Surgery on Closed Manifolds

by

‘Laurence Taylor¥* and Bruce Williams*

A
Theorem (0.1): (n>4) Let (f: N - MY, f) be a surgery problem

where M' is a closed, oriented manifold with 'n'lM,finite. Then,

index N = index M, when n=0 (‘;—5-)

A
(f x Idsl, £ x Tdygl) /

is normal cobordant e always , When n=1 (4)
to a homotopy Arf(f,?) =0 , When n=2 (4)
equiva.le.nce ‘ Arfu(i‘,?) =0 ,when n=3(4)
for all nontrivial
homomorphisms
L:m =Z/2

A 5 -1 A _—
Arf(ff):Arf(f:nl-aMnl ,Where(f‘,f)is

the sub—surger"r problem of (f, :E‘) which is induced via trans-

versa.llty by the map M? - BwlM —J”—L%B %2 = RP”

Also, we can show

Theorem (0.2) : For any closed manifold P? with finite T, and

index = O,

A
(£ :M8 - 58 s B)x (IdP , Id, ) i1s normally cobordant to a homotopy
P :

N
equivalence - (where (f,f) =Milnor surgery problem with index 8).
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Section 1:

-

For any closed, compact, oriented manifold M with

wlld:=w » we have the Sullivan-Wall structure sequence

(ZM, 6/T0P] 2 17 ) (Z7) = S(4) = [, &/ToP] %15 (zm)

There are also defined "intermediate" Wall groups Lk (Z)
where xcﬁo(% m) or {r}cCcxcC ffl(z';r) is an involutjion invariant
subgroup (see [R ]). There is a homomorphism 18 (Z7) = 12 (Z)

so we get maps

o®: [M,G/TOP] ~ L) (Z7) and

o*: [EM, G/TOP] ~ 1Y . (Z )

- It follows from work of Quinn-Ranicki that there is a

homomorphism
A% : @Hy_ ), (Br 3% 0y) OHy_ns o(BT; %2) .Lﬁ \E W)

where ( )(2) denotes localization at 25 such that the 2
localizations of o~ and 0% are given by composing Ax with

a certain characteristic class formula that we worked out in
[T-W]. We wrote out the one for o> (formula 1.7) : to get the
one for ©* use the same formula but replace [M] by the homciogy
suspension of the fundamental class, Indeed, given any compact,
oriented manifold with bcunding, Wn, we get a formula for the

map [W/3H,G/TOP] = L,(Zm) : replace [M] with [W,dW] in (1.7)*

*Care is needed in [T-W]. The Wu class referred to there is the
Morgan-Sullivan Wu class, [M-S] p. 480-81. It is the inverse

of the Wu class defined in Milnor-Stasheff [Mi—SA 11.14, In
particular, some of the polynomials on [M-S] p. 481 are incorrect.
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Recall that Wall ([W2] ) has shown that L: (Zm) = Ly (Z7)(p)

is 1-1 for 7 fiaite.

Periodicity implies that AX factors as

;i » and Hy are determined by the sufgery obstructions of

certain very special surgery problems. To be more specific,

let M8 - 88 denote the 8-dimensional Milnor surgery problem,

and let K3 - L3 denote the twisted Kervaire problem, i.e.

the generator of L3 (Z e; Z/2), Define homomorphisms

af,lc :ﬂ‘_ (Bm) - (Z )

n+8
Br: Q, (BT Z/2) = (Z )
n ] n+2
by ax (P) is the surgery obstruc:tlon for M8>< P - 88 x P and
6?1 (P) is the surgery obstruction for the surgery problem
induced along the bockstein of K2 ®P - I°®P. (See [M-S]).
: > ’ % x
The map J, 1is determined by a, and the - for r<nH.
The map }»CJI"—:1 is determined by B;f. and the }{?_: and -9? for
r< n
The precise relation between the a's and the J's is
supplied by (1.7) in [T-W] : to wit, if g: P = Br,

(P) = T8, _y; 8x (£p N[P])
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where £ is the Morgan-Sullivan £ class [M-S]. With a bit more

work, one can show
2
‘ Bﬁ (P) = )3 Hn—)-l-i Ex (an (P] )

+ % Sy nip 8 (8(% S5V, N[P])

: i - Z - Z -k 2 =0 and
where b dengtes the bockstein O (2) (2) z/ Vf

denotes the total Wu class of the oriénted tangent bundle to P,
Theorem (0.1) follows from Ranicki's product formula

h
Lﬁ_l_l'(Zf (rxZ)) = Lﬁ (Zm) ® L, 1 (Z7) (see [RI]);, plus the following
result.

Theorem 1.1, Assume 7 is finite.

(a) 2 is1-1
Eﬁi(“)

j is trivial, where

¢ty (r) = ker(R, (2) - & (Em) @ K, (Qw))&nd_ﬂs_(w) ={cl (m), £ 7} .

(b) For j >0, I

p D
(¢) ¥, and ¥; are 1-1.
(d) For j>1, 31’-? is trivial.
Theorem (0.2) follows from (1.1)(b).

We can improve on 1.1 for some groups.
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Let v be a finite group whose 2 Sylow group is

is trivial for j>O

is trivial for j>2

is trivial for j>3

Theorem 1.2,
-, abelian. Then
s
(a) I3
h
(b) %3
s
(e) Hj
Remarks: ( 1)

(11)

(iii)

(iv)

The result for Hh is due to Morgan-Pardon, but

the s result seems new.

See Theorem 4,1 for results on generalized

quaternionic and semi-dihedral groups.

Using results of Quillen [Q] and the naturality
of the 84, and X, one can prove thé same result
for the dihedral groups; the symmetric and

alternating groups; and many others.

When we sketch the proof of 1.2 we will also

determine Hg .



Section 2:

Following Wall ([WI], Theorem 12) it is easy to reduce

Theorem 1.1 to the result for finite 2-groups.

Relative Detection Theorem 2.1: If 7 is a finite 2-group, then

A A ‘
(8) Ky (Zm = Zy m) = ® K (ZG - ZG) is 1-1 for all i,

special 1
subquotients
G
cl '(']'T)—'O A ch (TI’)“"O A
(o) Ty (BT = Zym)= @& L ©° ' (Z6-Z,) is 1-1
- special ~ . '
subquotients

G
for all i and e = 0 or 1.

(L (m) =ker K (zm) = K (Z)eF (em))

Remarks:

1. A subguotient of 7 is a quotient group G=H/N where

H = subgroup of 7.

2, A 2-group G is special if all normal abelian subgroups
of G are cyclic. A special group is either cycliec,

generalized quaternionic, dihedral, or semi-dihedral.

3. The maps in (2.1) are compositions of restriction maps
assoclated to subgroups HC 7 and projection maps

associlated to quotients H - H/N=G.
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cl (Z‘rr‘) -0 A Efl(mr) - {t7}
Ty (Ew=Zym)=1y =
SK, ~SK

1 A T
= I (Zm = Zy m) = &

A
(Zm - %217)

SK, -+ SK
1.PR] A
(Zm = Zy )

where £, = the L-groups defined by Wall in [W2]. L’jf o .s:.’i‘ .

in general (see [W2] Section 5.4),

CEO(Z'IT) -0 A b A
5. Ly (Zw=Zym) = L; (Zm = Zym),

6. Theorem 2.1 was motivated by the calcula..tions of Wall
[sz, Seétion (5.2), Carlsson-Milgram [C-M], Pardon [P],
Bak-Kolster [K1l],.[B-K], [K2], and especially Milgram-
Hambleton [M-H].

Theorem 1.1 (b) is reduced to the result for special

2~groups as follows:

A is induced by a map of spectra A which fits into a

commutative diagram

A
L(Z)ABT —=>1L (ZT).

-

L (Zg) A BT —>L (%21?')
: _ A _
If we localize at (2), then L (Z) = L (Z,) is equivalent

to

project include
;-TK(Z(Q), hi) xmK (Z/2;4i+2) —> 7 K(Z/2;4i+2)<——> 7K (Z /2; 4i+2)

TK (E}(Q; 11-:1}'0
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This implies that J’g 1ifts to a map

3% 'H('?T‘Z )——>Lx (Z'.-r-'h'n') for all x
AR s 3+l %2y :

cty - O.

Apply Theorem 2.1 with € = 1 and x

Theorem 1.1(d) is reduced to the result for 2-groups by

the following theorem.

Absolute Detection Theorem 2.2 : If 7 is a finite 2-group,
then -
2 (zm) - o 1®(zae)is 1-1
4 i .

special
subquotients

The proof of (2.2) relies on Wall's reduction theorem

A .
which implies that LY (Z, m) = L. (Z/2).



section 3: Proof of the Relative Detection Theorem

e

o = finite 2-group

Qr = X A , where p varies OVer the Q-irreducible
P
representations of m and Ap = simple

Q-algebra.
Let Np = image (Zw - QT Ap), 'hsﬁnp. hp is a Z-order

of A _.
P

_E:_c‘oposi’tion 3.1

A A A

Proof: consider the following commutative diagram with exact

TOWS A
Ky 1 (Zgaq™

M

A A A
-'Ki(qu-'%'rr) -~ Ky (Zm~ Ze‘ﬂ')'*Ki(ZTr"'

Zo M) = eoe
\fi g \\/hi
T, \/A . - A : A
e a & @ -.Ki (n -+ 'ﬂ) -t Ki (n L nz) =% Ki (n e ﬁg) Hc--.

I R

, AL A

The Meyer-—'vietoris sequences associated to the arithmetic

squares
Zmr = QT n—'Qw
Ry
ZT = QT n - QT

jmply that £, ky © :E‘i and k; are isomorphisms. Since T is a
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A A >
2-group, Z 447 1is a maximal Z,qq - Order (see [Re]),

A A . .
Zodd"r = n(odd)’ and hi is an isomorphism. Apply the 5-lemma,.

Let

ki (zr - Z,m -0 K (h ~h
§ ABT = BT = : 1 (M =15 0)
faithful

u ) A . = A
K; (Zm ~ Zyw) = 2 Ki(ng =5 (2)
unfaithful

Proposition 3.2 :

(a) Kf (Zm - %E‘IT)‘:" Ki(Zm - %217) ~ K (m/N - ?za T/N) is a

trivial map, for any proper normal subgroup N,

: A A
(b) K; (Z7 = Zym)= K, (ZT - Zg) —-Na K (Zm/N ~ Zym/N) is 1-1.
ks '
.\.

Proposition 3.3 : Assume 7 is a 2-group which is not special.
Then 7 contains an index 2 subgroup Ty such that
(a) For any @-irreducible faithful representative p of w,

p| To = P + Po where P and p2 are nonisomorphic

Q@-irreducible representations,

(®) Pl =p% =p and

' £ A : A A
(e) Ki (Z7T - %2 T) = Ki(ZZ'.-T - 2211') - Ki(zz T ZZEWO)
iS l-lo

Theorem 2.1 (a) then follows from (3.2) and (3.3) by

induetion on the order of w. The proof of 2.1 (b) is similar,
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In particular,

of_(m)=0 K (ng)-~1 A
0 - f— 0 p p - .
Ly (ZT = ZpT) % Ly (np “p(e))
) - - A
where Ip = image (KO(‘nP) - Ko(hp(z))'
and .
SK:L -*SK_L

ch (1r) -0 A A
l - = z -
T (Zm = ZpT) % Ly (ny~ 1y (2)) "

il
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section 4 ¢ special 2-Groups
Theorem 4.1

(a) If T is a special 2-group and 3j>0, then

TL--
1 and J? are trivial.

33
(b) Ifw is eyclic or dihedral, then.xﬁ = 0 for J>1.
If‘ﬁ is quaternionic, then n? _ o for 3 #0, 1; 3 and
¥ =0
1f T is cemi-dihedral, then n% - o for §>1.

Remark :-Cappell and Shaneson [C—S] have shown that Kh £ 0O
18rk - >

when T = quaternion group .

ver [0] is used to improve

The following result of 0li

Eil-results to s-results.
1f 7 is & special 2-group, then Cﬁl(r)-is trivial.

Theorem 4h,2:

+ happens

For the proof of 4.1 (b) we need to analyze wha

to Kj under products.

For any pair of groups T, and o we get a pairing of

spectra
X T5)) (see [R])

o
we 1 (27y) AL° (B72) = Lo(Z(M

such that the following diagram commutes



= I

(Lo () A BT AL (2) ABTE) =Lo(Z)a L° (Z) A Bryxmy) ™ 2821 (2), (Bryxmp)t
4.3 Asx A Y Ay
L (ZT)a L° (ZT)) - - > Lo(Z (1 X))

If we introduce coefficients by doing surgery on Z/2-

manifolds, then we get an analogous diagram,
By using the techniques of [T-W], one can analyse
. o] ' e
w: L (Z;%2) A L (%; Z/2) » L,(Z:;%/2)

localized at 2. This yields the following commutative

diagram,
Hi('ﬁrl 5 Z/2 )XHJ (77'2 3 %/2') i Hi+j (1Tl>< o 5 Z,Q)

L4 _ 3 | 3
X3 X $°(%/2) - l Kits

where JJ(Z/Q) is induced by

+ A% o
R@Z/2:0)ABT 5 <> 1°(Z;5 B/2) () & Brg S L (Z7p52/2) (py -
¥; = ¥; reduced mod 2,

Action by the Center

Suppose C is the center of a group 7, then multiplication

a: C X7 - 7is ahomomorphismwhich induces a map Ba : B(C XT) =BT

plus a commutative diagram
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+ e
L (Z;%/2) AB(Cxm)T AR L, (25 Z/2)ABT
4.5 | = _ \l/A*

L, (C XT3 z/2) o s L (Zw; Z/2)

If we combine 4.4 and 4.5, then we get the following

commutative diagram

s _ ;
H, (C3 z/2) x Hy(T ; Z/2) ——=> Hi+j(-nr; Z /2)

he J,E‘_ x #9(2/2) RSN
Al . S O Whpro
Li+2(z‘cs Z_/E}(;)-L (Z"'T 2 Z/Q)(Ej":? Li+j+2(%ﬂ’ 23/2)(2)

The proof of 4.1 also involves the following result.

Theorem 4.7 : If 7 is a special 2-group, then there is an

exact sequence

* Rl

' proper
special
subquotients

_where ¢ is the unique faithful, @-irreducible representation

~ ~ A
of 7, and I¢ = Image : (Ko(n¢)-+ Ko(n¢(29. Also, there is an
" exact sequence,

Cﬂrl ( A ) C_. - LA ) Hl( A

L n-h —»Lgtm—-zfjr—» @ L, (Z G~ Z.G)

i & Mpley) "M 2 iy | T Zy
special

subquotients
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Proof of (4.1) when 7 = Z/2

Facts

oo

1. tor Lj 1 Zz/2 - %2 Z/2) = 0 unless j=1(4).

2. Hgk(%/e,z(g)) = 0 for k £ 0.

* .
3. Lg (Zz/2) _I:*_O:._} L? (Ze) & L?(Z e) is 1-1 for

JA3W)., (P:Z/2 ~e, L:e~Z/2).
L, The Pontryagin product a, : Hei(%/B 3 Z/2) x Hl(%/2; z/?2)
~ Hys,q (Z/25 Z/2) is onto. 2 Lg (Z Z/2) = 0.
G,
Facts 1 and 2 imply that dj =0 for J>0. Pact 3
plus naturality of 3;;?, imply ‘-“? = 0 for j>O0 and j %1('4)_'5-&@45 4 plus
commutativity .of  (4.6) imply - x? =0 for j=1(4)and j > 1.

n» the dihedral group:

Proof of (4.1) when 7 =D

Lemma 4.8:; If A = Z/2 or #(m, then

® H;(E;A) - H;(D,; A) is onto.

. elementary
abelian
2-groups
Ech

Proof: (See Quillen [Q], 4.6)
In Section 5, we show that for 7 = E, H‘? =0 for 1> 1,

ch
and 33_1 = 0 for j>O.
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Proof of (4.1) when v = Z/2%, (1>1) or SD, :

Lemma 4.9 : Tf 7 = /2" (1>1) or SD_, then

tor Ly (N, - ﬁ¢(2)) - (0).

apply &.7). 1S (z 72t ) - 1t (zm2' ) 1s 1-1. (see [B)).

Proof of (4.1) for 7 = Qn’ generalized quaternionic:

Facts

1.

541 (ZQ,~ Z,Q,) 2> L+l (zp,_,~ZD,_,) is 1-1.

for j&l or 2(4). B: Q- Q/C = Dnﬁji(see (4.7)).

tor L

Hyp.o(@nsZ(5)) = O

s 2 - s Z S to.
ey e Bupr1 (B Z gy = Hiyyq (9. Z o) 18 onto

subgroups
A

The Pontryagin product Hqi(c_;Z?E)x:He(Qn,Z)?)-aH4i+e(Qn;EV2)
is onto for €<. 3. 2 tor L?_ (Z Q)) =0 for 1 £1(4).

aI, |
tor Ly, © (ZQ,) =0

Li(zQ,) =24 17(zD _j)eli(zq,,) is 1-1

where B, : Qn - Qn/c = Dn—l and : Qn - Qn+l is the inclusion

2

map.

: L
Hyper3(Q 3 %2 ——5 Hy 5(Q,1 5 ZR) is trivial for

all k,

Hu_k_l_}(Qn; Z) = Hyy 5(Q, 5 Z/2) is onto for all k.
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Facts 1, 2, and 3 plus naturality imply & j =0 for j>o.

Fact 4 plus the commutativity of (4.6) imply Rj 0 for 355,
d j £3 (4). Facts 4 and 8 plus the commutativity of

i (2/23 7/2) x Hy(Q) ———> Hyy5 @, 5 Z/2)

iy + 8 LI
\
0y (8 5/ X PEG) 5t (@ 2o
imply "ﬁma = 0 for k>O. /
8% islinduced by
'K(%;O)ABQ;MLE(Z) ABQn A% L' (Z Q)

(2) (2)”

Fact 5 implies HS =

Facts 6 and 7 imply xg is trivial.



Section : Proof of Theorem 1,2
Section 5

As always 1t suffices to assume that v is a 2-group. We
first do the case of an elementary abelian 2-group,

E = %/2@ ooc@ K/go

Lemma 5.1 : J? t Hy(BE 5 Z(p) - L? (Z E) p 1s trivial for

J >0.
Proof: SKl(ZZE) =0, so 1.1 (b) proves the result.
The fact that SK,(Z E) = O shows that LS (Z E) - L;(ZE)

is an isomorphism S0 by Wall's calculations [W2] the torsion

in L3(ZE) has exponent 2,
s : il :
Lemma 5.2 : X3 : Hy(BE 5 Z/2) ~ LT , (Z E)(p) is trivial for

J
d >

Proof. HjI_(B Z/2; Z/2) ® Hy(BE; Z/2) = Hy (B(Ex Z/2) ; Z/2)
, J/-gi x 383 (z/2) _ J/Ei+ 3

Lito(Z Z/2 5 7/2) ® LI (ZE ; %/2) —-L§_+j+2(zz [Ex%/2); z/2)

commutes. Since the result is true for Z/2 we can begin an

induction,

Since Li(% [Z/2x Z/2] ) is torsion-free [(W2], ]{g must be
trivial for Z/2 x Z/2., It is not hard to finish.

We need a generalization of a trick in Stein [S].
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Lemma 5.5 : Let T, and To be finite groups and suppose the
torsion in Lﬁ(Zﬁ(lewé)) is annihilated by %Z/2°. Assume
further that Hy(Brq 3 Z/2") is a free Z/2¥ module.

Then, if .93‘ is trivial for j >0 for 7, and for m,, then

23

ij‘ is trivial for j>O0 and T x 7.

Proof: By the universal coefficients theorem

' ' s s
® © Hi(Bry; Z/2°)®H ., ;(Bry; %/2°%) - ® H,, (Bry xm,5); % /2%)
s>r ' 8

Hn(B(TTl XT."E) 5 %( 2) )

is onto the torsion in Hn.

The lemma follows from the commutativity of

(see next page)
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@)

(

/T [Bux Tu)g) qml.laxmhﬁﬁ.. 19 (2/2 ¢ Tuz) 1 & (2/z¢ %1z)

v (2) e (@) (Tu 2) T

\ﬁ

. ﬂ y r
pmv:hx .nb.ummv M.H _ ﬂ%ﬂ%@ ﬂ%@ﬂlﬁé%@.ﬂ Mﬁ

P (@)z¢2ug)T e (o2 Tua) Fud(z /z « o)t 1% o)z ¢ Tug) T Ty

g

dRT+1I®¢ ﬁ
(@lg ¢ Bux Tuyg)%n «——— (2/z Cua) ¥ e (o/z ¢ Tua)tx
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Lemma 5.4 : If A is an abelian 2-group, then

‘Jg.’ t Hy(BA Zipy) - Lj (Z &) is trivial for j>O.

Proof: The lemma follows from the Stein trick (lemma 5.3)and

induction on the rank of A once we observe:
( 1) the result is true if A is elementary abelian (5.1)

(ii) Dby Wall [W2], T (Za) has torsion of exponent at most
4 .

Wé now take up the results for ¥ To fix notation let A

jo
be our abelian group. Let i:E = A be the inclusion of the
subgroup of elements of order < 2. Let J: ZT - A be a map of
a free abelian group of rank = r = rank of A which is onto.

Then we have

( 1) : ®H; (BE; Z/2) ® H__,(BZ ; z(é))

y

H (BA;Z/2)

is onto, where the map is defined using the H-space structure

of BA

(ii) H, (BE ; Z /2)@H, , (Bz¥ ; Z (2 —>H (BA; B/2)
=Y X

L}:;{_Q(ZE)(Q)@.Ln-i (z[zr])(z) —>L, ,(Z) (2)

commutes,

-



-

An easy induction plus 5.2 shows that any c-€ Hj (BA; Z /2)
such that H?(c) = 0 must be equal to j, (c) for the unique element
c €H, (B Z'; Z/2) such that j,(T) =c.

Lemma 5.4: The maps

u:j : Hy(BA; Z/2) - L3+2(ZA)(2)

are trivial for j> 2.

Proof: 'Bak [B] shows L;, (Zz &) - LE (ZA) is monic so we prove
v
the result for Hh.
The result just above the lemma implies that it is enough
to show that the problem (Te- SE)XTJ is..solvable for j>2 over

BA., -

We can write our problem as (Tgwse)x 'I"j'l)xsl where j-1>1.
Now 1.1(d) plus Ranicki's result [R1l] that
5 (%tG]) - £ (Z [G xZ]) factors through . (Zz{a])
J-1+2 J+2 J-1+2v "t
finishes the proof. '

An entirely similar trick shows 1.2 (c¢). We now do

the promised determination of Xoe

Theorem 5.5': The sequence

14
H,(BE ; 3/2) —>H,(BA ; Z/2) —2 15 (Za])

is exact,
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Proof: Naturality of Ke plus 5.2 shows that we have a zero

sequence. Naturallity again reduces exactness for A to exactness

for Z/2 xZ/4.

For Z/2 x Z/4 the cokernel of i, is Z/2. Morgan-Pardon
showed that 3{2 # 0 by example.
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