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Introduction

Given a presentation of a finitely presented group, there is a natural way to
represent the group as the fundamental group of a 2-complex. The first part
of this paper demonstrates one possible way to represent a finitely presented
algebra S in a similarly compact form. From a presentation of the algebra,
we construct a quiver with relations whose path algebra is finite dimensional.
When we adjoin inverses to some of the arrows in the quiver, we show that
the path algebra of the new quiver with relations is Mn(S) where n is the
number of vertices in our quiver. The slogan would be that every finitely
presented algebra is Morita equivalent to a universal localization of a finite
dimensional algebra.

Two applications of this are then considered. Firstly, given a ring homo-
morphism A → B, we say that B is stably flat over A if and only if
TorAi (B,B) = 0 for all i > 0. In a recent paper [2], the first two authors show
that there is a long exact sequence in algebraic K-theory associated to a uni-
versal localization provided the localization is stably flat. Given a finitely
presented algebra S we construct in Section 1 a finite dimensional algebra A

with a universal localization σ−1A = Mn(S) (Theorem 1.1), such that A has
global dimension 6 2 (Proposition 1.2). For a stably flat universal localiza-
tion A → σ−1A the global dimensions are such that g.d.(σ−1A) 6 g.d.(A)
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(Lemma 1.4). Thus any finitely presented algebra S of global dimension > 3
provides an example of a universal localization which is not stably flat.

Secondly, the Malcolmson normal form states that every element of the
localised ring can be written in the form as−1b where s : P → Q lies in
the upper triangular closure of σ, a : A → Q and b : P → A are maps in
the category of finitely generated projective modules over the original ring
A, and gives an equivalence condition on such elements which determines
when they define the same element of the localised ring. This equivalence
condition depends on the existence of certain maps in σ and the category of
finitely generated projective modules. One might reasonably ask if such an
equation could be constructed algorithmically. We show that this cannot be
done.

In Section 2, we consider a related construction of a ring by universal
localization where we calculate explicitly the values of TorAi (σ−1A,σ−1A).
For any n > 3 we obtain an injective universal localization A→ σ−1A with
TorAi (σ−1A,σ−1A) = 0 for 1 6 i 6 n− 2 and 6= 0 for i = n− 1.

1. Algebras

An algebra over a field k is a ring A with a homomorphism from k to
the centre of R. By definition, the algebra A is finite dimensional if it is a
finite dimensional vector space over k. By definition, an algebra S is finitely
presented if it has a finite number of generators and relations, so that it has
the form

S = k〈x1, x2, . . . , xa〉/〈y1, y2, . . . , yb〉 .

A finite dimensional algebra S is finitely presented, since for any basis
e1, e2, . . . , ea the coefficients cpqr ∈ k in

epeq =
∑
r

cpqrer ∈ S (1 6 p, q, r 6 a)

are such that

S = k〈x1, x2, . . . , xa〉/〈xpxq −
∑
r

cpqrxr〉 .

For any finitely presented algebra S over k we shall exhibit the matrix
algebra Mn(S) for some integer n as the universal localization σ−1A of a
finite dimensional algebra A over k inverting a finite set σ of maps between
finitely generated projective A-modules. We shall construct A as the path
algebra of a quiver with relations, and it will be clear from the construction
that A is of global dimension 2, but the natural map A → σ−1A = Mn(S)
may not be an injection. Then a variation of the construction allows us to
ensure that A→ σ−1A is injective and A has finite global dimension. From
this it is fairly clear that for suitable choice of S, for example, of infinite
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global dimension, the TorAi (σ−1A,σ−1A) cannot all vanish. We present
examples to show variations on these techniques.

First of all, recall the language of quivers with relations.

A quiver Q has a finite vertex set VQ = {v,w, . . . } and finite arrow set
AQ = {a, b, . . . }. Each arrow a ∈ A has a tail ta ∈ VQ and head ha ∈ VQ.
A path of length i is a formal word in the arrows a1, . . . , ai such that for
1 6 j < i, haj = taj+1. Its tail is ta1 = v and its head is hai = w and we
say that it is a path from v to w. For each vertex v ∈ VQ we have a path
fv ∈ AQ of length 0 at v whose head and tail are both v. For vertices v and
w, we define [v,w] to be the vector space with basis the set of paths from v

to w. The path algebra of Q is the vector space

Λ(Q) =
⊕

v,w∈VQ

[v,w]

with the product given by the composition of arrows, which makes it into
an associative algebra with 1 =

∑
v fv. Note that this composition gives an

injective linear map from [u, v] ⊗ [v,w] to [u,w].

A quiver with relations (Q,R) is a quiver Q together with a set of relations
R = {ri} where each ri is an element of ∪v,w[v,w]. In the examples we shall
be discussing R is a finite set. Each element r of R has a well-defined head
and tail which we shall write as tr and hr. For vertices v,w, define R[v,w]
to be the linear subspace of [v,w] of the form

∑
r∈R[v, tr]r[hr,w]. Then

⊕v,wR[v,w] is an ideal in Λ(Q) and the factor algebra

Λ(Q,R) = Λ(Q)/ ⊕v,w R[v,w]

is called the path algebra of the quiver with relations (Q,R). We define

(v,w) = [v,w]/R[v,w] ,

so
Λ(Q,R) =

⊕
v,w∈VQ

(v,w) .

We begin with notation. Let

S = k〈X : Y 〉
where X = {xi : 1 6 i 6 a} and Y = {yj : 1 6 j 6 b} is a finite subset of
k〈X〉. In turn, each element of Y can be written in a unique way as a linear
combination of words in the set X. Thus

yj =
cj∑
`=1

λj`wj`
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for suitable elements λj` ∈ k and words wj`. Let n − 1 be the maximal
length of a word wj`.

We consider the quiver Q with vertex and arrow sets

VQ = {1, . . . , n} , AQ = {e1, . . . , en−1} ∪ {1, . . . , n− 1} ×X

where em is an arrow from m to m + 1 and ami = (m,xi) is also an arrow
from m to m+1. Eventually we are going to invert the arrows em and then
they and their inverses will generate a copy of Mn(k). With this in mind and
for convenience of notation we define for 1 6 s < t 6 n, es,t = es . . . et−1.
Thus es,t is the unique path using the arrows em from the vertex s to the
vertex t. We also define em,m to be the empty path from m to m.

We construct a set of relations on this quiver. Our first set of relations is

T = {tmi : 1 < m < n, 1 6 i 6 a}
where

tmi = a1ie2,n − e1,mamiem+1,n .

These, in a sense which will become clear soon, ensure that ami for fixed i

all represent the element xi. Now let w = xi1 . . . xiu be a word of length less
than n. We define w′ = a1,i1 . . . au,iueu+1,n, a path in the quiver Q from 1
to n. We define

Y ′ = {y′j : 1 6 j 6 b}
where

y′j =
cj∑
`=1

λj`w
′
j` .

Our relations on the quiver are T ∪Y ′. Its path algebra A is evidently finite
dimensional and it is a simple matter as we shall see to check that A has
global dimension 2.

For each vertex m, let Pm be the corresponding projective representation
of the quiver Q. Given a path p in the quiver Q from s to t, there is a
corresponding map p̂ : Pt → Ps. We shall abuse notation by writing Pm
for the corresponding projective module for A and p̂ for the corresponding
homomorphism of projective A modules. Let σ = {ê1, . . . , ên−1}.

Theorem 1.1. For S, A, σ and n defined as above there is an isomorphism
of rings

σ−1A ∼= Mn(S) .

Proof. We continue to use the notation from the preceding discussion. In
the special case when S = k〈x1, x2, . . . , xa〉 has no relations, it is well-known
that M2(S) = σ−1A is the universal localization inverting the top arrow in
the path algebra A of the quiver Q with two vertices and a + 1 arrows.
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From now on, we assume that S = k〈X : Y 〉 has at least one relation, i.e.
b > 1. We enlarge our quiver with relations Q to a quiver with relations
Q′ by adjoining arrows fm from the vertex m + 1 to the vertex m together
with relations emfm = em,m and fmem = em+1,m+1 for 1 6 m 6 n− 1. The
path algebra A′ of the quiver with relations Q′ is just σ−1A. If we consider
the subquiver with relations with the same vertex set and arrows em, fm
for 1 6 m 6 n − 1, it is clear that there is a unique path es,t from vertex
s to vertex t that involves no subpath of type emfm or of type fmem and
that es,tet,u = es,u for any s, t, u. It follows that the path algebra of this
subquiver with relations is just Mn(k).

Since the arrows of Q′ generate A′ over the subring ×ni=1k, the set of
paths, {xm,i = e1,mam,iem+1,1} for all m and i, generate A′ over the subring
Mn(k) given by the paths em, fm. They differ from the elements am,i by
multiplication by invertible paths and we can rewrite our relations between
the elements am,i and em as equivalent relations between the elements xm,i.
Moreover they generate the ring B = e1,1A

′e1,1 and A′ ∼= Mn(B). After
noting that xm,i = e1,mam,iem+1,nen,1, we see that the relations in the set T

can be rewritten in terms of the elements xm,i as xm,i − x1,i; therefore, we
write xi = xm,i and find the relations between these elements induced by
the relations in Y ′. We note that a word a1,i1 . . . au,iu = xi1 . . . xiue1,u+1 and
so taking a relation y′j in Y ′, we see that the corresponding relation between
the elements xi is yj. Thus B is isomorphic to S as required.

Proposition 1.2. The path algebra A in Theorem 1.1 has global dimension
6 2.

Proof. We consider the homological dimension of the simple representations
of the quiver. There is one simple Si for each vertex of the quiver; this is the
representation which assigns the field k to the vertex i and 0 to every other
vertex and where each arrow gives the zero map. The simple representation
Sn is also the projective representation Pn. Because there are no relations
on the full subquiver on the vertices {2, . . . , n}, the simple representations
Sm for m = 2 to n− 1 are of homological dimension 1; in fact, for m = 2 to
n− 1 we have a short exact sequence

0 −−−→
a⊕
i=0

Pm+1
φ−−−→ Pm −−−→ Sm −−−→ 0

where the 0th component of φ is êm and the ith component is âmi for i > 0.
Now it is clear that the simple S1 has homological dimension 2 since the
kernel of the homomorphism from P1 to S1 has only simples of the form Sm
for m > 1 as composition factors so that it has homological dimension at
most 1 and it is not projective since it is a factor of ⊕ai=0P2 by a semisimple
subrepresentation.
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Of course, there is no reason to suppose that A is a subalgebra of Mn(S).
Any relation in S between the elements xi such that the longest monomial
has length less than n − 1 will give nonzero elements of A whose image is
0 in Mn(S). However, the image, Ā of A in Mn(S) is the path algebra of
a quiver with relations on the same vertex and arrow set so the quiver is
directed and Ā must have finite global dimension. Moreover, it is clear that
Āσ is isomorphic to σ−1A. In fact, it is a fairly simple matter to describe Ā.
We consider the filtration of S induced by saying the generators have degree
1; that is, S0 = k and Si is the finite dimensional vector space spanned by
the monomials in the generators of length at most i. Then Ā is the upper
triangular subalgebra of Mn(S) whose elements have entries from Si in the
ith diagonal where the main diagonal is taken to be the 0th.

We summarise this in the following theorem.

Theorem 1.3. Let S be a finitely presented algebra. Let the largest degree
of a relation be n− 1. Then there is an upper triangular finite dimensional
subalgebra C of Mn(S) of which Mn(S) is a universal localization. In par-
ticular, C has finite global dimension.

In order to see that the examples in the last lemma usually give us exam-
ples of universal localizations that are not stably flat we note the following
lemma.

Lemma 1.4. If φ : R→ S is a stably flat epimorphism of rings then

global dimension(S) 6 global dimension(R) .

Proof. That φ is an epimorphism of rings is equivalent to the condition
that the multiplication map from S ⊗R S to S is an isomorphism ([1]).
Therefore, by Lemma 3.30 of [2], TorRi (S,M) = 0 for any S module M and
S ⊗R M = M . Therefore, we can construct a projective resolution of M by
applying S⊗R to a projective resolution of M as R module. It follows that
the homological dimension of M as S module is bounded by its homological
dimension as R module.

There are many possible variations on this method for representing al-
gebras as universal localizations of finite dimensional algebras. We give
two examples to illustrate possible changes. Let Q be the quiver with re-
lations having vertices 1, 2, 3, 4 and arrows e1, x1 from 1 to 2, e2, y2 from
2 to 3 and e3, x3 from 3 to 4 together with relations x1e2e3 − e1e2x3 and
x1y2e3− e1y2x3− e1e2e3. On inverting the arrows e1, e2, e3 the path algebra
we obtain is M4(R1) where R1 is the first Weyl algebra.

Let Q be the quiver with relations having vertices 1, 2, 3, 4 and arrows
e1, x1 from 1 to 3, e2, y2 from 2 to 3 and e3, x3 from 3 to 4 together with
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relations e1x3 − x1e3, x1x3 and y2x3. On inverting the arrows e1, e2, e3 the
path algebra we obtain is M4(k〈x, y : x2, yx〉). The important point in this
example is that the set of arrows we invert can be simply a maximal subtree
of the quiver, and there may occasionally be an advantage to doing this if
the relations we are interested in can be described compactly on a tree.

At this point, we return to the question of whether there can be an algo-
rithm to determine the equality of elements in a universal localization. Thus
let A be a ring and σ a set of maps between finitely generated projective
modules over A. The Malcolmson normal form states that every element of
the localised ring σ−1A can be written in the form as−1b where s : P → Q

lies in the upper triangular closure of σ, a : A→ Q and b : P → A are maps in
the category of finitely generated projective modules over the original ring
A and gives an equivalence condition on such elements which determines
when they define the same element of the localised ring. This equivalence
condition depends on the existence of certain maps in σ and the category of
finitely generated projective modules. One might reasonably ask if such an
equation could be constructed algorithmically. In order to show that this
is not possible we do not need to know the exact nature of the equivalence
relation defined by Malcolmson since it is simply important to be able to
demonstrate that there can be no algorithm to determine the equality of
two such elements. We say that the equality problem for (A,σ) is solvable
if there is an algorithm to determine the equality of two such elements in
σ−1A.

Our proof that the equality problem is not always solvable comes from
the fact that the word problem for groups is not always solvable. Thus
let G be a finitely presented group with generators {xi : 1 6 i 6 c} and
relations {rj : 1 6 j 6 d}. We obtain a finite presentation of its group
algebra kG by taking as generators {xi, x̄i : 1 6 i 6 c} and as relations
{xix̄i− 1 : 1 6 i 6 c}∪ {x̄ixi− 1 : 1 6 i 6 c}∪ {sj − 1 : 1 6 j 6 d} where sj
is obtained from rj by replacing each occurrence of each x−1

i by x̄i. Let A be
the finite dimensional algebra we produce by the method considered in and
preceding theorem 1.1 and let σ be the set of maps between finitely generated
projective modules over A considered there so that σ−1A is isomorphic to
Mn(kG) for a suitable integer n.

Theorem 1.5. Let G be a finitely presented group for which the word prob-
lem is not solvable. Let A be the finite dimensional algebra and let σ be the
set of maps between finitely generated projective modules considered in the
previous paragraph. Then the equality problem for (A,σ) is not solvable.

Proof. We use the notation developed before theorem 1.1. The group ring
occurs as the endomorphism ring of P1 ⊗Mn(kG). The generators of the
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group and their inverses occur as elements of the form xm1e
−1
1 . Therefore

words in these elements can be written algorithmically in the form as−1b for
suitable maps a and b between finitely generated projective modules and s

in the upper triangular closure of σ. If there were an algorithm to determine
whether such an element were equal to the identity map on P1 then we would
be able to solve the word problem for the group G. Since we cannot solve
the word problem, there can be no such algorithm.

2. An explicit computation

Notation 2.1. In this section, let k be a ring and S a k-ring, i.e. a ring
homomorphism k → S. We will assume throughout that S is flat as a left
k-module. 2

We define a functor from the category of left S-modules to itself.

Definition 2.2. Recall the short exact sequence of S bimodules

0 −−−→ Ωk(S) −−−→ S ⊗k S
m−−−→ S −−−→ 0

where Ωk(S) is the universal bimodule of derivations of S over k and m is
the multiplication map. It is split considered as a sequence of left or right S

modules since S is a projective module but not as a sequence of bimodules.
Given a left S-module M , we define K(M) from the exact sequence ob-

tained by tensoring with M on the right

0 −−−→ K(M) = Ωk(S)⊗S M −−−→ S ⊗k M
µM−−−→ M −−−→ 0

with µM = m ⊗S 1M the multiplication map. Thus K(M) is the kernel of
the multiplication map and is isomorphic to Ωk(S)⊗S M .

2

Lemma 2.3. As in Definition 2.2, let M be a left S-module. If M is flat
as a (left) k-module, then so is K(M).

Proof. By hypothesis, both M and S are flat as left k-modules. It follows
that S ⊗k M is also a flat left k-module. In the exact sequence

0 −−−→ K(M) −−−→ S ⊗k M
µM−−−→ M −−−→ 0

we now know that both M and S⊗k M are flat as left k-modules. From the
exact sequence for Tor it now follows that so is K(M).
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Let M be a left S-module, flat over k. The above produces for us exact
sequences of left S-modules, all flat over k

0 −−−→ K(M)
iM−−−→ S ⊗k M

µM−−−→ M −−−→ 0

0 −−−→ K2(M)
i
K(M)−−−→ S ⊗k K(M)

µ
K(M)−−−−→ K(M) −−−→ 0

0 −−−→ K3(M)
i
K2(M)−−−−→ S ⊗k K2(M)

µ
K2(M)−−−−−→ K2(M) −−−→ 0

Splicing these short exact sequences, we deduce

Lemma 2.4. Let M be a left S-module, flat over k. To make the notation
work nicely, define K0(M) = M . For n > 1 we have defined Kn(M) above.
For each j > 1 there is an exact sequence of left S-modules, all flat over k

0 −−−→ Kj(M)
i
Kj−1(M)−−−−−−→ S ⊗k Kj−1(M) −−−→ · · ·

· · · −−−→ S ⊗k K(M)
iMµK(M)−−−−−−→ S ⊗k K0(M)

µM−−−→ M −−−→ 0.
2

The case of most interest to us is where M = S. We can assemble the
first n of these exact sequences in vector form.

Lemma 2.5. We have an exact sequence

0
0
0
...
0
0
0


−→



0
0
0
...
0
0
k


⊗k Kn−1(S) −→



0
0
0
...
0
k

S


⊗k Kn−2(S) −→ · · ·

· · · −−−→



k

S

S
...
S

S

S


⊗k K0(S) −−−→



S

S

S
...
S

S

S


−−−→



0
0
0
...
0
0
0


.
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Definition 2.6. Let A be the ring of n× n lower triangular matrices

A =



k 0 0 · · · 0 0 0
S k 0 · · · 0 0 0
S S k · · · 0 0 0
...

...
...

...
...

...
S S S · · · k 0 0
S S S · · · S k 0
S S S · · · S S k


That is, the terms above the diagonal vanish, the diagonal terms lie in k,
while the terms below the diagonal may be any elements of S. 2

The columns of the matrix ring A are left A-modules. We denote them

P1 =



k

S

S
...
S

S

S


, P2 =



0
k

S
...
S

S

S


, · · · Pn−1 =



0
0
0
...
0
k

S


, Pn =



0
0
0
...
0
0
k


and as a left A-module

A = P1 ⊕ P2 ⊕ · · · ⊕ Pn .

Then Lemma 2.5 says that we have an exact sequence

0 −−−→ Pn ⊗k Kn−1(S) −−−→ Pn−1 ⊗k Kn−2(S) −−−→ · · ·

· · · −−−→ P1 ⊗k K0(S) −−−→



S

S

S
...
S

S

S


−−−→



0
0
0
...
0
0
0


.

This is clearly a resolution of left A-modules. The modules Pi are all direct
summands of A, hence they are projective left A-modules. Being projec-
tive, they are certainly flat left A-modules. The modules Ki−1(S) are flat
left k-modules. It follows that Pi ⊗k Ki−1(S) are all flat left A-modules.
Summarizing the above, we have
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Lemma 2.7. The left A-module

N =



S

S

S
...
S

S

S


has a flat resolution

0 −→ Pn ⊗k Kn−1(S) −−−→ . . . −−−→ P1 ⊗k K0(S) −−−→ N −→ 0 .

Define also the right A-module

M =
(

S S S · · · S S S
)

.

Lemma 2.8. We have

M ⊗A Pi = S (1 6 i 6 n)

and
Mn(S)⊗A Pi = N (1 6 i 6 n) .

Proof. We begin with M ⊗A Pi = S. There are obvious maps

S
αi−−−→ M ⊗A Pi

βi−−−→ S

defined by

αi(s) = (0, . . . , 0, s)⊗


0
...
0
1

 ,

βi

(
(s1, s2, . . . , sn)⊗



0
...
0
xi
...

xn


)

=
n∑
j=i

sjxj .

It is clear that the composite βiαi is the identity. It suffices to show that αi
is surjective, which we leave to the reader.

The identity Mn(S)⊗APi = N reduces to the above, after observing that
Mn(S) =

⊕n
i=1 M as a right A-module.
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Proposition 2.9. The Tor-groups are

TorAi (M,N) =


S if i = 0

Kn(S) if i = n− 1

0 otherwise .

Consequently

TorAi (Mn(S),Mn(S)) = Mn(TorAi (M,N)) =


Mn(S) if i = 0

Mn(Kn(S)) if i = n− 1

0 otherwise .

Proof. By definition, TorAi (M,N) is the ith homology of the complex ob-
tained from any flat resolution of N by tensoring over A with M . We use
the resolution provided by Lemma 2.7. Lemma 2.8 allows us to identify
TorAi (M,N) with the ith homology of

S ⊗k Kn−1(S) −→ S ⊗k Kn−2(S) −→ · · · −→ S ⊗k K1(S) −→ S ⊗k K0(S) .

Definition 2.10. Let φ : k −→ S be the ring homomorphism giving S the
structure of an A-ring. Define σ to be the set of maps si : Pn −→ Pi given
by the matrices 

0
0
...
0
0
...
0
φ


:



0
0
...
0
0
...
0
k


−−−→



0
0
...
k

S
...
S

S


2

Lemma 2.11. The ring homomorphism A→Mn(S) is σ-inverting.

Proof. By Lemma 2.8

1⊗ si : Mn(S)⊗A Pn →Mn(S)⊗A Pi

can be identified with 1 : N → N .

Theorem 2.12. For n > 3, A→Mn(S) is universally σ-inverting,

σ−1A = Mn(S) .



REPRESENTATIONS OF ALGEBRAS AS UNIVERSAL LOCALIZATIONS 13

Proof. Let T be a σ-inverting A-ring. We need to exhibit a unique factor-
ization

A→Mn(S)→ T .

It follows from A =
n⊕
i=1

Pi that

T =
n⊕
i=1

T ⊗A Pi

with the T ⊗A Pi’s isomorphic f.g. projective T -modules. Also,

T = EndT (T ) = Mn(EndT (T ⊗A P1)) .

It therefore suffices to produce a homomorphism

S → EndT (T ⊗A P1) .

For x ∈ S define the A-module morphisms

rx : Pi =



0
...
0
...
k
...
S


−−−→ Pj =



0
...
k
...
S
...
S


with components right multiplication by x. Define

S −→ EndT (T ⊗A P1)

by sending x ∈ S to

P1
(r1)−1

−−−−→ P2
rx−−−→ P1

.

Because rx+y = rx + ry this is a homomorphism of abelian groups. The
multiplicative identity rxy = rxry follows from the commutative diagram

Pn
r1−−−→ Pn−1

r1−−−→ P1

ry

y yry
Pn−1

r1−−−→ P1

rx

y
P1

(This diagram only makes sense if n > n− 1 > 1, i.e. n > 3).
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Remark 2.13. Suppose k is a field. For any finite-dimensional k-algebra S

let d = dimk(S). It follows from the exact sequence

0 −→ K(M) −→ S ⊗k M −→M −→ 0

that for any f.g. S-module M

dimkK(M) = (d− 1)dimk(M) .

By induction, for M = S and n > 1

dimkK
n(S) = (d− 1)nd .

Thus if n > 3 and d > 1 then

TorAn−1(σ
−1A,σ−1A) = Mn(Kn(S)) 6= 0 .

In particular, for S = k[ε]/(ε2) (d = 2) the ring

A =

 k 0 0
S k 0
S S k


is the path algebra of the quiver with relations (Q,R) constructed as in
section 1, with σ−1A = M3(S), TorA2 (σ−1A,σ−1A) = M3(S). 2
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