
The total surgery obstruction 

by Andrew Ranicki, Princeton University 

Let n~ 5. 

According to the Browder-Novikov-Sullivan-Wall theory of surgery 

([BI],[B2],[N],[Sul],[WI]) a finite n-dimensional Poincar6 complex X is homotopy 

equivalent to a compact topological manifold if and only if 

i) the Spivak normal flbration~x:X ~BG(k) (k~n) admits a topological 

~x:X ~BTOP(k), in which case topological transversality applied reduction to 

a degree I map ~x:S n+k.o ~T(~ x) gives a topological manifold N n = ~xI(X)Csn+k 

and a map of topological bundles b:~M----~ X covering the degree I map 

f = ~X 1 : M ~X, and hence a surgery obstruction ~(f,b)~Ln(E1(X)) 

ii) there exists a topological reduction~ x such that 6(f,b) = O, in which 

case the normal map (f,b):M ~X is normal bordant to a homotopy equivalence. 

The theory was initially developed in the smooth and PL categories; the extension 

to the topological category is due to Kirby and Siebenmann ([KS]). 

We present here the preliminary account of a theory which replaces the 

two-stage obstruction with a single invariant, ~the total surgery obstruction'. 

We shall only consider the oriented case, but in principle there exists 

an unoriented version involving twisted coefficients. For the sake of the 

s-cobordism theorem we shall be working with simple homotopy types and the Wall 

LS-groups, but there is also an ordinary homotopy version which we discuss briefly 

• I 

at the end. Thus Polncare complexes will be finite, simple and oriented; 

manifolds will be compact, topological and oriented. 

The invariant lies in one of the groups ~.(X) (defined for any space X) 

appearing in an exact sequence of abelian groups 

• .. ~ Hn(X;_mO) ~. ~Ln(~I(X)) ~n (x) ~ Hn_I(X;_~O) ~... , 

where -~O is a 1-connective~-spectrum with Oth space homotopy equivalent to G/TOP 

and ~. is a universal assembly map. Both -~0 and G. were originally constructed by 
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Quinn ([Q1],EQ2]) using geometric methods. Here, _~oand ~ .  are constructed using 

algebraic methods, and the groups ~.(X) are the relative homotopy groups of a map 

of simplieial~-spectra ~.:X+~__~ O ~_~O(~I(X)) inducing the assembly maps 

~,:H,(X;_~. o) = ~,(X+^_~ o) ~ ~,(_~o(~l(x)))= ~,(~l(x))  (X+ = X~pt .~ ) .  

There are also defined relative groups ~.(X,Y) for pairs (X,Y), to fit i n t o  an 

exact sequence of abelian groups 

... ~ Hn(X,Y;_~ O) ~ *  ~ Ln(~I(Y)--*~I(X)) • ~n(X,Y) • Hn_I(X,Y;__~ O) 

The functor ~. satisfies the first five of the seven Eilenberg-Steenrod axioms 

for a homology theory, failing excision and dimension: 

~.(pushout square) = Cappell's Unil. , ~.(pt.) = O . 

Theorem I An n-dimensional Poincar~ complex X determines an element s(X)(~n(X) , 

the total surgery obstruction of X, such that s(X) = O if and only if X is 

simple homotopy equivalent to a closed topological manifold. The image of s(X) 

in Hn_I(X;.~ O) is the obstruction to a topological reduction of the Spivak normal 

fibration ~x:X ~BSG. 

[J 

There are also relative versions (and even n-ad versions) of Theorem I: 

Theorem 1 (rel) An n-dimensional Poincar~ pair (X,Y) determines an element 

s(X,Y)~n(X,Y) such that s(X,Y) = O if and only if (X,Y) is simple homotopy 

equivalent to a manifold with boundary. 

E3 

Theorem I (rel B) An n-dimensional Poincare pair (X,Y) with manifold boundary Y 

s~(X,Y)~n(X) such that s~(X,Y) = O if and only if determines an element 

(X,Y) is simple homotopy equivalent to a manifold with boundary by an equivalence 

which restricts to a homeomorphism of the boundaries. 

E3 

~... . 
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The obstruction theory of Sullivan [Sul] for the problem of deforming a 

homotopy equivalence of manifolds to a homeomerphism has a natural expression 

as a total surgery obstruction: 

Corollary I A simple homotopy equivalence of closed n-dimensional manifolds 

f:M ,X determines an element s(f)~n+1(X) such that s(f) = 0 if and only if 

f is homotopic to a homeomorphism. 

Proof: Let W be the mapping cylinder of f, so that (W,MJ-X) is an 

(n+q)-dimensional Poincar6 pair with manifold boundary. Define 

s(f) = s~(W,Mo-X)~ ~ n+q(W) (= ~n+q(X) by the homotopy invariance of ~.) . 

By Theorem q (rel 8) s(f) = 0 if and only if there exists a topological 

s-cobordism (W';MI,X I) simple homotopy equivalent to (W;M,X) by an equivalence 

which restricts to homeomorphisms of the boundary components. Now apply the 

topological s-coberdism theorem (in dimension n+q ~ 6). 

[] 

There are also relative versions, Corollary I (tel) and Corollary I (rel ~). 

Given an n-dlmensional Poincare complex X let ~TOP(x) be the topological 

manifold structure set of X, defined as usual to be the set of equivalence 

classes of pairs 

(closed n-dimensional topological manifold M, 

orientation preserving simple homotopy equivalence f:M ~ X) 

under the relation 

(M,f)~(M',f ') if there exist a homeomorphism h: M •M' and a 

homotopy f'h~f : M ~X. 

Define similarly structure sets ~TOP(x,Y) for Poincar~ pairs (X,Y), and also 

8~OP(x,y) • , for Polncare pairs (X,Y) with manifold boundary Y. 
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Corollar~ 2 If X is a closed n-dimensional manifold the function 

s : ~TOP(x) ~ ~n+l(X) ; (f:M ~X), • s(f) 

is a bijection, and there is a natural identification of the Sullivan-Wall 

surgery exact sequence 

... ~j~°P(x~,~(x~2)) 

with the exact sequence 

"~ ~n+2(X) 

[X×~,3(Xx~I);G/TOP, *] e ,Ln+I(~I(X)) 

¢~TOP(x) r IX,G/TOP] 8 ~Ln(~I(X)) 

In particular, 

Hn+I(X;IL O) ~:f~ ) Ln+I(~I(X)) 

>~n+l(X) -'~ Hn(X;.~_. O) ~, ~ Ln(~I(X)) • 

identifications 

~TOP(xx&k'~(x~k)) = ~n+k+l(X'~X) 
(k~O) 

~ OP(X~ak'~(X×Ak)) = ~n+k+1(X) 

We shall only sketch a proof of Theorem 1 here. There are 4 main 

ingredients: 

i) the Browder-Novikov-Sullivan-Wall theory in the topological category 

ii) the isomorphisms e:~.(G/TOP) , L.(1) defined by the surgery obstruction 

iii) transversality in Quin~'s category of normal spaces and spherical fibrations 

iv) the algebraic theory of surgery. 

We start with a brief account of iv) - the first two instalments of a full 

account are due to appear shortly ([R23). 

=~n+k+l(X) , [xx~k,3(X~ k);G/TOP,'] = Hn+k(X;.~O) (k~O) . 

[] 

Again, there are relative versions, Corollary 2 (rel) and Corollary 2 (rel~). 

If (X,SX) is an n-dimensional manifold with boundary there are natural 



279 

Given a group ~ and a (left) 2Z[~]-module chain complex C let T& ~z, 2 act on 

C~ZZ[~jC = C@z~C/Ix~y-g'lx@ylx,y&C,g6~ ~ by T(x@y) = (-) Ixl lYly~x, and define the 

I 7Z2-hypercohomology IQn(c) = Hn(HOm~[2Z2 ] (W,C@2z[~] C)) 
groups with W the free 

~Z2-hyperhomology ~Qn(C) Hn(W@2z[ ~z2j (C®z~[~]C)) 

1 - T  ~[ , ~, O. Z~[~z2]-module resolution of ~ W : ... ~2Z[ZZ2] I+T ,~[~z2 ] ~2] 

I~ 6 Qn(c) 
An element ~V6Qn(C) is an equivalence class of collectionsl l~s ~ (C@z~[~JC) n+sls2~ O~ 

C %c  O nsls  
such that 

The 

I d(~s) + (-)n+s-1(~s_1 + (-)ST~s_1) : O£(C~[~]C)n+s. I (s~O,~_1=O) 

d(~s ) ( ) n-s-1 s+l + - (Ws+ I + (-) WWs+ I) = O g(C@?z[~]C)n.s_ I (s)O). 

I symmetric I Ln(~) . ~ 
L-groups (n>/O) are defined to be the algebraic Polncare 

[quadratic [Ln(~) 

cobordism groups of n-dimensional 

1 (C'q~Qn(C)) d 
, with C:C 

~(C ,~£Qn(C) ) n Cn-1 

chain complex such that slant product with the cycle 

simple chain equivalence C n'' = Hom~[~](C,~[~])n_ ~ 

I symmetric . , 
Polncare complexes over ~[z] 

Lquadratic 

~... ~Cld-~-~C 0 a based f.g. free ~[z] -module 

I ~O6 (C~2~[~]C) n defines a 

(I+T)Wo£ (Ce~z[~]C) n 

~C. The quadratic L-groups 

are 4-periodic, Ln(~) = Ln+4(~) , being just the Wall surgery obstruction groups. 

The symmetric L-groups were introduced by Mishchenko [~]; they are not in general 

4-periodic, Ln(~) / Ln+4(~). There are defined symmetrization maps 

I+T : Ln(~)- >Ln(~) ; (C,W)~----+(C,(I+T)W O) 

which are isomorphisms modulo 8-torsion. The cobordism classes of (n-1)-dimensional 

• r 

quadratic Poincare complexes with an n-dimensional symmetric Polncare null-cobordism 

define hyperquadratic L-groups ~n(~) (n~ I) oT exponent 8 which fit into a long 

exact sequence of abelian groups 

• °. ~ Ln(~ ) I+T ~Ln(~) J ~n(~) H ,Ln_l(~) I+T Ln-1 - ~ (~) ~ .... 

• ~ symmetric 
i LO(~) is the Witt group of non-s~ngular ]quadratic forms over ~[~]. For example, (Lo(~) 
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The L-groups of the trivial group ~ = ~1~ are given by 

I ~ (signature) 

2 2 (deRham) 
Ln(1) = , 5n(I) = 

0 

O 

I Z~ 8 (signature (mod 8)) 

~n(1 ) = ~2 (deRham) 

0 

~2 (Arf) 

I 
1 (~(signature)) 

0 

~2 (Arf) 

0 

I 
O 

1 
if n - (nod 4) 

2 

3 

An n-dimensional geometric Poincar~ complex X is an n-dimensional finite 

CW complex together with a fundamental homology class [X](Hn(X) such that cap 

product defines a simple chain equivalence of based f°g. free ~[~1(X)]-module 

chain complexes 

IX] n -  : c ( ~ )  n ' *  > c ( ~ )  , 

with C(X) the cellular chain complex of the universal cover X. Applying 

- ) to a diagonal approximation ~:C(X) ~Hom~[~2](W)C(X~@~C(~)) H*(~ ~[~I(X)] 

and evaluating~:H (X) ~ Qn(c(X)) defines an n-dimensional symmetric Poincar~ 
n 

complex over ~[~I(X)] (C,~) = (C(X),~[X]), and hence a symmetric signature geometric 

Poincar~ bordism invariant 

~*(X) = (C(X),~[X])E~n(~ICX)) 

(which was introduced by Mishchenko [Mi]). Given a group morphism ~I(X)--@~ we shall 

denote the image of ~(X)~Ln(~I(X)) in Ln(~) also by ~*(X). For example, 

if n = 4k ~(X) c L4k(1) = ~ is just the ordinary signature of X. 

• i An n-dimensional geometric Polncare complex X carries a stable 

equivalence class of Spivak normal structures 
n+k 

(~x:X. ~ BSG(k),rx:S ~O~x)) , 

such as arise from an embedding XCS n+k (k~n) by taking a closed regular 

neighbourheod W of X in S n+k and setting 
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sk-1 ~X ~W ~W 

Px: ~n+k collapse > ~n+k/sn+k_ W : W~W : T(~ x) . 

As usual, [X] = h(~x)~ UPX ~ Hn(X) , with h = Hurewicz map : ~n+k(T(~x))----~Hn+k(T(Jx)), 

.k T(P X) = Them space of ~X' U~ X = Them classEH (T(~x)) , H = reduced (co)homology. 

A normal map of n-dimensional geometric Poincar~ complexes 

(f,b) : (~,~,pM) >(x,~x, FX) 
is a map f:M ~X of degree I, f.[M] = IX] ~Hn(X), together with specified Splvak 

normal structures (/M,~M) , (/X,~X) and a stable map of spherical fibrations 

b:YM------~ X covering f such that T(b).(/M) = ~X6%I+k(T(~x)). Such a normal map 

determines an n-dimensional quadratic Poincar6 complex over 2~[~1(X)] (C,W), and 

there is defined a quadratic signature normal map bordism invariant 

o~,(f,b) = (C,W) CLn(~I(X)) 

such that 

(l+T)~,Cf,b) = ~*(N) - ~*(X) E LncE I(X)) . 

Here, C = C(f I) is the algebraic mapping cone of the Umkeh.r 2Z[=l(X)]-module chain map 

(IX] D _)-1 ~. ([M]~ -) 
f~ : c(x~ -~ , c(~) n'* ~" > c(m n'* ~ C(M) 

with M the cover of M induced from the universal cover X of X by f, and ~ is defined 

as follows. Let ~:M ~ M ~M ~BSG(k), z/~:X ~ X ~X ~ BSG(k), so that b lifts 

to a stable map b:O~----+ ~ covering f:M ~ X. The induced map of Them spaces 

T(~) :T(P~) ) T(~) has an equivariant S-dual stable =1(X)-equivariant map 

Z~<______~ ~ F: ~< ~+ = Xo~te~) inducing fI:C(X) )C(M) on the chain level, 

and such that (E f)F_~1:E X ) Z~X . The evaluation of the composite 
+ + 

WF : Hn(X ) (adjointF)., ~n(~M</=) projection~Qn(C(~)) .... e%_~Qn(C(f:)) 

on the fundamental class IX] g Hn(X) defines ¥ = WF[X]~Qn(C(f:)), where e% is 

induced by the natural projection e:C(M) ) C(f !) and = = el(X). The standard 

map k?oEEk×Ek(~l~)/~ ) ~</~ is a group completion in homology, so that 

Hn(~M+/~) = 21[~] ~2~[~i](~qHn(E~'kX r.(l ~)/~) ) ) con t a in s  H_(EZ ~ (N~ M~)/~)= Qn(C(N~)) 
n 2 ~2 

as a direct summand. 
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An n-dimensional normal map (f,b):M ~X in the sense of Browder and 

Wall is a degree I map f:M ~X from an n-dimensional manifold M to an 

• I 

n-dimensional geometric Po!ncare complex X, together with a stable map b:~M----*~ X 

of topological bundles covering f, where~PM:M * BSTOP(k) is the normal bundle 

of an embedding Mc S n+k. The algebraic theory of surgery identifies the surgery 

obstruction of (f,b) with the quadratic signature of the underlying normal map 

of geometric Poincar~ complexes (f,Jb):(M,J~M,PM) 2(X,J~x,Px ) 

e(f,b) = ~.(~,ab)~ Ln(~I(X)) • 

An n-dimensional normal space is a triple 

(X, ~x:X ~BSG (k) ,#x:S ~+k > T(~X)) 

consisting of an n-dimensional finite CW complex X, an oriented spherical 

fibratien ~ x and a maPpx" There are evident notions of normal pair, normal bordism, 

normal space n-ad° Given a normal space (X~x,p X) it is possible to construct a 

stable ~1(X)-equivariant map G:~Z ~ o~+ inducing ~X]O-:C(X) n'* ~ C(~) 

on the chain level, with Z an equivariant S-dual of T(~) and ~X] = h(~x) n Uo ~Hn(X). 
X 

The quadratic construction now applies to define a hyperquadratic signature 

normal bordism invariant 

~*(X) C ~n(~ I(X)) 

(where @*(X) is short for ~*(X,~x,~x)) such that H~*(X) = (C,W) ~Ln_I(~I(X)) , 

with C the algebraic mapping cone of [X] O-:C(X) n'*- • C(X) o An n-dimensional 

geometric Poincare complex X is essentially the same as an n-dimensional normal 

space (X,~x,~x) such that ~X] O -:C(~) n-*~ ~C(X) is a chain equivalence, in which 

case (~X,~X) is a Spivak normal structure, Z = X+, G = I and 

~n 
$*(X) = J~*(X)~ L (~I(X)) , H$*(X) = OELn_I(~I(X)) , 

If (X,Y) is an (n+1)-dimensional normal pair with Poincard boundary Y there is 

defined a quadratic signature (normal,Poincare)-bordism invariant 

~(X,Y) = (C,W)C Ln(~I(X)) 

such that C is the algebraic mapping cone of [X]~-:C(~) n+1-* >C(~,Y~ and 

(I+T)~.(X,¥) = ~*(~3£ Ln(~ICx)) . 
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The mapping cylinder W of a normal map of n-dimensional geometric Poincare ~ complexes 

(f,b):(M,~M,PM) )(X,~,p X) defines an (n+l)-dimensional normal pair (W,M~,-X) 

with Poincar~ boundary M~-X, such that 

O~.(W,Mk)-X) = ~(f,b) ELn(~ I(X)) . 

The various signature maps fit together to define a natural transformation of 

exact sequences of abelian groups (for any space K) 

• .. ) ~n+l(K) ]~ (K) > ~n(K) m ~ (K) ) ... 

^n+1 ~" H)Ln(~I J ^n • ..---~ L (z1(K)) (K)) ~+T ~Ln(zl(K)) ~ L (~I(K)) ~ ... , 

[ ~ P(K) geometric Poincare complexes 

with~n~(i) the bordism groups of normal spaces mapping to K. 
] 

~ N'P(K) (normal, Poincare) pairs 

I should like to thank Frank quinn for inventing normal spaces ([Q3]) , and 

for suggesting that they should have a hyperquadratic invariant. Unfortunately, 

the results and constructions of [Q1],[Q2],[Q3] have not yet been fully documented. 

The theory announced here is independent of Quinn's (although evidently influenced 

by its philosophy), with the following two exceptions: 

i) Normal space transversality: given a spherical fibration ~:K ~BSG(k) over 

a finite CW complex K and a map ~ S n+k : ~T~) to the Thorn space T(~) it is 

possible to deform ~ by a homotopy to a map (also called ~ ) for which X=~'I(K)CS n+k 

has the structure of an n-dimensional normal space (X,Px,~x) with 

sn+k collapse sn+k/sn+k_ W W/~W )T(~ X) 
])X : X (~l ~..K ~ B S G ( k )  ' ~ X  " = 

for some closed regular neighbourhood W of X in S n+k, and with 

. sn+k FX ~ ~ ( ~ X  ) > ~ ( ~ )  . 

Along with the relative normal transversality for maps of n-ads. It follows that 

the maps 

~N(K ) ~ Hn(K;MSG ) ; (X,~x,~x)~ • (sn+k ~X ~ T(DX) Z~ "- X+A T(~ X) ) K+^MSG(k)) 

are isomorphisms, by analogy with the Pontrjagin-Thom isomorphisms for smooth bordism 

~Sn0(K) ~)Hn(K;MS0) obtained by smooth transversality. (I am indebted to Norman Levitt 

for an elementary handle exchange argument establishing normal space transversality). 
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ii) Poincar~ surgery: in the starred discussion surrounding Theorem ~ below 

(and Theorem 4 itself) we shall make use of the geometric Poincar~ surgery theory 

initiated by Browder [B3], and developed further by Levitt [Le], Jones [J1] and 

Quinn [Q3S. Some details of the theory still remain obscure, especially in the 

non-simply-connected case. The main result of this theory is an exact sequence 

. . .  ~ Ln(~I(K)) ~ ~L~(K) ~ N ( K  ) H$* (~I(K)) n Ln-1 "'" 

or equivalently that the quadratic signature maps ~.:~+~P(K) ~ Ln(~I(K)) are 

isomorphisms, for any space K. It is immediate from the Wall realization theorem 

for surgery obstructions that the quadratic signature maps are split surjective, 

so that~(K) = Ln(~I(K)).? , but it it is not so easy to see that ? = 0 (although 

almost certainly true). In particular, the ~roof of Theorem I makes no use of 

~eometric Poincar~ surgery, relying instead on the algebraic Poincar~ surgery of [R2]. 

Assuming ? = 0 it is in fact possible to give an alternative proof of Theorem 1 

which makes no use of algebraic Poincar~ surgery, relying instead on geometric 

Poincar~ surgery. (Follow the same steps as in the proof below, but with the 

I geometric Poincar~ (~P(K(~,I)) ~symmetric 
bordism spectrum~ N in place of the 

~normal space (Jr (K(~,q)) ~hyperquadratic 

t ~o(~) 
~,-spectrum ~ ~0(~)" If ? = 0 the quadratic signature map ~.:~N'P(K(~,I)) > E.~O(=)§ 

L 
to the suspension of the l-connective quadratic ~-spectrum is a homotopy equivalence). 

The original simply-connected surgery theory of Browder and Novikov was 

reformulated in terms of classifying spaces for normal maps (such as G/O,G/PL,G/TOP) 

by Sullivan [Sul] and Casson, and the non-simply-connected surgery theory of Wall 

was reformulated in terms of geometric classifying spaces by Quinn [Q1], 

see Rourke [RoS and §17A of Wall KW1]. We shall now outline an algebraic construction 

of surgery classifying spaces, leading to an algebraic formulation of surgery. 

Given an abelian group G let ~(G) be the~-spectrum with kth term the 

Eilenberg-MacLane space K(G,k). Given a connective spectrum ~ let ~§ denote the 

1-connective covering of ~, i.e. the fibre of the evident map ~ ) ~(~0(~)). 
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~symmetric 
Let E be a group. A t quadratic Poincare n-ad over ~[~] is an n-ad of chain 

I symmetric 
complexes of based f.g. free ~[~]-modules, together with a simple ~quadratic Poincare 

duality. (See §0 of Wall [WI] for the general properties of n-ads)• For example, 

an algebraic Poincare 1-ad (resp. 2-ad) is the same as an algebraic Poincare complex 

I symmetric 
(resp. pair). The Poincar~ n-ads over ~[~] are the simplexes of 

L quadratic I mk(~) 
-(k+1)-connected Kan complexes (k~Z~) such that 

mk(~) 

l ~u,k(~) = ILk+1(~) ~n(ILk(~)) = Ln+k(E) 

51~k(~) ~'k+~(~) , ~n(~k(~)) = Ln+k(E) 

I _mo(~) = ~,-k(~)l~,o} 

Thus[ ILo(~) [~'-k (~) I k~ O} is a connective ~-spectrum such that 

i n(IL0(~)) = Ln(~) (n~0) 

~n(ILo(~)) = Ln(~) 

(kE~,n+k~ O) 

The cofibre of the symmetrization map I+T:~O(~) § 

^ 0 ^ -k _L (~) = ~IL (~)Ik~/O} such that 

"0  ~ .~n(~) ( n ~ l )  

~n(--~ (~)) ='~LO(~) (n;  01 , 

which fits into a fibration sequence of spectra 

^ 0 H I+T __~0(~) § I+T ~ 0 ( ~ )  J ) n~ (~) )Z~O(~) § ,z_.~°(~) . 

The tensor product of chain complex n-ads defines pairings of W-spectra 

@ : ~o(~ )A~O(p  ) ~ ~o(.~×~) , ®: ~O(~)A~O(~ ) ~,~0(.~1~ ) 
® ~o(=)A ~,o(~,) ', o 

for any groups ~ . On the L-group level the tensor product of chain complexes 

defines pairings 

9 : Lmc~Z, Ln(~) ~Lm+ncEx~) , •: Lm(E)@?z, Ln(P) "Lm+n(~X P) 

: ~m(E)~n(~ ) , ~m+n(~,~) • 

~ILO(~) is a connective ~-spectrum 
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~ ° ( 1 )  = m ° 

We shall write ILo(1)§= --~0" Both _~0 and ~0are ring spectra; every algebraic 

= 

IL-spectrum above is an .~0-module spectrum. There is defined a commutative braid 

of fibration sequences of spectra 

I +T 

-~o ~o \ i('r, (1) 

" h  / '  .<  _. 

I+T 

1 ~P(K) Given a space K let -- be the connective ~-spectrum of Kan complexes 

t geometric Poincar~ 
of maps f:X ~K from n-ads X to K such that 

normal space 

I 
~n(~P(K)) =~nP(K) geometric Poincare 

~n ~T(K))(~'" =~T(K)n (n>/ 0) is the nth normal space bordism group of K. 

The cofibre of the forgetful map ~P(K) ,~N(K) is denoted by~'P(K), so that 

~n(#'P(K)) =QN'P(K) (n~O) is the nth (normal,Poincar~) pair bordism group of K. 

The cartesian product of topological n-ads defines pairings of spectra 

li: 5~_P(K)A~_P(L) "~-- P(KxL) 

Y-~P(K)A Y~N'P(L) .~ ~N'P(K x T,) 

for any spaces K,L. We shall write ~Q(pt.) = ~Q (Q =P,N,(N,P)). Let K be the 
m m - ~  

suspension spectrum of K+ = Kulpto~ , with kth term ~kK = skAK . A singular simplex + + 

I ge ometric Poincar~ 
in K is a particular example of a n-ad mapping to K, so there 

normal space 
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~ *:K+ ~PCK) 
The composites is defined a forgetful map~,:K+ ~N(K ). 

induce the assembly maps appearing in the natural transformation of exact sequences 

N,P 

The assembly ,~ps % * : H n ( ~ ) - - - - - * p _ ~ ( K )  are isomorph is ,~  inve rse  to the n a t u r a l  maps 

~[NcK) • Hn(K;MS__~G) = Hn(K;~) , identifying MSG = ~N by normal transversality. 

(The Pontrjagin-Thom isomorphisms Hn(K;MSO)~ ~ ~clSO(K) have a similar expression 

as assembly maps). 

The chain complex of the universal cover X of a geometric Poincar~ n-ad X 

• f defines a symmetric Polncsre n-ad over ~[~1 (Ixl)] (C(~,A[X]), so there is defined 

a map of~-spectra 

inducing the symmetric signature ~':9P(K) ~Ln(~I(K)) in the hemotopy groups. 

normal space 
n-ads, with a map of ~-spectra 

Similarly for [(normal,Poincar~) pair 

^0 

I 
~* : .~N(K) ~__~ (~I(K)) 

G. J~J'P(K) ~ E]I,o(T~ 1 (K)) 

I hyperquadratic 1 ~* :3~Nn(K) -~Ln(?~1 (K)) 
• The pairings 

inducing the [ quadratic signature(q.:~n+~(K) )Ln(~I(K)) 

defined for the~-spectra correspond to ~ for the ~-spectra. In particular, 

~.:~N ~0 is a morphism of ring spectra. 
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For an Eilenberg-~cLane space K = K(~,I) the composite 

~* : K ) J~P(K) •~0(~) 

can be defined algebraically, using the standard simplicial model for K(~,I). 

On the 1-skeleton K(~,I) (I) = ~ ~* sends g~-~ to the l-dimensional symmetric 

Poincar~ complex over ~[~3 ~'(g) = (C,~QI(c)) defined by 

Cq-* C O d* = q_g-1 CI : = ~[~] ~ = ~[~] 

C : C 1 = 2~[~]~'- d = q-g~ Co = ~[~] • 

This is the symmetric Poincar6 complex corresponding to the simple automorphism 

g:(~,[=],q) ~(~[~],q) of the non-singular symmetric form over ~[~] (Z~[~],I). 

For the generator g~ = Z~G*(g) is just the symmetric Poincar6 complex o~(S 1) 

of K(2Z,q)= S 1. 

Given a space X use the composite 

• K(~I (X,1) + ~* : X+ 
U* -- ~" 

(which is also the composite ~*:X+ > ~_~P(x) 

,~°(~q(x)) 

~.~O(~l(X))) to define assembly 

maps of spectra 

~,o O"A I ~nO(~1(X))AIL o ® ~* : x+^_ _ _ ,~O(~1(x)) 

~. : x+~_~o ~*^I ~O(~(X))A_~ ° e )~O(~I(X))~ 

%0 ~-,I, : __X÷A! 0 ~*A 1 ]' ]LO(EICX))A~uO ~ )~ (I~1(X)) , 

and hence a natural transformation of exact sequences of abelian groups 

Hn(X;~O ) H ~Hn.I(X;_~O) ~ ... 

^n H (~ICX)) ~ ... L (~I(X)) ~ Ln. 1 

I+T ~n(X;~O) J •.. ~ Rn(X ; ~ o) 

...___.Ln(~I(X) ) I+T ~ Ln(~I(X)) J 

Define the quadraticS-groups S,(X) of a space X by 

~n(X) = ~n(~O:x+^Lo---*~o(~1 (x)) §) 

to fit into an exact sequence of abelian groups 

... , Hn(X;.~ O) ~. Ln(~ 1 (X)) .~n(X) ~ Hn_ 1 (X ;.~0 ) % .... 
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The construction of the algebraic assembly maps ~. and of the groups ~.(X) was 

motivated by Quinn's analysis of the surgery exact sequence in terms of geometric 

assembly maps (~Q1],[Q2]), and by the higher Whitehead groups Wh.(X) of 

Waldhausen [Wa]. Loday [Lo] has obtained similar maps in the context of Karoubi's 

hermitian K-theory, and also in algebraic K-theory. The maps ~. are L-theoretic 

analogues of the maps H.(X;~(~))-----*K.(~[~I(X)]) used to define Wh.(X) to fit 

into an exact sequence 

...----*Hn(X;~(~)) ~ ~n(~[~1(x)]) ~Whn(X) ~Hn_I(X;~(~)) ~ ... , 

with ~(~) the spectrum of the algebraic K-theory of ~, ~,(~(~)) = K,(~). 

For example t WhI(K(~,I)) = Wh(~), Who(K(~,I)) = K%(~[~])° The groups~.(X) are thus 

L-theoretic analogues of Wh.(X) o 

~ topological Transversality in the category allows us to replace the Them 
[normal 

spectrum ..... the homotopy e uivalent  -spectru , of  complexes  of  
gsG 

I topological n-ads. (It may be objected that we have ignored the absence 
manifold 

normal space 

of topological transversality in dimension 4, but there is at least enough of it 

to define a forgetful map MSTOP-----*~,_ which is all we need. See Scharlemann [Sch]). 

Let ~(G/TOP) be the fibre of the forgetful map MSTOP-----~MSG, the spectrum with 

kth space MS(G(k)/TOP(k)), the homotopy-theoretic fibre of MSTOP(k) ~MSG(k). 

Then EMS(G/TOP) is homotopy equivalent to~ N'STOP~ , the cofibre of ~TOP_____,~N_ ~-- 

i symmetric 

The hyperquadratic signature map 

quadratic 

the algebraic assembly map 

~STOP- - ~* ¢ ~ ~* :~L n (K) = Hn(K;MSTOP)- ~ Hn(K;_~ ~0) , Ln(~1 (K)) 

~N(K)n = Hn(K;MSG ) _  _ ~* ^ 0 ~* * : ~ ~n(K;m )------~ zn(~I(K)) 

~N,STOP(K ) = Hn(K;MS(G/TOP))-Q'* ~Hn(K;~0) f*--~Ln(~1(K)) 
~* : n+1 - - -  

:~n 
A n 

~*:~N(K) , L (~I(K)) factors through 

~N, STOP- - 
*:~n+1 (K) - ~ Ln(~1 (K)) 
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(These factorizations can be interpreted in terms of characteristic numbers, 

in particular for the surgery obstructions of normal maps of manifolds, which can 

then be used to determine the homotopy types of the IL-spaces~ following the work 

of Sullivan [Sul] and Morgan and Sullivan [MS] in the simply-connected case. 

See Wall [W3] , Jones [J2], Taylor and Williams [TAW] for generalizations to the 

non-simply-connected case. In [TAW] it is shown that the algebraic ~-spectra 

become generalized Eilenberg-MacLane spectra localized at 2, and wedges of 

b__oo-coefficient spectra localized away from 2). 

Given a ring~-spectrum R = ~Rk=~Rk+I,®:RjARk---~Rj+k,lk:Sk ~Rk~ 

let B RG be the classifying space for stable ~-oriented spherical fibrations over 

finite CW complexes, and let R@ be the component of I E ~o(R) in R O. If ~0(~) = 

the morphism ~ > ~(~) induces a forgetful map B RG ~B~(~)G = BSG, and there 

is defined a fibration sequence of spaces 

R@ 7 B~G ~ BSG . 

In particular, we have defined a commutative braid of fibration sequences 

f 
~0 B_~0G ~ ~  BSG 

/ -  
^ 0  rr.@ 

with IL Othe Oth term of ~= __~0(I)§, i.e. the connected Kan complex of quadratic 

Poincar~ n-ads over ~such that ~n(ILo)= Ln(1) (n$I). 

We have defined a commutative square of ring spectra 

An oriented 

c n°°I  :O °rett°n 

~* ~0 
MSTOP ~ 

MSG ~0 

I 
topological bundle ~ :K ~BSTOP(k) 

spherical fibration fl:K ~BSG(k) 

u(~) ( ~k(T(~ ) ~MSQ) 

over a finite CW complex K has a 

, and hence also a canonical 
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~-orienta tion 1 q*U(ct) ~ Hk(T(~) ;-~ ~0) There is induced a morphism of fibrations 

G/TOP ~ BSTOP J ~BSG 

~o ' B~ °a J ' B~ °G 

with ~.:G/TOP ~0 the map associating to each singular simplex ~---~G/TOP the 

quadratic Poincar~ n-ad ~.(f,b) over ~ of the normal map of manifold n-ads 

(f,b):M ~ that it classifies. Now T.:G/TOP ~L O induces the surgery 

obstruction isomorphisms 

~ .  = 0 : n . (G/TOP)  , ~ . ( ~ 0  ) = L . ( 1 )  , 

so that it is a homotopy equivalence by J.H.C.Whitehead's theorem. The right hand 

square is thus a homotopy-theoretic pullback, and for any spherical fibration 

~ :K ~BSG(k) there is an identification of sets of equivalence classes 

{stable topological reductions ~:K ~BSTOP of ~:K ~BSG(k) } 

= ~pairs (V~h) consisting of a map V:T(~)----~L -k and a homotopy 

h : ~v=~ : T(~) ~-k} 

for some fixed map V:T(~) ,~-k representing the canonical ~0_ orientation 

~*U(~)6Hk(T(~);~ 0)_ = [T(~),~ ~. We thus have an equivalence of categories 

{stable oriented topological bundles (over finite CW complexes)} 

~stable spherical fibrations with an ~ 0- orientation lifting the 

canonical ~0_ orientation} ° 

Localizing away from 2 we have the Sullivan [Su2] characterization of stable 

topological bundles as KO[~]-oriented spherical fibrations, with 

I should like to thank Graeme Segal and Frank Quinn for discussions pertaining to 

the L-theoretic characterization of topological bundles. (It is in fact equivalent 

to the Levitt-Morgan-Brumfiel characterization of stable topological bundles as 

spherical fibrations with geoemtric Poincar6 transversality [LeM],[BM]. Unstably, 

the result G(k)/TOP(k) = G/TOP (k~ 3) of Rourke and Sanderson [RS] applies to 

show that there is an equivalence of categories 
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~oriented topological k-block bundles (ever finite ~V complexes)~ 

{(k-1)-spherical fibrations with an ILO-orientation lifting 

the canonical ~0_ orientation~ . 

The homotopy equivalence OS. :G/TOP ~ IL 0 is not an H-map from the H-space 

structure on G/TOP defined by the Whitney sum of bundles to the H-space structure 

on IL 0 defined by the direct sum of quadratic Poincar~ n-ads. The latter is 

equivalent to the Quinn disjoint union of surgery problems addition, and also 

to the Sullivan characteristic variety addition in G/TOP. The former is expressed 

in terms of the latter by (a,b)i ~aebe(a~b). Madsen and Milgram [ME] show 

that there exists no (2-local) homotopy equivalence B(G/TOP) ~ ~-1 extending 

the above diagram to the right by a commutative square 

BSG ~ B(G/T OP) 

B~OG ~ IL_I • 

Here, K_q is the qst term of ~--~D' the delooping of ILodefined by the universal 

cover of the connected Kan complex w_q(1) of quadratic Poincar~ n-ads over 

such that mn(~. l(q))= Ln_l(q) (n~/1). Localizing at 2 we have 

mo(1) (2) = iN--o (K(= ~(2) ,~i), K(~2,4i+2)) , m_I(I)(2)= .=o(K(~(2),~i+1),K(~2,~i+3)) 

--~0(2) = DO (z~(~(2)) x Z4i+I~(~2) ) , 
^0 ~ " 1 (2) = K(~(2) ) x i=~O(Z4~+= _K(~' 2) x ~4i+3K( ~, 2)_ ~z4i+4K( ~,8 ) ) ). 

Given an oriented spherical fibration ~:K ~BSG(k) over a finite CW complex K 

de fine 

t(§) = H~'0(~)e ~k+1 <T(~);m o) , 

the image of the canonical _~O_ orientation @*U(~) ~ Hk(T(~);_~0) under the map H 

appearing in the exact sequence 

... ) J H .... 

By the above, ~ admits a stable topological reduction ~:K • BSTOP if and 
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only if t(~)_ = O. (We have that t(~) is_ a torsion element, and that 

Localized at 2 t(~) can be expressed as a stable characteristic class 
I 

t(~)(2)E iN__Ig4Z-1(K;m2)eim(H4i(K;Z~8 ) ~H4i+1(K;m(2))) . 

Away from 2 t(~) is the obstruction to a KO[~]-orientation ofp 

t ( ~ ) [ ~  = ~ k + 1 ( T ( p ) ) [ ½ ]  1. 

Given an n-dimensional geometric Poincar~ complex X let ~TOP(x) be the 

topological normal map bordism set of X, defined as usual to be the set of 

equivalence classes of normal maps (f,b):M ~ X in the sense of Browder and Wall, 

under the relation 

(f,b)'~(f',b ') if there exists a normal map 

((g;f,f'),(c;b,b')) : (N;M,M') • (X x I;X~ O,X xl) . 

The surgery obstruction function 

e :~T°P(x) ~Ln(~I(X)) ; (f,b) , ~.(fJb) 

fits into the Sullivan-Wall surgery exact sequence of sets 

Ln+I(~I(X) ) >~TOP(x ) ~ ~TOP(x ) 8 , Ln(=1(X) ) • 

In the case~OP(x) # ~ (i.e. if the Spivak normal fibration~x:X ) BSG admits 

a topological reduction) we shall express 8 in terms of the assembly map 

~,:~n(X;~o) , Ln(~I(X)).  
Let G(k)/TOP(k) denote the homotopy-theoretic fibre of the forgetful map 

J:BSTOP(k)------*BSG(k), as usual, and let MS(G(k)/TOP(k)) be the homotopy-theoretic 

fibre of the forgetful map of Thom spaces J:MSTOP(k) ~ MSG(k) (k~ 0). 

The canonical topological bundle ~k:G(k)/TOP(k)------+BSTOP(k) has a canonical 

fibre homotopy trivialization hk:J~k ~ Jgk:G(k)/TOP(k) ) BSG(k). The canonical 

MSTOP-orientation U(Tk)@ Hk(T(?k);MSTOP) is represented by the induced map of 

Thom spaces 

U(~k ) : T (~k)=  zk(G(k)/TOP(k))+ > MSTOP(k) , 

using h k to identify T(~) = T(e k) = zk(G(k)/TOP(k))+. The canonical 
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MSTOP-orientation U(S k) E Hk(T(Ek) ;MSTOP) of the trivial topological bundle 

£k:G(k)/TOP(k) ~ BSTOP(k) is represented by the composite 

collapse, Ek(sO) S k Ik U(¢ k) T(g k) = .~ MSTOP(k) . : = zk(G(k)/TOP(k))+ 

homotopy hk:J~k-~Jgk:G(k)/TOP(k) % BSG(k) determines a homotopy The fibre 

T(h k) • JU(~k)~-Ju(sk) • Zk(G(k)/TOP(k))+ ,ZSG(k) , 

and hence a map 

fl k : G(k)/TOP(k) , Rkzs(G(k)/TOP(k)) 
such that 

adjointU(~k)- adjointU(~ k) : G(k)/TOP(k) ~k~S(G(k)/TOP(k)) >~STOP(k) 

(up to homotopy). The maps Uk (k~.O) fit together to define a map 

[~ = Lim_~ I" k : G/TOP = . ~  G ( k ) / T O P ( k )  ~ M S ( G / T O P )  = Lim ~ . I S ( G ( k ) / T O P ( k ) ) _ ~  • 

Now ~I~MS(G/TOP) is the infinite loop space corresponding to the (normal,manifold) 

bordism spectrum with a dimension shift, MS(G/TOP) = Z-1~ N'STOP -- , and so can be 

regarded as a Kan complex of (normal,manifold)-pair n-ads. The quadratic signature 

of such n-ads defines a map 

9". : ~ M S ( G / T O P )  ~ u ,  0 • 

The map ~ :G/TOP ~ sends a ~ MS(G/TOP) singular simplex in G/TOP to the mapping 

cylinder of the normal map of manifold n-ads that it classifies. The composite 

i ~ ~ ~, 
9-'~, : G/TOP ~ ~ MS(G/TOP) • IL 0 

is the homotopy equivalence defined previously. 

Let X be an n-dimensional geometric Poincar6 complex, and let 

(~x:X ~BSG(k) ,~X:S '~+k * T(~X)) 

be a Spivak normal structure. The composite 

~X ' Sn+k ~X T(~X ) • x+^ T(~ x) 

is an S-duality map between X+ and T(~), so that for any spectrum 

R = ~,WRk----~+1~ there are defined isomorphisms 
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a x : ~'(m(~,x) ;e)_ = Lim7 [ZJm(~'X) 'mj+*] . "  ~n+k- , (X;R)-  = Lim_3_, ~n+j+k- '~(x+^~j) ; 

{ g j : ZJTO~x  ) ~_  ~ ~ n+ j+k  ZJmX 1^g j  ~ X + ^ R j + . ~  . ,~ j+.~ ~ zs ~ x+~ ZJT(~, x) . 

Any two S p i w k  no rma l  s t r ~ o t u r e s  on X (--X,/X), ( . ~ , ~ )  a r e  r e l a t e d  by a s t a b l e  

f i b r e  homotopy equivalence  c:Z2 X - - - 9 ~  over 1 :X---*X such tha t  

T(C).(~X ) = ~ Sn+k,(T(~)), and any two such fibre homotopy equivalences are 

related by a stable fibre hemotepy. The Browder-Novikov transversality 

construction of normal maps identifies 

~'TOP(x) = the set of equivalence classes of topological normal structures 

(~x:X ) BSTOP(k) ,#x:S n+k - - - , -T(~ 'X))  . 

Thus i f  ~'TOP(x) # ~ end x o = ((fo,ho):Mo-----~X)~TOP(x) is  the normal map bordism 

class associated to some topological normal structure (~o-X ~BSTOP(k O) , 

PO:Sn+ko ~T(~)O)) we have the usual bijections (depending on x O) 

9"TOP(x) ~the set of equivalence classes of stable topological reductions 

I20:X ~ BSTOP of J~o:X r- BSG(k O) , 

and 

x O :i~TOP(x) "~ ~[X,G/TOP] ; ((f1,bl):M 1 ,X), ~ (% -~o,C) , 

with (~q:X- > BSTOP(kl),~I:Sn+kq ; T(~q)) a topological normal structure 

associated to (fl 'bl )£~TOP(X)" Let ~O:Sn+ko /90 T(/~O) z~ ~ X+AT(120 ) be the 

S-duality map determined by (JO,~O). The image of the canonical MSTOP-orientation 

U(~ O) ~Hk(T(A) O) ;MSTOP) under the S-duality isomorphism 

.k 
~0 : H O(T(/) O);MSTOP) "" ~ Hn(X;MSTOP) =]~n~STOP'(x)" 

is the MSTOP-orientation IX] 0 = (Mo,fo)~STOP(x) of X determined by (fo,bo)(~TOP(x). 

For any MSTOP-module spectrum R = {Rj,ZRj ~Rj+ 1 ,~:MSTOP(j)^Rk----~Rj+k~ there is 

defined an R-coefficient Them isomorphism 
k o 

-~u(~ o) : HO(x;_~) " ~ (m(~ o);_~) ; ~(~,~)^g. 
~g~:z~x+ . ~ } ,  ~ ~z~(~, o) " ~ - ~ ( % ) ^ ~ x +  ~ ~S~OP(~o),,R ~ ~ -~+~0  ~, 

so that the composite 

[X]o n - : HO(x;R) I~kO(T(~)O ) ;_R) ~0 ~Hn(X;_R ) 
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is an R-coefficient Po~ncare duality isomorphism. (This point of view derives from 

G.W.Whitehead's treatment of orientability with respect to extraordinary 

(co)homology theories, and from Atiyah's reformulation of Thom's smooth cobordism 

theory in terms of MSO-orientations). In particular, MSTOP and MS(G/TOP) are 

MSTOP-module spectra. Let~ :G/TOP ~°MSTOP = L~ISTOP(k) be the map which 

restricts to the adjcints (G(k)/TOP(k))+---~STOP(k) of the canonical 

MSTOP-orientations U(~k):Ek(G(k)/TOP(k))+--- ~MSTOP(k), so that 

-1  • G/~OP r • ~ ( G / T O P )  , ~'~MSTOP . 

Given a topological bundle ~:X >BSTOP(j) and a fibre homotopy trivialization 

h:J~-sJ:x )BSG(j) there is defined a topological normal structure 

n+k I EJ~o T ( h ¢ l )  -1 
(Pl =~eZ~o:X ~ BSTOP(kl)'~I:S ) ZJT(~ O) = T(~J~ O) ~ , T(~I)) , 

where k I = j+k 0. The image of the classifying map (~,h):X , G/TOP under the 

bijection Xo I : [X,G/TOP] ~ ~ ~TOP(x) is the bordism class of the normal map 

(fl,bl):M1 ~X associated to (~1,~I). The composite 

- ~ ( F o  ) . k  o 
[X,G/TOP] ~ ~ [X+,~ MSTOP] = HO(x;MSTOP) ~ > H (T(~ O) ;MSTOP) 

(=[X+,G/~OP3) Z j .k I . T(he~)" .k 

> H (T(E3eU O);MSTOP) ....... ~ --~ H I(T(= I);MSTOP) 
,k - -  

sends (7,h)C IX,G/TOP to the canonical MSTOP-orientation U(~)I)£ H I(T(2)I);MSTOP). 

The composite 

.k I T(hel)'-1 
~I : H (T(~I);MSTOP) ~ ~ HkI(T(eJemo);MSTOP) 

z-J -ko ~o 
) H (T(2) O) ;MSTOP) .~ Hn(X;MSTOP) 

is the S-duality isomorphism determined by (~i,~I). The composite 

IX, G/TOP] ~ ~ [X] nn- • [X,~ MS(G/TOP)] = HO(x;MS(G/TOP)) ~- )Hn(X;MS(G/TOP)) 

N, STOP . . 
=~- n+1 (~) 

M ~] N,STOP X sends (7,h)~[X,G/TOP] to (WIUx-Wo,MqU- O ) ~n+1 ( )' where W i is the mapping 

cylinder of fi:Mi ~X (i = O,1). Let ~'[X]o~Hn(X;.~ O) be the ILO-orientation of X 

determined by [X]o~Hn(X;MSTOP) , so that there is defined a commutative diagram 
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[xs on- 
[X,~/TO~ , [X,~S(~/TOP)] = ~O(x;ES(G/TOP)) ~- ~n(X;ES(G/TO~)) 

~, ~ = n + l  ( ) 

I o'* IX] O~ - 

[X,~o] --~ > HO(X;~o ) , , .  - _ _ _ _ _ _ _ ~  Hn(X;~ o) • 

Furthermore, there is defined a commutative diagram 

--,iN, STOP(x ) N, P 
n + l  ' )' --~ n+1 (X) 

"1 . 
Hn(X;IL O) ~ Ln(~ I (X)) , 

g 

(W1~x-W o,~1~-N o) = (w I ,N1~-x) - (w o,Moo-x) ~ Null(X) . 

and 

Thus the surgery obstruction e(f 1,b 1) = ~.(w 1,Mlu-X) CLn(~l(X)) of (f1'bl)~TTOP(x) 

is given by 

0(f I ,b I) = ~.(WI~x-Wo,MIC-Mo) + ~,(Wo,MoO-X) 

= ~.(x I) + e(fo,b 0) £ Ln(~I(X)) , 

where ~.(xl)CLn(~I(X)) is the image of (fl,bl) under the composite 

~TOP(x) Xo ~ [X,G/TOP] ~'[X]~L. Hn(X;~__O)_ c~, , Ln(~I(X) ) • 

We now define the total surgery obstruction s(X)g~n(X) of an n-dimensional 

geometric Poincar~ complex X, as follows. Let (~:X • BSG(k) ,pX:S n+k ~ T(~X)) 

be a Spivak normal structure of X, and let ~:S n+k #X~ T(~X) ~X+^T(Px ) be the 

corresponding S-duality map. Consider the commutative diagram 

~X ~* ^n 
~k(T(I)X ) ; ~0) ~ ~ Hn(X; ~_~ O) ~ L (El (X)) 

~k+l (TCPx) ;_~0) ) Hn_ 1 (X ;_~0 ) ~" ' Ln-1 (~1 (X)) . 

The canonical IL -orientation ~ = ~*U(~ X) 6 ~(T(~ X) ;Z~ ~0) is such that 

i) H(~) = t(~x)~ Hk+I(T(~x);IL O) is the obstruction to a stable topological 

reduction of ~X 

ii) ~*~x(V) = ~*(X) = J~*(X)E L (~I(X)) is the hyperquadratic signature of X, 

with ~*(X)~Ln(~I(X)) the symmetric signature of X. 
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Thus ~'.(~xH(V)) = HJ~*(X) = O~Ln_I(~I(X)) , and working on the ILo(~q (X) )-space 

level we can use the 2g[~1(X)]-coefficient Poincar~ duality on the chain level to 

obtain an explicit null-hcmotopy of a simplex representing 0~(C~xH(@))E Ln_I(~I(X)) , 

and hence an element s(X)E ~n(~.:X+~O-----~ILo(~I(X))§) = ~n(X). The image of 

s(X) in Hn_I(X;~ O) is the S-dual of t(~x) gHk+I(T(~x);_~LO). If t(~ X) = 0 choose a 

stable topological reduction ~o:X ~BSTOP of ~X' let x O = (fo,bo)E~TOP(x) be the 

corresponding normal map, and let [X]o = ~X (~*U(~O)) ~ Hn(X ;ILO) denote the 

ILO-orientation of X determined by the canonical ~O-orientation of ~3 0 

C'U(~o)~ Hk(T(~x);~O). By the above, the surgery obstruction function is given by 

¢ : 'yTOP(x),,, ~Ln(~I(X)) ; x1~ ~.(x I) + O(x O) , 

where ~.(xq) is the evaluation of the composite 

~TOP(x) XO>[x,G/TOP] ~', [X,~o] = HO(x;L O) [X]oO->Hn(X;_~O) ~-~--~Ln(~l(X)) . 

The composite ~[TOP(x) 0 ~Ln(~I(X)) ~n(X) sends every element Xl~TOP(x) to 

s(X)£~n(X) , and the inverse image of s(X) in Ln(~q(X)) is precisely the coset of 

the subgroup im(@~:Hn(X;ILo)----~Ln(~I(X))) consisting of the surgery obstructions 

e(xl)e Ln(~I(X)) of all the elements Xl~TOP(x). The surgery exact sequence has 

been extended to the right 

Ln+1(ml(X) ) >~OP(x)___~TOP(x ) 0 > Ln(~1(X) ) , ~n(X) ~ Hn_I(X;IL O) r ... , 

with s(X) = O~n(X) if and only if there exists a normal map x I = (f1'bl)~TOp(X) 

with surgery obstruction 0(fl,bq) = O~Ln(~I(X)), i.e. if and only if X is simple 

homotopy equivalent to a closed topological manifold. 

This completes the sketch of the proof of Theorem I. 
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In order to identify ~TOP(x) =~n+l(X) for an n-dimensional manifold X 

note that an element xE~+I(X) is defined by a pair (y,z) consisting of a normal 

map bordism class YEHn(X;_~O) = ~OP(x) such that ~.(y) = e(y) = 0 & Ln(~I(X)), 

together with a particular solution z of the associated surgery problem. Such a 

pair (y,z) is essentially the same as a homotopy triangulation (f:M >X)£~TOP(x). 

The function~n+l(X) >~TOP(x) ; x = (y,z)i > (f:M ~X) is an inverse for 

the total surgery obstruction function s:~TOP(x)---~n+I(X). 

The identification of the structure sets ~OP(xx~k,~(x~k)) (k~O) 

for an n-dimensional manifold with boundary (X,~X) with a sequence of universally 

defined abelian groups~n+k+l(X) is implicit in Quinn's identification ([Q2]) 

of the surgery obstruction function 

e : ~'~OP(x~k,a(x~)) = [x~,~(x~ k) ~G/TOP,*~ ~T,n+k(~l(X)) 
with the restrictions of universally defined abelian group morphisms 

A : Hn+k(X;_~) ~ Ln+k(~l(X)) 

to im(Hn+k(X;~§)r ~ Hn+k(X;~_)). See the forthcoming Princeton Ph.D. thesis of 

Andrew Nicas for induction theorems for the structure sets which exploit this 

group structure. (I am indebted to Larry Siebenmann for the following description 

of the assembly map A. Given a finite CW complex X let W be the closed regular 

neighbourhood of X for some embedding XCS q (q~>dimX). Then (W,gW) is a framed 

• I 

q-dimensional manifold with boundary, enjoying universal Polncare duality. 

Let~=I~ k=~_k.llk~ ~ be the connectiveS-spectrum with kth space~_k the 

Ken complex of normal maps of manifold n-ads such that ~n+k(~ k) = Ln(1) (n,n+k>~0) 

i.e. Quinn's surgery spectrum, with~ 0 ~Lo(1)XG/TOP [Q1]. Define 

A : Hn(X;_~) = Hn(W;~) = Hq'n(w,~W;~) = [W,~W;~n_q,*] ~-Ln(~I(X)) 

by sending a simplicial map (W,~W) >(~n_q,*) to the surger 7 obstruction 

O~.(f,b) ELn(~l(X)) of the n-dimensional normal map (f,b):M ~N obtained by 

glueing together ("assembling") the normal maps classified by the composites 

~qr >W ~_q, which comes equipped with a reference map N .WmX. 

The quadratic signature map ~.:~ ,ILO(1) is a homotopy equivalence, and 

~. : Hn(X;ILo ) = Hn(X;_~§ ) ______,Hn(X;ILo(1) ) = Hn(X;~) A ~Ln(~I(X)) ). 
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Any simple homotopy invariant of an n-dimensional geometric Poincar~ 

complex X which vanishes if X has the simple homotopy type of a manifold can now 

expressed in terms of the total surgery obstruction s(X~n(X). We have already be 

dealt with the obstruction to a topological reduction of the Spivak normal fibration, 

the image of s(X) in Hn_I(X;_~O). Examples of geometric Poincar~ complexes without 

topological reduction were first obtained by Gitler and Stasheff [GS], and Wall - 

of course, at the time it was only clear there was no PL reduction, but the 

subsequent computation TOP/PL = K(~2,3) implied that there was also no topological 

reduction. (The Hambleton-~lgram [HM] geometric Poincar6 splitting obstruction 

for a double cover of a 2m-dimensional geometric Poincar6 complex X (which need 

not be oriented) is a part of the topological reducibility obstruction, being the 

of s(X)~2m(XW) under the image composite 

~2m(X w) , H~m_1(X;~o)_p_~ H~m_I(BE2;~O ) c ,L2m_2(~)= ~2 ' 

where w refers to homology and L-theory with orientation-twisted coefficients, 

p:X ~BE 2 is the classifying map of the covering, and c is the codimension I 

Arf invariant). The symmetric signature ~*(X) ~ Ln(~I(X)) is a simple homotopy 

invariant of X such that d*(X)~coker(~*:Hn(X;_~0) ~Ln(EI(X))) vanishes if X 

has the simple homotopy type of a manifold. Ne shall express this ±nvariant in 

terms of s(X) in Theorem 2 below. For example, if n = 2m and ~I(X) ~ 

is a morphism to a finite group ~, the image of this invariant in 

coker(6*:Hn(K(E,1);~0) ~Ln(~))~[~] is the corresponding multisignature of X 

reduced modulo the multisignatures of closed manifolds, i.e. those with equal 

components (cf. p.175 of Wall [WI]). The 4-dimensional geometric Polncare complexes 

X of Wall [W2] such that El(X) = ~p , ~*(X) ~ p6*(X)~L4(1) = ~ are thus detected 

by this invariant. (There is no problem in defining the total surgery obstruction 

s(X)~(X) for n% 4, or in showing that s(X) = 0 if X has the simple homotopy 

type of a manifold. However, the usual difficulties with low-dimensional geometric 

surgery prevent us from deducing the converse). 



301 

The construction of the assembly map @,:X+A__~O-----~ILO(~I(X)) § generalizes 

to a natural transformation of commutative braids of fibration sequences of spectra 

(for any space X), from 

1^(!+T) 

x+A~o x+^~ ° x+ ̂ ~(LO(1)) 

X+^K, : X+^~  

/ " t  
x+^ z ' I~ (L° (1  ) ) x+~ § x+A~n-~ o 

to 

]I,(~ I (x )  ) : 

Z'IK(LO(x I (X)) ) 

I+T 

_~o(~I (x))§ IL (~I (x)) K(LOC~I(X)) 

_~°(~ I (x))§ ~o(~ (x)) 

_ § Z~o(~ I (x)) § 

The relative homotopy groups of all the maps appearing in ~:X+A~L 

define a commutative braid of exact sequences of abelian groups 
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>j(x) : 

I+T 

gnCX) ~ ~-"'~Zncx ~" ~ ~ - - ' ~  n_~Cx,,O(~)) 

~n(x) § ~n(x) " 

Hn(X ; LO(< J "~ 

and there are defined a commutative diagram with exact rows and columns 

i ; i i 
^o ~" ~+1(x ) ^o ) Hn+I(X;IL ) ~n+I(~I(X)) • )Hn(X;_~ ) ... 

Hn(X;IL O) ~* ~ Ln(~I(X)) >~n (X) >Hn_I(X;~.~ O) ~... 

Hn(X;ILO) ~* ~ Ln(~I(X)) ~n(x) , nn_1(X;_~O) ,... 

^0 ~" ^ ~ gn(x ) Hn_q(X;ILO ) , • Hn(X;.~ ) ~ Ln(~I(X)) ~ ^ ... 

the ~ ILO§'~*(X)§ 
and corresponding diagram with ~.~O§,~,(X)§ I 

~o ~*(x) 
in place of ^ 

If X is an n-dimensional geometric Polncare complex the image of the total 
surgery obstruction s(X)¢~n(X) in Hn_I(X;IL O) is the image under H of the 

canonical i O- orientation [L]~Hn(X;~O). 
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For any space X there is defined a commutative exact braid 

~ Ln(~ I (X)~f .......... " * ' - g  n(x) 
Hn(X;-m°~) o'* ..~ 

Hn(X;ILO)" § 

.~n+l (X) I Hn(X;LO( 1 ) ) 

giving rise to the exact sequence 

.., g Hn(X; ILO) ~ Ln(ml(X) ) eHn(X ; LO(1) ) • ~ ~n(x) § ~ Hn_q (X; ]LO) 

Hn_ I (X ;.~0@) 

• e, • 

Theorem 2 Let X be an n-dimensional geometric Poincar~ complex, with total 

surgery obstruction s(X~n(X). 

i) The symmetrization (I+T)s(X)§C~n(x)§ is the image of 

(symmetric signature(~*(X),fundamental class [X])~Ln(~I(X))eHn(X;LO(1)) , 

so that (I+T)s(X)§ = 0 if and only if X has an .~0-orientation EX]CHn(X;.~O) which 

assembles to ~*([X]) =W*(X)~Ln(~I(X)). 

ii) The image of (I+T)s(X)§E~(X) § in Hn.I(X;_~O ~) is the obstruction to an 

.~0_ orientation of X, or equivalently of the Spivak normal fibration ~x:X ~BSG. 

iii) The symmetrization (I+T)s(X)E~n(x) is the image of~*(X) CLn(~I(X)), so that 

(I+T)s(X) = 0 if and only if~*(X)E im(~*:Hn(X;ILO) ,Ln(~I(X))). 

[] 

It should be noted that the symmetrization maps 

I+T : ~nCX)---~ncx)§ 
are isomorphisms modulo 8-torsion (for any space X), since the hyperquadratic 

L-groups ~*(~I(X)) are of exponent 8, and hence so are ~,(_~ ) = L*(1),~*(X)§. 

Thus if X is an n-dimensional geometric Poincar~ complex s(X)E~] = 0 E~n(X)[ 2] 

if and only if X has a KO[~]-orientatien [X] ~ KOn(X)[ ] which assembles to the 

symmetric signature away from 2 ~*[X] =~*(X)K~] E Ln(~I(X))E~]. Here, we can 

identify the assembly map ~*:Hn(X;.~O) • Ln(~I(X)) localized away from 2 

with the composite KOn(X)[½] TKOn(K(~I(X),I))[ ~] !~' VLn(~lCX))[~] = Ln(~I(X))E~], 

, ~0 1] 1 
where l' is as defined on p.265 of Wall [W1] aud _ [~ = hoe ] as before. 
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An n-dimensional geometric Poincar6 complex X carries an equivalence 

class of triples (~'(X),[~],j) consisting of a map6*(X):S n ~ ILO(~I(X)) 

representing the symmetric signature ~ * (X) q IS n,I~O(~l (X)) 3 = Ln(~l (X)), a map 

^ :_s n x+^ ~0 [X] ~ -- representing the canonical __~0-orientation 

[~]a [sn,x+^~ O] = Hn(X;A~O), and a homotopy 

^ _s n ~,°(~ I (x)) j : J~*(X)-~*[X] : ~ • 

Fixing one such triple (6*(X),[~],j) we can express the original two-stage 

obstruction theory for X to be simple homotopy equivalent to a manifold entirely 

in terms of the algebraic n-spectra: ~TOP(x) # ~ if and only if 

J:Hn(X; ~0 ) ^ 0 i) [X]~ im( _ ~ Hn(X;.~ )), in which case a choice of map 

[X] :S n , X+^ IL 0 and homotopy g: J[X]~ [~3 :sn ~ X+^ ~_~0 together with j 

determine an element e([X]tg)~ Ln(~I(X)) with images s(X)q~n(X) , 

• *(FX]) -~*(X) ELn(~I(X)) 

ii) there exists a pair ([X],g) such that Q([X],g) = O. 
~u 

(In geometric terms ([X],g) corresponds to a topological reduction Dx:X > BSTOP 

of the Spivak normal fibration #x:X ~ BSG, and if (f,b):M ~ X is the 

associated normal map then 8([X] ,g) = e(f,b)~ Ln(~I(X)) is the surgery obstruction, 

and IX3 = f,[M] C-Hn(X;.~O)is the image of the canonical .~O-orientation 

[M] ~Hn(M;.~O)of the manifold M, so thatq*([X]) = G*(M) E Ln(~I(X))). 

The invariant (l+T)s(X)§g~n(x)§ is the primary obstruction of a distinct 

two-stage theory: &TOP(x) # ~ if and only if 

_.m °- c ~n(X ;_~ ° ) i)' there exists an orientation [X] such that 

~*([X]) = ~*(X)CLn(~I(X)), in which case a choice of representative map 

[X]:S n ~X+~ .~ 0 and of a homotopy h:~*(X)c~*[X]:S n ~O(~I(X)) together 

with j determine an element ~([X],h)§~ ~n+l(x)§ with images s(X)~n(X) , 

^0 
J[X] - [X~¢ Hn(X;_~ §) 

ii)' there exists a pair (IX] ,h) such that ~([X] ,h)§ = O. 

(In the previous theory the primary obstruction t(~x)6Hk+I(T(~x);ILo ) = Hn_I(X;.~ O) 

is a torsion element, with the 2-primary torsion of exponent 8. In this theory 
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the secondary obstruction ~([X],h)~n+l(x)§ is 2-primary torsion of exponent 8). 

Combining the two approaches we have that &TOP(x) # ~ if and only if there exists 

a quadruple ([X],g,h,i) consisting of a map [X]:a n ~ X+^~ O, homotopies 

g:J[X]~[X]:a n ~X+^~ O, h:~*(X)~*[X] :a n ~_~O(~I(X)) , and a homotopy 

^ A O 
of homotopies i : (~*g)(Jh)~j : J~*(X)~'~X] : a n >~ (~I(X)). 

An n-dimensional manifold X carries an equivalence class of such quadruples 

O ^0 
([X],g,h,i), with [X]gHn(X;.~ O) the canonical .~ -orientation, J[X] = IX] qHn(X;.~ ) 

A 

the canonical _~O_ orientation, and ~= ( [X] ) = ~* (X) E Ln(~l (X)) the symmetric 

• w 

signature. Conversely, an n-dimensional geometric Polncare complex X is simple 

homotopy equivalent to a manifold if and only if it admits such a quadruple 

([X],g,h,i). (In geometric terms ([X],g) corresponds to a particular topological 

reduction of the Spivak normal fibration~x, and (h,i) to a particular solution 

of the associated surgery problem). We can thus identify: 

~TOP(x) = the set of equivalence classes of quadruples ([X],g,h,i) , 

and if ~TOP(x) # ~ (i.e. if s(X) = O~n(X)) then choosing one manifold structure 

on X as a base point of ~TOP(x) we have the bijection of Corollary 2 to Theorem I 

°TOP( . ~ . 
s : ~ X)----* n+l(X~ ; (f:M ~X)| ~s(f) . 

This defines an equivalence of categories 

~ compact n-dimensional topological manifolds, 

homotopy classes of homeomorphisms~ 

~In-dimensional geometric Poincare complexes with extra structure ([X],g,h,i), 

homotopy classes of simple homotopy equivalences preserving 

the extra structure ~ • 

By the above, an n-dimensional geometric Polncare complex X is simple 

homotopy equivalent to a closed topological manifold if and only if there exists 

an element [X]C Hn(X;.~O) such that 

~O ^0 
i) J[X] = IX] ~ Hn(X;.~ ) is the canonical .~ -orientation of X, in which case 

[X]q Hn(X;ILO)is an .~O-orientation (since ~0(.~ O) = ~0(~ O) = LO(1)) 

ii) ~'([X]) = G*(X)q Ln(EI(X)) is the symmetric signature of X 
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iii) the relations i) and ii) are compatible on the ~-space level, i.e. can 

be realized by a quadruple ([X],g,h,i). 

In certain cases we can ensure that condition iii) is redundant: 

• J 

Theorem ~ Let X be an n-dimensional geometric Polncare complex such that the 

^ ^ 0 ~n+1 (~I hyperquadratic signature map ~*:Hn+I(X;_~ ) ~ (X)) is onto. Then X is 

simple homotopy equivalent to a closed topological manifold if and only if there 

exists an _~0-orientation [X]~ Hn(X;IL0) such that J[X] = [~]~Hn(X;~_~ 0) and 

G*([X]) = @*(X)~Ln(~I(X)). 

Proof: Given such an ~0-orientation IX] there are defined homotopies 

g:J[X]_~[~]:~n ) X+~L 0, h :~*(X)=G*([X]) : ~n ~IL0(EI(X)). These determine 

an element ~([X],g,h)E Ln+I(EI(X)) , the obstruction to the existence of a homotopy 

^ ~0 of homotopies i : (~*g)(Jh)~ j : J~*(X)~*KX] : ~n ) -~ (El(X))" Now 

HG*([X],g,h) = 0([X],g) = @(f,b) CLn(EI(X) ) is the surgery obstruction of the 

normal map (f,b):M ~X associated to the topological reduction of ~ X determined 

by ([X],g). By assumption~([X],g,h)~ im(C*:Hn+I(X;~ 0) , ~n+I(EI(X))) , so that 

6(f,b)C im(~.:Hn(X;_~ 0) ~Ln(EI(X))) and there exists a topological reduction 

with 0 surgery obstruction. 

[] 

In particular, suppose that E is a group such that K(E,I) is an n-dimensional 

(K(E,I);L 0) • Ln(E) is an geometric Poincar~ complex for which ~*:H n 

isomorphism and $*:Hn+I(K(E,1);~.~ 0) > ~n+1(E) is onto. Then K(E,1) is simple 

homotopy equivalent to a closed topological manifold if and only if the composite 

Ln(~) J > Hn(K(~,I);IL0) ,Hn(K(~,1);~_i~ 0) sends the symmetric signature 

^ 0  ~ ^ 0  
~*(K(~,I)) 6Ln(~) to the canonical _~L -orientation [K(~,I)] EHn(K(~,I); ~ ). 

(The hypothesis of Theorem 3 is not satisfied in general: the infinitely generated 

subgroup ~2 ~ Unil4k+2(1 ;~'~2 ) = c°ker(L4k+2(~)®L4k+2(~ 2) ~ L4k+2(~*~2)) 

constructed by Cappell [C] can be used to detect an infinitely generated subgroup 

^ ^0 ~4k+3(~,~2))" This also shows that ~2 ~ coker(~*:H4k+3(K(~*~2,1); IL ) 

~n the hyperquadratic signature map~*:~N(K) ~ L (El(K)) is not onto in general). 
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sequences 

.o, 

co. 

with (r. :~N,[. 1P(K) 

For any space K there is defined a natural transformation of exact 

P ~'I~(K) ~ ... ~nN+l (K) > ~Nn+P(K) ) Q-n(K) > 

s I 
)Hn(K;]L 0) ~,Ln(~I(K)) ~n(K) • Hn_I(K;ILo) • ... 

~Ln(~I(K)) the quadratic signature map and 

H~.,~ :~-INn+I(K) Hn+I(K.~N ) ~ ^0 = . Hn+ I(K;]L ) ~ H n ( K ; I L 0 )  

s :nnP(~:) " , ,~n(~) ; ( f : x  ~,:,:), ", f .s ( :x )  . 

In particular, the quadratic signature ¢.(f,b) : d.(W,Md-X)6Ln(11(X)) of a normal 

map of n-dimensional geometric Poincare complexes 

( f , b )  : (M,~M,pM) , ( X , ~ x , P x )  

has image 

[~,(f,b)] = f,s(M) - s(X)E~n(X) , 

where W is the mapping cylinder of f, (W,Mu-X)£~N+IP(X). 

For any space K define a morphism of abelian groups 

Ln(~I(K)) >~-ZnP(K) ; x L ) (f:X ~ K) 

as follows. Let Y be an (n-1)-dimensional manifold (possibly with boundary) 

equipped with a map Y * K inducing an isomorphism ~I(Y)~ ~ ~I(K). 

By Wall's realization theorem every element x eLn(~ I(K)) is the surgery obstruction 

x ~ ~.(F,B) of a normal map of manifold triads 

(F,B) : (Z;Y,Y') ~ (Y~I;Y×O,Y~I) 

such that F I = q : Y ~Y~ 0 and F I = h : Y' ~Y xl is a simple homotopy 

equivalence. Define X = Z/YhY' to be the n-dimensional geometric Poincar~ complex 

obtained from Z by glueing Y to Y' by h, let g:X ~Y~S I be the degree I map 

obtained from F, and define f:X ~K to be the composite 

f : X g )YxS I projection y >K . 

Now g is covered by a bundle map of topological reductions of the Spivak normal 

fibrations such that the quadratic signature <~(g,e)g Ln(~I(Y× $I)) of the 
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corresponding normal map of geometric Poincar6 complexes 

(g,c) : (X,~x,~x) ,(Y~ s1,~ sl,fy~ s I) 

has image 

~,(g,c) = XeLn(~q(K)) • 

By the above 

r~,(g,c)] -- g,s(x) - s(Y ~s I) C~n(Y×s I) , 

and s(Y×S I) = O, so that 

[x] = f,s(X)g/~n(K) • 

(Incidentally, the image [x]~n(Y) is the obstruction to deforming the simple 

hsmotopy equivalence h:Y' *Y to a homeomorphism, [x] = s(h)C~n(Y), 

cf. Corollary I to Theorem I above). The composite 

~n(~1(K)) ~(K) s ~n(K ) 

is thus the canonical map Ln(~I(K))- ~n(K). 

t 

We have the following extension of the Levitt-Jones-Quinn geometric Poincare 

surgery exact sequence FLe],FJI],FQ3] 

n+1 

Theore m 4.. For any space K there is defined a commutative braid of exact sequences 

of abelian groups 

j/ 
Hn(K;]Lo) ~P(K) Hn_ 1 (K;_~. O) 

~n+l (K) Ln(~ I (K)) n(K)" H 

P n = Hn(Tn;~9[P)e~n(T n) , ~n(T n) LO(1 ) For example, ~n(T ) = 
n n 

(since ~,:Hn(Tn;ILO) = ~ (n)Li(q)c ~ Ln(~I(Tn)) = i~=O(ilLi(1)) 
-- i=1 

[] 
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From the point of view of geometric Poincar~ surgery theory there are 

defined equivalences of categories 

I stable oriented topological bundles (over finite CW complexes)] 
~ stable spherical fibrations with an ~P-orientation_ lifting the canonical 

~N-orientation } , 

~compact oriented n-dimensional topological manifolds 

P 
I n-dimensional geometric Poincar6 complexes X with an ~_ -orientation 

[ X ] ~ H n ( X ; ~  P) which a s sembles  to  ~*( [X])  = ( I :X  ,X)~OP(x)}.  

Product  wi th  the symmetric  s i g n a t u r e  ~*(~P2)  £L4(1)  (= la?Z,) of  the complex 

projective plane ~ defines the periodicity isomorphisms in the quadratic L-groups 

~*(~)@- : Ln(E ) ~Ln+4(~) (n~O) 

for any group ~. For any space K there is defined a commutative braid of exact 

sequences of abelian groups 

Hn+I(K;L0(1))eH _(K;L~(1)) H (K;IL^) L (~.(K)) ~ ,(K) n+~ ~ n --u . 2. n ~ ~ ~n+* 
/ 

~I (K) - 2 H~h(K;-~n) ~(K) 

Ln+l(~l(i)) ~n+~( K ) Hn(K; L0(1) ) eHn+2(K; L2 (I)) , 

involving the products ~*(~P2)®-:~4~__~D----@~ 0 and the homotopy-theoretic analysis 
o~ -- 4 1 I 4i i-2 

__~0[~] = b so[~] , --~0(2) = i=~1 r' _K(L0(1)(2))~Z K(L2(1)) • 

The maps Hn+4(K;IL 0)----~Hn(K;LO(1) )eHn+2(K;L2(I ) ) have odd torsion cokernel. 

I symme tric 
(More generally, we have that the ~quadratic signature of a product is given by 

l q*(M mxN n) = ~*(M)®d*(N)~ Lm+n(ml(MXN)) Product with the 

~,(Ix(f,b):Mm×N n ~MxX) = ~*(M)~,~f,b)aLm+n(~q(MxX)) 

canonical _~0-erientation IF0 EHm(M;IL0) of an m-dimensional manifold M defines a map 

[M]~-: ~n(X) >~m+n(M~X) (for any space X) compatible with the product map 

O*(M)@-:Ln(~I(X)) ~Lm+n(~I(M×X)) (&*(M) = ~*([M])~Lm(~I(M))). If X is an 

n-dimensional geometric Poincare complex s(M×X) = [M]~s(X)~+n(M~X). The maps 

appearing above are ~*(G~P2)@-:~n(K) [09p2]@~$n+4(~× K) proj.,~n+4 (K)). 
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Theorem 5 i) If X is a connected n-dimensional geometric Poincar6 complex there 

are defined periodicity isomorphisms 

~.(~p2)®_ : ~n+kCX). ~<~n+k+4(X) (k~2) 

and an exact sequence 

O---->~n+1(X ) ~*(~P2)@'>~n+5(X ) ) LO(1)--->~n(X) ~*(~)e~n+4(X) . .... 

ii) If (X,Y) is an n-dimensional geometric Poincare pair with X connected and 

Y non-empty there are defined periodicity isomorphisms 

~.(~p2)~ - : ~n+k(X). ,~jPn+k+4(X) (k~l) 

and an exact sequence 

0 )</n(X) ~*(~P2)6~'~ ~n+4(X) > Hn_I(X;Lo(nl) 

>~Pn_I(X) ~'(=P2)@'>~n+3(X) ~ooo • 

[] 

In particular, if (X,Y) is an n-dimensional manifold with boundary we have 

. (S n) ~Lk_1(1) if k/22 
= (n>~2) 

n+m ~O if k = 0,I 

so that 

_- 

O n  the other hand, 

so that 

~ TOP-_n k ~'~' ~ ,~(T na k)) 
8 

Andrew Nicas). For example, 

_(S n) = L4(I ) # ~OP(sn) = ~ ~(S n) = 0 
n+> n+; 

I 0 if k~ I 
• (T n) = (n~ I) 

On+a LO(1) if k= 0 

~TOP._n .k+4 = ~ ~'i' x~ ,8(Tn~k+4)) = ~n+k+1(T n) = 0 (k~O,n>~5). 

(n~ 5). 

the structure set 4-periodicity of Appendix C of Essay V of Kirby and Siebenmann [KS] 

(which is due to Siebenmann) 

~OP(x~k,~(x×~k)) = ~OP(x~k+4~(x~k+4)) (=~n+k+1(X)) (n~5) 

for k~1, and if X is connected and Y is non-empty also for k = O. In the closed 

case ~TOP(x) # ~OP(xx~4,~(X×~4)) in general, contradicting Siebenmann' s claim 

for periodicity in this case also. (This discrepancy was pointed out to me by 
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In conclusion, we note that it is also possible to define quadratic ~-groups 

14h(x) tol f±nite and the I free ~ Lh(~) 
P(X) appropriate homotopy types L-groups 

infinite (projec tive ~LP(~) ~ 

which fit into a commutative braid of exact sequences of abelian groups 

H (~2; KO( 9ZEal(X)] )) ~h(x) Hn.I(X ; ]L 0 ) LP_I (~1 (X)) 

\/\ / 
Lh(~ I(X) ) ~n (p X ) L h_ l(T~i (X)) 

Y \f\ / \ 
"~n ~ h 

Hn(X;IL 0) LnP(~I(X)) H (~2;K0(~Z[~I(X)])) @n_1(X) 

involving the Tate ~2-cohomology groups of the duality involution [P]I ~ [P*] 

(P* = HomA(P,A) , A = ~z[~I(X)])on the reduced projective class group KO(~[~I(X)]). 

h s X = There is a similar braid relating~.(X) and ~.( ) ~.(X), involving the duality 

involution ~(f:P ~ Q) ~---~(f*:Q* ~p*) on the Whitehead group Wh(~I(X)). 

The free symmetric L-groups L~(~) are related to the projective symmetric 

L-groups Lp(~) by an exact sequence 

n-1 (~) ~ ... 
L h 

h p (which actually connects with the quadratic L-group sequence for L,(~),L.(~) 

on setting Ln(~) = Ln+4k(~) (n~-3, n+dk~/0), see [R2]) and similarly for 

Ls(~) - L*(~), ~(~), Wh(~). Thus it is also possible to define symmetric ~-groups 

~(X) with properties analogous to those of @~(X) ~ ~*(X), [~P(x)" 

The hyperquadratic L-groups are such that 
A 

and accordingly we define 

Similarly for ~'(X)§ , %*(X)§. 
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Theorem l(h) A finite n-dimensional geometric Poincare complex X determines an 

s(X)~h(x) such that s(X) = 0 if and only if X is homotopy equivalent element to 

a closed topological manifold. The image of s(X) in Hn_ I(X;.~ O) is the obstruction 

to a topological reduction of the Spivak normal fibration ~x:X ~BSG. 

The symmetrization (I+T)s(X)~h(X) is the image of the symmetric signature 

^n 

~*(X) ELh(~I(X)). The image of s(X) in H (ZZ2;Wh(~I(X))) is the class of the 

Whitehead torsion ~(X) CWh(~ I(X)) of the chain equivalence IX] 6 -:C(~) n-" .... ~ C(~). 

[] 

Furthermore, if X is an n-dimensional manifold then ~h+l(X) can be identified with 

the set of concordance classes of topological h-triangulations of X, i.e. pairs 

(n-dimensional manifold M, homotopy equivalence f:M )X) 

with (M,f)~(M~,f t) if there exist an h-cobordism (W;M,M') and a homotopy equivalence 

(g;f,f') : (W;M,M') >(X×I;X×O,X×I) . 

• t 

Theorem 1(~) A finitely dominated n-dimensional geometric Polncare complex X 

determines an element s(x~Pn(X) such that s(X) = 0 if and only if X ~ S 1 is 

homotopy equivalent to a closed topological manifold. The image of s(X) in 

Hn_I(X;IL O) is the obstruction to a topological reduction of the Spivak normal 

fibration IPx:X ~BSG. The symmetrization (I+T)s(X~p(X) is the image of the 

~*(X)~L~(~I(X)). The image of s(X) in ~n(m2;~O(~[~1(X)~)) symmetric signature 

is the class of the Wall finiteness obstruction [C(~)] ~O(~[~I(X)]). 

[s 
Theorem 1(p) is the special case of Theorem 1(h) obtained by first noting that 

Xx S I has the homotopy type of a finite complex and then applying the algebraic 

aplitting theorem Lh+I(~X~) = Lhn+l~(~)®LP(~)n ([R1]) to identify 

,h (X)e~Pn(X) s(X~ S 1) = (O,s(X))cgh+l(x  × S 1) = ~n+1 

(The definitive version of the non-compact manifold surgery theories of Taylor [Ta] 

and Maumary [Na] should interpret s(X)g~n(X) as the total obstruction to X being 

homotopy equivalent to a topological manifold allowed a certain degree of 

non-compactness, such as an end). 
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The invariant s(X)C~(X) may be of interest in the classification cf free 

actions of finite groups on spheres, the "topological spherical space form problem" 

(cf. Swan [Sw], Thomas and Wall [ThW], ~dsen,Thomas and Wall [~I~]) since its 

definition does not presuppose a vanishing of the finiteness obstruction. If ~ is a 

finite group with cohomology of period dividing n+1.to every generator g~Hn+1(K(~,1)) 

there is associated a finitely dominated n-dimensional geometric Poincar~ complex 

Xg (Xg) --~S n , equipped with an isomorphism ~I ~ ~, a homotopy equivalence ~g 

and first k-invariant g gHn+1(K(~,1))° Ultimately, it might be possible to give a 

direct description of S(Xg)C~(Xg). In this connection, it should also be mentioned 

that the ~-groups (in each of the categories s,h,p) behave well with respect to 

finite covers p:~ > X, with transfer maps defining a natural transformation of 

exact sequences of abelian groups 

• .. ~ Hn(X;S, O) 0~* ~Ln(~q(X)) ~/~n(X) ~H n I(X;~LO ) ~... 

• .. ~Hn(g;_~ O) °~, ~ Ln(E n(g)) ~ ~n(g) ~gn_ 1(~;~) > ... , 

using the canonical S-map pl:~X+ ~X+ to define 

: 
p : ~ n ( X ; ~ o )  , ~n(Y; .~ .o)  , 

and the restriction of ~1(X)-acfiion to ~fl(~)-action to define 

! 
p : Ln(~q(X)) ÷Ln(~1(~)) ; (C,V)~ ~(p!C,p!W) . 

Cgeometric Poincar~ complex 
is an n'dimensi°nalJnormal~ map then so is 

X (f,b):E 

(¥,T) :~ 
_, and 

~X 

I 
s(~) = pls(X)E~n(~) , ~*(~) = p'~*(X)~ Ln(~ I 

~.(~,~) = P:O~.(f, b) C Ln(E I (g)) 

symmetric ~ I~*(X) , ~*(X)§ 
Similarly for the ~ ~-groups I ~*'~x (X), t. " 

hype rquadra tic ~* (X) § 
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