
Math. Z. (2013) 275:509–527
DOI 10.1007/s00209-013-1145-x Mathematische Zeitschrift

Weil representations associated with finite
quadratic modules

Fredrik Strömberg

Received: 29 July 2011 / Accepted: 7 February 2013 / Published online: 8 March 2013
© Springer-Verlag Berlin Heidelberg 2013

Abstract To any finite quadratic module, that is, a finite abelian group together with a
non-degenerate quadratic form, it is possible to associate a representation of Mp2(Z), the
metaplectic cover of the modular group. This representation is usually referred to as a Weil
representation and our main result is a general explicit formula for its matrix coefficients.
This result completes earlier work by Scheithauer in the case when the representation factors
through SL2(Z). Furthermore, our formula is given in a such a way that it is easy to implement
efficiently on a computer.
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1 Introduction

The main theorem of this paper is a simple and explicit formula for the matrix coefficients
of a certain Weil representation, completing earlier works of Scheithauer [15] and Borcherds
[2]. Our original motivation for obtaining such a formula was a need for efficient algorithms
to compute vector-valued Poincaré series for this representation. This type of computation
was used to prove certain properties of a Rankin–Selberg type convolution of Siegel modular
forms of degree 2 [14], and also to study the algebraicity of Fourier coefficients of harmonic
weak Maass forms [3]. Another application, for which it is necessary to have an explicit
formula for the matrix coefficients of the Weil representation, is to obtain lifting maps from
scalar to vector-valued modular forms of half-integral weight in terms of explicit formulas
relating the respective Fourier coefficients. This type of map was obtained by Scheithauer
[15] for integer weights.
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510 F. Strömberg

The formula stated in the Main Theorem is implemented as part of a package for Sage
[21] for performing computations with finite quadratic modules.

1.1 Statement of the main result

Let D be a finite abelian group and Q : D �→ Q/Z a non-degenerate quadratic form on
D, meaning that the function B(x, y) = Q(x + y) − Q(x) − Q(y) is a non-degenerate
symmetric bilinear form. The pair D = (D, Q) is said to be a finite quadratic module
(FQM). We associate with D a unitary representation, ρD , of Mp2(Z), the metaplectic cover
of the modular group SL2(Z), on C[D], the group algebra of D. If the signature of D is even
this representation factors through a representation of SL2(Z). This representation can be
viewed as a special case of a construction carried out by Weil [22] and is therefore usually
called the Weil representation associated with D.

A canonical example of a finite quadratic module is the so-called discriminant form
associated with even lattice together with a non-degenerate bilinear form.

Example 1.1 Let N be a positive integer and L be the lattice Z with quadratic form q(x) =
N x2 and bilinear form B(x, y) = 2N xy. The discriminant form of L is (D, Q) where
D = L#/L � Z/2NZ and Q(x) = 1

4N x2 + Z. Observe that L has signature 1.

The main purpose of this paper is to obtain a simple explicit formula for the action of
SL2(Z) or Mp2(Z) on the Weil representation associated with an arbitrary finite quadratic
module D. Our main result is presented in the theorem below. For the precise statement see
Theorem 6.4 and Remark 6.8.

Theorem Let D be an FQM with D = (D, Q) and bilinear form B. Let ρD be the associated

Weil representation, A =
(

a b
c d

)
∈ SL2(Z) and x ∈ D. Then

ρD(Ã)ex = ξ(a, c)
√|D[c]|/|D|

∑
y∈D/D[c]

fA(x, y)e(B(xc, bx + y))edx+cy+xc

where Ã = (A,
√

cτ + d) ∈ Mp2(Z), ξ(a, c) is an eighth-root of unity, given explicitly by
Definition 6.1, xc is any element in D such that cQ(y) = B(xc, y) for all y ∈ D[c] and
fA(x, y) = e(bd Q(x)+ acQ(y)+ bcB(x, y)).

The given formula for ξ is “simple” in the sense that it involves only elementary arithmetic
functions, e.g. Kronecker and Hilbert symbols. It is not hard to obtain a formula for ρD as
a projective representation, that is, the theorem above with an unknown factor ξ . It is well-
known that if D is an FQM of level N then ρD factors through the principal congruence
subgroup of level N , or its inverse image in Mp2(Z). This can be used to obtain explicit
formulas for other congruence groups. Cf. e.g. Schoeneberg [16, p. 518], Pfetzer [13, pp.
451-452] and Kloosterman [9, I.§4].

In contrast to these formulas, the earlier formulas for SL2(Z) or Mp2(Z) all involved
certain sums of Gauss-type with a length depending on the particular element of the group.
Cf. e.g. [16, p. 516], [13, p. 450], [9, I. Thm. 1], [18, Prop. 1.6], and [6, Prop. 3.2]. This
situation improved when Scheithauer [15] obtained an explicit formula for the root of unity
ξ , for any A in the modular group. However, his results are only valid for discriminant forms
associated with lattices of even signature.

The main points of the current paper are that we obtain explicit formulas for the Weil
representation associated with any finite quadratic module, without restrictions on the signa-
ture, and that all Gauss sums are explicitly evaluated and expressed in terms of elementary
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Weil representations associated with finite quadratic modules 511

arithmetic functions. We want to stress that there are two key elements which are necessary
for dealing with the case of odd signature. The first is a detailed study of the 2-adic Jordan
components of the finite quadratic module. The second is an explicit evaluation of cocycles
related to the metaplectic cover Mp2(Z).

The following observation is relevant for computational applications. If we are given a
finite quadratic module in terms of its Jordan decomposition then we are able to evaluate the
matrix coefficients of the Weil representation for any element in SL2(Z) or Mp2(Z) in a fixed
time not depending on the specific element.

1.2 Notational convention and outline of the paper

To simplify the exposition we use e(x) = e2π i x , er (x) = e( x
r ), (a, b) = gcd(a, b) and

let sgn(c) be the sign of c with sgn(0) = 1. Furthermore, we always use the Kronecker
extension of the Jacobi symbol, ( c

d ). If c and d > 0 are odd then this is the usual quadratic
residue symbol, and for arbitrary integers we define ( c

d ) by complete multiplicativity, using
( c

d ) = sign(c)( c
−d ), (

2
d ) = ( d

2 ) for odd d, ( d
0 ) = ( 0

d ) = 1 if d = ±1 and 0 other-
wise. If p is a prime number and n ∈ Z we define the p-adic additive valuation of n by
ordp(n) = k if pk is the largest power of p dividing n. This is extended to Q by setting
ordp(

c
d ) = ordp(c) − ordp(d), and we use |x |p = p−ord p(x) to denote the p-adic absolute

value of x . If ordp(c) = k we often write pk ‖ c. The field of p-adic numbers, Qp , is
the completion of Q with respect to | · |p , and it is also the field of fractions of the ring of
p-adic integers Zp = {x ∈ Qp | |x |p ≤ 1}. The invertible elements of Zp are denoted by
Z

×
p = {x ∈ Qp | |x |p = 1}. Observe that Qp = Zp[p−1]. For any set S we let |S| denote its

number of elements. If a, b ∈ Z then the Hilbert symbol at infinity is defined as (a, b)∞ = −1
if a < 0 and b < 0, and (a, b)∞ = 1 otherwise. For z ∈ C we use

√
z = √|z| exp( 1

2 iArgz)
where Argz ∈ (−π, π] denotes the principal branch. Let Z/(r) = Z/rZ. The direct
orthogonal sum of A and B is denoted A ⊕ B and An = A ⊕ · · · ⊕ A (n times).
The Kronecker delta δi j = 1 if i = j and otherwise 0.

The structure of the paper is as follows: We begin with a brief overview of the classical
theory of quadratic forms over Q and Qp , including invariants and canonical forms. We then
provide the necessary theory of finite quadratic modules, including en explicit description of
their Jordan decompositions. In the following sections we evaluate the relevant Gauss sums,
introduce the metaplectic cover of SL2(Z) as well as the relevant Weil representations. We
then give a precise formulation and proof of the main theorem. The final section contains
lemmas which are used in this proof.

2 Quadratic forms and finite quadratic modules

To obtain the simple formula in our main theorem we need to know that every finite quadratic
module has a Jordan decomposition, that is, that it can be written as a direct orthogonal sum of
certain “simple” modules. To show this we use classical results from the theory of quadratic
forms over the p-adic numbers.

2.1 Quadratic spaces and lattices

Let V be a vector space of dimension n over a field F and q : V → F a quadratic form.
That is, q(ax) = a2q(x) for all a ∈ F, x ∈ V and the function b : V × V → F , defined by
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512 F. Strömberg

b(x, y) = q(x + y)− q(x)− q(y) is bilinear. The pair V = (V, q) is said to be a quadratic
space over F .

If V has rank n then we can represent q as a homogeneous polynomial of degree n, that
is q(x) = ∑

1≤i, j≤n ci j xi x j with ci j ∈ F and x = (x1, . . . , xn) ∈ V . The Gram matrix of
q , or alternatively, of b, is the n × n symmetric matrix Bq = (bi j ) with bi j = ci j + c ji .
The determinant of V , or of q , is defined as the determinant det(Bq). We say that V (or
alternatively q , or b) is non-degenerate if det(Bq) �= 0. This is equivalent to saying that
V ⊥ = {x ∈ V | b(x, y) = 0, ∀y ∈ V } = {0}. Note that the Gram matrix Bq depends on a
choice of basis of V but the determinant being zero or non-zero does not.

If V ′ = (V ′, q ′) is a quadratic space over F of the same dimension as V then we say that
V and V ′ are equivalent if q(x) = q ′(Ax) where A : V → V ′ is an isomorphism of vector
spaces. If V = V ′ we say that q and q ′ are equivalent.

Let R = Z or Zp and suppose that F is the field of fractions of R, that is, Q or Qp . A
lattice in V is an R-module L = Ra1 ⊕ · · · ⊕ Ran where {ai }n

i=1 is an R-basis for V . We
say that L is integral if q(x) ∈ R for x ∈ L and in our case this means that L is also even
since b(x, x) = 2q(x) ∈ 2R. The dual lattice, L#, of L is given by L# = {x ∈ V | b(x, y) ∈
R, ∀y ∈ L}. It is easy to see that L ⊆ L# and that L#/L is in fact a finite abelian group of
order | det(Bq)|.

For F = Q we define the signature of the lattice L as sign(L) = r+ − r− where r+ and
r− are the number of positive and negative eigenvalues of the Gram matrix of q .

2.2 Canonical representations of quadratic forms

It is well-known that if p is an odd prime then any quadratic form over Qp has a unique
canonical form expressed as a linear combination of certain simple quadratic forms. The
situation for p = 2 is more complicated and the canonical form is not always a unique.
However, for our purposes the existence of one is sufficient. The relevant results from Cassels
[4, Ch. 8.3] are summarized in Theorem 2.3 below.

Definition 2.1 Let p be a prime and a ∈ Z
×
p . Define the unary quadratic form qa

A and the
binary quadratic forms qB and qC , over Qp , as follows:

qa
A(x) = ax2, qB(x, y) = 2x2 + 2xy + 2y2, qC (x, y) = 2xy.

Remark 2.2 Observe that the quadratic forms qa
A, qB and qC all have Gram matrices with

integer entries, that is, they are classically integral in the sense of [4, p. 111].

Theorem 2.3 Let p be a prime and q a non-degenerate quadratic form over Qp. Then q is
Zp-equivalent to a direct sum of quadratic forms of rank one and two where each term is of
the form pkq̃ where k ∈ Z and q̃ is one of the canonical forms qa

A, qB or qC . The forms qB

and qC only appear in the case p = 2.

Remark 2.4 Note that if q has coefficients in Z then the canonical forms in the previous
theorem can be chosen such that a ∈ Z for all terms of the form pkqa

A.

2.3 Finite quadratic modules

Let D be a finite abelian group. A quadratic form on D is a function Q : D �→ Q/Z such
that Q(nx) = n2 Q(x) for all n ∈ Z and x ∈ D, and such that the function B(x, y) =
Q(x + y)− Q(x)− Q(y) is a bilinear form. We say that Q is non-degenerate if B is non-
degenerate, that is, if D⊥ = {x ∈ D | B(x, y) = 0, ∀y ∈ D} = {0}, or alternatively, if the
map x �→ B(x, ·) is a group isomorphism between D and Hom(D,Q/Z).
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Weil representations associated with finite quadratic modules 513

Definition 2.5 A finite quadratic module (FQM) is a pair D = (D, Q), where D is a finite
abelian group and Q : D → Q/Z is a non-degenerate quadratic form on D. The level of D
is the smallest positive integer N such that N Q(x) = 0 for all x ∈ D.

Let D = (D, Q) and D′ = (D′, Q′) be two finite quadratic modules. We say that D and
D′ are isomorphic, written D � D′, if there exists a group isomorphism ϕ : D → D′ such
that Q = Q′ ◦ ϕ. The direct sum of D and D′ is defined as D ⊕ D′ = (D ⊕ D′, Q ⊕ Q′),
where D ⊕ D′ is a direct sum of groups and (Q ⊕ Q′)(x ⊕ x ′) = Q(x)+ Q′(x ′). The level
of D ⊕ D′ is the least common multiple of the level of D and the level of D′.

If d is a non-zero integer we use Dd to denote the set of elements in D of order d and let
D[d] and D[d]∗ denote the kernel and image in D of the map x �→ dx . Note that D[d]∗ = d D
is the orthogonal complement of D[d] and if c is an integer such that (c, |D|) = (d, |D|)
then D[c] = D[d] and D[c]∗ = D[d]∗.

If p is a prime we let D(p) be the p-group of D, that is, D(p) = ⊕k≥1 Dpk . We then
define the p-component of D as D(p) = (D(p), Q), where, with abuse of notation, we use
Q to denote the restriction of Q to D(p). Analogously we set D pk = (Dpk , Q).

Definition 2.6 Let V = (V, q) be a quadratic space over Q or Qp . If L is an integral lattice in
V then the discriminant form of L is the finite quadratic module given by DL = (L#/L , Q)
where L# is the dual lattice of L and Q(x + L) = q(x)+ Z for x ∈ L#. Note that in the case
of Qp we identify Qp/Zp with Z[p−1]/Z via the natural map z + Zp �→ z + Z, and view
this as a subgroup of Q/Z.

Lemma 2.7 Let p be a prime, k ≥ 1 and D = Z/(pk). Then there is a one-to-one correspon-
dence between non-degenerate quadratic forms on D with values in Q/Z and non-degenerate
quadratic forms on D with values in Z/(pk).

Proof Since Q(x) = 1
2 B(x, x) and pk B(x, x) = B(pk x, x) = 0 it is clear that Q(D) ⊆

1
2pk Z/Z. Let m be an integer and consider the following ring isomorphism κm : 1

m Z/Z →
Z/(m) defined by κm(

x
m + Z) = x + mZ. If p > 2 then we define q(x) = κpk (2Q(x)) and

for p = 2 we set q(x) = κ2k+1(Q(x)). Finally, the map Q �→ q is invertible since κpk is a
ring isomorphism and 2 is invertible in Z/(pk) if p > 2.

We will now show that every finite quadratic module is isomorphic to a direct sum of
canonical modules of the following types.

Definition 2.8 Let p be a prime and t an integer not divisible by p. For k ≥ 1 define the
following canonical finite quadratic modules.

At
pk =

(
Z/(pk), x �→ t x2

pk
+ Z

)
for p > 2, (2.1)

At
2k =

(
Z/(2k), x �→ t x2

2k+1 + Z

)
for p = 2, (2.2)

B2k =
(

Z/(2k)⊕ Z/(2k), (x, y) �→ x2 + xy + y2

2k
+ Z

)
, (2.3)

C2k =
(
Z/(2k)⊕ Z/(2k),

xy

2k
+ Z

)
(2.4)

Remark 2.9 It is easy to verify that At
pk is the discriminant form of the integral lattice Zp

in (Qp, pk∗
qt∗

A ) where t∗ = 4−1t−1 and k∗ = k if p �= 2, and t∗ = t−1 and k∗ = k − 1 if
p = 2. Similarly, B2k and C2k (with k > 0) are the discriminant forms associated with the
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integral lattice Z2 ×Z2 in (Q2 ×Q2, 2k−1qB) and (Q2 ×Q2, 2k−1qC ), respectively. Observe
that the level of At

pk is pk if p > 2, the level of At
2k is 2k+1, and the level of B2k and C2k

are both equal to 2k .

Lemma 2.10 Let D = (D, Q) and assume that D � (Z/(pk))n where p is a prime and n
and k are positive integers. Then D is isomorphic to a direct sum of canonical FQMs of the
form given in Definition 2.8.

Proof Let q be the quadratic form on (Z/(pk))n associated with Q by Lemma 2.7 extended
in a natural way to dimension n. By choosing representatives for Z/(pk) in Z we obtain a
Z-integral quadratic form and then apply Theorem 2.3 and Remark 2.4 to q . We thus obtain a
Z-equivalent quadratic form q̃ which is written as a direct sum of canonical Z-integral forms
of the types qA, qB and qC . We then reduce mod pk again and apply Lemma 2.7 to obtain
a quadratic form Q̃ on D, which has the desired form. Furthermore, Q(x) = Q̃(Ox) where
O is an automorphism of D. ��
Proposition 2.11 Every finite quadratic module D has a Jordan decomposition

D =
⊕

p

⊕
k≥1

D pk (2.5)

where the D pk ’s are isomorphic to (possibly empty) direct sums of Jordan components of the
types At

pk , B2k and C2k .

Proof If D = (D, Q) then, by elementary theory of finite groups, we we can write D as a
direct sum of groups of prime-power orders, that is, D = ⊕

p
⊕

k≥1 Dpk where Dpk denotes

the elements of order pk . From this we obtain a decomposition D = ⊕
p
⊕

k≥1 D pk and
then apply Lemma 2.10. ��

Let D = (D, Q) be a finite quadratic module with associated bilinear form B. The explicit
formulas for the Weil representation associated with D will contain certain invariants of the
Jordan decomposition of D. Many of these quantities are most conveniently expressed in
terms of Gauss sums. For any x ∈ D and d ∈ Z we define the following quadratic Gauss
sum

G (d, x; D) = 1√|D|√|D[d]|
∑
y∈D

e(d Q(y)+ B(x, y)).

It follows from the results of the next section that G (d, 0; D) is always an eighth root of
unity. We define the signature of D, sign(D), as the element of Z/(8) given by

e8(sign(D)) = G (1, 0; D).

By Milgram’s formula, see for example [12, Appendix 4], it follows that if D is the discrim-
inant form of an integral lattice L over Q then the signature of D is equal to the signature of
L (mod 8).

From the orthogonality of the Jordan decomposition it follows that G (d, x; D) fac-
tors into a product over Jordan components. This implies, in particular, that sign(D) =∑

p sign(D(p)), where the sum is taken over all primes. By using Lemmas 3.6–3.8 it is then
easy to verify that the signature of a canonical form of type At

2k is odd and that the signature
of any other canonical form is even. As a consequence we see that if the signature of D is
odd then the Jordan decomposition of D must have a direct summand of the form At

2k and
the level of D is therefore divisible by 4.
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The following two remarks are mainly relevant for the reader who wishes to compare the
results and proofs presented in this paper with those of Scheithauer [15].

Remark 2.12 The genus symbol of a Jordan decomposition is a shorthand notation which
encodes its invariants in the following form. If p > 2 then q± represents a component At

pk

with ( 2t
p ) = ±1. For p = 2 the symbols q±

t , q−2 and q+2 represents At
2k , with ( t

2 ) = ±1, B2k

and C2k , respectively. Direct sums are represented by concatenating symbols, for example,
At

pk ⊕ At
pk has symbol q±2 and A3

2 ⊕ A1
3 has 2−

3 3−.

Remark 2.13 If L is an even integral lattice of rank n and p is a prime then it is possible
to define the so-called p-signature of L as in [5]. The relationship to our results is given as
follows. If D is the discriminant form of L then 2-signature(L) (mod 8) = sign(D(2)) and
p-signature(L) (mod 8) = n − sign(D(p)). The 2-signature of L is sometimes called the
oddity.

Example 2.14 Let N ∈ Z
+ and consider the lattice L = Z in the quadratic space (Q, x �→

N x2). A simple calculation shows that L# = 1
2N Z and that the discriminant form of L is

DL = (D, Q) where D = Z/(2N ) and Q(x) = 1
4N x2.

If we write 2N = pm p Np with p � Np for each prime p | 2N then the Jordan components

are: D(p) = A
Np
q with q = pm p for p > 2 and D(2) = At

2m2 with t = N2 for p = 2.
It follows from Lemma 3.7 that sign(DL(2)) is equal to N2 + 4m where m = 0 if m2 is
even or ( N2

2 ) = 1 and otherwise m = 1. It is harder to compute the signature directly but by
Milgram’s formula it is clear that sign(DL) = sign(L) = 1.

Let D = (D, Q) be a finite quadratic module, c an integer and x ∈ D. It is clear that the
Gauss sum G (c, x; D) can be expressed as a sum of terms of the form ψc,x where the map
ψc,x : D → C

∗ is defined by ψc,x (y) = e(cQ(y)+ B(y, x)). It is easy to check that ψc,x is
a character on the group D[c] and that it is in fact equal to the trivial character precisely if
x ∈ D[c]•, where the set D[c]• is defined by

D[c]• = {x ∈ D | cQ(y)+ B(y, x) = 0, ∀y ∈ D[c]}. (2.6)

From [15, Prop. 2.1] it follows that D[c]• = xc + D[c]∗ where the coset representative xc

can be chosen as in the following definition.

Definition 2.15 Let q = |c|−1
2 , that is, q = 2k where k = ord2(c). If k ≥ 1 and D has a

non-trivial Jordan component of the form J = ⊕n
i=1 Ati

q , with respect to a Z-basis {γi } of
J , then we choose xc ∈ J in the following way

xc = 2k−1
n∑

i=1

γi (2.7)

and otherwise xc = 0.

Note that the definition of xc depends on the choice of basis {γi }. Furthermore, note that
2xc = cxc = 0 and if (c, |D|) = (d, |D|) then D[c]• = D[d]• and xc = xd .

Lemma 2.16 If D is a finite quadratic module and c an integer then

G (c, x; D) = G (c, xc; D)e(−cQ(y)− B(xc, y))

if x = xc + cy for some y ∈ D, and otherwise G (c, x; D) = 0.
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516 F. Strömberg

Proof Since D = D[c] ⊕ D[c]∗ it follows that the Gauss sum factors as a sum over D[c]
times a sum over D[c]∗. The sum over D[c] is equal to 0 unless x ∈ D[c]• because ψc,x is
a character on D[c]. The lemma now follows by writing x = xc + cy and then simplify the
remaining Gauss sum by “completing the square”. ��

3 Evaluation of Gauss sums

In this section we will obtain explicit formulas for Gauss sums of the form G (c, 0; D)where
c is an integer and D is one of the canonical components. We will begin by reviewing the
necessary results for the standard quadratic Gauss sums.

Definition 3.1 For a, b ∈ Q and c ∈ Z we define G(a, b, c) as

G(a, b, c) =
∑

n (modc)

ec(an2 + bn).

Lemma 3.2 Let a, b, c ∈ Z with ac �= 0. Then

G(a, b, c) =
∣∣∣ c

2a

∣∣∣
1
2

e8

(
sign(2ac)− 2b2

ac

)
G

(
− c

2
,−b, 2a

)
.

Proof Set S(a, b, c) = G(a/2, b/2, c) and apply [1, Thm. 1.2.2]. ��
Corollary 3.3 Let b, c ∈ Z and suppose that c > 0 is even. Then

G(1, b, c) =
{

0 if c
2 + b is odd,√

2c e8

(
1 − 2b2

c

)
if c

2 + b is even.

Proof By Lemma 3.2 we know that G(1, b, c) =
√

c
2 e8

(
1 − 2b2

c

)
G(− c

2 ,−b, 2) and

G(− c
2 ,−b, 2) = ∑1

n=0 e(− 1
2 [ c

2 n2 + nb]) = 1 + (−1)
c
2 +b. ��

Lemma 3.4 Let a, c ∈ Z and suppose that (a, c) = 1. Then

G(a, 0, 2) = 1 + (−1)a, (3.1)

G(a, 0, c) = √
2c

( a

2c

)
e8(a) if c = 2k with k > 1, (3.2)

G(a, 0, c) = √
c

(
2a

c

)
e8(1 − c) if c > 0 is odd, (3.3)

Proof See [1, Ch. 1.5]. ��
Lemma 3.5 Let a, b, c ∈ Z and let t = (a, c). Then

G(a, b, c) = 0 if t � b, (3.4)

G(a, b, c) = tG(a/t, b/t, c/t) if t | b, (3.5)

G(a, 0, 2k+1) = 2G(a/2, 0, 2k) if k ≥ 1. (3.6)

Proof These identities are easy to show by dividing G(a, b, c) into t sums of length c/t
(with t = 2 in the last case). ��
Lemma 3.6 Let p > 2 be a prime, q = pk with k ≥ 1 and t ∈ Z relatively prime to p. If c
is a non-zero integer and qc = (q, c) then

G (c, 0, At
q) =

(
2tc/qc

q/qc

)
e8(1 − q/qc).
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Proof Note that |D[c]| = qc and hence
√

qqcG (c, 0, At
q) = G(ct, 0, q). By (3.5) we see

that G(ct, 0, pk) = qcG(tc/qc, 0, q/qc) and the lemma then follows from (3.3). ��
Lemma 3.7 Let q = 2k with k ≥ 1 and t ∈ Z odd. If c ∈ Z \ {0} and qc = (q, c) then

G (c, 0, At
q) =

(
tc/qc

q/qc

) ⎧⎨
⎩

e8(tc/qc) if q � c,
0 if q ‖ c,
1 if 2q | c.

Proof Observe that |D[c]| = qc and
√

qqcG (c, 0; At
q) = G( 1

2 ct, 0, q). The cases 2q | c and
q ‖ c are elementary. If q � c then we use (3.5) and (3.6) to factor out appropriate powers of
2 and obtain G( ct

2 , 0, q) = 1
2 qcG(tc/qc, 0, 2q/qc). Finally we use (3.2). ��

Lemma 3.8 If q = 2k with k ≥ 1 and c is a non-zero integer then

G (c, 0, Bq) =
(

3

q/qc

)
, (3.7)

G (c, 0,Cq) = 1. (3.8)

Proof In this case |D[c]| = q2
c and by definition qqcG (c, 0; Bq) = ∑q−1

n,m=0 eq(cm2 +cn2 +
cmn) and hence qqcG (c, 0; Bq) = ∑q−1

m=0 eq(cm2)G(c, cm, q). If q/qc = 1 or 2 the formula
for G (c, 0, Bq) follows immediately. If q/qc > 2 then Lemma 3.2 and (3.4) can be used to
show that G(c/qc,mc/qc, q/qc) is 0 unless m is even, in which case

G(c/qc, 2nc/qc, q/qc) = √
q/2c e8(1)eq(−cn2)G(−q/2qc,−2nc/qc, 2c/qc).

Since 2 | q/2qc we see that G(−q/2qc,−2nc/qc, 2c/qc) = 2G(−q/4qc, 0, c/qc) and this
can be evaluated by (3.3). By summing over n up to q/2 and using (3.6) we obtain

qqcG (c, 0; Bq) = qc
√

qqc/2 e8(2 − c/qc)

(−q/2qc

c/qc

)
G(3c/qc, 0, q/qc)

and by evaluating the latter Gauss sum and using the fact that (−1
d ) = −e4(1 + d) for odd d

we obtain (3.7). Since G(0, b, c) = 0 unless c | b we see immediately that qqcG (c, 0; Cq) =∑q−1
m=0 G(0, cm, q) = qc

∑q−1
m=0 G(0, cm/qc, q/qc) = qcqc

q
qc

= qqc. ��
The following lemma is easy to show by combining the above lemmas with the orthogo-

nality of the Jordan decomposition.

Lemma 3.9 If D is an FQM with level N and d ∈ Z is relatively prime to N then

G (d, 0; D) =
(

d

|D|
)

e8(sign(D)+ (d − 1)sign(D(2))).

Lemma 3.10 Let q = 2k with k ≥ 1 and assume that c and t are integers with t odd and
k = ord2(c). If xc ∈ At

q is chosen as in (2.7) then

G (c, xc; At
q) = 1.

Proof It is clear that xc = q
2 and hence e(cQ(x) + B(xc, x)) = e2q(ctx2 + 2t xcx) =

e2(x2 + x) = 1 for all x ∈ Z/(q). ��
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Corollary 3.11 If D is a finite quadratic module with a given Jordan decomposition, c an
integer and q = |c|−1

2 then

G (c, xc; D) =
∏

J �=At
q

G (c, 0; J )

where the product is taken over all Jordan components, J , of D, except for any (if existing)
components of the form At

q .

Proof This follows from orthogonality of Jordan decompositions and the fact that if D has
a non-trivial component At

q then xc ∈ At
q , together with Lemma 3.10. ��

4 The metaplectic group

Weil representations associated with finite quadratic modules are representations of Mp2(Z),
the metaplectic (twofold) cover of SL2(Z). Alternatively Mp2(Z) can also be described as
the central extension of SL2(Z) by the group {±1}. We therefore repeat the most important
facts about Mp2(Z). Additional details are given by, for example, Gelbart [8].

It is known that Mp2(Z) can be realized as the group of pairs (M,± jM(τ )), where M =(
a b
c d

)
∈ SL2(Z) and jM(τ ) = √

cτ + d . The group law of Mp2(Z) is given by

(A, εA jA(τ ))(B, εB jB(τ )) = (AB, εAεBσ(A,B) jAB(τ )) (4.1)

where εA, εB ∈ {±1} and σ : SL2(Z)
2 → {±1} is a 2-cocycle on SL2(Z). The value of

σ(A,B) can be computed explicitly by choosing any τ in the upper half-plane and observe
that the following expression holds and is independent of τ :

σ(A,B) = jA(Bτ) jB(τ ) jAB(τ )
−1. (4.2)

For M ∈ SL2(Z) we define M̃ = (M, jM(τ )) to be the canonical choice of representative

in the inverse image of M under the covering map. Using the generators S =
(

0 −1
1 0

)
and

T =
(

1 1
0 1

)
of SL2(Z) it is easy to see that Mp2(Z) is generated by S̃ and T̃ with relations

S̃2 = (S̃T)3 = Z̃ and Z̃4 = idMp2(Z)
. To be precise

T̃ =
((

1 1
0 1

)
, 1

)
, S̃ =

((
0 −1
1 0

)
,
√
τ
)
, Z̃ =

(( −1 0
0 −1

)
, i

)
.

and Z̃ generates the center of Mp2(Z). Since Z̃2 =
((

1 0
0 1

)
,−1

)
it follows that

Mp2(Z)/〈Z̃2〉 � SL2(Z). (4.3)

To obtain an expression for σ(A,B) which does not involve an auxiliary variable τ we need

the following symbols. For M =
(

a b
c d

)
∈ SL2(Z) define cM = c, dM = d ,

σM =
{

c if c �= 0,
d if c = 0,

and s(M) =
{

1 if c �= 0,
sign(d) if c = 0.

Theorem 4.1 For any A,B ∈ SL2(Z) we can express σ(A,B) as

σ(A,B) = μ(A,B) s(A)s(B)s(AB)−1

where μ(A,B) = (σAσAB, σBσAB)∞ and (·, ·)∞ denotes the Hilbert symbol at infinity.
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Proof Use the fact that (4.2) is independent of the choice of τ , set τ = iy and then let
y → ∞. The theorem is then proven by a careful analysis of all the possible cases for the
lower rows of A and B. (For a related result see Maaß [11, p. 115].)

Remark 4.2 Kubota [10] introduced the cocycleμ and showed that there is only one two-fold
central extension of SL2(R). We therefore know that μ and σ must be related by a trivial
cocycle. We could not find the precise relationship (as given by the previous theorem) in the
literature and therefore decided to include it.

The following lemmas are essentially direct applications of Theorem 4.1.

Lemma 4.3 Let A,B ∈ SL2(Z) and m, n ∈ Z. Then

σ(A,Tm) = σ(Tm,A) = 1, (4.4)

σ(A,BTm) = σ(A,B) = σ(TmA,B), (4.5)

σ(STm,STn) = sign(m), (4.6)

σ(A,S) =
{−1 if cA ≥ 0and dA < 0,

1 otherwise.
(4.7)

Lemma 4.4 Let M =
(

a b
c d

)
∈ SL2(Z), c > 0. If m ∈ Z

+, n ∈ Z and cn − d > 0 then

σ(MT−nST−mS,STmSTn) = 1.

5 The Weil representation

In this section let D = (D, Q) be a fixed finite quadratic module of level N with associated
bilinear form B and a fixed, chosen, Jordan decomposition. The Weil representation asso-
ciated with D is a unitary finite-dimensional representation of Mp2(Z) on C[D], the group
algebra of D. We view C[D] as a vector space of dimension |D| over C with basis vectors
denoted by ex , x ∈ D. We are only interested in the particular type of Weil representations
defined below and have an emphasis on explicit formulas. A more comprehensive theoretical
background is given by, for example, Gelbart [8] or Skoruppa [19].

Definition 5.1 The Weil representation ρ̃D : Mp2(Z) → C[D] associated with D is defined
by the following action of the generators. If x ∈ D then

ρ̃D(T̃)ex = e(Q(x))ex ,

ρ̃D (̃S)ex = σw(D)
1√|D|

∑
y∈D

e(−B(x, y))ey

where σw(D) = G (−1, 0; D).

The eighth-root of unity σw(D) is usually called the Witt-invariant of D and it is clear
that σw(D) = e8(−sign(D)). To show that ρ̃D , defined as above on the generators, and
extended multiplicatively, indeed defines a representation, we need to verify that it respects
the relations in Mp2(Z). It is sufficient to show that ρ̃D (̃S)8ex = ρ̃D (̃ST̃)12ex = ex for all
x ∈ D. By using the definition of ρ̃D (̃S) and computing ρ̃D (̃S)2ex directly and in addition
use Lemma 5.2 (below) to evaluate ρ̃D (̃ST̃)3ex it is easy to show that

ρ̃D(Z̃)ex = ρ̃D (̃S)2ex = ρ̃D (̃ST̃)3ex = σw(D)
2e−x . (5.1)

Since σw(D)8 = 1 we immediately conclude that ρ̃D is a representation.
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Lemma 5.2 Let m and n be integers and suppose that m is positive. If x ∈ D then

ρ̃D (̃ST̃n)ex = σw(D)|D|− 1
2 e(nQ(x))

∑
y∈D

e(−B(x, y))ey

ρ̃D (̃ST̃m S̃T̃n)ex = σw(D)
2
√|D[m]|/|D| G (m, xm, D)e(nQ(x))

×
∑

y∈D/D[m]
e(−m Q(y)− B(xm, y))exm+my−x .

Proof The first equation is simply obtained by first applying ρ̃D(T̃n) and then ρ̃D (̃S) to ex .
By a similar argument, as well as identifying the Gauss sum, it follows that

√|D|ρD (̃ST̃m S̃T̃n)ex = σw(D)
2e(nQ(x)

√|D[m]|
∑
z∈D

G (m, z + x; D)ez .

The lemma then follows by using Lemma 2.16 and observe that to sum over x+z = xm+my ∈
D[m]• is equivalent to sum over y ∈ D/D[m]. ��

From the relation (4.3) it is clear that the behavior of ρ̃D on the subgroup 〈Z̃2〉 determines
whether ρ̃D factors through a representation of SL2(Z) or not. Since

ρ̃D(Z̃2)ex = σw(D)
4ex

for all x ∈ D we see that ρ̃D factors through a representation of SL2(Z) precisely ifσw(D)4 =
1, or equivalently, if sign(D) is even. It follows that if we define

ρD(A) = ρ̃D((A, jA))

for A ∈ SL2(Z) then ρD : SL2(Z) → C[D] is a representation of SL2(Z) if the signature
of D is even, and otherwise it is a projective representation. In the latter case we have the
following multiplicative relation for any A,B ∈ SL2(Z):

ρD(A)ρD(B) = σ(A,B)ρD(AB). (5.2)

Abusing notation we also refer to ρD as the Weil representation associated with D. The
main theorem is formulated as an explicit formula for ρD but it is not difficult to recover the
corresponding formula for ρ̃D . If A ∈ SL2(Z) then the relation

ρ̃D((A,− jA)) = σw(D)
4ρD(A).

follows immediately from the fact that (A, ϕ(τ )) = Z̃2(A,−ϕ(τ)). In the same spirit it is
possible to use (5.1) and Theorem 4.1 to obtain an expression relating ρD(−A) and ρD(A).
Set δ = −sgn(c) if c �= 0 and δ = sgn(d) if c = 0. Then

ρD(−A)ex = δ σw(D)
2ρD(A)e−x . (5.3)

Recall that Γ (N ), the principal congruence subgroup of level N , of SL2(Z), is defined as

the subgroup consisting of all matrices which are (entry-wise) congruent to
(

1 0
0 1

)
(mod N ).

Any subgroup Γ ⊆ SL2(Z) which contains Γ (N ) is said to be a congruence subgroup of
level N . We are only interested in two other groups: Γ0(N ) and Γ 0

0 (N ) which consist of all

matrices
(

a b
c d

)
with c ≡ 0 (mod N ) and b ≡ c ≡ 0 (mod N ), respectively. Note that

Γ (N ) ⊆ Γ 0
0 (N ) ⊆ Γ0(N ) ⊆ SL2(Z)
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and that the inclusions are strict unless N = 1. The basic idea behind the proof of the explicit
formula in our main theorem is that we want to extend a known formula for ρD on elements
of Γ0(N ). This is done by using the formulas on the generators S and T together with an
explicit description of the quotient Γ0(N )\SL2(Z).

The action of the subgroups Γ (N ), Γ 0
0 (N ) and Γ0(N ) on the Weil representation, as

given in Lemmas 5.5 and 5.6 below, was obtained for certain discriminant forms already by
Schoeneberg [16] and Pfetzer [13] in terms theta functions. See also Ebeling [6, Ch. 3.1]
(based on lectures and notes of Hirzebruch and Skoruppa), Borcherds [2, Thm. 5.4], Eichler
[7, p. 49] and Skoruppa [19,20].

Definition 5.3 If d ∈ Z is relatively prime to N then we define

εD,d = G (1; 0; D)/G (d, 0; D). (5.4)

Definition 5.4 If A =
(

a b
c d

)
∈ SL2(Z) we define the map εD : SL2(Z) → {±1} by

εD(A) =
{ ( c

d

)
if sign(D) is odd,

1 otherwise,

and if A ∈ Γ0(N ) then we define χD : Γ0(N ) → {e8(k) | k ∈ Z/8Z} by

χD(A) = εD(A)ε
−1
D,d .

Lemma 5.5 If A =
(

a b
c d

)
and x ∈ D then

ρD(A)ex =
{
εD(A)ex if A ∈ Γ (N ),
χD(A)edx if A ∈ Γ 0

0 (N ).

The above lemma implies that the Weil representation, ρD , associated with D factors through
Γ (N ) if the signature of D is even. If the signature is odd then N is divisible by 4 and the
Weil representation, ρ̃D , factors through the group

Γ̃ (N )
∗ = {(A, vθ (A) jA(τ )) | A ∈ Γ (N )}

where vθ is the multiplier system of the Jacobi theta function θ(τ ) = ∑
n∈Z

e(τn2). Recall
that θ is a weight 1

2 modular form on Γ0(4) and multiplier system given by

vθ (A) := jA(τ )
−1 θ(Aτ)

θ(τ )
=

( c

d

)
ε−1

d , for all A =
(

a b
c d

)
∈ Γ0(4) (5.5)

(see, for example [17, §2]) where

εd =
(

2

d

)
e8(1 − d) =

{
1 if d ≡ 1 (mod 4),
i if d ≡ 3 (mod N ).

(5.6)

In the main theorem we extend the formulas for the action of Γ0(N ) to that of SL2(Z) and
in the lemma below we extend the action of Γ 0

0 (N ) to that of Γ0(N ). Since some of the key
principles are present in both cases we give the details of the proof below.

Lemma 5.6 If D has level N ,A =
(

a b
c d

)
∈ Γ0(N ) and x ∈ D then

ρD(A)ex = e(bd Q(x))χD(A)edx .
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Proof Let n ≡ −bd (mod N ). Then na ≡ −bda ≡ −b (mod N ) and A = XT−n with

X =
(

a an + b
c cn + d

)
∈ Γ 0

0 (N ). Using lemma 4.3 and the fact that N | c we see that

ρD(A)ex = ρD(X)ρD(T−n)ex = e(bd Q(x))ρD(X)ex = εD(X)ε
−1
D,dedx .

In the last step we used that G (d + nc, 0; D) = G (d, 0, D) and therefore εD,nc+d = εD,d . It
remains to show that εD(X) = εD(A). If the signature of D is even then εD(X) = εD(A) = 1.
Assume that the signature is odd and c �= 0. Recall the quadratic reciprocity law for the
Kronecker symbol: if x and y are any non-zero integers then

(
x

y

)
= (x, y)∞

( y

x

)
e8((x2 − 1)(y2 − 1)), (5.7)

where x2 and y2 denote the odd parts of x and y. By using (5.7) twice together with elementary
properties of the Kronecker and Hilbert symbols it is easy to show that ( c

nc+d ) = ( c
d )e8((c2 −

1)cn). Since the signature is odd we know that 4 | c and therefore εD(X) = ( c
nc+d ) = ( c

d ) =
εD(A). Observe that if c = 0 then A = Tb if a = 1, and ZT−b if a = −1. In the second
case we obtain the desired formula by using (5.3). ��
Remark 5.7 It should be remarked that it is possible prove Lemma 5.6 directly by using the
generators of Γ0(N ) and some very meticulous calculations.

6 The main theorem

Definition 6.1 Let D be a finite quadratic module with a given Jordan decomposition and a
and c relatively prime integers. If c �= 0 then we define the eighth root of unity

ξ(a, c) = e4(−sign(D)) ξ0 ξ2

∏
J

ξ(J )

where the product is taken over all non-trivial Jordan components, J , of D and the factors
are defined as follows. If p is a prime and J has order pk with k > 0 then

ξ(J ) = G (c, 0; J ) if p � c,

ξ(J ) =
(−a

|J |
)

G (−ac, xc; J ) if p | c.

If the signature of D is even then we set ξ0 = ξ2 = 1. If the signature of D is odd then

ξ0 =
(−a

c

)
(−a, c)∞

and

ξ2 =
{

1 if c is odd,
e8(−(a + 1)(c2 − 1 + sign(D(2))) if c is even,

where c2 is the odd part of c. The definition is then completed by setting ξ(1, 0) = 1 and
ξ(−1, 0) = e4(−sign(D)). For the case a = 0 recall that by our definitions in Sect. 1.2 we
have ( 0

±1 ) = (0,±1)∞ = 1.

Remark 6.2 Observe that the values of G (c, 0; J ) and G (−ac, xc; J ) are given by simple
arithmetic functions, explicitly obtained from Lemmas 3.6–3.8.
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Remark 6.3 From the definitions of the Gauss sums, together with the fact that any odd prime
which divides |D| also divides N , it follows immediately that if the signature of D is even
then ξ(a, c) depends only on the values of a and c modulo N .

Theorem 6.4 Let D = (D, Q) be a finite quadratic module with bilinear form B and ρD

the associated Weil representation. If A =
(

a b
c d

)
∈ SL2(Z) and x ∈ D then

ρD(A)ex = ξ(a, c)

√
|D[c]|
|D|

∑
y∈D/D[c]

fA(x, y)e(B(xc, bx + y))edx+cy+xc ,

where ξ(a, c) is given by Definition 6.1, xc is any element in D such that cQ(y) = B(xc, y)
for all y ∈ D[c] and

fA(x, y) = e(bd Q(x)+ acQ(y)+ bcB(x, y)).

Proof Let N be the level of D. If c = 0 then A ∈ Γ0(N ) and the theorem follows directly
from Lemma 5.6. Assume that c �= 0. We first observe that it is possible to choose coset
representatives of Γ0(N )\SL2(Z) of the form Vm,n = STmSTn . Let m and n be integers,
with m positive, such that:

cn − d > 0, (cn − d, N ) = 1, (cn − d)m ≡ c (mod N ), (6.1)

cn − d − 1 ≡ m − c ≡ 0 (mod 8) if 2 � c and (6.2)

an − b ≡ m + ac ≡ 0 (mod 8) if 2 | c. (6.3)

To show that it is possible to choose such m and n we use elementary facts about solutions
of linear congruence equations. We then define X ∈ Γ0(N )

X = AV−1
m,n =

(
a′ b′
c′ d ′

)
=

(
(an − b)m − a an − b
(cn − d)m − c cn − d

)
. (6.4)

Hence A = XVm,n and by Lemma 4.4 it follows that ρD(A) = ρD(X)ρD(Vm,n). The factor
ρD(Vm,n) is evaluated with the help of Lemmas 4.3 and 5.2. By applying ρD(X) to exm+my−x

in the inner sum and using the definition of χD(X) we obtain

ρD(A)ex = σw(D)
2
√|D[m]|/|D| χD(X)σw(D)G (m, xm, D)G (d ′, 0; D)

×
∑

z∈D/D[m]
e(nQ(x)−m Q(z)− B(xm, z)+b′d ′Q(xm +mz − x))ed ′(xm+mz−x).

Since (d ′, N ) = 1 it follows that (m, N ) = (c, N ), |D[m]| = |D[c]| and xc = xm . Hence

d ′(xm + mz − x) = xc + cz − (cn − d)x = xc + cy + dx

where y = z − nx . Note that if xc �= 0 then c is even and by assumption an ≡ b (mod 8).
In this case a is odd and therefore n ≡ b (mod 2) and thus B(xm, z) = B(xc, nx + y) =
B(xc, bx + y). If we now define

f̃A(x, y) = e(nQ(x)− m Q(y + nx)+ b′d ′Q(xm + m(y + nx)− x)) and (6.5)

ξ̃ (a, c) = εD(X)G (−1, 0; D)3G (m, xc, D)G (d ′, 0, D) (6.6)

then

ρD(A)ex = ξ̃ (a, c)
√|D[c]|/|D|

∑
y∈D/D[c]

f̃A(x, y)e(B(xc, bx + y))exc+cy+dx
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and it is clear that it remains only to show that ξ̃ (a, c) = ξ(a, c) and f̃A(x, y) = fA(x, y)
(independent of the choice of n and m).

We begin with the simpler case of fA. If xc �= 0 then b′ ≡ 0 (mod 8), which implies that
b′Q(xc) = 0 and therefore

f̃A(x, y) = e(acQ(y + nx)+ (b′d ′ + n)Q(x)− b′cB(y + nx, x))

where we used that d ′m ≡ c (mod N ) and b′cm − m ≡ mad ′ ≡ ac (mod N ). By expanding
Q(y + nx) and B(y + nx, x) and collecting terms we obtain

f̃A(x, y) = e(acQ(y)+ (b′d ′ + n + acn2 − 2b′cn)Q(x)+ (acn − b′c)B(y, x)).

Using the definitions b′ = an − b and d ′ = cn − d we see that

b′d ′ + n + acn2 − 2b′cn = b′(−d − cn)+ n + acn2 = bd + n(1 + cb − ad) = bd

and it follows immediately that f̃A(x, y) = e(acQ(y)+ bd Q(x)+ bcB(y, x)) = fA(x, y).
It remains to show that ξ̃ (a, c) = ξ(a, c). By orthogonality it is clear that

ξ̃ (a, c) = εD(X)G (−1, 0; J )2
∏

J

G (−1, 0; J )G (m, xc, J )G (d ′, 0; J )

where the product is taken over all non-trivial Jordan components, J , of D. First of all,
observe that if the signature of D is even then εD(X) = 1. Otherwise, if the signature
is odd, then it follows from Lemma 6.11 that εD(X) = (−a, c)∞(−a

c ) if c is odd and
(−a, c)∞(−a

c )e8((a + 1)(c2 + 1)) if c is even.
Let p > 2 be a prime which divides N . If p � c then md ′ ≡ c (mod p) and if p | c then

md ′ = m(cn − d) ≡ −md (mod p) and ad ≡ 1 (mod p). Together with the explicit formula
in Lemma 3.6 it follows that if J = At

pk then

G (−1, 0; J )G (m, 0, J )G (d ′, 0; J ) =
{

G (c, 0; J ) if p � c and(−a
|J |

)
G (−ac, 0; At

q) otherwise.
(6.7)

If p = 2 then (6.7) holds in this case as well, with the modification that the second row is
multiplied by e8(−sign(J )(a + 1)). This is easy to show if J is of the form B2k or C2k . The
most complicated case, which is also not covered by [15], is that of J = At

2k . For clarity we
present the details for this case in Lemma 6.10. ��
Remark 6.5 It should now be evident that in order to treat the case of odd signature (which
is the case not covered by the analogous results in [15]) we had to deal with three major
obstacles. The first two are related to the metaplectic group and consist of determining
εD(X) and evaluating the the cocycle σ(A,B) explicitly (for various choices of A and B). The
third problem is related to the Jordan components of the type At

2k and consists of calculating
G (−1, 0; J )G (m, 0; J )G (d ′, 0; J ) for this component and show that the resulting expression
is independent of the parameters m and n.

Remark 6.6 Note that the formula of the main theorem is a priori dependent on the choice
of Jordan decomposition, as well as possibly a choice of xc. However, since the definition of
ρ does not depend on these choices it is clear that the left-hand side, and therefore also the
right-hand side of the formula are in fact both independent of these choices (for each x ∈ D).

Remark 6.7 It is not difficult to verify that when the signature of D is even then the formula
of Theorem 6.4 coincides with the one in [15, Thm. 4.7] for the dual representation defined
by ρ∗

D(A) = ρ̄D(A). Observe that, in this case, ρ∗
D(A) = ρD(A−1)T where T denotes the

matrix transpose.
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Remark 6.8 If A =
(

a b
c d

)
∈ SL2(Z) and x, z ∈ D then ρD(A) has matrix coefficients

ρD(A)x,z = ξ(a, c)
√|D[c]|/|D| fA(x, y)e(B(xc, bx + y)), x, z ∈ D

if there is an element y ∈ D such that z = dx + xc + cy and otherwise ρD(A)x,z = 0.

Example 6.9 Let N ∈ Z
+ and consider DN = (Z/(2N ), x2

4N ) and the associated Weil
representation ρDN

. In this case it is possible to obtain a very simple expression for the root

of unity, ξ(a, c). If A =
(

a b
c d

)
∈ SL2(Z) and c �= 0 then

ξ(a, c) = (a, c)∞
(

a2N/ (2N , c)

c/(2N , c)

)
e8(c2 N2δa − c2(N2, c2))

where δ = 1 if |2N/c|2 ≥ 1 and otherwise δ = 0. To prove this we have to use the explicit
formulas for the Gauss sums and the quadratic reciprocity law (5.7). It is not difficult to show
that the above expression is equivalent to that given in [14, Thm. 3].

In general it does not seem to be possible to simplify ξ(a, c) for an arbitrary matrix A.
However, if D has level N and A ∈ Γ0(N ) then it is possible to simplify the expression

for χD(A) using Lemma 3.9. If A =
(

a b
c d

)
∈ Γ0(N ) then χD(A) = ( d

|D| ) if 4 � N and

otherwise, if we set s = sign(D) and r = sign(D)+ (−1
|D| )− 1 then

χD(A) =
(

d

|D|2s

) ( c

d

)s
ε−r

d =
(

d

|D|2s

)
×

⎧⎪⎪⎨
⎪⎪⎩

vθ (A) if r ≡ 1 (mod 4),
vθ (A) if r ≡ 3 (mod 4),(−1

d

)
if r ≡ 2 (mod 4),

1 if r ≡ 0 (mod 4).

To compare with similar formulas by Borcherds [2] note that vθ (A) = (−1
d )vθ (A).

6.1 Two lemmas containing details for the proof of the main theorem

Lemma 6.10 Let the notation be as in Theorem 6.4 with c �= 0. Assume that m, n,X, a′, b′, c′
and d ′ are as in (6.1)–(6.4). If q = 2k with k > 1 and At

q is a non-trivial Jordan component
of D then G (d ′, 0; At

q)G (m, xm; At
q) equals

G (1, 0; At
q)×

{
G (c, 0; At

2k ) if c is odd,

G (−ac, xc; At
q)

(−a
q

)
e8(−sign(At

q)(a + 1)) if c is even.

Proof Assume that c is even and q � c. Then b′ ≡ 0 (mod 8) and d ′a′ = b′c′+1 ≡ 1 (mod 8).
It follows that d ′ ≡ a′ ≡ −a ≡ 1 (mod 8). If qc = (c, N ) then (m, c) = qc and by Lemma 3.7
we immediately obtain

G (d ′, 0; At
q)G (m, 0; At

q) =
(−at

q

)
e8(−ta)

(
tm/qc

q/qc

)
e8(tm/qc).

Since q � c and the level of the component At
q is 2q it follows that 4 | N/qc and therefore

m
qc

≡ d ′ c
qc

≡ − ac
qc
(mod 4). By using (5.6) we see that

e8(tm/qc) =
(

tm

2

)
e8(1)ε

−1
tm/qc

=
(−mac/q2

c

2

)
e8(−act/qc).
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Furthermore, if q/qc ≥ 2 then 2q/qc is either equal to 4 or N/qc is divisible by 8. In the
latter case d ′a′ ≡ −ad ′ ≡ 1 (mod 8) and m

qc
≡ − ac

qc
(mod 8). In both cases it is clear that

(
tm/qc
q/qc

)e8(tm/qc) = (
−act/qc

q/qc
)e8(−act/qc). We conclude that

G (d ′, 0; At
q)G (m, 0; At

q) =
(

t

q

) (−a

q

)
e8(−ta − act/qc)

(−act/qc

q/qc

)

= G (1, 0; At
q)G (−ac, 0; At

q)

(−a

q

)
e8(−(a + 1)t).

Since a is odd it follows from Lemma 3.7 that e8(−(a + 1)t) = e8(−(a + 1)sign(At
q)).

This proves the lemma in this case. The cases of odd c and q | c are analogous. The only
difference is that when 2k ‖ c then G (m, xm; At

q) = G (−ac, xc; At
q) = 1.

Lemma 6.11 Let the notation be as in Theorem 6.4 and assume that the signature of D is
odd. Let m, n and X be as in (6.1)–(6.4) and let c2 be the odd part of c. Then

εD(X) =
(−a

c

)
(c,−a)∞

{
1 if c is odd,
e8((c2 + 1)(a + 1)) if c is even.

Proof By definition εD(X) = (
(cn−d)m−c

cn−d ). Since cn − d is positive and odd it fol-

lows that ( (cn−d)m−c
cn−d ) = ( −c

cn−d ). By the quadratic reciprocity law we see that ( −c
cn−d ) =

( cn−d
−c )e8((−c2 − 1)(cn − d − 1)). If c is odd then cn − d ≡ 1 (mod 8) and the statement

then follows from the fact that ad ≡ 1 (mod c) and (−a
|c| ) = (−a

c )(c,−a)∞. If c is even we
use that cn − d ≡ −a (mod 8). ��
Acknowledgments I would like to thank Nils Scheithauer for clarifying details of [15], Nils-Peter Skoruppa
for sharing thoughts about Weil representations in general, and the manuscript [19], in particular. I would also
like to thank Stephan Ehlen for his extensive assistance with proof reading the manuscript and in simplifying
Theorem 4.1.

References

1. Berndt, B.C., Evans, R.J., Williams, K.S.: Gauss and Jacobi Sums. Canadian Mathematical Society Series
of Monographs and Advanced Texts. Wiley, New York (1998)

2. Borcherds, R.E.: Reflection groups of Lorentzian lattices. Duke Math. J. 104(2), 319–366 (2000). doi:10.
1215/S0012-7094-00-10424-3

3. Bruinier, J.H., Strömberg, F.: Computation of harmonic weak Maass forms. Exp. Math. 21(2), 117–131
(2011)

4. Cassels, J.W.S.: Rational Quadratic Forms. London Mathematical Society Monographs, vol. 13. Academic
Press Inc., London (1978)

5. Conway, J.H., Sloane, N.J.A.: On the classification of integral quadratic forms. In: Conway, J.H., Sloane,
N.J.A. (eds.) Sphere Packings, Lattices and Groups, pp. 352–405. Die Grundlehren der mathematischen
Wissenschaften, vol. 290, Springer, New York (1999)

6. Ebeling, W.: Lattices and Codes. Friedrich Vieweg & Sohn, Braunschweig (1994)
7. Eichler, M.: Introduction to the Theory of Algebraic Numbers and Functions. Pure and Applied Mathe-

matics, vol. 23. Academic Press, New York (1966)
8. Gelbart, S.: Weil’s Representation and the Spectrum of the Metaplectic Group. Lecture Notes in Mathe-

matics, vol. 530. Springer, Berlin (1976)
9. Kloosterman, H.D.: The behaviour of general theta functions under the modular group and the characters

of binary modular congruence groups. I, II. Ann. Math. (2) 47, 317–375, 376–447 (1946)
10. Kubota, T.: Topological covering of SL(2) over a local field. J. Math. Soc. Jpn. 19, 114–121 (1967)
11. Maass, H.: Lectures on Modular Functions of One Complex Variable, 2nd edn. Tata Institute of Funda-

mental Research Lectures on Mathematics and Physics, vol. 29. Tata Institute of Fundamental Research,
Bombay (1983)

123

http://dx.doi.org/10.1215/S0012-7094-00-10424-3
http://dx.doi.org/10.1215/S0012-7094-00-10424-3


Weil representations associated with finite quadratic modules 527

12. Milnor, J., Husemoller, D.: Symmetric Bilinear Forms. Ergebnisse der Mathematik und ihrer Grenzgebi-
ete, Band 73. Springer, New York (1973)

13. Pfetzer, W.: Die Wirkung der Modulsubstitutionen auf mehrafache Thetareihen zu quadratischen Formen
ungerader Variablenzahl. Arch. Math. 4, 448–454 (1953)

14. Ryan, N., Skoruppa, N., Strömberg, F.: Numerical computation of a certain Dirichlet series attached to
Siegel modular forms of degree two. Math. Comput. 81(280), 2361–2376 (2012)

15. Scheithauer, N.R.: The Weil representation of SL2(Z) and some applications. Int. Math. Res. Not. 8,
1488–1545 (2009)

16. Schoeneberg, B.: Das Verhalten von mehrfachen Thetareihen bei Modulsubstitutionen. Math. Ann. 116(1),
511–523 (1939)

17. Shimura, G.: On modular forms of half integral weight. Ann. Math. 97, 440–481 (1973)
18. Shintani, T.: On construction of holomorphic cusp forms of half integral weight. Nagoya Math. J. 58,

83–126 (1975)
19. Skoruppa, N.-P.: Finite quadratic modules, Weil representations and vector valued modular forms. (2013,

preprint)
20. Skoruppa, N.P.: Über den Zusammenhang zwischen Jacobiformen und Modulformen halbganzen

Gewichts. Bonner Math. Schriften, no. 159. University of Bonn, Bonn (1985)
21. Stein, W., et al.: Sage mathematics software (Version 5.3). The Sage Development Team (2012). http://

www.sagemath.org
22. Weil, A.: Sur certains groupes d’opérateurs unitaires. Acta Math. 111, 143–211 (1964)

123

http://www.sagemath.org
http://www.sagemath.org

	Weil representations associated with finite  quadratic modules
	Abstract
	1 Introduction
	1.1 Statement of the main result
	1.2 Notational convention and outline of the paper

	2 Quadratic forms and finite quadratic modules
	2.1 Quadratic spaces and lattices
	2.2 Canonical representations of quadratic forms
	2.3 Finite quadratic modules

	3 Evaluation of Gauss sums
	4 The metaplectic group
	5 The Weil representation
	6 The main theorem
	6.1 Two lemmas containing details for the proof of the main theorem

	Acknowledgments
	References


