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Abstract
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an isolated singularity of a complex hypersurfece. We determine the relations it has with
moncdromy, intersection form and focal cohomology.

AMS (MOS) subject classification scheme (1970): 14 C 30, 14 D 05, 14 H 20, 57 D 45.

Keywords: mixed Hodge structure, vanishing cycles, monodromy, De Rham cohomology,
Hodge filtration, weight filtration, intersection form.

Introduction

Let PeC[z, -+, z,] with P(0)=0. Assume that 0 C"™" is a critical point
of P. Denote B the open ball in C*** with center 0 and radius £ > 0. There
exists m>0 such that 0<|¢f|<7 implies that B;=P '(t)N B is a complex
manifold. In this paper we follow a suggestion of Deligne and construct a
mixed Hodge structure on the cohomology of B, (the vanishing cohomology)
in the case that P has an isolated critical point at 0.

Let S be the disk with center 0 and radius n. Denote X'=P '(S)N B. Let
p:X—X' be a resolution of P, i.e. a proper map which is an isomorphism
outside p~(0) such that {Pp)~*(0) is a union of smooth divisors on X with
normal crossings. Let e be the least common multiple of the multiplicities
occurring in the fiber (Pp)~*(0). Let S be the disk with radius n'/* and define
a:8— 8 by o(t)=1t° Let X be the normalization of the fiber product X xs§
and let w:X— X be the natural map. Let D=(Ppw) "(0) and denote
Dg, - -+, Dy, its irreducible components. The cohomolegy groups of the D,
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and their multiple intersections are the constituents of the mixed Hodge
structure on H¥(B,).

The spaces X and D; have singularities, but still their cohomology carries
a pure Hodge structure because they only have quotient singularities.

In chapter 1 we develop a De Rham cohomology for projective varieties
with quotient singularities. In chapter 2 we use this to get hold of the limit
Hodge structure of a one parameter family of projective varieties over the
punctured disk, whose monodromy is not unipotent. We use the resulting
construction to put a mixed Hodge structure on H*(B,) in chapter 3, after
we have computed the mixed Hodge structure for a projective variety with
only one singular point. Chapter 4 contains the study of the relations with
problems concerning finiteness of monodromy, intersection form and local
cohomology. Finally in chapter 5 we list some open problems.

We thank the LH.E.S. for its hospitality during the preparation of this
work and P. Deligne and N. A’Campo for their continuous stimulation.

1. Projective V-manifolds

(1.1) DeFINITION. A V-manifold of dimension n is a complex analytic
space which admits an open covering {U;} such that each U, is analytically
isomorphic to Z/G; where Z; =C" is an open ball and G, is a finite subgroup
of GL{n,C).

V-manifolds have been classified locally by D. Prill [15].

To state the result we need the following.

(1.2) Dernrrion. A finite subgroup G of GL(n, C) is called small if no
element of G has 1 as an eigenvalue of multiplicity precisely n—1. In other
words: G contains no rotations around hyperplanes other than the identity.

For every finite subgroup G of GL(n,C) denote Gy, the normal subgroup
of G which is generated by all rotations around hyperplanes. Then the
Ghig-invariant polynomials form a polynomial algebra and hence C"/ Gy is
isomorphic to C".

The group G/Gy,, maps isomorphically to a small subgroup of GL(n,C),
once a basis of invariant polynomials has been chosen. Hence local classifi-
cation of V-manifolds reduces to the classification of actions of small
subgroups of GL(n,C).

(1.3) Tueorem. Let Gy and G, be small subgroups of GL(n,C). Then
C"/Gy=C"/G, if and only if G, and G are conjugate subgroups. Cf. [15].

We are interested in the Hodge theory of projective V-manifolds. The
following proposition shows that we can expect an analogous situation as in
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the smooth projective case:
(1.4) Prorosmrion. Every V-manifold is a rational homology manifold.

Proor. In view of the local classification we need only compute the local
cohomology groups of 0eC"/G where G < GL(n, €} is a small subgroup.

Choose a G-invariant metric on C" Let D be the ball with radius 1 and
let S be its boundary. Then H{y(C"/G,Q)=H"(C"G, CYG-{0},Q)=
H*(D/G, D/G-{0}, @)= H*""(D/G-{0}, @)= H*(D-{0}, @)° =H*"1(5,@)° =
0 for k#2n and =0 for k=2n. This follows from the fact that S is an
oriented 5>"~ and that all elements of G preserve its orientation.

(1.5) CoroLrary. If X is a complete algebraic V-manifold, then the
canonical Hodge structure on H*(X) is purely of weight k for all k=0. If
p:X— X is a resolution of singularities for X, then the map p*: H*(X)—
H*(X) is injective for all k=0. Cf. [5], Th. (8.2.4).

(1.6) In the following sections we will construct a complex (Yx on the
projective V-manifold X with the following properties:

(i) % is a coherent analytic sheaf on X for every integer p; 0%#0 if
and only if 0= p=dim X; the maps d:0%— 05 are C-linear;
(ii) {x is a resolution of the constant sheaf C on X
(iii) the spectral sequence of hypercohomology

E¥=HY(X, 0% > H*™(X, (%)= H"*(X, C)

degenerates at E,(E; = E.) and the induced filtration on H*79(X,C) coin-
cides with the canonical Hodge filtration.

(1.7) DerFmrTiON. Let X be a V-manifold and denote %, its singular locus.
Denote j: X -3 — X the inclusion map.
Then we define Q= j*ﬁ:)(_g.

(1.8) LemmaA. Let D be an open ball with center 0 in C". Let G be a small
subgroup of GL(n,C) which leaves D invariant and let U= D/G. Denote
e:D—> U the quotient map. Then T(U, Q%)=T(D, Q)€ for all p=0, ie.
Q= (p:0p)°.

ProoF. Denote 3 =S8ing(U) and N=p~'(3). Then T(U, %)=
NU-3, 05 _5)=T(D—-N, 03)° because p:D~N— U—73 is smooth (use
that G is small). Moreover T{D — N, Qb)) =T(D, Q%) because D is smooth,
1% is locally free on D and N has codimension at least two in D.

(1.9) CororLary. Qi is a resolution of the constant sheaf Cx for every
V-manifold X.
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Proor. Take an open subset U=D/G as in (1.8). The sequence
0—>C—I(D,05)—=>T(D,0n) = -+

is a G-equivariant exact sequence of C-vector spaces, hence the sequence of
G-invariants is also exact.

(1.10) CoroLLARY. % is coherent for all p=0.
ProoF. The local quotient maps p:D — U are proper.

(1.11) Lemma. Let w:X— X be a resoluiion of singularities for the
V-manifold X. Then Q= msQx.

Prooe. Denote 3 =S8ing(X), D= 7 (). Then ? is a inisor with
normal crossings on X. Denote j: X-%— X and i:X-D—X the in.clu-
sion maps. Then the map 0% — ix{lx—p induces an injective map 'H';fgﬂ}(. —
TaisQx_p = jxmellx_p= Q% We have to show that this map is sur]ec-twe;
Let p be a non-negative integer. Assume X = Z/G with Z an open ballin C
and Ge GL{n,C) a small subgroup. The quotient sheaf 0%/ m Q% has
support on 3, so for every holomorphic function f on X which vanishes on Z
there exists an integer k such that fe Q% < 740%. Let » be a holomorphic
p-form on X —D and let x be a smooth point of D. We show that w can be
extended to a holomorphic p-form on a neighborhood of x in X. First
observe that w is meromorphic along D: if f is a holomorphic function on X
such that f0% < mxQ% then 7*f - @ extends to a holomorphic p-form on X.'

Let 24, - -, z, be holomorphic coordinates on a neighborhood W of x in
X, centered at x, such that D is given locally by the equation z,=0. Write

w= Z @iy, dZy A s A dE,
1si<- - -<[,Sn

with a,,...;, meromorphic along D. We show that a;..., is in fact
holomorphic on W.

We may assume that x is not contained in the support of the divis'or of
zeroes of a;, ..., because this divisor intersects D in a set of codimension at
least 2 in X and it is sufficient to extend @ to the complement of a set of
codimension two in X. So we may even suppose that a;,...;, does not vanish
in any point of W. Then one may write a;,...;, =21 " bi,...¢, for some in‘tege_r
m, depending on iy, - -, i, and some holomorphic function by,...;, which is
invertible on W.

If iy=1, consider the 2p-chain T on W given by the equations 7=
0(j# iy, "+, ip). Let C=p 'a(l) and let n be the holomorphic G-invariant
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p-form on Z corresponding to w. Then if g=|G|:

J‘|zl|2"‘|bh...,-p|2 dziyns - A dz, AdZy - - - AdE

1
T 8 Je

hence m =0, so a,,...;, is holomorphic on W. If i, # 1, consider for all teC
the 2p-chain T(t) on W given by the equations z;=t, z=0
(j# 1, i1, -+, i,). Let C(t)=p ' «(T'(¢)) and for ¢+ 0 define

-1 _
a(t)= OAG=— NAT.
() g Jcmn

Then lim. a(t)=1/g fcw m A7 exists. On the other hand a(t)_c|t™ for
some ¢ > (). This implies that m =0.

(1.12) THEOREM. Let X be a projective V-manifold. Then the spectral
sequence of hypercohomology

EP¥=H(X, Q%) 2 H™(X,C)

degenerates at E; and the induced filtration on H?*(X, C) coincides with the
Hodge filtration.

Proor. It follows from [18], proposition IV.12 or from [12], remark 2.3
that every V-manifold is Cohen-Macaulay. One concludes from [9], section
3.2 that )% (n=dim (X)) is the canonical dualizing sheaf on X. The cup
product 0% ® Q4" ()% defines an injective sheaf homomorphism  : 15—
Hom,, Q%7 Q% for every p=0, given by (1{w))(w2) = w; A w,. We first
show that + is surjective for all p. Let xeX and let U=2Z/G be a
neighborhood of x in X as in the proof of lemma (1.11). Denote A =0,
B=0z0, N=Q%LFf, M=Q%, We have to show that Homp (N, M)® =
Hom, (N% M°).

One has Homa (N° M®)=Hom, (N, M)® =Homy (BN, M)®. The
natural map BN® — N induces a map Homg (N, M) — Homg (BN®, M), It
is sufficient to show that this map is an isomorphism. Let R = N/BNS.
Because p:Z— U is étale outside S=p~'(Z) where 3 =Sing (X), R has
support contained in S. This implies that dim (R)=n—2. Because M= A is
Cohen-Macaulay, depth (M,}=2 for every prime ideal peSpec(A) with
I(S) = p. Hence Extl (R, M) =0 for i <2 (cf. [10], Proposition 3.7). There-
fore Hompg (N, M) and Homy (BN, M) are isomorphic.

By Grothendieck duality the pairing

H (X, Q@ H (X, Q%) — H"(X, Q) =C
is non-singular for every p, g=0.
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Let :X — X be a resolution of singularities for X. Then there is a
morphism of spectral sequences

Ef'=HYX, Q0> H*(X,0)

w* w*

E*= HY(X, Q) => H"(X,C)

If we HYX, (%), there exists neH" (X, 0% with wAn#0. Then
aHw)Am*n) =1 (wAan) =0 so 7*(w)#0. Hence =* is injective on Ej.
Because the spectral sequence for X degenerates at E;, so does the spectral
sequence for X. Finally the induced filtration on HP™(X,C) has to be the
same as the Hodge filtration, because we get it by intersection of the Hodge
filtration on HP™(X,C) with H""%(X,C) and the Hodge filtration is
functorial.

We conclude this chapter with a generalization of the structure theorems
for the cohomology of smooth projective varieties to the case of projective
V-manifolds.

(1.13) TueoreM. Let X be a projective V-manifold of dimension n. Let
L& H*(X,Z) be the cohomology class of an ample divisor on X. Then for all
geN the map o — L? Aw induces an isomorphism between H" (X, C) and
H"™(X,C).

ProOF. Let 7 :X — X be a resolution of singularities for X. Then 7 is a
projective map and there exists a divisor D on X which is very ample for =
and such that, if [D] is the cohomology class of D, then [D]A 7¥(m)}=0 for
all peH'(X,C) and all i, i.e. m[D]=0. It follows from [11], prop.
(4.4.10)(ii) that for k sufficiently large C =[D]+ k=™ L is the cohomology class
of a very ample divisor on X. Hence for all ge N the map wr> Clrw
induces an isomorphism between H""(X,C) and H (¥ ). For me
H™ (X, C) one has CAw*(n)=ka*LAa*(n)=kn*(LAan)so C'An¥n=
k%r*(L7 Am). Because w* is injective, the map w — L% Aw is injective on
H"™%(X,C). By Poincaré duality H" (X, C) and H™™ (X, C) have equal
dimensions, hence L? is an isomorphism.

(1.14) CoroLLARY. Define the primitive cohomology groups PY(X,C)keZ)
by P*(X,C)=Ker (L" """ H*(X,C)— H>***(X,C)). Then for all 4Z0
one has the primitive decomposition

HY(X,C)= (i:'% L'Pt7(X, C).

(1.15) REMARK. Obviously the primitive decomposition depends t?n. the
choice of the ample divisor L on X. However if one chooses ample divisors

Mixed Hodge Structure on the Vanishing Cohomology 531

L and C on X resp. X as in the proof of (1.13), the map 7* will preserve
the primitive decompositions. In particular one concludes that the hermitian
form Q on H"™*(X,C) defined by

Qx, y)= (1)U Cx A L[ X]

where C is Weil’s operator and the bar denotes complex conjugation with
respect to H""%(X, R), induces a positive definite hermitian form on
P'YX, C).

The following is a generalization of [4] to the case of algebraic V-
manifolds.

(1.16) DeFinrrion, Let X be a2 V-manifold. A divisor Y on X is called a
divisor with ¥-normal crossings if locally on X one has (X, Y)=(Z, D)/G
with Z<C" an open domain, G = GL(n, C) a small subgroup acting on Z
and DcZ a G-invariant divisor with normal crossings.

(1.17) DeFmviTION. Let X be a V-manifold and Y a divisor with V-normal
crossings on X. Define the complex Qx{log ¥) on X by

Qx(log ¥) = jxQi-s(log (Y -3))

where 3 =Sing (X) and j: X~3 — X is the inclusion map. One checks like
before that if (X, Y)=(Z, D)/G as in (1.16) and if p: Z — X is the quotient
map, then

Ox(log Y) = (psQz(log D).

If m:X— X is a resolution of singularities for X such that the total
transform Y of Y is a divisor with normal crossings on X, then

(x(log ¥) = meQix(log ¥).
(1.18) Dernrmion. The weight filtration W on Qx (log Y) is defined by
W Qk(log Y)=0k(log Y)AQL® (keZz)
and the Hodge filtration F is given by
F"Qi(log Y)= ﬂ‘,’((log Y) if pz=k;
F*(%(log Y)=0 if p<k.
Thus W is increasing and F is decreasing.

Assume that Y is a union of irreducible components Y5, - - -, Y,, without
self-intersection. Denote Y the disjoint union of all p-fold intersections
yn---nY forlsi<---<i=m.

1



532 J. H. M. Steenbrink

Denote ap: Y — X the natural map. Analogous to the smooth case one
has a residue map

R: W li{log V)= (a)05%  (p, k=0).
(Remark that Y% is a V-manifold for every k=0).
(1.19) LEmMMa. R induces for every k=0 an isomorphism of complexes
GriVtx(log V) — (ap-)Qew[— k1.
Proor. Analogous to corollary (1.9).

This lemma together with theorem (1.12) show that one may use the

bifiltered complex (@x(log Y), F, W) to compute the canonical mixed
Hodge structure on H*{X—Y)}(k=0). In particular one has the spectral
sequence

E7rkn = (P, @)(~n)> HY (X - Y, Q).

With Ez™**"=E;"F"= Grin, H*(X - Y, Q). Ci. [5], where the notion
of cohomological mixed Hodge complex is used.

(1.20) ExampLE. Let f(zo, - * -, 2,) be a quasi-homogeneous polynomial.
This means that there exist positive rational numbers wq, - - +, w, such that

for all teC one has
f(t“’uzu’ T IWHZH)Z tf(ZD, Ty zn)'

One may co'rfhpute the mixed Hodge structure on the affine variety X <C***
with equation f{z)=1 in the following way, provided f has an isolated
critical point at Q.

Write w; = w/o; with (w, v:)=1. Let d =lIcm(vg, -+, v,) and define b;=
dw;, i=0,---,n. ]

Define (n+ 1) x (n+1)-matrices g®,
i#k and gt =exp 2wi/by).

Let G be the subgroup of PGL(n+2,C) generated by the elements

g(k] 0
(k=0,---,n).
0 1

Then G acts on P"**(C). Let M be the quotient P"™/G.

Denote h(yo,* -, ¥a) =f(¥e% . yo). Let Z=C"*' be given by the
equation h(y)=1. Denote Z <[P""" its projective closure. Ther! G lea.ves the
pair (Z, Z) invariant. Moreover X = Z/G. If f has an isolated singularity at 0
then X = Z/G and X — X are V-manifolds (though Z need not be smooth).

g™ by g =0if j#k glh=1if
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The exact sequence
0—PY(X)—> H'(X)~ P {X-X)— 0

shows that Gr H*(X)=0 for k#n, n+1.
See [20] for a more detailed description.

2. Limits of Hodge structures

The purpose of this chapter is: to give an explicit description for the limit
Hodge structure associated to a projective one parameter family over the

punctured disk. This has been done in [19] for families with unipotent
monodromy.

{2.1) NoraTions. S is the unit disk in the complex plane, §* = S —{0} and
H={zeC [ Im(z)>0} is the universal covering of $* by the map z—
exp (2miz).

X is a smooth, closed, connected subvariety of dimension n+1 of ' X §
for some r>0. We denote f: X — S the projection on S. We assume that f
is surjective, smooth in every point x £ X with f(x)7#0 and that fFH0)is a
union EyU - - - U E,, of smooth divisors on X which cross normally. Denote
¢ the rnultlphcxty of E; and let e =lem(ep,* - -, en).

Let § be another copy of the unit disk and define ¢:§— § by aft)=1t",

Denote X the normalization of Xx%sS and let w: X — X and f X— 8§ be

the natural maps.
Denote D, =7 Y(E;), i=0, »m. Let D=|J2, D, Let X.=XX¢H

D—X—5§

2

E!—-—>X——>S

(2.2) Lemma. X is a V-manifold and f'(0)=D is a reduced divisor with
V-normal crossings on X.

Proor. Cover X with coordinate neighborhoods A with coordinates
Zg,'**, Z, such that there exist integers v=0, dg,---,d, =1 with
flzo,-++,z,)=12y- - z,. Fix one such A.

Let A be the normalization of A XsS. Then A is 1somorph1c to an open
analytic subset of the normalization of

{(W, Zpy " " ‘/: zn)ecn+2| Zg"‘ i ZS": We}.

Let d=ged(de,---,d,), e'=eld, di=djd (i=0,--+,») and (=
exp (2ari/d). '
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Then the normalization R of the ring
R=Clzo," " s zm Wlizb® - - - 2y — ")

is isomorphic to the direct product of d isomorphic copies of the normaliza-
tion of the ring

CI:ZO! Tt Zn,W]/(Zg“ e Z:{v_ W= )

so to compute it we only need to consider the case d=1.
Denote ¢; =e¢fd; for i=0,- -, . Denote Ry=C[ys," "', yn]; consider R
as a subrlng of R, by putting z=yp if 0=i<y, zy=y for i>v and

W=%""" ¥
The group G=2/{(cp)X -+ - XZ/{c,) acts on R, by

(@g," . a,) yy=exp Qwiglg) y, if j=v;
(ag,~ -+, @)y =y if j>urn

The ring of G-invariants R is just C[zp, - -+, z,]. Let G'={ge G | gw = w}.
Then R is isomorphic to RY', because R, integrally closed and G'=
Gal (K;/K} where K; and K are the fields of fractigns of 131 and R
respectively, This shows that Spec(R) and hence A and X are V-
manifolds. The action of G' on R, identifies G’ with a small subgroup of
GL{n+1,C), because no element of G of the form (0,-:-,0, a4, 0,---,0)
with a,# 0 leaves w invariant.

Locally D is the quotient under G’ of the reduced divisor yo- ' y. =0
and every generic point of this divisor has a trivial isotropy group. Hence D
is reduced. ~*

(2.3) Remark. With the same notations a basis for R as a free module

over C[zy,---,z,] is obtained as follows. Write k=guti+r
(k=0,---,e—1; i=0,:+,v) with g €Z and 0=r, <c. Deﬁr_xe X =
[T-o yi*=w"[[j=o zr™. Then xo,"**,X,.; form a basis for R as a

Clzo,  + » zo]-module. The group G/G'=Z(e) acts on X. This action coin-
cides with the action of Z/(e) on X which is induced by multiplication with
eth roots of unity on §. One gets X back as the quotient of X under this
action.

(2.4) ExampLE. Define Y < PC) X S by the equation x*z—y>= tz* where
(x, y, z) are homogeneous coordinates on F*(C). If one blows up a point
three times one obtains a manifold X with a projection f: X — S such that
fFH0)=Ey+2E,+3E,+6Es, the E intersecting like in fig. 1 and all E,
non-singular rational curves.

In this case X is smooth and Dy, D1, D are the disjoint union of 1,2 resp.
3 non-singular rational curves, while Dj is an elliptic curve. See fig. 2.
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1’ 2' 3 ’ ‘ ’

‘6 ‘ ] i l ‘ ‘ , [ v

Ey E; E; b, Dy D,
Figure 1, Figure 2.

(2.5) Remark. From (2.2) one can conclude that for every p =0 the sheaf
- +1 - -
O%(log D) is locally free of rank (np ) on X, In fact, on an open subset A

as above, Q}((Iog D) is the free Ox-module on the penerators dzjz (i =
0,---,v) and dz{(j> v) and %{log D)=A5in;-((mgn).
If w is a coordinate on § with w® =zgo-+-z% on A, then dwfw=

Yi=0 (dife) dz,/z, Yi-o dy/y.. This shows that f*ﬂs(log 0) is locally a direct
tactor of Q%(log D).

(2.6) DEFINITION.

Q% s(log D) = Q% k(log D)/f*Qi(log 0) A 5% Ylog D).

Then one has a complex {)x/5(log D) of locally free sheaves of finite rank on
X and the differentials in this complex are f'@s-linear. Moreover

dw/w -

0— xs(log DY—1]— Q% (log D) — Ogs(log D) — 0

is an exact sequence of complexes on X.

Now we have all ingredients to describe the limit Hodge structure of the
family f: X — § (or equivalently: of the family f: X — S). We state the
results without proofs, because these are quite the same as for the unipotent
case. We refer to [5], for definitions of concepts in Hodge theory.

(2.7) TEOREM. For every p =0 the sheaf R*f{x, 15(log D} is locally free of
finite rank on §.

The choice of a parameter w on § determines an isomorphism
e - H'(D, Qs (log D) ®p, 0p) == HP(X.., C).

If w' is another parameter on S with a=(w'w ))(0) then Ut =
exp (—2wi log (a) Res, (V)) where

V: Rl (log D) — Qi(log 0) @, R*fyllzs log D)

is the Gauss-Manin connection; its residue Res, V) is nilpotent.
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{2.8) One puts a mixed Hodge structure on H"(X.,C) as follows. First
observe that H°(X.,C)=H"(D,{%s(log D)®¢ 0p). One constructs a
cohomological mixed Hodge complex

(A, W), (AL, F, W)
on D as in [19], but using as building blocks for A: the sheaves
AP =05 (log D) W, 0% " (log D).
This becomes a cohomological mixed Hodge complex by theorem (1.12). It
satisfies

Gr:vA'Qz @ (ar+2k+1)*0D-(r-P2k+l)('—r_k)[_r_zk];

kel—r

kal,-r
(2.9) CoroLLARY. The spectral sequence of hypercohomology for the filtered
complex {Ag, W): ‘
ET™"= @ HTTHDETR @)(-r—k) 3 H(X., Q)

k&al,—r

degenerates at E; the spectral sequence of hypercohomology for the filtered
complex (Ag, F):

E%= HY(D, 0%;s(log D} ®e; Op)=> HP (X, C)
degenerates at E, i.e. E{'= Gr2HP " X., C).

(2.10) CoroLLarY. For every p, q=0 the sheaf R 1% 5(log D) is locally
free on S.

Proor, For we § with w#0 one has R%:0%s(log DYw)=HYX,, 0%.).
Because f is smooth and proper over the punctured disk, the sheaf
Ru0%:(log D) is locally free on §—{0}. By semi-continuity one has

dime HY(D, O%s(log D) o, Op)=dime H*(X,, 0%.).

Because of (2.7) and (2.9} one has

Y dime HY(D, 0%s(log D) @, Op)= 2, dime HY(X,, 0%
pHq=r pg=r
for all r=0, both sides being equal to the rank of the locally free sheaf
R'f{l %5 (log D). Thus we must have continuity of the dimensions. Because f
is flat we may conclude by [14], Corollary 2 of p. 50.

Mixed Hodge Structure on the Vanishing Cohomology 537

(2.11) Tueorem. For all p, q =0 the sheaves Rf:0%s(log E) are locally
free of finite rank on S.

Proor. With the local computations of (2.2) one shows that Q%ys(log E) is
equal to the subsheaf of Z/(e)-invariants of m£Q%s(log D) and hence is a
direct factor of it. Therefore it is sufficient to show that Ry (m:0%s(log DY)
is locally free of finite rank on S. One has

Rfa(ms0s(log D)) = R¥(fr)e %5 (log D)= R*(of)5Ms(log D)
= 0% R %s(log D)
because 7 and o are finite maps. The last term is locally free on S by
corollary (2.10).

(2.12) The maps f:X-D— §—{0} and [iX—E—-58~{0} are C=-
fibrations. For we§, w#0 the fundamental groups ,(§—{0}, w) and
(8 —{0}, w*) act on the cohomology of the fiber X, = X ,,=. The actions of
the positive generators of these groups extend to automorphisms T resp. T
of the sheaves R'f4{s (log D) resp. R%xQigs (log E). Denote T, resp. T,
their fibers over 0e§ resp. 0eS. Denoting V and V the corresponding
Gauss-Manin connections, one has:

Ty =exp (—27i Resg (V)); To= exp (—2i Resy (V).

We fix parameters t,r on S,§ with 1=17° These choices determine
isomorphisms

HY(D, (15 (log D) ®e;, 0p) — HYX.,C) — H'(E, Qs (log E) @, Ox).
We consider Ty, Tp, Resg (V) and Resg (V) as endomorphisms of H*(X.) by
means of these isomorphisms. Then Ti=T, is unipotent. Denote N=
log (To) = Thib (—1)**YTy— D"k and denote Y. the semisimple part of T,

(2.13) THEOREM. Let q=0. Then

(1) N is a morphism of Hodge structures of type (—1,—1) on HY(X.), i.e.
N(W HY(X.))c W, _,HY(X.) and N(FFH*(X.))e FP'HY(X.} for all p,
k=0.

(2) For every r=0 the map

N': Grit H(X.) — Gl HY(X.)(~r)
is an isomorphism of Hodge structures.
(3) v, is an isomorphism of mixed Hodge structures.

ProoF. One proves (1) and (2) in the same way as [19], theorem (5.9). To
prove (3), consider the map A : X — X induced by the map r— exp (2wir/e)
on S. It induces an automorphism of Dyn---ND, for every r-tuple
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(iy,*++, i) with 0=i; < - -+ <i,=m. Therefore A* acts as an automorphism
on each of the spectral sequences of (2.9). We will show that ;= Ax Fm;
this we need A*Ty= ToA* and To(A*)™' unipotent. Take tpe S—{0}, €S
with 7§ = t. Let { = exp (2wife). Because X.— H is a C” fiber bundle, there
exists a continuous family of diffeomorphisms

hﬂ : Xlu—>Xru exp (2mie) (C\! € [R)

with hg=id and hpsw=h, © by for @, a'eR. Each h, is uniquely deter-
mined up to homotopy. Hence the diagram

~ hy -
Xy X

- h ~
Xi—X,

is commutative up to homotopy (recall that X. =X, for re§—{0}). T‘his
implies that on H*(X,) one has the relation h¥(A™")*=(A""y*h}. Taking
limits for t— 0 one gets the relation To(A*)™' =(A*)"'Tp on H(X.,), hence
also TgA*=A*T,.

Both T; and A* act on the spectral sequence

E¥=HP(E, i' R%Cx) = H ™ (X., O)

(cf. [19], (2.4) and (2.5)), where k : Xo— X is the natural map and i:E— X
is the inclusion. In fact, denoting i : D -+ X and k:X.— X the analogous

maps for X, one has
i'qu*Cx_ = T ?RQE*CX_

because 7 is finite; hence A¥ acts on the sheaf i"R%4Cx_. Let Qe E. Let
Zp," * *, Z, be coordinates on a neighborhood V of Q in X, centered at Q,
such that f{zq,- -, 2,)=2g" -+ zo for some integers »=0, do, - s d,=1.
For £>0, 0<n«e denote V., the set {{zp, - -, z4) € V|):}‘=g|z;| < g and
|f(2)| < n}. For &, n sufficiently small one has (cf. [19], (2.8))

(i R%4Cx o = H¥ (k™' V.0, C),

and k“vm consists of d = ged(dyg, + « -, 4,) components, eachlof which h'as
the homotopy type of a w-dimensional torus §'X--- xS Hta.nce its
cohomology ring is an exterior algebra on HO(k™! Vem C) whic}f is isomor-
phic to C[7]/(% —1). Both T; and A* act on this algebra by cyclic pernlluta-
tion of the components, i.e. by the substitution +— exp (2#i/d)r leavuig_ell
set of generators for the exterior algebra fixed. This implies that To(A%)
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acts as the identity on E57= H*(E, i'R%4Cx) for all p, ¢ =0, so To(A*)™* is
unipotent on H?*(X., C).

(2.14) ExampLe. Consider again example (2.4). One can show that
H(X.)=H Y(Ds). Because D; is an elliptic curve with an automorphism A
of order 6, the Hodge filtration on H'(X.,C) is given by

F'HYX.,C)=C.(e;+ pes) (p = exp (2i/6))
if 4, e2 is a basis for H'(X., 7).

(2.15) ExamrLE (ordinary double point). Suppose g:Y— S is a family of
projective varieties with Y smooth, g smooth outside a point ype Yy and yg
a non-degenerate critical point of g. By blowing up y, in Y one obtains a
family f: X — § satisfying the hypotheses of (2.1) with e=2, E =EyUE;;
E, is a desingularization of Yy, E, =P"*! has multiplicity 2 and EgNE; is a
non-singular quadric in F;. Here X is non-singular, Dy=FE, and D, is
isomorphic to a non-singular quadric of dimension n+1 which is a 2-fold
covering of P"*' = E,, ramified along E;NE,.

One obtains for g=0:

GraZ1H(X.) = Coker (H*(Dg)® H'"{(D;) — H"Y(Dy N Dy));
Gry HY(X.) = H(H* *(Do N Dy)(~1)— H(Do)® H*(Dy) — H(Dy N Dy));
GrguHY(X.) =Ker (H* (Do N Dy)(~1) = H*"Y(Dy)® HT(D,));
GrHY(X.)=0 if r#g—1,q qg+1.

If n is even, HY(X.,) is purely of weight q for all g =0, the monodromy is
trivial on H*(X..) for g#n and has order 2 with —1 as an eigenvalue of
multiplicity one if g=n.

If n is odd, H'(X.) is purely of weight g with trivial monedromy if g#n
and for H"(X.) one gets: Gr,‘,‘ilH"(Xm)=Q(-—(n—1)/2), Griw H"(X.) =
Q(-(n+1)/2), GrYH"(X.})=H"(D,). The monodromy is unipotent,
(T-DI*=0and T—I: Grii H™(X) = Gri H"(X.).

(2.16) REMARK. One can deduce from theorems (2.10) and (2.13) that the
mixed Hodge structure on H?(X.), constructed in (2.8), coincides with the
one, constructed by W. Schmid [16]. See appendix.

(2.17) The relation between the cup product and the mixed Hodge
structure on H*(X.) has been investigated by Schmid [16],; §6. For future
use we recall the result.

Because Ty satisfies To(xAy) = To(x)A To(y) for all x, ye H¥(X..), ie. Tq
is an isometry, N is an infinitesimal isometry, i.e. N(x)Ay+xAN(y)=0 for
all x, ye H*(X.).
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Recall that all X; are embedded simultaneously in P for some.r> 0. Let L
be the cohomology class of a hyperplane section of X,(¢# 0), considered as
an element of H>(X.) by means of the natural map H*(X,))— H*(X.)
(unique after the choice of ae H with t=exp (2mia)). Then L does not
depend on the choice of ¢ or 2.

Because the map H*(X,)— H*(X.) is a ring homomorphism for cup
product, one has for all k=0:

Lk :Hn_k(ch)_) H“+k(Xm),
where L¥(w)=L* Aw for we H"*(X.). Denote P%(X..) the kernel of the

map L" ™" HY(X.)— H* "*%(X.) if 0=g=n and P(X.)=0 for g>n
or g<0. Then for all g=0 one has a decomposition

HY(X.)= & L*P"*(X.).
k0

Elements of P?(X.) are called primitive classes. Consider on P?(X.) the
bilinear form

Q(x, },) = J (_I)Q(Q—I)IZLn—qlpr—l(xAy).
Then Q does not depend on the choice of t, because all elements ()] X:]€

H,,.(X.) are the same. _
Because L is a Ty-invariant class, P?(X.)c H?(X.,) also carries a mixed

Hodge structure, and for all r=0 one has
N': Gri¥ PUX.) —=> Grit P(X=).
Denote
P, (X.)=Ker (N™: Gri PA(X.)— Gri, o PU(X.).
Then P,,(X.) carries a Hodge structure of weight g +r. Let
Pu(X)= @ PiX)

be its Hodge decomposition. Denote Q, the bilinear form on P, (Xx)
defined by Q.(x, y) = Q(% N'y), where x, ye P, (X.) and &, § are elements
of W,.P?(X.) whose classes mod W, are x resp. y. The fact that N is
an infinitesimal isometry implies that Q,(x, y) is well-defined.

(2.18) TueoreM. With notations as in (2.17) one has:
() Q.(x, y)=0 if xe P2, ye Pt and (a, b)#(d, c);
(i) i*"Q,(x, £)>0 if xe P¥:, x=0.
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This theorem describes completely the connection between cup product and
mixed Hodge structure, for for all g, r>0 one has a double decomposition
GrysHY(X)= @ LEN'P sirazy

kj=0

Appendix

We compare the constructions of {16] and (2.8). We keep the notations of
the preceeding section. The weight filtration on H?(X.) is the same in both
cases because it is characterized by the property that the map

N': Grg' H (X} — Grj  H(X.)

is an isomorphism for all r=0.

Let us recall the construction by Schmid of the Hodge filtration. For e € H
denote e(a)=exp (2mia)e § and denote i, : X.(ay— X.. the natural inclusion.
The corresponding map

i:::Hq(Xm) —> Hq(X:(a])

is an isomorphism. Denote F, the filtration on H*(X..) obtained by pulling
back the Hodge filtration on H%(X,,)) by means of i%. Then exp (—aN)F, =
exp (—{a+1)N)}F,,, so for we§, w=0 we may define a filtration E, on
H%*(X.) by 15“,=exp {(—Nlog (w))Fiozw)- The filtrations E,,, considered as
points of a suitable product of Grassmann varieties, tend to a limit F, as w
goes to 0. We have to show that F.=our Hodge filtration F.

Put A = H%(S, 03, M = H(S, R0 %s(log D)), M,, = R¥a{3¢(log D)(w)
for we § and Pw: M — M,, the canonical map (evaluation at w). Start with a
basis e{0) of M,. Claim: there exists a basis e of M over A, such that
pole) =e(0) and such that the Gauss-Manin connection V satisfies Ve=
Ne @ dr/ with N a constant nilpotent matrix. The C-vector space VoM
generated by the e is characterized by V={meM |(€’.,d,d1.)"m=0 for k
sufficiently large}. The proof is straightforward. One uses that V has a

‘nilpotent residue at 0. A multivalued horizontal section of RfxQ%s(log D)

over S is an element s =Yg m;(log 7)' e M® 4 A[log 7], which satisfies the
relation

Z v(rnl)(lc)g T)‘ + Z i"‘l;(lﬂg T)i_l dq'/rr= 0.
i=o i=0

The space of all multivalued horizontal sections V is isomorphic with V by
the map yo:m — exp (2wiN log r)m(me V).

The computations in [16], §2 show that V and H%(X.) are canonically
isomorphic. The map y5'{po)™':My— H(X.) is the same as the map,
denoted by ¢ in [19], (4.24). This leads to the following abstract setting.
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For G a filtration on M by direct summands one may construct filtrations
G- and GL on V in the following way.

For aeH denote V,:V—> M., the isomorphism given by y.{s)=
exp (2miaN)pea)(s). Then for se V one has the relation

Vo (exp (—27iN log 7)5) = Peta)(5).

Let G, be the filtration y3'peG of V. Then the filtrations (G, )zen have a
limit G., uniformly on every vertical strip R,,={zeH|a<Re(z)<b}.
{This is Schmid’s construction). We define GL= yElpnG. We have to show
that Gi. = G...

Assume that G is a decreasing filtration with G°= M. Let a;=rank of G'.
Choose an A-basis e,, * *, €5, for M such that Gl=Ae;+ - ++ Ae, for
j=0. Let f;, - -, f., be the uniquely determined basis of V with po(f))=
pole;) for i=1,-- -, ap. Write g = Cf; with Ce Aut, (M); then C(0})=1L

Let gy=exp (—2wiN log 7)f; € V. For a € H let h{a)= Ya ' Peter(€). Choose
norms on M, (w e §) and V such that the p,.(e) (resp. g) form an orthonor-
mal basis. Then for a € H with w=e(a) one has:

hi(e) =z pule)
= ya pu(fi+(C—Df)
=g +Ya po(C—Df;
=g +ya (C(w)—Dp(f).
So
k(e = gl =yl - 1Cw) = 1)) - P (-

On a vertical strip R,|ly= || and |p. (f:}]| grow at most as a power of Im (a).
Moreover |C(w)—I|| goes to zero at least as fast as |w[=exp (=2 Im (a)),
50 liMyp g [|Fi{@) — g = O uniformly on R, ;. This shows in particular that
the filtration G, which is determined by the basis fi, coincides with the
filtration G-..

3. Isolated singularities of hypersurfaces

(3.1) Let PeC[zg, - **, 2] be a polynomial with P(0)=0, such that 0 is
an isolated critical point of P. This means that 0 is an isolated point of the
set {QeC"* | 3P/az(Q)=0 for all i}. We are interested in the map germ
P:(C"**,0)— (C,0). We will construct a mixed Hodge structure on the
cohomology of B,={zeC""'|P(z)=n and |z|<e} (g, n small enough,
0<n«e).

(3.2) One can embed the map germ P in a projective family as follows.
Brieskorn {[3], §1.1) has shown that there exists a homogeneous polynomial
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pEC[_zg, *++, Z,41] Such that the hypersurface Yo=P"*" given by the equa-
tion P =0 has a unique singular point yo=(0, - - -, 0, 1) which is analytically
equivalent to the singularity of the zero set of P at 0. One constructs such a
P by adding to P a homogeneous polynomial R(zq,- - -, z,) of sufficient
generality and high degree and then homogenizing. Let N =deg (P). Then
for all r sufficiently close to 0, t#0, the zero set of P—1tzN. in P"*! 5
smooth. Choose >0 such that this is the case for 0<|tf|<mn. Define
Y={z )eP""' xC| P(z)—1z},1=0 and [t|<q}. Let f:Y—>§=
{teC||t|<n} be the projection on the second factor. Denote Y, = f7'(¢) for
te S. Then y, is the only critical point of f;. Let p: X — Y be a resolution of
singularities for the map f;. This means that p is proper, induces an
isomorphism between X —p '(yo) and Y—{yo} and (fip) '(0) is a divisor
with normal crossings on X. Put f=f,p and f '(0)=E,U " - - UE,, where
the restriction of p to Ey makes E, into a resolution of the singularity of Y.

(3.3} An exact sequence

Let B be a small ball in Y with center y; and radius ¢ >0 so small that all
spheres with center y, and radius less than e intersect Y, transversally.
Choose m'>0 such that all fibers Y, with |{| <%’ intersect B transversally.
Define B,=Y,NB for |t|<v'. Then B, is diffeomorphic with the Milnor
fiber of P (cf. [13], Theorem 5.11) if ## 0. One can construct 2 homeomorph-
ism between Y, and Yy/B, (t#0), hence H'(Yo)= H'(Y,, B,) for all i. The
exact sequence of relative cohomology gives 0— H"(Yy)— H"(Y,)—
H™(B,)— H"*'(Yy)— H""(Y)—> 0 because H'(B)=0 for i#0,n (cf.
[13], Theorem 6.3).

Define B. analogously to X. (cf. (2.1)). Then passing to the limit as ¢
tends to 0 one obtains an exact sequence 0— H"(Yy)— H"(X.)—
H"(B.— H"*Y(Yy)— H""'(X.)— 0 which is Ty-equivariant because one
may take the geometric monodromy h:Y;— Y, of the family Y to be the
identity outside B,.

We will put a mixed Hodge structure on H"(B.) such that the above
sequence becomes an exact sequence of mixed Hodge structures.

(3.4) Construcrion. We first compute the canonical mixed Hodge struc-
ture on the cohomology of Y, as defined by Deligne [5]. Remark that the
map f:X — S satisfies the hypotheses of (2.2). We preserve the notations of
(2.2). Because Yy is reduced, eg=1 (if n>0), so 7:Dy—— E;. Define
C=DiNDy=EnNE,(i=1,--,m). Then C=C,U---UC, is a divisor
with normal crossings on p. The cohomology of Dy— C= Yy—{y} can be
computed in terms of the cohomology of Dy and C®, i>0, as in [4].
Dualizing it one obtains the cohomology groups with compact support
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HXY,—{voD) = H%(Yy). This shows that one may use the following
cohomological mixed Hodge complex A'(Y,) on Dp to compute the mixed
Hodge structure on H¥{(Yy). ; .

Let j: Dy— C — Dy be the inclusion and denote ¢, : C®'— Dy the projec-
tion (p=>0).

(i) Let A*(Yy)z= jiZp,~c i.e. the constant sheaf Z on Dy— C extended by
0 over Dy;

(ii) Denote ij,: C*Y — € (g>0,0=j=gq) the map which has the
inclusions

C,N NG~ CN---NC,,NC;,,N- NG,

as its components. Let A"(Yy)q be the object in the filtered derived category
D*F(Dq, @) represented by the complex of sheaves

"

o d
Qp, — ()50 — (€2)5Qem —> « -

with dj = Y723 (—=1)%" (i} 4+1)* and with the filiration W defined by
W—q Yo)u‘—' U'an (Yola-

(i) Let A" (Yy)=(c,)sN%w; define d': AP — AP 10 be the differenti-
ation in the complex (c,)%Qzw and define 4":A™ — AP by d'=
T3 (—1)"*(i,q+1)*. In this way one obtains a double complex A" (Yy). Let
A’(Yo)c be its associated single complex. One defines filtrations F and W on
A'(Yo)e by

=

FPA (Yole=@ A" (Yy);

rsp
WA (Yole= @ A™(Yo).
SE—q

For q>0 one has GryA'(Yg)=0; if g=0 then Grl qA (Yy) is equal to
{(cy)xQew]—q], ((c,,)*.ﬂcm[ q], F)) which is indeed a cohomological Hodge
complex of weight —g.

(3.5) CoroLLARY. The speciral sequence of hypercohomalogy for the filtered
complex (A" (Yg)a, W)

Epra_ Hq(é{p) Q):}Hp+q(Yn, Q)
degenerates at E,, i.e. Grg WHP*9(Y,, Q) = E5? is isomorphic to

H(HYC" ™Y, Q)— H‘*(C“", Q) HY(C¥*Y, @)).

{3.6) Remark. The cohomological mixed Hodge complex A'(Y,) can be
considered as a subcomplex of the complex A as defined in (2.8) in the
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following way. The inclusion Dyc D gives inclusions C%¥< DY for all
i=0. In this way the complex A'(Yy)e is a direct factor of the complex

axQp — (a2)x0pm — (a3)4Qpm — - - -

which is a subcomplex of Ag. Moreover A™(Y,) is a direct factor of
(@411)4QBarn = Grie, QF %" (log D)= A™. These inclusions are compatible
with the filtrations W and F. They define a morphism of cohomological
mixed Hodge complexes

A(Y)—= A
which induces morphisms of mixed Hodge structures
H'(Yp)— H'(X.).
These are the same as those induced by the contraction map Y, — Y.

(3.7) DeFmviTiON. The cohomological mixed Hodge complex A'(B.) is
given by
A'(B2)=A'TA(Y,).

(3.8) Tueorem. H*(D, A'(B.)a) = HY(B.., Q) for qz0.

Proor. We may suppose that S is so small that X, intersects @B transver-
sally for all teS. Then B.= B XgH. Denote §:B =—X the natural map.
Then AQ-ipne =i REsQg,, because Ag=i RksCx._. This implies that

H*(DNp™"(B), Ag-1ynp) = H¥(B.., Q)

(cornpare [19], Lemmas (2.4) and (2.5)). Because p ' (BYND/D, U"

D, = YuﬂB is a cone, the restriction map HY(D N p~*(B), Auanp“‘(B))—’
HYD,U: - UD,, Agp,u...up,) is an isomorphism for all g = 0. The latter
is 1somorph1c to HYD, A’ (Bm)u) because A’'(Bz)q has support on
DU ---UD, and because Aqgp,u. .. = A'(Buo)app,u---up,.

(3.9) CoroLLARY. H"(B., Q) carries a mixed Hodge structure such that the
exact sequence from (3.3) is an exact sequence of mixed Hodge structures.

Proor. Use the exact sequence
0= A(Y}—= A" — A'(B.)— 0.

(3.10) CoroLLARY. The weight spectral sequence

El—r,q+r = @ Hq—r—.?.k(D"(zk+r+1))(_r _ k) (T =~ O)

k=0

7

= @ Hq—r-?..k(D"(2k+r+1))(_r _ k)@ Hq+r(ﬁ(l—r) _ C"n(.—r)) (T § 0)

kel—r



546 J. H. M. Steenbrink

abutting to H*(B.,), degenerates at E., ie E3;™"7= Gr,‘;i,Hq(Bm). Mareovffr
EZ™""=0 for q# n (except ES°=Q) because HY(B=)=0 for ¢#0, n. This
enables one to compute the weights on H"(B.) from the E;-terms.

(3.11) ReMark. The actions of N=log (T,) and v, =semisimple part of
T, can both be lifted to actions on A¢ which are 0 resp. I on the slul?comalex
A*(Yo)c (cf. [19], (4.22) for the lifting v of N and {2.13) for the lifting A c?E
+.). Hence they act on H*(B.) in such a way that the sequence of .(3.3) is
both N- and 7,-equivariant, and such that N and vy, are morphlsms. of
Hodge structures of type (—1,—1) and (0, 0) respectively. The map Ty 1s 2
limit of conjugates of the monodromy T.

(3.12) Examrie. Let PeClzq," ", z,] be a homogeneous 'polynorn_ial
with an isolated singular point at 0. Let p: X — C™** be the blowing u;i with
center 0eC**'. The map f=Pp satisfies our hypotheses. One has f~ -(0)=
E,U E, where E,=P", E, is a desingularization of PY0) anfi E;NE; is the
smooth projective hypersurface given by P(z)=0. Here D, is a covering of
P" of degree d =degree of P, which is ramified aloi11g E.U NnE,. Tl.ns implies
that D, is isomorphic to the hypersurface in P x:mh equation P(z)—
25.,=0and 7:D;— E; is the projection from the point (1,0,-+,0). One
concludes that the cohomology of B inherites the mixed Hgﬁllge structure of
the cohomology of the affine hypersurface Dy —Do={z€C | P(z}= 1}‘. A
similar statement holds if P is quasi-homogeneous. See [20] for a detailed
description of these mixed Hodge structures.

(3.13) ExampLe. Families of curves. Suppose P:C*—C has an isolated
critical point 0. Let p: X — C? be a resolution of the singularities of P. }t can
be obtained by successive blowing ups of points. Let f= Pp.‘Denote f_ (0)=
E,UEU - UE, with p {0)=E,;U -+ UE,. Then I_'.'_.';.ls a nf?n.-smgular
complete rational curve for i>0. Denote & its multiphmt.y. If i,j>0 an'd
i#j, the curves E; and E; intersect in at most one Pomt Py, hence _1_f
E,NE;# @, then D; and D; intersect in my = (e, e,-)cpomts. Denote "En:
Card E,NE and k=Card ENU;uB. Let E=E—U;BDi=
D;— U ;+D; Then 15,-91‘:5.', is an étale covering w1tt} cyc‘:hc covering g[‘;l;lp
generated by A;=Ap, (cf. the proof of (2.13)), which is of order e. The
fundamental group w(E, #) is a free group of rank k[—-l,_ generated.by
loops 1y, - - -, Iy, around the intersection points E; N |J;.; E; with the relation

Ik‘lk,—l oo bl =1

If I is a loop going around the intersection point ofl(:'::(m;:vith a curve of
multiplicity e(j), then the action of I; on D, is just A - Therefore thf
index of the image of m(E, *) in the covering group is equal to n=
ged(e; | E,NE;# @). This is also equal to the number of connected compo
nents of D, because I is normal.
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One has the well-known relation

[T det (T—a; HH(@) " = (1 — o e
q=0
50
det (A, —tI; HY(D,)) = (1% — 1)%"2(+" ~ 1)
From the action of A; on the exact sequernce
0— H(D,)~ H'(D) — HD; - B))(—1) = H¥D,)— 0
one gets

O i | o
det (l\, TI,H (D{))—(t—l)m'“ H (l‘m”—'l)

e id

Remark that numerator and denominator contain an equal number of
factors t—1. The spectral sequence (3.10) gives exact sequences
0—-Q—@ H (D)= @ HYD.ND)— GrH(B.)—0

>0 i=i>0
and

0— Gr H'(B.)—» @ H(D,ND}){~1)— @ H*D,)—0;

1[0 =0

Moreover Gri' H'(B.)= @ 0 H YD), So the characteristic polynomial of
A¥ on Gr,"H'(B.)) is given by

-1 II ¢™-1/Tlw"-1) i r=o0;

=] =0

H(r“'—l)ki‘z(r"—1)2/(t—1)5t>ﬂ""« IT a™-17 i r=1;

>0 i=j>0

(=1 [T ¢m-1)/Tli-1) it r=2.

i=j=0 3=1]

Multiplication of these gives the characteristic polynomial of the mono-
dromy and the Milnor number:

Ay =—-1]Jes 152

i=0
p=1+3 08k —2).

These are the formulas which follow from A’Campo’s formula for the zeta
function of the monodromy (1], which ean also be proved usihg (3.10).
Durfee [6] has introduced the notion of the number of cycles in the fiber
Xo and uses this to give a criterion for finiteness of the monodromy. This
number is equal to dim Gry’H'(B.). In particular the monodromy has finite

order if and only if WoH"(B.)=0. In theorem (4.4} we will give a generali-
zation of this fact to higher dimensions.
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The following lemma is useful to determine the relation between the
Hodge filtration on H'(B.) {(or H"(B.) in higher dimensions) and the
eigenvalues of A%,

(3.14) LemMa. With notations as before, the action of A; leads to a splitting
c‘—l
W*GD, = (‘B Ly
k=0

where A, acts on L, by multiplication with exp (2wikie;). One has

ke;
Lk EGE‘,(EJ'#E(_E!'*’ [_e])E[ ﬂ EJ) .
& €;

PrOOF. One uses remark (2.3) and the fact that Ox(Z{%e&E;) is isomor-
phic to Ox (by multiplication with a parameter on S). The divisor associated
to the normal bundle of E; in X is —E;* E;~ Sizi(ede)E; - Ei, hence the
latter indeed defines an element of Pic (E;) and not merely an element of
Pic(E;) ® Q.

(3.15) ExamrLE. P(x,y,z)= x*+y*+z* Twice blowing up a point gives
the fiber E=E,UE,UE;Ep is the non-compact component, e;=4 and
e,=2; E; =P, E, is isomorphic to P* with one point blown up, E;NEx is
the exceptional curve in Ea, EyNE, is a quadric in E; and E¢N E; is the
disjoint unjon of two lines, each mtersactmg E,N E; in one point. Hence D,
is the disjoint union of two quadrics in P*, D; is isomorphic to a quadric in
P* with 2 points blown up and D; N D, is the union of the two exceptional
curves on Ds. One obtains that H?*(B.)=Q(—1)* is purely of type (1, 1).

(3.16) EXAMPLE. P(x,y,z)= x% 435+ 2%+ (xyz)® (Malgrange) We will de-
termine the following data:

(i) the dimensions of the spaces H™ = GraGryn H (Ba);

(i) the eigenvalues of A* on each of these.

We first describe a resolution for P, following A’Campo [1]. Blow up
0eC®. The exceptional divisor intersects the strict transform of P7Y{0) in
three double lines which are in general position. After blowing up each of
these lines one obtains a resolution p: X—C® for P. Here f~ H0y=Ui=0 E
with e;=6,e,=e3=¢e,=8. One has E; =p* E, is a P'-bundle over P!
whose zero section E; N E,=a has self-intersection —4 and E; and E; are
obtained form E, by blowing up 2 resp. 1 points which are not on the zero
section. This implies that D, and D; are obtained from D, by blowing up 16
resp. 8 points. D, is the disjoint union of two components, each of whichisa
3-fold covering of P?, ramified along three lines in general position. Hence
H'(D))=0 for i=1,3 and H*D;)=Q(-1)>. Moreover E,NE,=
@, EqNE,; is a curve of genus 3 for i=2,3,4 and EENE isa rational curve
if l=i<j=4.
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We first show that H'(D,, Q)=0. The composition of 7 with the projec-
tion map p:E,—P' gives a flat projective morphism r: D,—P'. Each fiber
77%z) is an 8-fold covering of p7'z)=P!, ramified above
p z)N{E,UE,). The critical points of t correspond to the ramification
points of the map pjg,~g,, which is a double covering of P' with 8 ramifica-
tion points. Hence 7 has 8 singular fibers, each of which is the union of two
rational singular curves which in their intersection point are of type u®—=x?®
and which are smooth everywhere else. Denote C,,i=1,---,8 these
singular fibres and let U= D,~ |J{_, C,. Let z be a regular value of 7. The
local monodromy around each of the A; acts on H'(C,) with eigenvalues #1.
In particular H(P'—{Ay, - - -, Ag), RI(T,U)*@) =0. It follows from [4],
(4.1.1) that HY(U, @)= HP'—{Ay, -, Ag}, @)=Q(=1)7 is purely of
weight 2, hence HY(D,, Q)= Gr’HY (U, @)=0. Consequently
HY(D,,0p,)=0. Denote be H*(E,,7) the cohomology class of E.NE,.
Then a and b form a basis for H*(E,,Z) and a®>=—4, ab=1 and b*>=0. The
canonical divisor on D, is —2a—6b and the cohomology class of EyN E, is
2a+8bh. Using lemma (3.14) one obtains for the cohomology class of L
(k=0,---,7): [Lo]=0,{L,]=—a—b,[L.]=—-a—2b,[Ls]=—a—3b, [Li]=
—a—4b,[Ls]=—-2a—5b,[Ls]=—2a—6b,[L;]=—2a—7bh. The Riemann-
Roch theorem on E, gives that x(Cg(ka-+I1b))=(k+1){I+1-2k) so
x(Lo}=1=dim HYE,,0z), x(Li)=0 for i=1,---,5, x(Ls)=1 and
x(L7)=2. This implies that dim H*(D,, @p,)=3 and that A* acts on it with

the eigenvalues £° &7, ¢” where ¢=exp (mi/4). Consequently one has the
following picture:

eigenvalues
space dimension of A multiplicity

H°® 1 -1 1
HD,l 9 gS’ gé, E'.' 3
H** 9 £° 3
1,1 §7 6
H" 137 1 4

-1 25

£E 15

&, & 18

. £, € 21
H~ 5 1 4
; -1 1
Hl,z 18 gS’ gﬁ, g? 3
1 9
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To show this one uses again (3.10). The eigenvalues of A* on the other
spaces H™ can be deduced from H" = H® and the fact that A* is defined
over &,

In (4.4) we will show that these data give the minimal polynomial of Ty: in
this example it equals (t®—1)*(t+1) while the characteristic polynomial of
Ty equals (¥ —1)*7(t—1)"".

4. Applications

In this chapter we investigate the relations between the mixed Hodge
structure on the vanishing cohomology, the monodromy, the intersection
form and the local cohomology groups of an isolated hypersurface singular-
ity. We keep the notations of the preceding chapter.

(4.1) Tueorem. The map N=log Ty: H*(B.)— H"(B.) is a morphism of
mixed Hodge structures of type (—1, —1). The map v, =A*: H"(B.)— H"(B.)
is an automorphism of mixed Hodge structures.

Proor. See (3.11). Remark that it is no longer true in general that
N": Gr % H"(B.)— Gri ,H"(B.) is an isomorphism.

(4.2) Lemma. If r=1 the map Gris H (X.)— Gr¥ H"(B.) is injective;
for r=2 it is an isomorphism.

Proor. This follows from the fact that Gr¥. H"(Y,)=0 for r=1 and
Groe  H* ' (Yp)=0 for r=2 because Y, is complete, and from corollary
(3.9).

(4.3) For deN let ©,(¢) be the dth cyclotomic polynomial and

| H'(X2a={xe H"(X.) | Balr.)(x) =0k
H"(B=)a={x€ H"(Bx)| ®a(y,)(x) =0},
These are the subspaces on which the monodromy acts with primitive dth

roots of unity as eigenvalues. Then clearly H"(X..); = H"(B..)4 for all d> 1.
Because N and vy, commute, one has

N :Grl H" (Bo)y = Gr)_,H"(B.)s for rz0,d>1.

Consequently for d>1 the exponent of @©,(t) as a factor of the minimal
polynomial &(¢) of the monodromy equals

ky=1-+max(r| Gr¥. H"(B.),#0) if H"(B.),#0;
0 if H"(B)a:=0
To determine k; we use the exact sequence

0— H"(Yy)— H"(Xoh — H" (B} — H"+1(Yu)'—’
H'"Y(X.)— 0.
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Suppose that H"(Bx); # 0. Claim: §(¢} contains t—1 as a factor of multiplic-
ity k;=max (1, max (r | Gryu. H"(B.), # 0)).

ProoF. If GriH" (B} =0 for all r>0, then Grl H"(X.), =0 for all
r>0 by lemma (4.3). Consequently T,=1I on H"(X.), hence H"(Y,)=
H"(X-) by the invariant cycle theorem (cf.[19],(5.12)). So v is injective
and Ty=I on H"(B.};. Hence k,=1. If r is maximal such that
GriH'(Bo), 720 and r>0, then let xe Grl, H"(B.), with x#0. Then
Nv(x)=0=oN(x) so N{x}=u(y) for some ye Gris,zH"(X.}. If r=1
then again lemma (4.3) says that Gri H"(X.),=0 for k=2 so
Gra H" (Yy)= GrlV  H"(X.): by the invariant cycle theorem. Hence
N(x)=u(y)=0. If r>1 then r is also maximal such that Gry, H"(X.); #0.
Write x=u(z) for zeGri.,H"(X.);. Then N'(z)e GrV H(X.);=
Gril H"(Yy) so N'(x)=uN"(z)=0. Moreover NNz} Gr¥.,..H"(Y;) so
N™'(x) #0. Putting this all together we find:

(4.4) THEOREM. With notations as in (4.3) we have

5(1)= ] ®a(y.
dz1
(4.5) ExampLe. Consider P(x, y, z) =x"+ y®+ 2%+ (xyz)?. It follows from
(3.16) that ky=2, k=3, ky=ks=2 and k; =0 if i# 1, 2,4, 8. Hence 5(1)=
(t+1)(t*—1)*> which shows that the monodromy is not quasi-unipotent of
degree 2, i.e. N*#0.

(4.6) ExampLE. Suppose that we know that the monodromy has finite order.
Then H"(B..), is purely of weight n if d =2 and is of weight =n+1if d=1.
If moreover n =1, we even know that H'(B..); is purely of weight 2 because
H*(Yy) is purely of weight 2. Hence in the case n=1 the double factors of
&(t) are precisely the (1—wv)* where v is an eigenvalue of +, acting on
WoH'(B-).

We can treat the general case too because of

{(4.7) Lemma. H" N Y,) is purely of weight n+1.

Proor. In the case n =2, one may use the fact that the curve C, U - - - U
C., on Dy can be blown down to a point, hence, by a criterion of Grauert
[8], the intersection matrix (C; - ;) is negative definite. In particular the
cohomology classes [Cy], - -+, [Cn]€ H*(Dy) are linearly mdependent which
implies that the map HZ(DQ)—>H (&) is surjective.

In the general case the collapsing map Xp=E;U - - - UE,,— ¥, induces
an exact sequence of mixed-Hodge structures.

-+ = H¥(Yo)— H*(Xp)— H*(EyU - - - UE, )= H* (Yy)— - - -
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Because E;U:-:UE, can be blown down to a point in P"** which is
smooth, H*(E,U-:-UE,) is purely of weight k and H"*(Xy)—
H*(E U - -+ UE,,) is surjective for all k=0.

Hence it suffices to show that H"*'(Xg) is purely of weight n+1. We have
the exact sequence

— H;;:I(X)—) Hn+1(XD)___>Hu+1(Xm)_i> Hn+1(X,,).

Because the monodromy on H""'(X.) is the identity, H""'(X..) is plurely c_)f
weight n+1, Moreover Gri Hx.'(X)=0 for k=n, hence H""1(X,) is
purely of weight n+1. :

(4.8) Cororrary. If Tp has finite order on H"(B..), then H"(B.), is purely
of weight n+1.

(4.9) CoroLLary. N* defines for all k=0 an isomorphism between
Grr‘:‘:-l-rkH"(Bm)l and G?‘:‘g-l—an(Bm)l-

Proor. Use (4.7), (2.13)(2) and the invariant cycle theorem.

(4.10) We look for relations between the intersection form on H?{B.,)
and the mixed Hodge structure. The tools are the exact sequence (3.3),
theorem (2.13) and theorem (2.18). We consider HZ(B..) as the dual space
of H"(B.}, more precisely there is a perfect pairing (, ):

HE(B.) ®q H"(B=)— @(—n)

and we give -H[(B.) the mixed Hodge structure of Homg {H"(B..), @(—n)).
Dual to the restriction map k:H"(X.)— H"(B.) we have 'k:H.(B.)—
H"(X.) and for we H}(B..), w'c H"(B.) one has

(w, 0") = (k(w), k(o).

Denote j=k'k:H.(B..)— H"(B.). The intersection form S on HZB.) is
defined by S(x, y}=(x, j(y}). We want to express its invariants as a real
bilinear form in terms of the Hodge numbers AP =dim. H™(B.). Let
h§?=dime HP?(B.,) N H"(B.); and let h%4 =dime H*(B.) N @u»q H (Ba)a.
Then 1P =h{%+h%,. Let u be the Milnor number of P. Let ug be the
dimension of the null-space of S. The rank of § is the number w — po. This is
the only real invariant besides w if n is odd, because in that case S is
antisymmetric, If n is even, S is symmetric and we can diagonalize S. Let .,
and p. be the number of positive resp. negative diagonal entries of S. Then
the numbers g, gy, and p_ form a complete set of invariants for S as a real
form. Particularly important is the signature g, —g-.
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{4.11) TuEOREM. With notations as above one has:

¥ po= T h— T owm

ptgsn+l p+q&n+3

(iiy If n is even then

pa= L h+2 Y pme Y g,
prg=n+2 prgeEn+3 q even
q even q even

po= )Y W42 Y mpiy Y e
pra=n-+2 pHg&En+3 q odd
q odd q odd

Proor, Because the sequence (3.3) is monodromy equivariant, the map k
induces an isomorphism H"(X.),., = H"(Bw)x1=H}B)=;. Hence the in-
tersection form on HY(B.).; is non-degenerate. Because the monodromy
acts trivially on H*(X..) for q# n, one knows that H" (X=) 1 is a direct factor
of the primitive cohomology P"(X.). This implies that for n even, the
numbers w. and wp- for the restricion of § to HI(B.) equal
Yq even h2 resp. Y.q ada 12, as follows from theorem (2.18).

Next consider the restriction of § to HY(B.),. Clearly Ker (j) is contained
in its null-space. Denote U =1Im (*k)N H"(X.); and V =Ker (k)N U. Then
H{(B.)/Ker (j) = U/ V. Moreover using cup product on F"(X.), one has
V=UnNKer(N) and U=1Im (N) by the invariant cycle theorem and its dual
version. Hence V=UNU"* and cup product induces a non-degenerate
bilinear form on U/V. This shows that the null-space of S coincides with
Ker(j). We calculate p, by computing the Hodge numbers of U/V.
Clearly N":Gry (U/V)— Gro  (U/V) is an isomorphism for all r=0.
Then  Gry(Ker (N)NIm (N))=0 so Gri U V)= Gr¥ (Im (N),) =
Gr¥., s H"(X.),. This gives h™M(U/ V)= it for ptg=n in view
of lemma (4.2). One deduces from these the numbers h* WUIV) for
al  p,g  using RPVYUIV)= h*(U/V). Hence dimLjV=
) I hi%+ 2} 1 rqzn+s h3% One obtains the formula for Wo by the relation
dim Ker (j}=dim H}(B..), —dim (U} V). Suppose that n is even. Denote b
the Hodge numbers of P"(X.) and a® those of PYX.)N H"(Yy). Then the
Hodge numbers ¢™ of P"(Y;) (¢ 0) with its pure Hodge structure are given
by ¢™=0 for p+q#n and ¢® P=%_b". Hence the invariants of the
intersection form on P"(X.) are p.(P™(X.}) =Y oven b and u_(P*(X.))=
2 ada b, For its subspace A =P"(X.)NH"(Y,) these are wolA)=
Zp+q<u apq, .LL.,.(A) = Zq even an—q.q and FL—(A) = Zq odd an—q,q. Further
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HYB.)/Ker ()=(A+A*/A and dim (A+AD)=Yb"—3% qen @™
Consequently:

pom T e T o T o

q cven i even prg<n
p_= Z bP — Z a"mt— Z a,
q odd q odd pg<n

Moreover:

rq .
Yo=Y b2 Y hl+2 Y, REE2 ) RFE ) RE
4 even ptq=n p+g=n-+1 P+q=n:2 p*;iqi::?' q even

q even q even q eve

—-q.a — q pq
E at T = > b?¥ Z h § because
dq even p+q=n ptg=n+2

q even q odd

a™ = pyT4- pi79 "L and in the same way:

T oam= Y be- Y b= L K+ T K

pHa<n pt+g<n p+q<n—2 prg=n+l1 prg=n+2

The formula for w. follows, for ¥piq=n+1 h17=2 Lp1q=n+1 R because n is
q odd

even and h§?= k¥ for all p, . The formula for p_ is proved analogously.

(4.12) Exampie. The singularities xP+y%+z"+Axyz{a#0, (1/p)+
(1/g)+(1/r)<1) are called the hyperbolic singularities. The intersection
form on H>(B.) has been calculated by Gabrielov [7]. One obtains
po=1, w,=1 and p=p+q+r—1. Hence the only non-zero Hodge
numbers are h¥??=hi'=1 and hii=p+gq-+r—3. This implies that the
minimal polynomial of T, has the factor (¢—1)*> which implies that the
monodromy has infinite order.

{4.13) Examrie. For the singularity x®+ y®+ z®+ (xyz)® the Hodge num-
bers of H*(B.); and H*(B.).; are given by the matrices

0 0G0 1 9 9
0 4 9| resp. {9 133 O
0 9 4 9 9 1

Hence po=22, u, =42, u_=151 so the signature equals —109.
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{4.14) ProrosiTioN. If n is odd then p— g is even;

if n=2mod4 then p—pu_ is even;
if n=0mod 4 then u—pu. is even.

Proor. First remark that it follows from (4.3) and (4.9) that h% = hif =
hia™"™ and hf'= h{= h{*17?"*179 for all p, g = 0. This implies that for n
odd we have

p—po= 2. hEEShE

prg#nn+1
=2( Y RE4+ Y RE 4 ) (h —.'11)
P

+gEn+2 prg=n-tl p+q=n
P=q

The other statements are proved analogously. This proves the conjecture of
V.I. AmnoPd [2] that p.+ ue is even if n=2.

(4.15) ExampLE. Suppose that n =72 and that § is negative semi-definite.
Then p, =0 so either H*(B.); =0 and S is negative definite (this gives the
simple smgulantles Ay, Dy, Es, E7, Eg) in which case H*(B.) is purely of
type (1, 1), or H*(B.) is of mixed type {(1, 1), (1, 2), (2, 1)} with ,u,u—2hu
0 (this gives the simple elliptic or parabolic singularities Eg, E;, and Eg),

(4.16) ExampLE. Suppose that n = 2, the monodromy has finite order and
#o=0. This occurs in the case of Arol’d’s exceptional singularities. Then
hi*=0 for all p,q and K" =0if p+q#2. Then p,=2k> and p_=h*

(4.17) Local cohomology

The local cohomology groups of an isolated singular point x, of a projective
variety Y carry a mixed Hodge structure ([5], Example (8.3.8)) namely

Hi(Y)=H'(Y mod Y—{xo}).

We want to compute these for a hypersurface singularity x, and relate them
to the mixed Hodge structure on H"(B.). Let Y be a projective variety with
only one singular point x,. Let p Y— Y be a resolution of singularities for
Y and let p~'(xg)= C=C,;U - - - U C,, be a union of smooth divisors C; with
normal crossings on Y.

The mixed Hodge structure on H*(Y—{x5}} is computed using the
logarithmic De Rham complex (3{log C) and the restriction map H*(Y)—
H*(Y —{xo}) is induced by the inclusion

2% = Wyl {log C)= Q4 (log C).
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The mixed Hodge structure on H*(Y) has been computed in {3.4) and the
pull-back map H*(Y)— H*(Y) is induced by the surjective map A(Y)e—
A(Y)o/ W_1A(Y)e= 4. Hence we have a morphism ¢ of cohomological
mixed Hodge complexes which on C-level is the composed map A(Y)e—
04— Qe (log C).

The mixed Hodge structure on Hi () is obtained by taking the hyper-
cohomology of the mapping cone of ¢. One has the exact sequence of
cohomological mixed Hodge complexes, which on C-level is

00— (log C)[_l]_)A.{xn}(Y)C'_)A.( Y).—0.
It gives the exact sequence of mixed Hodge structures
o HEJ(Y)— HY(Y)— H (Y ~{xo}) = Hia (V)= - - -

dual to the classical sequence of relative homology. Let’s go back to the case
where Y is the singular fiber Y, of a one-parameter family as before. One
has the isomorphism

H{‘xu}(Yu)—’Hk_l(K)

where K = Y,NaB is the common boundary of all fibers F of the Milnor
fibration. The well-known exact sequence

0 — H,(K)— H.(F)— H,(F, K) = H.(K) >0
gives an exact sequence of mixed Hodge structures
0 —> Hi.y(Yo)— H2(B) —> H"(B) — Hial (Yo) — 0
and H{ (Yo)=0 for k#n,n+1,2n The mixed Hodge structures on
Hpy(Yo) and Hom (F{ (Yo), @ (—n)) are isomorphic.
(4.18) Lemma. GrlVH"(Yo)= GryH"(Yo—{xo}).

Proor. Cup product on H"(X.) induces a non-degenerate bilinear form
on Gr¥H"(Ye) = H"(Yo)/H" (Ys) N H"(Yy)*. This implies that Gry H"(Yy)
is isomorphic to its dual Gry H"(Yo—{xo}).

(4.19) ExampLe. Let P(x, y, z)=x*+y*+z*+xyz. Once blowing up O€
€’ resolves the singularity of Y, (not the one of P). One obtains p {0)=
CyUCaUCy, a union of 3 lines in P? in general position. Here foa}(Y0)=
Q, Hiey(Yo)= @(—2) hence H'(Yo—{xc})=0.

5. Open problems and conjectures

(5.1) “Thom-Sebastiani’. Let feC[zy, -+ +, z,] and g€C[Z,415* * * » Znams1]
have an isolated singularity at the origin. Then the polynomial f+ge
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C[20," * "5 Zn+m+1] also has an isolated singularity and, denoting B.; and
B.., the respective Milnor fibers and T}, T, the respective monodromy
transformations, on has [17]:

H"+m+1(Bm,f+g) = H”(Brx‘f) ® Hm(Bac|g);
Tf+g = Tf @ Tg-

(5.2) ProBLEM. What is the relation between the mixed Hodge structures
on H*(Bay), H"(B=,) and H" "™ (Bu4,)?

(5.3) The quasi-homogeneous case suggests the following possibility. To
the mixed Hodge structure on H"(B..;) together with its automorphism of
finite order vy, we associate a sequence (uy, wy),- - -, (u,, w,) of pairs of
rational numbers as follows: for A eC* and q€Z let £,(A)eC be determined
by exp2#mif;(A)=A and g=Re £,(A)<q+1; to any eigenvalue A of v,
acting on H™(B..) associate the pair (£,(A),p+q)if A# 1 and (g, p+q—1)if
A =1. Doing this with all eigenvalues of v, on all H*? {B.), one obtains an
unordered p-tuple {u, w;), i=1, -+, i, which we shall call the characteristic
pairs of H"(Bz).

Conversely one recovers the discrete invariants hi% h% and the eigen-
values of vy, on each H™(B.) from the characteristic pairs in the obvious
way.

(5.4) ConiecTUuRrE, Let f, g have isolated singularities at (. Let (g, wy),
i=1,---,p and {(u},wf,j=1,---,p; be the characteristic pairs of
H"(B.j)resp. H" (Bx,g). Then the characteristic pairs for

H"™ " N Bagrg) are (wtuf, witwitl),i=1,- o ppj=1, -, oy
This conjecture is true if f and g (and hence f+ g} are quasi-homogeneous,
as follows from the explicit calculations in [20].

(5.5) ExampiE. Let f(x, y)=x"+x’y*+y* g{z)=z". The characteristic
pairs for f are:

(%! 0)7 (%J 1)’ (%! 1)1 (%1 1)’ (1’ 1)’ (1’ 1), (%9 1)1 %! 1)! (%_[3]! 1)! (%! 2)

as one computes by resolving f and applying (3.14). The characteristic pair
of g is (3,0). According to the conjecture the characteristic pairs for f+g
would be

(1,1),52),%2.62.62,%2,62,82),2.2,3

hence H*(Buy+g) has % =0 unless (p,q)=(1,1), hth=8, hi'=hi’=1.
This is correct because f+ g is equivalent to a hyperbolic germ x*+y°+z°+
Axyz (see example (4.12)).
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More evidence that the comjecture should be true is obtained from the
conjectural method of computing the characteristic pairs from the Newton
diagram. See (5.8).

(5.6) Mixed Hodge structure and Newton diagram

We refer to [21] for the notions of Newton diagrams and non-degenerate
orincipal parts of polynomials. Let feC[zp, - -+, 2,] be a polynomial with a
non-degenerate principle part. Denote A the graded ring associated to the
Newton filtration on C[zg, * - +, z,]. Denote fo, Fy, - - -, F, the principle parts
of f, zodf/dzq, " - -, z,08f/82,. The degree on A takes rational values and is
normalized in such a way that

deg (fo)=deg (Fo}="---=deg(F,)=1.

We use the method of Poincaré series to deduce the characteristic pairs of
H"{B..;) from the Newton diagram I' of f. Write = ¢ for ‘7 is a face of o’

For o a face of T denote A, the corresponding graded subring of A. We
consider {0} as a common face of every face of I and put Ay =C, with
degree 0. The Poincaré series of any A, is defined by

pa ()= 2 dim (A,), - 1"
aeq

It follows from [21], p. 15 that

e PaitEom - - - Fnad( ) ={1— t)d(u]PAw(t)

where d(¢)=dim A, = dim Cone (o).
. Let g,(t) be the Poincaré poiynomial for the ‘interior’ of A, /(Fo g '+, Fos)
ie.

qu-(t) = Z (_l)d(ﬂ')—d('r)(l _ t)d(T)pA'(I).

TEo

Then clearly
(1-"“pa ()= T aul).

TR

For o & face of T, define k(o) =min{kez|3i,, -, ik €{0," - -, n} such that
c<Re,+ - +Re,} Then [21], Prop. (2.6) implies:

palt)= k(); D, o),
rik(x}=n+

In fact we are interested in the Poincaré polynomial of

H= (ZCI' et ZH)AI(FD: ) FH)A = GTC{[ZQ, Tty Zn]]/(af/azt)r T, &f/azn)
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where C{[zg, - -, 2,]] has been filtered such that the monomial zge- - - z§
gets the same degree as its image zgo*' + - - z23»*! in A. This can be computed
by calculating the Poincaré polynomials of A/(Fp, -, F,) and of all its
quotients corresponding to intersections of coordinate hyperplanes in R5™

By [21], Theorem 2.8 one obtains

Paygs, - - ma{)=1—=10""palt)
hence

pH(t) = Z(_l)n-{-l—d(a') . (1_ t)k{g)PA,(r)

so we have proved:

(5.7) THEOREM. p(t) =3, 5, (—1)" 17401 = fele=dng (1),

Let G be the free abelian group on pairs (i, v) with w, ve Q as gen-
erators. The characteristic pairs (u, w;) of f correspond to the element
ep(f =%, (u, w;) of G.

(5.8) Conrecture. For any simplex o write g, (1} =X .cq Eaat” (because fy
is non-degenerate this is a finite sum); then the characteristic pairs of
H"(B..;) are represented by the element cp{f) of G where

Cp(f) = Z E;‘:g—d(f)(_l)n+1—d(7)+j (k('r) - d(']’)) .
j o

TEm

e Aa+j, 2k(e) — d{a)—2j—1).

(5.9) ExamrLe. Let f(x, y}=x"+x?y*+y*. Then the faces of I' are
o1 ={0L c2={(5, 0N, a3 ={(0, 4)), 04 =((2, 2)), 05=((5,0), (2,2)) and &=
((2,2),(0,4)).

Thus o, = 1;
o=+ B+ B+
oy = B+ B+ 17
o, = t¥;
oy = 0+ 17 4 104 115
Gug = B+ 1+ 1.

Moreover pg(f)=t- g +(1+ ¢, + s+ qs,, 50 applying the conjecture one
obtains precisely the pairs as listed in example (5.5).

(5.10) Remark. If we know a priori that the monodromy has finite order,
the characteristic pairs are jall of the form (u, n); hence if

pu(t) = Z .t%, then cp(f)=Z.c.(a, n).

aeld
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In general we first have to split up py(#) asin (5.7) in order to determine the
weights.

(5.11) Examrpre. If f is a quasi-homogeneous germ with weights
Wgs 't , Wy, and isolated singularity at 0, ie. f=Z%.0,z% and a.#=0=>
S owia; =1, then the above computation shows that

LI

t)= .
pH( ) o 1_ l‘w‘

In particular the Hodge numbers only depend on the weights.
(5.12) ExamreLE. f(x,y)=x"y+y"; we have wo=3, w; =1,

pu(t) = (A=)~ (1 -7 (1 -
S A NI N

(5.13) Remari. Assuming (5.8), one can use (3.7) and (5.8) to show that
conjecture (5.4) is true if f and g both have non-degenerate principle parts.

(5.14) We shall sketch a proof that conjecture (5.8) is true in the case
n=1,

Let feC[zg, z;] be a non-degenerate function. Let (aq, bo), * * *, (ax, i) be
the vertices of its Newton diagram I', ordered in such a way that aib..,—
a0, >0 for i=0,-- -, k—1. Moreover we suppose that bg=a, = 0.

One obtains a resolution of f as follows. Let T* be the dual diagram of I'
and let ¥ be a subdivision of T* such that the corresponding torus-
embedding X5 is smooth. Let (0, 1)= (o, Bo), (@1, B1), -+, (&n B)=(1,0)
be the verticés of X,ordered such that @841~y fi==1fori=0,1,-+-,r
There exists a unique increasing function p:{1,- - -, k}—{1,- -+, r—1} with
the property that

oo @ — Aie1) + Bpay(bi— by 1) = 0.

One can show the following facts:

(i E=E,UEU---UE,_, where E, is the canonical divisor of Xg
corresponding to (e, B;) for i=1,---,r—1 and FE; is the union of all
components of E with multiplicity 1;

(i) D; is a curve of genus >0&i=p(j) for some je{l, -, k}; in that
case the multiplicity e of E; equals aaq+ B:b;;

(iii) Moreover E; intersects the curves E;—, of multiplicity

O Gyt By bj+1 =e_1, g with e, =00+ Bi-l-lbj

and precisely m; ={a;h.1— a;.1b;)/e; components of Eg;
(iv) The eigenvalues of vy, on H"(B..)= G—)};l H 1(D,,m, 0p,,) are com-
puted using (3.14).
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One obtains if i=p(j}:

g1 se 5. se se;_ ;s -1
T%0p, = @ Ok, (_ e 1+ [ s + == = @ 0E.("s.i)
=0 g; €; (=] &; §=0

where

lIA

5e; 8¢ sth;+e.t+e
”:,i=[ :+I]+[ f 1]_ ( =1 H—l) 0

€ g; [<f}
Hence the divisor of characteristic pairs for H"'(B.) is

ko oepgt

Y. (—1—ny ) s/, 1)-

j=1 s=1

The divisor associated to H""(B..) is obtained by duality:

[~1=

e —1
L (1= 1) 2= sy, 1),

=1
The remaining eigenvalues of vy, on H'(B..) either are equal to 1, giving the
pair (1, 1), or different from 1; in that case they occur in pairs, correspond-
ing to H*%B.)s1=H""(B.)1.

Thus the computation above gives complete information on the charac-
teristic pairs.

Remains to prove that if o is the simplex spanned by (a;, b;) and
(8j+1, bj+q) in T, then for i =p{j):

=1

GolB)= 0 nef(t79 + 7754) 4 myt.
5=1
This is left to the reader as an exercise.
Remark that in this case the monodromy has finite order if and only if
ged(a, bj)=1for j=1,--, k—1.

{(5.15) Behavior under. deformations

One may ask for a relation between the mixed Hodge structures on
H"(B.,) and H"(B..;) if g is a germ in the universal unfolding of f. One
possible question is how the discrete invariants of the mixed Hodge struc-
tures are related.

Suppose that the numbers k™ remain corstant under some deformation
of f Then the deformation gives rise to a ‘variation of mixed Hodge
structure’ on the parameter space. This occurs for example when the
deformation is equisingular in the following sense: there exists a simultane-
ous resoluticn of all functions in the deformation such that all components
of the exceptional divisor and all their intersections are smooth over the
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parameter space. In that case one shouid compare the moduli of the
singularity with the moduli of the triple consisting of H" (B} with its mixed
Hodge structure (or its associated graded Hodge structure) and its en-
domorphisms N and 7, In the quasi-homogeneous case one may consider
the residue of the Gauss-Manin connection instead of v,.

(5.16) ExamrpLE. Let P(x, y)=x*—y>. Because an elliptic curve with an
automorphism of order 6 is rigid, the Hodge structure on H'(B.) has no
moduli in the sense of (5.15). In the same way the polynomial x*+y> gives
rise to the Hodge structure of weight 1 with an automorphism of order 4,
hence it is also rigid.

(5.17) ExampLE. Let P(x,y, z) =x*+y*+ 2z’ + Axyz. The moduli of P are
reflected by the Hodge structure Gry H*(B.p)=H'(Ep)(—1) with E the
curve in P with homogeneous equation P=0.
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