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THE PROJECTIVE CLASS GROUP TRANSFER INDUCED BY AN Sl—BUNDLE
Hans J. Munkholm and Andrew A. Ranickil

Introduction

This note gives an explicit algebraic description of the
geometric transfer map induced in the (reduced) projective class

groups by an Sl—bundle Sl——*—>E N S

Pk, Ko (Zlpl) ———> K, (Z[n])
with n=:nl(E), p=:ﬂl(B). This is the transfer map (l1.4) of the
preceding paper, Munkholm and Pedersen [4], to which we refer
for terminology and background material. In particular,

t €T is the canonical generator of the cyclic group ker(p,:m—»p)
represented by the inclusion Sl ——3»E of a fibre,
b Z["1] —"Z[7])/(t-1) =Z[p] s r—>T is the projection of
fundamental group rings induced by ps:m—»p, and
Z[n] —~—s Z[v] ; ¢ F———)rt is a ring automorphism determined
l(B;ZZ) such that (t-1)r=r

In the orientable case wl(p)= O, t€m is central and rt =r.

t

by the orientation class wl(p)e H (t-1).

Our main results are:

Proposition 2.1 The projection of rings ¢:Z[n] —»Z[p] gives

rise to an algebraic transfer map in the projective class groups
I — !
09 RlZIo]) —— Ky (Z[1]) i [im(X) e [im(x")] - [z [1]"]
Here XEEMn(Z[p]) is a projection (i.e. an nxn matrix X with
— — 1
entries in Z[p] such that X2= X) and X‘GI@Zn(Z[ﬂ]) is the
projection defined by

X® = e M. (Z["])
t-1 1-x° 2n
t

for any X,YEEMn(Z[n]) such that ¢(X)==§,X(1—X) =Y(t-1), XY =¥YX .
[]
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462 MUNKHOLM AND RANICKI

in the reduced projective class groups coincide, that is

if B,E are finitely dominated CW complexes

N Ro(Z[p]) —> Ky(z (1)) ;

with [B],[E] the Wall finiteness obstructions.

We should like to thank the Nassau Inn, Princeton for
the hospitality of its back steps.
*
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§1. Rings with pseudostructure

Let R be an associative ring with 1. We shall be using the
following conventions regarding matrices and morphisms over R.
Given (left) R-modules M,N let Hom, (M,N) denote the
additive group of R-module morphisms
f : M——>sN ; Xr—>f(x)
For m,n 21 let Mm,n(R) be the additive group of mxn matrices
X = {Xij) (ligm, lgjgn) with entries Xije R, and use the

isomorphism of abelian groups
M _(R) ——sHom_ (R",R"Y) ;
m, n R ! !

m m
X::(xi.)P~—»(f:(r1,r2,..,r ) — z rixil’i; r

J i2 i

to identify

_ m _n
Mm,n(R) = HomR(R ,R)
. m _n n _p
If the R-module morphisms f € HomR(R (R7), g€ HomR(R ,RY) have
matrices X = (Xij) e Mm,n(R>’ Y = (yjk) € Mn,p(R) the composite
R-module morphism
m £ n e P
gf : R R R ; r+——>g(f(r))
has the product matrix
- n
XYy = ('Z Xijyjk) € Mm,p(R)
j=1
The nx n matrix ring Mn(R) = Mn n(R) is thus identified with

the endomorphism ring HomR(Rn,Rn) of the f.g. free R-module rR"
of rank n, as usual.

A projection over R is a matrix Xetﬂn(R) such that

X(1-X) = 0 € Mn(R) '

so that im(X) € R" is a f.g. projective R-module with

im(X)®im(1-%x) = R"

and im(l-X) is a f.g. projective inverse of im(X). Let
P (R) = D(GMn(R)|X(l—X)=(ﬂ-§Mn(R)
denote the subset of Mn(R) consisting of projections. Every

f.g. projective R-module P is isomorphic to im(X) for some
X€ Pn(R)'
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A pseudostructure ¢ = {(a,t) on the ring R consists of an
automorphism
@ : R——>R ; r»——»rt
and an element t € R such that

tf -t , (el = r(e-1)

Let ¢ also denote the projection onto the guotient of R by the

two-sided principal ideal (t-1l) aR

4 1 R — R = R/(t-1) ; ¥ b——> 1
. 1 P . . 0= -
An S -bundle ST ~——>L[E —=—» B with p, = ¢:ﬂ1(E)— ﬂ~#~»ﬂl(B)~ 0
determines a pseudostructure ¢ = (a,t) on R = Z[n] with R = 7z o]

(cf. Munkholm and Pedersen [(31,[4]).
Let then (R,¢) be a ring R with pseudostructure ¢ = {(u,t).

A pseudoprojection over (R,¢) is a pair of matrices over R

(X,Y) € Mn(R) an(R)

such that
X(1-%) = v(t-1) , xv = vx* e M_(R)

where xt = a(X) = (xgj) € Mn(R). The pseudoprojection (X,Y) gives

rise to a projection over R

with X = ¢(X) = (§.. € M (R), and also to a projection over R

( > € Pzn(R) .

P (Rro) = {(X,Y¥) €Mn(R) x M_(R)

Let

X(1-X) = Y(t-1), X¥=yx"}

denote the subset of Mn(R) an(R) consisting of the

pseudoprojections over (R,d¢).

Proposition 1.1 Every projection X € Pn(ﬁ) over R lifts to a

pseudoprojection (X,Y) € Pn(R,¢) (non-uniquely), with ¢(X)::i.
Proof: Every matrix XEEMn(ﬁ) lifts to some Xefﬂn(R), with any two
such lifts X,,X, differing by

1772
Xl - XZ = W(t-1) € Mn(R)

for some W(Sﬂn(R). Thus 1if XEEMn(R) is a 1lift of a projection
Xe pn(k) there exists WGEMn(R) such that

X(1-%) = W(t-1) € M _(R)
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Define the matrix
X W
’ =<\t—l 1—xt> € Mon (R
Now
o wx®-xw
Z2(1-7) = (o . )e My (R)
so that (Z(l-Z))2 = 0 and
2% + (1-2)° = 1 - 22(1-2) € M, (R)
is invertible, with inverse
(22 +(1-2)%) 7t = 1+ 220-2) € oL, (®)
so that there is defined a projection
x' = 2%+ -0 52t e b, (R)
(The principal ideal (2(1-Z)) of the matrix ring M2n(R) is
nilpotent, and X!G P2n(R)CLM2n(R) is an idempotent ( = projection)
lifting the idempotent [Z]€IW2n(R)/(Z(l—Z))-cf. Bass {0,II1.2.10],
Swan [9,5.17]). Substituting the relation Z4 = 223— 22 we have
s (l+2Z(l—Z))22
i = (1+22)2°%-2(22° - 2%
= 322- 223 € PZn(R) '
with
x! -z = (22-1)2(1-2)
2%-1 2w < 0 th-xw>
) (2t—2 1—2xt> 0 0
0 (2x-1) (wx® - xw)
=<o o [S M2n(R)
Defining
Y = W+ (2% - 1) (WXt - xw) €M _(R)
we have

| < X b
X' = € P _(R)
t-1 1-x° 2n

Y(t-1), XY =vx". The projection X e P_(R)

with ¢(X) = X, X(1-X)

has been lifted to a pseudoprojection (X,Y) € p (R,0) .
n
(]

465
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—_ — | -
Given an R-module M let ¢ M be the R-module with the same
additive group as M and

[ 1—-
Rx ¢ M ——> ¢'M ; (r, x)k~——>r X .
An R-module morphism EEEHomﬁ(M,N) also defines an R-module
morphism
! I - ~. _—
6 f + ¢M——0N ; X t—3F(x)
Given a nseudoprojection (X,Y) € Pn(R,¢) define the f.g.

projective R-module P = im(X), and define the associated

| -
pseudoresolution of the restricted R-module ¢ P to be the

!
l-dimensional f.g. projective R-module chain complex C° with
1-X . \ X Y n
dC! = : Ci = coker (X' = e R @Rn«——éRn$Rn)
1-t t-1 1-X

—F— > C_ = R
i
The homology R-modules of C° are given by

1-X
. B
Hy(C) coker ( [ } : RP@R"Y ——R") = ¢°P ,

1-t
]
H(CT) = ker((t-1 1-x% : " — 5 rR70R") ,
and in many respects C is llke a f.g. projective R-module
resolutlon of ¢ P. However, C' is a genuine resolution of ¢~ P
(with H (C ) =0) if and only if t-1€ R is a non-zero- dlv1sor.

! —
By Prop051t10n 1.1 there exists a pseudoresolution C of ¢°P for

any f.g. projective R-module P. As for unigqueness, we have:

Proposition 1.2 Given pseudoprojections (X,Y) € Pn(R,¢),

(x',Y') € Pn,(R,¢) and a morphism of f.g. projective R-modules

£ : P = 1im(X) —>P' = im(X")
there is defined an R-module chain map of the associated

pseudoresolutions
1 ! 1
f°: C —C'
uniquely up to chain homotopy, such that
]

! - !_A. — ]
(f)**¢f.HO(C) fDP———-)HO( ch

! . .
The construction of f  1is functorial up to chain homotopy, with
1

! Lol
17 =1, (£'6)° = £'°f

up to chain homotopy. In particular, if EESHomﬁ(F,F') is an

. . ! ! L . \
isomorphism then £ : C° ——C'" is a chain equivalence.
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Proof: Let FGEMn n,(ﬁ) be the matrix of the composite R-module
morphism

n projection _ _ f _ inclusion n

F: R ——— % im(X) =P ———»P' = im(X') »—————>R

Choose a 1lift F%SMn n.(R) of F and define
’

. [ XFX' XFY' - yF'x't
o= e M |(R)
0 XtFtX't 2n,2n
such that
! ! ] I
LN T
X'F F X € M2n,2n.(R)
! 1 !
The R-module chain map f  : C°——C'" is defined by
l—xJ
! ol K ! At c! n
: = _ T =
C 1 = coker (X") 0 R
d ]
£° l [F) 1-X' XFX'
1-t L
C" Ci'"coker(X")———~———>Cb'==R
If Fi,F,€M . (R) are two different lifts of F there exists
GeEM  (R) such that
n,n
Fl = Fy = G(t-1) € Mn,n.(R) '

and the R-module morphism

I 1 ]
g° = [0 XGX'%] : Co =R —>C} " = coker (X'")

defines a chain homotopy

! 1 1
g fi zfé : CC— s C'’
| ! | 1
between the corresponding R-module chain maps fi,f':C'———é cs

If (X,¥) = (X',¥Y')€P (R,¢) and £ = 1 : P=im(X) —=>P = im(X)
then F:=X(3Mn(R) is a lift of the composite R-module morphism

L . projection inclusion

F =X :R P '
so that

. < X3 0 >
FTo= € M (R)
0 (Xt)3 2n
and the R-module morphism
1 1 |
h = [1+x+x% 0] : ¢} = R" —c! = coker(x')

defines a chain homotopy
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! !
h = f!~l,: c’——=C"
Given pseudoprojections (X,Y) € Pn(R,¢), (x',y") € Pn.(R,®),
(x",y") € Pn"(R,¢) and R-module morphisms

f: P=im(X) —>P' = im(X') , £' : B' = im(X') —P" = im(X")
let - _
L S £
f" = f'f : p —»pP' ——> p"
be the composite R-module morphism. If Fetﬂn n,(R) and

F'eM , .(R) are 1lifts of the composite R-module morphisms
n',n

L o F
F : R » P p' R
' V‘fl 1"
LI L . R"
then the product
2
F" = FX'"F' € M W (R}
n,n
is a 1ift of the composite R-module morphism
B B - i:_n B o
F" : R > D 5 p" > R"
such that
] ! !
- ! 1
. i F'F e Azn,zn”(R) ’
and so
! !
! [ ! £ ! £ !
£" = f'fFf° . C —> c'- "?C“
(]
§2. The projective class transfer
Proposition 2.1 Given a ring R with pseudostructure ¢ = (a,t)

there is defined an algebraic transfer map in the projective

class qroups

! - o n
bq Ko (R) ———> K (R) [Pl pb—> [im(X") ] = [R}
cending a f.a. projective R-module P = im(X) (X € Pn(ﬁ)) to
the projective class [C'] = [im(x')] = [RT] € K (R) ((X,¥) €P (K,9))

of any pseudoresolution C! of QEP. If P is a (stably) f.g.
— I —
free R-module then ¢é([P]) = 0 € KO

defined an algebraic transfer map in the reduced projective class

(R), so that there 1is also

groups

Go ¢ Ro(R) K (R) 5 [P (im(x")]
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Proof: Given a f.g. projective R-module P use Proposition 1.1
to 1lift a projection XEEPn(ﬁ) such that P = im(X) to a

I ]
pseudoprojection (X,Y) € Pn(R,¢), and let C° : im(X') —>R" be the

I
corresponding pseudoresolution of ¢ "P. Up to R-module isomorphism

im(x')@coker (x') = im(x')®im(l-x') = rRZ" ,
so that
(c'l = [R"] - [coker(x')]
= limx) ] - R = ol (1B1) € K, (R)
An element of Ko(ﬁ) is the formal difference [P] ~ [P'], for some
f.g. projective R-modules P = im(X), P' = im(X'). Now
[P] - [P'] =0 € KO(E) if and only if there exists an R-module

isomorphism f : P&Q —~>P'®0 for some f.g. projective R-module 0,
in which case Proposition 1.2 gives a chain eguivalence

£' et 25t of the corresponding pseudoresolutions of ¢ B,6 B'.
As the projective class of a chain complex is a chain homotopy

invariant it follows that

! D D - ! _ ! _
o (Bl - [P']) = (c'1-(c''1 =0 ek (R ,

! —
and so ¢6:KO(R)———+ KO(R) is well-defined.

For P = R take X = 1 € P (R), (X,¥) = (1,0) € P_(R,0),
so that the projection
! 1 © N, N Ng.n
X" = : R ®BR ——> R ®R
t-1 O
has im(X!) ¥ R" and so
forsn _ n, _ n, _
oo ([R7]) = [R"] - [R"] = 0 € K (R)

Thus aézio(ﬁ)-—+RO(R) is also well-defined.

The original algebraic description in terms of matrices

of the Whitehead group Sl—bundle transfer map
~ 1
* = * .
Pl ¢l : Wh(p) ———> Wh(m)

due to Munkholm and Pedersen [3] was reformulated by Ranicki
[6,§7.8] in terms of the theory of pseudo chain complexes.
We shall now recall this theory, and show how it applies tc the

projective class group Sl—bundle transfer.
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Given an R-module M let Mt denote the R-module with the

same additive group and

R><Mt-———e-Mt : (r,x)k———>r_tx ,

where a_l:R<—Z;>R;rb-—>r_t is the inverse of the ring
automorphism a:R-—2—+R;r»———>rt in the pseudostructure ¢ = (u,t).

An R-module morphism f € Hom_(M,N) also defines an R-module

R
morphism

t t t

f" : M ——— N ; X ——> f(x) ,
such that

Fle-1) = (e-1)£C:mP — o N

with t—lt?HomR(Mt,M) defined by

t-1 : Mt——)M ;X —tx - x

For M = R" use the R-module isomorphism

_t ~ n t t t

M- —= SR ; (rl,rz,..,rn)r——-%(rl,rzr--,rn)
to identify Mt = R", so that t-1€ HomR(Mt,M) has matrix t—lEEMn(R).
If £ € Hom (Rm,Rn) has matrix X= (x..) € M (R) then

R 13 m,n
t m, t n,t, _ m .n . t_ t
f elka((R ) LS(R) ) = HomR(R ,R") has matrix X = U%j) eMm,n(R)’

A pseudo chain complex over (R,¢) C = (C,d,e) consists of

a collection of R-modules {Cr|r;.o} and two collections of
t

R-module morphisms {dEZHomR(Cr,Cr_l)lr; 1}, {eGEHomR(Cr,Cr_2)|r;2}
such that
a% = (t-l)e : C_——>C % = ed : ¢ ——>ct
r r-2 ' " r-3

Note that ¥ determines an R-module chain complex C with

dE = 1Rd : Cr = R@Rcr——9<3r_l = R@Rcr_l; aRx ——yalRd(x)
and an R-mocdule chain complex C1 with
a.l ( a (_)re
ol =
(-)f(e-1) &t
c' =coect  ——sc! . =c ect
r r-1 r-1 r-1""r-2 '
(x,y) —>{(d(x) + (-)r(t—l)(y), (-)re(X)‘fdt(Y))

Proposition 7.8.8 of Ranicki {61 associates to an Sl—bundle of

CW complexes Sl————§E P yB with Pe = ¢ ¢ my(E) =71 —»mn (B) =p
a pseudo chain complex ﬁ(p) = (C,d,e) over (ZI[n]l,¢) with Cr (r» 0)

the f.g. free Z[mn]-module of rank the number of r-cells in B,
such that the cellular chain complexes of the universal covers B,E

of B,E are given by
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c(B) =¢C, c(E =c'
If B is finitely dominated then so is E, and the Wall finiteness
obstructions are given by the reduced projective classes
(B) = [C(B)] = [C] € Rp(zlp))
[E] = [C(E)] = [C"] € K
The geometric transfer map p¥% {RO(Z[Q})-———+ R (zZ{n]) is defined

¢ gsenetric transfermes K, 0
P§O([B]) = [E] € RO<Z[W}) '
so that it will follow from the identification p?o = $é in §4
below that
[c') = () = (E] |
= P§O([B]) = 56([C]) € RO(Z[W])

In Ranicki [8] it will be shown algebraically that for any
finitely dominated pseudo chain complex E = (C,d,e) over a ring
with pseudostructure (R,d¢) the algebraic transfer map

1 — —_ —
¢6: KO(R)———~>KO(R) sends the projective class [C] € K.(R) to

0O
66 (1C1) = [C') € K (R)

~1
(which will give an alternative proof of pﬁ = @6 on setting
R = Z[ﬂ],fﬁ =B (p)). At any rate, for any 8seudoprojection
(X,Y) € Pn(R,¢) there is defined a finitely dominated pseudo

chain complex E==(C,d,e) over (R,¢) with

- pn _ ph
TR Gy TR TGy =R
d = N L (130
K2 Coyap =R —>Chyy = R
e=Y:Cj=Rn———)C§_2=Rn (3% 2)
for which
(C] = [im{X)] € Ky(R) ,
! . ! [
(c’] = (im(x")] - [R") = ¢ ((C]) € K,(R)

1
Note that C° is an infinite f.g. free R-module chain complex which
1
is chain equivalent to the f.g. projective pseudoresolution C°
! —_
of ¢ (im (X)) associated to (X,Y) € Pn(R,¢) in §1 above.

In the case when t-1 € R is a non-zero-divisor (which for a
group ring R = Z[n} is equivalent to t €1 being of infinite order)
¢l§ is an R-module of homological dimension 1, with a f.g. free
R-module resolution

t-1 ®
0 > R > R ¢°R 0
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— -— |
If P is a f.g. projective R-module then ¢ P is therefore an
R-module of homological dimension 1, with a f.g. projective
resolution
I
0 Py Py ¢ P 0
The classical transfer map in the projective class groups is

defined by

1 —- —
67 1 Ky (R) ——> KO(R) H [P]k~——?[PO] - eyl
and this definition extends by the Bass-Quillen resolution

theorem to transfer maps in the higher K-groups

! —_—
¢+ R (R) ——K_(R) (m»1)
(More generally, the classical methods give transfer maps
i — —
¢ :K,(R) —> K, (R) for any morphism of rings ¢:R ——>R such that

1 —
¢ R is an R-module of finite homological dimension).

Proposition 2.2 If (R,¢) 1s a ring with pseudostructure such that

t-1 €ER is a non-zero-divisor the projective class group transfer

i
map ¢6 defined above agrees with the classical transfer map
I 1

Cbo = ¢ : KO(R) ————"KO

! ! —.
Proof: In this case the pseudoresolution C° of ¢ (im(X))

(R)

associated to a pseudoprojection (X,Y) € Pn(R,¢) in §1 above is a

!
l-dimensional f.g. projective R-module resolution of ¢ (im(X))

O«——~4>coker(X!) —»R" e A¢!(im(§’())"“*>0 ’
so that
op(1im(R) 1) = (€' = o' ([in(X)]) € Ky(R)
(]
For a group ring R = Z[n] the identification
6é=:$! KO(Z[Q])—AA—>?O(Z[N])given by Proposition 2.2 may also

. . . . . . . ~ !
be obtained by combinina the identifications ¢é::p§ of §4 and
0

1
p? = ¢ of Munkholm and Pedersen [2].

In Proposition 3.2 below the algebraic Sl—bundle transfer
map ¢i: Kl(ﬁ)———)Kl(R) of Munkholm and Pedersen [3] in the case
when t-1 € R is a non-zero-divisor will be similarly identified
with the classical transfer map ¢!: Kl(ﬁ)—«T+Kl(R); It would be
interesting to know if the definitions of ¢6 and ¢i extend to

alaebraic transfer maps in the higher K-groups

!

0p @ K (R) ——K_(R) (m32)
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. .. I=
in the case when t-1€ R 1s a zero divisor, so that ¢'R is an
R-module of infinite homological dimension and the classical

methods fail.

§3. The Whitehead torsion transfer

The Whitehead torsion transfer map of Munkholm and Pedersen

[3] was defined for any ring with pseudostructure (R,¢) to be

X -z
! — —
¢1 : Kl(R)——w——>Kl(R) : T(X)F——)T( t)
t~1 Y
with X€M_(R) a lift of X € GLn(ii) and Y,z€M_(R) such that
XY =1 - 2(t-1) € M_(R)

In Ranicki {6,§7.8] ¢i(r(§))e K, (R) was interpreted as the

torsion T(C!) of the based acyclic R-module chain complex
X
e oxt ()
! n toe ) N, N £l n
¢ : R —— > R®R —>R

associated to the pseudo chain complex}t==(C,d,e) with

d=X:C =R —=>Cy=R",C =01(ry2),e=0,
for which
T(C) = T(X:R"—=>R") € Ky (R)
1 — ]
(The identification ¢i(T(X)) = 1(C") € Kl(R) is immediate from the

-2
observation that ( t): R"6R" —» R” is a splitting map for
Y

& . R"y— 5 R"@R"). It will be shown in Ranicki [8] that for

(1-t X
any finite pseudo chain complex ¥ = (C,d,e) over (R,¢) with each

— 1
Cr (r y O) a based f.g. free R-module with C (and hence C°) acyclic

9 (1(C)) = t(C') €Ky (R)

!
We shall now interpret ¢i in terms of the pseudoresclution
!
construction (X,Y)———>C" of §1.
Proposition 3.1 The Whitehead torsion transfer map

1 _
67 © Ky (R) —> Ky (R)
sends the torsion 1(f) € Kl(ﬁ) of an automorphism TGSHQmﬁ(ﬁ,ﬁ)
of a f.g. projective R-module P to the torsion
|

o t(E) = teh) ek (R)

1 i | !
of the induced self chain equivalence f ' :C —>C°, with C° the
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pseudoresolution of ¢!f associated to any pseudoprojection
(X,¥) € P_(R,¢) with P = im(X).

Proof: Stabilizing f by 1€ Homﬁ(im(l—x),im(l-X)) it may be
assumed that P = R" is a f.g. free R-module, and

I -
(X,¥) = (1,0) €P_(R,6), so that C : RN 17t gP.

1f fe Autﬁ(ﬁn,ﬁn) has matrix X €GL_(R) then

, S T
c' i R —— R
flll J{xt lx
A
¢’ : R" ——R

By analogy with Proposition 2.2:

Proposition 3.2 If t-1€R is a non-zero-divisor the Whitehead

1
torsion transfer map ¢i agrees with the classical transfer map

601 = 0+ Ky (R) ——K) (R)
Proof: Given an aut?mor?hism ?GSAutﬁ(ﬁn,ﬁn) note that the self
chain eguivalence f : C° —~»C’ defined in the proof of
Proposition 3.1 is a resolution of the automorphism

f= I=n , lon
0 feAutR(q) R ,¢ 'R ), so that

$1(t(B) = T(E) =0 (T(D) € K (R)
{1
For a aroup ring R= Z{n] the identification

~ !
¢i: ¢  : Wh(p) —>Wh(n) given by Proposition 3.2 may also be

. . . . . . . ~
obtained by combining the identifications ¢i of Munkholm and

- = Phn
Pedersen [3] and p§h= ¢  of Munkholm [1].

In §4 we shall make use of the following relation between
the projective class group transfer ¢é: Ko(ﬁ)———%-KO(R) for a
ring with pseudostructure (R,9), the Whitehead torsion transfer
(% x l)i: Kl(ﬁ[z,z—l])————)Kl(R[z,z—l]) for the polynomial
extension ring with pseudostructure (R[z,z~l],¢x 1) and the

canonical Bass-Heller-Swan injections
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hy ¢ Ko(R)>—> K (Rlz,27 1)) ; [Pl—>1(2z:P[2z,2 1->P(z,2 1))

and hﬁz KO(§)>—~—5 Kl(ﬁ[z,z_l]) defined similarly.

Proposition 3.3 There is defined a commutative diagram
1

_ 0
KO(R) > KO(R)
bz br
(6x1);
= -1 -1
K (Rlz,z ])——-——%Kl(R{z,z D)

Proof: Given a f.g. projective R-module P let (X,Y) € Pn(R,¢) be a
_ —_— 1
pseudoprojection such that P=im(X), and let C° be the
| —
corresponding pseudoresolution of ¢ P. Now

= -1

(6x1) {hg (1B]) = (ox1)] (t(2:B(z,2 1) —25Blz,27 1))

= T(z:Cl[z,z—l]~£L§C![z,z_l]) (by Proposition 3.1)

Rlz,z 1]) ,

! B [
= ho(ICT]) = heg([B]) € Ky (

so that (¢XI)ihﬁ = hR¢é-

§4. The algebraic and geometric transfer maps coincide

Let Sl——-—a E ——~E——5B be an Sl—bundle with

Py = ¢ : nl(E) =T ——~»nl(B) = p, and let (R=Z[n],¢) be the

corresponding ring with pseudostructure.

Proposition 4.1 The algebraic and geometric transfer maps in the

reduced projective class groups coincide, that is
t = p* . K R
b = P o KolZ[p]) ——K (Z[7])
Proof: We offer two proofs, in fact.
i) Given a pseudoprojection (X,Y) € Pn(Z[n],¢) and a
number m » 2 the proof of Theorem F of Wall [10) gives an Sl—bundle
of CW pairs

st — 5 (e,p) D (g, x)

with K finite and B finitely dominated, such that nl(B) =nl(K) =p
and such that the relative pseudo chain complex Z(p,q) = (C,d,e)
is given by
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21+1 21 U-;m)
Critz—C2in1
¢ —>ct (ry 2m+2)

The finiteness obstruction of B

of C(B) = C) is given

[B

and that of E by

so that

]

ii) Consider the

by

Corollary 2.3 of Munkholm and Pedersen [4]

h

Eo(zz[n}) <<————TY——Wh(nx?Z)

pX
. Ko

KO(

in which Hﬂ (resp. hp) is the canonical Bass-Heller-Swan

surjection (resp.

h

* =
(Px1) %,

Z{p}) ——Wh(pxZ)

injection).

x1)in = h 3
(px )l o " %or SO that

pr =t
Ko

1]
>

m

—~~

(ox

1

1

"

h

§5. The relative transfer exact sequence

A ring morphism ¢:R ———>S induces morphisms in the

alagebraic K-groups

¢! : KO(R)-~—>K
o, ¢ Kl(R)—~—>Kl(S) ;T X)) =Tt (o (X)) XGGLn(R)

which are related by a change of rings exact sequence

¢ ]
K (R) ——3 K (8) ———> K (§,) ——> K, (R) ————> K, (5)

0

(s)

4

ol

= [im(X)] € Ky(Z[o1)
! ~
) = lim(xh)] e Ry(zln))
|
fim(x*)]
o ([im(X) 1) = G ((B]) € Ry(z(nl) -

commutative diagram preceding

(&)

From Proposition 3.3 we have

i [Pl——>[0,P] , ¢ P =

d
O

¢,

(= the reduced projective class
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with Kl(¢,) the relative K-group of stable isomorphism classes of
pairs (P,f) consisting of a f.g. projective R~module P and an
S-module isomorphism f : ¢ P —2 55", with (R",1) =0 ¢ K, (¢,) and

J ¢ K (S) —— Ky (¢,) i t(2)—>(R",2) , 2€GL (8)
8t Ky(9,) ——>Ky(R) ; (P,f) ——> [P] - [R"]

We shall now obtain an analogous exact sequence for the

transfer maps
! . . !

= 0 J ! o = %
K, (R) > K, (R) K, (¢ )-——~——>—KO(R)———~—> Ky (R)

relating the projective class group transfer ¢O of §2 to the
Whitehead torsion transfer ¢l of §3.

A base (S,T) for a pseudoprojection (X,Y) € Pn(R,¢) is a

pair of matrices

S
(71 =
S —( )e M2n,m(R) , T = (Tl T2) e Mm,2n(R)
S
2
with Sl,SZEBMn'm(R), Tl,TzéEMm,n(R) such that
!
ST = X° € M2n(R) , TS =1 ¢€ Mm(R)
The factorization of R-module morphisms
T = (T, T,)
! X v n,.n SZ m L2 n,.n
X" = £ ] R ®R » R » ROR
t-1 1-X

shows that a base (S,T) of (X,Y) determines a base (in the usual
|
sense) of the f.g. projective R-module im(X') c RV@&R" consisting of

!
m elements. Conversely, if im(X') is a f.g. free R-module of rankm

1
then a choice of base for im(X') determines a factorization
! | oI o S m T n,,n
X" ¢ R® R ———» R »————3 R BR

with S onto and T one-one; it follows from the identity

S(TS-1)T = ST(ST - 1)

X'(X"-1) = 0 €M

]

Zn(R)

that TS = 1 € Mm(R), and so (5,T) defines a base of (X,Y). There is
thus a natural one-one correspondence between the bases (S,T) of
the pseudoprojection (X,Y) and the bases of the f.g. projective
R-module im(X!), if any such exist. In dealing with bases of

pseudoprojections we shall assume that (R,4$) satisfies the
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following two conditions:

i) f.g. free R-modules have a well-defined rank,

t)t is an inner automorphism of R,

ii) 2: R 2> B;r——> (T
in which case m = n for any pseudoprojection base (S,T): by i)
[R] € Ko(ﬁ) generates an infinite cyclic subgroup of KO(E)' and by
ii) @, : Ko(ﬁ)—ii—>Ko(§); [P]+——> [PY] is an involution of Ko(ﬁ)
fixing [R], so that if (S,’I‘)et\12n’m(R)><Mm,2r1

the pseudoprojection (X,Y) € Pn(R,¢) the f.g. projective R-module

(R) is a base for

P = im(1-X) is such that up to R-module isomorphism

B = ¢, (im(x')) = imGept , E" = im(XeP

and it is clear from the action of 5, on the identity

—m —
] - [R7] € Ky(R)

that m=n. In particular, the conditions i) and ii) are satisfied

(P} - [P"] = [R

by the group rings with pseudostructure (R= Z[w],¢) arising in

topology.
A based pseudoprojection (X,Y,S,T) is a pseudoprojection
(X,Y) € Pn(R,¢) together with a base (S,T)eiﬂzn,n(R)><Mn,2n(R).

Given such an object define the associated based pseudoresolution

1 —
of the R-module ¢  (im(X)) to be the l-dimensional based f.g. free
R-module chain complex
S
! n 2 n
D : R ———>R
which is chain equivalent to the projective pseudoresolution C! of
1 —
¢ (im(X)) associated to (X,Y) in §l. Explicitly, a chain

1 |
equivalence C° —=—D" is defined by

(l—x
{1-t
! ! n
C coker(X') ————>R
Y
S XS.+YS
j/ H’Xt} 52 l P
1
D : R" - R"
t
(This is the composite C° —= ,B! ~ ,D! of the chain eguivalence
, .-t .
C” : coker(X’') —>R
¥ ] (X Y]
S
_xt .
{t-1 1-X7]
! n ! 1
B : R » im (X ")

(defined for any pseudoprojection (X,Y)) and the chain isomorphism
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A morphism of based pseudoprojections over (R, ¢)
f @ (X,Y,8,T) —>(X',¥',s8',7")
is just a morphism of the associated f.g. projective R-modules
fooim(X) ——— im(X")
Replacing the projective pseudoresolutions C!,C'! in the

construction of Proposition 1.2 by the chain equivalent based

| |
pseudoresolutions D°,D'" there is obtained an R-module chain map

i ! !
£ +: D°—>D'"

inducing the R-module morphism

(£, = ¢'F : oY) = ¢ (im(X) —— H (') = o (im(@)

|
uniquely up to chain homotopy. More precisely, f  is defined by
S

! n 2 n
- D : RP————— 1R
1
ffl lXFX' iTF's
Sl
H 1 1
D't R 2 gD

with FeMn n.(R) the matrix of any R-module morphism
1 —
Fe HomR(Rn,Rn ) lifting the composite R-module morphism

_ —n projection _ £ _ injection —n
F R » im(X) > im(X') »————> R

and
. XFX' XFY' - YFCX'
F~ = ¢

x't

t
e M v (R)
0 XtF ) 2n,2n

N
as before.

An isomorphism of based pseudoprojections is a morphism
£ (XY,8,T)——>(X',¥',8',T")
which is defined by an R-module isomorphism f € Homﬁ(iﬁ(i),im(i‘)),
in which case f!: D!—JZ—~+D'! is a chain equivalence of based
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T(f) = t(£ Dt —2 DY) € K, (R)

1
In general, the torsion is an invariant of f but not of f.
However, if f is an automorphism (i.e. (X,Y¥,5,T) = (x',y',s'",17'))

then the torsion T(f:im(X)-—> im(X)) € K (R) is defined, and

Proposition 3.1 shows that

1
Define the relative transfer group Kl(¢') to be the abelian

group with one generator for each simple isomorphism class of

based pseudoprojections (X,Y,S,T) over (R.¢), with relations

!
(X,Y,8,T) + (X',Y',8',T') = (X@X',Y®Y',3865',T06T") € Kl(d;')

1
Proposition 5.1 The relative transfer group Kl(¢') fits into an

exact sequence
1 !

_ ¢ 3 9 ~ ¢
K (R by K (R) s K (8)) o> K (R) 5 K (R)
with .
o0 K (R Ky (01)
O

T(Z)F~———%(O,O,< >,(Z—l(t—l) Z_l)) (z € GLn(R))

Z

ot K (6 —— K (R) 5 (6,¥,8,T) > [in(X)]

0

Proof: If P,0 are f.g. projective R-modules such that
— - 1 -
[P] - [Q] € ker(¢o~KO(R)———_?KO(R))
let -0 be a f.g. projective inverse for 0, so that 08-Q = R is a

f.g. free R-module, and let (X,Y) €P_(R,¢) be a pseudoprojection
such that P®-0 = im(X). Now

[im(x')] - (R"] =

]y = 0 € K4(R)

! —_ -
so that im(X') is a stably f.g. free R-module. Stabilizing P,Q
. . . (I
if necessary it may be assumed that im{X') is an unstably f.g.

= ¢5(1P1 - [Q] + IR

free R-module. Choosing a base (S,T) for (X,Y) there is obtained
an element (X,Y,S,T) - (1,0,(t%l>,(1 0) € K (o} (1ecL (R)
such that
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[P] - [0] = [P®-0] - [R™]

m

[im(X)] - [R]
1
d((XIYISIT) - (llol (t‘l)’(l O)))

€ im(d:Kl(cbl)—%Ko(ﬁ)) ’

verifyina exactness at K. (R).

o!
If (X,Y,S,T),(X',Y',S8'",T') are based pseudoprojections
such that

(X',¥',8',T') - (X,Y,S,T) € ker(a:xl(cp!)-_)Ko(i))
there exists a (stable) isomorphism
f : (X,Y,8,T) —%»(x',¥',S8',T")
The torsion t(f) € Kl(R) is such that

(X'IY'IS'IT') - (XIYISIT) = J(T(f))
€ im(J:K; (R)—>K  (¢7))

1
verifying exactness at Kl(¢').

If Z€GL_(R) is such that T(z) eker(j:Kl(R)——»Kl(q;!))
there exists a based pseudoprojection (X,Y,S,T) with a simple
isomorphism

f: (X,Y,8,T)®jt(2) > (X,Y,S,T)

The automorphism of based pseudoprojections
g : (X,Y,S,T) —/—V—‘—)(XIYISIT)

defined by the automorphism fesHomﬁ(im(i),im(i)) is such that

w(z) = t(gh) = ¢ (t(D)

€ im(¢' K

i: R)———)Kl(R)) ’

1

verifying exactness at K, (R).

1

For the group ring with pseudostructure (R=Z([7n],¢)
associated to an Sl-bundle Sl——» E—E 3B with
Py = ¢ 2 T (E) = m—>7,(B) = p , R=2Z[p] there is also defined a
reduced version of the exact sequence of Proposition 5.1

~1 ~ ~ !

h ]_ ] ! 3 ~ 50 ~
Wh(p) ——— Wh(1) —>Wh(¢ ) —> Ko (Z[p]) —> Ky(Z[n])
in the Whitehead and reduced projective class groups, with Wh(¢!)

defined by
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! 1 . 1
Wh(é") = Kl(¢')/3(in)+(l,0,<t_l>,(l 0))
See Ranicki [7,§7] for the geometric interpretation of this

sequence.

Appendix: Connection with L-theory

We note the following connection between the algebraic

K-theory Sl~bundle transfer maps

~1 = = ~1 )
b5 ¢ KO(Z[D])—HKO(EM]) I Wh(p) —> Wh(m)
and the algebraic L-theory Sl—bundle transfer maps of Munkholm

and Pedersen [3],[4] and Ranicki [6],1{8]

' X $r;(x)
@I; : Ln(o)~——> Lo+ (m) (m = 0 or 1)

which are defined for duality-invariant subgroups XQ??O(Z[p])
(m=0) and XCWh(n) (m=1). (The geometric interpretation of @L
for m=1 in terms of finite surgery obstruction theory extends
to m=0 using the projective surgery obstruction theory of
Pedersen and Ranicki [5)}). The duality involutions on the

algebraic K-groups are defined by
* o Ko(zn]) ——Ky(z(n]) 5 [in(X) ) b [im(X*) ]
* : Wh(m) ——>Wh{m) ; T(X)+———>1(X%*)

* : Whid ) ——>wWh(oh) ;

81 ~1,, (78T
(X,Y, (T, T,)) > —(1-X*,-t 7Y%, , (-tS% S¥))
S 12 . 2 "1
T
2 1
using the group ring involution
-1

* .oz —> &) ;) ongE—> ) w(g)ngg (w=orientation)

gem 9 g€n

and the corresponding matrix ring involutions

* o Mn(Z[TT])———>Mn(ZZ[Tr]) ; X = (xij);—»x* = (xa«i)

The maps in the exact sequence of §5

[ 3 GO9S e
Wh(on) s Wh () >Wh(¢ ) —>K

o

are such that
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The short exact sequence of Z[Z ., ]-modules

2]

~ 3 0 ~
0 ——> coker (§;) ——> Wh($') ——>ker (§))—— 0

gives rise to connecting maps in the Tate Zz—cohomology groups

op = 6 ¢ BNz yiker (3)) ——> "z, i coker (3]))

which appear in a transfer map of generalized Rothenberg exact

sequences

h kerfs ~n ! h
...——a—Ln(p)———7 Ln (p)——>H (Zz;ker¢o)——~>Ln_l(p)————>...

! i ! !
q)L ¢L <pH d>L

.oo)
imdy h

1
.——>Ln+l UU——aLn+l

~n+ ~1 .
(1) ——H" (Z,icokerdy) —> L~ ~(m)—> ...

In particular, for the trivial Sl—bundle E =B XSl, T = pxXZ ,t =2,
~
¢$ =0 (m = 0,1) and the exact sequence
] T
O —> Wh(pxZ) —> Wh(¢ ) ——> K (Z[p]) —> 0

is split by the map

~ ~ I
I Bg(Z[p))y——>Whio') ;
% -1 -1
[im(X) ] — (X, 0, (2 7(1-X)=-1 -z “(1-X))) ,
X-z
which is related to the duality involutions * by
i - *% = Fhr s R(Zp)) —>Wh(eh)
with

h' Ro(z[ol)»———-4Wh(px2); [im(X) ] —3 T (=2X+1-X)

The transfer map in this case consists of split injections

h P an L h
oL _(0) —> Ln(o) —>H (Zz'Ko(Z[”]))”—’Ln—l(p)”—‘)"

! ! Yo~y !
I‘bL I CbL I‘bH =h I ¢‘L
DL (x> (oxz) > Bz s un (0x2) ) —> 1P (oxz) >

although not the standard such injections - see Ranicki [7] for

a further discussion.
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