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To the Memory of Isaac J. Schoenberg {1903-1990)

DEFINITION: @ [0,1] = E",n = 2, represents a space-filling curve if ® is continuous and
the image ([0, 1]) is an n-dinensional region with positive content (such as a square for
n=2).

1990 marked the 100th anniversary of the discovery of the first such curve.

L. Introduction

Three significant events preceded the emergence of space filling curves:

(1) In 1878, G. Cantor startled the mathematical world by demonstrating that
any two finite-dimensional smooth manifolds, no matter what their dimensions,
have the same cardinality (1). In particular, the interval [0, 1] and the unit-square
[0, 1]? have the same cardinality, meaning that there exists a bi-jective map ¢ from
[0, 1] onto [0, 1]?

¢: [0,1] [0, 1]%. )

(2) One year later, E. Netto showed that such a mapping cannot possibly be
continuous [“A bi-jective map from a one dimensional manifold onto a two-
dimensional manifold is, by necessity, discontinuous™ (2)]. If ¢ in (1) were con-
tinuous, then, with [0, 1] being compact, ¢~ ' would also be continuous and map
connected sets onto connected sets. The removal of a point #, from the interior of
[0, 1] and its corresponding image @(¢,) from [0, 1]? disconnects the interval but
not the square and the continuous function ¢~' would map the connected punc-
tured square onto the disconnected set [0, 7o) v (1, 1]. More gencrally, manifolds
of different dimensions cannot be homeomorphic (3).

(3) Finally, in 1883, G. Cantor introduced the set I" of all points that have the
representation
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2a, 2a, 2a, 24
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where @, = 0 or 1 (4, p. 590) which is now called the Cantor set or the *“sct of the
excluded middle thirds”. Cantor offers this set in an appendix to his paper on
infinite linear point manifolds as an example of a perfect set (a sct that is equal to
the set of all its accumulation points) which is in no interval, no matter how small,
everywhere dense. (In this paper, Cantor was groping for a characterization of the
continuum to wind up defining it as a perfect connected sct.) While Cantor does
not mention it explicitly, it could not possibly have escaped him that this set, being
cquivalent to the sct of all sequences of 0’s and 1's, has the same cardinality as the
interval [0, 1], i.c. there is a bi-jective map

Y: T [0,11. ()
Putting (1) and (2) together, wc have
oy : T 1[0,1]% (3

It would appear that at this point in time, the discovery of space-filling curves
was inevitable. Since a bi-jective map from [0, 1] onto [0, 1]? cannot be continuous
and hence, a continuous map cannot be bi-jective, all that is needed is to extend
some convenient continuous surjective map @ from I" onto [0, 1]%into the countably
many disjoint open sets that make up the complement of the Cantor set—see
Appendix (I)—so that the extension is continuous in [0, 1]. This is how it should
have happened but it is not how it came about. What really happened at that time
will be related in Section I11.

II. The Lebesgue and Schoenberg Curves

It was not until 21 years later, in 1904, that H. Lebesgue finally followed through
on this idea. Preparatory to obtaining the required continuous surjective map from
" onto [0, 1]% let us adopt the convention that in the binary representation of
numbers in [0,1] cvery finite binary—such as 0.201——bc replaced by the cor-

responding infinite repeating binary—such as OiOOT, where , represcnts the binary
point. With 3 representing the ternary point and ; = 0 or 1, we define the following

mappingon I':

(l)(03(2a,)(2(12)(2(13)(204) )= (Oia,a3a, o2 0.020405 .. ) 4)

which satisfies our requirements. [For the proof of continuity, see (5), p. 363. More
generally, every compact set is the continuous image of a dyadic discontinuum,
as, for example, the Cantor st (6).] Lebesgue extended the definition simply by
linear interpolation (7) to obtain an extension &, of @ into [0, 1]. Take, for example,
1e(1/9,2/9). Since 1/9 = 03002 and 2/9 = 0,02, we have from (4) that
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Reflections on the Emergence of Space-filling Curves

d(1/9) = (oioT,o.on) = (1/2,1/2)

and

P(2/9) = (0.20,051) = (0,1/2).

Hence, for 1€ (1/9,2/9),
(1) = (=91/2+1,1/2).

Since the restriction of ¥, to I' is already onto [0, 1]%, it follows that

@, [0, 1122 (0, 172

By construction, the restriction of & to the complement of the Cantor sct is
continuous, and its restriction to the Cantor set is also continuous. To show that
it is continuous on [0, 1] requires some insight into the structure of the Cantor set.
For a proof, we refer the reader to (8). Since the Cantor set has Lebesgue measure
zero [see Appendix (I1)], O, is differentiable a.e.

In 1938, while proctoring a 2-hour mechanics examination at Colby College (9),
1. J. Schoenberg, by contrast, extended the definition of @ in such a manner that
the continuity of thc mapping became obvious (10). He defined the components
(f;,gs) of a function &, by

£ =Y p3%- 2, g(= ) p3* /2t (5
k=1 k=1
where
0 for 0<1<1/3
p() ={3t—1 for 1/3<1<2/3 (6)
1 for 2/3<t<1

with the provision that p(—1) = p(1) and p(t+2) = p(2) (see Fig. 1).

| | !
=513 —43 =1 23 =11y 0 213 1.% 53 2 T 8

F1G. 1. Graph of generating function p.
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f.. 4, being represented by uniformly convergent series of continuous functions,
are continuous. Hence, @, is continuous. If one restricts @, to the Cantor set T,
one obtains precisely the mapping in (4) [see Appendix (III)] and hence, @, is also
surjective and represents a space-filling curve. This is almost too easy and there is
a penalty to be paid: While it is obvious that the Lebesgue curve is differentiable
a.c., the differentiability properties of the Schoenberg curve are not that easy
to discover. While it was assumed all along—at lcast by this author—that
Schoenberg’s ®, is nowhere diffcrentiable, this was not proved until 19831 by
J. Alsina (11). Alsina’s proof is fairly complicated and laborious. A somewhat
simpler proof [that 3f;+g, is nowhere differentiable whence the desired result
follows in view of g,(t) = f.(3#)] can be found in (12) but a simple and clemen-
tary proof did not appear until very recently (13).

HI. The Peano and Hilbert Curves

Let us now return to the end of the last century and relate how space-filling
curves really entered the world of mathematics. G. Peano, who was familiar with
Cantor’s result in (1) on the equivalence of finite-dimensional smooth manifolds
and E. Netto’s result in (2) on the impossibility of a homecomorphic relationship
between [0, 1] and [0, 1]%, was not cognizant of the Cantor sct and its relationship
to the interval [0, 1]. This is not at all surprising. This author, knowing what to
look for, had a very difficult time locating the Cantor sct in Cantor’s papers, buried
as it is in an appendix to a lengthy article and in a context that is unrelated to
mappings and such. So, it is understandable that Peano did not do the obvious
and extend the mapping in (4) when looking for a continuous map from [0, 1] onto
[0, 1]? because he simply was not aware of it. In spite of all this, he only narrowly
missed the mapping in (4) and, with it, an opportunity to re-discover the Cantor
set, as we will see from his construction of the first space-filling curve ever.

Pcano defined a mapping @, from [0, 1] onto [0, 1]7 in the following manner:
With the operator k defined on {0,1,2} by k0 =2,kl = 1,k2 =0 and with X"
denoting the nth iterate, and with 7€{0, 1] in ternary representation

t= 03"[“2“3“4 ae
he demonstrated that

NGES (03(" (Aay) (K2 as) .. ., O.J(k“'az)(k“'*”la,,) s ¢

maps [0, 1] continuously onto [0, 1] (14).
In order to show that @, is surjective, we will demonstrate how to find for any
point P = (Oiﬁ.ﬂzlh..., 0.3','.72“[3...)6[0, Nar= Oia.aza_,,...e[o,l] such that

®,(1) = P. By (7), we have to have
(O.3a (h2ay) (k4 %aq) ..., 03(1\""(12)(/\'“'*“3«4)(k"‘*“’*"m(,) on)

= (OiﬁlﬂlﬂJ ceny 03?{}’2'}’3 .. .).
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Reflections on the Emergence of Space-filling Curces

Comparing corresponding ternary places and noting that & is its own inverse, we
obtain

ay = f _
k“ia» =7y, andhence a;=£k"7,
k%ay = f, and hence a; = k“2f},
ki*9ag =7y, andhence a;=k"""y,, etc

To show that &, is also continuous, we proceed as follows: First, note that
[, —1,) < 1/3"F | where we assume without loss of generality that i is even, implics
that 7,, 1, have to agree up to and including the nth ternary place, i.c.

t, = Oéa‘azm...(l,,/},” Poszeees 2= 0.3(1,(12(13...(1,,7,,+ Ynedee
With a,+a;+---+a,, = a,
L) =) = 10,a(kas) . (KB ) - =00 (k2as) o (K5Fnr 1) - |
IR By = K /303 o P03y K |3
< @34+ 1/3+1/94-+7) = 1/3%2,

An analogous argument leads to the continuity of g, the second component of @,
When restricting @, to the Cantor set I', we obtain in view of

kK0=0, k*2=2, for n=0,1,23,...
that

<l),,(05(1.a2a3a4 )= (030,(13(15 s 0020405 )

because all the @; are now 0 or 2 and hence, all iterates of & are even. So close—
and still so far apart from (4)!

One ycar after Peano’s discovery, D. Hilbert came forth with his own version of
a space-filling curve (15). He was led to it by a repeated application of the following
heuristic principle: If an interval 7 can be mapped onto a square, then, after
partitioning 7 into four congruent subintervals, and the square into four congruent
subsquares, each of the subintervals can bec mapped onto one of the subsquares
with adjacent subintervals mapped onto adjacent subsquares with a common edge.
In Fig. 2, we have indicated the first three steps in this process where the polygonal
lines indicate the order in which the subsquares may be taken in order to satisfy
our requirement.

The mapping ®,: [0, 1] = [0, 1]* is now to be dcfined as follows: Every r€[0, 1]
lies in a sequence of nested intervals the lengths of which shrink to 0. With this
scquence corresponds a sequence of nested squares the diagonals of which shrink
to 0 and hence, define a unique point in [0, 1]%, the image ©,(1) of ¢. (If £ is the
endpoint of one of the subintervals—other than 0 or 1—it belongs to two different
sequences of nested intervals. This leads to the same image, however, since adjacent
subintervals arc mapped onto adjacent subsquares.)

Vol. 328, No. 4, pp. 419-430, 1991 '
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20| |19 |30 |29 |38 35 |46 |45

17 |jig| 131 32 |33 34| (47| |48

16 13 12 11 |54 53 | 52 |49

15 14 9 10] |58 56 |51 50!

F1G. 2. Generating Hilbert's space-filling curve.

This mapping is surjective. Every point in [0, 1]* lics in a sequence of nested
squares whose diameters shrink to zero and is, by construction, the image of that
point in [0, 1] that is defined by the corresponding sequence of nested intervals.
(Note: if the point lies in a corner of a square, then it will, and if it lies on the edge
of a square, then it may belong to at least two squares that are not consecutively
numbered and it may be viewed as belonging to two or more sequences of nested
squares with distinct pre-images in [0, 1], leading to at least two values of ¢ with
the same image. The center of [0, 132 lics in the corner of three non-adjacent
squares!)

The mapping is continuous. Choose 1y, 1,€[0, 1] so that #; < t;and 1,—1, < 1/4".
At the nth step, the interval [0, 1] is partitioned into 4" subintervals of length
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Reflections on the Emergence of Space-filling Curves

1/4". Hence, the interval [1),1,] overlaps with at most two adjacent subintervals.
Therefore, the images 4,(z,) and ®,(1,) lic, at worst, in two different, but adjacent
squares of sidelength 1/2" and their distance cannot exceed the length of the
diagonal of the rectangle formed from two such squares:

2 2
e —heP+Hae—onor < (2] +(5) = 2

[If, in the gencrating process, onc partitions at every step into nine congruent
parts instead of four, and takes the subsquares in the order that is indicated in Fig.
4, one is led to Peano’s curve (16, p. 5).}

Peano notes at the very end of his paper (14) without proof that “Ces x et y,
fonctions continues de la variable 7, manquent toujours de dérivée.” (“These x and
y,”—we call them f, and g, in this article—“continuous functions of the variable
t, completely lack a derivative.”)It was not until 10 years later that E. H. Moore
published a proof in (17). It is, of course, impossible for us to guess how Peano
proved this to his own satisfaction, but his proof could not possibly have been any
simpler than the one we have to offer:

For 1=Oia,aza3...(:2,,a2,,+.(12,,+2...e[O,1] we define

L, = 03(11(12(13 NP | PRRT S BN

where fans ) = Gas 1+ 1 (mod 2). Then, |t—1,| = 1/3""*". By (7), f,(1) and f,(1.)
only differ in the (7+ 1)th ternary place and we have

(0 —f ()] = (ko3 Fmag, = ko4 Fem By, )37 = 173"

Hence, |(f,(0)—/f,(t.))/(t—1,)] = 3" — oo. A similar argument applies to g,.

Hilbert makes the same claim without proof in his paper (15): “Die ... Funk-
tionen sind zugleich cinfache Beispiele fuer ucberall stetige und nirgends differ-
entiirbare Funktionen.” (“The functions ... are, at the same time simple examples
of everywhere continuous and nowhere differentiable functions.”) On first glance
onc might have reservations about calling these examples “simple” when they are
not even presented explicitly. It is, however, indeed casy to see that these functions
are nowhere differentiable: For n > 3, pick for any r€(0,1] a 7,€[0, 1] such that
lt—1,] < 10/2*" and the coordinates of the image ®,(7) arc scparated from the
coordinates of the image ®,(#,) by at least a square of sidelength 1/2" (see Fig. 2).
Then,

I(ﬁl(’) —ﬁl(’"))/(t - tn)l 2 2"/10

and
|(.0/.(’)—9/.(’n))/(1 - ’n)l ? 2"/10

1V. Concluding Remarks

Once the principles underlying the construction of spacc-filling curves were
understood, such curves could be churned out at will. The following three gen-
erating procedures emerged from the preceding discussion:
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First, one may start with the continuous surjective map from I” onto [0, 1]* in
(4) and extend the map continuously into [0, 1], though it is hard to imagine how
anyone could surpass the constructions of Lebesgue and Schoenberg in ingenuity.

Sccondly, one may follow Peano’s idea of choosing thc image (Oi’/}]ﬁzﬂg...,

05y,72y3...) of t=01.,ala2a3... (for some base b) in such a manner that a

change in a,,, @2 -.. won't affect f3, B, ..., and 74,72+, Vx> Where
k(n) / oo is a suitable integer valued function, to ensure continuity and so that
for any point (Ol.,b,bzbj,...,Oéc,czq,...)6[0, 113, the infinitely many equations

pi=b,7:=c,i=1,2,3,...,can be solved successively for @, a;, as, ..., to ensure
that the map is surjective.

0 N 1 0 1g 1
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F1G. 3. Generating a Hilbert-type space-filling curve.
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Reflections on the Emergence of Space-filling Curves

Thirdly, Hilbert’s construction may be modified by changing the order of the
subsquares as, for example in Fig. 3, or, by changing the number of subintervals
and subsquares each interval and square are partitioned into at every step of the
process, such as in Fig. 4 (which leads to Peano’s curve), or, by changing the shape
of the target set as we have illustrated in Fig. 5. [Sce also (16-19).]

With the square and, hence, all its continuous images revealed as continuous
images of a line segment, the question arose as to the characterization of such sets.
In 1913, this question was pondered by H. Hahn (20) and St. Mazurkiewicz (21).
[This paper, consisting of two parts, is not easily accessible and is written in Polish.
Those who read French are referred to (22) instead.] They arrived, independently
of each other, at the following complete characterization of such sets: A set is the
continuous image of a line segment if and only if it is compact, connected, and
locally connected. This theorem is now known as the Hahn-Mazurkicwicz theorem.
[For a more general version, see (23).]

Since compactness and connectedness are preserved under continuous mappings,
and since a continuous mapping on a line segment is a closed continuous mapping

0 Y. to W 1
3 9
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Fi1G. 4. Generating Peano’s space-filling curve.
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FiG. 5. Generating Sierpinski’s space-filling curve.

which preserves local connectedness, the necessity of thesc conditions is obvious.
It is not at all obvious that they are also sufficient. Hahn established the sufficiency
(20) by generalizing Peano’s construction of a space-filling curve. Fourteen years
later, he offered a simpler and more lucid proof (24) by generalizing Lebesgue’s
construction.
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Appendix

(I) The Cantor sct may be obtained from the closed interval [0, 1] by first removing the
middle third (1,2, then the middle thirds of what remains, namely (3,3 and (4,9, and
again the middle thirds of what is left, (35, 5), Gi» 37, (13,29, (3, 3), and so on ad infinitum.
(Scc also Fig. 6.) '

If all numbers in [0, 1] are represented in ternary form

05(1,(12(13(14 PR
where ;=0 or 1 or 2, then, by removing the middle third (3,7, all numbers
Oilaza,m ... arc removed except for 031 which we rewrite as 0.10'2. Next, we remove all
numbers 0301a,a4as...,052103a4a5..., except for 0301 and 0321 which wc rewrite as
0500.‘_’. and 05205, etc. Eventually, only those numbers are left that have a ternary rep-

resentation with 0°s and 2’s only and every such number represents an clement of the Cantor
sct.

0 2y, Tr 'n ¥y i 2557 1
L1 1 Lt Ly L
| T I
7 % By : 2y 20, 815 26457

F1G. 6. Generating the Cantor sel.
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(1) By construction, the Cantor set I can be covered by 2 closed intervals of length 1/3" |
each. These are the intervals that are left over after n consecutive removals of the middle l
thirds from what was left over after the preceding step. Since (2/3)” can be made arbitrarily (
small, I" has Jordan content 0 and, conscquently, Lebesgue measure 0. !,

(I1) Let reT, t.e.

2(I| 2(12 2[13 _
t==3 + 32 +33 +-+, aq;=0o0rl
In order to evaluate f;, as defined in (5), we observe that
2a,,_,  2ay
32k_21 = 2(1,32"'3+2a232"'4+ ver +2alk—2+ —'—az:; . + ;'22.( + .-
. a5, | 2ay
= cven integer+ 3 32
and we have from (6) that
0 ifay_, =0 !
U-24 k=1
PR {1 ifay_, =1
because (2a5/3%)+ Qay 3+ - < 1/3,1e.
pEe* i) =ay_\.
Consequently,
- Oy
=73 5 = 0,a,a5as. ..
k=1l
Similarly, we obtain
g, = Oiaza4a6 .
and we see that the mapping in (5) satisfies (4).
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