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• A group is a generalized free product if it

is either an HNN extension or an amalga-
mated free product. Likewise for rings.

• The noncommutative localization of trian-
gular matrix rings can be used to relate :

1. the topology of manifolds with
fundamental group a generalized free
product, and

2. the algebraic properties of modules and
quadratic forms over a generalized free
product.
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The Seifert-van Kampen theorem

Let W be a space with a decomposition

W = X × [0,1] ∪X×{0,1} Y

such that W and X are connected.

Theorem Y has either 1 or 2 components, and
the fundamental group π1(W ) is a generalized
free product :

1. If Y is connected then π1(W ) is an HNN
extension

π1(W ) = π1(Y ) ∗i1,i2 {z}
= π1(Y ) ∗ {z}/{i1(x)z = zi2(x) |x ∈ π1(X)}

with i1, i2 : π1(X) → π1(Y ) induced by the two
inclusions i1, i2 : X → Y .

2. If Y is disconnected, Y = Y1 ∪ Y2, then
π1(W ) is an amalgamated free product

π1(W ) = π1(Y1) ∗π1(X) π1(Y2)

with i1 : π1(X) → π1(Y1), i2 : π1(X) → π1(Y2)
induced by the inclusions i1 : X → Y1, i2 : X →
Y2.
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Mayer-Vietoris and transversality

• The homology groups of W = X× [0,1]∪Y

fit into the Mayer-Vietoris exact sequence

· · · → Hn(X)
i1 − i2 // Hn(Y )

→ Hn(W ) ∂ // Hn−1(X) → . . . .

• A map f : V → W is transverse at X ⊂ W if

V = T × [0,1] ∪ U

with T = f−1(X), U = f−1(Y ).

• A homotopy equivalence f : V → W splits

if it is homotopic to a transverse map such

that the restrictions f | : T → X, f | : U → Y

are also homotopy equivalences.
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Geometric transversality

• Every map f : V n → W = X×[0,1]∪Y from
a manifold V is homotopic to a transverse
map, with Tn−1 = f−1(X) ⊂ V n a codi-
mension 1 submanifold.

• A homotopy equivalence of manifolds

f : V n → Wn = Xn−1 × [0,1] ∪ Y n

does not split in general.

• For n > 6 a homotopy equivalence of man-
ifolds splits if and only if certain algebraic
K- and L-theory obstructions vanish.

• If a homotopy equivalence is homotopic to
a homeomorphism then it splits. There
exist homotopy equivalences which do not
split, and are therefore not homotopic to
homeomorphisms.
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Splitting obstruction theory

• The algebraic K-groups of Z[π1(W )] for
W = X × [0,1] ∪ Y with

π1(X) → π1(W ) injective

fit into almost-Mayer-Vietoris exact sequence

· · · → Kn(Z[π1(X)])
i1 − i2 // Kn(Z[π1(Y )]) →

Kn(Z[π1(W )]) ∂ // Ñiln−1 ⊕Kn−1(Z[π1(X)]) → . . .

with Ñil∗ the exotic algebraic K-groups of
nilpotent endomorphisms of f.g. projective
modules.

• The K-theory splitting obstruction of a ho-
motopy equivalence f : V → W is ∂(τ(f))
with τ(f) = Whitehead torsion ∈ K1(Z[π1(W )]).

• Similarly for the algebraic L-groups of
quadratic forms.
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Algebraic transversality

• Let W = X × [0,1] ∪ Y , so that π1(W ) is a

generalized free product of π1(X), π1(Y ).

• A Mayer-Vietoris presentation of a finite

f.g. free Z[π1(W )]-module chain complex

C is an exact sequence

0 → Z[π1(W )]⊗Z[π1(X)] D

i1 − i2 // Z[π1(W )]⊗Z[π1(Y )] E → C→0

with D a finite f.g. free Z[π1(X)]-module

chain complex, E a finite f.g. free Z[π1(Y )]-

module chain complex, and i1, i2 Z[π1(Y )]-

modulechainmapsZ[π1(Y )]⊗Z[π1(X)]D→E.

• If π1(X) → π1(W ) is injective every C ad-

mits a Mayer-Vietoris presentation.
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The universal cover and fundamental
domains

• The fundamental group π1(W ) of a con-
nected space W acts on the universal cover
W̃ by covering translations π1(W ) × W̃ →
W̃ . The homology Z[π1(W )]-modules are

H∗(W̃ ) = H∗(C(W̃ ))

with C(W̃ ) a free Z[π1(W )]-module chain
complex (simplicial, cellular, singular, . . . ).

• For W = X × [0,1] ∪ Y the universal cover
W̃ has fundamental domain the universal
cover Ỹ of Y , with adjoining translates in-
tersecting in copies of the universal cover
X̃ of X. Geometry gives the Mayer-Vietoris
presentation

0→Z[π1(W )]⊗Z[π1(X)] C(X̃)

i1 − i2 // Z[π1(W )]⊗Z[π1(Y )] C(Ỹ )→C(W̃ )→0
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Morita theory

For any ring D and k > 1 let Mk(D) be the

ring of k × k matrices in D.

Proposition (i) The functors

{D-modules} → {Mk(D)-modules} ;

M 7→


D
D
...
D

⊗D M ,

{Mk(D)-modules} → {D-modules} ;

N 7→ (D D . . . D)⊗Mk(D) N

are inverse equivalences of categories.

(ii) K∗(Mk(D)) = K∗(D).
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The Mayer-Vietoris localization

Key idea: for W = X× [0,1]∪Y the expression
of π1(W ) as a generalized free product moti-
vates the construction of a triangular matrix
ring A with a noncommutative localization the
matrix ring

Σ−1A = Mk(Z[π1(W )])

where k = (no. of components of Y ) + 1.
The localization functor

{A-modules} → {Σ−1A-modules} ; M 7→ Σ−1M

is an algebraic analogue of the forgetful functor

{transverse maps V → W} → {maps V → W} .

For any map V → W C(Ṽ ) is a Σ−1A-module
chain complex, up to Morita equivalence. For
a transverse map V = T × [0,1] ∪ U → W the
Mayer-Vietoris presentation of C(Ṽ ) is an A-
module chain complex Γ such that

Σ−1Γ = C(Ṽ ) .
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A polynomial extension is a
noncommutative localization

For any ring R define the triangular matrix ring

A =

(
R 0

R⊕R R

)
.

An A-module is a quadruple

M = (K, L, µ1, µ2 : K → L)

with K, L R-modules and µ1, µ2 R-module mor-
phisms. The localization of A inverting

Σ = {σ1, σ2 :

(
0
R

)
→
(

R
R⊕R

)
}

is a ring morphism

A → Σ−1A = M2(D) , D = R[z, z−1]

such that

{A-modules} → {M2(D)-modules} ≈ {D-modules}
sends an A-module M to the D-module

(D D)⊗A M

= coker(µ1 − zµ2 : K[z, z−1] → L[z, z−1])
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Manifolds over S1

• Given a manifold V n and map f : V → W =
S1 which is transverse at X = {pt.} ⊂ S1

cut V along the codimension 1 submanifold
Tn−1 = f−1(X) ⊂ V to obtain

V = T × [0,1] ∪T×{0,1} U .

The cobordism (U ;T0, T1) is a fundamental
domain for the infinite cyclic cover V = f∗R
of V , with T0, T1 copies of T .

• A =

(
Z 0

Z⊕ Z Z

)
, Σ−1A = M2(Z[z, z−1]).

The A-module chain complex

Γ = (C(T), C(U), µ1, µ2)

induces the Z[z, z−1]-module chain complex

(D D)⊗A Γ

= coker(µ1 − zµ2 : C(T)[z, z−1] → C(U)[z, z−1])

= C(V ) .
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The lifting problem for chain complexes

• Let Σ−1A be the localization of A inverting
a set Σ of morphisms of f.g. projective A-
modules.

• A lift of a finite f.g. free Σ−1A-module
chain complex C is a finite f.g. projective
A-module chain complex B with a chain
equivalence Σ−1B ' C.

• Every n-dimensional f.g. free Σ−1A-module
chain complex C can be lifted if n 6 2.
For n > 3 there are lifting obstructions in
TorAi (Σ−1A,Σ−1A) for i > 1.

• Definition A localization Σ−1A of a ring
A inverting a set Σ of morphisms of f.g.
projective A-modules is stably flat if

TorAi (Σ−1A,Σ−1A) = 0 (i > 1) .
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Theorem of Neeman + R.

If A → Σ−1A is injective and stably flat then :

• have ’fibration sequence of exact categories’

T(A,Σ) → P(A) → P(Σ−1A)

with P(A) the category of f.g. projec-
tive A-modules and T(A,Σ) the category
of h.d. 1 Σ-torsion A-modules, and

• every finite f.g. free Σ−1A-module chain
complex can be lifted, and

• there is a long exact sequence in algebraic
K-theory

· · · → Kn+1(Σ
−1A) → Kn(T(A,Σ))

→ Kn(A) → Kn(Σ−1A) → . . .

• http://arXiv.org/abs/math.RA/0109118

13



Modules over a triangular matrix ring

Given rings A1, A2 and an (A2, A1)-bimodule B
define the triangular matrix ring

A =

(
A1 0
B A2

)

with f.g. projectives P1 =

(
A1
B

)
, P2 =

(
0

A2

)
.

Proposition (i) The category of A-modules is
equivalent to the category of triples

M = (M1, M2, µ : B ⊗A1
M1 → M2)

with M1 an A1-module, M2 an A2-module and
µ an A2-module morphism.
(ii) K∗(A) = K∗(A1)⊕K∗(A2).
(iii) If A → C is a ring morphism such that there
is a C-module isomorphism C⊗A P1

∼= C⊗A P2
then C = M2(D) with D = EndC(C ⊗A P1),

{A-modules} → {C-modules} ≈ {D-modules};
M 7→ (D D)⊗A M

= coker(D⊗A2
B⊗A1

M1→D⊗A1
M1⊕D⊗A2

M2)
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The stable flatness theorem

Theorem Let

A =

(
A1 0
B A2

)
→ AΣ = M2(D)

be the localization inverting a set Σ of A-

module morphisms σ :

(
0

A2

)
→

(
A1
B

)
. If B

and D are flat A1-modules and D is a flat A2-

module then AΣ is stably flat.

Proof The A-module E =

(
D
D

)
has a 1-dimensional

flat A-module resolution

0 →
(
0
B

)
⊗A1

D

→
(

A1
B

)
⊗A1

D ⊕
(

0
A2

)
⊗A2

D → E → 0

and hence so does AΣ = E ⊕ E.
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HNN extensions

The HNN extension of ring morphisms i1, i2 :
R → S is the ring

S ∗i1,i2 {z} = S ∗ Z/{i1(x)z = zi2(x) |x ∈ R} .

Corollary 1. Let A =

(
R 0

S1 ⊕ S2 S

)
, with Sj = S

the (S, R)-bimodule

S × Sj ×R → Sj ; (s, t, u) 7→ stij(u) .

The localization of A inverting the inclusions

Σ = {σ1, σ2 :

(
0
S

)
→
(

R
S1 ⊕ S2

)
} is

Σ−1A = M2(S ∗i1,i2 {z}) .

If i1, i2 : R → S are split injections and S1, S2
are flat R-modules then A → Σ−1A is injec-
tive and stably flat. The algebraic K-theory
localization exact sequence has

Kn(A) = Kn(R)⊕Kn(S) ,

Kn(Σ−1A) = Kn(S ∗i1,i2 {z}) ,

Kn(T(A,Σ)) = Kn(R)⊕Kn(R)⊕ Ñiln .
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Amalgamated free products

The amalgamated free product S1 ∗R S2 is de-
fined for ring morphisms R → S1, R → S2.

Corollary 2. The localization of the ring

A =

R 0 0
S1 S1 0
S2 0 S2


inverting the inclusions

Σ = {σ1 :

 0
S1
0

→
R

S1
S2

 , σ2 :

 0
0
S2

→
R

S1
S2

}
is the 3× 3 matrix ring

Σ−1A = M3(S1 ∗R S2) .

If R → S1, R → S2 are split injections with
S1, S2 flat R-modules then A → Σ−1A is injec-
tive and stably flat. The algebraic K-theory
localization exact sequence has

Kn(A) = Kn(R)⊕Kn(S1)⊕Kn(S2) ,

Kn(Σ−1A) = Kn(S1 ∗R S2) ,

Kn(T(A,Σ)) = Kn(R)⊕Kn(R)⊕ Ñiln .
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A localization which is not stably flat

• Given a ring extension R ⊂ S and an S-
module M let

K(M) = ker(S ⊗R M → M) .

• Theorem (Neeman, R. and Schofield)
(i) The localization of the triangular matrix
ring

A =

R 0 0
S R 0
S S R

 = P1 ⊕ P2 ⊕ P3

inverting Σ = {P3 ⊂ P2, P2 ⊂ P1} is

Σ−1A = M3(S)

(ii) If S is flat as an R-module then

TorA2 (Σ−1A,Σ−1A) = M3(K
3(S)) .

(iii) If R is a field and S = Rd then

K3(S) = R(d−1)3d .
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