NONCOMMUTATIVE LOCALIZATION AND MANIFOLD TRANSVERSALITY

ANDREW RANICKI (Edinburgh) http://www.maths.ed.ac.uk/~aar

- A group is a <u>generalized free product</u> if it is either an *HNN* extension or an amalgamated free product. Likewise for rings.
- The noncommutative localization of triangular matrix rings can be used to relate :
 - the topology of manifolds with fundamental group a generalized free product, and
 - 2. the algebraic properties of modules and quadratic forms over a generalized free product.

The Seifert-van Kampen theorem

Let \boldsymbol{W} be a space with a decomposition

$$W = X \times [0,1] \cup_{X \times \{0,1\}} Y$$

such that W and X are connected.

<u>Theorem</u> Y has either 1 or 2 components, and the fundamental group $\pi_1(W)$ is a generalized free product :

1. If Y is connected then $\pi_1(W)$ is an HNN extension

$$\pi_1(W) = \pi_1(Y) *_{i_1, i_2} \{z\}$$

= $\pi_1(Y) * \{z\}/\{i_1(x)z = zi_2(x) | x \in \pi_1(X)\}$ with $i_1, i_2 : \pi_1(X) \to \pi_1(Y)$ induced by the two inclusions $i_1, i_2 : X \to Y$.

2. If Y is disconnected, $Y = Y_1 \cup Y_2$, then $\pi_1(W)$ is an amalgamated free product

 $\pi_1(W) = \pi_1(Y_1) *_{\pi_1(X)} \pi_1(Y_2)$ with $i_1 : \pi_1(X) \to \pi_1(Y_1), i_2 : \pi_1(X) \to \pi_1(Y_2)$ induced by the inclusions $i_1 : X \to Y_1, i_2 : X \to Y_2$.

Mayer-Vietoris and transversality

• The homology groups of $W = X \times [0, 1] \cup Y$ fit into the Mayer-Vietoris exact sequence

$$\dots \to H_n(X) \xrightarrow{i_1 - i_2} H_n(Y)$$
$$\to H_n(W) \xrightarrow{\partial} H_{n-1}(X) \to \dots$$

• A map $f: V \to W$ is <u>transverse</u> at $X \subset W$ if

 $V = T \times [0, 1] \cup U$

with $T = f^{-1}(X)$, $U = f^{-1}(Y)$.

• A homotopy equivalence $f: V \to W$ <u>splits</u> if it is homotopic to a transverse map such that the restrictions $f|: T \to X$, $f|: U \to Y$ are also homotopy equivalences.

Geometric transversality

- Every map $f: V^n \to W = X \times [0, 1] \cup Y$ from a manifold V is homotopic to a transverse map, with $T^{n-1} = f^{-1}(X) \subset V^n$ a codimension 1 submanifold.
- A homotopy equivalence of manifolds $f: V^n \to W^n = X^{n-1} \times [0,1] \cup Y^n$

does not split in general.

- For n ≥ 6 a homotopy equivalence of manifolds splits if and only if certain algebraic K- and L-theory obstructions vanish.
- If a homotopy equivalence is homotopic to a homeomorphism then it splits. There exist homotopy equivalences which do not split, and are therefore not homotopic to homeomorphisms.

Splitting obstruction theory

• The algebraic K-groups of $\mathbb{Z}[\pi_1(W)]$ for $W = X \times [0, 1] \cup Y$ with

$$\pi_1(X) \to \pi_1(W)$$
 injective

fit into almost-Mayer-Vietoris exact sequence

 $\cdots \to K_n(\mathbb{Z}[\pi_1(X)]) \xrightarrow{i_1 - i_2} K_n(\mathbb{Z}[\pi_1(Y)]) \to$

 $K_n(\mathbb{Z}[\pi_1(W)]) \xrightarrow{\partial} \widetilde{\operatorname{Nil}}_{n-1} \oplus K_{n-1}(\mathbb{Z}[\pi_1(X)]) \to \dots$

with Nil_{*} the exotic algebraic K-groups of nilpotent endomorphisms of f.g. projective modules.

- The K-theory splitting obstruction of a homotopy equivalence $f: V \to W$ is $\partial(\tau(f))$ with $\tau(f) =$ Whitehead torsion $\in K_1(\mathbb{Z}[\pi_1(W)])$.
- Similarly for the algebraic *L*-groups of quadratic forms.

Algebraic transversality

- Let $W = X \times [0, 1] \cup Y$, so that $\pi_1(W)$ is a generalized free product of $\pi_1(X)$, $\pi_1(Y)$.
- A <u>Mayer-Vietoris presentation</u> of a finite f.g. free $\mathbb{Z}[\pi_1(W)]$ -module chain complex C is an exact sequence

$$0 \to \mathbb{Z}[\pi_1(W)] \otimes_{\mathbb{Z}[\pi_1(X)]} D$$

 $\xrightarrow{\imath_1 - \imath_2} \mathbb{Z}[\pi_1(W)] \otimes_{\mathbb{Z}[\pi_1(Y)]} E \to C \to 0$

with D a finite f.g. free $\mathbb{Z}[\pi_1(X)]$ -module chain complex, E a finite f.g. free $\mathbb{Z}[\pi_1(Y)]$ module chain complex, and $i_1, i_2 \mathbb{Z}[\pi_1(Y)]$ module chain maps $\mathbb{Z}[\pi_1(Y)] \otimes_{\mathbb{Z}[\pi_1(X)]} D \to E$.

• If $\pi_1(X) \to \pi_1(W)$ is injective every C admits a Mayer-Vietoris presentation.

The universal cover and fundamental domains

• The fundamental group $\pi_1(W)$ of a connected space W acts on the universal cover \widetilde{W} by covering translations $\pi_1(W) \times \widetilde{W} \rightarrow \widetilde{W}$. The homology $\mathbb{Z}[\pi_1(W)]$ -modules are

$$H_*(\widetilde{W}) = H_*(C(\widetilde{W}))$$

with $C(\widetilde{W})$ a free $\mathbb{Z}[\pi_1(W)]$ -module chain complex (simplicial, cellular, singular, ...).

• For $W = X \times [0, 1] \cup Y$ the universal cover \widetilde{W} has fundamental domain the universal cover \widetilde{Y} of Y, with adjoining translates intersecting in copies of the universal cover \widetilde{X} of X. Geometry gives the Mayer-Vietoris presentation

$$0 \to \mathbb{Z}[\pi_1(W)] \otimes_{\mathbb{Z}[\pi_1(X)]} C(\widetilde{X})$$
$$\xrightarrow{i_1 - i_2} \mathbb{Z}[\pi_1(W)] \otimes_{\mathbb{Z}[\pi_1(Y)]} C(\widetilde{Y}) \to C(\widetilde{W}) \to 0$$

Morita theory

For any ring D and $k \ge 1$ let $M_k(D)$ be the ring of $k \times k$ matrices in D.

Proposition (i) The functors

 $\{D\operatorname{-modules}\} \rightarrow \{M_k(D)\operatorname{-modules}\}$;

$$\begin{split} M \mapsto \begin{pmatrix} D \\ D \\ \vdots \\ D \end{pmatrix} \otimes_D M , \\ \{M_k(D) \text{-modules}\} \to \{D \text{-modules}\} ; \\ N \mapsto (D \ D \ \dots \ D) \otimes_{M_k(D)} N \\ \text{are inverse equivalences of categories.} \\ (\text{ii}) \ K_*(M_k(D)) = K_*(D). \end{split}$$

The Mayer-Vietoris localization

Key idea: for $W = X \times [0, 1] \cup Y$ the expression of $\pi_1(W)$ as a generalized free product motivates the construction of a triangular matrix ring A with a noncommutative localization the matrix ring

$$\Sigma^{-1}A = M_k(\mathbb{Z}[\pi_1(W)])$$

where k = (no. of components of Y) + 1. The localization functor

 ${A-\text{modules}} \rightarrow {\Sigma^{-1}A-\text{modules}}$; $M \mapsto \Sigma^{-1}M$ is an algebraic analogue of the forgetful functor

{transverse maps $V \to W$ } \to {maps $V \to W$ }. For any map $V \to W C(\tilde{V})$ is a $\Sigma^{-1}A$ -module chain complex, up to Morita equivalence. For a transverse map $V = T \times [0, 1] \cup U \to W$ the Mayer-Vietoris presentation of $C(\tilde{V})$ is an A-module chain complex Γ such that

$$\Sigma^{-1}\Gamma = C(\widetilde{V}) .$$

A polynomial extension is a noncommutative localization

For any ring ${\cal R}$ define the triangular matrix ring

$$A = \begin{pmatrix} R & 0 \\ R \oplus R & R \end{pmatrix}$$

An A-module is a quadruple

$$M = (K, L, \mu_1, \mu_2 : K \to L)$$

with K, L R-modules and $\mu_1, \mu_2 R$ -module morphisms. The localization of A inverting

$$\Sigma = \{\sigma_1, \sigma_2 : \begin{pmatrix} 0 \\ R \end{pmatrix} \to \begin{pmatrix} R \\ R \oplus R \end{pmatrix} \}$$

is a ring morphism

 $A \rightarrow \Sigma^{-1}A = M_2(D) , D = R[z, z^{-1}]$ such that

 ${A-\text{modules}} \rightarrow {M_2(D)-\text{modules}} \approx {D-\text{modules}}$ sends an A-module M to the D-module

$$(D \ D) \otimes_A M$$

= coker
$$(\mu_1 - z\mu_2 : K[z, z^{-1}] \to L[z, z^{-1}])$$

Manifolds over S^1

• Given a manifold V^n and map $f: V \to W = S^1$ which is transverse at $X = \{\text{pt.}\} \subset S^1$ cut V along the codimension 1 submanifold $T^{n-1} = f^{-1}(X) \subset V$ to obtain

 $V = T \times [0, 1] \cup_{T \times \{0, 1\}} U$.

The cobordism $(U; T_0, T_1)$ is a fundamental domain for the infinite cyclic cover $\overline{V} = f^*\mathbb{R}$ of V, with T_0, T_1 copies of T.

• $A = \begin{pmatrix} \mathbb{Z} & 0 \\ \mathbb{Z} \oplus \mathbb{Z} & \mathbb{Z} \end{pmatrix}$, $\Sigma^{-1}A = M_2(\mathbb{Z}[z, z^{-1}])$. The *A*-module chain complex

 $\Gamma = (C(T), C(U), \mu_1, \mu_2)$

induces the $\mathbb{Z}[z, z^{-1}]$ -module chain complex

$$(D \ D) \otimes_A \Gamma$$

= $\operatorname{coker}(\mu_1 - z\mu_2 : C(T)[z, z^{-1}] \to C(U)[z, z^{-1}])$
= $C(\overline{V})$.

The lifting problem for chain complexes

- Let Σ⁻¹A be the localization of A inverting a set Σ of morphisms of f.g. projective Amodules.
- A <u>lift</u> of a finite f.g. free $\Sigma^{-1}A$ -module chain complex C is a finite f.g. projective A-module chain complex B with a chain equivalence $\Sigma^{-1}B \simeq C$.
- Every *n*-dimensional f.g. free $\Sigma^{-1}A$ -module chain complex C can be lifted if $n \leq 2$. For $n \geq 3$ there are lifting obstructions in $\operatorname{Tor}_{i}^{A}(\Sigma^{-1}A,\Sigma^{-1}A)$ for $i \geq 1$.
- <u>Definition</u> A localization $\Sigma^{-1}A$ of a ring A inverting a set Σ of morphisms of f.g. projective A-modules is <u>stably flat</u> if

$$\operatorname{Tor}_i^A(\Sigma^{-1}A,\Sigma^{-1}A) = 0 \ (i \ge 1)$$
.

Theorem of Neeman + R.

If $A \to \Sigma^{-1}A$ is injective and stably flat then :

• have 'fibration sequence of exact categories'

$$T(A, \Sigma) \to P(A) \to P(\Sigma^{-1}A)$$

with P(A) the category of f.g. projective A-modules and $T(A, \Sigma)$ the category of h.d. 1 Σ -torsion A-modules, and

- every finite f.g. free $\Sigma^{-1}A$ -module chain complex can be lifted, and
- there is a long exact sequence in algebraic *K*-theory

$$\cdots \to K_{n+1}(\Sigma^{-1}A) \to K_n(T(A,\Sigma))$$
$$\to K_n(A) \to K_n(\Sigma^{-1}A) \to \dots$$

• http://arXiv.org/abs/math.RA/0109118

Modules over a triangular matrix ring

Given rings A_1, A_2 and an (A_2, A_1) -bimodule B define the triangular matrix ring

$$A = \begin{pmatrix} A_1 & 0 \\ B & A_2 \end{pmatrix}$$

with f.g. projectives $P_1 = \begin{pmatrix} A_1 \\ B \end{pmatrix}$, $P_2 = \begin{pmatrix} 0 \\ A_2 \end{pmatrix}$.

<u>Proposition</u> (i) The category of A-modules is equivalent to the category of triples

$$M = (M_1, M_2, \mu : B \otimes_{A_1} M_1 \to M_2)$$

with M_1 an A_1 -module, M_2 an A_2 -module and μ an A_2 -module morphism.

(ii) $K_*(A) = K_*(A_1) \oplus K_*(A_2).$

(iii) If $A \to C$ is a ring morphism such that there is a *C*-module isomorphism $C \otimes_A P_1 \cong C \otimes_A P_2$ then $C = M_2(D)$ with $D = \text{End}_C(C \otimes_A P_1)$,

 ${A-\text{modules}} \rightarrow {C-\text{modules}} \approx {D-\text{modules}};$ $M \mapsto (D \ D) \otimes_A M$

 $= \operatorname{coker}(D \otimes_{A_2} B \otimes_{A_1} M_1 \to D \otimes_{A_1} M_1 \oplus D \otimes_{A_2} M_2)$

The stable flatness theorem

Theorem Let

$$A = \begin{pmatrix} A_1 & 0 \\ B & A_2 \end{pmatrix} \to A_{\Sigma} = M_2(D)$$

be the localization inverting a set Σ of Amodule morphisms $\sigma : \begin{pmatrix} 0 \\ A_2 \end{pmatrix} \rightarrow \begin{pmatrix} A_1 \\ B \end{pmatrix}$. If Band D are flat A_1 -modules and D is a flat A_2 module then A_{Σ} is stably flat. <u>Proof</u> The A-module $E = \begin{pmatrix} D \\ D \end{pmatrix}$ has a 1-dimensional flat A-module resolution

$$0 \to \begin{pmatrix} 0 \\ B \end{pmatrix} \otimes_{A_1} D$$

$$\to \begin{pmatrix} A_1 \\ B \end{pmatrix} \otimes_{A_1} D \oplus \begin{pmatrix} 0 \\ A_2 \end{pmatrix} \otimes_{A_2} D \to E \to 0$$

and hence so does $A_{\Sigma} = E \oplus E$.

HNN extensions

The HNN extension of ring morphisms i_1,i_2 : $R \rightarrow S$ is the ring

 $S *_{i_1,i_2} \{z\} = S * \mathbb{Z}/\{i_1(x)z = zi_2(x) | x \in R\}.$ <u>Corollary 1.</u> Let $A = \begin{pmatrix} R & 0 \\ S_1 \oplus S_2 & S \end{pmatrix}$, with $S_j = S$ the (S, R)-bimodule

$$\begin{split} S \times S_j \times R \to S_j \ ; \ (s,t,u) \mapsto sti_j(u) \ . \end{split}$$
The localization of A inverting the inclusions $\Sigma = \{\sigma_1, \sigma_2 : \begin{pmatrix} 0 \\ S \end{pmatrix} \to \begin{pmatrix} R \\ S_1 \oplus S_2 \end{pmatrix}\} \text{ is}$ $\Sigma^{-1}A \ = \ M_2(S *_{i_1,i_2} \{z\}) \ . \end{split}$

If $i_1, i_2 : R \to S$ are split injections and S_1, S_2 are flat *R*-modules then $A \to \Sigma^{-1}A$ is injective and stably flat. The algebraic *K*-theory localization exact sequence has

$$K_n(A) = K_n(R) \oplus K_n(S) ,$$

$$K_n(\Sigma^{-1}A) = K_n(S *_{i_1,i_2} \{z\}) ,$$

$$K_n(T(A,\Sigma)) = K_n(R) \oplus K_n(R) \oplus \widetilde{\mathsf{Nil}}_n .$$

Amalgamated free products

The amalgamated free product $S_1 *_R S_2$ is defined for ring morphisms $R \to S_1$, $R \to S_2$.

Corollary 2. The localization of the ring

$$A = \begin{pmatrix} R & 0 & 0\\ S_1 & S_1 & 0\\ S_2 & 0 & S_2 \end{pmatrix}$$

inverting the inclusions

$$\Sigma = \{\sigma_1 : \begin{pmatrix} 0\\S_1\\0 \end{pmatrix} \to \begin{pmatrix} R\\S_1\\S_2 \end{pmatrix}, \sigma_2 : \begin{pmatrix} 0\\0\\S_2 \end{pmatrix} \to \begin{pmatrix} R\\S_1\\S_2 \end{pmatrix} \}$$

is the 3×3 matrix ring

$$\Sigma^{-1}A = M_3(S_1 *_R S_2)$$
.

If $R \to S_1$, $R \to S_2$ are split injections with S_1, S_2 flat *R*-modules then $A \to \Sigma^{-1}A$ is injective and stably flat. The algebraic *K*-theory localization exact sequence has

$$K_n(A) = K_n(R) \oplus K_n(S_1) \oplus K_n(S_2) ,$$

$$K_n(\Sigma^{-1}A) = K_n(S_1 *_R S_2) ,$$

$$K_n(T(A, \Sigma)) = K_n(R) \oplus K_n(R) \oplus \widetilde{\operatorname{Nil}}_n .$$
17

A localization which is not stably flat

 \bullet Given a ring extension $R \subset S$ and an S- module M let

$$K(M) = \ker(S \otimes_R M \to M)$$
.

Theorem (Neeman, R. and Schofield)
 (i) The localization of the triangular matrix ring

$$A = \begin{pmatrix} R & 0 & 0 \\ S & R & 0 \\ S & S & R \end{pmatrix} = P_1 \oplus P_2 \oplus P_3$$

inverting $\Sigma = \{P_3 \subset P_2, P_2 \subset P_1\}$ is
 $\Sigma^{-1}A = M_3(S)$
(ii) If S is flat as an R-module then
 $\operatorname{Tor}_2^A(\Sigma^{-1}A, \Sigma^{-1}A) = M_3(K^3(S))$.
(iii) If R is a field and $S = R^d$ then
 $K^3(S) = R^{(d-1)^3d}$.