Proceedings of Symposia in Pure Mathematics
Volume 32, 1978

CONSTRUCTIONS OF FIBRED KNOTS AND LINKS*

JOHN R. STALLINGS

Introduction. In this paper we consider only polyhedral, that is, nonwild, situa-
tions.

In the oriented 3-sphere 3, let T be a compact, connected, oriented surface with
nonempty boundary Bd T. Let T+ be a copy of T'in S8 — T parallel to T. If the
map zy(TH) — 7,(S3 — T) is an isomorphism, we call T a fibre surface, and its
boundary Bd T a fibred link. The reason for this language is that, given the condi-
tion on the fundamental groups, $® — Bd T'is the total space of a fibre bundle
with base space the circle and fibre the interior of 7 [1]. A fibred link of only
one component is called a fibred knot or Neuwirth knot [2].

It is known that the Alexander polynomial A(¢) of a fibred knot has degree equal
to twice the genus of the corresponding fibre surface, and that it has leading coef-
ficient 1 [3]; of course, also, A(¢) satisfies a symmetry condition. Every possible such
Alexander polynomial occurs as the polynomial of some fibred knot [4]. For a fibre

surface T, the translation of the fibre around the base-space circle determines an
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element of the mapping-class group of T, a homeomorphism 4: T — T well defined
up to isotopy; this element is called the holonomy of the fibre surface; the Alexander
polynomial is the characteristic polynomial of the map the holonomy induces on
H,(T). Itis also known [5] that if the leading coefficient of the Alexander polynomial
of an alternating knot is 1, then the knot is fibred.

The links which occur as isolated singularities of algebraic surfaces, certain com-
pound torus links, are known to be fibred [6]; these are special cases of a closed
positive braid, whose Alexander polynomial was found to have leading coefficient
1 [7], and which we shall show are fibred.

This paper discusses several methods of creating fibre surfaces, including plumb-
~ ing, twisting, and companionization.
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Plumbing, This is a generalization of the technique described by Murasugi [5].

Consider two oriented fibre surfaces T; and T;. On T; let D, be 2-cells, and let
h: D, — D, be an orientation-preserving homeomorphism such that the union of
T, and T} identifying D, with D, by h is a 2-manifold Ts. That is to say:

h(Dl ﬂ Bd Tl) U(D2 n Bd Tg) = Bd Dg.

We can realize T in S3 as follows: Thicken D; on the positive side of T, to get
a 3-cell, whose complementary 3-cell E; contains 7; with 7; (| Bd E; = D, and
with the negative side of T; contained in the interior of E;. Likewise, there is a 3-cell
E, containing T, with T, [ Bd E, = D, and with the positive side of T} contained
in the interior of E,. The homeomorphism k: D;— D, extends to 4: Bd E;—Bd E,.
The union of E; and E,, identifying their boundaries by A—this is S%-— contains
Ty as Ty U T, We say Ty is obtained from Ty and T, by plumbing. -

THEOREM 1. If T, and T, are fibre surfaces, so is Ts.

The proof can be found by examining the map on fundamental groups. We can
identify

7(T3) = z(Th) * z(T2),
zi(S3—T3) =~ (S8 — 1)) * zy(S3 — T).

The map on the second factor is that which we would expect; on the first factor it is
slightly different, the image ciements of a particuiar basis of z,(7}) being muitiplied
on the left and right by certain elements of z,($® — T3).

A special interesting case concerns braids [8). A braid of n strands can be expres-
sed as a word in generators oy,'++, ,—1, Where g; 1s the braid involving a single
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crossing of the ith and (; + 1)st strands. If 8 = gfl 02 -+ 0%, ¢; = + 1 has the
two properties—(a) every g, occurs at least once, (b) for each i, the exponents of
all occurrences of g; are the same—then we call 8 homogeneous. For example, if all
¢; are + 1, we have the positive braids studied in [7}. The braid ¢y070;07" is homo-
geneous; the braid ¢fe%s,07" is not homogeneous—see Figures 1 and 2.

Given any braid 3, we can close it up to obtain a closed braid B. There is an
oriented surface T whose boundary is B, obtained as the union of n disks, one for
each strand, where the ith and (i + 1)st disks are joined by a number of half-
twisted strips, one for each occurrence of ¢; in 8. Then T} is obtained by plumbing
a series of surfaces Ty, T5, -+, T,—;, Where T; consists of the ith and (i + 1)st disks
with the connecting half-twists. If 8 is. homogeneous, the half-twists in T are all in

the same sense, so that 7 looks like Figure 3 or its mirror image. A direct computa-
tion shows that the surfaces in this figure are fibted. Thus

THEOREM 2. If § is @ homogeneous braid, then § is a fibred link with fibre surface T,

/
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FIGURE 3

This has a curious corollary IfL i's'any link, it can be represented as 5 for some

{nonhomogencous) braid 5. Now, by adding to the picture for § several other

strands, we can isolate the positive from the negative crossings of § so that they
are located on different vertical strata. The new strands can be crossed over each
other, so that in the closed form they will represent a'single unknot. Furthermore, we
can arrange it so that this circle has arbitrarily prescribed linking numbers with
the components of L. Figure 4 applies this to the braid of Figure 2.

THEOREM 3. Given any link L in S®, there is an unknot K disjoint from L, with

arbitrarily prescribed linking numbers with the components of L, such that K |) L is
“w J PIT MM .

By choosing the linking numbers carefully (making their sum = 1), we can do
Dehn surgery [9] on X to obtain the 3-sphere again. This surgery will be compatible
with the fibration, and thus any link can be transformed into a fibred link by a single
Dehn surgery.

Twisting. Suppose T is a fibre surface and C is a simple closed curve on 7, such
that C is unknotted in $3, and so that C bounds a disk D which is orthogonal to T
along C. This latter condition is equivalent to C and C* having linking number
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zero. Let A4 be a thickening of C along the side of T where D starts. The comple-
ment of 4 is a donut S1 x D containing T. Let z: 8! x D —» S x D be a home-
omorphism, a twist along D. Look at 7(T); the fibring of $* — Bd T contained in
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THEOREM 4. ©(T) is a fibre -s;zrfaoe.

The-hblonomy.of o(T) is the composition of the holonomy of T with a Lickorish
twist [10] in the neighborhood of C.
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FIGURE 5

As an interesting example, the surface in Figure 5 is a fibre surface, and Cis a
‘curve along which such twists are permissible, leading to the fibre surfaces T,
described in Figure 6.

The knots K, which are the fibred knots of Figure 6 all have the same Alexander
polynomial (12 — ¢ + 1)2, but they can be distinguished by the fact that if M,, is
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P .
the Alexander matrix of K,,, describing the holonomy on the homology of T,, then
M?% — M, + I has n as an elementary divisor, This shows M, and M, for |n| #
| k | are dissimilar, and so K|, and K, are inequivalent.
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ted surface T, such that Bd T = L, plus n longitudes, » = 1, all oriented coherently
(of the form S! x boundary point), and such that 4 - L fibres over S! with fibre
T — L. We would describe T as a fibre surface within §! x D. Now, suppose 4 is
embedded in S via a knot X, in such a way that the longitudes in Bd T are “longi-
tudes” of X, i.e., null-homologousin $3 — A.

THEOREM 5. If K is a fibred knot, A = S' x D is knotted via K, and L is, within
81 x D, a fibred link whose fibre T as above intersects Bd A in n longitudes to K, then

T 30 n“nall uu‘{l‘:'u 03 'T'Ln lll\v'n!‘!ﬂl\lll’l'"n nl_uvn crsndrrnn nnmoasates € o Lhhawn T A8 A ra
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plus n fibre surfaces of K.

This is geometrically obvious, but can also be shown from fundamental-group
considerations. In Schubert’s terminology [11], X is a companion of L. A particular
case of this [12] is cabling, in which L is a torus knot on a torus parallel to the boun-
dary of 4; if we cable a fibred knot K, we obtain a new fibred knot L.
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