homotopy equivalence of manifolds

$$
f: V^{n} \rightarrow W^{n}=X^{n-1} \times[0,1] \cup Y^{n}
$$

does not split in general.

- For $n \geqslant 6$ a homotopy equivalence of manifolds splits if and only if certain algebraic K - and L-theory obstructions vanish.
- If a homotopy equivalence is homotopic to a homeomorphism then it splits. There exist homotopy equivalences which do not split, and are therefore not homotopic to homeomorphisms.

Splitting obstruction theory

- The algebraic K-groups of $\mathbb{Z}\left[\pi_{1}(W)\right]$ for $W=X \times[0,1] \cup Y$ with

$$
\pi_{1}(X) \rightarrow \pi_{1}(W) \text { injective }
$$

fit into almost-Mayer-Vietoris exact sequence

$$
\begin{aligned}
& \cdots \rightarrow K_{n}\left(\mathbb{Z}\left[\pi_{1}(X)\right]\right) \stackrel{i_{1}-i_{2}}{ } K_{n}\left(\mathbb{Z}\left[\pi_{1}(Y)\right]\right) \rightarrow \\
& K_{n}\left(\mathbb{Z}\left[\pi_{1}(W)\right]\right) \xrightarrow{\partial} \widetilde{\mathrm{NiI}_{n-1} \oplus K_{n-1}\left(\mathbb{Z}\left[\pi_{1}(X)\right]\right) \rightarrow \cdots}
\end{aligned}
$$

with $\widetilde{\mathrm{Nil}}_{*}$ the exotic algebraic K-groups of nilpotent endomorphisms of f.g. projective modules.

- The K-theory splitting obstruction of a homotopy equivalence $f: V \rightarrow W$ is $\partial(\tau(f))$ with $\tau(f)=$ Whitehead torsion $\in K_{1}\left(\mathbb{Z}\left[\pi_{1}(W)\right]\right)$.
- Similarly for the algebraic L-groups of quadratic forms.

Algebraic transversality

- Let $W=X \times[0,1] \cup Y$, so that $\pi_{1}(W)$ is a generalized free product of $\pi_{1}(X), \pi_{1}(Y)$.
- A Mayer-Vietoris presentation of a finite f.g. free $\mathbb{Z}\left[\pi_{1}(W)\right]$-module chain complex C is an exact sequence

$$
\begin{aligned}
& 0 \rightarrow \mathbb{Z}\left[\pi_{1}(W)\right] \otimes_{\mathbb{Z}\left[\pi_{1}(X)\right]} D \\
& \xrightarrow{i_{1}-i_{2}} \mathbb{Z}\left[\pi_{1}(W)\right] \otimes_{\mathbb{Z}\left[\pi_{1}(Y)\right]} E \rightarrow C \rightarrow 0
\end{aligned}
$$

with D a finite f.g. free $\mathbb{Z}\left[\pi_{1}(X)\right]$-module chain complex, E a finite f.g. free $\mathbb{Z}\left[\pi_{1}(Y)\right]$ module chain complex, and $i_{1}, i_{2} \mathbb{Z}\left[\pi_{1}(Y)\right]$ module chain maps $\mathbb{Z}\left[\pi_{1}(Y)\right] \otimes_{\mathbb{Z}\left[\pi_{1}(X)\right]} D \rightarrow E$.

- If $\pi_{1}(X) \rightarrow \pi_{1}(W)$ is injective every C admits a Mayer-Vietoris presentation.

The universal cover and fundamental domains

- The fundamental group $\pi_{1}(W)$ of a connected space W acts on the universal cover \widetilde{W} by covering translations $\pi_{1}(W) \times \widetilde{W} \rightarrow$ \widetilde{W}. The homology $\mathbb{Z}\left[\pi_{1}(W)\right]$-modules are

$$
H_{*}(\widetilde{W})=H_{*}(C(\widetilde{W}))
$$

with $C(\widetilde{W})$ a free $\mathbb{Z}\left[\pi_{1}(W)\right]$-module chain complex (simplicial, cellular, singular, ...).

- For $W=X \times[0,1] \cup Y$ the universal cover \widetilde{W} has fundamental domain the universal cover \tilde{Y} of Y, with adjoining translates intersecting in copies of the universal cover \widetilde{X} of X. Geometry gives the Mayer-Vietoris presentation

$$
\begin{aligned}
& 0 \rightarrow \mathbb{Z}\left[\pi_{1}(W)\right] \otimes_{\mathbb{Z}\left[\pi_{1}(X)\right]} C(\widetilde{X}) \\
& \stackrel{i_{1}-i_{2}}{ } \mathbb{Z}\left[\pi_{1}(W)\right] \otimes_{\mathbb{Z}\left[\pi_{1}(Y)\right]} C(\widetilde{Y}) \rightarrow C(\widetilde{W}) \rightarrow 0
\end{aligned}
$$

Morita theory

For any ring D and $k \geqslant 1$ let $M_{k}(D)$ be the ring of $k \times k$ matrices in D.

Proposition (i) The functors
$\{D$-modules $\} \rightarrow\left\{M_{k}(D)\right.$-modules $\} ;$

$$
M \mapsto\left(\begin{array}{c}
D \\
D \\
\vdots \\
D
\end{array}\right) \otimes_{D} M,
$$

$\left\{M_{k}(D)\right.$-modules $\} \rightarrow\{D$-modules $\} ;$

$$
N \mapsto(D \quad D \ldots D) \otimes_{M_{k}(D)} N
$$

are inverse equivalences of categories.
(ii) $K_{*}\left(M_{k}(D)\right)=K_{*}(D)$.

The Mayer-Vietoris localization

Key idea: for $W=X \times[0,1] \cup Y$ the expression of $\pi_{1}(W)$ as a generalized free product motivates the construction of a triangular matrix ring A with a noncommutative localization the matrix ring

$$
\Sigma^{-1} A=M_{k}\left(\mathbb{Z}\left[\pi_{1}(W)\right]\right)
$$

where $k=($ no. of components of $Y)+1$.
The localization functor
$\{A$-modules $\} \rightarrow\left\{\Sigma^{-1} A\right.$-modules $\} ; M \mapsto \Sigma^{-1} M$ is an algebraic analogue of the forgetful functor $\{$ transverse maps $V \rightarrow W\} \rightarrow\{$ maps $V \rightarrow W\}$. For any map $V \rightarrow W C(\tilde{V})$ is a $\Sigma^{-1} A$-module chain complex, up to Morita equivalence. For a transverse map $V=T \times[0,1] \cup U \rightarrow W$ the Mayer-Vietoris presentation of $C(\tilde{V})$ is an A module chain complex Γ such that

$$
\Sigma^{-1} \Gamma=C(\tilde{V})
$$

A polynomial extension is a noncommutative localization

For any ring R define the triangular matrix ring

$$
A=\left(\begin{array}{cc}
R & 0 \\
R \oplus R & R
\end{array}\right)
$$

An A-module is a quadruple

$$
M=\left(K, L, \mu_{1}, \mu_{2}: K \rightarrow L\right)
$$

with $K, L R$-modules and $\mu_{1}, \mu_{2} R$-module morphisms. The localization of A inverting

$$
\Sigma=\left\{\sigma_{1}, \sigma_{2}:\binom{0}{R} \rightarrow\binom{R}{R \oplus R}\right\}
$$

is a ring morphism

$$
A \rightarrow \Sigma^{-1} A=M_{2}(D), D=R\left[z, z^{-1}\right]
$$

such that
$\{A$-modules $\} \rightarrow\left\{M_{2}(D)\right.$-modules $\} \approx\{D$-modules $\}$ sends an A-module M to the D-module
$(D D) \otimes_{A} M$
$=\operatorname{coker}\left(\mu_{1}-z \mu_{2}: K\left[z, z^{-1}\right] \rightarrow L\left[z, z^{-1}\right]\right)$

Manifolds over S^{1}

- Given a manifold V^{n} and map $f: V \rightarrow W=$ S^{1} which is transverse at $X=\{\mathrm{pt}.\} \subset S^{1}$ cut V along the codimension 1 submanifold $T^{n-1}=f^{-1}(X) \subset V$ to obtain

$$
V=T \times[0,1] \cup_{T \times\{0,1\}} U .
$$

The cobordism ($U ; T_{0}, T_{1}$) is a fundamental domain for the infinite cyclic cover $\bar{V}=f^{*} \mathbb{R}$ of V, with T_{0}, T_{1} copies of T.

- $A=\left(\begin{array}{cc}\mathbb{Z} & 0 \\ \mathbb{Z} \oplus \mathbb{Z} & \mathbb{Z}\end{array}\right), \quad \Sigma^{-1} A=M_{2}\left(\mathbb{Z}\left[z, z^{-1}\right]\right)$.

The A-module chain complex

$$
\Gamma=\left(C(T), C(U), \mu_{1}, \mu_{2}\right)
$$

induces the $\mathbb{Z}\left[z, z^{-1}\right]$-module chain complex

$$
\begin{aligned}
& (D D) \otimes_{A}\ulcorner \\
& =\operatorname{coker}\left(\mu_{1}-z \mu_{2}: C(T)\left[z, z^{-1}\right] \rightarrow C(U)\left[z, z^{-1}\right]\right) \\
& =C(\bar{V})
\end{aligned}
$$

The lifting problem for chain complexes

- Let $\Sigma^{-1} A$ be the localization of A inverting a set Σ of morphisms of f.g. projective A modules.
- A lift of a finite f.g. free $\Sigma^{-1} A$-module chain complex C is a finite f.g. projective A-module chain complex B with a chain equivalence $\Sigma^{-1} B \simeq C$.
- Every n-dimensional f.g. free $\Sigma^{-1} A$-module chain complex C can be lifted if $n \leqslant 2$. For $n \geqslant 3$ there are lifting obstructions in $\operatorname{Tor}_{i}^{A}\left(\Sigma^{-1} A, \Sigma^{-1} A\right)$ for $i \geqslant 1$.
- Definition A localization $\Sigma^{-1} A$ of a ring A inverting a set Σ of morphisms of f.g. projective A-modules is stably flat if

$$
\operatorname{Tor}_{i}^{A}\left(\Sigma^{-1} A, \Sigma^{-1} A\right)=0(i \geqslant 1)
$$

Theorem of Neeman +R .

If $A \rightarrow \Sigma^{-1} A$ is injective and stably flat then :

- have 'fibration sequence of exact categories'

$$
T(A, \Sigma) \rightarrow P(A) \rightarrow P\left(\Sigma^{-1} A\right)
$$

with $P(A)$ the category of f.g. projective A-modules and $T(A, \Sigma)$ the category of h.d. 1Σ-torsion A-modules, and

- every finite f.g. free $\Sigma^{-1} A$-module chain complex can be lifted, and
- there is a long exact sequence in algebraic K-theory

$$
\begin{aligned}
\cdots \rightarrow K_{n+1}\left(\Sigma^{-1} A\right) & \rightarrow K_{n}(T(A, \Sigma)) \\
\rightarrow K_{n}(A) & \rightarrow K_{n}\left(\Sigma^{-1} A\right) \rightarrow \ldots
\end{aligned}
$$

- http://arXiv.org/abs/math.RA/0109118

Modules over a triangular matrix ring

Given rings A_{1}, A_{2} and an $\left(A_{2}, A_{1}\right)$-bimodule B define the triangular matrix ring

$$
A=\left(\begin{array}{cc}
A_{1} & 0 \\
B & A_{2}
\end{array}\right)
$$

with f.g. projectives $P_{1}=\binom{A_{1}}{B}, P_{2}=\binom{0}{A_{2}}$.
Proposition (i) The category of A-modules is equivalent to the category of triples

$$
M=\left(M_{1}, M_{2}, \mu: B \otimes_{A_{1}} M_{1} \rightarrow M_{2}\right)
$$

with M_{1} an A_{1}-module, M_{2} an A_{2}-module and μ an A_{2}-module morphism.
(ii) $K_{*}(A)=K_{*}\left(A_{1}\right) \oplus K_{*}\left(A_{2}\right)$.
(iii) If $A \rightarrow C$ is a ring morphism such that there is a C-module isomorphism $C \otimes_{A} P_{1} \cong C \otimes_{A} P_{2}$ then $C=M_{2}(D)$ with $D=\operatorname{End}_{C}\left(C \otimes_{A} P_{1}\right)$,
$\{A$-modules $\} \rightarrow\{C$-modules $\} \approx\{D$-modules $\} ;$
$M \mapsto(D D) \otimes_{A} M$
$=\operatorname{coker}\left(D \otimes_{A_{2}} B \otimes_{A_{1}} M_{1} \rightarrow D \otimes_{A_{1}} M_{1} \oplus D \otimes_{A_{2}} M_{2}\right)$

The stable flatness theorem

Theorem Let

$$
A=\left(\begin{array}{cc}
A_{1} & 0 \\
B & A_{2}
\end{array}\right) \rightarrow A_{\Sigma}=M_{2}(D)
$$

be the localization inverting a set Σ of A module morphisms $\sigma:\binom{0}{A_{2}} \rightarrow\binom{A_{1}}{B}$. If B and D are flat A_{1}-modules and D is a flat $A_{2^{-}}$ module then A_{Σ} is stably flat.
Proof The A-module $E=\binom{D}{D}$ has a 1-dimensional flat A-module resolution

$$
\begin{aligned}
0 & \rightarrow\binom{0}{B} \otimes_{A_{1}} D \\
& \rightarrow\binom{A_{1}}{B} \otimes_{A_{1}} D \oplus\binom{0}{A_{2}} \otimes_{A_{2}} D \rightarrow E \rightarrow 0
\end{aligned}
$$

and hence so does $A_{\Sigma}=E \oplus E$.

$H N N$ extensions

The $H N N$ extension of ring morphisms i_{1}, i_{2} : $R \rightarrow S$ is the ring
$S *_{i_{1}, i_{2}}\{z\}=S * \mathbb{Z} /\left\{i_{1}(x) z=z i_{2}(x) \mid x \in R\right\}$.
Corollary 1. Let $A=\left(\begin{array}{cc}R & 0 \\ S_{1} \oplus S_{2} & S\end{array}\right)$, with $S_{j}=S$ the (S, R)-bimodule

$$
S \times S_{j} \times R \rightarrow S_{j} ; \quad(s, t, u) \mapsto s t i_{j}(u)
$$

The localization of A inverting the inclusions

$$
\begin{aligned}
& \Sigma=\left\{\sigma_{1}, \sigma_{2}:\binom{0}{S}\right.\left.\rightarrow\binom{R}{S_{1} \oplus S_{2}}\right\} \text { is } \\
& \Sigma^{-1} A=M_{2}\left(S *_{i_{1}, i_{2}}\{z\}\right) .
\end{aligned}
$$

If $i_{1}, i_{2}: R \rightarrow S$ are split injections and S_{1}, S_{2} are flat R-modules then $A \rightarrow \Sigma^{-1} A$ is injective and stably flat. The algebraic K-theory localization exact sequence has

$$
\begin{aligned}
& K_{n}(A)=K_{n}(R) \oplus K_{n}(S) \\
& K_{n}\left(\Sigma^{-1} A\right)=K_{n}\left(S *_{i_{1}, i_{2}}\{z\}\right), \\
& K_{n}(T(A, \Sigma))=K_{n}(R) \oplus K_{n}(R) \oplus{\widetilde{\operatorname{NiI}_{n}}}_{n} .
\end{aligned}
$$

Amalgamated free products

The amalgamated free product $S_{1} *_{R} S_{2}$ is defined for ring morphisms $R \rightarrow S_{1}, R \rightarrow S_{2}$.
Corollary 2. The localization of the ring

$$
A=\left(\begin{array}{ccc}
R & 0 & 0 \\
S_{1} & S_{1} & 0 \\
S_{2} & 0 & S_{2}
\end{array}\right)
$$

inverting the inclusions
$\Sigma=\left\{\sigma_{1}:\left(\begin{array}{c}0 \\ S_{1} \\ 0\end{array}\right) \rightarrow\left(\begin{array}{c}R \\ S_{1} \\ S_{2}\end{array}\right), \sigma_{2}:\left(\begin{array}{c}0 \\ 0 \\ S_{2}\end{array}\right) \rightarrow\left(\begin{array}{c}R \\ S_{1} \\ S_{2}\end{array}\right)\right\}$
is the 3×3 matrix ring

$$
\Sigma^{-1} A=M_{3}\left(S_{1} *_{R} S_{2}\right)
$$

If $R \rightarrow S_{1}, R \rightarrow S_{2}$ are split injections with S_{1}, S_{2} flat R-modules then $A \rightarrow \Sigma^{-1} A$ is injective and stably flat. The algebraic K-theory localization exact sequence has

$$
\begin{aligned}
& K_{n}(A)=K_{n}(R) \oplus K_{n}\left(S_{1}\right) \oplus K_{n}\left(S_{2}\right) \\
& K_{n}\left(\Sigma^{-1} A\right)=K_{n}\left(S_{1} *_{R} S_{2}\right) \\
& K_{n}(T(A, \Sigma))=K_{n}(R) \oplus K_{n}(R) \oplus{\widetilde{\operatorname{NiI}_{n}}}^{2} .
\end{aligned}
$$

A localization which is not stably flat

- Given a ring extension $R \subset S$ and an S module M let

$$
K(M)=\operatorname{ker}\left(S \otimes_{R} M \rightarrow M\right) .
$$

- Theorem (Neeman, R. and Schofield)
(i) The localization of the triangular matrix ring

$$
A=\left(\begin{array}{ccc}
R & 0 & 0 \\
S & R & 0 \\
S & S & R
\end{array}\right)=P_{1} \oplus P_{2} \oplus P_{3}
$$

inverting $\Sigma=\left\{P_{3} \subset P_{2}, P_{2} \subset P_{1}\right\}$ is

$$
\Sigma^{-1} A=M_{3}(S)
$$

(ii) If S is flat as an R-module then

$$
\operatorname{Tor}_{2}^{A}\left(\Sigma^{-1} A, \Sigma^{-1} A\right)=M_{3}\left(K^{3}(S)\right) .
$$

(iii) If R is a field and $S=R^{d}$ then

$$
K^{3}(S)=R^{(d-1)^{3} d}
$$

