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A NOTE ON THE bP-COMPONENT 
OF (4n - 1)-DIMENSIONAL HOMOTOPY SPHERES 

STEPHAN STOLZ 

ABSTRACT. The bP-component of a (4n1 - 1)-dimensional homotopy sphere L: E 

04 - I =_ bP4,, ?D (CokerJ)4n -1 bounding a spin manifold M is shown to be compu- 
table in terms of the signature and the decomposable Pontrjagin numbers of M. 

Let 01, - be the group of h-cobordism classes of (m - 1)-dimensional homotopy 
spheres and let bP,, c 07,_ be the subgroup of those homotopy spheres bounding 
parallelizable m-manifolds. Using results of Kervaire and Milnor [5], G. Brumfiel 
showed that 04n -1 has a direct sum decomposition 

04ti- I =_ bp4n ED 7T4til-II/iM(M) 

where J: -7TZ (SO) - fTs- is the stable J-homomorphism [1]. The group bP4n is 
cyclic and its order IbP4nl can be expressed in terms of the nth Bernoulli number 
(see below). To define the projection map 

s: 04n -I bP4n Z/IbP4nIZ 

Brumfiel shows that every homotopy sphere E E 04n-I bounds a spin manifold M 
with vanishing decomposable Pontrjagin numbers and that the signature of such an 
M is divisible by eight. Then he defines s by s(E) := sign(M) E Z/IbP4jIZ [1]. 

The above definition is not suitable to compute s(E) for a homotopy sphere E 
given explicitly by some geometric construction. The reason is that it is usually not 
possible to find an explicit spin manifold bounding E whose decomposable 
Pontrjagin numbers vanish. For example, if E is constructed by plumbing it bounds 
a manifold M by construction, but in general the decomposable Pontrjagin numbers 
of M do not vanish. 

In this note we show how to compute s(E) from the signature and the decomposa- 
ble Pontrjagin numbers of a spin manifold M bounding E. To describe explicitly 
which linear combination of decomposable Pontrjagin numbers is involved, let 
L(M) (resp. A(M)) be the L-class (resp. the A-class) of M, which are power series 
in the Pontrjagin classes of M [4]. For any power series K(M) in the Pontrjagin 
classes, let Kn(M) be its 4n-dimensional component. Let ph(M) be the Pontrjagin 
character of M, i.e. the Chern character of the complexified tangent bundle of M. 
Here we think of the tangent bundle as an element of KO(M), in particular, 
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pho(M) = 0. Then define 

Sn(M) = 8Ln(M) + bP4a1 (cnAn(M) n(-l)ndn(4(M)ph(M)),), 

where an = 1 for n even, an = 2 for n odd, and cw, dn are integers such that 

cn num( Bn/4n) + dn denom( Bn/4n) = 1. 

Here BJn is the nth Bernoulli number and num(Bn/4n) (resp. denom(Bn/4n)) denote 
the numerator (resp. denominator) of the irreducible fraction expressing the rational 
number Bn/4n. We will show below that Sn(M) is a polynomial in P,... I Pn-1' i.e. 

Sn(M) does not involve Pn. Note that for 1 < i < n we can interpret p, as an 
element of H4i(M, aM), due to the isomorphism H4,(M)_ H4'(M, aM). Hence 

Sn(M) E H4n(M, 3M) and we can form the Kronecker product (S,j(M), [M, 3M]) 
with the relative fundamental class of M. 

THEOREM. Let E be a (4n - 1)-dimensional homotopy sphere bounding a spin 
manifold M. Then 

s(E) = 8 sign(M) - (Sn(M), [M, 3M]) mod|bP4n IZ. 
This theorem generalizes some results of R. Lampe [6], who computed the 

bP-component of (4n - 1)-dimensional homotopy spheres bounding (2n - 1)- 
connected manifolds, and of G. Brumfiel, who obtained a formula for s(E) - s(E'), 
where E, E' are homotopy spheres bounding homotopy equivalent manifolds [2, 

Proposition 5.1, Corollary 5.8]. 
The expression 8 sign(M) - (Sn(M), [M, 3M]) can be viewed as a refinement of 

the n-invariant of Eells-Kuiper [3]. They use the integrality of (A(W), [W])/an for 
closed spin manifolds W4n to prove that their n-invariant is well defined. We will use 
the integrality of (A(W), [W])/an and (A(W) ph(W), [W])/an to show that 

sign(M) -(Sn(M), [M, M]) E Z/IbP4n IZ 

is independent of the choice of M. 
My original motivation for this work comes from the study of highly connected 

smooth manifolds. There are classification results for highly connected 'almost 
closed' manifolds, i.e, manifolds whose boundaries are homotopy spheres [9, 10]. To 
obtain results on closed manifolds, one has to determine whether the boundary of a 
given highly connected, almost closed manifold M is diffeomorphic to the standard 
sphere. In [8] it is shown that the cokernel J-component of aM often vanishes. Thus 
it remains to compute the bP-component which is easily done using the above 
theorem if M is 4n-dimensional and using [8, 13] if M is (4n + 2)-dimensional. 

PROOF OF THE THEOREM. First we show that Sn(M) does not involve Pn. 

An ( M) =- Pn + decomposables, 
2(2n)! 

phn(M) = (2 - l)!pn + decomposables, 

('(M) ph(M))n = A'(M)Oph(M)n + '(M)n ph(M)o + decomposables 

(2n -1)! Pn + decomposables. 
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Thus 

c,nAn (M) + (-I) "dn (A(M) ph(M)) n 

(2n1 1)! (4n +n 

(2n - 1)! denom(Bn/4n) 4c,1 num 4n) + d4ndenom( ' ) 

-- ~~~~~p mod decomposables. 
(2n - 1)! denom(Bn/4n) p n 

According to [5] 

1bP 4 2 2n-2(22n1 - 1) num(4Bn/n). 

Using the facts that 

4 I denom( Bn/n) for n even, 

and 

2 1 denom( Bn/n), 4 + denom( Bn/n) for n odd 

[7, p. 284] we conclude that 

num(4Bn/n) = an num(Bn/n) = an num(Bn/4n). 

It follows that 

(Cn 4n (M) + (-1I)dn(4(M) ph(Md)n)) 

22n-2 (2 2n-1 - 1) Bt 
- n-2(22n 1 - )! 41 p, + decomposables. 

On the other hand 

1 1 22n(2~" 2-1) 
- L(M) = 8 (2) 1) B,1 + decomposables 

[4, p. 12], which shows that S,1(M) is a polynomial of P1, . . P' 
The next step is to prove the equality 

S(s) = ' 
sign(M) -(Sn(M), [V, aM]) mod|bP4j iZ. 

If the decomposable Pontrjagin numbers of M and hence (S,1(M), [M, aM]) vanish, 
the above equation holds by the definition of s. Thus we have to show that the 
right-hand side is independent of the spin manifold M. Let N be another spin 
manifold bounding E and let W be the closed spin manifold obtained by gluing M 
and -N along E. Then 

sign(W) = sign(M) - sign(N) 

and 

(S, (W), [W]) = (S, (M), [M, M]) -(S,(N), [N, N]) 
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It follows that 

I 
sign(M) - (Sn(M), [M, aM]) - sign(N) - Sn (N), [N, aN])) 

- sign(W) - (Sn (W), [WI) 

- 8(sign(w) - (Ln(W), [WI)) 

1 A A~~~~~~~ 
+jbP4nIcCn A n(W), [W]) +(-1) ndna (A(W)ph(W))n, [W])) = 

mod I bP4n IZ since sign( W) = ( Ln( W), [ W]) by Hirzebruch's signature theorem and 
since (An(W),[W])/an resp. ((A(W)ph(W))n, [W])/a,, are integers by the 
Hirzebruch-Riemann-Roch Theorem [4, Theorems 26.3.1 and 26.3.2]. Q.E.D. 
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