Canadian Mathematical Society Conference Proceedings Volume 2, Part 2 (1982)

THE PROJECTIVE CLASS GROUP TRANSFER INDUCED BY AN S1-BUNDLE

Hans J. Munkholm and Andrew A. Ranicki1

Introduction

This note gives an explicit algebraic description of the geometric transfer map induced in the (reduced) projective class groups by an S^1 -bundle $S^1 \longrightarrow E \xrightarrow{p} B$

$$\mathbb{P}_{K_{\mathbb{O}}}^{\star} : \ \widetilde{K}_{\mathbb{O}}(\mathbb{Z}[\rho]) \longrightarrow \widetilde{K}_{\mathbb{O}}(\mathbb{Z}[\pi])$$

with $\pi=\pi_1(E)$, $\rho=\pi_1(B)$. This is the transfer map (1.4) of the preceding paper, Munkholm and Pedersen [4], to which we refer for terminology and background material. In particular, $t\in\pi$ is the canonical generator of the cyclic group $\ker(p_*:\pi\longrightarrow\rho)$ represented by the inclusion $S^1\longrightarrow E$ of a fibre, $\phi:\mathbb{Z}[\pi]\longrightarrow \mathbb{Z}[\pi]/(t-1)=\mathbb{Z}[\rho]:r\longmapsto r$ is the projection of fundamental group rings induced by $p_*:\pi\longrightarrow\rho$, and $\mathbb{Z}[\pi]\longrightarrow\mathbb{Z}[\pi]:r\longmapsto r^t$ is a ring automorphism determined by the orientation class $w_1(p)\in H^1(B;\mathbb{Z}_2)$ such that $(t-1)r=r^t(t-1)$. In the orientable case $w_1(p)=0$, $t\in\pi$ is central and $r^t=r$.

Our main results are:

Proposition 2.1 The projection of rings $\phi: \mathbb{Z}[\pi] \longrightarrow \mathbb{Z}[\rho]$ gives rise to an algebraic transfer map in the projective class groups

$$\phi_{O}^{!} : \kappa_{O}(\mathbb{Z}[\rho]) \longrightarrow \kappa_{O}(\mathbb{Z}[\pi]) ; [\operatorname{im}(\overline{X})] \longmapsto [\operatorname{im}(X^{!})] - [\mathbb{Z}[\pi]^{n}] .$$

Here $\overline{X} \in M_n(\mathbb{Z}[\rho])$ is a projection (i.e. an $n \times n$ matrix \overline{X} with entries in $\mathbb{Z}[\rho]$ such that $\overline{X}^2 = \overline{X}$) and $X^! \in M_{2n}(\mathbb{Z}[\pi])$ is the projection defined by

$$X^{!} = \begin{pmatrix} X & Y \\ t-1 & 1-X^{t} \end{pmatrix} \in M_{2n}(\mathbb{Z}[\pi])$$

for any $X,Y \in M_n(\mathbb{Z}[\pi])$ such that $\phi(X) = \overline{X}, X(1-X) = Y(t-1), XY = YX^t$.

¹⁹⁸⁰ Mathematics Subject Classification. 57Q12, 18F25.

¹Partially supported by NSF grants.

<u>Proposition 4.1</u> The algebraic and geometric transfer maps in the reduced projective class groups coincide, that is if B,E are finitely dominated CW complexes

$$\begin{split} \widetilde{\phi}_{O}^{!} &= p_{K_{O}}^{\star} : \ \widetilde{K}_{O}(\mathbb{Z}[\rho]) \longrightarrow \widetilde{K}_{O}(\mathbb{Z}[\pi]) \ ; \\ [B] &\longmapsto \widetilde{\phi}_{O}^{!}([B]) = p_{K_{O}}^{\star}([B]) = [E] \end{split}$$

with [B],[E] the Wall finiteness obstructions.

[]

We should like to thank the Nassau Inn, Princeton for the hospitality of its back steps.

Contents

- §1. Rings with pseudostructure
- §2. The projective class transfer
- §3. The Whitehead torsion transfer
- §4. The algebraic and geometric transfers coincide
- §5. The relative transfer exact sequence

Appendix: Connection with L-theory

References

§1. Rings with pseudostructure

Let R be an associative ring with 1. We shall be using the following conventions regarding matrices and morphisms over R.

Given (left) R-modules M,N let $\operatorname{Hom}_{\mathbb{R}}(M,N)$ denote the additive group of R-module morphisms

$$f : M \longrightarrow N ; x \longmapsto f(x)$$
.

For $m,n\geqslant 1$ let $M_{m,n}(R)$ be the additive group of $m\times n$ matrices $X=(x_{i\,j})$ $(1\leqslant i\leqslant m$, $1\leqslant j\leqslant n)$ with entries $x_{i\,j}\in R$, and use the isomorphism of abelian groups

$$\begin{array}{c} \underset{m,n}{\mathbb{M}}(\mathbb{R}) \xrightarrow{\sim} \underset{Hom_{\mathbb{R}}(\mathbb{R}^m,\mathbb{R}^n)}{\longrightarrow} (f:(r_1,r_2,\ldots,r_m) \longmapsto (\sum\limits_{i=1}^m r_i x_{i1},\sum\limits_{i=1}^m r_i x_{i2},\ldots,\sum\limits_{i=1}^m r_i x_{in})) \\ \end{array}$$

to identify

$$M_{m,n}(R) = Hom_{R}(R^{m}, R^{n})$$
.

If the R-module morphisms $f \in Hom_R(R^m, R^n)$, $g \in Hom_R(R^n, R^p)$ have matrices $X = (x_{ij}) \in M_{m,n}(R)$, $Y = (y_{jk}) \in M_{n,p}(R)$ the composite R-module morphism

$$gf : R^{m} \xrightarrow{f} R^{n} \xrightarrow{g} R^{p} ; r \longmapsto g(f(r))$$

has the product matrix

$$XY = (\sum_{j=1}^{n} x_{ij} y_{jk}) \in M_{m,p}(R) .$$

The $n \times n$ matrix ring $M_n(R) = M_{n,n}(R)$ is thus identified with the endomorphism ring $Hom_R(R^n,R^n)$ of the f.g. free R-module R^n of rank n, as usual.

A projection over R is a matrix $X \in M_n(R)$ such that

$$X(1-X) = O \in M_n(R)$$
,

so that $im(X) \subseteq R^n$ is a f.g. projective R-module with

$$im(X) \oplus im(1-X) = R^n$$

and im(1-X) is a f.g. projective inverse of im(X). Let $P(R) = \{X \in M(R) | X(1-X) = 0\} \subseteq M(R)$

$$P_n(R) = \{X \in M_n(R) \mid X(1-X) = 0\} \subseteq M_n(R)$$

denote the subset of M $_n$ (R) consisting of projections. Every f.g. projective R-module P is isomorphic to im(X) for some X \in P $_n$ (R).

A pseudostructure φ = $(\alpha\,,t)$ on the ring R consists of an automorphism

$$\alpha : R \xrightarrow{\sim} R ; r \longmapsto r^{t}$$

and an element teR such that

$$t^{t} = t$$
 , $(t-1)r = r^{t}(t-1)$.

Let φ also denote the projection onto the quotient of R by the two-sided principal ideal (t-1) \triangleleft R

$$\phi : R \longrightarrow \overline{R} = R/(t-1) ; r \longmapsto \overline{r} .$$

An S¹-bundle S¹ \longrightarrow E \xrightarrow{p} B with $p_* = \phi : \pi_1(E) = \pi \xrightarrow{\longrightarrow} \pi_1(B) = \rho$ determines a pseudostructure $\phi = (\alpha, t)$ on $R = \mathbb{Z}[\pi]$ with $R = \mathbb{Z}[\rho]$ (cf. Munkholm and Pedersen [3],[4]).

Let then (R,ϕ) be a ring R with pseudostructure $\phi=(\alpha,t)$. A pseudoprojection over (R,ϕ) is a pair of matrices over R

$$(X,Y) \in M_n(R) \times M_n(R)$$

such that

$$X(1-X) = Y(t-1)$$
 , $XY = YX^{t} \in M_{n}(R)$,

where X t = $\alpha(X)$ = (x $^t_{ij}$) & M $_n(R)$. The pseudoprojection (X,Y) gives rise to a projection over \overline{R}

$$\overline{X} \in P_{\mathbf{p}}(\overline{R})$$

with $\overline{X} = \phi(\overline{X}) = (\overline{x}_{ij}) \in M_n(\overline{R})$, and also to a projection over R

$$X^! = \begin{pmatrix} X & Y \\ t-1 & 1-X^t \end{pmatrix} \in P_{2n}(R)$$
.

Let

$$P_{n}(R, \phi) = \{(X, Y) \in M_{n}(R) \times M_{n}(R) | X(1-X) = Y(t-1), XY = YX^{t} \}$$

denote the subset of $\text{M}_n\left(\text{R}\right)\times\text{M}_n\left(\text{R}\right)$ consisting of the pseudoprojections over $\left(\text{R},\phi\right)$.

<u>Proposition 1.1</u> Every projection $\overline{X} \in P_n(\overline{R})$ over \overline{R} lifts to a pseudoprojection $(X,Y) \in P_n(R,\phi)$ (non-uniquely), with $\phi(X) = \overline{X}$.

<u>Proof</u>: Every matrix $\overline{X} \in M_n(\overline{R})$ lifts to some $X \in M_n(R)$, with any two such lifts X_1, X_2 differing by

$$x_1 - x_2 = w(t-1) \in M_n(R)$$

for some W \in M_n(R). Thus if X \in M_n(R) is a lift of a projection $\overline{X} \in$ P_n(R) there exists W \in M_n(R) such that

$$X(1-X) = W(t-1) \in M_n(R)$$
.

Define the matrix

$$Z = \begin{pmatrix} X & W \\ t-1 & 1-X^{t} \end{pmatrix} \in M_{2n}(R) .$$

Now

$$Z(1-Z) = \begin{pmatrix} O & WX^{t} - XW \\ O & O \end{pmatrix} \in M_{2n}(R) ,$$

so that $(Z(1-Z))^2 = 0$ and

$$z^2 + (1-z)^2 = 1 - 2z(1-z) \in M_{2n}(R)$$

is invertible, with inverse

$$(z^2 + (1-z)^2)^{-1} = 1 + 2z(1-z) \in GL_{2n}(R)$$
,

so that there is defined a projection

$$X^! = (z^2 + (1-z)^2)^{-1}z^2 \in P_{2n}(R)$$
.

(The principal ideal (Z(1-Z)) of the matrix ring $M_{2n}(R)$ is nilpotent, and $X^! \in P_{2n}(R) \subset M_{2n}(R)$ is an idempotent (= projection) lifting the idempotent $[Z] \in M_{2n}(R)/(Z(1-Z))$ - cf. Bass [0,III.2.10], Swan [9,5.17]). Substituting the relation $Z^4 = 2Z^3 - Z^2$ we have

$$x^{1} = (1 + 2z(1-z))z^{2}$$

= $(1 + 2z)z^{2} - 2(2z^{3} - z^{2})$
= $3z^{2} - 2z^{3} \in P_{2n}(R)$,

with

$$x^{1} - z = (2z-1)z(1-z)$$

$$= \begin{pmatrix} 2x-1 & 2w \\ 2t-2 & 1-2x^{t} \end{pmatrix} \begin{pmatrix} 0 & wx^{t} - xw \\ 0 & 0 \end{pmatrix}$$

$$= \begin{pmatrix} 0 & (2x-1)(wx^{t} - xw) \\ 0 & 0 \end{pmatrix} \in M_{2n}(R) .$$

Defining

$$Y = W + (2X - 1)(WX^{t} - XW) \in M_{n}(R)$$
,

we have

$$X^{1} = \begin{pmatrix} X & Y \\ t-1 & 1-X^{t} \end{pmatrix} \in P_{2n}(R)$$

with $\phi(X) = \overline{X}$, X(1-X) = Y(t-1), $XY = YX^{t}$. The projection $\overline{X} \in P_{n}(\overline{R})$ has been lifted to a pseudoprojection $(X,Y) \in P_{n}(R,\phi)$.

Given an $\overline{R}\text{-module }\overline{M}$ let $\varphi^{\begin{subarray}{c} 1\end{subarray}}\overline{M}$ be the R-module with the same additive group as \overline{M} and

$$R \times \phi^{!}\overline{M} \longrightarrow \phi^{!}\overline{M} ; (r, \overline{x}) \longmapsto \overline{r} \overline{x}.$$

An \overline{R} -module morphism $\overline{f} \in Hom_{\overline{R}}(\overline{M},\overline{N})$ also defines an R-module morphism

$$\phi^! f : \phi^! \overline{M} \longrightarrow \phi^! \overline{N} ; \overline{X} \longmapsto \overline{f}(\overline{X})$$
.

Given a pseudoprojection $(X,Y)\in P_n(R,\phi)$ define the f.g. projective \overline{R} -module $\overline{P}=\text{im}(\overline{X})$, and define the associated pseudoresolution of the restricted R-module ϕ \overline{P} to be the l-dimensional f.g. projective R-module chain complex C with

$$d_{C}! = \begin{bmatrix} 1-X \\ 1-t \end{bmatrix} : C_{1}^{!} = \operatorname{coker}(X^{!} = \begin{pmatrix} X & Y \\ t-1 & 1-X^{t} \end{pmatrix} : R^{n} \oplus R^{n} \longrightarrow R^{n} \oplus R^{n})$$

$$\longrightarrow C_{0}^{!} = R^{n}.$$

The homology R-modules of $C^{!}$ are given by

$$H_{O}(C^{!}) = coker(\begin{bmatrix} 1-X \\ 1-t \end{bmatrix} : R^{n} \oplus R^{n} \longrightarrow R^{n}) = \phi^{!} \overline{P},$$

$$\mathbf{H}_{1}\left(\mathbf{C}^{\,!}\right) \; = \; \ker\left(\left(\mathsf{t-l} \;\; \mathsf{1-X}^{\,\mathsf{t}}\right) \; : \; \mathbf{R}^{n} \; \longrightarrow \; \mathbf{R}^{n} \! \oplus \! \mathbf{R}^{n}\right) \; \text{ ,}$$

and in many respects $C^!$ is like a f.g. projective R-module resolution of $\phi^! \overline{P}$. However, $C^!$ is a genuine resolution of $\phi^! \overline{P}$ (with $H_1(C^!) = 0$) if and only if t-ler is a non-zero-divisor. By Proposition 1.1 there exists a pseudoresolution $C^!$ of $\phi^! \overline{P}$ for any f.g. projective \overline{R} -module \overline{P} . As for uniqueness, we have:

<u>Proposition 1.2</u> Given pseudoprojections $(X,Y) \in P_n(R,\phi)$, $(X',Y') \in P_n(R,\phi)$ and a morphism of f.g. projective R-modules

$$\overline{f} : \overline{P} = im(\overline{X}) \longrightarrow \overline{P}' = im(\overline{X}')$$

there is defined an R-module chain map of the associated pseudoresolutions

$$f^{\,!}\;:\;C^{\,!}\longrightarrow C^{\,!}^{\,!}$$

uniquely up to chain homotopy, such that

$$(\underline{f}^!)_{\star} = \phi^! \overline{f} : H_{O}(\underline{C}^!) = \phi^! \overline{\underline{P}} \longrightarrow H_{O}(\underline{C}^{!}) = \phi^! \overline{\underline{P}}^{!}$$
.

The construction of f is functorial up to chain homotopy, with

$$1^{!} = 1$$
 , $(f'f)^{!} = f'^{!}f^{!}$

up to chain homotopy. In particular, if $\overline{f} \in \operatorname{Hom}_{\overline{R}}(\overline{P}, \overline{P}')$ is an isomorphism then $f^!: C^! \longrightarrow C'^!$ is a chain equivalence.

 $\underline{Proof}\colon \mbox{ Let }\overline{F} \in M_{n\,,\,n\,'}(\overline{R})$ be the matrix of the composite $\overline{R}\text{-module}$ morphism

$$\overline{F}: \overline{R}^n \xrightarrow{\text{projection}} \overline{im}(\overline{X}) = \overline{P} \xrightarrow{\overline{P}' = im}(\overline{X}') \xrightarrow{\text{inclusion}} \overline{R}^{n'}.$$

Choose a lift $F \in M_{n,n}$ (R) of \overline{F} and define

$$F^{!} = \begin{pmatrix} XFX' & XFY' - YF^{t}X^{t} \\ O & X^{t}F^{t}X^{t} \end{pmatrix} \in M_{2n,2n'}(R)$$

such that

$$X^!F^! = F^!X^{!!} \in M_{2n,2n'}(R)$$
.

The R-module chain map $f^!:C^!\longrightarrow C^{!}$ is defined by

$$C^{!}: C_{1}^{!} = \operatorname{coker}(X^{!}) \xrightarrow{1-t} C_{0}^{!} = \mathbb{R}^{n}$$

$$f^{!} \downarrow \qquad \downarrow \{F^{!}\} \qquad \downarrow \{F^{!}\} \qquad \downarrow XFX'$$

$$C^{!}: C_{1}^{!} = \operatorname{coker}(X^{!}) \xrightarrow{1-t} C_{0}^{!} = \mathbb{R}^{n}$$

If $F_1, F_2 \in M_{n,n'}(R)$ are two different lifts of \overline{F} there exists $G \in M_{n,n'}(R)$ such that

$$F_1 - F_2 = G(t-1) \in M_{n,n'}(R)$$

and the R-module morphism

$$g^! = [O XGX'^t] : C_O^! = R^n \longrightarrow C_1^! = coker(X'^!)$$

defines a chain homotopy

$$g^!: f_1^! \simeq f_2^!: C^! \longrightarrow C'^!$$

between the corresponding R-module chain maps $f_1^!, f_2^!: C^! \longrightarrow C'^!$.

If $(X,Y)=(X',Y')\in P_n(R,\varphi)$ and $\overline{f}=1:\overline{P}=im(\overline{X})\longrightarrow \overline{P}=im(\overline{X})$ then $F=X\in M_n(R)$ is a lift of the composite \overline{R} -module morphism

$$\overline{F} = \overline{X} : \overline{R}^n \xrightarrow{\text{projection}} \overline{P} \xrightarrow{\text{inclusion}} \overline{R}^n$$
 ,

so that

$$F! = \begin{pmatrix} x^3 & 0 \\ 0 & (x^t)^3 \end{pmatrix} \in M_{2n}(R)$$

and the R-module morphism

$$h = [1+X+X^2 \ O] : C_O^! = R^n \longrightarrow C_1^! = coker(X^!)$$

defines a chain homotopy

$$h: f^! \approx 1: C^! \longrightarrow C^!$$
.

Given pseudoprojections (X,Y) $\in P_n(R,\phi)$, (X',Y') $\in P_n(R,\phi)$, (X",Y") $\in P_n(R,\phi)$ and \widehat{R} -module morphisms

$$\overline{f} : \overline{P} = \operatorname{im}(\overline{X}) \longrightarrow \overline{P}' = \operatorname{im}(\overline{X}') , \overline{f}' : \overline{P}' = \operatorname{im}(\overline{X}') \longrightarrow \overline{P}'' = \operatorname{im}(\overline{X}'')$$
let

$$\overline{f}" = \overline{f'f}: \overline{P} \xrightarrow{\overline{f}} \overline{P}' \xrightarrow{\overline{f}'} \overline{P}"$$

be the composite R-module morphism. If $F \in M_{n,n}$ (R) and $F' \in M_{n',n''}(R)$ are lifts of the composite R-module morphisms

$$\overline{F} : \overline{R}^{n} \longrightarrow \overline{P} \xrightarrow{\overline{f}} \overline{P}' \longrightarrow \overline{R}^{n'}$$

$$\overline{F}' : \overline{R}^{n'} \longrightarrow \overline{P}' \xrightarrow{\overline{f}} \overline{P}'' \longrightarrow \overline{R}^{n''}$$

then the product

$$F'' = FX'^2F' \in M_{n,n''}(R)$$

is a lift of the composite R-module morphism

$$\overline{F}" \; : \; \overline{R}^n \longrightarrow \overline{P} \longrightarrow \overline{\overline{P}}" \rightarrowtail \overline{R}^n"$$

such that

$$F''^{!} = F^{!}F'^{!} \in M_{2n,2n''}(R)$$
,

and so

$$f^{"!} = f^{"!}f^{!} : C^{!} \xrightarrow{f^{!}} C^{"!} \xrightarrow{f^{"!}} C^{"!} .$$

[]

§2. The projective class transfer

Proposition 2.1 Given a ring R with pseudostructure ϕ = (α,t) there is defined an algebraic transfer map in the projective class groups

$$\varphi_O^! \; : \; \mathsf{K}_O(\overline{\mathtt{R}}) \longrightarrow \mathsf{K}_O(\mathtt{R}) \; ; \; [\overline{\mathtt{P}}] \longmapsto \{\mathsf{im}(\mathtt{X}^!)\} - [\mathtt{R}^n] \; ,$$

sending a f.g. projective \overline{R} -module \overline{P} = im(\overline{X}) ($\overline{X} \in P_n(\overline{R})$) to the projective class $[C^!]$ = $[im(X^!)] - [R^n] \in K_O(R)$ ((X,Y) $\in P_n(R,\phi)$) of any pseudoresolution $C^!$ of $\phi^!\overline{P}$. If \overline{P} is a (stably) f.g. free \overline{R} -module then $\phi_O^!([\overline{P}])$ = $O \in K_O(R)$, so that there is also defined an algebraic transfer map in the reduced projective class groups

$$\widetilde{\varphi}_{O}^{1}: \widetilde{K}_{O}(\overline{R}) \longrightarrow \widetilde{K}_{O}(R) ; [\overline{P}] \longmapsto [\text{im}(X^{1})] .$$

<u>Proof</u>: Given a f.g. projective \overline{R} -module \overline{P} use Proposition 1.1 to lift a projection $\overline{X} \in P_n(\overline{R})$ such that $\overline{P} = \operatorname{im}(\overline{X})$ to a pseudoprojection $(X,Y) \in P_n(R,\phi)$, and let $C^! : \operatorname{im}(X^!) \longrightarrow R^n$ be the corresponding pseudoresolution of $\phi^!\overline{P}$. Up to R-module isomorphism

$$im(X^!) \oplus coker(X^!) = im(X^!) \oplus im(1-X^!) = R^{2n}$$
,

so that

An element of $K_{\overline{O}}(\overline{R})$ is the formal difference $[\overline{P}]$ - $[\overline{P}']$, for some f.g. projective \overline{R} -modules \overline{P} = $\operatorname{im}(\overline{X})$, \overline{P}' = $\operatorname{im}(\overline{X}')$. Now $[\overline{P}]$ - $[\overline{P}']$ = $O \in K_{\overline{O}}(\overline{R})$ if and only if there exists an \overline{R} -module isomorphism $\overline{f}: \overline{P} \oplus \overline{Q} \xrightarrow{\sim} \overline{P}' \oplus \overline{Q}$ for some f.g. projective \overline{R} -module \overline{Q} , in which case Proposition 1.2 gives a chain equivalence $f^!: C^! \xrightarrow{\sim} C^{!}$ of the corresponding pseudoresolutions of $\phi^! \overline{P}, \phi^! \overline{P}'$. As the projective class of a chain complex is a chain homotopy invariant it follows that

$$\phi_O^!([\overline{P}]-[\overline{P}']) \ = \ [C^!]-[C'^!] \ = \ O \in \ K_O^!(R) \ ,$$
 and so $\phi_O^!:K_O^!(\overline{R}) \longrightarrow K_O^!(R)$ is well-defined.

For $\overline{P}=\overline{R}^n$ take $\overline{X}=1\in P_n(\overline{R})$, $(X,Y)=(1,0)\in P_n(R,\phi)$, so that the projection

$$\mathbf{X}^{\,!} \ = \left(\begin{array}{cc} \mathbf{1} & \mathbf{0} \\ \mathbf{t} - \mathbf{1} & \mathbf{0} \end{array} \right) : \ \mathbf{R}^{n} \oplus \mathbf{R}^{n} \longrightarrow \mathbf{R}^{n} \oplus \mathbf{R}^{n}$$

has $im(X^!) \cong R^n$ and so

$$\phi_0^!([\overline{R}^n]) = [R^n] - [R^n] = 0 \in K_0(R)$$
.

Thus $\widetilde{\phi}_{O}^{\,!}:\widetilde{K}_{O}^{\,}(\overline{R})\longrightarrow \widetilde{K}_{O}^{\,}(R)$ is also well-defined.

The original algebraic description in terms of matrices of the Whitehead group S^1 -bundle transfer map

$$p_{Wh}^{\star} = \widetilde{\phi}_{1}^{!} : Wh(\rho) \longrightarrow Wh(\pi)$$

[]

due to Munkholm and Pedersen [3] was reformulated by Ranicki $[6,\S7.8]$ in terms of the theory of pseudo chain complexes. We shall now recall this theory, and show how it applies to the projective class group S^1 -bundle transfer.

Given an R-module M let $\ensuremath{\text{M}}^{\ensuremath{\text{t}}}$ denote the R-module with the same additive group and

$$R \times M^{t} \longrightarrow M^{t} ; (r,x) \longmapsto r^{-t}x ,$$

where $\alpha^{-1}: R \xrightarrow{\hspace{1cm}} R; r \longmapsto r^{-t}$ is the inverse of the ring automorphism $\alpha: R \xrightarrow{\hspace{1cm}} R; r \longmapsto r^{t}$ in the pseudostructure $\phi = (\alpha, t)$. An R-module morphism $f \in \operatorname{Hom}_{R}(M, N)$ also defines an R-module morphism

$$f^{t}: M^{t} \longrightarrow N^{t}; x \longmapsto f(x)$$
,

such that

$$f(t-1) = (t-1) f^{t} : M^{t} \longrightarrow N$$

with $t-1 \in Hom_{p}(M^{t}, M)$ defined by

$$t-1: M^{t} \longrightarrow M ; x \longmapsto tx - x .$$

For $M = R^n$ use the R-module isomorphism

$$M^{t} \xrightarrow{\sim} R^{n} ; (r_{1}, r_{2}, \dots, r_{n}) \longmapsto (r_{1}^{t}, r_{2}^{t}, \dots, r_{n}^{t})$$

to identify $M^t = R^n$, so that $t-1 \in \operatorname{Hom}_R(M^t, M)$ has matrix $t-1 \in M_n(R)$. If $f \in \operatorname{Hom}_R(R^m, R^n)$ has matrix $X = (x_{ij}) \in M_{m,n}(R)$ then $f^t \in \operatorname{Hom}_R((R^m)^t, (R^n)^t) = \operatorname{Hom}_R(R^m, R^n)$ has matrix $X^t = (x_{ij}^t) \in M_{m,n}(R)$.

A pseudo chain complex over (R, ϕ) $\zeta = (C, d, e)$ consists of a collection of R-modules $\{C_r \mid r \geqslant 0\}$ and two collections of R-module morphisms $\{d \in \operatorname{Hom}_R(C_r, C_{r-1}) \mid r \geqslant 1\}$, $\{e \in \operatorname{Hom}_R(C_r, C_{r-2}^t) \mid r \geqslant 2\}$ such that

$$d^2 = (t-1)e : C_r \xrightarrow{} C_{r-2}$$
 , $d^t e = ed : C_r \xrightarrow{} C_{r-3}^t$.

Note that $\mathcal F$ determines an $\overline{R}\text{-module}$ chain complex \overline{C} with

$$\mathbf{d}_{\widetilde{C}} = 1 \boxtimes \mathbf{d} : \ \overline{C}_r = \overline{R} \boxtimes_R C_r \longrightarrow \overline{C}_{r-1} = \overline{R} \boxtimes_R C_{r-1} \ ; \ \mathbf{a} \boxtimes \mathbf{x} \longmapsto \mathbf{a} \boxtimes \mathbf{d} (\mathbf{x}) \ ,$$
 and an R-module chain complex $C^!$ with

$$d_{C}! = \begin{pmatrix} d & (-)^{r} e \\ (-)^{r} (t-1) & d^{t} \end{pmatrix}$$

$$: C_{r}^{!} = C_{r} \oplus C_{r-1}^{t} \longrightarrow C_{r-1}^{!} = C_{r-1} \oplus C_{r-2}^{t};$$

$$(x,y) \longmapsto (d(x) + (-)^{r} (t-1)(y), (-)^{r} e(x) + d^{t}(y)).$$

Proposition 7.8.8 of Ranicki [6] associates to an S¹-bundle of CW complexes S¹ \longrightarrow E \xrightarrow{p} B with $p_* = \phi$: $\pi_1(E) = \pi \xrightarrow{} \pi_1(B) = \rho$ a pseudo chain complex $\chi(p) = (C,d,e)$ over $(\mathbb{Z}[\pi],\phi)$ with C_r $(r \geqslant 0)$ the f.g. free $\mathbb{Z}[\pi]$ -module of rank the number of r-cells in B, such that the cellular chain complexes of the universal covers \tilde{B}, \tilde{E} of B,E are given by

$$C(\widetilde{B}) = \overline{C} , C(\widetilde{E}) = C^{!}$$
.

If B is finitely dominated then so is E, and the Wall finiteness obstructions are given by the reduced projective classes

$$\begin{array}{l} [\mathtt{B}] \ = \ [\mathtt{C}(\widetilde{\mathtt{B}})] \ = \ [\overline{\mathtt{C}}] \ \in \ \widetilde{\mathtt{K}}_{\mathsf{O}}(\mathtt{ZZ}[\varrho]) \ , \\ [\mathtt{E}] \ = \ [\mathtt{C}(\widetilde{\mathtt{E}})] \ = \ [\mathtt{C}^{\, !}] \ \in \ \widetilde{\mathtt{K}}_{\mathsf{O}}(\mathtt{ZZ}[\pi]) \ . \\ \end{array}$$

 $[E] \ = \ [C(\widetilde{E})] \ = \ [C^!] \ \in \ \overset{\smile}{K}_O(\mathbb{Z}[\pi]) \ .$ The geometric transfer map $p_{K_O}^{\star} : \overset{\smile}{K}_O(\mathbb{Z}[\rho]) \longrightarrow \overset{\smile}{K}_O(\mathbb{Z}[\pi])$ is defined

$$\mathsf{p}_{\mathsf{K}_{\mathsf{O}}}^{\star}([\mathsf{B}]) \; = \; [\mathsf{E}] \; \boldsymbol{\in} \; \widetilde{\mathsf{K}}_{\mathsf{O}}(\mathsf{ZZ}[\pi]) \quad ,$$

so that it will follow from the identification $p_{K_0}^{\star} = \tilde{\phi}_0^!$ in §4 below that

In Ranicki [8] it will be shown algebraically that for any finitely dominated pseudo chain complex $\mathscr{E} = (C,d,e)$ over a ring with pseudostructure (R, ϕ) the algebraic transfer map $\phi_{\Omega}^{!}: K_{\Omega}(\overline{R}) \longrightarrow K_{\Omega}(R)$ sends the projective class $[\overline{C}] \in K_{\Omega}(\overline{R})$ to

$$\phi_{\mathcal{O}}^{!}([\overline{\mathcal{C}}]) = [\mathcal{C}^{!}] \in K_{\mathcal{O}}(\mathbb{R})$$

(which will give an alternative proof of p_K^* = $\widetilde{\phi}_0^!$ on setting R = $\mathbb{Z}[\pi]$, \mathcal{R} = $\mathcal{R}(p)$). At any rate, for any pseudoprojection (X,Y) $\in P_{_{\mathbf{n}}}(R,\varphi)$ there is defined a finitely dominated pseudo chain complex $\mathcal{E} = (C,d,e)$ over (R,ϕ) with

$$d = \begin{cases} 1-X : C_{2i+1} = R^n \longrightarrow C_{2i} = R^n \\ X : C_{2i+2} = R^n \longrightarrow C_{2i+1} = R^n \end{cases} (i \ge 0)$$

$$e = Y : C_j = R^n \longrightarrow C_{j-2}^t = R^n (j \ge 2)$$

for which

$$\begin{split} [\overline{C}] &= [\operatorname{im}(\overline{X})] \in K_{\overline{O}}(\overline{R}) \ , \\ [C^!] &= [\operatorname{im}(X^!)] - [R^n] = \phi_{\overline{O}}^!([\overline{C}]) \in K_{\overline{O}}(R) \ . \end{split}$$

Note that $C^{\frac{1}{2}}$ is an infinite f.g. free R-module chain complex which is chain equivalent to the f.g. projective pseudoresolution $c^{!}$ of $\phi^{!}(im(\overline{X}))$ associated to $(X,Y) \in P_{n}(R,\phi)$ in §1 above.

In the case when t-1 CR is a non-zero-divisor (which for a group ring R = $\mathbb{Z}[\pi]$ is equivalent to $t \in \pi$ being of infinite order) $\varphi^{\, 1} \overline{R}$ is an R-module of homological dimension 1, with a f.g. free R-module resolution

$$0 \longrightarrow R \xrightarrow{t-1} R \xrightarrow{\varphi} \varphi^! \overline{R} \longrightarrow 0$$

If \overline{P} is a f.g. projective \overline{R} -module then φ $^{!}\overline{P}$ is therefore an R-module of homological dimension l, with a f.g. projective resolution

$$0 \longrightarrow P_1 \longrightarrow P_0 \longrightarrow \phi \stackrel{!}{\overline{P}} \longrightarrow 0 .$$

The <u>classical transfer map</u> in the projective class groups is defined by

$$\phi^{!} : K_{O}(\overline{R}) \longrightarrow K_{O}(R) ; [\overline{P}] \longmapsto [P_{O}] - [P_{1}] ,$$

and this definition extends by the Bass-Quillen resolution theorem to transfer maps in the higher K-groups

$$\phi^{!} : K_{m}(\overline{R}) \longrightarrow K_{m}(R) \quad (m \geqslant 1)$$
.

(More generally, the classical methods give transfer maps $\phi^!: K_{\star}(\overline{R}) \longrightarrow K_{\star}(R)$ for any morphism of rings $\phi: R \longrightarrow \overline{R}$ such that $\phi^!\overline{R}$ is an R-module of finite homological dimension).

Proposition 2.2 If (R,ϕ) is a ring with pseudostructure such that $t-1\in R$ is a non-zero-divisor the projective class group transfer map $\phi_0^!$ defined above agrees with the classical transfer map

$$\phi_{\mathcal{O}}^{\,!} \,=\, \phi^{\,!} \;:\; K_{\mathcal{O}}^{\,}(\overline{\mathbb{R}}) \,\longrightarrow\, K_{\mathcal{O}}^{\,}(\mathbb{R}) \ .$$

<u>Proof</u>: In this case the pseudoresolution C[!] of ϕ ! (im(\overline{X})) associated to a pseudoprojection (X,Y) \in P_n(R, ϕ) in \S 1 above is a 1-dimensional f.g. projective R-module resolution of ϕ ! (im(\overline{X}))

$$0 \longrightarrow \operatorname{coker}(X^!) \longrightarrow R^n \xrightarrow{\overline{X} \varphi} \varphi^!(\operatorname{im}(\overline{X})) \longrightarrow 0 ,$$

so that

$$\phi_{O}^{!}([im(\bar{X})]) = [C^{!}] = \phi^{!}([im(\bar{X})]) \in K_{O}(R)$$
.

[]

For a group ring R = $\mathbb{Z}[\pi]$ the identification $\widetilde{\phi}_O^! = \widetilde{\phi}^! : \widetilde{K}_O(\mathbb{Z}[\rho]) \longrightarrow \widetilde{K}_O(\mathbb{Z}[\pi])$ given by Proposition 2.2 may also be obtained by combining the identifications $\widetilde{\phi}_O^! = p_K^\star$ of §4 and $p_{K_O}^\star = \widetilde{\phi}^!$ of Munkholm and Pedersen [2].

In Proposition 3.2 below the algebraic S¹-bundle transfer map $\phi_1^!: K_1(\overline{R}) \longrightarrow K_1(R)$ of Munkholm and Pedersen [3] in the case when t-1 \in R is a non-zero-divisor will be similarly identified with the classical transfer map $\phi^!: K_1(\overline{R}) \longrightarrow K_1(R)$. It would be interesting to know if the definitions of $\phi_0^!$ and $\phi_1^!$ extend to algebraic transfer maps in the higher K-groups

$$\phi_{m}^{!}: K_{m}(\overline{R}) \longrightarrow K_{m}(R) \quad (m \geqslant 2)$$

in the case when $t-l\in R$ is a zero divisor, so that $\varphi^{l}\overline{R}$ is an R-module of infinite homological dimension and the classical methods fail.

§3. The Whitehead torsion transfer

The Whitehead torsion transfer map of Munkholm and Pedersen [3] was defined for any ring with pseudostructure (R,ϕ) to be

$$\phi_1^! : \kappa_1(\overline{R}) \longrightarrow \kappa_1(R) ; \tau(\overline{X}) \longmapsto \tau \begin{pmatrix} x & -z \\ t-1 & Y^t \end{pmatrix}$$

with $X \in M_n(R)$ a lift of $\overline{X} \in GL_n(\overline{R})$ and $Y, Z \in M_n(R)$ such that

$$XY = 1 - Z(t-1) \in M_n(R)$$
.

In Ranicki [6,§7.8] $\phi_1^!(\tau(\overline{X})) \in K_1(R)$ was interpreted as the torsion $\tau(C^!)$ of the based acyclic R-module chain complex

$$C^{!} : \mathbb{R}^{n} \xrightarrow{(1-t \ X^{t})} \mathbb{R}^{n} \oplus \mathbb{R}^{n} \xrightarrow{t-1} \mathbb{R}^{n}$$

associated to the pseudo chain complex $\mathcal{L} = (C,d,e)$ with

$$d = X : C_1 = R^n \longrightarrow C_0 = R^n , C_r = O (r \geqslant 2), e = 0 ,$$

for which .

$$\tau(\overline{\mathbb{C}}) \ = \ \tau(\overline{\mathbb{X}}\!:\!\overline{\mathbb{R}}^n\!\longrightarrow\!\overline{\mathbb{R}}^n) \ \in \ \mathbb{K}_1(\overline{\mathbb{R}}) \ .$$

(The identification $\phi_1^!(\tau(\overline{X})) = \tau(C^!) \in K_1(R)$ is immediate from the observation that $\binom{-Z}{Y^t}: R^n \oplus R^n \longrightarrow R^n$ is a splitting map for

 $(1-t \ X^t): \mathbb{R}^n \longmapsto \mathbb{R}^n \oplus \mathbb{R}^n$). It will be shown in Ranicki [8] that for any finite pseudo chain complex $\mathcal{Z} = (C,d,e)$ over (R,ϕ) with each C_r $(r \geqslant 0)$ a based f.g. free R-module with \overline{C} (and hence C^1) acyclic

$$\phi_1^!(\tau(\overline{C})) = \tau(C^!) \in K_1(R) .$$

We shall now interpret $\varphi_1^!$ in terms of the pseudoresolution construction $(X,Y) \longmapsto C^!$ of §1.

Proposition 3.1 The Whitehead torsion transfer map

$$\phi_1^! : K_1(\overline{R}) \longrightarrow K_1(R)$$

sends the torsion $\tau(\overline{f}) \in K_1(\overline{R})$ of an automorphism $\overline{f} \in \operatorname{Hom}_{\overline{R}}(\overline{P}, \overline{P})$ of a f.g. projective \overline{R} -module \overline{P} to the torsion

$$\phi_1^!(\tau(\overline{f})) = \tau(f^!) \in K_1(R)$$

of the induced self chain equivalence $f^!:C^!\xrightarrow{\sim} C^!$, with $C^!$ the

pseudoresolution of $\phi^1\overline{P}$ associated to any pseudoprojection $(X,Y)\in P_n(R,\phi)$ with $\overline{P}=\text{im}(\overline{X})$.

<u>Proof</u>: Stabilizing \overline{f} by $1 \in \operatorname{Hom}_{\overline{R}}(\operatorname{im}(1-\overline{X}), \operatorname{im}(1-\overline{X}))$ it may be assumed that $\overline{P} = \overline{R}^n$ is a f.g. free \overline{R} -module, and $(X,Y) = (1,0) \in P_n(R,\varphi)$, so that $C^! : R^n \xrightarrow{1-t} R^n$.

If $\overline{f} \in Aut_{\overline{R}}(\overline{R}^n, \overline{R}^n)$ has matrix $\overline{X} \in GL_n(\overline{R})$ then

$$c^{!} : \mathbb{R}^{n} \xrightarrow{1-t} \mathbb{R}^{n}$$

$$f^{!} \downarrow \iota \qquad \downarrow x^{t} \qquad \downarrow x$$

$$c^{!} : \mathbb{R}^{n} \xrightarrow{1-t} \mathbb{R}^{n}$$

for any lift $X \in M_n(R)$ of \widetilde{X} , so that

$$\tau(f^{!}) = \tau(C(f^{!}) : \mathbb{R}^{n} \xrightarrow{(1-t X^{t})} \mathbb{R}^{n} \oplus \mathbb{R}^{n} \xrightarrow{(t-1)} \mathbb{R}^{n})$$

$$= \phi_{1}^{!}(\tau(\overline{X})) = \phi_{1}^{!}(\tau(\overline{f})) \in K_{1}(\mathbb{R}).$$

By analogy with Proposition 2.2:

<u>Proposition 3.2</u> If t-leR is a non-zero-divisor the Whitehead torsion transfer map $\phi_1^!$ agrees with the classical transfer map

$$\phi_1^! = \phi^! : K_1(\overline{R}) \longrightarrow K_1(R)$$
.

<u>Proof</u>: Given an automorphism $\overline{f} \in \operatorname{Aut}_{\overline{R}}(\overline{R}^n, \overline{R}^n)$ note that the self chain equivalence $f^!: C^! \xrightarrow{\sim} C^!$ defined in the proof of Proposition 3.1 is a resolution of the automorphism $\phi^! \overline{f} \in \operatorname{Aut}_{\overline{R}}(\phi^! \overline{R}^n, \phi^! \overline{R}^n)$, so that

$$\varphi_{1}^{!}(\tau(\overline{f})) = \tau(f^{!}) = \varphi^{!}(\tau(\overline{f})) \in K_{1}(R) .$$

For a group ring $R=\mathbb{Z}[\pi]$ the identification $\widetilde{\phi}_1^!=\widetilde{\phi}^!: \mathbb{W}h(\rho)\longrightarrow \mathbb{W}h(\pi)$ given by Proposition 3.2 may also be obtained by combining the identifications $\widetilde{\phi}_1^!=p_{\mathbb{W}h}^\star$ of Munkholm and Pedersen [3] and $p_{\mathbb{W}h}^\star=\widetilde{\phi}^!$ of Munkholm [1].

In §4 we shall make use of the following relation between the projective class group transfer $\phi_0^!: K_O(\overline{R}) \longrightarrow K_O(R)$ for a ring with pseudostructure (R, ϕ) , the Whitehead torsion transfer $(\phi \times 1)_1^!: K_1(\overline{R}[z,z^{-1}]) \longrightarrow K_1(R[z,z^{-1}])$ for the polynomial extension ring with pseudostructure $(R[z,z^{-1}],\phi \times 1)$ and the canonical Bass-Heller-Swan injections

 $\begin{array}{c} h_{R} : \ K_{O}(R) \rightarrowtail K_{1}(R[z,z^{-1}]) \ ; \ [P] \longmapsto_{T}(z:P[z,z^{-1}] \stackrel{\sim}{\longrightarrow} P[z,z^{-1}]) \\ \text{and } h_{\overline{R}} : \ K_{O}(\overline{R}) \rightarrowtail K_{1}(\overline{R}[z,z^{-1}]) \ \text{defined similarly.} \end{array}$

Proposition 3.3 There is defined a commutative diagram

<u>Proof</u>: Given a f.g. projective \overline{R} -module \overline{P} let $(X,Y) \in P_n(R,\phi)$ be a pseudoprojection such that $\overline{P} = \operatorname{im}(\overline{X})$, and let $C^{\frac{1}{2}}$ be the corresponding pseudoresolution of $\phi^{\frac{1}{2}}\overline{P}$. Now

$$\begin{array}{lll} (\phi \times 1) \stackrel{!}{_{1}} h_{\overline{R}}([\overline{P}]) &=& (\phi \times 1) \stackrel{!}{_{1}} (\tau(z : \overline{P}[z,z^{-1}] \xrightarrow{\sim} \overline{P}[z,z^{-1}])) \\ &=& \tau(z : C^{!}[z,z^{-1}] \xrightarrow{\sim} C^{!}[z,z^{-1}]) \ \ (\text{by Proposition 3.1}) \\ &=& h_{R}([C^{!}]) = h_{R} \phi_{O}^{!}([\overline{P}]) \in K_{1}(R[z,z^{-1}]) \ , \end{array}$$

so that $(\phi \times 1)_{1}^{!} h_{\overline{R}} = h_{R} \phi_{O}^{!}$.

[]

§4. The algebraic and geometric transfer maps coincide

Let $S^1 \longrightarrow E \xrightarrow{p} B$ be an S^1 -bundle with $p_{\star} = \phi : \pi_1(E) = \pi \longrightarrow \pi_1(B) = \rho$, and let $(R = \mathbb{Z}[\pi], \phi)$ be the corresponding ring with pseudostructure.

<u>Proposition 4.1</u> The algebraic and geometric transfer maps in the reduced projective class groups coincide, that is

$$\widetilde{\phi}_{O}^{!} = p_{K_{O}}^{*} : \widetilde{K}_{O}(\mathbb{Z}[\rho]) \longrightarrow \widetilde{K}_{O}(\mathbb{Z}[\pi]) .$$

Proof: We offer two proofs, in fact.

i) Given a pseudoprojection $(X,Y)\in P_n^-(\mathbb{Z}[\pi],\phi)$ and a number $m\geqslant 2$ the proof of Theorem F of Wall [10] gives an S ^1-bundle of CW pairs

$$s^1 \longrightarrow (E,F) \xrightarrow{(p,q)} (B,K)$$

with K finite and B finitely dominated, such that $\pi_1(B) = \pi_1(K) = \rho$ and such that the relative pseudo chain complex $\mathcal{Z}(p,q) = (C,d,e)$ is given by

$$C_{r} = \begin{cases} \mathbb{Z} [\pi]^{n} & \text{if } \begin{cases} r \geqslant 2m \\ r \leqslant 2m-1 \end{cases}$$

$$d = \begin{cases} 1-X : C_{2i+1} \longrightarrow C_{2i} \\ X : C_{2i+2} \longrightarrow C_{2i+1} \end{cases} (i \geqslant m)$$

$$e = Y : C_r \longrightarrow C_{r-2}^t (r \geqslant 2m+2).$$

The finiteness obstruction of B (= the reduced projective class of $C(\widetilde{B})$ = \overline{C}) is given by

$$[B] = [\overline{C}] = [im(\overline{X})] \in \widetilde{K}_{O}(\mathbb{Z}[\rho]),$$

and that of E by

$$[E] = [C^!] = [im(x^!)] \in \widetilde{K}_O(Z[\pi]),$$

so that

$$\begin{array}{lll} p_{\widetilde{K}_{O}}^{\bigstar}([\mathtt{B}]) &=& [\mathtt{E}] &=& [\mathtt{im}(\mathtt{X}^{!})] \\ &=& \widetilde{\phi}_{O}^{!}([\mathtt{im}(\overline{\mathtt{X}})]) &=& \widetilde{\phi}_{O}^{!}([\mathtt{B}]) \in \widetilde{K}_{O}(Z\!\!\!\!/[\pi]) \end{array}.$$

ii) Consider the commutative diagram preceding Corollary 2.3 of Munkholm and Pedersen [4]

$$\widetilde{K}_{O}(\mathbb{Z}[\pi]) \stackrel{h}{\longleftarrow} Wh(\pi \times \mathbb{Z})$$

$$p_{K_{O}}^{\star} \qquad \qquad \downarrow (p \times 1)_{Wh}^{\star} = (\widetilde{\phi} \times 1)_{1}^{!}$$

$$\widetilde{K}_{O}(\mathbb{Z}[\rho]) \stackrel{h}{\longleftarrow} Wh(\rho \times \mathbb{Z})$$

in which \overline{h}_{π} (resp. h_{ρ}) is the canonical Bass-Heller-Swan surjection (resp. injection). From Proposition 3.3 we have $(\widetilde{\phi \times 1})_1^! h_{\rho} = h_{\pi} \widetilde{\phi}_0^!$, so that

$$\begin{split} \mathbf{p}_{K_{O}}^{\star} &= \overline{\mathbf{h}}_{\pi} \left(\widetilde{\phi \times 1} \right)_{1}^{!} \mathbf{h}_{\rho} \\ &= \overline{\mathbf{h}}_{\pi} \mathbf{h}_{\pi} \widetilde{\phi}_{O}^{!} = \widetilde{\phi}_{O}^{!} : \ \widetilde{\kappa}_{O} (\mathbf{Z}[\rho]) \longrightarrow \widetilde{\kappa}_{O} (\mathbf{Z}[\pi]) \ . \end{split}$$

§5. The relative transfer exact sequence

A ring morphism $\phi: \mathbb{R} \longrightarrow S$ induces morphisms in the algebraic K-groups

$$\begin{array}{l} \varphi_! \; : \; \mathsf{K}_\mathsf{O}(\mathsf{R}) \longrightarrow \mathsf{K}_\mathsf{O}(\mathsf{S}) \; \; ; \; \; [\mathsf{P}] \longmapsto [\varphi_! \mathsf{P}] \; \; , \; \varphi_! \mathsf{P} \; = \; \mathsf{S} \boxtimes_{\mathsf{R}} \mathsf{P} \\ \\ \varphi_! \; : \; \mathsf{K}_\mathsf{1}(\mathsf{R}) \longrightarrow \mathsf{K}_\mathsf{1}(\mathsf{S}) \; \; ; \; \tau(\mathsf{X}) \longmapsto \tau(\varphi(\mathsf{X})) \; \; , \; \mathsf{X} \in \mathsf{GL}_\mathsf{n}(\mathsf{R}) \end{array}$$

which are related by a change of rings exact sequence

$$\mathsf{K}_1(\mathsf{R}) \xrightarrow{\ \varphi_! \ } \mathsf{K}_1(\mathsf{S}) \xrightarrow{\ j \ } \mathsf{K}_1(\phi_!) \xrightarrow{\ \partial \ } \mathsf{K}_0(\mathsf{R}) \xrightarrow{\ \phi_! \ } \mathsf{K}_0(\mathsf{S})$$

[]

477

with $K_1(\phi_!)$ the relative K-group of stable isomorphism classes of pairs (P,f) consisting of a f.g. projective R-module P and an S-module isomorphism $f:\phi_!P\xrightarrow{\sim} S^n$, with $(R^n,1)=0\in K_1(\phi_!)$ and

$$j : K_1(S) \longrightarrow K_1(\phi_!) ; \tau(Z) \longmapsto (R^n, Z) , Z \in GL_n(S)$$

$$\partial : K_1(\phi_!) \longrightarrow K_0(R) ; (P, f) \longmapsto [P] - [R^n] .$$

We shall now obtain an analogous exact sequence for the transfer maps $\ensuremath{\mathsf{T}}$

A <u>base</u> (S,T) for a pseudoprojection (X,Y) \in P_n(R, ϕ) is a pair of matrices

$$S = \begin{pmatrix} s_1 \\ s_2 \end{pmatrix} \in M_{2n,m}(R) , \quad T = (T_1 T_2) \in M_{m,2n}(R)$$

with $S_1, S_2 \in M_{n,m}(R), T_1, T_2 \in M_{m,n}(R)$ such that

$$ST = X^! \in M_{2n}(R)$$
 , $TS = 1 \in M_m(R)$.

The factorization of R-module morphisms

$$S = \begin{pmatrix} S_1 \\ S_2 \end{pmatrix} \qquad T = (T_1 \ T_2)$$

$$X^! = \begin{pmatrix} X & Y \\ t-1 & 1-X^t \end{pmatrix} : R^n \oplus R^n \xrightarrow{} R^m \Rightarrow R^m \Rightarrow R^n \oplus R^n$$

shows that a base (S,T) of (X,Y) determines a base (in the usual sense) of the f.g. projective R-module $\operatorname{im}(X^!) \subseteq R^n \oplus R^n$ consisting of m elements. Conversely, if $\operatorname{im}(X^!)$ is a f.g. free R-module of rank m then a choice of base for $\operatorname{im}(X^!)$ determines a factorization

$$x^{!}: R^{n} \oplus R^{n} \xrightarrow{S} R^{m} \xrightarrow{T} R^{n} \oplus R^{n}$$

with S onto and T one-one; it follows from the identity

$$S(TS-1)T = ST(ST-1)$$

= $X^{!}(X^{!}-1) = O \in M_{2n}(R)$

that TS = 1 \in M_m(R), and so (S,T) defines a base of (X,Y). There is thus a natural one-one correspondence between the bases (S,T) of the pseudoprojection (X,Y) and the bases of the f.g. projective R-module im(X¹), if any such exist. In dealing with bases of pseudoprojections we shall assume that (R, ϕ) satisfies the

following two conditions:

- i) f.g. free R-modules have a well-defined rank,
- ii) $\overline{\alpha}^2: \overline{R} \longrightarrow \overline{R}$; $\overline{r} \longmapsto (\overline{r}^t)^t$ is an inner automorphism of \overline{R} , in which case m=n for any pseudoprojection base (S,T): by i) $[\overline{R}] \in K_{\overline{O}}(\overline{R})$ generates an infinite cyclic subgroup of $K_{\overline{O}}(\overline{R})$, and by ii) $\overline{\alpha}_!: K_{\overline{O}}(\overline{R}) \longrightarrow K_{\overline{O}}(\overline{R})$; $[\overline{P}] \longmapsto [\overline{P}^t]$ is an involution of $K_{\overline{O}}(\overline{R})$ fixing $[\overline{R}]$, so that if $(S,T) \in M_{2n,m}(R) \times M_{m,2n}(R)$ is a base for the pseudoprojection $(X,Y) \in P_n(R,\phi)$ the f.g. projective \overline{R} -module $\overline{P} = im(1-\overline{X})$ is such that up to \overline{R} -module isomorphism

$$\overline{\mathbb{R}}^m = \phi_!(\operatorname{im}(x^!)) = \operatorname{im}(\overline{x}) \oplus \overline{\mathbb{P}}^t$$
 , $\overline{\mathbb{R}}^n = \operatorname{im}(\overline{x}) \oplus \overline{\mathbb{P}}$,

and it is clear from the action of $\widetilde{\alpha}_!$ on the identity

$$[\overline{P}] - [\overline{P}^t] = [\overline{R}^n] - [\overline{R}^m] \in K_O(\overline{R})$$

that m = n. In particular, the conditions i) and ii) are satisfied by the group rings with pseudostructure $(R = \mathbb{Z}[\pi], \phi)$ arising in topology.

A <u>based pseudoprojection</u> (X,Y,S,T) is a pseudoprojection $(X,Y) \in P_n(R,\phi)$ together with a base $(S,T) \in M_{2n,n}(R) \times M_{n,2n}(R)$. Given such an object define the associated <u>based pseudoresolution</u> of the R-module $\phi^!(\text{im}(\overline{X}))$ to be the 1-dimensional based f.g. free R-module chain complex

$$D^! : \mathbb{R}^n \xrightarrow{S_2} \mathbb{R}^n$$

which is chain equivalent to the projective pseudoresolution $C^!$ of $\phi^!(im(\overline{X}))$ associated to (X,Y) in §1. Explicitly, a chain equivalence $C^! \xrightarrow{\sim} D^!$ is defined by

$$\begin{array}{c}
\begin{bmatrix}
1-X \\
1-t
\end{bmatrix} \\
C^{!} : coker(X^{!}) & \longrightarrow \mathbb{R}^{n} \\
\downarrow \downarrow \downarrow \begin{pmatrix} Y \\ -X^{t} \end{pmatrix} & S_{2} & \downarrow XS_{1}+YS_{2} \\
D^{!} : \mathbb{R}^{n} & \longrightarrow \mathbb{R}^{n}
\end{array}$$

(This is the composite $C^! \xrightarrow{\sim} B^! \xrightarrow{\sim} D^!$ of the chain equivalence

$$C^{!} : \operatorname{coker}(X^{!}) \xrightarrow{\begin{bmatrix} 1-X \\ 1-t \end{bmatrix}} \mathbb{R}^{n}$$

$$\downarrow \qquad \qquad \downarrow \begin{bmatrix} Y \\ -X^{t} \end{bmatrix} \qquad \qquad \downarrow [X Y]$$

$$B^{!} : \mathbb{R}^{n} \xrightarrow{\longrightarrow} \operatorname{im}(X^{!})$$

(defined for any pseudoprojection (X,Y)) and the chain isomorphism

THE PROJECTIVE CLASS GROUP TRANSFER INDUCED BY AN S1-BUNDLE 479

$$B^{!} : \mathbb{R}^{n} \xrightarrow{[t-1 \ 1-x^{t}]} \operatorname{im}(x^{!})$$

$$\downarrow \qquad \qquad \downarrow \qquad \qquad \downarrow \begin{bmatrix} s_{1} \\ s_{2} \end{bmatrix}$$

$$D^{!} : \mathbb{R}^{n} \xrightarrow{S_{2}} \mathbb{R}^{n} \xrightarrow{\mathbb{R}^{n}} \mathbb{R}^{n}$$

A morphism of based pseudoprojections over (R, ϕ)

$$f: (X,Y,S,T) \longrightarrow (X',Y',S',T')$$

is just a morphism of the associated f.g. projective \overline{R} -modules

$$\overline{f} : \operatorname{im}(\overline{X}) \longrightarrow \operatorname{im}(\overline{X}')$$
.

Replacing the projective pseudoresolutions $C^!, C^{!}$ in the construction of Proposition 1.2 by the chain equivalent based pseudoresolutions $D^!, D^{!}$ there is obtained an R-module chain map

$$f^!: D^! \longrightarrow D^{!!}$$

inducing the R-module morphism

 $(\texttt{f}^!)_{\,\star} \; = \; \varphi^! \, \overline{\texttt{f}} \; : \; H_{\text{O}}(\texttt{D}^!) \; = \; \varphi^! \, (\text{im}(\overline{\texttt{X}})) \longrightarrow H_{\text{O}}(\texttt{D}^{!}) \; = \; \varphi^! \, (\text{im}(\overline{\texttt{X}}')) \; ,$ uniquely up to chain homotopy. More precisely, $\texttt{f}^!$ is defined by

with FeM $_{n,n}$,(R) the matrix of any R-module morphism FeHom $_{R}$ (R n ,R n ') lifting the composite \overline{R} -module morphism

$$\overline{F}: \overline{\mathbb{R}}^n \xrightarrow{\text{projection}} \operatorname{im}(\overline{X}) \xrightarrow{\overline{f}} \operatorname{im}(\overline{X}') \xrightarrow{\text{injection}} \overline{\mathbb{R}}^n'$$
 and

$$F^{!} = \begin{pmatrix} XFX' & XFY' - YF^{t}X,^{t} \\ O & X^{t}F^{t}X,^{t} \end{pmatrix} \in M_{2n,2n'}(R)$$

as before.

An isomorphism of based pseudoprojections is a morphism

$$f : (X,Y,S,T) \xrightarrow{\sim} (X',Y',S',T')$$

which is defined by an \overline{R} -module isomorphism $\overline{f} \in \operatorname{Hom}_{\overline{R}}(\operatorname{im}(\overline{X}), \operatorname{im}(\overline{X}'))$, in which case $f^!:D^! \xrightarrow{\sim} D'^!$ is a chain equivalence of based

R-module chain complexes and the torsion of f is defined by

$$\tau(f) = \tau(f^!: D^! \xrightarrow{\sim} D^{!!}) \in K_1(R) .$$

In general, the torsion is an invariant of f but not of \overline{f} . However, if f is an automorphism (i.e. (X,Y,S,T) = (X',Y',S',T')) then the torsion $\tau(\overline{f}:\operatorname{im}(\overline{X}) \xrightarrow{\sim} \operatorname{im}(\overline{X})) \in K_1(\overline{R})$ is defined, and Proposition 3.1 shows that

$$\tau\left(f\right) \ = \ \tau\left(f^{\,!}\right) \ = \ \varphi_1^{\,!}\left(\tau\left(\overline{f}\right)\right) \ \in \ K_1^{\,}(R) \ .$$

An isomorphism $f:(X,Y,S,T) \xrightarrow{\sim} (X',Y',S',T')$ is simple if

$$\tau(f) = O \in K_1(R) .$$

Define the <u>relative transfer</u> group $K_1(\phi^!)$ to be the abelian group with one generator for each simple isomorphism class of based pseudoprojections (X,Y,S,T) over (R, ϕ), with relations

$$(X,Y,S,T) + (X',Y',S',T') = (X \oplus X',Y \oplus Y',S \oplus S',T \oplus T') \in K_1(\phi^!)$$
.

<u>Proposition 5.1</u> The relative transfer group $\mathbf{K}_{1}(\phi^{!})$ fits into an exact sequence

$$K_{1}(\overline{R}) \xrightarrow{\phi_{1}^{!}} K_{1}(R) \xrightarrow{j} K_{1}(\phi^{!}) \xrightarrow{\theta} K_{0}(\overline{R}) \xrightarrow{\phi_{0}^{!}} K_{0}(R)$$

with

$$j : K_1(R) \longrightarrow K_1(\phi^!) ;$$

$$\tau(z) \longmapsto (0,0,\begin{pmatrix} 0 \\ z \end{pmatrix}, (z^{-1}(t-1) z^{-1})) \quad (z \in GL_n(R))$$

$$g: K_1(\phi^!) \longrightarrow K_0(\overline{R}) ; (X,Y,S,T) \longmapsto [im(\overline{X})]$$

<u>Proof</u>: If $\overline{P}, \overline{Q}$ are f.g. projective \overline{R} -modules such that

$$[\overline{P}] - [\overline{Q}] \in \ker(\phi_{\overline{Q}}^{!}: K_{\overline{Q}}(\overline{R}) \longrightarrow K_{\overline{Q}}(R))$$

let -Q be a f.g. projective inverse for \overline{Q} , so that $\overline{Q}\oplus -\overline{Q}=\overline{R}^{\mathbb{M}}$ is a f.g. free \overline{R} -module, and let $(X,Y)\in P_{\overline{R}}(R,\phi)$ be a pseudoprojection such that $\overline{P}\oplus -\overline{Q}=\operatorname{im}(\overline{X})$. Now

$$[\operatorname{im}(X^!)] - [R^n] = \phi_O^! ([\operatorname{im}(\overline{X})])$$

$$= \phi_O^! ([\overline{P}] - [\overline{Q}] + [\overline{R}^m]) = O \in K_O^!(R) ,$$

so that $\operatorname{im}(X^!)$ is a stably f.g. free R-module. Stabilizing $\overline{P}, \overline{Q}$ if necessary it may be assumed that $\operatorname{im}(X^!)$ is an unstably f.g. free R-module. Choosing a base (S,T) for (X,Y) there is obtained an element (X,Y,S,T) - (1,O, $\binom{1}{t-1}$,(1 O)) $\in K_1(\varphi^!)$ (1 $\in \operatorname{GL}_m(R)$) such that

[]

$$\begin{split} [\overline{P}] - [\overline{Q}] &= [\overline{P} \oplus - \overline{Q}] - [\overline{R}^{m}] \\ &= [\operatorname{im}(\overline{X})] - [\overline{R}^{m}] \\ &= \partial ((X,Y,S,T) - (1,O,\begin{pmatrix} 1 \\ t-1 \end{pmatrix},(1 O))) \\ &\in \operatorname{im}(\partial : K_{1}(\varphi^{!}) \longrightarrow K_{O}(\overline{R})) \end{split},$$

verifying exactness at $K_{\Omega}(\overline{R})$.

If (X,Y,S,T), (X',Y',S',T') are based pseudoprojections such that

$$(X',Y',S',T') - (X,Y,S,T) \in \ker(\partial:K_1(\phi^1) \longrightarrow K_O(\overline{R}))$$

there exists a (stable) isomorphism

$$f: (X,Y,S,T) \xrightarrow{\sim} (X',Y',S',T')$$
.

The torsion $\tau(f) \in K_1(R)$ is such that

$$\begin{array}{lll} (\texttt{X',Y',S',T'}) \; - \; (\texttt{X,Y,S,T}) \; = \; \texttt{j}(\texttt{\tau(f)}) \\ & \in \; \text{im}(\texttt{j} : \texttt{K}_1(\texttt{R}) {\longrightarrow} \texttt{K}_1(\varphi^{\frac{1}{2}})) \;\; , \\ \end{array}$$

verifying exactness at $K_1(\phi^!)$.

If $Z \in GL_n(R)$ is such that $\tau(Z) \in \ker(j:K_1(R) \longrightarrow K_1(\varphi^!))$ there exists a based pseudoprojection (X,Y,S,T) with a simple isomorphism

$$f: (X,Y,S,T) \oplus j_T(Z) \xrightarrow{\sim} (X,Y,S,T)$$
.

The automorphism of based pseudoprojections

$$g: (X,Y,S,T) \xrightarrow{\sim} (X,Y,S,T)$$

defined by the automorphism $\overline{f} \in \mathrm{Hom}_{\overline{R}}(\mathrm{im}(\overline{X})\,,\mathrm{im}(\overline{X}))$ is such that

$$\begin{split} \tau\left(Z\right) &= \tau\left(g^{\,!}\right) \,=\, \varphi_{\underline{1}}^{\,!}\left(\tau\left(\overline{f}\right)\right) \\ &\in \mbox{im}\left(\varphi_{\underline{1}}^{\,!}\colon K_{\underline{1}}\left(\overline{R}\right) \longrightarrow K_{\underline{1}}\left(R\right)\right) \ , \end{split}$$

verifying exactness at $K_1(R)$.

For the group ring with pseudostructure $(R = \mathbb{Z}[\pi], \phi)$ associated to an S^1 -bundle $S^1 \longrightarrow E \xrightarrow{p} B$ with

 $p_{\star} = \phi : \pi_{1}(E) = \pi \longrightarrow \pi_{1}(B) = \rho$, $R = \mathbb{Z}[\rho]$ there is also defined a reduced version of the exact sequence of Proposition 5.1

$$\mathbb{W}\mathsf{h}(\rho) \xrightarrow{\widetilde{\phi}_{1}^{!}} \mathbb{W}\mathsf{h}(\pi) \xrightarrow{\widetilde{\mathfrak{J}}} \mathbb{W}\mathsf{h}(\phi^{!}) \xrightarrow{\widetilde{\mathfrak{J}}} \widetilde{\mathbb{K}}_{\mathcal{O}}(\mathbb{Z}[\rho]) \xrightarrow{\widetilde{\phi}_{\mathcal{O}}^{!}} \widetilde{\mathbb{K}}_{\mathcal{O}}(\mathbb{Z}[\pi])$$

in the Whitehead and reduced projective class groups, with Wh($\phi^{\,!}$) defined by

Wh(
$$\phi^!$$
) = $K_1(\phi^!)/j(\pm \pi) + (1,0,\binom{1}{t-1},(1,0))$.

See Ranicki [7,§7] for the geometric interpretation of this sequence.

Appendix: Connection with L-theory

We note the following connection between the algebraic K-theory S^1 -bundle transfer maps

$$\widetilde{\phi}_{O}^{!} : \widetilde{K}_{O}(\mathbb{Z}[\rho]) \longrightarrow \widetilde{K}_{O}(\mathbb{Z}[\pi]) , \widetilde{\phi}_{1}^{!} : Wh(\rho) \longrightarrow Wh(\pi)$$

and the algebraic L-theory S^1 -bundle transfer maps of Munkholm and Pedersen [3],[4] and Ranicki [6],[8]

$$\phi_{L}^{!}: L_{n}^{X}(\rho) \longrightarrow L_{n+1}^{\widetilde{\phi}_{m}^{!}(X)}(\pi) \quad (m = 0 \text{ or } 1)$$

which are defined for duality-invariant subgroups $X\subseteq \widetilde{K}_O(\mathbb{Z}[\rho])$ (m=0) and $X\subseteq Wh(o)$ (m=1). (The geometric interpretation of $\phi_L^!$ for m=1 in terms of finite surgery obstruction theory extends to m=0 using the projective surgery obstruction theory of Pedersen and Ranicki [5]). The duality involutions on the algebraic K-groups are defined by

$$* \; : \; \widetilde{K}_{\mathcal{O}}(\mathbb{Z}[\pi]) \longrightarrow \widetilde{K}_{\mathcal{O}}(\mathbb{Z}[\pi]) \; ; \; [\text{im}(X)] \longmapsto [\text{im}(X^*)]$$

* :
$$Wh(\pi) \longrightarrow Wh(\pi)$$
 ; $\tau(X) \longmapsto \tau(X^*)$

* :
$$Wh(\phi^!) \longrightarrow Wh(\phi^!)$$
;

$$(\mathsf{X},\mathsf{Y},\begin{pmatrix}\mathsf{S}_1\\\mathsf{S}_2\end{pmatrix},(\mathsf{T}_1\ \mathsf{T}_2))\longmapsto -(1-\mathsf{X}^\star,-\mathsf{t}^{-1}\mathsf{Y}^\star,\begin{pmatrix}-\mathsf{t}^{-1}\mathsf{T}_2^\star\\\mathsf{T}_1^\star\end{pmatrix},(-\mathsf{t}\mathsf{S}_2^\star\ \mathsf{S}_1^\star))\quad,$$

using the group ring involution

* :
$$\mathbb{Z}[\pi] \longrightarrow \mathbb{Z}[\pi]$$
; $\sum_{g \in \pi} n_g g \longmapsto \sum_{g \in \pi} w(g) n_g g^{-1}$ (w = orientation)

and the corresponding matrix ring involutions

$$\star : \operatorname{M}_{\operatorname{n}}(\operatorname{\mathbb{Z}}[\pi]) \longrightarrow \operatorname{M}_{\operatorname{n}}(\operatorname{\mathbb{Z}}[\pi]) \; ; \; \operatorname{X} = (\operatorname{x}_{\mathsf{i}\mathsf{j}}) \longmapsto \operatorname{X}^{\star} = (\operatorname{x}_{\mathsf{j}\mathsf{i}}^{\star}) \; .$$

The maps in the exact sequence of §5

$$Wh(o) \xrightarrow{\widetilde{\phi}_{1}^{!}} Wh(\pi) \xrightarrow{\widetilde{j}} Wh(\phi^{!}) \xrightarrow{\widetilde{\delta}} \widetilde{K}_{O}(\mathbb{Z}[\rho]) \xrightarrow{\widetilde{\phi}_{O}^{!}} \widetilde{K}_{O}(\mathbb{Z}[\pi])$$

are such that

$$\widetilde{\phi}_m^{\,!}\star \;=\; -\star\widetilde{\phi}_m^{\,!} \;\; (m = 0,1) \;\; , \;\; \widetilde{j}\star \;=\; \star\widetilde{j} \;\; , \;\; \widetilde{\vartheta}\star \;=\; \star\widetilde{\vartheta} \;\; .$$

The short exact sequence of $\mathbb{Z}[\mathbb{Z}_2]$ -modules

$$0 \longrightarrow \operatorname{coker}(\widetilde{\phi}_{1}^{!}) \xrightarrow{\widetilde{j}} \operatorname{Wh}(\phi^{!}) \xrightarrow{\widetilde{\partial}} \ker(\widetilde{\phi}_{0}^{!}) \longrightarrow 0$$

gives rise to connecting maps in the Tate \mathbb{Z}_2 -cohomology groups

$$\phi_{H}^{!} = \delta : \hat{H}^{n}(\mathbb{Z}_{2}; \ker(\widetilde{\phi}_{0}^{!})) \longrightarrow \hat{H}^{n+1}(\mathbb{Z}_{2}; \operatorname{coker}(\widetilde{\phi}_{1}^{!}))$$

which appear in a transfer map of generalized Rothenberg exact sequences

$$\cdots \longrightarrow L_{n}^{h}(\rho) \longrightarrow L_{n}^{\ker \widetilde{\phi}_{O}^{!}}(\rho) \longrightarrow \widehat{H}^{n}(\mathbb{Z}_{2}; \ker \widetilde{\phi}_{O}^{!}) \longrightarrow L_{n-1}^{h}(\rho) \longrightarrow \cdots$$

$$\downarrow \phi_{L}^{!} \qquad \qquad \downarrow \phi_{L}^{!} \qquad \qquad$$

In particular, for the trivial S^1-bundle E = B × S^1, π = $\rho \times ZZ$, t = z, $\widetilde{\phi}_m^1$ = O (m = O,1) and the exact sequence

$$0 \longrightarrow Wh(\rho \times \mathbb{Z}) \xrightarrow{\widetilde{J}} Wh(\phi^{!}) \xrightarrow{\widetilde{\partial}} \widetilde{K}_{O}(\mathbb{Z}[\rho]) \longrightarrow 0$$

is split by the map

$$\widetilde{\Sigma} : \widetilde{\mathbb{K}}_{O}(\mathbb{Z}[\rho]) \longrightarrow Wh(\phi^{!}) ;$$

$$[im(X)] \longmapsto (X,O,\begin{pmatrix} -X \\ X-z \end{pmatrix}, (z^{-1}(1-X)-1-z^{-1}(1-X))) ,$$

which is related to the duality involutions * by

$$\widetilde{\Sigma}^* - *\widetilde{\Sigma} = \widetilde{j}h'^* : \widetilde{K}_{O}(ZZ[\rho]) \longrightarrow Wh(\phi^!)$$

with

$$h' \; : \; \widetilde{K}_{O}(\mathbb{Z}[\rho]) \longmapsto Wh(\rho \times \mathbb{Z}) \; ; \; [im(X)] \longmapsto \tau(-zX + 1 - X) \; .$$

The transfer map in this case consists of split injections

although not the standard such injections - see Ranicki [7] for a further discussion.

BIBLIOGRAPHY

[0]	H.Bass	Algebraic K-theory,	
		Benjamin (1968)	
[1]	H.J.Munkholm	Transfer on algebraic K-theory and Whitehead	
		torsion for PL fibrations,	
		J. Pure and App. Alg. 20, 195 - 225 (1981)	
[2]		and E.K.Pedersen	
		On the Wall finiteness obstruction for the total	
		space of certain fibrations,	
		Trans. A.M.S. 261, 529 - 545 (1980)	
[3]		Whitehead transfers for S ¹ -bundles, an algebraic	
		description,	
		Comm. Math. Helv. 56, 404 - 430 (1981)	
[4]		Transfers in algebraic K- and L-theory induced	
		by S ¹ -bundles,	
		these proceedings	
[5]	E.K.Pedersen	and A.A.Ranicki	
		Projective surgery theory,	
		Topology 19, 234 - 254 (1980)	
[6]	A.A.Ranicki	Exact sequences in the algebraic theory of	
	•	surgery,	
		Mathematical Notes 26, Princeton (1981)	
[7]		Algebraic and geometric splittings of the K- and	
		L-groups of polynomial extensions,	
		preprint	
[8]		Splitting theorems in the algebraic theory of	
		surgery,	
		in preparation	
[9]	R.G.Swan	K-theory of finite groups and orders,	
		Springer Lecture Notes 149 (1970)	
[10]C.T.C.Wall	Finiteness conditions for CW complexes,	
		Ann. of Maths. 81, 56-69 (1965)	
	INSTITUTE FOR	R ADVANCED STUDY, PRINCETON (H.J.M. & A.A.R.)	
	ODENSE UNIVERSITET, DENMARK (H.J.M.)		
	PRINCETON UNIVERSITY (A.A.R.)		
	PRINCETON UNI	IVERSITY (A.A.R.)	