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Dedicated to my parents



Foreword

For many years, Algebraic Topology rests on three legs: “ordinary” Coho-
mology, K-theory, and Cobordism. An introduction to the first leg and some
of its applications constitute the curriculum of a typical first year graduate
course. There have been all too few books addressed to students who have
completed such an introduction, and the present volume is the first such guide
in the subject of Cobordism since Robert Stong’s encyclopedic and influential
notes of a generation ago.

The pioneering work of Pontryagin and Thom forged a deep connection
between certain geometric problems (such as the classification of manifolds)
and homotopy theory, through the medium of the Thom space. Computations
become possible upon stabilization, and this provided some of the first and
most compelling examples of “spectra.”

Since its inception the subject has thus represented a merger of the Rus-
sian and Western mathematical schools. This international tradition was
continued with the more or less simultaneous work by Novikov and Milnor
on complex cobordism, and later by Quillen. More recently Dennis Sullivan
opened the way to the study of “manifolds with singularities,” a study taken
up most forcefully by the Russian school, notably by Vershinin, Botvinnik,
and Rudyak.

Attention to pedagogy is another Russian tradition which you will find
amply fulfilled in this book. There is a fine introduction to the stable homo-
topy category. The subtle and increasingly important issue of phantom maps
is addressed here with care. Equally careful is the treatment of orientability, a
subject to which the author has contributed greatly. And the various aspects
of the theory of Cobordism, especially the central case of complex cobordism,
are naturally given a detailed and ample telling.

Professor Rudyak has also performed a service to the history of science in
this book, giving detailed and informed attributions. This same care makes
the book easy to use by the student, for when proofs are not given here
specific references are.

It is to be hoped that this book is the first in a new generation of text-
books, reflecting the current vigor of the subject.

Haynes Miller
Cambridge, MA
April, 1997
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Introduction

First, tell what you are going to

talk about, then tell this, and then

tell what you have talked about.

Manuals of a senior country priest

for beginners

The contents of this book are concentrated around Thom spaces (spec-
tra), orientability theory and (co)bordism theory (including (co)bordism with
singularities), framed by (co)homology theories and spectra. These matters
have formed one of the main lines of development for the last 50 years in the
area of algebraic and geometric topology. In the book I consider some results
obtained in this field in the last 20–30 years, settled enough in order to be
exposed in a monograph and close to my research interests. As far as I know,
there are no books which cover substantial parts of the presented material.

In the book I tried to prove those referenced results which were not proved
in any monograph (unfortunately, there are a few exceptions there). More-
over, when I quote a result which I do not prove here, I quote the original
paper and a monograph where this result is treated as well. There are also
occasional remarks containing historical and bibliographical comments, ad-
ditional results not included in the text, exercises, etc.

A reference to Theorem III.4.5 is to Theorem 4.5 of Ch. III (which is in
§4 of the chapter); if the chapter number is omitted, it is to a theorem of the
chapter at hand.

The scheme of interconnections of chapters is very simple:

I⇒ II⇒ III⇒ IV⇒V⇒ VII⇒ VIII⇒ IX
⇓
VI

I will not overview the contents, but I will discuss the subject of the book
and the place which it occupies in algebraic topology.



2 Introduction

Conceptional foundations

From the conceptual point of view, we consider the (inter)connections be-
tween geometry and homotopy theory, since Thom spectra and related mat-
ters are now the main tools for this interplay. Here I say a few words about
this.

Algebraic topology studies topological spaces via their algebraic invari-
ants. Evidently, these algebraic invariants should be simple enough in order
to be computable and deep (and so complicated) enough in order to keep
some essential information about a space. How does algebraic topology suc-
ceed in slipping between these two dangers: non-computable informativity
and non-informative computability? The answer is that homotopy provides a
desired balance between informativity and computability. Therefore, a rea-
sonable way from topology to algebra passes through homotopy theory. (If
you like artistic expressions, I can say that homotopy theory works like a
camera when we make an algebraic photograph of the topological world.)
In other words, one should reduce a geometric problem to a homotopic one
and then compute the corresponding homotopy invariants. Thus, interconnec-
tions between geometry and homotopy theory play a pivotal role in algebraic
topology.

One of the first results in this area was the Gauss–Bonnet formula, re-
lating a geometrical invariant (the curvature) to a homotopical one (the
Euler characteristic). Proceeding, we can recall the Riemann–Roch Theo-
rem, the Poincaré integrality theory, relationships between critical points of
a smooth function on a smooth manifold and its homotopy type (Lusternik–
Schnirelmann, Morse), the de Rham Theorem, etc. Hence, the geometry–
homotopy interconnections are very classical things, with a noble genealogy.
On the other hand, we’ll see below that this instrument works very success-
fully in the present as well.

The Characters

Here I discuss (briefly and roughly, because the body of the book contains
the details) the main concepts which appear in the book.

(Co)homology theories. We reserve the term “classical cohomology” or
“ordinary cohomology” for the functors H∗(−;G). The term “cohomology
theory” is used for what was previously called “generalized” or “extraordi-
nary” cohomology theory, i.e., for functors which satisfy all the Eilenberg–
Steenrod axioms except the dimension axioms. Similarly for homology theo-
ries.

Every homology theory h∗(−) yields a so-called dual cohomology theory
h∗(−), and vice versa. They are connected via the equality ˜hi(X) = ˜hn−i(Y )
where Y is n-dual to X (and tilde denotes the reduced (co)homology).
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Thom spaces. The Thom space Tξ of a locally trivial R
n-bundle ξ = {p :

E → B} is defined as follows. Let ξ• be the Sn-bundle obtained from ξ by
the fiberwise one-point compactification, and let E• be the total space of
ξ•. Then the “infinities” of the fibers form a section s : B → E•, and we
define Tξ := E•/s(B). Furthermore, the Thom space of a spherical fibration
{p : E → B} is the cone C(p) of the projection p. For example, the Thom
space of the R

n-bundle over a point is Sn, the Thom space of the open
Möbius band (considered as the R

1-bundle over S1) is the real projective
plane RP 2, the Thom space of the Hopf bundle S3 → S2 (with fiber S1) is
the complex projective plane CP 2. We use Thom’s notation MOn for the
Thom space Tγn of the universal n-dimensional vector bundle γn over the
classifying space BOn, i.e., MOn := Tγn; e.g., MO1 = RP∞.

A source of interest in Thom spaces is the unifying role which they play in
algebraic topology. Namely, they interlock geometric topology and homotopy
theory and, in particular, enable us to apply methods of one of them to
problems of the other. Now I discuss some examples.

J.H.C. Whitehead observed the importance of the structure on the normal
bundle in classifying structures on manifolds. It turns out that Thom spaces
establish an adequate context for this. Namely, for every closed smooth man-
ifold Mn, the set of (diffeomorphism classes of) smooth manifolds homotopy
equivalent to M is controlled by the group πn+N (Tν), where ν is the normal
bundle of an embedding ofM in R

n+N withN large enough, see Novikov [2,3],
Browder [1,2].

This is closely related to the Milnor–Spanier–Atiyah Duality Theorem,
which asserts that Tν and M/∂M are stable N -dual for every compact
manifold M . This theorem clarifies connections between manifolds and
their normal bundles and enables us to transmit properties of bundles
to properties of manifolds. For example, we have the Thom isomorphism
ϕ : Hi(X ; Z/2) → ˜Hi+n(Tξ; Z/2) for every locally trivial R

n-bundle ξ over
a space X , and the above theorem transforms it to the Poincaré duality
Hi(M ; Z/2) ∼= Hn−i(M,∂M ; Z/2) for every compact n-dimensional mani-
fold M .

Turning to another example, I recall the Thom formula

wi(ξ) = ϕ−1Sqiuξ

where ξ is an n-dimensional vector bundle over a space X , wi(ξ) is its i-th
Stiefel–Whitney class, ϕ : Hi(X ; Z/2)→ ˜Hi+n(Tξ; Z/2) is the Thom isomor-
phism and uξ ∈ Hn(Tξ; Z/2) is the Thom class of ξ. This formula expands
a geometric invariant (the Stiefel–Whitney class) via the Steenrod operation
which is a purely homotopic thing. Moreover, we can use the formula in or-
der to define the Stiefel–Whitney classes of spherical fibrations. In particular,
it becomes clear that the Stiefel–Whitney classes are invariants of the fiber
homotopy type of a vector bundle. I note also that, in the book Milnor–
Stasheff [1], the authors preferred to define the Stiefel–Whitney classes via
the Thom formula and not to use the original geometric definitions.
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Generalizing, we can consider an arbitrary natural transformation τ :
h∗ → k∗ of cohomology theories instead of Sqi. Then, under suitable condi-
tions on ξ, there is a generalized Thom class uhξ ∈ ˜hn(Tξ) and a generalized
Thom isomorphism ϕk : ki(X)→ ˜ki+n(Tξ), and so we can form the class

K(ξ) = ϕ−1
k τuhξ

which is an analogue and generalization of the Stiefel–Whitney class. So, we
have a large source of invariants of R

n-bundles. For example, the Todd genus
and the ̂A genus are particular cases of this construction. Moreover, the well-
known integrality theorems which are related to Todd and ̂A genera can be
generalized for the class K as above, see Ch. V, §3.

Now I turn to the most impressive example: the relations of Thom spaces
to (co)bordism.

Bordism and cobordism. To start with, consider the following problem.
Given a closed manifold M , how can one recognize whether it bounds, i.e.,
when is it the boundary of a compact manifold? This can be developed as
follows. One says that two closed manifolds M and N are bordant if the man-
ifold M	N (the disjoint union ofM and N) bounds. Clearly, “to be bordant”
is an equivalence relation, and so we have a set Nk of bordantness classes of
k-dimensional manifolds. It is easy to see that Nk is a group with respect to
disjoint union; it is called the bordism group of k-dimensional manifolds.

Pontrjagin [1] proved that if a manifold bounds then all its characteristic
numbers are trivial. In particular,RP 2 does not bound because w2(RP 2) 
= 0.
So, N2 
= 0, i.e., some groups Nk are non-trivial.

Well, but how to compute Nk? Clearly, N0 = Z/2, N1 = 0. Using the clas-
sification of closed surfaces, one can prove that N2 = Z/2: every orientable
surface bounds, and every non-orientable surface either bounds or is bordant
to RP 2; and RP 2 does not bound. Rokhlin [1] proved that N3 = 0, using
complicated and tricky geometry. The further computation of Nk looked ab-
solutely hopeless; however this was done by Thom [2] via an exciting and
successful application of homotopy theory. Namely, Thom proved that

Nk = πk+N (MON )

for N large enough. Now one can apply all the mighty machinery of homo-
topy theory and compute the right hand side groups. Thom did it and thus
computed the groups Ni. The answer is

N∗ = Z/2 [xi], dimxi = i, i ∈ N, i 
= 2s − 1

where N∗ = ⊕Nk is the graded ring with the multiplication induced by
the direct product of manifolds. It is important to remark that, fortunately,
powerful computational methods (obtained mainly by the French topological
school) came just at the right time, and Thom took advantage of this.



The Characters 5

I want to mention here that Pontrjagin (in 1937, the available publication is Pon-

trjagin [2]) interpreted homotopy groups of spheres in terms of smooth manifolds,

and this result anticipated the contemporary research in the area of interconnections

between homotopy theory and geometry. In fact, as remarked by Stong [2], “Thom

brought the Pontrjagin technique to the study of manifolds, largely reversing the

original idea”.

The above constructions can be generalized: we can consider oriented
manifolds or, more generally, manifolds equipped with some extra structures.
As above, there arise certain bordism groups, and they can be interpreted
as homotopy groups of certain Thom spaces. Many mathematicians studied
and study this zoo of bordism groups. The monograph Stong [2] summed up
this level of the development of the theory.

Proceeding, consider two maps f : M → X and g : N → X of closed
smooth k-dimensional manifolds M,N . We say that these maps are bordant
if there is a map F : W → X with ∂W = M 	 N and F |M 	 N = f 	 g.
Similarly to the above, “to be bordant” is an equivalence relation, and we have
a bordism group Nk(X). One can prove that in this way we get a homology
theory N∗(−) which is called a bordism theory. The dual cohomology theory
Nk(−) is called a cobordism theory.

Clearly, Nk = Nk(pt). Moreover,

Nk(X) = πk+N (X+ ∧MON )

for N large enough, where X+ is the disjoint union of the space X and a
point.

Spectra. The reader should have noted that we deal with the condition “N
large enough”, i.e., with the so-called stable situation. However, as remarked
by Milnor [4], it is much more pleasant to work in a category where there
is, say, a single object MO rather than the spaces MOn which approximate
it, i.e., “to put N = ∞”. This approach has a convenient formalization; its
main tool is the conception of a spectrum. There are different categories of
spectra proposed by different authors, and for some particular applications
one may have an advantage over another.

We use a category of spectra proposed by Adams [5]. So, a spectrum E
is a sequence {En, sn}∞n=−∞ of pointed CW -spaces En and pointed CW -
embeddings sn : SEn → En+1 where S denotes the pointed suspension.
There are the following examples.

(1) For every pointed space X we have the spectrum Σ∞X = {SnX, sn}
where sn : SSnX → Sn+1X is the identity map.

(2) For every pointed space X and every spectrum E = {En, sn} we have
the spectrum X ∧ E = {X ∧ En, 1 ∧ sn}.

(3) Let θ1 be the trivial 1-dimensional vector bundle over BOn, and let
the map BOn → BOn+1 (assuming it to be an embedding) classify the vector
bundle γn ⊕ θ1. Then we have a map sn : T (γn ⊕ θ1) → Tγn+1. Moreover,
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one can prove that T (γn ⊕ θ1) = STγn = SMOn, and so we have the Thom
spectrum MO = {MOn, sn}.

Given a spectrum E, we have the homomorphisms

hk,n : πk(En)→ πk+1(SEn)
(sn)∗−−−→ πk+1(En+1).

We define the homotopy group πk(E) to be the direct limit of the sequence

· · · −→ πk+n(En)
hk+n,n−−−−→ πk+n+1(En+1) −→ · · · ,

i.e., πk(E) = lim
n→∞

πi+n(En). Now we can rewrite the above equalities as

Nk = πk(MO), Nk(X) = πk(X+ ∧MO)

and so get rid of “N large enough”.
More generally, we can define bordism groups for manifolds with a struc-

ture, and they can also be interpreted as homotopy groups of certain Thom
spectra.

There is a remarkable connection between spectra and (co)homology the-
ories. Every spectrum E yields a homology theory E∗(−) and a cohomology
theory E∗(−) by the formulae

Ei(X) := lim
n→∞

πi+n(X+ ∧En), Ei(X) := lim
n→∞

[SnX+, Ei+n].

Moreover, E∗(−) and E∗(−) are dual to each other.
Conversely, every (co)homology theory can be represented by a spectrum

via the above formulae.
Note that, in particular, the spectrum MO yields the bordism (resp.

cobordism) theory N∗(−) (resp. N∗(−)).

Orientability. We consider in this book orientability with respect to arbi-
trary cohomology theories, but it makes sense to go back to classical things
for a moment.

The orientation of R
n is defined as an equivalence class of its bases, but it

can also be defined homologically, as one of the two generators of the group
Z = Hn(R̂n) (or Hn(R̂n)), where R̂

n = Sn is the one-point compactification
of R

n. This approach is very useful from the global point of view, i.e., when
we consider the orientability of certain families of R

n’s, like manifolds or R
n-

bundles. It is reasonable to treat an orientation of such a family as a family
of compatible orientations of its members. For example, if M is a closed
connected manifold with Hn(M) = Z then every generator [M ] of Hn(M)
can be considered as an orientation of M . Indeed, in this case [M ] yields
an orientation of every chart: this orientation has the form ε∗([M ]) where
ε : M → Sn collapses the complement of the chart. Moreover, we can define
orientations of charts to be compatible if there is a fundamental class [M ]
as above. So, in this way we define M to be orientable if Hn(M) = Z, and
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an orientation of M is defined to be a generator of Hn(M). Similarly, we
define a locally trivial R

n-bundle ξ over a connected base to be orientable if
Hn(Tξ) = Z, and an orientation of ξ is a generator of the group Hn(Tξ).

The homological approach to orientability enables us to develop ori-
entability theory for arbitrary (co)homology theories h. For example, an
h-orientation of an R

n-bundle ξ is a suitable element uξ ∈ ˜hn(Tξ), an h-
orientation of a closed manifold Mn is an element [M ] ∈ hn(Mn). Orientable
objects have a lot of good properties, and, because of this, “... an orien-
tation is a necessary point of departure for many cohomological construc-
tions” (Adams [9]). For instance, there are a Thom–Dold isomorphism ϕ :
hi(X) → ˜hi+n(Tξ) for every h-oriented R

n-bundle ξ over X and a Poincaré
(or Poincaré–Milnor–Spanier–Atiyah) duality hi(M)→ hn−i(M,∂M) for ev-
ery h-oriented manifold Mn, and the last one can be deduced from the first
one similarly to the classical case as above.

Now we can also tell more about the class K(ξ) = ϕ−1τuξ considered
above: in order to define it, ξ must be h- and k-oriented; so, orientability can
tell something about integrality.

Furthermore, one can develop an elegant theory of characteristic clas-
ses taking values in h∗(−) provided that all complex vector bundles are h-
orientable; these classes generalize the classical Chern classes.

There is not enough space to give all applications of orientability. As the
last example, we mention that general orientabilty theory provides a formal
group input to algebraic topology; this matter is completely degenerate for
classical cohomology, and so this remarkable theory was able to appear only
under the general approach.

So, you can see that the orientatibilty theory yields new results as well
as makes clear some classical constructions. Summarizing, I cite May [4]:
“Orientations of bundles with respect to cohomology theories play a central
role in topology.”

(Co)bordism with singularities. (Co)bordism with singularities is now a
common and convenient notion, being a favorite tool as well as subject of
research in algebraic topology. Roughly speaking, we take a class of mani-
folds and extend it to a class of suitable polyhedra (manifolds with singu-
larities) where a notion of a boundary is reasonably defined. Then, based
on these polyhedra, we can define the bordism groups of topological spaces.
Under certain circumstances, these bordism groups form a homology the-
ory and, dually, the corresponding cohomology theory. This (co)homology
theory is called (co)bordism with singularities. In fact, the passage from
(co)bordism to (co)bordism with singularities can be treated as an analogue
and far developed generalization of the introduction of coefficients in classical
(co)homology.

Varying the classes of manifolds with singularities, we get a big enough
stock of (co)homology theories and, in particular, are able to construct ones
with prescribed properties. For example, in this way we can construct classical
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(co)homology and connected complex k-theory. Moreover, the famous Morava
k-theories are also constructed as certain cobordism with singularities.

I also want to mention an application of (co)bordism with singularities to
the topological quantum field theory: for example, the elliptic (co)homology
can be constructed as (co)bordism with singularities.

Finally, (co)bordism with singularities gives a natural geometric flavor
to algebraic or homotopical matters. For example, the Adams resolution of
certain spectra can be interpreted in terms of (co)bordism with singularities,
and this enables us to get useful information about some classical (co)bordism
theories, like MSU and MSp, see e.g. Botvinnik [1], Vershinin [1].

Landmarks

The paper Thom [2] made a revolution and formed the contemporary
paradigm of algebraic topology, and it freshly demonstrated the power and
usefulness of the relations between homotopy theory and geometry. In order
to exhibit relatively recent advantages of this matter, I just write down a list
(unavoidably incomplete) of certain geometric problems which were (partially
or completely) solved via an application of homotopy theory. 1

(1) When can a manifold M be immersed in a manifold N , and how can
one classify these immersions? (Smale [1], Hirsch [1].)

(2) When can a homology class in a space be realized by a map of a closed
manifold? (Thom [2].)

(3) When is a closed manifold a boundary of a compact manifold with
boundary? (Thom [2].)

(4) Which spaces are homotopy equivalent to closed smooth manifolds?
(Browder [1,2], Novikov [2,3].)

(5) How can one classify manifolds up to diffeomorphism (PL isomor-
phism, homeomorphism)? (Smale [1], Kervaire–Milnor [1], Browder [1,2],
Novikov [2,3], Hirsch–Mazur [1], Sullivan [1], Kirby–Siebenmann [1], Freed-
man [1], Donaldson [1].)

(6) How many pointwise linearly independent tangent vector fields exist
on the n-dimensional sphere? (Adams [3].)

(7) Which smooth manifolds admit a Riemannian metric of positive scalar
curvature? (Gromov–Lawson [1], Stolz [1].)

This completes my introduction.

1 You can see that the list of authors contains six Fields Medal Award Winners.

All of them got this award for the research in question.



Chapter I. Notation, Conventions and
Other Preliminaries

The main goal of this chapter is to introduce some notation and terminol-
ogy. We assume that the reader is more or less familiar with the basic con-
cepts of algebraic topology (homotopy and homology). Typical references
are: tom Dieck–Kamps–Puppe [1], tom Dieck [2], Dold [5], Fomenko–Fuchs–
Gutenmacher [1], Fritsch–Piccinini [1], Fuks-Rokhlin [1], Gray [1], Hatcher [1],
Hilton–Wiley [1], Hu [1], May [5], Ossa [1], Postnikov [2], Spanier [2],
Switzer [1], Vick [1].

§1. Generalities

As usual, N,Z,Q,R and C will denote the sets of natural, integer, rational,
real and complex numbers.

We mark the end of the proof of a lemma, theorem, etc. by the symbol �.
If the proof is omitted for some reason (for example, because it is obvious),
then we place the symbol � at the end of the statement. Furthermore, we
use the symbol � to label the end of a proof of a lemma inside a theorem.
(The lemma is proved, but the theorem is not proved yet.)

The symbol “ := ” will mean “is defined to be”.

We use the abbreviation “iff” for “if and only if”.

The symbol “∼=” will usually denote an isomorphism of algebraic objects
(groups, modules, rings, coalgebras, etc.) or a homeomorphism of topological
spaces. For example, given two topological spaces X,Y , the notation f :
X

∼=−→ Y means that f is a homeomorphism.

For the definitions of category, functor and natural transformation the
reader is referred to Mac Lane [2], see also Dold [5] and Switzer [1]. Given a
category K , we writeX ∈ K iff X is an object of K . The identity morphism
of any object X is denoted by 1X . Given two objects X,B of K , the set of all
morphisms X → B is usually denoted by K (X,B) unless otherwise noted.
As usual, a morphism α : A → B is called an isomorphism if there exists a
morphism β : B → A such that αβ = 1B and βα = 1A. In the categorical
context we say “product” and “coproduct” rather than “direct product” and
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“direct sum”. (However, in some particular situations we use the standard
terminology, e.g., we can say “the direct sum of abelian groups”.) Given a
family {Xk} in K , its product (if the product exists) is denoted by

∏

kXk,
and we let pi :

∏

kXk → Xi denote the projection onto the i-th factor. For a
finite family {X,Y, . . . , Z} we denote the product by X × Y × · · · × Z.

By the definition of the product, for every family {fk : X → Ak} of
morphisms in K there exists a unique morphism f : X →

∏

k Ak such that
pkf = fk for every k. We denote this f by {fk}.

The category consisting of sets (as objects) and functions (as morphisms)
is denoted by E ns. The category of pointed sets and pointed functions is
denoted by E ns•.

Given a family {Xi} of sets, we use the standard notation
⋃

i

Xi,
⋂

i

Xi,
∏

i

Xi,
∐

i

Xi

for the union, intersection, Cartesian product and disjoint union of sets, re-
spectively. (Note that the Cartesian product of sets yields the product in
E ns, and so this notation

∏

iXi does not lead to confusion.)
Given a function f : X → Y , a restriction of f is any function g : A→ B

such that the diagram
A

⊂−−−−→ X

g

⏐

⏐




⏐

⏐



f

B
⊂−−−−→ Y

commutes. Given a function f : X → Y and a subset A of X , we denote the
composition A ⊂ X f−→ Y by f |A.

1.1. Definition. (a) A quasi-ordered set is a category Λ such that its objects
form a set, and there is at most one morphism λ → μ for every λ, μ ∈ Λ. In
this case we write λ ≤ μ. It is clear that

(1) λ ≤ λ for every λ ∈ Λ;
(2) If λ ≤ μ and μ ≤ ν then λ ≤ ν.

(b) A quasi-ordered set Λ is called directed (with respect to increasing) if
for every λ, μ ∈ Λ there exists ν ∈ Λ such that λ ≤ ν and μ ≤ ν.

(c) A cofinal subset of a quasi-ordered set Λ is any full subcategory Λ′ of
Λ such that for every λ ∈ Λ there is μ ∈ Λ′ with λ ≤ μ.

(d) A quasi-ordered set Λ is called discrete when λ ≤ μ iff λ = μ for every
λ, μ ∈ Λ.

In fact, ≤ can be considered as a relation on the set Λ, and a quasi-ordered

set can be defined as a set equipped with a relation satisfying (1) and (2). Such a

relation is called a quasi-ordering.
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1.2. Definition. A partially ordered set, or a poset, is a quasi-ordered set
with the following condition: if λ ≤ μ ≤ λ then λ = μ. A maximal element of
a poset Λ is any λ ∈ Λ such that λ ≤ μ implies λ = μ. A greatest element of
a poset Λ is an element μ ∈ Λ such that λ ≤ μ for every λ ∈ Λ. Clearly, the
greatest element is a maximal element, but the converse is not true.

A chain in a poset is a family {ai} such that, for every pair i, j of indices,
either ai ≤ aj or aj ≤ ai. An upper bound of the chain is any a such that
ai ≤ a for every i. A poset is called inductive if every chain in it has an upper
bound.

We use the transfinite induction principle in the following form, see e.g.
Kelley [1].

1.3. Zorn’s Lemma. Every inductive set has a maximal element. �

Let K be an arbitrary category. Every object B of K induces a con-
travariant functor TB : K → E ns given by TB(X) := K (X,B) for every
object X of K and TB(f) := K (f, 1B) : K (Y,B) → K (X,B) for every
morphism f : X → Y of K .

1.4. Definition. We say that a contravariant functor F : K → E ns is
represented by a certain object B of K if there exists a natural equivalence
F ∼= TB. In this case B is called a classifying or representing object for F .
Furthermore, F is called representable if it can be represented by some B.

Let F,G : K → E ns be represented by B,C respectively. It is obvious
that every morphism f : B → C yields a natural transformation Tf : TB →
TC and hence F → G. The converse is also true.

1.5. Lemma (Yoneda). Fix natural equivalences b : F
∼=−→ TB, c : G

∼=−→ TC.
For every natural transformation ϕ : F → G there exists a morphism f :
B → C such that for every object X of K the diagram

F (X)
ϕ−−−−→ G(X)

⏐

⏐



b

⏐

⏐




c

TB(X)
Tf−−−−→ TC(X)

commutes, and such a morphism f is unique. In particular, the representing
object B for F is determined by F uniquely up to isomorphism.

Proof. Consider the function

h : K (B,B) b−1

−−→ F (B)
ϕ−→ G(B) c−→ K (B,C)
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and set f = h(1B). Then the diagram commutes for X = B and hence, by
naturality, for arbitrary X . Let f ′ : B → C be another morphism satisfying
the conditions of the lemma. Then f ′ = h(1B), since the diagram commutes
for X = B. So, ϕ is unique. To prove the last assertion, put ϕ = 1F . �

§2. Algebra

The category of abelian groups and homomorphisms is denoted by A G . Note
that the usual direct product of abelian groups is the categorical product in
A G , while the usual direct sum is the categorical coproduct in A G .

We denote the cyclic group of order m by Z/m.

In algebraic context, we reserve the word “unit” for the neutral element
of a monoid (group). In particular, the multiplicative identity element of a
ring is also called the unit.

We restrict the notion of ring to rings which are associative and unital
(i.e. possess a unit), and every ring homomorphism is required to preserve
units. Furthermore, every module is required to be unitary (i.e. 1a = a, where
1 is the unit of the ring and a is any element of the module). Finally, modules
over a graded ring are required to be graded.

The degree of a homogeneous element x of a graded object (group, ring,
etc.) is denoted by deg x or |x|. If A is a graded object then An denotes its
component of homogeneous elements of degree n. A graded object A is called
bounded below if there exists n such that Ai = 0 for i < n.

Given a commutative ring R, we denote by R[x, y, . . . , z] the polynomial
ring of indeterminates x, y, . . . , z. The corresponding power series ring is de-
noted by R[[x, y, . . . , z]]. If R is a graded ring, we assume that x, y, . . . , z are
homogeneous indeterminates. Furthermore, ΛR(x, y, . . . , z) denotes the free
exterior algebra (with a unit) over R of indeterminates x, y, . . . , z, and for a
graded R we assume that x, y, . . . , z have odd degrees. We use the notation
Λ(x, y, . . . , z) for the ring ΛZ(x, y, . . . , z).

The set of multiplicatively invertible elements of a commutative ring R is
denoted by R∗.

Let ρ : A → B be a ring homomorphism, and let M be a right A-
module. The homomorphism ρ turns B into a left A-module ρB, where a ·b =
ρ(a)b for a ∈ A, b ∈ B, cf. Cartan–Eilenberg [1]. We can therefore form the
tensor product over A of A-modules M,B. This tensor product is denoted
by M ⊗ρ B.

We use the Five Lemma in the following form, see e.g. Mac Lane [2], I.3.3.

2.1. The Five Lemma. Consider a commutative diagram in A G
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• −−−−→ • −−−−→ • −−−−→ • −−−−→ •
⏐

⏐




α1

⏐

⏐




α2

⏐

⏐




α3

⏐

⏐




α4

⏐

⏐




α5

• −−−−→ • −−−−→ • −−−−→ • −−−−→ •
with exact rows.

(i) If α1 is an epimorphism and α2, α4 are monomorphisms, then α3 is
a monomorphism.

(ii) If α5 is a monomorphism and α2, α4 are epimorphisms, then α3 is
an epimorphism.

In particular, if α1, α2, α4, α5 are isomorphisms, then α3 is an isomor-
phism. �

2.2. Notation. Given a family {Ai} of abelian groups, we use the notation
⊕iAi for its direct sum. By the definition of the direct sum, for every abelian
group G and every family ϕi : Ai → G of homomorphisms there is a unique
homomorphism

〈ϕi〉 : ⊕iAi → G

such that 〈ϕi〉|Ai = ϕi.

2.3. Definition. Let Λ be a quasi-ordered set.
(a) Let K be a category. A direct system over Λ, or briefly, a direct Λ-

system, in K is a covariant functor M : Λ → K . In other words, M is a
family M = {Mλ, j

μ
λ}λ, μ ∈ Λ, where Mλ ∈ K and where jμλ : Mμ → Mλ

for μ ≤ λ are morphisms such that jμλj
ν
μ = jνλ for ν ≤ μ ≤ λ and jλλ = 1Mλ

.
(b) A morphism f : {Mλ, j

μ
λ} → {Nλ, h

μ
λ} of direct Λ-systems is a natural

transformation of functors, i.e., a family {fλ : Mλ → Nλ} with hμλfμ = fλj
μ
λ .

2.4. Definition. Let Λ be a quasi-ordered set, and let {Aλ}λ∈Λ be a direct Λ-
system of abelian groups. Let iλ : Aλ → ⊕λAλ be the inclusion, and let B ⊂
⊕λAλ be the subgroup generated by all elements of the form (iμaμ− iλjμλaμ).
The quotient group (⊕λAλ)/B is called the direct limit of the direct system
{Aλ} and is denoted by lim−→{Aλ}.

It is clear that every morphism f : {Aλ} → {Bλ} of direct Λ-systems
induces a morphism lim−→ f : lim−→{Aλ} → lim−→{Bλ}.

Let q : ⊕Aλ −→ lim−→{Aλ} be the quotient map. Define kλ to be the com-
position

kλ : Aλ
iλ−→ ⊕Aλ

q−→ lim−→{Aλ}.
The direct limit has the following universal property.

2.5. Theorem. Let G be an abelian group, and let ϕλ : Aλ → G be a
family of homomorphisms such that ϕμ = ϕλj

μ
λ for every μ ≤ λ. Then there

exists a homomorphism ϕ : lim−→{Aλ} → G such that ϕkλ = ϕλ for every λ.
Furthermore, such a homomorphism ϕ is unique.
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It is useful to have a notation for ϕ in terms of ϕλ. I suggest denoting ϕ
by 〈ϕλ| lim−→〉.

2

Proof. If such ϕ exists, then ϕq = 〈ϕλ〉, and so ϕ is unique. To prove the
existence, note that 〈ϕλ〉 : ⊕Aλ → G passes through lim−→{Aλ}, i.e., 〈ϕλ〉 can
be decomposed as

⊕Aλ
q−→ lim−→{Aλ}

ϕ−→ G.

Clearly, ϕkλ = ϕλ. �

2.6. Definition. Given a quasi-ordered set Λ, let f : {Aλ} → {Bλ} and g :
{Bλ} → {Cλ} be two morphisms of direct Λ-systems in A G . We say that the

sequence {Aλ}
f−→ {Bλ}

g−→ {Cλ} is exact if the sequence Aλ
fλ−→ Bλ

gλ−→ Cλ
is exact for every λ ∈ Λ.

2.7. Theorem. Given a directed quasi-ordered set Λ, let

{Aλ}
f−→ {Bλ}

g−→ {Cλ}

be an exact sequence of direct Λ-systems. Then the sequence

lim−→{Aλ}
lim−→ f
−−−→ lim−→{Bλ}

lim−→ g
−−−→ lim−→{Cλ}

is exact.

Proof. See Dold [5], VIII.5.21 or Eilenberg–Steenrod [1], VIII.5.4. �
We discuss the inverse limit in Ch. III.

§3. Topology

3.1. Conventions. We reserve the term “map” for a continuous function
between two topological spaces.

All neighborhoods and coverings are assumed to be open, unless some-
thing else is said explicitly.

When we say “connected space” we mean “path connected space”.
Following Bourbaki [2], when we call a space compact we include the

Hausdorff property. In particular, every compact space is normal, see loc. cit.

We denote the one-point space by “pt”.

A pair (of topological spaces) (X,A) is a topological space X with a
fixed closed subspace A. A map f : (X,A) → (Y,B) of pairs is just a map
f : X → Y such that f(A) ⊂ B. Given a pair (X,A), a collapse c : X → X/A

2 If Λ is a discrete quasi-ordered set, then, clearly, 〈ϕλ| lim−→〉 = 〈ϕλ〉.
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is a quotient map which maps A to a point and induces a homeomorphism
of X \A onto its image.

Given two pairs (X,A), (Y,B) of spaces and a map f : A → B, the
space X ∪f Y is defined to be the quotient space (X

∐

Y )/ ∼, where ∼ is
the smallest equivalence relation generated by the following relation: a ∼ b if
f(a) = b for a ∈ A, b ∈ B. We say that the space X ∪f Y is obtained from X
by adjoining, or gluing, Y via f .

For instance, if Y = pt = B then X ∪f Y ∼= X/A.
A triad (X ;A,B) is a topological space and two of its closed subspaces

A,B such that X = A ∪B.
A filtration of a topological space X is a sequence

{· · · ⊂ X0 ⊂ · · · ⊂ Xn ⊂ · · · ⊂ X}

such that:
(1) X = ∪nXn.
(2) Every Xn is closed in X .
(3) X inherits the direct limit topology, i.e., U is open in X iff U ∩Xn

is open in Xn for every n.

A pointed space is a pair (X, {x0}) where x0 is a point of X . We use also
the notation (X,x0) and call x0 the base point of X . If there is no reason
to indicate the base point, we may write (X, ∗) (or even X if it is clear
that X is pointed). A pointed map f : (X,x0) → (Y, y0) is just the map
f : (X, {x0})→ (Y, {y0}) of pairs.

Given a space X , we denote by X+ the disjoint union of X and a point,
and the added point is assumed to be the base point.

A pointed pair is a triple (X,A, x0) where (X,x0) is a pointed space and
(X,A) is a pair such that x0 ∈ A.

A pointed triad is a quadruple (X ;A,B;x0) where (X,x0) is a pointed
space and (X ;A,B) is a triad such that x0 ∈ A ∩B.

Algebraic topologists prefer to deal with “nice” spaces, such as CW -
spaces. However, a class of spaces in which algebraic topologists work should
be closed under standard operations which topologists use. In other words,
the suitable category of spaces should be large enough to accommodate oper-
ations and small enough to rule out pathologies at the same time. One such
category was suggested by Steenrod [2] and improved by McCord [1]3, and
is known as the category of weak Hausdorff compactly generated spaces. We
recall the definitions here, see also Fritsch–Piccinini [1].

3.2. Definition. (a) A topological space X is called weak Hausdorff if, for
every map ϕ : C → X of a compact space C, the set ϕ(C) is closed in X .

3 We recommend also the paper of Vogt [1].
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(b) A subset U of a topological spaceX is called compactly open if ϕ−1(U)
is open for every map ϕ : C → X of a compact space C. A topological space
X is called compactly generated if each of its compactly open sets is open.

Clearly, every open set is compactly open.

Note that every point of a weak Hausdorff space is closed, and that every
Hausdorff space is weak Hausdorff. Thus, the weak Hausdorff property lies
between T1 and T2.

We denote by W the category of weak Hausdorff compactly generated
spaces and their maps. Similarly, we denote by W • the category of weak
Hausdorff compactly generated pointed spaces and their pointed maps.

3.3. Proposition. (i) Let ϕ : C → X be a map of a compact space C to a
weak Hausdorff space X. Then ϕ(C) is compact.

(ii) Let X be a weak Hausdorff space. Then a subset U of X is compactly
open iff U ∩ C is open in C for every compact subspace C of X.

(iii) If X ∈ W and A is a closed subspace of X then A ∈ W and X/A ∈ W .
(iv) Let

X0 ⊂ X1 ⊂ · · · ⊂ Xn ⊂ · · ·

be a sequence in W , and let X :=
∞
⋃

n=0

Xn have the direct limit topology. Then

X ∈ W .
(v) Let X,Y ∈ W , let A be a closed subset of X, and let f : A→ Y be a

map. Then X ∪f Y ∈ W .

Proof. See McCord [1, §2] or Fritsch-Piccinini [1, Appendix]. �
Note that X/A is generally non-Hausdorff even when X is Hausdorff. So

we cannot restrict our class to that of compactly generated Hausdorff spaces.

3.4. Construction (Steenrod [2]). Given a topological space X , we denote
by kX the topological space which coincides with X as a set but has the
following topology: a set U is open in kX iff ϕ−1(U) is open in C for every
map ϕ : C → X from a compact space C. We leave it to the reader to check
that this family of open sets is a topology.

We define the function w = wX : kX → X,w(x) = x. Furthermore, given
a function f : X → Y , we define the function kf := w−1

Y fwX : kX → kY .

3.5. Theorem (cf. Steenrod [2]). (i) For every space X, wX is a map.
(ii) For every space X, kX is a compactly generated space.
(iii) If X is compactly generated then wX is a homeomorphism.
(iv) X and kX have the same compact subspaces.
(v) If f : X → Y is a map then so is kf : kX → kY .
(vi) If Z is compactly generated and f : Z → X is a map then so is

w−1
X f : Z → kX.
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(vii) If X is weak Hausdorff then so is kX.

Proof. (i)–(iv) follow from the definitions.
(v) Let U be open in kY , and let ϕ : C → X be a map of a compact space

C. Then ϕ−1(f−1(U)) = (fϕ)−1(U) is open in C. Thus, f−1(U) is open in
kX .

(vi) By (ii) and (iii), w−1
X f = (kf)w−1

Z . Now, by (v) and (iii), (kf)w−1
Z is

a map.
(vii) Let ϕ : C → kX be a map of a compact space. We must prove that

ϕ(C) is closed in kX . But this follows, since wϕ(C) is closed in X . �
Generally speaking, the usual Cartesian product of two spaces from W is

not in W . See Dowker [1], §5. Nevertheless, the category W admits products.

3.6. Definition. Given a family {Xi} of topological spaces, we define their
compactly generated direct product

∏

i

Xi := k

(

∏

i

c
Xi

)

where
∏c is the usual Cartesian product of topological spaces.

3.7. Lemma. The compactly generated direct product is the product in W .

Proof. Firstly, we prove that
∏

Xi ∈ W if every Xi ∈ W . In view of
3.5(ii), it suffices to prove that

∏c
Xi is weak Hausdorff. Let

pci :
c
∏

Xi → Xi

be the projection. Consider a map ϕ : C → X of a compact space C and
set Ci = pci (ϕ(C)). Then, by 3.3(i), Ci is a Hausdorff subspace of Xi. Fur-
thermore, ϕ(C) ⊂

∏c
Ci, and so ϕ(C) is closed in

∏c
Ci since the latter

is Hausdorff. Finally,
∏cCi is closed in

∏cXi since Ci is closed in Xi, see
Bourbaki [2].

Now consider the projection pi :
∏

Xi
w−→
∏c

Xi
pci−→ Xi. We must prove

that, for every Y ∈ W and every family fi : Y → Xi of maps, there is a unique
map f : Y →

∏

Xi such that pif = fi. Indeed, since
∏c is the product in

the category of all topological spaces, there is a map f ′ : Y →
∏cXi such

that pcif
′ = fi, and we set f := w−1f ′ : Y →

∏

Xi. By 3.5(vi), f is a map.
Now, if there is another map g : Y →

∏

Xi with pig = f then wg = f ′, and
so g = f . �

3.8. Proposition. If X is a locally compact Hausdorff space and Y ∈ W
then w : X × Y → X ×c Y is a homeomorphism. 4

4 Clearly, every locally compact Hausdorff space belongs to W .
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Proof. See Steenrod [2], 4.3 or Vogt [1], §3. �
Note that the disjoint union yields the coproduct in W .

Define the compact-open topology as follows: let ϕ : C → X be a map of a
compact space C, and let U be an open set in Y . We denote by W (ϕ,U) the
set of all maps f : X → Y such that fϕ(C) ⊂ U . Then the family {W (ϕ,U)}
for all such pairs (ϕ,U) forms a subbasis of the compact-open topology on
the set of maps from X to Y .

3.9. Definition. (a) Given two spaces X,Y , we let C(X,Y ) denote the topo-
logical space of all maps X → Y equipped with the compact-open topology.
We let

Y X := kC(X,Y ).

(b) Given two pairs (X,A) and (Y,B), we define (Y,B)(X,A) to be the
subspace of Y X consisting of maps f : X → Y such that f(A) ⊂ B. In
particular, given two pointed spaces (X, ∗) and (Y, ∗), (Y, ∗)(X,∗) is a pointed
space, whose base point is given by the constant map X → {∗} ⊂ Y .

(c) The loop space Ω(X, ∗) of a pointed space (X, ∗) is just the pointed
space (X, ∗)(S1,∗) where S1 is the circle.

3.10. Theorem. Let X,Y, Z ∈ W .
(i) The map

u : (Y × Z)X → Y X × ZX , u(f) = (p1f, p2f)

is a homeomorphism.
(ii) The map

e : ZY×X → (ZY )X , (e(f)(x))(y) = f(y, x)

is a homeomorphism.
(iii) The function

μ : ZY × Y X → ZX , μ(f, g) = fg

is continuous.

Proof. See Steenrod [2], 5.4, 5.6 and 5.9. �

3.11. Convention. Throughout the book we will assume that all spaces
belong to W unless somthing else is said explicitly, i.e., the word “space”
means “weak Hausdorff compactly generated space”. Furthermore, all the
products and function spaces are taken as in 3.6 and 3.9.

Clearly, the direct product topology on R
n = R× · · · × R coincides with

the standard topology on R
n (defined e.g. by the inner product).



§3. Topology 19

We define the standard n-dimensional disk

Dn :=

{

(x1, . . . , xn) ∈ R
n

∣

∣

∣

∣

n
∑

i=1

(xi)2 ≤ 1

}

and the standard n-dimensional sphere

Sn :=

{

(x1, . . . , xn+1) ∈ R
n+1

∣

∣

∣

∣

n+1
∑

i=1

(xi)2 = 1

}

.

3.12. Basic homotopy theory. (a) Two maps f, g : X → Y are called
homotopic if there is a map (homotopy, or deformation) H : X × I → Y such
that H |X × {0} = f and H |X × {1} = g. In this case we use the notation
f � g or H : f � g. The homotopy class of a map f is denoted by [f ]. The
set of all homotopy classes of maps X → Y is denoted by [X,Y ].

(b) A map f : X → Y is called a homotopy equivalence if there is a map
g : Y → X such that gf � 1X and fg � 1Y . In this case we say that f and
g are homotopy inverse to each other. Two spaces X,Y are called homotopy
equivalent if there is a homotopy equivalence X → Y , and we write X � Y .
The homotopy type of a space X is the class of all spaces homotopy equivalent
to X .

(c) By saying that two maps f, g : (X,A) → (Y,B) are homotopic we
mean that there exists a homotopy (X × I, A × I) → (Y,B). Furthermore,
we say that two maps f, g : (X,A)→ (Y,B) are homotopic relative to A, and
write f � g rel A, if there is a homotopy H : f � g such that H(a, t) = f(a)
for every a ∈ A, t ∈ I. Similarly, one can define homotopy equivalences of
pairs and homotopy equivalences rel A. We leave further such definitions to
the reader.

3.13. Definition. We say that a map is essential if it is not homotopic to a
constant map. Otherwise we say that a map is inessential.

3.14. Definition. Let H W denote the category whose objects are the same
as those of W but whose morphisms are the homotopy classes of maps.
Clearly, every diagram in W yields a diagram in H W . We say that a di-
agram in W is homotopy commutative if the corresponding diagram in H W
is commutative.

3.15. Definition. We say that two sequences (finite or not)

X1
f1−→ X2

f2−→ · · ·

and
Y1

g1−→ Y2
g2−→ · · ·



20 Chapter I. Notation, Conventions and Other Preliminaries

of maps are homotopy equivalent if there exists a homotopy commutative
diagram

X1
f1−−−−→ X2

f2−−−−→ · · ·

h1

⏐

⏐




⏐

⏐



h2

Y1
g1−−−−→ Y2

g2−−−−→ · · ·
where every hi is a homotopy equivalence. In particular, two maps f : X1 →
X2 and g : Y1 → Y2 are homotopy equivalent if there are homotopy equiva-
lences hi : Xi → Yi, i = 1, 2 such that h2f = gh1.

3.16. Definition. Let f : X → Y be a map.
(a) The mapping cylinder, or just the cylinder, of f is the space

Mf := X × [0, 1] ∪f Y,

where f is considered as the map X × {0} = X
f−→ Y . Recall that there is a

standard deformation F : Mf × I → Y where

F ((x, t), s) = (x, st) if (x, t) ∈ X × (0, 1] and s > 0
F ((x, t), 0) = f(x) if (x, t) ∈ X × (0, 1]

F (y, s) = y if y ∈ Y.

Note that F
∣

∣Mf ×{0} : Mf → Y is a retraction and F
∣

∣Mf ×{1} = 1Mf ,
i.e., Y is a deformation retract of Mf .

(b) The mapping cone, or the cofiber, or just the cone, of f is the space
Cf := Mf/(X × {1}). Recall that the mapping cone has the following uni-
versal property: If h : Y → Z is a map such that hf is inessential then there
exists a map g : Cf → Z such that g|Y = h.

(c) We define the canonical inclusion

(3.17) k : Y → Cf

by setting k(y) = y.

3.18. Definition. (a) Given two maps f : X → Y and g : X → Z, the double

mapping cylinder of the diagram Y
f←− X g−→ Z is the space

D := X × [0, 2] ∪ϕ (Y 	 Z)

where ϕ is defined to be the composition

ϕ : (X × {0}) 	 (X × {2}) = X 	X f	g−−→ Y 	 Z.

Furthermore, we have the inclusions

ileft : Y ⊂ D, iright : Z ⊂ D, imid : X = X × {1} ⊂ D.
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For instance, Cf is (homeomorphic to) the double mapping cylinder of

the diagram Y
f←− X −→ pt.

(b) The mapping cone of the constant map X → pt is called the sus-
pension over a space X and denoted by SX . Thus, the suspension is the
double mapping cylinder of the diagram pt ←− X −→ pt. Given a point
(x, t) ∈ X × I, we denote by [x, t] its image under the quotient map
X × I → SX = X × I/X ×{0, 1}. Furthermore, given a map f : X → Y , we
define a map Sf : SX → SY by setting (Sf)[x, t] := [f(x), t].

(c) The mapping cylinder of the trivial map X → pt is denoted by CX .
So, Cf = CX ∪f Y , and SX = CX/X × {1}.

(d) The join X ∗Y of the spaces X,Y is defined to be the double mapping
cylinder of the diagram

X
p1←− X × Y p2−→ Y.

For instance, X ∗S0 = SX . Given a point (x, t, y) ∈ X× [0, 2]×Y , we denote
by [x, t, y] its image under the canonical map X × [0, 2]× Y → X ∗ Y .

(e) We define the iterated suspension SnX by induction, by setting
S0X := X and SnX := S(Sn−1X). By induction, every map f : X → Y
yields a map Snf : SnX → SnY ; this turns the suspension into a functor.

3.19. Definition. Given a sequence X = {· · · fn−1−−−→ Xn
fn−→ Xn+1

fn+1−−−→ · · · }
of maps, define its telescope TX to be the space

TX :=
(

⋃

(Xn × [n, n+ 1])
)

/

∼,

where under ∼, (x, n+ 1) ∈ Xn× [n, n+ 1] is identified with (fn(x), n+ 1) ∈
Xn+1 × [n+ 1, n+ 2].

Let TevX be the subspace
⋃

(X2n−1 × [2n− 1, 2n] ∪X2n × {2n})/ ∼

of TX, and let TodX be the subspace
⋃

(X2n × [2n, 2n+ 1] ∪X2n+1 × {2n+ 1})/ ∼

of TX. Then

TevX �
∐

n

X2n, TodX �
∐

n

X2n+1, TevX ∩ TodX �
∐

n

Xn,

TevX ∪ TodX = TX.

As an important special case, one can consider a filtration

F = {· · · ⊂ Xn ⊂ Xn+1 ⊂ · · · }

of a space X as a sequence of inclusion maps, see 3.51 below.
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3.20. Definition. Let {(Xi, xi)} be a family of pointed spaces.
(a) The pointed direct product is the pointed space

∏

(Xi, xi) :=
(

∏

Xi, ∗
)

where ∗ is the point
∏

{xi}.
(b) The wedge is the pointed space

∨

i

(Xi, xi) :=
( ∐

iXi

∪i{xi}
, ∗
)

.

where ∗ is the image of ∪i{xi}.
(c) The obvious injective maps (Xi, xi)→

(

∏

Xi, ∗
)

yield an injective
map

(∨iXi, ∗)→
(

∏

Xi, ∗
)

.

Generally speaking, this map is not closed, but it is closed for a finite set
of spaces. So, given two pointed spaces (X, ∗), (Y, ∗), we define the smash
product

(X, ∗) ∧ (Y, ∗) :=
(X, ∗)× (Y, ∗)
(X, ∗) ∨ (Y, ∗) .

Furthermore, we set

(X,x0) ∧ (Y, y0) ∧ · · · ∧ (Z, z0) := (· · · ((X,x0) ∧ (Y, y0)) ∧ · · · ) ∧ (Z, z0) .

3.21. Definition. Let {(Xi, xi)} be a family of copies of a pointed space
(X,x). We define the folding map

π : ∨(Xi, xi)→ X,

to be the unique map π such that π|Xi = 1X .

There are also analogs of constructions 3.16 for pointed spaces.

3.22. Definition. We say that two pointed maps f, g : (X,x0)→ (Y, y0) are
pointed homotopic if f � g rel {x0}. In this case we also write f �• g. The
set of all pointed homotopy classes of maps (X, ∗) → (Y, ∗) is denoted by
[(X, ∗), (Y, ∗)] or [X,Y ]•. The set [(Sn, ∗), (X, ∗)] is denoted by πn(X, ∗). If
n ≥ 1 then it possesses a natural structure of a group (abelian for n > 1) and
is called the n-th homotopy group of (X, ∗), see any text book for details.

3.23. Definition. (a) The reduced mapping cylinder of a pointed map f :
(X, ∗) → (Y, ∗) is the space Mf = (X × [0, 1] ∪f Y )/(∗ × [0, 1]). Note that
the base points of X and Y yield the same point ∗ ∈Mf ; we agree that ∗ is
the base point of Mf .
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(b) The reduced mapping cone of f is defined to be Cf = Mf/(X×{1}).
It is a pointed space in the obvious way: its base point is the image of the
base point of Mf .

(c) The reduced mapping cone of the constant map (X, ∗) → (pt, ∗) is
called the reduced suspension over a space X and denoted by SX . Further-
more, we can define the iterated reduced suspension SnX , and Sn turns out
to be a functor on W •, see 3.18(e).

(d) The reduced telescope of a sequence

X = {· · · fn−1−−−→ Xn
fn−→ Xn+1

fn+1−−−→ · · · }

of pointed maps is defined to be the pointed space

TX :=
(

⋃

(Xn × [n, n+ 1])
)

/

∼,

where (x, n+ 1) ∈ Xn × [n, n+ 1] is identified with (fn(x), n+ 1) ∈ Xn+1 ×
[n+ 1, n+ 2] and all the points of the form (∗, t) are identified. These points
of the form (∗, t) yield the base point of TX.

Let TevX be the subspace
⋃

(X2n−1 × [2n− 1, 2n] ∪X2n × {2n})/ ∼

of TX, and let TodX be the subspace
⋃

(X2n × [2n, 2n+ 1] ∪X2n+1 × {2n+ 1})/ ∼

of TX. We have TX = TevX ∨ TodX, TevX � ∨nX2n, TodX � ∨nX2n+1, and
TevX ∩ TodX � ∨nXn.

Again, given a pointed filtration F = {Xn} of a pointed space X , we can
introduce the reduced telescope TF.

You can see that we introduce no special notation for reduced objects.
(In fact, the reduced and unreduced cone (cylinder, etc.) of any map(s) of
CW -spaces are homotopy equivalent, see 3.26 below.) Moreover, we omit the
adjective “reduced” when it is clear that we work with pointed spaces and
maps, i.e., we just say “the cone of a pointed map”, etc.

Note that, because of 3.3, the categories W and W • are closed under
constructions defined in 3.16–3.23.

Prove as an exercise that SX ∼= S1 ∧X for every X ∈ W •.

3.24. Definition. Given a pair (X,A), the inclusion i : A → X is called
a cofibration if it satisfies the homotopy extension property, i.e., given maps
g : X → Y and F : A × I → Y such that F |A × {0} = g|A, there is a map
G : X × I → Y such that G|X × {0} = g and G|A× I = F . In this case we
also say that (X,A) is a cofibered pair.
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We discuss fibrations in Ch. IV.

3.25. Proposition. (i) (X,A) is a cofibered pair iff every map h : X×{0}∪
A× I → Y can be extended to a map X × I → Y .

(ii) (X,A) is a cofibered pair iff X × {0} ∪A× I is a retract of X × I.

Proof. (i) Let (X,A) be a cofibered pair, and let h : X×{0}∪A× I → Y
be a map. We set F := h|A × I, g := h|X × {0}. Then G : X × I → Y as
in 3.24 is the desired extension of h. Conversely, consider g : X → Y and
F : A× I → Y as in 3.24. We define h : X × I → Y be setting h|A× I := F ,
h|X×{0} := g. Since A is assumed to be closed, h is continuous. This map h
has an extension G : X × I → Y . Clearly, G|X × {0} = g and G|A× I = F .
Thus, (X,A) is a cofibered pair.

(ii) Let (X,A) be a cofibered pair. We put Y = X × {0} ∪A× I, h = 1Y
in (i). Then any extension G : X × I → Y of h is a retraction. Conversely,
let r : X × I → X × {0} ∪ A × I be a retraction. Then every map h :
X ×{0}∪A× I → Y has the extension hr : X× I → Y . Thus, by (i), (X,A)
is a cofibered pair. �

3.26. Proposition. (i) For every map f : X → Y , the inclusion

i : X = X × {1} →Mf

is a cofibration. In particular, every map is homotopy equivalent to a cofibra-
tion.

(ii) Let (X,A) be a cofibered pair. Then Ci � X/A.
(iii) Let (X,A) be a cofibered pair. If A is contractible then the collapsing

map c : X → X/A is a homotopy equivalence.

Proof. (i) Let I ′ be a copy of the segment I, and let

ρ : I × I ′ → {0} × I ′ ∪ I × {0}

be a retraction. We must prove that X × I ′ ∪ (X × I ∪ Y ) is a retract of
(X × I × I ′) ∪ (Y × I ′)× {0}. To this end, we define a retraction

r : (X × I × I ′) ∪ (Y × I ′)→ X × I ′ ∪ (X × I ∪ Y )

by setting r(x, s, t) = (x, ρ(s, t)) and r(y, t) = y.
(ii) Let q : Ci→ X/A be the quotient map which collapses CA. We define

f : X ∪ A × I → Ci to be the quotient map which collapses A × {1}. Since
(X,A) is a cofibered pair, f can be extended to a map F : X × I → Ci, and
we set g := F |X × {1} : X → Ci. Since g(A) is a point, g passes through
a map j : X/A → Ci. We leave it to the reader to prove that q and j are
homotopy inverse.

(iii) This can be proved similarly to (i) and (ii), see e.g. Switzer [1], 6.6.
�
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3.27. Lemma. If (X,A) and (Y,B) are cofibered pairs then so is the pair
(X × Y,X ×B ∪A× Y ).

Proof. See Strøm [2], tom Dieck–Kamps–Puppe [1], Satz I.3.20 or May [5],
Ch. 6. �

3.28. Definition. A pointed space (X,x0) is called well-pointed if (X, {x0})
is a cofibered pair.

3.29. Lemma (Puppe [1]). Let f : (X,x0) → (Y, y0) be a pointed map
of well-pointed spaces. If f : X → Y is a homotopy equivalence then f :
(X,x0)→ (Y, y0) is a pointed homotopy equivalence.

Proof. Firstly, we prove the following sublemma.

3.30. Sublemma. Let ϕ : (X,x0)→ (X,x0) be a map, and let H : ϕ � 1X be
a free (i.e., unpointed) homotopy. Suppose that the loop H |({x0}×I) : I → X
is homotopic to the constant loop. Then there is a pointed homotopy between
ϕ and 1X .

Proof. We set A = X × {0} ∪ {x0} × I ∪X × {1} and consider the map

F : A→ X,F |X × {0} = ϕ, F |X × {1} = 1X , F ({x0} × I) = x0.

Then F � H |A,. By 3.27, (X × I, A) is a cofibered pair, and hence F can
be extended to a map G : X × I → X . Clearly, G is a pointed homotopy
between ϕ and 1X . �

We continue the proof of the lemma. Let g′ : Y → X be free homotopy
inverse to f , and let F : g′f � 1X be a free homotopy. We define the map
u : {y0} × I → X by setting u(y0, t) = F (x0, 1 − t). Since (Y, y0) is well-
pointed, there is a map G : Y × I → X such that G|Y × {1} = g′ and
G|{y0} × I = u. We set g := G|Y × {0} : Y → X and prove that gf �• 1X .
We define the free homotopy H : gf � 1X by setting

H(x, t) =
{

G(f(x), 2t) if 0 ≤ t ≤ 1/2,
F (x, 2t− 1) if 1/2 ≤ t ≤ 1.

Clearly, the “shrunk” loop H |({x0}×I) : I → X is homotopic to the constant
loop. (Indeed, the point x0 runs along some path until t = 1/2 and then runs
along the same path but in the opposite direction.) Hence, by the sublemma,
gf �• 1X .

Now we prove that fg �• 1Y . Indeed, we can apply the arguments as
above to g and find h : (X,x0)→ (Y, y0) such that hg �• 1Y . Now,

h �• h(gf) �• hg(f) �• f,

so that we indeed have fg �• 1Y . �
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3.31. Definition. Let (X, ∗), (Y, ∗) be two pointed spaces. We define their
homotopy wedge (or, briefly, h-wedge) (X, ∗) ∨h (Y, ∗) to be the double map-
ping cylinder (unreduced) of the diagram

X ←− pt −→ Y

of pointed maps. We equip (X, ∗) ∨h (Y, ∗) with the base point via the map
imid : pt→ X ∨h Y .

3.32. Convention. For brevity, we write (∨Xi, ∗) or just ∨Xi instead of
∨(Xi, xi), and use similar shorthand for smash products and h-wedges.

3.33. Construction. Let f : (X, ∗) → (Z, ∗) and g : (Y, ∗) → (Z, ∗) be
two pointed maps. Regarding X ∨h Y as the quotient space of the space
X 	 [0, 2] 	 Y , we define a pointed map f�g : X ∨h Y → Z by setting

(f�g)(x) = f(x), (f�g)(y) = g(y), (f�g)(t) = ∗, x ∈ X, y ∈ Y, t ∈ [0, 2].

Clearly, f�g is well-defined. Furthermore,

(f�g)ileft = f and (f�g)iright = g.

3.34. Lemma. Let X,Y be two pointed spaces, and let a : X → X∨Y, a(x) =
x, and b : Y → X ∨ Y, b(y) = y be the obvious inclusions. Then a�b :
X ∨h Y → X ∨ Y is a homotopy equivalence. Moreover, if X and Y are
well-pointed then a�b is a pointed homotopy equivalence.

Proof. By 3.26(iii), a�b is a homotopy equivalence. Hence, by 3.29 and
3.26(i), a�b is a pointed homotopy equivalence provided that X and Y are
well-pointed. �

3.35. Definition. Let (X, ∗), (Y, ∗) be two pointed spaces. We consider the
maps

u : X → X × Y, u(x) = (x, ∗) and v : Y → X × Y, v(y) = (∗, y)

and define the homotopy smash product (or, briefly, the h-smash product)
(X, ∗)∧h (Y, ∗) of (X, ∗) and (Y, ∗) to be the double mapping cylinder of the
diagram

pt←− X ∨h Y u
v−−→ X × Y
of pointed maps. We turn X ∧h Y into a pointed space by choosing ileft(pt)
to be the base point.

Since the composition X ∨h Y imid−−→ X × Y q−→ X ∧ Y is inessential, the
quotient map q can be extended to a map f : (X ∧h Y, ∗)→ (X ∧ Y, ∗).
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3.36. Proposition. If X,Y are well-pointed then f is a pointed homotopy
equivalence.

Proof. Indeed, we have X ∧h Y = X × Y ∪ C(X ∨h Y ). Now, by 3.27,
(X×Y,X ∨Y ) is a cofibered pair. We can also see that (X ∧h Y,X ∨h Y ) is a
cofibered pair. Hence, by 3.26, f is a homotopy equivalence since it collapses
a contractible space C(X ∨h Y ). Thus, by 3.29, f is a pointed homotopy
equivalence. �

3.37. Lemma. Let (X ;A,B) be a pointed triad such that A and B are well-
pointed. Suppose that there are two maps u, v : X → [0, 1] such that u|X\A =
0 = v|X \B. Define a map f : A ∨B → X, f(a) = a, f(b) = b, a ∈ A, b ∈ B.
Then C(f) � S(A ∩B).

Proof. Set C = A∩B and consider the double mapping cylinder Y of the
diagram A ←− C −→ B of inclusions. We claim that Y � X . Indeed, there is
the obvious map

g : Y → X, g(c, t) = c, g(a, 0) = a, g(b, 2) = b, a ∈ A, b ∈ B, c ∈ C, t ∈ [0, 2].

We define h̄ : X → X × I by setting h̄(x) = (x, 2v(x)). Clearly, h̄(X) ⊂ Y ,
and so we have the map h : X → Y, h(x) = h̄(x). We leave it to the reader
to prove that h is homotopy inverse to g.

Now, the inclusions A ⊂ X, B ⊂ X induce a map F : A ∨h B → Y and,
by the above, this map is homotopy equivalent to f . It remains to note that
C(F ) � SC. �

3.38. Definition. (a) A strict cofiber sequence is a diagram A
u−→ B

v−→ C
where u : A→ B is a map and v is the canonical inclusion as in (3.17).

(b) A sequence X
f−→ Y

g−→ Z is called a cofiber sequence if there exists a
homotopy commutative diagram

X
f−−−−→ Y

g−−−−→ Z

a

⏐

⏐



b

⏐

⏐




c

⏐

⏐




A
u−−−−→ B

v−−−−→ C

such that all the vertical arrows are homotopy equivalences and the bottom
row is a strict cofiber sequence.

(c) A long cofiber sequence is a sequence (finite or not)

· · · −→ Xi −→ Xi+1 −→ Xi+2 −→ · · ·

where every pair of adjacent morphisms forms a cofiber sequence.
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3.39. Proposition. Let f : X → Y be an arbitrary map of pointed spaces,
and let g : Y → Cf = Z be the canonical inclusion. Then C(g) � SX =
S1 ∧X. Moreover, there is a long cofiber sequence

X
f−→ Y

g−→ Z −→ SX
Sf−−→ SY

Sg−→ · · · −→ SnX
Snf−−→ SnY

Sng−−→ · · · .

Proof. See Switzer [1], 2.36–2.37. �
Proposition 3.39 was originally proved by Puppe [1]. Because of this, the

long cofiber sequence is often refered to as the Puppe sequence. Barratt [1]
had obtained some preliminary results in this area.

3.40. Conventions about CW -complexes and CW -spaces. We use
the definition of CW -complexes as in Switzer [1] and Fritsch–Piccinini [1]. A
CW -space is a space which is homeomorphic to a CW -complex. Throughout
this book, the word “cell” means “closed cell”, i.e., the image of the closed
disk under a characteristic map, see loc.cit.

A finite (resp. finite dimensional) CW -space is a space which is home-
omorphic to a finite (resp. finite dimensional) CW -complex. The category
of CW -spaces and their maps is denoted by C , and the category of pointed
CW -spaces and pointed maps is denoted by C •. Furthermore, Ccon (resp. Cf ,
resp. Cfd) denotes the full subcategory of C consisting of connected (resp.
finite, resp. finite dimensional) CW -spaces. Similarly, C •

con, C •
f , C •

fd are the
corresponding subcategories of C •. Finally, H C (resp. H C •) denotes the
category whose objects are the same as those of C (resp. C •) but whose mor-
phisms are the homotopy classes of maps (resp. pointed homotopy classes of
pointed maps).

We denote by X(n) the n-skeleton of a CW -complex X , i.e., X(n) is the
union of all n-dimensional cells of X .

Recall that a map f : X → Y of CW -complexes is called cellular if
f(X(n)) ⊂ Y (n) for every n.

3.41. Theorem. (i) Let i : X(n) → X be the inclusion. Then i∗ :
πi(X(n), ∗) → πi(X, ∗) is an isomorphism for i < n and an epimorphism
for i = n.

(ii) Every map f : X → Y of CW -complexes is homotopic to a cellular
map.

Proof. See e.g. Switzer [1], 6.11 and 6.35 or Fritsch–Piccinini [1], 2.4.8 and
2.4.11. �

We recall that i : A → X is a cofibration for every CW -pair (X,A). In
particular, every pointed CW -space is well-pointed, and so we can safely omit
base points from notation.
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Every CW -space is Hausdorff (and so weak Hausdorff) and compactly
generated. Thus, when we talk about products (or smash products) of CW -
complexes we follow 3.6. Then the direct product X × Y and the smash
product X ∧ Y of two CW -spaces X,Y are also CW -spaces.

Note that, for every cellular map f : X → Y , the spaces Mf and Cf are
CW -complexes in an obvious canonical way, see e.g. Fritsch–Piccinini [1]. In
particular, the suspension SX of a CW -complex X is a CW -complex.

3.42. Definition. (a) Two maps f, g : X → Y of topological spaces are
called CW -homotopic if fi � gi for every map i : K → X of a CW -space K.
In this case we write f �CW g.

(b) A map f : X → Y is called a Whitehead equivalence if f∗ :
πn(X,x0)→ πn(Y, f(x0)) is a bijection for every n ≥ 0 and every x0 ∈ X .

(c) Let
X

a
−−−− Y

denote that either there is a map a : X → Y or a : Y → X . We say that two
spaces X,Y are CW -equivalent if there is a sequence

X = X0

a0−−−−X1

a1−−−− · · ·
ai−1

−−−−−−Xi

ai−−−− · · ·
an−1

−−−−−−Xn = Y

where every ai is a Whitehead equivalence.

3.43. Remark. Traditionally, CW -equivalences, as well as Whitehead equiv-
alences, are called weak equivalences. We refrain from using this terminology
in this book because these names are not quite compatible with the concept
of weak homotopy (see Ch. II below).

Note that if X and Y are connected then f : X → Y is a Whitehead
equivalence provided that f∗ : πi(X,x0) → πi(Y, f(x0)) is an isomorphism
for some single point x0, see Spanier [2], 7.3.4. Furthermore, every homotopy
equivalence X → Y is a Whitehead equivalence, see e.g. Spanier [2], 7.3.15.

3.44. Proposition–Definition. For every topological space X, there is a
Whitehead equivalence f : Y → X where Y is a CW -space. Every such CW -
space Y is called a CW -substitute for X.

Proof. Without loss of generality, we can assume that X is connected. We
construct a commutative diagram

Y0
⊂−−−−→ Y1

⊂−−−−→ · · · ⊂−−−−→ Yn
⊂−−−−→ · · ·

f0

⏐

⏐




⏐

⏐



f1

⏐

⏐



fn

X X · · · X · · ·
such that (fn)∗ : πn(Yn, y0) → πn(X,x0), x0 = f0(y0), is an isomorphism
and that the inclusion Yn ⊂ Yn+1 induces an isomorphism πi(Yn, y0) →
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πi(Yn+1, y0) for every i ≤ n. Then we define Y := ∪Yn and define f : Y → X
by the condition f |Yn = fn.

We construct this diagram by induction on n. We set Y0 to be a point.
Suppose that fn : Yn → X is constructed. Let {xα} be a family of gen-
erators of the group πn+1(X,x0)). Let Sn+1

α be a copy of Sn+1. Choose a
map gα : (Sn+1

α , ∗) → (X,x0) which yields the element xα. Now, we define
g : ∨α(Sn+1

α , ∗)→ (X,x0) by requiring g|Sn+1
α = gα. Clearly,

g∗ : πn+1(∨Sn+1
α , ∗)→ πn+1(X,x0)

is epic. We set (Z, ∗) := (Yn, ∗) ∨ (∨Sn+1
α , ∗). Define

h : Z = Yn ∨ (∨Sn+1
α )

fn∨g−−−→ X ∨X π−→ X.

Note that h∗ : πn+1(Z, ∗)→ πn+1(X,x0) is an epimorphism.
Let {zβ} be a family of generators of the group

Ker(h∗ : πn+1(Z, ∗)→ πn+1(X,x0)).

Let Sn+1
β be a copy of Sn+1. Choose a map aβ : (Sn+1

β , ∗) → (Z, ∗) which
yields the element zβ. Now, we define a : ∨βSn+1

β → Z by requiring a|Sn+1
β =

aβ , set Yn+1 := C(a) and define fn+1 : Yn+1 → X to be any extension of h.
(Note that h can be extended on Yn+1 because of the universal property of
the cone.) By 3.41, the map fn+1 has the desired properties. The induction
is confirmed. �

3.45. Lemma. Let h : Y → Z be a Whitehead equivalence.
(i) Let (X,A) be a CW -pair, and let f : A→ Y, u : X → Z be two maps

such that hf = u|A. Then there is a map g : X → Y such that g|A = f and
hg � u.

(ii) Let (X,A) be a CW -pair, and let f : A → Y be a map such that hf
can be extended to all of X. Then f can be extended to all of X.

(iii) Let K be a CW -space, and let u, v : K → Y be two maps such that
hu � hv. Then u � v.

Proof. (i) This is an exercise in elementary obstruction theory, see e.g.
Switzer [1], 6.30.

(ii) This follows from (i).
(iii) This follows from (ii) if one puts X = K × I, A = K × {0, 1} and

defines f : A→ Y by setting f |K × {0} = u, f |K × {1} = v. �

3.46. Corollary. Let Z be a CW -space, and let h : Y → Z be a Whitehead
equivalence. Then there exists a map g : Z → Y such that hg � 1Z and
gh �CW 1Y .

Proof. If we put A = ∅, u = 1Z in 3.45(i), we conclude that there is
g : Z → Y such that hg � 1Z . We prove that ghi � i for every map
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i : K → Y of a CW -space K. Indeed, hi � (hg)hi � h(ghi), and thus, by
3.45(iii), i � ghi. �

3.47. Corollary (the Whitehead Theorem). If h : Y → Z is a Whitehead
equivalence of CW -spaces then h is a homotopy equivalence.

Proof. By 3.46, there is g : Z → Y such that hg � 1Z . We prove that
gh � 1Y . Indeed, g is a Whitehead equivalence, and so, by 3.46, there is
f : Y → Z such that gf � 1Y . Now, f � (hg)f � h(gf) � h, i.e., gh � 1Y .

�

3.48. Corollary. If CW -spaces X,Y are CW -equivalent then they are ho-
motopy equivalent. In particular, any two CW -substitutes for a given space
are homotopy equivalent.

Proof. It suffices to prove that if A
a
−−−−B

b
−−−−C is a diagram where A is

a CW -space and a, b are Whitehead equivalences then there is a Whitehead
equivalence j : A → C. Indeed, then one can construct a Whitehead equiv-
alence f : X → Y by induction on such diagrams, and so, by 3.47, f is a
homotopy equivalence.

So, we consider the diagram A
a
−−−−B

b
−−−−C. For the case A a−→ B

b−→ C,
the desired j is clear. In the case A a←− B

b−→ C we can construct, by 3.46,
a Whitehead equivalence h : A → B, and we put j = bh. In the case A a←−
B

b←− C, the desired j : A→ C exists by 3.46. Finally, in case A a−→ B
b←− C,

the desired j : A→ C exists by 3.45(i). �
Now we compare the homotopy types of kX and X . Of course, in these

theorems X is assumed to be an arbitrary topological space, not necessary
belonging to W .

3.49. Theorem. For every topological space X, the map w : kX → X is a
Whitehead equivalence.

Proof. We prove that w∗ : πn(X, ∗) → πn(kX, ∗), n ≥ 0, is a bijection.
Indeed, if f : Sn → X is a map then, by 3.5(vi), w−1f : Sn → kX is, and
hence w∗ is surjective. Furthermore, if f, g : Sn → kX are two maps and
H : Sn × I → X is a pointed homotopy between kf and kg then w−1H is a
pointed homotopy between f and g, and so w∗ is injective. �

3.50. Theorem. Let X be an arbitrary topological space having the homotopy
type of a CW -space. Then w : kX → X is a homotopy equivalence. In
particular, if X ∈ W and X has the homotopy type of a CW -space then ΩX
has the homotopy type of a CW -space.
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Proof. Let Y be a CW -space, let f : Y → X be a homotopy equivalence,
and let g : Y → X be homotopy inverse to f . By 3.5(vi), w−1f : Y → kX is
a map since Y ∈ W . We prove that w−1f is homotopy inverse to gw. Firstly,
gww−1f = gf � 1Y . Furthermore, there is a homotopy H : X ×c I → X
such that H |X ×c {0} = f,H |X ×c {1} = g. Now,

kX ×c I (wX×c1)−1

−−−−−−−→ X ×c I wX×cI−−−−→ k(X ×c I) kH−−→ kX

is a homotopy between k(fg) = w−1
X fgwX and 1kX .

The last assertion follows from the above and the result of Milnor [3] that
the space C((S1, ∗), (X, ∗)) has the homotopy type of a CW -space. �

3.51. Exercise. Let T be the telescope of a filtration {Xn} of a space X . We
define a map f : T → X by setting f(x, t) = x. Prove that f is a Whitehead
equivalence. Furthermore, prove that f is a homotopy equivalence provided
that every inclusion Xn → Xn+1 is a cofibration.



Chapter II. Spectra and (Co)homology
Theories

In this chapter we discuss some preliminaries from stable homotopy theory.
Sections 1–3 are concerned with basic properties of spectra and (co)homology
theories. Here we mainly follow Adams [8] and Switzer [1]. Sections 4–7 con-
tain an exposition of standard material, at a level suitable for students.

§1. Preliminaries on Spectra

In this section all spaces and maps are assumed to be pointed. Let SX denote
the reduced suspension of a pointed space X , i.e., SX = S1 ∧X .

1.1. Definition. (a) A spectrum E is a sequence {En, sn}, n ∈ Z, of CW -
complexes En and CW -embeddings sn : SEn → En+1 (i.e., sn(SEn) is a
subcomplex of En+1).

(b) A subspectrum of a spectrum E is a spectrum {Fn, tn} such that Fn
is a pointed CW -subcomplex of En and tn : SFn → Fn+1 is the obvious
restriction of sn. In this case we also write F ⊂ E.

(c) Given a family {E(α)} of subspectra of E, we can form a subspec-
trum ∪αE(α) of E by setting (∪αE(α))n := ∪αEn(α), etc. A filtration of a
spectrum E is a family

{· · · ⊂ E(i) ⊂ E(i+ 1) ⊂ · · · ⊂ E}

such that each E(i) is a subspectrum of E and, moreover, ∪E(i) = E.
(d) Given a spectrum E and an integer k, we define a spectrum ΣkE by

setting (ΣkE)n = En+k where the map S(ΣkE)n → (ΣkE)n+1 is sn+k.
(e) For every CW -complex X the spectrum Σ∞X is defined as follows:

(Σ∞X)n =
{

pt, if n < 0,
SnX, if n ≥ 0,

and sn : S(SnX)→ Sn+1X , for n ≥ 0, are the identity maps.
For example, the spectrum Σ∞S0 is the sphere spectrum {Sn, in}, where

in : SSn =−→ Sn+1.
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It is convenient to regard SEn as a subspace of En+1, i.e., to identify SEn
with its image sn(SEn). Under this convention, if e is a cell of En then Se is
a cell of En+1. We also write just E = {En} rather than E = {En, sn} when
the maps sn are clear, and we denote the spectrum Σ∞S0 just by S.

1.2. Definition. (a) A cell of a spectrum E is a sequence {e, Se, . . . , Ske, . . . }
where e is a cell of any En such that e is not the suspension of any cell of
En−1. If e is a cell of En of dimension d then the dimension of the cell
{e, Se, . . . , Ske, . . . } of E is d−n. Furthermore, the base points of En’s yield
the cell of dimension −∞.

(b) A subspectrum F of a spectrum E is cofinal (in E) if every cell of E
is eventually in F , i.e., for every cell e of En there exists m such that Sme
belongs to Fn+m.

(c) The n-skeleton of a spectrum E is the subspectrum E(n) of E consist-
ing of all cells of dimensions ≤ n.

(d) A spectrum E is finite if E has finitely many cells.
(e) A spectrum E has finite type if each skeleton of E is a finite spectrum.
(f) A spectrum E is finite dimensional if E = E(n) for some n.
(g) A suspension spectrum is a spectrum of the form ΣkΣ∞X where X is

a pointed space and k ∈ Z.

If F = {Fn}, F ′ = {F ′
n} are two subspectra of a spectrum E, we set

F ∩F ′ = {Fn∩F ′
n}. It is obvious that F ∩F ′ is a subspectrum. Furthermore,

if F and F ′ are cofinal in E then so is F ∩ F ′.

1.3. Definition. (a) Let E = {En, sn} and F = {Fn, tn} be two spectra. A
map f from E to F (i.e., a map f : E → F ) is a family of pointed cellular
maps fn : En → Fn such that fn+1sn = tn◦Sfn for all n.

(b) Let f : E → F be a map of spectra. Given a subspectrum G = {Gn}
of E, the restriction of f to G is the map f |G : G→ F of the form {fn|Gn :
Gn → Fn}.

(c) Let E,F be two spectra. Consider the set A of pairs (f ′, E′) where E′

is cofinal in E and f ′ : E′ → F is a map. Consider the equivalence relation
∼ on A such that (f ′, E′) ∼ (f ′′, E′′) iff f ′|B = f ′′|B for some B ⊂ E′ ∩E′′

with B cofinal in E. Every such equivalence class is called a morphism from
E to F , and we use the notation E → F for morphisms as well as for maps.

(d) Given two maps f : E → F and g : F → G, define the composition
gf : E → G by setting (gf)n = gnfn. It is straightforward to show that the
composition E → G of morphisms E → F and F → G is also well defined.
We can thus form a category S of spectra and their morphisms.

For every spectrum E and every integer n there is the embedding

(1.4) in : Σ−nΣ∞En → E

where (in)n+k : (Σ−nΣ∞En)n+k → En+k, for k ≥ 0, is the composition
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(in)n+k : (Σ−nΣ∞En)n+k = SkEn
sn+k−1◦...◦Sk−2sn+1S

k−1sn−−−−−−−−−−−−−−−−−−−→ En+k;

note that (Σ−nΣ∞En)n+k = ∗ for k < 0. We can thus regard Σ−nΣ∞En as
a subspectrum of E.

1.5. Proposition. (i) For every spectrum E and every k ∈ Z, the spectrum
{(En)(n+k)} is cofinal in the spectrum(E(k)).

(ii) If E is a finite spectrum, then all the spaces Ek are finite spaces.
(iii) If E is a finite spectrum, then there is N such that Σ−NΣ∞EN is

cofinal in E.

Proof. (i) This follows from the definitions.
(ii) The number of cells of Ek is bounded above by the number of cells of

E.
(iii) Let ak be the number of cells of Ek, and let a be the number of cells

of E. Choose N such that aN = a; this is possible because a = max
k

ak. Now,

Σ−NΣ∞EN is cofinal in E because these two spectra have the same number
of cells. �

Let A be as in 1.3(c). We can regard A as a poset as follows: (f ′, E′) ≤
(f ′′, E′′) iff E′ is a subspectrum of E′′ and f ′′|E′ = f ′.

1.6. Proposition. (i) Let f, g : E → F be two maps such that f |B = g|B
for some cofinal subspectrum B of E. Then f = g.

(ii) Let E′, E′′ be cofinal in E, and let f ′ : E′ → F and f ′′ : E′′ → F be
two equivalent maps. Then f ′|E′ ∩ E′′ = f ′′|E′ ∩ E′′.

(iii) Every morphism contains a greatest element with respect to the above
partial ordering.

Proof. (i) Let {e, Se, . . . , Ske, . . . } be a cell of E where e is the cell of En.
Since fn+k|Ske = gn+k|Ske for some k, we have fn|e = gn|e.

(ii) This follows from (i).
(iii) Fix a morphism ϕ. If (f ′, E′) ∈ ϕ and (f ′, E′) ≤ (f ′′, E′′), then

(f ′′, E′′) ∈ ϕ. Hence, by Zorn’s Lemma, ϕ has a maximal element. We de-
note this element by (f̄ , Ē) and prove that (f̄ , Ē) is the greatest element
of ϕ. Suppose not. Then there exists (f ′, E′) ∈ ϕ which does not satisfy
the inequality (f ′, E′) ≤ (f̄ , Ē). Then, by (ii), f ′|E′ ∩ Ē = f̄ |E′ ∩ Ē since
(f̄ , Ē) ∼ (f ′, E′). Hence, the map f̄ ∪ f ′ : Ē ∪E′ → F is well defined. On the
other hand, (f̄ , Ē) ∼ (f̄ ∪ f ′, Ē ∪E′). But this contradicts the maximality of
(f̄ , Ē) in ϕ. �

1.7. Definition. (a) Let f : E → F be a map of spectra. Define the cone
of f to be the spectrum Cf := {Cfn, sn} where Cfn is the cone of the map
fn : En → Fn and sn has the form
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sn : S(Cfn) = SFn ∪ C(SEn)
sFn∪CsEn−−−−−→ Fn+1 ∪C(En+1) = Cfn+1.

(b) Let ϕ : E → F be a morphism of spectra. Define the cone Cϕ of ϕ by
setting Cϕ = Cf ′, where f ′ : E′ → F is the greatest element of ϕ. The cone
Cϕ is also called the cofiber of ϕ. Furthermore, define the canonical inclusion
ψ : F → Cϕ by setting ψ = {ψn : Fn → Cf ′

n}, where ψn is as in I.(3.17).

1.8. Proposition. If ϕ : E → F is a morphism of finite spectra (resp. of
spectra of finite type) then Cϕ is a finite spectrum (resp. a spectrum of finite
type).

Proof. Decode the definitions. �
Given a spectrum E and a CW -complex X , we define spectra E ∧X :=

{En ∧X} and X ∧ E := {X ∧ En}. In particular, the suspension S1 ∧ E of
a spectrum E is defined.

1.9. Definition. (a) Two maps g0, g1 : E → F of spectra are called
homotopic if there exists a map G : E ∧ I+ → F (called a homotopy) such
that G coincides with gi on the subspectrum E ∧{i, ∗}, i = 0, 1, of E. In this
case we write g0 � g1 or G : g0 � g1.

(b) Two morphisms ϕ0, ϕ1 : E → F of spectra are called homotopic, if
there exists a cofinal subspectrum E′ of E and two maps gi : E′ → F, gi ∈
ϕi, i = 0, 1, such that g0|E′ � g1|E′. It is straightforward to show that homo-
topic morphisms form equivalence classes, and in particular we can define the
homotopy class [ϕ] of a morphism ϕ to be the set of all morphisms homotopic
to ϕ. The set of all homotopy classes of morphisms E → F is denoted by
[E,F ].

(c) We say that a morphism of spectra is trivial, or inessential, if it is ho-
motopic to the trivial morphism ε = {εn : En → Fn}, εn(En) = ∗. Otherwise
we say that it is essential.

One can prove that the homotopy class [ϕψ] of the composition ϕψ de-
pends only on the homotopy classes of the morphisms ϕ, ψ, see e.g. Switzer [1].
So, we can define the composition of homotopy classes of morphisms by set-
ting [ϕ][ψ] = [ϕψ]. Thus, we can define a category H S with spectra as ob-
jects and sets [E,F ] as sets of morphisms. Isomorphisms of H S are called
equivalences (of spectra), and we use the notation E � F when E is equiva-
lent to F .

It is straightforward to show that the cones of homotopic morphisms are
equivalent.

Let S = Σ∞S0 be the spectrum of spheres. The group [ΣkS,E] is called
the k-th homotopy group of E and denoted by πk(E). It is easy to see that
πk(E) = lim

N→∞
πk+N (EN ) where the direct limit is that of the direct system

· · · → πk+N (EN )→ πk+N+1(SEN )
(sN )∗−−−→ πk+N+1(EN+1)→ · · · ,
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see Switzer [1], 8.21. In particular, if E = Σ∞X then πk(E) is just the stable
homotopy group Πk(X) (denoted also by πst

k (X)).
Given a morphism ϕ : E → F , define ϕ∗ = πk(ϕ) : πk(E) → πk(F ) by

setting ϕ∗(a) = [ϕψ] where ψ : ΣkS → E is a morphism with a = [ψ]. Hence,
πk is a functor H S → A G . Note that πk(E) can be non-zero even for k < 0,
a simple example being the spectrum E = Σ−NS.

An analog of the Whitehead Theorem is valid for spectra.

1.10. Theorem. A morphism ϕ : E → F is an equivalence iff the induced
homomorphism ϕ∗ : πk(E)→ πk(F ) is an isomorphism for every integer k.

Proof. See Switzer [1], 8.25. �
One of the important advantages of the category H S is that the sus-

pension operator is invertible there.

1.11. Proposition. The spectra S1 ∧ E and ΣE are equivalent.

Proof. See Switzer [1], 8.26. �

1.12. Definition. (a) A strict cofiber sequence of spectra is a diagram

E
ϕ−→ F

ψ−→ Cϕ

where ϕ : E → F is a morphism of spectra (resp. map of spaces) and ψ is a
canonical inclusion as in 1.7(b).

(b) A sequence

X
f−→ Y

g−→ Z

in S is called a cofiber sequence of spectra if there exists a homotopy com-
mutative diagram in S

X
f−−−−→ Y

g−−−−→ Z

a

⏐

⏐



b

⏐

⏐




c

⏐

⏐




E
ϕ−−−−→ F

ψ−−−−→ Cϕ

such that all the vertical arrows are equivalences and the bottom row is a
strict cofiber sequence of spectra.

(c) A long cofiber sequence of spectra is a sequence (finite or not)

· · · −→ Xi −→ Xi+1 −→ Xi+2 −→ · · ·

where every pair of adjacent morphisms forms a cofiber sequence of spectra.
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1.13. Lemma. (i) If X
f−→ Y

g−→ Z is a cofiber sequence of spectra, then

there exists a map h : Z → ΣX such that X
f−→ Y

g−→ Z
h−→ ΣX is a long

cofiber sequence.

(ii) Let X
f−→ Y

g−→ Z and X ′ f ′

−→ Y ′ g′−→ Z ′ be two cofiber sequences of
spectra. For all morphisms α : X → X ′ and β : Y → Y ′ with f ′α � βf , there
exist morphisms γ, h and h′ with h and h′ as above, such that the following
diagram commutes up to homotopy:

X
f−−−−→ Y

g−−−−→ Z
h−−−−→ ΣX

α

⏐

⏐



β

⏐

⏐




γ

⏐

⏐




⏐

⏐



Σα

X ′ f ′

−−−−→ Y ′ g′−−−−→ Z ′ h′
−−−−→ ΣX ′.

(iii) If X
f−→ Y

g−→ Z is a cofiber sequence of CW -complexes, then

Σ∞X
Σ∞f−−−→ Σ∞Y

Σ∞g−−−→ Σ∞Z is a cofiber sequence of spectra.

Proof. (i) Consider a diagram as in 1.12(b). We have Cψ � S1 ∧ E (the
proof is similar to the one for spaces). Therefore, in view of 1.11, we have an
equivalence u : Cψ → ΣE. So, we have the homotopy commutative diagram

X
f−−−−→ Y

g−−−−→ Z ΣX

a

⏐

⏐



b

⏐

⏐




c

⏐

⏐




⏐

⏐



Σa

E
ϕ−−−−→ F

ψ−−−−→ Cϕ
ξ−−−−→ Cψ

u−−−−→ ΣE

where Σa is an equivalence. Thus, we can define the desired h by setting
h := (Σa)−1uξc.

(ii) Proved in Switzer [1], 8.31, but the proof is implicitly based on (i).
(iii) This holds since C(Σ∞h) � Σ∞C(h) for every map h : A → B of

CW -spaces. �
Given a family E(λ), λ ∈ Λ, of spectra, we define the wedge

∨

λ E(λ)
by setting (∨λE(λ))n := ∨λ(En(λ)). Since S(∨λEn(λ)) = ∨λSEn(λ) ⊂
∨λEn+1(λ), we conclude that ∨λE(λ) is a spectrum. Let iλ : E(λ)→ ∨λE(λ)
be the obvious inclusion.

1.14. Proposition. For every spectrum F the function

{i∗λ} : [∨λE(λ), F ]→
∏

λ

[E(λ), F ], where {i∗λ}(f) = {fiλ},

is a bijection.

Proof. See Switzer [1], 8.18. �
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Since [E,F ] = [Σ2E,Σ2F ] = [S2 ∧ E,Σ2F ] (the last equality follows
from 1.11), [E,F ] admits a natural structure of an abelian group. Indeed, let
ν : S2 → S2 ∨ S2 be the usual comultiplication on S2, the pinch map. Since
(S2 ∨ S2) ∧ E � (S2 ∧ E) ∨ (S2 ∧ E), we obtain the function

[E,F ]⊕ [E,F ] = [S2 ∧E,Σ2F ]⊕ [S2 ∧ E,Σ2F ]
= [(S2 ∧ E) ∨ (S2 ∧ E),Σ2F ]

= [(S2 ∨ S2) ∧ E,Σ2F ]
(ν∧1)∗−−−−→ [S2 ∧ E,Σ2F ] = [E,F ]

which turns [E,F ] into an abelian group. Moreover, the composition

[E,F ]× [F,G]→ [E,G]

is biadditive, see Switzer [1], 8.27. Thus, H S is an additive category.

In view of 1.11 and 1.13(i), every cofiber sequence X
f−→ Y

g−→ Z yields a
long cofiber sequence

. . .→ Σ−1Y
Σ−1g−−−→ Σ−1Z −→ X

f−→ Y
g−→ Z → ΣX

Σf−−→ ΣY −→ · · · .

1.15. Theorem. For every spectrum E, the long cofiber sequence

. . .→ Σ−1Y
Σ−1g−−−→ Σ−1Z −→ X

f−→ Y
g−→ Z → ΣX

Σf−−→ ΣY −→ · · ·

yields the exact sequences

· · · ←− [Σ−1Z,E]←− [X,E]
f∗

←− [Y,E]
g∗←− [Z,E]←− [ΣX,E]←− · · ·

· · · −→ [E,Σ−1Z] −→ [E,X ]
f∗−→ [E, Y ]

g∗−→ [E,Z] −→ [E,ΣX ] −→ · · ·

of abelian groups and homomorphisms.

Proof. See Switzer [1], Proposition 8.32. �
The first of the above sequences is similar to a sequence which holds for a

cofibration X → Y with cofiber Z, while the second one is similar to a sequence

which holds for a fibration X → Y with fiber Σ−1Z. Thus, the difference between

fibrations and cofibrations disappears in the category H S . For this reason we call

Σ−1Cϕ the fiber of a morphism ϕ.

1.16. Proposition. (i) For every spectrum F the function

{i∗λ} : [∨λE(λ), F ]→
∏

λ

[E(λ), F ], {i∗λ}(f) = {fiλ},

is an isomorphism of abelian groups.
(ii) For every spectrum F the homomorphism
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〈(ik)∗〉 :
m
⊕

k=1

[F,E(k)]→ [F,∨mk=1E(k)]

as in I.2.2 is an isomorphism.
(iii) For every finite spectrum F the homomorphism

〈(iλ)∗〉 : ⊕λ[F,E(λ)]→ [F,∨λE(λ)]

is an isomorphism. In particular, π∗(∨λE(λ)) ∼= ⊕λπ∗(E(λ)).

Proof. (i) It is easy to see that {i∗λ} is a homomorphism of abelian groups,
and the result follows from 1.14.

(ii) It suffices to consider m = 2. Let p : E1 ∨E2 → E1 be the projection,
pi1 = 1E1 . Then the cofiber sequence E2

i2−→ E1 ∨E2
p−→ E1 induces an exact

sequence [F,E1]→ [F,E1 ∨E2]→ [F,E2] which splits by i2 and/or p. Thus,

〈(ik)∗〉 : [F,E1]⊕ [F,E2]→ [F,E1 ∨ E2]

is an isomorphism.
(iii) Let K = {K} be the family of all finite subsets of the index set Λ. For

everyK ∈K we have the monomorphism lK : [F,∨k∈KE(k)]→ [F,∨λE(λ)].
We set K ≤ K ′ iff K ⊂ K ′, consider the homomorphism

l = 〈lK | lim−→〉 : lim−→ [F,∨k∈KE(k)]→ [F,∨λE(λ)]

as in I.2.5 and prove that it is an isomorphism. Firstly, it is monic since
lK is monic for every K. Furthermore, F is finite, and so, for every f :
F → ∨λE(λ), there exists K such that f(F ) ⊂ ∨k∈KE(k). Thus, l is an
isomorphism. Now, 〈(iλ)∗〉 can be written as

⊕λ[F,E(λ)] = lim−→
K

⊕k∈K [F,E(k)] ∼= lim−→
K

[F,∨k∈KE(k)] l−→ [F,∨λE(λ)].

(The isomorphism holds by (ii).) �
By 1.16(ii), [X,X ∨X ] ∼= [X,X ] ⊕ [X,X ]. Hence, the element 1X ⊕ 1X

of the right hand side yields a (unique up to homotopy) morphism ∇ : X →
X ∨X . We leave it to the reader to show that addition in [X,E] is given by
the composition

[X,E]⊕ [X,E]
∼=−→ [X ∨X,E] ∇∗

−−→ [X,E].

Because of this, we call ∇ coaddition.

1.17. Proposition. Let X
f−→ Y

g−→ Z be a cofiber sequence of spectra. The
following two conditions are equivalent:

(i) The morphism g is inessential;
(ii) There is a morphism s : Y → X such that fs � 1Y .
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Furthermore, if these conditions hold then X � Σ−1Z ∨ Y .

Proof. We prove that (i) ⇒ (ii). Consider the exact sequence

[Y,X ]
f∗−→ [Y, Y ]

g∗−→ [Y, Z].

Now, f∗ is epic since g∗ = 0. Hence, there is s : Y → X such that f∗[s] = [1Y ],
i.e., fs � 1Y .

We prove that (ii)⇒ (i). Indeed, g � g(fs) � (gf)s, but gf is inessential.
Now we prove that Y � Σ−1Z ∨X . Indeed, the cofiber sequence Σ−1Z →

X → Y induces the exact sequence

0→ [E,Σ−1Z]→ [E,X ]→ [E, Y ]→ 0,

and s gives us a natural splitting of this sequence. So, we have a natural in
E isomorphism [E,X ] ∼= [E,Σ−1Z]⊕ [E, Y ]. On the other hand, by 1.16(ii),
there is a natural isomorphism

[E,Σ−1Z]⊕ [E, Y ] ∼= [E,Σ−1Z ∨ Y ].

Hence, we have a natural isomorphism

[E,X ] ∼= [E,Σ−1Z ∨ Y ], E ∈ S ,

and thus, by the Yoneda Lemma I.1.5, X � Σ−1Z ∨ Y . �

1.18. Definition. A prespectrum is a family {Xn, tn}, n ∈ Z, of pointed
spaces Xn and pointed maps tn : SXn → Xn+1.

A CW -prespectrum is a prespectrum {Xn, tn} such that every Xn is a
CW -complex and every tn is a cellular map.

1.19. Lemma–Definition. For every prespectrum {Xn, tn}, there exist a
spectrum E = {En, sn} and pointed homotopy equivalences fn : En → Xn

such that the diagram
SEn

Sfn−−−−→ SXn

sn

⏐

⏐




⏐

⏐



tn

En+1
fn+1−−−−→ Xn+1

commutes. Every such spectrum E is called a spectral substitute of the pre-
spectrum X. Furthermore, if Xn are CW -complexes such that (Xn)(n+k) = ∗
for all n and some fixed k, then E can be chosen so that E(k) = ∗.

Proof (cf. Switzer [1], Proposition 8.3.). Firstly, because of I.3.44 and
I.3.45, we can replaceXn by its CW -substitute X ′

n and construct a homotopy
commutative diagram
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SX ′
n

Sgn−−−−→ SXn

t′n

⏐

⏐



tn

⏐

⏐




X ′
n+1

gn+1−−−−→ Xn+1

where gn, gn+1 are homotopy equivalences and t′n is a cellular map. So, we can
assume that {Xn, tn} is a CW -prespectrum. Now we use iterated mapping
cylinders (i.e., telescopes) to convert the tn into inclusions. Set

En =

(

⋃

m<n

Sn−mXm ∧ [m,m+ 1]+
)

∪Xn

with the following identifications: (x,m + 1) ∈ Sn−mXm ∧ [m,m + 1]+ is
identified with (Sn−m−1tm(x),m+1) ∈ Sn−m−1Xm+1∧ [m+1,m+2]+; and
(x, n) ∈ SXn−1 ∧ [n− 1, n]+ is identified with tn−1(x) ∈ Xn.

Now, the maps tm,m ≤ n, yield the obvious inclusion sn : SEn → En+1,
and the map fn : En → Xn, fn(x, s) = tn−1◦Stn−2◦ . . . ◦S

n−m−1tm(x) for
(x, s) ∈ Sn−mXm∧ [m,m+1]+, is a deformation retraction. Clearly, the dia-
gram of the lemma commutes up to homotopy. But, since sn is a cofibration,
we can deform f such that the diagram turns out to be commutative, step
by step.

Furthermore, if A(n) = ∗ for a CW -complex A then (SA)(n+1) = ∗ and
(A ∧ I+)(n) = ∗. Thus, if (Xn)(n+k) = ∗ for all n then (En)(n+k) = ∗ for all
n, and hence E(k) = ∗. �

Let ΩX denote the loop space of a pointed space X .

1.20. Definition. A prespectrum X = {Xn, tn} is called an Ω-prespectrum
if for every n the map τn : Xn → ΩXn+1 adjoint to tn is a homotopy
equivalence. A spectrum is called an Ω-spectrum if it is an Ω-prespectrum.

1.21. Proposition (cf. Adams [5]). Every spectrum E = {En, sn} is equiv-
alent to some Ω-spectrum.

Proof. Let εn : En → ΩEn+1 be the adjoint map to sn, and let ΩkEm be
a CW -complex homotopy equivalent to ΩkEm (such a CW -complex exists
by I.3.50). Fix some mutually inverse homotopy equivalences

α = αk,m : ΩkEm → ΩkEm, β = βk,m : ΩkEm → ΩkEm.

Fix some n and consider

ϕk : ΩkEn+k
α−→ ΩkEn+k

Ωkεn+k−−−−−→ Ωk+1En+k+1
β−→ Ωk+1En+k+1.

Let Tn be the reduced telescope (see I.3.23) of the sequence

En = En
ϕ0−→ ΩEn+1 → . . .→ ΩkEn+k

ϕk−→ . . . .
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Define ψk to be the composition

ψk : ΩkEn+k
α−→ ΩkEn+k

Ωkεn+k−−−−−→ Ωk+1En+k+1 = Ω(ΩkEn+k+1)
Ωβ−−→ Ω(ΩkEn+k+1).

Then we have a homotopy commutative diagram

En
ϕ0−−−−→ ΩEn+1 −−−−→ . . . −−−−→ ΩkEn+k

ϕk−−−−→ . . .
⏐

⏐




εn

⏐

⏐



ψ1

⏐

⏐



ψk

ΩEn+1
Ωϕ0−−−−→ Ω(ΩEn+2) −−−−→ . . . −−−−→ Ω(ΩkEn+k+1)

Ωϕk−−−−→ . . .

where ψn ∼= (Ωβ)◦α◦ϕn. Passing to telescopes, we get an obvious map ω :
Tn → ΩTn+1 induced by the ψk’s. Since every compact set in Tn is contained
in some finite union

m
⋃

k=0

ΩkEn+k × [k, k + 1],

we conclude that πi(Tn) = lim−→πi(ΩkEn+k) = πi−n(E). Firthermore, if
a ∈ πi(Ω(ΩkEn+k+1)) then (Ωϕk)∗(a) ∈ Im(ψk+1)∗, and so ω∗ : πi(Tn) →
πi(ΩTn+1 is an epimorphism. Similarly, if (ψk)∗(a) = 0 for some a ∈
πi(ΩkEn+k) then (ϕk)∗(a) = 0, and so ω∗ is a monomorphism. Hence, ω
is a homotopy equivalence by the Whitehead theorem, and so T is an Ω-
prespectrum. Let F be a spectral substitute of T . The inclusions in : En → Tn
yield maps hn : En → Fn (such that the composition En → Fn → Tn is ho-
motopic to in). The diagram

SEn
Shn−−−−→ SFn

sn

⏐

⏐




⏐

⏐




En+1
hn+1−−−−→ Fn+1

commutes up to homotopy, and hence, since sn is a cofibration, we can replace
hn+1 by a homotopic map making the diagram commutative. Without loss of
generality, we can assume that En = pt for n < 0, and so we can change the
hn’s map by map so that each diagram as above will become commutative.
Thus, we have constructed a morphism E → F which induces isomorphisms

πi(E) = lim−→πi+n(En)→ lim−→πi+n(Fn) = πi(F ). �

1.22. Proposition (cf. I.3.37). Let A,B be two subspectra of a spectrum X
such that X = A ∪B. Consider the map h : A ∨ B → X such that h(a) = a
for every a ∈ A and h(b) = b for every b ∈ B. Then Ch � Σ(A ∩B).

Proof. We set C = A ∩B. We have
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(Ch)n = C(hn) � (CAn ∨ CBn) ∪hn Xn � (CAn ∨ CBn)/Cn � S1 ∧Cn

because CAn ∨ CBn is contractible. Clearly, these homotopy equivalences
yield the equivalence Ch � S1 ∧ C � ΣC. �

1.23. Construction. We give an analog of the telescope construction for
spectra. Let E = {En, sn} be a spectrum with En = pt for n < 0. We define
a spectrum τE = {τnE, tn} as follows: τnE is the reduced telescope of the
sequence

{SnE0 → · · · → Sn−iEi
Sn−i−1si−−−−−−→ · · · → En};

in other words,

τnE = (SnE0 ∧ [0, 1]+) ∪ · · · ∪ (Sn−kEk ∧ [k, k + 1]+) ∪ · · ·
∪ (S1En−1 ∧ [n− 1, n]+) ∪ En,

with the following identifications: (x, k) ∈ Sn−k+1Ek−1 ∧ [k − 1, k]+ is iden-
tified with (Sn−ksk−1(x), k) ∈ Sn−kEk ∧ [k, k + 1]+ and (x, n) ∈ S1En−1 ∧
[n−1, n]+ is identified with sn−1(x) ∈ En. Furthermore, the homeomorphism
ik : SSn−kEk → Sn−k+1Ek induces a homeomorphism

ϕk := ik∧1 : SSn−kEk∧[k, k+1]+ = Sn−k+1Ek∧[k, k+1]+, k = 0, 1, . . . n−1,

and the inclusion j : {n} ⊂ [n, n+ 1]+ induces an inclusion

ϕn := 1 ∧ j : SEn = SEn × {n} = SEn ∧ {n}+ ⊂ SEn ∧ [n, n+ 1]+.

We define tn := ∪nk=0ϕk : SτnE → τn+1E. Thus, the spectrum τE =
{τnE, tn} is constructed.

The standard deformation retractions τnE → En (which shrink each seg-
ment [k, k + 1]) form a morphism τE → E. Clearly, this morphism is an
equivalence.

Define subspectra τevE, τodE of τE by setting

(τev)n(E) : =
[n2 ]
⋃

i=0

(Sn−2i+1E2i−1 ∧ [2i− 1, 2i]+ ∪ Sn−2iE2i),

(τod)n(E) : =
[n−1

2 ]
⋃

i=0

(Sn−2iE2i ∧ [2i, 2i+ 1]+ ∪ Sn−2i−1E2i+1).

It is clear that

(1.24)

τev(E) ∪ τod(E) = τ(E), τev(E) ∩ τod(E) =
∞
∨

n=0

Σ−nΣ∞En,

τev(E) �
∞
∨

n=0

Σ−2nΣ∞E2n, τod(E) �
∞
∨

n=0

Σ−2n−1Σ∞E2n+1.
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1.25. Remark. The concept of a spectrum was in fact introduced by
Lima [1], [2]. Later, different categories of spectra were constructed. We use
the category suggested by Adams [8]. Some authors have developed a finer
theory by indexing terms of a spectrum not by integers but by finite di-
mensional subspaces of R

∞. This approach was suggested by Puppe [2] and
May [3]. Such spectra are very useful for working with some fine geometry.
However, the foundations of this theory are quite complicated. For our pur-
poses, the mass of preliminaries outweighs the gain; thus we do not use these
spectra here and so do not dwell on them. However, they seem to be very
useful for advanced homotopy theory. The reader who is interested in this
theory is referred to the books Elmendorf–Kriz–Mandell–May [1] or Baker–
Richter [1].

§2. The Smash Product of Spectra, Duality, Ring
and Module Spectra

One can introduce a smash product E ∧ F of spectra E,F as a generaliza-
tion of the smash product E ∧X of a spectrum and a space. The definition
(construction) of the smash product of spectra can be found in Adams [8] or
Switzer [1]. However, we do need to know the consrtuction; throughout the
book we use only the properties listed in 2.1 below.

2.1. Theorem. There is a construction which assigns to spectra E,F a
certain spectrum denoted by E ∧ F . This construction is called the smash
product E ∧ F (of spectra) and has the following properties:

(i) It is a covariant functor of each of its arguments.
(ii) There are natural equivalences:

a = a(E,F,G) : (E ∧ F ) ∧G→ E ∧ (F ∧G)
τ = τ(E,F ) : E ∧ F → F ∧ E

l = l(E) : S ∧E → E

r = r(E) : E ∧ S → E

Σ = Σ(E,F ) : ΣE ∧ F → Σ(E ∧ F ).

(iii) For every spectrum E and CW -complex X, there is a natural equiv-
alence e = e(E,X) : E ∧ X → E ∧ Σ∞X. In particular, Σ∞(X ∧ Y ) �
Σ∞X ∧ Σ∞Y for every pair of CW -complexes X,Y .

(iv) If f : E → F is an equivalence then f ∧ 1G : E ∧G→ F ∧G is.
(v) Let {Eλ} be a family of spectra, and let iλ : Eλ → ∨λEλ be the

inclusions. Then the morphism (see 1.16(i))

{iλ ∧ 1} : ∨λ(Eλ ∧ F )→ (∨λ(Eλ)) ∧ F

is an equivalence.
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(vi) If A
f−→ B

g−→ C is a cofiber sequence of spectra, then so is the sequence

A ∧ E f∧1−−→ B ∧ E g∧1−−→ C ∧ E for every spectrum E.

Proof. The proof can be found in Adams [8] or Switzer [1], but I want to
say the following. The terms of the spectrum E ∧F are aggregated from the
spaces Em ∧Fn, but, in order to get them as CW -complexes, we must follow
definition I.3.6. By I.3.49, this modification keeps the theorem valid. �

2.2. Theorem. The following diagrams commute up to homotopy:
(i)
((E ∧ F ) ∧G) ∧H a−−−−→ (E ∧ F ) ∧ (G ∧H) a−−−−→ E ∧ (F ∧ (G ∧H))

∥

∥

∥

�

⏐

⏐
1∧a

((E ∧ F ) ∧G) ∧H a∧1−−−−→ (E ∧ (F ∧G)) ∧H a−−−−→ E ∧ ((F ∧G) ∧H))

(ii)

E ∧ F E ∧ F

τ

⏐

⏐




τ

�

⏐

⏐

F ∧ E F ∧ E

(iii)

(E ∧ F ) ∧G τ∧1−−−−→ (F ∧ E) ∧G a−−−−→ F ∧ (E ∧G)

a

⏐

⏐



1∧τ
⏐

⏐




E ∧ (F ∧G) τ−−−−→ (F ∧G) ∧E a−−−−→ F ∧ (G ∧E)

(iv)

(S ∧E) ∧ F a−−−−→ S ∧ (E ∧ F )

l∧1

⏐

⏐




⏐

⏐



l

E ∧ F E ∧ F

(v)

(E ∧ F ) ∧ S a−−−−→ E ∧ (F ∧ S)

r

⏐

⏐




⏐

⏐



1∧r

E ∧ F E ∧ F

(vi)

(E ∧ S) ∧ F a−−−−→ E ∧ (S ∧ F )

r∧1

⏐

⏐




⏐

⏐



1∧l

E ∧ F E ∧ F



§2. The Smash Product of Spectra, Duality, Ring and Module Spectra 47

(vii)

S ∧ E τ−−−−→ E ∧ S

l

⏐

⏐




⏐

⏐




r

E E

(viii)

S ∧ S 1−−−−→ S ∧ S
∥

∥

∥

∥

∥

∥

S ∧ S τ−−−−→ S ∧ S.

Proof. See Adams [8] or Switzer [1]. �

2.3. Definition. (a) A morphism u : S → A ∧ A⊥ is called a duality mor-
phism, or simply a duality, between spectra A and A⊥ if for every spectrum
E the homomorphisms

uE : [A,E]→ [S,E ∧A⊥], uE(ϕ) = (ϕ ∧ 1A⊥)u

and
uE : [A⊥, E]→ [S,A ∧ E], uE(ϕ) = (1A ∧ ϕ)u

are isomorphisms.
(b) A spectrum A⊥ is called dual to a spectrum A if there exists a duality

S → A ∧ A⊥. By 2.1(ii), in this case A is dual to A⊥. So, “to be dual” is a
symmetric relation.

(c) Let u : S → A ∧ A⊥ and v : S → B ∧ B⊥ be two dualities, and let
f : A→ B be a morphism. Consider the isomorphism

D : [A,B] uB−−→ [S,B ∧A⊥]
(vA

⊥
)−1

−−−−−→ [B⊥, A⊥]

and define a dual morphism f⊥ : B⊥ → A⊥ by requiring D[f ] = [f⊥]. Thus,
f⊥ is defined uniquely up to homotopy.

2.4. Lemma. (i) Let u : S → A ∧A⊥ and v : S → B ∧B⊥ be two dualities.
Then, for every spectrum E and morphism f : A→ B, the following diagram
is commutative:

[B,E] vE−−−−→ [S,E ∧B⊥]

f∗
⏐

⏐




⏐

⏐



(1E∧f⊥)∗

[A,E] uE−−−−→ [S,E ∧A⊥].

(ii) Suppose that a spectrum A admits a dual spectrum A⊥. Then A⊥ is unique
up to equivalence. In particular, (A⊥)⊥ � A.

Proof. (i) Decode the definitions.
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(ii) Let u1 : S → A ∧A⊥, u2 : S → A ∧ Ā be two dualities. If we put v =
u2, B = A,B⊥ = Ā in (i), we get the homomorphism D : [A,A] → [Ā, A⊥].
Let ϕ : Ā→ A⊥ be a morphism such that [ϕ] = D(1A) ∈ [Ā, A⊥]. Then ϕ is
an equivalence since ϕ∗ : [E, Ā]→ [E,A⊥] is an isomorphism for all E. �

2.5. Lemma. Let A and A⊥ be two finite spectra.
(i) Let u : S → A ∧A⊥ be a morphism such that uE and uE are isomor-

phisms for E = ΣkS, k ∈ Z. Then u is a duality morphism.
(ii) If u : S → A ∧A⊥ is a duality then for every pair of spectra E,F the

homomorphisms

FuE : [F ∧A,E]→ [F,E ∧A⊥], FuE(ϕ) = (ϕ ∧ 1A)(1F ∧ u)

and

FuE : [A⊥ ∧ F,E]→ [F,A ∧ E], FuE(ϕ) = (1A ∧ ϕ)(u ∧ 1F )

are isomorphisms.
(iii) Let u : S → A ∧A⊥ and v : S → B ∧B⊥ be two dualities. Then

w : S u−→ A ∧A⊥ = A ∧ S ∧A⊥ 1∧v∧1−−−−→ A ∧B ∧B⊥ ∧A⊥

is a duality between A ∧B and B⊥ ∧A⊥.

Proof. (i) Firstly, two remarks.
Remark 1. Let {E(α)} be a family of spectra. Set E = ∨E(α). If uE(α)

(resp. uE(α)) is an isomorphism for every α, then uE (resp. uE) is an isomor-
phism. This follows from 1.16.

Remark 2. If F1 → F2 → F3 is a cofiber sequence of spectra and uF1 , uF3 ,
(resp. uF1 , uF3) are isomorphisms, then uF2 (resp. uF2) is an isomorphism.
Indeed, by 2.1(vi), A ∧ F1 → A ∧ F2 → A ∧ F3 is a cofiber sequence. Now
consider the following commutative diagram:

· · · −−−−→ [A⊥, F1] −−−−→ [A⊥, F2] −−−−→ [A⊥, F3] −−−−→ · · ·

uF1

⏐

⏐


 uF2

⏐

⏐


 uF3

⏐

⏐




· · · −−−−→ [S,A ∧ F1] −−−−→ [S,A ∧ F2] −−−−→ [S,A ∧ F3] −−−−→ · · ·

By 1.15, its rows are exact sequences. Now apply the Five Lemma.
Now we prove that uE is an isomorphism.
Step 1. Let E = ∨ΣnSλ where Sλ is a copy of S and n is a fixed integer

number. Then, by Remark 1, uE is an isomorphism.
Step 2. Let E = Σ∞X whereX is a finite dimensional CW -complex. Then

E = E(m) for some m. We prove that uE
(n)

is an isomorphism by induction.
By Step 1, uE

(0)
is an isomorphism. Suppose that uE

(n−1)
is an isomorphism.

Then, by Remark 2 and Step 1, uE
(n)

is an isomorphism since there is a
cofiber sequence E(n−1) → E(n) → ∨ΣnSλ. The induction is confirmed.
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Step 3. Let E = ∨λΣ∞Xλ where every Xλ is a finite dimensional CW-
complex. Then, by Step 2 and Remark 1, uE is an isomorphism.

Step 4. Let E be an arbitrary spectrum. Consider the spectrum τ = τE
as in 1.23, τ � E. By 1.22, we have a cofiber sequence

τev ∨ τod → τ → Σ(τev ∩ τod).

By Step 3 and Remark 1, uF is an isomorphism for F = τev ∨ τod and
F = τev ∩ τod Thus, by Remark 2, uτ is an isomorphism.

(ii) This can be proved similarly to (i). We leave this to the reader.
(iii) The isomorphism

[A ∧B,E] AvE−−−→ [A,E ∧B⊥]
u
E∧B⊥−−−−−→ [S,E ∧B⊥ ∧A⊥]

coincides with wE (prove it). Similarly, one can prove that the homomorphism
wE is an isomorphism for every E. �

2.6. Remarks. (a) Some authors define duality to be a morphism

v : A ∧A⊥ → S

such that F vE : [E,A⊥∧F ]→ [A∧E,F ] and F vE : [E,F ∧A]→ [E∧A⊥, F ]
are isomorphisms, see Switzer [1], Husemoller [1]. This definition is equivalent
to ours, at least for finite spectra. Namely, considering u : S → A∧A⊥ as in
2.3, we have a morphism

v : A ∧A⊥ � A⊥ ∧A = (A ∧A⊥)⊥ u⊥
−−→ S⊥ = S

such that F vE and F vE are isomorphisms, cf. Dold–Puppe [1]. Conversely
(and similarly), any morphism v : A ∧ A⊥ → S as above yields a duality
u : S → A ∧A⊥. But 2.3 is preferable for our goals.

(b) Originally Spanier–Whitehead [1] considered a certain special case
of duality, as in 2.8(a) below. Then Spanier [1] defined duality in terms of
pairings between homology and cohomology. Later some authors proposed
defining duality via the pairings A ∧ A⊥ → S, cf. (a). A nice categorical
approach to duality can be found in Dold–Puppe [1].

2.7. Definition. Spectra A,B are called n-dual if the spectra A,Σ−nB are
dual. Spaces X,Y are called stably n-dual if the spectra Σ∞X,Σ∞Y are n-
dual.

2.8. Examples. (a) Let X be a finite cellular subspace of R
n, and let U

be a regular neighborhood of X . Then X is stably (n − 1)-dual to R
n \ U ,

Spanier–Whitehead [1]. Indeed, let o denote the origin of R
n. Without loss of

generality we can assume that o ∈ X , and we agree that o is the base point
of X . Let ε be a positive number which is less than the distance between X
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and R
n \ U , and let Oε be the ε-neighborhood of o. Consider the map

f : X × (Rn \Oε)→ R
n, f(a, b) = a− b.

Clearly, f((X × (Rn \ U)) ∪ {o} × (Rn \ Oε)) ⊂ R
n \ Oε, and so we get the

quotient map

f ′ :
X × (Rn \Oε)

(X × (Rn \ U)) ∪ {o} × (Rn \Oε)
→ R

n

Rn \Oε
.

Now, there are canonical homeomorphisms

X × (Rn \Oε)
(X × (Rn \ U)) ∪ {o} × (Rn \Oε)

∼= X ∧ R
n \Oε

Rn \ U = X ∧ S
n \Oε
Sn \ U

where Sn is considered as the one-point compactification of R
n. So, f ′ turns

into the map

f ′′ : X ∧ ((Sn \Oε)/(Sn \ U))→ R
n/(Rn \Oε) ∼= Sn.

Finally, since Sn \Oε is contractible, we conclude that (Sn \Oε)/(Sn \U) �
S(Sn \ U), and so f ′′ turns into the map

f ′′′ : X ∧ S(Sn \ U)→ Sn.

We define the morphism

v :Σ1−nΣ∞X ∧ Σ∞(Sn \ U) = Σ−nΣ∞X ∧Σ∞S(Sn \ U)

�Σ−nΣ∞(X ∧ S(Sn \ U))
Σ−nΣ∞f ′′′

−−−−−−−→ Σ−nΣ∞Sn = S.

Now, one can prove that v has the properties as in 2.6(a), see Dold–Puppe [1].
Thus, X and Sn \U are (n−1)-dual. In fact, Dold and Puppe proved that uE
and uE are isomorphisms for every finite spectrum E, but this is sufficient
because of 2.5(i).

(b) Let a finite CW -complex X be cellularly embedded in a sphere Sn,
let U be a regular neighborhood of X in Sn, let U be the closure of U , and
let ∂U be the boundary of U . It follows easily from (a) that X+ is n-dual to
U/∂U , but we want to construct here the duality morphism explicitly. Let
p : U → X be the standard projection (which is a deformation retraction).
Define Δ : U → U ×X,Δ(a) = (a, p(a)). Since Δ(∂U) ⊂ ∂U ×X , the map

Δ′ : U/∂U → (U ×X)/(∂U ×X) = (U/∂U) ∧X+

is defined. Let c : Sn → Sn/(Sn \ U) ∼= (U/∂U) be a map which collapses

Sn\U . We have a map f : Sn c−→ U/∂U
Δ′
−→ (U/∂U)∧X+, and the morphism

u = Σ−nΣ∞f : S → Σ−n(Σ∞(U/∂U)∧Σ∞X+) � Σ−nΣ∞(U/∂U)∧Σ∞X+

is a duality. A proof can be found in Dold–Puppe [1].
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2.9. Corollary. (i) Every finite CW -space X admits an n-dual finite CW -
space X ′ for n large enough.

(ii) Every finite spectrum A admits a dual finite spectrum A⊥.

Proof. (i) This follows from 2.8 because every finite CW -space X can be
embedded in a sphere Sn for some n = n(X).

(ii) By 1.5(iii), A � Σ−mΣ−∞Am for m large enough. Since Am is a finite
CW -space, it admits an n-dual finite CW -space Y for n large enough. Now
set A⊥ = Σ−m−nΣ∞Y . �

2.10. Proposition. If A
f−→ B

g−→ C is a cofiber sequence of finite spectra,

then C⊥ g⊥−−→ B⊥ f⊥

−−→ A⊥ is a cofiber sequence.

Proof. This can be proved as in Switzer [1], 14.33. We leave it to the
reader. �

If X,Y are finite CW -complexes such that Σ∞X � Σ∞Y , then SNX �
SNY forN large enough. This follows from 1.5(iii). Furthermore, if f, g : X →
Y are two maps of finite CW -complexes and Σ∞f � Σ∞g : Σ∞X → Σ∞Y ,
then there exists N such that SNf � SNg : SNX → SNY . This follows from
the Freudenthal Suspension Theorem. Thus, passing from spectra to spaces,
we have the following fact.

2.11. Theorem. (i) Let X be a finite CW -space. Choose a natural number
n such that there exists a finite CW -space X ′ which is n-dual to X. Then
the homotopy type of SNX ′ is uniquely determined by the homotopy type of
X for N large enough.

(ii) Let f : X → Y be a map of finite CW -spaces. Choose a natural
number n such that there exist finite CW -spaces X ′, Y ′ which are n-dual
to X,Y respectively. Then there exist a natural number N and a map f ′ :
SNY ′ → SNX ′ such that Σ−NΣ∞f and Σ−NΣ∞f ′ are dual morphisms.
Furthermore, f ′ is unique up to homotopy for N large enough.

(iii) Let X
f−→ Y

g−→ Z be a cofiber sequence of finite CW -spaces. Choose
N , f ′ : SNY ′ −→ SNX ′ and g′ : SNZ ′ −→ SNY ′ as in (ii). Then the sequence

SNZ ′ g′−→ SNY ′ f ′

−→ SNX ′ is a cofiber sequence for N large enough. �

2.12. Definition. (a) A ring spectrum is a triple (E, μ, ι) where E is a
spectrum and μ : E ∧ E → E (the multiplication) and ι : S → E (the unit
morphism, or the unit) are certain morphisms with the following properties:

(1) Associativity. The following diagram commutes up to homotopy:

(E ∧ E) ∧ E μ∧1−−−−−−−−−→ E ∧E

a

⏐

⏐




⏐

⏐


μ

E ∧ (E ∧ E)
1∧μ−−→ E ∧ E μ−→E.
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(2) Unitarity. The following diagram commutes up to homotopy:

S ∧ E ι∧1−−−−→ E ∧E 1∧ι←−−−− E ∧ S

l

⏐

⏐




⏐

⏐




μ

⏐

⏐




r

E E E .

A pair (μ, ι) is called a ring structure (on E).
The ring spectrum (E, μ, ι) is commutative if μ is commutative, i.e., if the

following diagram commutes up to homotopy:

E ∧ E τ−−−−→ E ∧ E

μ

⏐

⏐




⏐

⏐




μ

E E .

(b) A ring morphism ϕ : (E, μ, ι) → (E′, μ′, ι′) of ring spectra is a mor-
phism ϕ : E → E′ such that the following diagrams commute up to homo-
topy:

E ∧ E ϕ∧ϕ−−−−→ E′ ∧ E′ S
ι−−−−→ E

μ

⏐

⏐




⏐

⏐



μ′

∥

∥

∥

⏐

⏐




ϕ

E
ϕ−−−−→ E′ S

ι′−−−−→ E′.

2.13. Definition. (a) A module spectrum over a ring spectrum (E, μ, ι), or
an E-module spectrum, is a pair (F,m) where F is a spectrum and m :
E ∧ F → F is a morphism such that the following diagrams commute up to
homotopy:

(E ∧ E) ∧ F μ∧1−−−−−−−−−−−−→ E ∧ F S ∧ F ι∧1−−−−→ E ∧ F

a

⏐

⏐




⏐

⏐


m

⏐

⏐


l

⏐

⏐


m

E ∧ (E ∧ F ) 1∧m−−−→ E ∧ F m−−−−→ F F ===== F .

(b) An E-module morphism ϕ : (F,m) → (F ′,m′) of E-module spectra
is a morphism ϕ : F → F ′ such that the following diagram commutes up to
homotopy:

E ∧ F 1∧ϕ−−−−→ E ∧ F ′

m

⏐

⏐




⏐

⏐


m′

F
ϕ−−−−→ F ′ .

As usual, we shall simply say “a ring spectrum E ”, omitting μ and ι.
Note that every ring spectrum E is an E-module spectrum with m = μ.
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Furthermore, if ϕ : E → E′ is a ring morphism then the pairing E ∧E′ ϕ∧1−−→
E′ ∧ E′ μ′

−→ E′ turns E′ into an E-module spectrum.

2.14. Construction-Definition. Let (F,m) be a module spectrum over
the ring spectrum (E, μ, ι). Given a morphism a : Sd → E, consider the
morphism

a# : Sd ∧ F a∧1−−→ E ∧ F μ−→ F.

This morphism a# is called multiplication by a.

2.15. Proposition. Let ϕ : E → E′ be a ring morphism of ring spectra.
If the morphism Sd

a−→ E
ϕ−→ E′ is inessential then so is the morphism

a# : SdE′ → E′.

Proof. The morphism a# has the form

Sd ∧ E′ a∧1−−→ E ∧ E′ ϕ∧1−−→ E′ ∧E′ μ′

−→ E′,

i.e., a# = μ′(ϕa ∧ 1). But ϕa is inessential. �

§3. (Co)homology Theories and Their Connection with
Spectra

In the early of the 1950’s Eilenberg–Steenrod [1] discovered that the ho-
mology theory H∗(−;G) as a functor on the category of finite CW -spaces
is determined by certain axioms, called thereafter the Eilenberg–Steenrod
axioms. Later (end of the 50’s, beginning of the 60’s) it was noticed that
many useful constructions of algebraic topology (K-functor, (co)bordism,
etc.) are formally similar to (co)homology theories. Afterwards the reason
for this phenomenon was clarified: namely, most of these constructions sat-
isfy all the Eilenberg–Steenrod axioms except the so-called dimension ax-
iom. So, it seemed reasonable to consider the objects satisfying these ax-
ioms. These objects were called extraordinary (co)homology theories. How-
ever, later mathematicians came to call these objects just (co)homology the-
ories, while H(−;G) got the name ordinary (co)homology theory. 5 Now this
terminology is commonly accepted, and we use it in this book.

Recall that C denotes the category of all CW -spaces and maps and that Cf

(resp. Cfd) denotes the full subcategory of C consisting of all finite (resp. finite

5 In fact, the classical (co)homology should be called extraordinary, because it has

a certain extraordinary property: it satisfies the dimension axiom. (This is note

of Peter Hilton.)
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dimensional) CW -spaces. Let C 2 be the category of all CW -pairs (X,A) and
maps (X,A) → (Y,B). The category C 2

f ,C
2
fd are defined similarly. Let K

(resp. K 2) denote one of the categories C , Cfd, Cf (resp C 2, C 2
fd, C 2

f ). We
define a functor R : K 2 → K 2 by setting R(X,A) = (A, ∅).

3.1. Definition. (a). An unreduced homology theory on K 2 is a family
{hn, ∂n}, n ∈ Z, of covariant functors hn : K 2 → A G and natural transfor-
mations ∂n : hn → hn−1◦R satisfying the following axioms:

(1) The homotopy axiom. If (X,A), (Y,B) ∈ K 2 and the maps f, g :
(X,A)→ (Y,B) are homotopic, then the induced homomorphisms

hn(f), hn(g) : hn(X,A)→ hn(Y,B)

coincide for every n.
(2) The exactness axiom. For every pair (X,A) ∈ K 2, the sequence

· · · −−−−→ hn+1(X,A)
∂n+1−−−−→ hn(A, ∅)

hn(i)−−−−→ hn(X, ∅)
hn(j)−−−−→ hn(X,A) −−−−→ · · ·

is exact. Here i : (A, ∅) → (X, ∅), j : (X, ∅) → (X,A) are the
inclusions.

(3) The collapse axiom. For every pair (X,A) ∈ K 2, the collapse c :
(X,A) → (X/A, {∗}) induces an isomorphism hn(c) : hn(X,A) →
hn(X/A, {∗}).

(b) A morphism
T : {hn, ∂n} → {h′n, ∂′n}

of homology theories is a family of natural transformations {Tn : hn → h′n}
such that the following diagram commutes:

hn
∂n−−−−→ hn−1R

Tn

⏐

⏐




Tn−1

⏐

⏐




h′n
∂′
n−−−−→ h′n−1R.

Given a pair (X,A) ∈ K 2, we use the notation T (X,A)
n for the corresponding

homomorphism hn(X,A)→ h′n(X,A).
It is easy to see that we have a category of homology theories and their

morphisms. In particular, the equivalence (isomorphism) of homology theo-
ries is defined in the usual way: it is a morphism of homology theories which
is also a natural equivalence of functors.

It is well known that the classical homology {Hn, ∂n} satisfyies 3.1, see e.g.
Dold [5], Vick [1]. Moreover, Eilenberg–Steenrod [1] proved that a homology
theory {hn, ∂n} in C 2

f with the additional property hn(pt, ∅) = 0 for n 
= 0
(the dimension axiom) is just a classical homology theory {Hn, ∂n}.
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3.2. Proposition. Let {hn, ∂n} be a homology theory on K 2.
(i) If f : (X,A)→ (Y,B) is a homotopy equivalence, (X,A), (Y,B) ∈K 2,

then hn(f) : hn(X,A) → hn(Y,B) is an isomorphism. In particular, the
inclusion t : (X ∪CA, {∗})→ (X ∪CA,CA) induces an isomorphism hn(t).

(ii) If the inclusion i : A ⊂ X, (X,A) ∈ K 2, is a homotopy equivalence
then hn(X,A) = 0 for every n and hn(i) : hn(A, ∅) → hn(X, ∅) is an iso-
morphism for every n. In particular, hn(X, {x0}) = 0 for every contractible
X ∈ K and every x0 ∈ X.

(iii) For every (X,A) ∈ K 2 the inclusion k : (X,A) → (X ∪ CA,CA)
induces an isomorphism hn(k) : hn(X,A)→ hn(X ∪ CA,CA).

(iv) For every CW -triple A ⊂ X ⊂ Y , Y ∈ K the sequence

· · · → hn+1(Y,X) d−→ hn(X,A)
hn(I)−−−→ hn(Y,A)

hn(J)−−−→ hn(Y,X)→ · · ·

is exact. Here I : (X,A) → (Y,A), J : (Y,A) → (Y,X) are the inclusions

and d is the composition d : hn+1(Y,X)
∂n+1−−−→ hn(X, ∅)

hn(i)−−−→ hn(X,A).
(v) Let (X ;A,B) be a CW -triad, X ∈ K . Set C = A ∩ B. Let i1 :

A → X, i2 : B → X, i3 : C → A, i4 : C → B be the inclusions. Define
Δ : hn(X, ∅)→ hn−1(C, ∅) to be the composition

hn(X, ∅)→ hn(X,A)
∼=−→ hn(X/A, ∗)

= hn(B/C, ∗)
∼=←− hn(B,C) ∂−→ hn−1(C, ∅).

Consider α : hn(C, ∅)
hn(i3)⊕hn(i4)−−−−−−−−−→ hn(A, ∅)⊕ hn(B, ∅) and

β : hn(A, ∅)⊕ hn(B, ∅)→ hn(X), β(x, y) = hn(i1)(x)− hn(i2)(y).

Then the sequence

· · · → hn(C, ∅) α−→ hn(A, ∅)⊕ hn(B, ∅)
β−→ hn(X, ∅) Δ−→ hn−1(C, ∅)→ · · ·

is exact.

Proof. (i) This follows from the homotopy axiom.
(ii) The homotopy axiom implies that hn(X,A) = 0, and hence hn(i) is

an isomorphism in view of the exactness axiom.
(iii) This follows from the collapse axiom.
(iv) For every U ∈ K we have a natural splitting hn(U, ∅) = hn(U, ∗)⊕

hn(pt, ∅) (consider the exact sequence of the pair (U, ∗)). Hence, for every
(U, V ) ∈K 2 the exact sequence 3.1(2) yields an exact sequence

· · · → hn+1(U, V ) −→ hn(V, ∗)
˜hn(i)−−−→ hn(U, ∗) −→ hn(U, V )→ · · · ,

where ˜hn(i) is the restriction of hn(i) to the direct summands.
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Furthermore, the collapse axiom yields the isomorphisms hn(Y,X)
∼=−→

hn(Y/A,X/A) and hn(Z,A)
∼=−→ hn(Z/A, {∗}) for Z = X,Y . Because of this,

the desired exact sequence turns out to be the above exact sequence of the
pair (Y/A,X/A)

(v) Do this as an exercise, or see Switzer [1]. (Alternatively, this follows
from 3.11 and 3.18 below.) �

The exact sequences as in 3.1(2), 3.2(iv), and 3.2(v) are known as the
exact sequence of a pair, the exact sequence of a triple, and the Mayer–
Vietoris exact sequence .

Given a pointed CW -space (X,x0), let (CX, {∗}), resp.(SX, {∗}), denote
the reduced cone, resp. suspension, over (X,x0). Because of 3.2(iv), the triple
{x0} ⊂ X ⊂ CX yields the exact sequence

hn(CX, {∗})→ hn(CX,X) d−→ hn−1(X, {∗})→ hn−1(CX, {∗}).

By 3.2(ii), hi(CX, {x0}) = 0 for every i, and so we get the isomorphism

(3.3) hn(SX, {x0}) ∼= hn(CX/X, {x0}) ∼= hn(CX,X) d−→ hn−1(X, {x0}).

Recall that C • denotes the category of pointed CW -spaces and pointed
maps and that C •

f , resp. C •
fd, denotes its full subcategories of finite, resp.

finite dimensional, CW -spaces. Let K • denote one of the categories C •, C •
fd,

C •
f , and let S : K • → K • be the (reduced) suspension functor.

3.4. Construction-Definition. Let {hn, ∂n} be an unreduced homology
theory. Given (X,x0) ∈ K •, set ˜hn(X,x0) = hn(X, {x0}) and define the
suspension isomorphism

sn : ˜hn+1(SX, ∗) = hn+1(SX, {∗})→ hn(X, {x0}) = ˜hn(X,x0)

to be the composition (3.3). Thus, we get a family {˜hn, sn}, n ∈ Z, of covari-
ant functors ˜hn : K • → A G and natural equivalences sn : ˜hn+1S → ˜hn. The
family {˜hn, sn} is called a reduced homology theory (on K •) corresponding
to {hn, ∂n}.

3.5. Proposition. Let {hn, ∂n} be an unreduced homology theory on K 2.
(i) Homotopic maps f, g : (X,x0) → (Y, y0) in K • induce the same

homomorphism ˜hn(f) = ˜hn(g) : ˜hn(X,x0)→ ˜hn(Y, y0).
(ii) For every pointed CW -pair (X,A, x0), (X,A) ∈ K 2, the sequence

˜hn(A, x0)→ ˜hn(X,x0)→ ˜hn(X/A, ∗)

is exact. Here the homomorphisms are induced by the inclusion A→ X and
the projection (collapsing map) X → X/A.
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Proof. (i) follows from the homotopy axiom, (ii) follows from 3.2(iv). �

3.6. Proposition. Let {Fn, tn}, n ∈ Z, be a family of covariant functors
Fn : K • → A G and natural equivalences tn : Fn+1S → Fn satisfying the
following properties:

(i) Homotopic maps f, g : (X,x0)→ (Y, y0) in K induce the same homo-
morphism Fn(f) = Fn(g) : Fn(X,x0)→ Fn(Y, y0);

(ii) For every pointed CW -pair (X,A, x0), (X,A) ∈ K 2, the sequence

Fn(A, x0)→ Fn(X,x0)→ Fn(X/A, ∗)

is exact.
Then there exists a homology theory {hn, ∂n} such that its reduced homol-

ogy theory {˜hn, sn} is equivalent to the family {Fn, tn}, i.e., there are natural
equivalences ϕn : Fn → ˜hn such that the diagram

Fn+1(SX, ∗)
ϕSXn+1−−−−→ ˜hn+1(SX, ∗)

tXn

⏐

⏐




⏐

⏐



sXn

Fn(X,x0)
ϕXn−−−−→ ˜hn(X,x0)

commutes for every (X,x0) ∈K . Furthermore, this homology theory {hn, ∂n}
is unique up to equivalence.

Proof (cf. Switzer [1], 7.33–7.42). Every pair (X,A) yields the long cofiber
sequence

A+ → X+ → X+ ∪ C(A+) l−→ S(A+).

as in I.3.39. Recall that every space Y + is assumed to be pointed so that its
base point is the added point. Set

hn(X,A) = Fn(X+ ∪ C(A+), ∗), hn(X, ∅) = Fn(X+, ∗)

and define ∂n : hn(X,A)→ hn−1(A, ∅) to be the composition

∂n : hn(X,A) = Fn(X+ ∪ C(A+), ∗) Fn(l)−−−→ Fn(S(A+), ∗)
tn−1−−−→ Fn−1(A+, ∗) = hn−1(A, ∅) −1−−→ hn−1(A, ∅),

where −1 is multiplication by −1. Clearly, {hn, ∂n} is an unreduced homology
theory.

Because of (i), every pointed homotopy equivalence f : (X,x0)→ (Y, y0)
induces an isomorphism Fn(f) : Fn(X,x0)→ Fn(Y, y0). By I.3.26 and I.3.29,
the projection

p : (X+ ∪ C({x0}+), ∗)→ (X,x0), p(x) = x, p(x0, t) = t, x ∈ X, t ∈ I,
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is a pointed homotopy equivalence. Hence, we have a canonical isomorphism

Fn(X,x0) ∼= Fn(X+ ∪C({x0}+), ∗).

We define ϕXn : Fn(X,x0)→ ˜hn(X,x0), (X,x0) ∈ K • to be the composition

Fn(X,x0) ∼= Fn(X+ ∪C({x0}+), ∗) = hn(X, {x0}) = ˜hn(X,x0).

We prove that sXn ϕ
SX
n+1 = ϕXn t

X
n . Consider the homomorphisms

u : Fn+1(SX, x0)
tn−→ Fn(X,x0) ∼= Fn(X+ ∪ C({x0}+), ∗)

and

v : Fn+1(SX, x0) ∼= Fn+1((SX)+ ∪C({x0}+), ∗)
(Fn+1(a))

−1

−−−−−−−−→ Fn+1((CX)+ ∪ C(X+) ∪ C({x0}+), ∗)

= Fn+1((CX)+ ∪ C(X+), ∗) Fn+1(l)−−−−−→ Fn+1(S(X+), ∗)
tn−→ Fn(X+, ∗) Fn(ε)−−−→ Fn(X,x0) ∼= Fn(X+ ∪ C({x0}+), ∗),

where a : (CX)+∪C(X+)→ (SX)+ collapses C(X+), l : (CX)+∪C(X+)→
S(X+) collapses (CX)+, and ε : (X+, ∗) → (X,x0) collapses {x0}+, i.e., ε
maps the added point to x0 and ε|X = 1X . Then u = −v (prove it!). Now,
the homomorphism ϕXn t

X
n has the form

Fn+1(SX, x0)
tn−→ Fn(X,x0) ∼= Fn(X+ ∪ C({x0}+), ∗)

= hn(X, {x0}) = ˜hn(X,x0),

i.e., ϕXn t
X
n = u. Furthermore, the homomorphism sXn ϕ

SX
n+1 has the form

Fn+1(SX, x0) ∼= Fn+1((SX)+ ∪ C({x0}+), ∗) = hn+1(SX, {x0})
= ˜hn+1(SX, x0)

sn−→ ˜hn(X,x0),

i.e., the form

Fn+1(SX, ∗)
v−→ Fn(X+ ∪ C({x0}+), ∗) = hn(X, {x0})

= ˜hn(X,x0)
−1−−→ ˜hn(X,x0).

Thus, ϕXn t
X
n = sXn ϕ

SX
n+1.

Suppose that there is another homology theory {h′n, ∂′n} such that its re-
duced homology theory {˜h′n, s′n} is equivalent to {Fn, tn}. So, we have equiv-
alences ψn : ˜h′n(−)→ Fn(−). Given (X,A) ∈K 2, consider the isomorphism

h′n(X,A) = ˜h′n(X/A, ∗)
ψ−→ Fn(X/A, ∗)

ϕ−→ ˜hn(X/A, ∗)

= hn(X/A, {∗})
hn(c)←−−− hn(X,A).
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These isomorphisms constitute an equivalence h′∗ → h∗. �
This proposition shows that there is a bijective correspondence between

unreduced and reduced homology theories. In other words, every unreduced
homology theory is completely determined by its reduced form. Moreover,
based on 3.6, sometimes one defines a reduced homology theory to be a
family (Fn, tn) as in 3.6. So, when we say “Let {˜hn, sn} be a reduced homol-
ogy theory...” this means that {˜hn, sn} is a reduced form of an unreduced
homology theory, but, on the other hand, one can think of {˜hn, sn} as a fam-
ily satisfying 3.6; there is no contradiction. Moreover, sometimes it is more
convenient to construct reduced homology theories and then corresponding
unreduced ones rather than unreduced ones immediately.

The groups hi(pt, ∅) = ˜hi(S0, ∗) are called the coefficient groups of the
homology theory {hn, ∂n}. To justify this term, note that H∗(pt, ∅;A) = A
for every abelian group A.

3.7. Proposition. Let {˜hn, sn} be a reduced homology theory on K •.
(i) Let (pt, ∗) denote the one-point pointed space. Then ˜hn(pt, ∗) = 0 for

every n.
(ii) If f : (X,x0) → (Y, y0) is a pointed homotopy equivalence in K •,

then the homomorphism ˜hn(f) : ˜hn(X,x0) → ˜hn(Y, y0) is an isomorphism
for all n. In particular, the quotient map p : X∪CA→ (X∪CA)/CA = X/A

induces an isomorphism ˜hn(p) : ˜hn(X ∪ CA, ∗)→ ˜hn(X/A, ∗).
(iii) Every cofiber sequence (X,x0)

f−→ (Y, y0)
g−→ (Z, z0) in K • induces

an exact sequence

˜hn(X,x0)
˜hn(f)−−−→ ˜hn(Y, y0)

˜hn(g)−−−→ ˜hn(Z, z0).

(iv) Let (X,A) be a pointed CW -pair, X ∈K . Define

˜∂n : ˜hn(X/A, ∗)
(˜hn(p))−1

−−−−−−→ ˜hn(X ∪CA, ∗)
˜hn(k)−−−→ ˜hn(SA, ∗)

sn−1−−−→ ˜hn−1(A, ∗),

where p : X ∪ CA → X/A collapses CA (see (ii)) and k : X ∪ CA → SA
collapses X. Then the sequence

· · · → ˜hn(A, ∗)→ ˜hn(X, ∗)→ ˜hn(X/A, ∗)
˜∂n−→ ˜hn−1(A, ∗)→ · · ·

is exact.
(v) Let (X ;A,B;x0) be a pointed CW -triad, X ∈ K . Set C = A ∩ B.

Let i1 : A→ X, i2 : B → X, i3 : C → A, i4 : C → B be the inclusions. Define
Δ : ˜hn(X,x0)→ ˜hn−1(C, x0) to be the composition

˜hn(X,x0)→ ˜hn(X/A, x0) = ˜hn(B/C, x0)
˜∂n−→ ˜hn−1(C, x0),
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where the first homomorphism is induced by the collapsing map and ˜∂ is

defined in (iv). Consider α : ˜hn(C, x0)
˜hn(i3)⊕˜hn(i4)−−−−−−−−−→ ˜hn(A, x0) ⊕ ˜hn(B, x0),

and β : ˜hn(A, x0) ⊕ ˜hn(B, x0) → ˜hn(X), β(x, y) = ˜hn(i1)(x) − ˜hn(i2)(y).
Then the Mayer–Vietoris sequence

· · · → ˜hn(C, x0)
α−→ ˜hn(A, x0)⊕˜hn(B, x0)

β−→ ˜hn(X,x0)
Δ−→ ˜hn−1(C, x0)→ · · ·

is exact.
(vi) ˜hn(X ∨ Y, ∗) = ˜hn(X, ∗)⊕˜hn(Y, ∗) for every X,Y ∈K and every n.

Proof. See Switzer [1], Ch. 7. �

3.8. Definition. (a) An unreduced cohomology theory on K 2 is a family
{hn, δn}, n ∈ Z, of contravariant functors hn : K 2 → A G and natural
transformations δn : hn◦R→ hn+1 satisfying the following axioms:

(1) The homotopy axiom. If (X,A), (Y,B) ∈ K 2 and the maps f, g :
(X,A)→ (Y,B) are homotopic, then the induced homomorphisms

hn(f), hn(g) : hn(Y,B)→ hn(X,A)

coincide for every n.
(2) The exactness axiom. For every pair (X,A) ∈ K 2, the sequence

· · · −−−−→ hn−1(A, ∅) δn−1

−−−−→ hn(X,A)
hn(j)−−−−→ hn(X, ∅)

hn(i)−−−−→ hn(A, ∅) −−−−→ · · ·

is exact.
(3) The collapse axiom. For every pair (X,A) ∈ K 2, the collapse c :

(X,A) → (X/A, ∗) induces an isomorphism hn(c) : hn(X/A, ∗) →
hn(X,A).

(b) A morphism of cohomology theories

T : {hn, δn} → {(hn)′, (δn)′}

is a family of natural transformations {T n : hn → (hn)′} such that the
following diagram commutes:

hnR
δn−−−−→ hn+1

Tn
⏐

⏐


 Tn+1

⏐

⏐




(hn)′R
(δn)′−−−−→ (hn+1)′



§3. (Co)homology Theories and Their Connection with Spectra 61

Given a pair (X,A), we use the notation T n(X,A) for the corresponding homo-
morphism hn(X,A)→ (hn)′(X,A).

Reduced cohomology theories {˜hn, sn}, n ∈ Z can be introduced and con-
nected with unreduced ones as above. Here ˜hn : K • → A G is a contravariant
functor, and sn : ˜hn → ˜hn+1S is a natural equivalence. Moreover, the obvious
analogs (with inverted arrows) of 3.2 and 3.7 hold. For example, the Mayer-
Vietoris sequence of the pointed triad (X ;A,B;x0) (the analog of 3.7(v)) has
the form

· · · −→ ˜hn−1(C, x0) −→ ˜hn(X,x0) −→ ˜hn(A, x0)⊕ ˜hn(B, x0)

−→ ˜hn(C, x0) −→ · · · .

The details can be found in Dyer [1], Switzer [1].

The groups hn(pt, ∅) = ˜hi(S0, ∗) are called the coefficient groups of the
cohomology theory {hn, δn}.

3.9. Convention. Below we shall use the usual brief and more convenient
notation. Namely, we write ˜hn(X) instead of ˜hn(X,x0), hn(X) instead of
hn(X, ∅), and f∗ instead of hn(f), ˜hn(f). Furthermore, a homology theory
{hn, ∂n} is denoted by h∗, or h∗(−), or h∗(X) whereX is a variable. Similarly
for cohomology. Finally, sometimes (if there is no danger of misunderstand-
ing) we shall write ∂, s, δ instead of ∂n, sn, δn.

It is possible and useful to introduce (co)homology theories on spectra.
Consider the following full subcategories of S :

Sfd: its objects are all finite dimensional spectra;
Ss: its objects are all suspension spectra;
Ssfd: its objects are all spectra of the form ΣnΣ∞X,n ∈ Z, X ∈ C •

fd;
Sf : its objects are all finite spectra.

3.10. Definition. Let L be one of the categories S ,Sfd,Ss,Ssfd,Sf , and
let Σ : L → L be the functor defined in 1.1(d).

(a) A homology theory on L is a family {hn, ŝn}, n ∈ Z of covariant
functors hn : L → A G and natural transformations ŝn : hn → hn+1Σ
satisfying the following axioms:

(1) The homotopy axiom. If the morphisms f, g : X → Y are homo-
topic, then the induced homomorphisms hn(f), hn(g) : hn(X) →
hn(Y ) coincide for every n.

(2) The exactness axiom. For every cofiber sequence X
f−→ Y

g−→ Z of
spectra, the sequence

hn(X)
hn(f)−−−→ hn(Y )

hn(g)−−−→ hn(Z)

is exact.
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(b) A cohomology theory on L is a family {hn, ŝn}, n ∈ Z, of contravariant
functors hn : L → A G and natural transformations ŝn : hn+1Σ → hn

satisfying the following axioms:
(1) The homotopy axiom. If the morphisms f, g : X → Y are homo-

topic, then the induced homomorphisms hn(f), hn(g) : hn(Y ) →
hn(X) coincide for every n.

(2) The exactness axiom. For every cofiber sequence X
f−→ Y

g−→ Z of
spectra, the sequence

hn(Z)
hn(g)−−−→ hn(Y )

hn(f)−−−→ hn(X)

is exact.
(c) A morphism ϕ : {hn, ŝn} → {h′n, ŝ′n} of homology theories on L is a

family of natural transformations ϕn : hn → h′n such that ŝ′nϕn = ϕn+1ŝn.
We leave it to the reader to define a morphism of cohomology theories on

L .

3.11. Proposition. Let L be as in 3.10, and let {hn, ŝn} be a homology
theory on L . Then:

(i) hn(X ∨ Y ) ∼= hn(X)⊕ hn(Y ).

(ii) For every cofiber sequence X
f−→ Y

g−→ Z of spectra there is a natural
exact sequence

· · ·hn+1(Z) −→ hn(X)
f∗−→ hn(Y )

g∗−→ hn(Z) −→ hn−1(X) −→ · · · .

(iii) Let A,B be two subspectra of a spectrum X such that X = A ∪ B.
Set C = A ∩B. Then there is a natural (Mayer-Vietoris) exact sequence

· · · −→ hn(C) −→ hn(A) ⊕ hn(B) −→ hn(X) −→ hn−1(C) −→ · · · .

Proof. (i) Let i : X → X ∨ Y be the inclusion, and let p : X ∨ Y → X

be the projection. The cofiber sequence X i−→ X ∨ Y −→ Y yields an exact
sequence

hn(X) i∗−→ hn(X ∨ Y ) −→ hn(Y ),

and i∗ is a split monomorphism because p∗i∗ = 1.
(ii) The cofiber sequence X −→ Y −→ Z yields a long cofiber sequence

· · · → Σ−1Z → X → Y → Z → ΣX → ΣY → ΣZ → · · · ,

which, in turn, induces an exact sequence

· · · → hn(Σ−1Z)→ hn(X)→ hn(Y )→ hn(Z)→ hn(ΣZ)→ · · · .



§3. (Co)homology Theories and Their Connection with Spectra 63

Using the isomorphism ŝn : hn+1(ΣX) ∼= hn(X), we get the desired exact
sequence.

(iii) By 1.22, there is a cofiber sequence C → A∨B → X . Considering its
exact sequence as in (ii) and using an isomorphism hn(A∨B) ∼= hn(A)⊕hn(B)
as in (i), we get the desired exact sequence. �

For future reference, we formulate a cohomological analog of 3.11. The
proof is similar.

3.12. Proposition. Let L be as in 3.10, and let {hn, ŝn} be a cohomology
theory on L . Then:

(i) hn(X ∨ Y ) ∼= hn(X)⊕ hn(Y ).

(ii) For every cofiber sequence X
f−→ Y

g−→ Z of spectra there is a natural
exact sequence

· · · −→ hn−1(X) −→ hn(Z)
g∗−→ hn(Y )

f∗

−→ hn(X) −→ hn+1(Z) −→ · · · .

(iii) Let A,B be two subspectra of a spectrum X. Set C = A ∩ B. Then
there is a natural (Mayer-Vietoris) exact sequence

· · · −→ hn(X) −→ hn(A) ⊕ hn(B) −→ hn(C) −→ hn−1(X) −→ · · · . �

3.13. Construction. (a) Given a homology theory (hn, ŝn) on S , set ˜hn :=
hn◦Σ∞ : K • → A G and define sn : hn → hn+1◦S to be the composition

˜hn = hn◦Σ∞ ŝn−→ hn+1◦Σ◦Σ∞ ∼= hn+1◦Σ∞◦S = ˜hn+1◦S.

In other words, ˜hn(X) = hn(Σ∞X), etc. We leave it to the reader to check
that (˜hn, sn) is a reduced homology theory on K •.

(b) Similarly, given a cohomology theory (hn, ŝn) on S , we get a reduced
cohomology theory (˜hn, sn), where ˜hn = hn◦Σ∞ and sn is the composition

˜hn+1◦S = hn+1◦Σ∞◦S ∼= hn+1◦Σ◦Σ∞ ŝn−→ hn◦Σ∞ = ˜hn.

Thus, every (co)homology theory on S (resp. Ss,Sfd,Ssfd,Sf) yields a re-
duced (co)homology theory on C • (resp. C •,C •

fd,C
•
fd,C

•
f ).

3.14. Lemma. Let X(1)
f1−→ X(2) −→ · · · fn−1−−−→ X(n) be a sequence of maps

of spectra. Then there exists a set Ω and a family of sequences

X(1)ω
(f1)ω−−−→ X(2)ω −→ · · ·

(fn−1)ω−−−−−→ X(n)ω, ω ∈ Ω

with the following properties:
(i) X(i)ω is a finite subspectrum of X(i);
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(ii) (fi)ω is the restriction of fi, i.e., the following diagram commutes:

X(i)ω
(fi)ω−−−−→ X(i+ 1)ω

∩
⏐

⏐




⏐

⏐



∩

X(i)
fi−−−−→ X(i+ 1);

(iii) For every i, every finite subspectrum of X(i) is contained in some
X(i)ω.

We can turn Ω into a quasi-ordered set, by setting ω ≤ ω′ iff X(i)ω ⊂
X(i))ω′ for every i. Then the family

X(1)ω
(f1)ω−−−→ X(2)ω −→ · · ·

(fn−1)ω−−−−−→ X(n)ω, ω ∈ Ω

can be considered as a direct Ω-system of sequences.

Proof. We prove this by induction on n. For n = 1 we can set {Xω} to
be the family of all finite subspectra of X . Suppose that the lemma holds for
some n > 1 and consider the sequence

X(1)
f1−→ X(2) −→ · · · fn−1−−−→ X(n)

fn−→ X(n+ 1).

Applying the inductive assumption to the sequence

X(2)
f2−→ · · · fn−1−−−→ X(n)

fn+1−−−→ X(n+ 1),

we find a quasi-ordered set A and sequences

X(2)α
(f2)α−−−→ · · · (fn)α−−−→ X(n+ 1)α, α ∈ A

with the desired properties. Let {X(1)λ} be the family of all finite subspectra
of X(1), and let X(1)(α,λ) be a maximal subspectrum of

X(1)λ ∩ (f−1
1 (X(2)α)).

We set Ω := {(α, λ)} and X(i)(α,λ) := X(i)α, (fi)(α,λ) := (fi)α for every
(α, λ) and every i ≥ 2. Clearly, f1(X(1))ω ⊂ X(2)ω for every ω ∈ Ω, and so
we can form (f1)ω : X(1)ω → X(2)ω. Now, the family

X(1)ω
(f1)ω−−−→ X(2)ω −→ · · ·

(fn)ω−−−→ X(n+ 1)ω, ω ∈ Ω

satisfies conditions (i)–(iii). �
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3.15. Lemma. Let X
f−→ Y

g−→ Z be a strict cofiber sequence of maps of
spectra. Then a family {Xω

fω−→ Yω
gω−→ Zω} as in 3.14 can be chosen such

that Zω = C(fω).

Proof. Consider a family {Xω
fω−→ Yω

gω−→ Zω} as in 3.14 and set
(Zω)new := C(fω). Let hω : Yω

hω−→ (Zω)new be the canonical inclusion.

Then {Xω
fω−→ Yω

hω−→ (Zω)new} is the desired family. �
Given a family {Xλ} of spaces or spectra, let iλ : Xλ → ∨Xλ denote the

inclusion.

3.16. Definition. (a) Let L be as in 3.10. A homology theory h∗ on L is
called additive if

〈(iλ)∗〉 : ⊕λh∗(Xλ)→ h∗(∨Xλ)

is an isomorphism for every family {Xλ, λ ∈ Λ} in L with ∨Xλ ∈ L .
Similarly, a cohomology theory h∗ on L is called additive if

{i∗λ} : h∗(∨Xλ)→
∏

λ

h∗(Xλ)

is an isomorphism for every family {Xλ, λ ∈ Λ} in L with ∨Xλ ∈ L .
(b) Let K • be as in 3.4. A reduced homology theory ˜h∗ on K • is called

additive if
〈(iλ)∗〉 : ⊕λ˜h∗(Xλ)→ ˜h∗(∨Xλ).

is an isomorphism for every family {Xλ, λ ∈ Λ} in K • with ∨Xλ ∈K •.
Similarly, a reduced cohomology theory ˜h∗ on K • is called additive if

{i∗λ} : ˜h∗(∨Xλ)→
∏

λ

˜h∗(Xλ)

is an isomorphism for every family {Xλ, λ ∈ Λ} in K • with ∨Xλ ∈K •.
(c) An unreduced (co)homology theory h on K 2 is called additive if the

corresponding reduced theory on K • is additive. In this case h∗(	Xλ) =
∏

h∗(Xλ). Indeed,

h∗(	Xλ) = ˜h∗
(

(	Xλ)+
)

= ˜h∗(∨(X+
λ )) =

∏

˜h∗(X+
λ ) =

∏

h∗(Xλ).

Because of 3.7(vi), the homomorphisms {(iλ)∗}, {i∗λ} are isomorphisms for
every (co)homology theory if Λ is a finite set, and so the additivity condition
gives no restrictions on the (co)homology theories on C •

f , as well as on Sf .

3.17. Example (James–Whitehead [1]). There are non-additive cohomology
theories on C •. For example, set
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˜hk(X) :=
∏∞
n=0

˜Hn(X)
∑∞
n=0

˜Hn(X)

for every k. Then ˜h∗(Sn) = 0 for all n, but ˜h∗

( ∞
∨

n=1

Sn

)


= 0.

3.18. Proposition. Every (co)homology theory {˜h, s} on C • (resp. C •
fd,C

•
f )

can be obtained from a (co)homology {h, ŝ} on Ss (resp. Ssfd,Sf) by Con-
struction 3.13, and this (co)homology theory on Ss (resp. Ssfd,Sf) is unique
up to equivalence. Furthermore, {h, ŝ} is additive iff {˜h, s} is.

Proof. If X ∈ C • and Y = ΣnΣ∞X , we set hk(Y ) := ˜hk−n(X), etc. �

3.19. Proposition. (i) Let ϕ : ˜h(X) −→ ˜k(X) be a morphism of reduced
(co)homology theories on C •

f . If ϕ is an isomorphism for X = S0 then ϕ is
an isomorphism for every X ∈ C •

f .
(ii) Let K • be as in 3.4, and let ϕ : ˜h(X) −→ ˜k(X) be a morphism of

reduced additive (co)homology theories on K •. If ϕ is an isomorphism for
X = S0 then ϕ is an isomorphism for every X ∈K •.

(iii) Let L be as in 3.10, and let ϕ : h(X) −→ k(X) be a morphism of
additive (co)homology theories on L . If ϕ is an isomorphism for X = S then
ϕ is an isomorphism for every X ∈ L .

Proof. We prove this for the homology case only, because the cohomology
case can be proved similarly.

(i) Note that ϕ is an isomorphism for every sphere Sn, and hence it is an
isomorphism for every finite wedge

∨

Sn. Given X ∈ C •
f , let Xn be the n-

skeleton ofX . Since Xn/Xn−1 �
∨

Sn (a finite wedge), we have the following
commutative diagram:

˜h∗(
∨

Sn) −−−−→ ˜h∗(Xn−1) −−−−→ ˜h∗(Xn) −−−−→ ˜h∗(
∨

Sn) −−−−→ · · ·
∼=
⏐

⏐



ϕ

⏐

⏐




ϕn−1

⏐

⏐




ϕn ∼=
⏐

⏐



ϕ ϕn−1

⏐

⏐




˜k∗(
∨

Sn) −−−−→ ˜k∗(Xn−1) −−−−→ ˜k∗(Xn) −−−−→ ˜k∗(
∨

Sn) −−−−→ · · · ,

whose rows are the exact sequence from 3.7(iv). We prove by induction that
ϕn is an isomorphism. Note that ϕ0 is an isomorphism sinceX0 =

∨

S0. Now,
if ϕn−1 is an isomorphism then, by the Five Lemma, ϕn is an isomorphism.
The induction is confirmed. It remains to note that X = Xk for some k.

(ii) The case K • = Cf is proved in (i). Let K • = C •
fd. Because of addi-

tivity, ϕ is an isomorphism for every wedge
∨

Sn. Now, similarly to (i), we
can prove that ϕ is an isomorphism for every finite dimensional CW -space
Y . Thus, (ii) holds for K • = C •

fd. Let K • = C •. Then, by additivity and
what was proved above, ϕ is an isomorphism for every wedge

∨

Yλ with finite
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dimensional Yλ. Let T be the reduced telescope of the skeletal filtration of
a CW -complex X , see I.3.23. We have Tev � ∨nX2n, Tod � ∨nX2n+1, and
Tev∩Tod � ∨nXn. Since T � X , it suffices to prove that ϕ is an isomorphism
for T . Consider the commutative diagram

· · · −−−−→ ˜h∗(Tev)⊕ ˜h∗(Tod) −−−−→ ˜h∗(T ) −−−−→ ˜h∗(Tev ∩ Tod) −→ · · ·
∼=
⏐

⏐



ϕ′′

⏐

⏐




ϕ ∼=
⏐

⏐



ϕ′

· · · −−−−→ ˜k∗(Tev)⊕ ˜k∗(Tod) −−−−→ ˜k∗(T ) −−−−→ ˜k∗(Tev ∩ Tod) −→ · · ·

of the Mayer–Vietoris sequences of the triad (T ;Tev, Tod). Now, using the
Five Lemma, we conclude that ϕ is an isomorphism.

(iii) Because of 3.18, the assertion holds for L = Sf ,Ss,Ssfd. Now we
give a proof for L = S only, because the proof for L = Sfd is similar.
By (ii), ϕ is an isomorphism for every Y ∈ C . Hence, by additivity, ϕ is an
isomorphism for every spectrum of the form ∨λΣnΣ∞Yλ, where each Yλ is a
CW -complex. Consider a spectrumX = {Xn}and the spectrum τ = τX as in
1.23. By (1.24) and what was proved above, ϕ is an isomorphism for τev, τod,
and τev ∩ τod. Since τ � X , it suffices to prove that ϕ is an isomorphism for
τ . Consider the commutative diagram

· · · −→ h∗(τev)⊕ h∗(τod) −−−−→ h∗(τ) −−−−→ h∗(τev ∩ τod) −−−−→ · · ·
∼=
⏐

⏐



ϕ′′

⏐

⏐




ϕ ∼=
⏐

⏐



ϕ′

· · · −→ k∗(τev)⊕ k∗(τod) −−−−→ k∗(τ) −−−−→ k∗(τev ∩ τod) −−−−→ · · ·

of the Mayer–Vietoris sequences of the triad (τ ; τev, τod), see 3.11. Now, using
the Five Lemma, we conclude that ϕ is an isomorphism. �

3.20. Proposition. Let {Xλ, λ ∈ Λ} be the set of all finite subspectra of a
spectrum X.

(i) Let h∗ be a homology theory on Sf . Set k∗(X) := lim−→{h∗(Xλ)} for any
X ∈ S . Then k∗ is an additive homology theory on S .

(ii) For every additive homology theory h∗ on S , the inclusions {iλ :
Xλ → X} induce an isomorphism 〈(iλ)∗| lim−→〉 : lim−→{h∗(Xλ)} ∼= h∗(X).

(iii) Every homology theory on Sf can be extended to an additive homology
theory on S , and this extension is unique (up to equivalence).

Proof. (i) Firstly, we show that the extension k∗ is a functor on S . Given
a morphism f : X → Y of spectra, consider a family {fω : Xω → Yω} as in
3.14. Then k∗(A) = lim−→{h∗(Aω)} for A = X,Y . Now, f induces a morphism
of direct systems {˜h∗(Xω)} → {˜h∗(Yω)} and, hence, a homomorphism

f∗ : k∗(X) = lim−→{h∗(Xω)} → lim−→{h∗(Yω)} = k∗(Y ).

Furthermore, the isomorphism s extends from Sf to S in an obvious manner.
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The homotopy axiom holds obviously. To verify the exactness axiom, first
consider a strict cofiber sequence X

f−→ Y
g−→ Z = Cf of maps of spectra and

take Xω
fω−→ Yω

gω−→ Zω as in 3.15. Now, one has an exact sequence of direct
systems

{h∗(Xω)} → {h∗(Yω)} → {h∗(Zω)},
and hence, by I.2.7, the sequence k∗(X)→ k∗(Y )→ k∗(Z) is exact. Finally,

given an arbitrary cofiber sequence X
f−→ Y

g−→ Z, we have a commutative
diagram

X
f−−−−→ Y −−−−→ Cf

∥

∥

∥

∥

∥

∥

⏐

⏐



h

X
f−−−−→ Y

g−−−−→ Z

where h is a homotopy equivalence. Hence, the sequence

k∗(X)
f−→ k∗(Y )

g−→ k∗(Z)

is exact.
The additivity property holds because lim−→ and ⊕ commute.
(ii) Given X ∈ S , set k∗(X) := lim−→{h∗(Xλ)}. Consider the homomor-

phism ϕX := 〈(iλ)∗| lim−→〉 : k∗(X)→ h∗(X) as I.2.5. In view of (i), the family
{ϕX} is a morphism k∗ → h∗ of additive homology theories on S . It is an
isomorphism for every finite X , and so, by 3.19(iii), for every X ∈ S .

(iii) This follows from (i) and (ii). �
This proposition shows that, in fact, there is no difference between homol-

ogy theories on Sf and additive homology theories on S . For cohomology
theories the situation is similar, but more complicated: we discuss this in
detail in Ch. III.

3.21. Construction-Definition. Given any cohomology theory h∗ on Sf ,
one can construct a homology theory h∗ on Sf by setting hi(X) = h−i(X⊥).
Since Σ(X⊥) = (Σ−1X)⊥, the suspension isomorphism h1−i(Σ(X⊥)) →
h−i(X⊥) induces a suspension isomorphism hi−1(Σ−1X) → hi(X). By
2.4(ii), h∗ is a well-defined homology theory on Sf . Conversely, in this manner
one can construct a homology theory on Sf starting from a cohomology the-
ory on Sf . Moreover, the correspondences {homology} → {cohomology} and
{cohomology} → {homology} are mutually inverse (if we assume (X⊥)⊥ =
X , etc). Cohomology and homology theories related in this manner are called
dual (to each other, i.e., h∗ is dual to h∗, and vice versa). In other words,
k∗ is dual to h∗ if k∗ is isomorphic to h∗. In this case we have the duality
isomorphism D : ki(X)→ h−i(X⊥).

We leave it to the reader to transfer this construction to the category Cf .
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3.22. Construction. Let E be an arbitrary spectrum.
(a) Define covariant functors En : S → A G where En(X) := πn(E ∧X)

for every X ∈ S and En(f) := πn(1E ∧ f) for every morphism f : X → Y
of spectra. Furthermore, define ŝn : En → En+1Σ to be the composition

En(X) = πn(E ∧X) = πn+1(Σ(E ∧X)) � πn+1(E ∧ΣX) = En+1(ΣX)

for every X ∈ S . By 1.15 and 2.1(vi), (En, ŝn) is a homology theory on S ,
and, by 1.16(iii) and 2.1(v), it is additive.

(b) Define contravariant functors En : S → A G by setting En(X) :=
[X,ΣnE] for every X ∈ S and

En(f) : [Y,ΣnE]→ [X,ΣnE], En(f)[g] := [gf ]

for every f : X → Y and g : Y → ΣnE. Furthermore, define ŝn : En+1Σ →
En to be the composition

En+1(ΣX) = [ΣX,Σn+1E] = [X,ΣnE] = En(X).

By 1.15 and 1.16(i), {En, ŝn} is an additive cohomology theory on S .
Thus, every spectrum yields a (co)homology theory on S . Hence, by 3.6

and 3.13, every spectrum yields a reduced (co)homology theory on K • and
an unreduced one on K 2. For example, for every X ∈K we have

En(X) = ˜En(X+) = πn(E ∧X+) andEn(X) = ˜En(X+) = [Σ∞X+, E].

Here the coefficient groupsEi(S) = ˜Ei(S0) = Ei(pt) = E−i(pt) = ˜E−i(S0) =
E−i(S) are just the homotopy groups πi(E).

Notice that Ei(X) ∼= Xi(E) for any two spectra X,E.
Every morphism ϕ : E → F of spectra induces a morphism ϕ : E∗(−)→

F∗(−) of homology theories and a morphism ϕ : E∗(−)→ F ∗(−) of cohomo-
logy theories on S (and, hence, on K • and K 2). Here

ϕ = {ϕXi : Ei(X)→ Fi(X)}, ϕ[f ] = [(ϕ∧1X)◦(f)] for every f : ΣiS → E∧X

for homology and

ϕ = {ϕiX : Ei(X)→ F i(X)}, ϕ[f ] = [(Σiϕ)◦f ] for every f : X → ΣiE

for cohomology. So, we have a functor from spectra to (co)homology theories.
In particular, equivalent spectra yield isomorphic (co)homology theories.

According to 3.22, one can assign a (co)homology theory to a spectrum. This

situation turns out to be invertible, see Ch. III, §3 below.

3.23. Proposition. For every spectrum E, the cohomology theory E∗ is dual
to the homology theory E∗.
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Proof. We have a natural isomorphism

Ei(X⊥) = [ΣiS,E ∧X⊥] = [S,Σ−iE ∧X⊥] = [X,Σ−iE] = E−i(X). �

3.24. Example. Let π be an abelian group, and let H(π) (or simply Hπ)
be a spectrum such that

πi(H(π)) =
{

π if i = 0
0 if i 
= 0.

Firstly, we construct such a spectrum. Let K(π, n) be an Eilenberg–Mac
Lane space, πn(K(π, n)) = π and πi(K(π, n)) = 0 for i 
= n. Obvious homo-
topy equivalences ωn : K(π, n)→ ΩK(π, n+1) yield an Ω-prespectrum, and,
thus, an Ω-spectrum E with En � K(π, n). Of course, E satisfies the above
conditions.

We prove that the conditions above determine H(π) uniquely up to equiv-
alence. Indeed, let F be another spectrum with π0(F ) = π and πi(F ) = 0 for
i 
= 0. By 1.21, we can assume that F is an Ω-spectrum. Then Fn must be an
Eilenberg-Mac Lane space K(π, n). The identity map 1π induces a homotopy
equivalence K(π, n) = Fn → En = K(π, n), and, clearly, these homotopy
equivalences constitute an equivalence F → E of spectra.

Consider the (co)homology theory associated with H(π). We have

H(π)i(pt) = ˜H(π)i(S0) = πi(H(π)) =
{

0 if i 
= 0
π if i = 0.

Similarly, H(π)0(pt) = π, H(π)i(pt) = 0 for i 
= 0.
Thus, according to the Eilenberg–Steenrod Theorem, the spectrum H(π)

produces the ordinary (co)homology theory on Cf ,

H(π)i(X) ∼= Hi(X ;π), H(π)i(X) = Hi(X ;π) for every X ∈ Cf .

Hence, for every X ∈ C •,

Hi(X ;π) ∼= H(π)i(X) = πi(H(π) ∧X+) ∼= lim
N→∞

πi+N (K(π,N) ∧X+)

(the last isomorphism holds for every X ∈ C and can be proved directly or
deduced from 3.19(ii), since the homomorphisms

lim
N→∞

πi+N (K(π,N) ∧X+)→ πi(H(π) ∧X+)

yield a morphism of homology theories on C •).
In view of the above, we write H∗(X ;π) instead of (Hπ)∗(X) and

H∗(X ;π) instead of (Hπ)∗(X) for every X ∈ C or X ∈ S . Furthermore,
we write H(X) instead of H(X ; Z) = HZ(X).

3.25. Proposition. If E = {En} is an Ω-spectrum, then for every space X
there is a natural equivalence ˜Ei(X) ∼= [X,Ei]•.
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Proof. We have

˜Ei(X) = [Σ∞X,ΣiE] ∼= lim
N→∞

[SNX,Ei+N ]• ∼= lim
N→∞

[X,ΩNEi+N ]•

∼= lim
N→∞

[X,Ei]• = [X,Ei]•. �

3.26. Corollary. For every spectrum E and every i, the functor

˜Ei : H C • → A G , X �→ ˜Ei(X),

is representable.

Proof. Let F be an Ω-spectrum equivalent to E. Then ˜Ei(X) = ˜F i(X) =
[X,Fi]•, i.e., the space Fi represents the functor ˜Ei. �

We are especially interested in the case i = 0.

3.27. Proposition-Definition. Given a spectrum E, let Ω∞E denote a
representing space for ˜E0 : H C • → A G (i.e., Ω∞E = F0 for some Ω-
spectrum F equivalent to E). This space Ω∞E is called the infinite delooping
of E and has the following properties:

(i) It is uniquely defined up to homotopy equivalence.
(ii)Consider a pair of spectra E,F and fix certain spaces Ω∞E,Ω∞F and

equivalences [−,Ω∞E]• ∼= ˜E0(−), [−,Ω∞F ]• ∼= ˜F 0(−) of functors. For every
morphism ϕ : E → F there exists a map f : Ω∞E → Ω∞F such that for
every space X the diagram

˜E0(X)
ϕ∗−−−−→ ˜F 0(X)

∼=
⏐

⏐




⏐

⏐




∼=

[X,Ω∞E]•
f∗−−−−→ [X,Ω∞F ]•

commutes, and such f is unique up to homotopy. This map f is called the
infinite delooping of ϕ and is denoted by Ω∞ϕ.

(iii) For every E
ϕ−→ F

ψ−→ G we have Ω∞(ψϕ) � Ω∞ψΩ∞ϕ.

Proof. (i) and (ii) follow from the Yoneda Lemma I.1.5, and (iii) follows
from (ii). �

3.28. Remarks. (a) A space X is called an infinite loop space if it has the
form Ω∞E for some E. If F = {Fn} is an Ω-spectrum equivalent to E, then
X � ΩnFn, i.e., an infinite loop space is an n-loop space for all n. This
justifies the term “infinite loop space” (and the notation Ω∞).

(b) Of course, the notation Ω∞E, Ω∞f is not pedantically rigorous be-
cause, say, Ω∞E is defined only up to homotopy equivalence. In particular,
Ω∞ is not a functor S → H C •. Nevertheless, we shall use this notation
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because it is very convenient, and there is no danger of confusion. However,
if one wants to consider Ω∞ as a functor, one can choose a space Ω∞E for
every spectrum E, etc.

3.29. Corollary. (i) Let F be an Ω-spectrum equivalent to E (see 1.21).
Then Ω∞E � F0.

(ii) (an adjointness relation) For every spectrum E and every pointed CW -
complex X we have a natural equivalence [Σ∞X,E] ∼= [X,Ω∞E]•. �

If we put X = Ω∞E in 3.29(ii), we obtain a map j : Σ∞Ω∞E → E
which is adjoint to 1Ω∞E . If we put E = Σ∞X , we obtain a morphism
i : X → Ω∞Σ∞X which is adjoint to 1Σ∞X .

Consider the actions of Ω∞ and Σ∞ on homotopy groups. Firstly, πk(E) =
πk(Ω∞E) (where on the left hand side we have the homotopy group of the
spectrum, while on the right hand side we have that of the space). Further-
more, the group πk(Σ∞X) = lim

N→∞
πk+N (SNX) is just the stable homotopy

group Πk(X) of X , and

i∗ : πk(X)→ πk(Ω∞Σ∞X) = πk(Σ∞X) = Πk(X)

is just the stabilization homomorphism.

Finally, if X is an infinite loop space, X = Ω∞E, then the map i : X →
Ω∞Σ∞X has a homotopy left inverse τ : Ω∞Σ∞X → X . Namely, τ is the
composition

Ω∞Σ∞X = Ω∞Σ∞Ω∞E
Ω∞j−−−→ Ω∞E = X.

We leave it to the reader to prove (by purely categorical arguments) that
τi � 1X . In particular,

πk(X) i∗−→ πk(Ω∞Σ∞X) τ∗−→ πk(X)

coincides with 1πk(X). Since πk(Ω∞Σ∞X) = Πk(X), we have

3.30. Proposition. If X is an infinite loop space, then πk(X) is a direct
summand of Πk(X). �

3.31. Remark. Given a spectrum E, it is possible and useful to extend the
functors ˜E∗ and ˜E∗ to the whole category W •. We define

˜En(X) := [X,Ω∞ΣnE]•, ˜En(X) := lim
n→∞

πi+n(Ei ∧X)

for every X ∈ W •. Clearly, the functors En and En are homotopy invari-
ant, and there are exact sequences of pairs for every cofibered pair (X,A).
Moreover, given a pointed triad (X ;A,B), there is the Mayer–Vietoris ex-
act sequence provided that A,B is a numerable covering of X and A,B are
well-pointed, cf. I.3.37.



§3. (Co)homology Theories and Their Connection with Spectra 73

3.32. Examples. Here we give some examples of spectra and (co)homology
theories which will be discussed and used later.

(a) The sphere spectrum S. Clearly, Sk(E) = πk(E) for every spectrum
E and Sk(X) = Πk(X+) for every space X . In particular, S represents the
stably (co)homotopy functor on C •.

(b) The Moore spectrum M(A) of an abelian group A, which is charac-
terized by the conditions πi(M(A)) = 0 for i < 0, Hi(M(A)) = 0 for i 
= 0,
H0(M(A)) = A, see 4.32 below.

(c) The Eilenberg–Mac Lane spectrum H(π) of an abelian group π, see
3.24. This spectrum yields the ordinary (co)homology with coefficients in π.

(d) Let G = ⊕Gi be a graded abelian group with homogeneous compo-
nents Gi. The graded Eilenberg–Mac Lane spectrum of G is the spectrum
H(G) := ∨ΣiH(Gi). In particular, π∗(H(G)) = G. These spectra will be
discussed in §7.

(e) Complex K-theory, see Atiyah [4], Karoubi [1], etc. It is represented
by a spectrum K such that Σ2K � K and π∗(K) = Z[t, t−1], dim t = 2.

(f) There exist a spectrum k and a morphism p : k → K such that
π∗(k) = Z[t], dim t = 2 and p∗ : πi(k) → πi(K) is an isomorphism for i ≥ 0.
This morphism p : k → K is constructed as a connective covering over K,
see §4 below. The (co)homology theory given by k is called the connected
complex k-theory. Sometimes one uses the notation bu instead of k.

(g) There are real analogs of examples (e), (f). Namely, there is a real
KO-theory KO which is 8-periodic, Σ8KO � KO, and it has a connective
covering kO (also denoted by bo).

(h) Certain (co)bordism theories, which are represented by the so-called
Thom spectra, see Ch. IV.

(i) The Brown–Peterson spectrum BP , see Ch. VII.
(j) Certain (co)bordism theories with singularities, see Ch. VIII, IX. For

example, Morava K-theories K(n) and k(n), Morava–Johnson–Wilson spec-
tra P (n), Baas–Johnson–Wilson spectra BP 〈n〉, see Ch. IX.

Consider now a spectrum E and a morphism α : S → E. Let X be an
arbitrary spectrum. The homomorphism

(3.33) α∗ : π∗(X)→ E∗(X)

is called the Hurewicz homomorphism with respect to α and denoted by
hα. It has the following alternative description: hα[f ] = E∗(f)(̂sd[α]), where
E∗(f) : E∗(ΣdS)→ E∗(X) is induced by f : ΣdS → X and ŝd is the iterated
suspension. In order to see the equivalence of these two descriptions, note
that α∗(f) is given by the composition ΣdS ∧ S f∧1−−→ X ∧ S 1∧α−−→ X ∧ E,
while hα[f ] is given by ΣdS ∧S 1∧α−−→ ΣdS ∧E f∧1−−→ X ∧E. But each of these
compositions is just α ∧ f .
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Now, let E = (E, μ, ι) be a ring spectrum. The Hurewicz homomorphism
hι we denote just by h. For every pair of spectra X,Y and every pair of
integers m,n, we have pairings μX,Y and μX,Y induced by μ. Here

(3.34) μX,Y : Em(X)⊗ En(Y )→ Em+n(X ∧ Y )

maps [f ]⊗ [g] to (the homotopy class of)

Σ−mX ∧ Σ−nY
f∧g−−→ E ∧ E μ−→ E

where [f ] ∈ Em(X), [g] ∈ En(Y ); and

(3.35) μX,Y : Em(X)⊗ En(Y )→ Em+n(X ∧ Y )

maps [f ]⊗ [g] to

ΣmS ∧ΣnS
f∧g−−→ (E ∧X) ∧ (E ∧ Y )

ϕ−→ (E ∧E) ∧ (X ∧ Y )
μ∧1−−→ E ∧X ∧ Y

where [f ] ∈ Em(X), [g] ∈ En(Y ) and ϕ is the composition

(E ∧X) ∧ (E ∧ Y )
a(E,X,E∧Y )−−−−−−−−→ E ∧ (X ∧ (E ∧ Y ))

1∧a−1(X,E,Y )−−−−−−−−−→

E ∧ ((X ∧ E) ∧ Y )
1∧τ(X,E)∧1−−−−−−−−→ E ∧ ((E ∧X) ∧ Y )

1∧a(E,X,Y )−−−−−−−−→

E ∧ (E ∧ (X ∧ Y ))
a−1(E,E,X∧Y )−−−−−−−−−−→ (E ∧ E) ∧ (X ∧ Y ).

The pairings μX,Y and μX,Y are associative, and they commute with
suspensions (i.e., with the shift of dimension). Here, for instance, the asso-
ciativity of μX,Y means the commutativity of the diagram

(3.36)

Em(X)⊗ En(Y )⊗ Ep(Z) −−−−→ Em(X)⊗ En+p(Y ∧ Z)
⏐

⏐




⏐

⏐




Em+n(X ∧ Y )⊗ Ep(Z) −−−−→ Em+n+p(X ∧ Y ∧ Z) ,

while commuting with suspensions means the commutativity of the diagrams

Em(X)⊗ En(Y ) −−−−−−−−−−−−−−−−−−−→ Em+n(X ∧ Y )

σ⊗1

⏐

⏐




⏐

⏐


σ

Em+1(ΣX)⊗ En(Y ) −→ Em+n+1(ΣX ∧ Y ) ∼= Em+n+1(Σ(X ∧ Y )),

(3.37)
Em(X)⊗ En(Y ) −−−−→ Em+n(X ∧ Y )

1⊗σ
⏐

⏐




⏐

⏐




σ

Em(X)⊗ En+1(ΣY ) Em+n+1(Σ(X ∧ Y ))
⏐

⏐




⏐

⏐



(−1)m

Em+n+1(X ∧ ΣY )
∼=−−−−→ Em+n+1(Σ(X ∧ Y )).
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The commutativity of the diagrams (3.36) and (3.37) follows from the defi-
nition of ring spectra and the properties of the smash product, see §2. Fur-
thermore, if E is a commutative ring spectrum then

(3.38) τ∗μ
X,Y (a⊗ b) = (−1)|a||b|μX,Y (b⊗ a),

where τ = τ(X,Y ) : X∧Y → Y ∧X . The same is true for μX,Y , cf. Adams [6],
Switzer [1].

Moreover, there is a pairing

(3.39) μX•,Y : Em(X)⊗ En(X ∧ Y )→ En−m(Y )

where μX•,Y ([f ]⊗ [g]) is represented by the morphism

ΣnS
g−→ E ∧X ∧ Y 1E∧f∧1Y−−−−−−→ E ∧ΣmE ∧ Y Σmμ∧1Y−−−−−−→ ΣmE ∧ Y.

Similarly, one can construct a pairing

(3.40) μ•,Y
X : Em(X ∧ Y )⊗ En(X)→ Em−n(Y ).

If we put Y = S in (3.39) and/or (3.40), we get the Kronecker pairing

(3.41) 〈−,−〉 : Em(X)⊗ En(X)→ En−m(S) = πn−m(E).

If we put X = Y = S in (3.35), we see that E∗(S) = π∗(E) is a ring; its
unit is given by ι : S → E. If we put X = S in (3.35), we see that E∗(Y )
is a graded left π∗(E)-module. Of course, one can consider E∗(Y ) as a right
π∗(E)-module: the equivalence l : S ∧ Y � Y yields the left π∗(E)-module
structure, while the equivalence r : Y ∧S � Y yields the right one. Similarly,
E∗(Y ) is a (left) graded E∗(S)-module. Finally, if X is a ring spectrum with
a multiplication ν : X ∧X → X then there is a pairing

E∗(X)⊗ E∗(X)
μX,X−−−→ E∗(X ∧X) ν∗−→ E∗(X),

turning E∗(X) into a ring. In particular, E∗(E) is a ring.

More generally, let (F,m) be a module spectrum over a ring spectrum
(E, μ, ι). As above, m induces pairings

(3.42)

mX,Y : Em(X)⊗ Fn(Y )→ Fm+n(X ∧ Y ),
mX,Y : Em(X)⊗ Fn(Y )→ Fm+n(X ∧ Y ),

mX
•, Y : Em(X)⊗ Fn(X ∧ Y )→ Fn−m(Y ),

m•,Y
X : Em(X ∧ Y )⊗ Fn(X)→ Fm−n(Y ),

′m•,Y
X : Fm(X ∧ Y )⊗ En(X)→ Fm−n(Y ),

and the Kronecker pairings
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〈−,−〉 : Em(X)⊗ Fn(X)→ Fn−m(S) = πn−m(F ),
〈−,−〉 : Fm(X)⊗ En(X)→ Fm−n(S) = πn−m(F ).

Notice the following fact. Given a morphism a : Sd → E, the morphism
a# : SdF → F defined in 2.14 induces the homomorphism (a#)∗ : Fn(X)→
Fn+d(X). This homomorphism coincides with multiplication by [a] ∈ π∗(E)
on the π∗(E)-module F∗(X) (prove it). This justifies the term “multiplica-
tion” in 2.14.

3.43. Conventions. (a) We shall write ab instead of μX,Y (a⊗ b) as well as
of μX,Y (a⊗ b). Similarly for mX,Y (a⊗ b), etc.

(b) The spectrum ΣnS will be denoted simply by Sn, when there is no
danger of confusion.

(c) For any morphism f : X → ΣiE we shall write just f ∈ Ei(X) rather
than [f ] ∈ Ei(X).

Let E and F be as above, and let Y be a module spectrum over a ring
spectrum X . Then we have the homomorphism

E∗(X)⊗ F∗(Y )
mX,Y−−−−→ F∗(X ∧ Y )→ F∗(Y )

(the right map is induced by the pairing X ∧ Y → Y ) turning F∗(Y ) into
a (left) E∗(X)-module. In particular, F∗(F ) is an E∗(E)-module (put X =
E, Y = F ). Similarly, F∗(E) is an E∗(E)-module.

Every morphism a : Sd → X yields an element a ∈ πd(X). The composi-
tion

a# : Sd ∧ Y a∧1−−→ X ∧ Y → Y

induces a homomorphism Fi(Sd ∧ Y ) → Fi(Y ), i.e., a homomorphism a∗ :
Fi−d(Y ) ∼= Fi(Sd ∧ Y )→ Fi(Y ).

On the other hand, given x ∈ E∗(X), the multiplication by x yields an
additive homomorphism x : F∗(Y )→ F∗(Y ), a �→ xa, a ∈ F∗(Y ).

3.44. Lemma. The homomorphism a∗ is the multiplication by h(a) ∈ E∗(X).

Proof. Consider the commutative diagram

E∗(S)⊗ F∗(Y )
E∗(a)⊗1−−−−−→ E∗(X)⊗ F∗(Y )

⏐

⏐




⏐

⏐




F∗(S ∧ Y ) = F∗(Y ) a∗−−−−→ F∗(Y ).

Since E∗(a)(ι) = h(a), the lemma follows. �
In the above discussion (from (3.34) to (3.42)) one can replace spectra

X,Y by spaces. In this case all the formulae for reduced (co)homology remain
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valid (we only need to replace Σ by S). For unreduced (co)homology we must
slightly modify the formulae. Recall that

X/A ∧ Y/B = (X × Y )/(X ×B ∪A× Y ),

and so (3.34) must be replaced by a pairing

μ = μ(X,A),(Y,B) : Em(X,A)⊗ En(Y,B)→ Em+n(X × Y,X ×B ∪A× Y ),

etc.

Let d : (X,A ∪B)→ (X ×X,X ×B ∪A×X) be the diagonal. Define a
pairing (called the cup-multiplication)

∪ : Em(X,A)⊗ En(X,B)
μ−→ Em+n(X ×X,X ×B ∪A×X)
d∗−→ Em+n(X,A ∪B).

For A = B this pairing yields a multiplication on E∗(X,A) converting it
into a graded ring. As with 3.43, we write ab instead of a ∪ b. By (3.38),
ab = (−1)|a||b|ba for every commutative ring spectrum E.

Furthermore, the pairing

μ = μ
(X,A)
•,(Y,B) : Em(X,A)⊗ En(X × Y,X ×B ∪A× Y )→ En−m(Y,B)

induces an inner operation (called the cap-multiplication)

∩ : Em(X,A)⊗ En(X,A ∪B)→ En−m(X,B)

of the form

Em(X,A)⊗ En(X,A ∪B) 1⊗d∗−−−→ Em(X,A)⊗ En(X ×X,X ×B ∪A×X)
μ−→ En−m(X,B).

Below we shall meet many ring spectra. Note that sometimes it is difficult
to prove the existence of a ring structure on a given spectrum, see Ch. VIII.

Now we formulate two useful technical theorems which enable us to con-
struct ring morphisms of ring spectra. Let X be any spectrum, let E be a
ring spectrum, and let F be an E-module spectrum. The Kronecker pairing
〈−,−〉 : F ∗(X)⊗ E∗(X)→ π∗(F ) yields the evaluation homomorphism

ev : Fn(X)→ Homn
π∗(E)(E∗(X), π∗(F )),

(ev(a))(b) = 〈a, b〉, a ∈ Fn(X), b ∈ E∗(X).

3.45. Theorem. Suppose that there exists N such that πi(X) = 0 for i < N .
If the Atiyah–Hirzebruch spectral sequence 6

6 The necessary information about the Atiyah–Hirzebruch spectral sequence (here-

after denoted AHSS) can be found e.g. in Adams [8], Ch. III.
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Er∗∗(X)⇒ E∗(X), E2
p,q(X) = Hp(X ;πq(E))

collapses (i.e., all its differentials are trivial), and if the π∗(E)-module
E2

∗,∗(X) is free, then

ev : Fn(X)→ Homn
π∗(E)(E∗(X), π∗(F )), (ev(a))(b) = 〈a, b〉

is an isomorphism.

Proof. See Adams [5], p.20, Prop. 17 or Adams [8], p.48, Lemma 4.2. �

3.46. Theorem. Let X be a ring spectrum, and let E be a commutative ring
spectrum. Consider the evaluation

ev : En(X)→ Homn
π∗(E)(E∗(X), π∗(E)), (ev(a))(b) = 〈a, b〉

and suppose that all the conditions of 3.45 hold for X and X ∧ X. Then a
morphism f : X → E is a ring morphism iff the homomorphism

ev(f) ∈ Hom0
π∗(E)(E∗(X), π∗(E))

is a homomorphism of π∗(E)-algebras.

Proof. This is a direct consequence of 3.45, but we want to demonstrate
why E should be commutative. Let μX (resp. μE) be the multiplication on
X (resp. E). Given a morphism f : X → E, set ev(f) = e : E∗(X)→ π∗(E).
We want to prove that the left square below commutes up to homotopy iff
the right square commutes.

X ∧X f∧f−−−−→ E ∧ E E∗(X)⊗ E∗(X) e⊗e−−−−→ π∗(E)⊗ π∗(E)

μX

⏐

⏐




⏐

⏐




μE μ′′
⏐

⏐




⏐

⏐



μ′

X
f−−−−→ E E∗(X) e−−−−→ π∗(E) .

Assume that the left square commutes. Given a : Sk → E∧X, b : Sl → E∧X ,
consider the following commutative diagram where τ switches the factors:

E ∧X ∧ E ∧X 1∧τ∧1−−−−→ E ∧ E ∧X ∧X μE∧μX−−−−−→ E ∧X

a∧b
�

⏐

⏐
1∧1∧f∧f

⏐

⏐




⏐

⏐



1∧f

Sk ∧ Sl E ∧ E ∧ E ∧ E μE∧μE−−−−−→ E ∧ E μE−−−−→ E.

We have eμ′′(a ⊗ b) = μE◦(1 ∧ f)◦(μE ∧ μX)◦(1 ∧ τ ∧ 1)◦(a ∧ b), and this
morphism is homotopic to μE◦(μE ∧ μE)◦(1 ∧ 1 ∧ f ∧ f)◦(1 ∧ τ ∧ 1)◦(a ∧ b).
On the other hand, μ′(e⊗ e)(a⊗ b) is represented by the composition

Sk ∧ Sl a∧b−−→ E ∧X ∧E ∧X 1∧f∧1∧f−−−−−−→ E ∧E ∧E ∧E μE∧μE−−−−−→ E ∧E μE−−→ E.
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Now, μ′(e ⊗ e)(a ⊗ b) = eμ′′(a ⊗ b) since E is commutative, i.e., the right
square above commutes. Similarly, one can prove that the left square above
commutes if the right one commutes. �

3.47. Construction-Definition. Let E be an arbitrary spectrum. The
graded group E∗(E) admits a ring structure where the multiplication is given
by the composition of morphisms E → Σ?E. In greater detail, if a ∈ Ed(E)

and b ∈ En(E) then ab is given by the morphism E
b−→ ΣdE Σna−−→ Σn+dE.

Furthermore, given a ∈ Ed(E) and x ∈ Ek(X), X ∈ S , we define
a(x) ∈ Ed+k(X) to be the element which is represented by the morphism

X
x−→ ΣkE Σka−−→ Σk+dE. So, we have a homomorphism

E∗(E) ⊗ E∗(X)→ E∗(X), a⊗ x �→ a(x),

which turns E∗(X) into an E∗(E)-module, and this module structure is nat-
ural in X .

Look at this from another point of view. Given a cohomology theory
{hn, ŝn} on S , we define an h-operation (of degree d) to be a family a =
{an : hn(−)→ hn+d(−)}∞n=−∞ of natural transformations such that anŝn =
ŝn+dan+1. Clearly, every operation a is completely determined by a0.

Now, by the above, for every spectrum E each element a ∈ Ed(E)
yields an operation (of degree d). Moreover, by the Yoneda Lemma I.1.5,
the set E∗(E) is in a canonical bijective correspondence with the set of all
E-operations. For this reason, E∗(E) is called the ring of E-operations.

Finally, it makes sense to remark that E∗(E) acts also on E∗(X). Namely,
given a ∈ Ed(X) and x ∈ Ek(X), we define a(x) ∈ Ek−d(X) to be the element

which is represented by the morphism Sk
x−→ X ∧E 1∧Σda−−−−→ X ∧ ΣdE.

§4. Homotopy Properties of Spectra

In this section we develop the homotopy theory of spectra. Namely, we dis-
cuss Postnikov towers, Cartan killing constructions, Serre theory of classes
of abelian group, etc., for spectra. (We assume that the reader knows these
notions in the case of spaces; otherwise he can find them e.g. in Mosher–
Tangora [1].) Closely related material is exposed in Dold [3] and Margolis [1].

4.1. Lemma. (i) Let X,E be two spectra. Suppose that ˜Ek(Xk) = 0 =
˜Ek−1(Xk) for every k. Then E0(X) = 0.

(ii) Let E be a spectrum with πj(E) = 0 for j ≤ n+1. Let X be a spectrum
with X(n) = X. Then E0(X) = 0.
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(iii) Let E be a spectrum and Y be a pointed CW–space. If ˜E0(Y (r)) =
0 = ˜E−1(Y (r)) for every r then E0(Y ) = 0. 7

(iv) Let E be a spectrum with πj(E) = 0 for j > n. Let X be a spectrum
with πi(X) = 0 for i ≤ n. Then E0(X) = 0.

Proof. (i) By (1.24) and 1.16(i),

Ek(τev(X)) = Ek(τod(X)) = Ek(τev(X) ∩ τod(X)) = 0 for k = 0,−1.

Hence, by 1.22 (or 3.12(iii)), E0(τ(X)) = 0, and thus E0(X) = 0 because
τ(X) � X .

(ii) We can assume that E is an Ω-spectrum, and so πi(Ek) = 0 for
i ≤ k + n+ 1. By obstruction theory, [Xk, Ek] = 0 = [Xk, Ek−1] since Xk =
X

(k+n)
k . So, ˜Ek(Xk) = 0 = ˜Ek−1(Xk) for every k. Thus, by (i), E0(X) = 0.

(iii) Consider the reduced telescope T of the sequence

· · · ⊂ Y (r) ⊂ Y (r+1) ⊂ · · · .

We have

˜Ek(Tev) = ˜Ek(Tod) = ˜Ek(Tev ∩ Tod) = 0 for k = 0,−1,

and T = Tev ∨ Tod. So, by 3.12(iii), ˜E0(T ) = 0. Thus, ˜E0(Y ) = 0 because
T � Y .

(iv) Assume that E and X are Ω-spectra. Fix any k. Then X
(k+n)
k � ∗

and πi(Ek) = 0 for i > k + n, and so, by obstruction theory, [Xk, Ek] = 0 =
[Xk, Ek−1]. Now, we can finish the proof just as in case (ii). �

4.2. Lemma. A spectrum E is equivalent to a spectrum F with F (n) = ∗ if
and only if πi(E) = 0 for i ≤ n.

Proof. The “only if” part is trivial. So, let πi(E) = 0 for i ≤ n. Assuming
E to be an Ω-spectrum, we have πi+k(Ek) = 0 for i ≤ n. Replacing Ek by
a homotopy equivalent CW -complex E′

k with (E′
k)

(n+k) = ∗, we obtain a
CW -prespectrum E′. Now, by 1.19, we can construct a spectral substitute F
of E′ with F (n) = ∗. �

4.3. Proposition. Let h∗ be an additive homology theory on S such that
hi(S) = 0 for i ≤ m. Let X be a spectrum such that πj(X) = 0 for j ≤ n.
Then hi(X) = 0 for i ≤ m+ n+ 1.

Proof. Firstly, we prove by induction that hi(X(k)) = 0 for i ≤ m+ n+ 1
and every k. By 4.2, we can assume that X(n) = ∗, and so hi(X(n)) = 0
for every i. Fix k ≥ n and suppose by induction that hi(X(k)) = 0 for
i ≤ m+ n+ 1. Then the exactness of the sequence

7 This holds for a spectrum Y also, see III.4.18 below.
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hi(X(k))→ hi(X(k+1))→ ⊕hi(Sk+1)

(induced by the cofiber sequence X(k) ⊂ X(k+1) → ∨Sk+1) implies that
hi(X(k+1)) = 0 for i ≤ m+ n+ 1.

Now, every finite subspectrum of X is contained in some X(k), and so, by
3.20(ii), hi(X) = lim−→k{hi(X(k))}. Thus, hi(X) = 0 for i ≤ m+ n+ 1. �

4.4. Definition. (a) A spectrum (space) E is called n-connected if πi(E) = 0
for i ≤ n. A spectrum is called connected if it is (−1)-connected. A spectrum
is called bounded below if it is n-connected for some n ∈ Z.

(b) A morphism ϕ : E → F of spectra (resp. map of spaces) is called
n-connected, or an n-equivalence, if its cone Cϕ is (n+1)-connected. In other
words, ϕ∗ : πi(E)→ πi(F ) is an isomorphism for i ≤ n and an epimorphism
for i = n+ 1.

4.5. Proposition. (i) If E is m-connected and F is n-connected, then E∧F
is (m+ n+ 1)-connected.

(ii) If E is m-connected and ϕ : F → G is an n-equivalence, then 1E ∧ϕ :
E ∧ F → E ∧G is an (m+ n+ 1)-equivalence.

(iii) Given integers N, k, let f : E → F be a map of spectra such that
fn : En → Fn is an (n + k)-equivalence for every n > N . Then f is a
k-equivalence.

(iv) For every spectrum E and every k the inclusion E(k) ⊂ E is a k-
equivalence.

Proof. (i) By 4.3, Ei(F ) = 0 for i ≤ m + n + 1, i.e., πi(E ∧ F ) = 0 for
i ≤ m+ n+ 1.

(ii) By (i), C(1E ∧ ϕ) = E ∧ Cϕ is (m + n + 2)-connected since Cϕ is
(n+ 1)-connected.

(iii) The homomorphism f∗ : πi(E)→ πi(F ) has the form

πi(E) = lim
n→∞

πi+n(En)→ lim
n→∞

πi+n(Fn) = πi(F ).

(iv) By I.3.41, for every spaceX the inclusionX(k) ⊂ X is a k-equivalence.
Now the result follows from (iii) and 1.5(i). �

4.6. Corollary. Let α : S → E be a 0-equivalence, and let X be a spectrum.
If πi(X) = 0 for i < n, then Ei(X) = 0 for i < n and α∗ : πk(X)→ Ek(X)
is an isomorphism for k = n and is an epimorphism for k = n+ 1.

Proof. The morphism α ∧ 1X : S ∧X → E ∧X is an n-equivalence. �
For every spectrum X we have the Hurewicz homomorphism h = ι∗ :

π∗(X)→ H∗(X), where ι : S → HZ yields the unit 1 ∈ Z = π0(HZ).
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4.7. Corollary. (i) Let X be a spectrum with πi(X) = 0 for i < n. Then
Hi(X) = 0 for i < n, and the Hurewicz homomorphism h : πk(X)→ Hk(X)
is an isomorphism for k = n and an epimorphism for k = n+ 1.

(ii) If X is a spectrum bounded below and such that Hi(X) = 0 for i < n,
then πi(X) = 0 for i < n.

(iii) Let E,F be two spectra bounded below. If ϕ : E → F is a morphism
such that ϕ∗ : H∗(E)→ H∗(F ) is an isomorphism, then ϕ is an equivalence.

Proof. (i) This follows from 4.6, because the morphism ι : S → HZ is a
0-equivalence.

(ii) This follows from (i).
(iii) The cone Cϕ is bounded below, and H∗(Cϕ) = 0. So, by (i),

π∗(Cϕ) = 0. Thus, ϕ∗ : π∗(E)→ π∗(X) is an isomorphism. �

4.8. Remark. The boundedness below in 4.7(ii) is essential. Indeed, given a
prime p and a natural number n, consider the spectrum K(n) of the corre-
sponding Morava K-theory, see Ch. IX, §7. By IX.7.27, we have H∗(K(n)) =
0, while π∗(K(n)) 
= 0.

4.9. Theorem (the Universal Coefficient Theorem). For every spectrum E
and every abelian group G, there are exact sequences

0→ Ext(Hn−1(E), G)→ Hn(E;G)→ Hom(Hn(E), G)→ 0

and
0→ Hn(E)⊗G→ Hn(E;G)→ Tor(Hn−1(E), G)→ 0.

In particular, H0(H(A);B) ∼= A⊗ B, H0(H(A);B) ∼= Hom(A,B).

Proof. We prove the first formula in detail and indicate a proof of the
second one. Given a morphism ϕ : E → ΣnHG, consider the homomorphism

ϕ∗ : Hn(E)→ Hn(ΣnHG) = H0(HG) = G

(the last equality holds by 4.7(i)). In this way we get a homomorphism

ev : Hn(E;G)→ Hom(Hn(E), G), ev(ϕ) = ϕ∗.

Firstly, if G is an injective group I, then Hom(H∗(−), I) is an exact functor,
and so Hom(H∗(X), I) is an additive cohomology theory on S . Thus, by
3.19(iii), ev is an isomorphism for every X ∈ S because it is for X = S.

Given an arbitrary G, there is an exact sequence 0 → G → I
f−→ J → 0

with injective I, J . It yields an exact sequence

· · · fn−1−−−→ Hn−1(E; J)→ Hn(E;G)→ Hn(E; I)
fn−→ Hn(E; J)→ · · · ,

i.e., the exact sequence
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0→ Coker fn−1 → Hn(E;G)→ Ker fn → 0.

On the other hand, for every m, there is an exact sequence

0 −→ Hom(Hm(E), G) −→ Hom(Hm(E), I)
f#−−→ Hom(Hm(E), J)

−→ Ext(Hm(E), G)→ 0,

and we have the commutative diagram

Hm(E; I)
fm−−−−→ Hm(E; J)

ev

⏐

⏐




⏐

⏐




ev

Hom(Hm(E), I)
f#−−−−→ Hom(Hm(E), J)

where every homomorphism ev is an isomorphism. Thus,

Ker fn = Hom(Hn(E), G), Coker fn−1 = Ext(Hn−1(E), G),

and we get the desired formula.
We prove the second formula. By the above, we have

H0(Z ∧HG;G) = Hom(H0(HZ ∧HG);G) = Hom(π0(HZ ∧HG);G)
= Hom(H0(HG), G) = Hom(π0(HG), G) = Hom(G,G).

In particular, the unit 1G ∈ Hom(G,G) corresponds to an element m ∈
H0(HZ ∧ HG;G), i.e., to a morphism m : HZ ∧ HG → HG. Given two
morphisms f : Sn → E ∧HZ and g : S0 → HG, consider the morphism

m(f, g) : Sn
f∧g−−→ E ∧HZ ∧HG m−→ E ∧HG.

We define a natural homomorphism

ϕ : H∗(E)⊗G→ H∗(E;G), ϕ([f ] ⊗ [g]) = [m(f, g)], E ∈ S .

If G is a flat (e.g., free) abelian group then there is an additive homology
theory in the domain, and thus, by 3.19(iii), ϕ is an isomorphism. Given an
arbitrary G, there is an exact sequence 0 → R → F → G → 0 with free
abelian R,F , and the proof can be completed as in the previous case. �

4.10. Proposition. For every ring R the spectrum HR admits a ring struc-
ture μ : HR ∧HR → HR, ι : S → R such that μpt,pt : H0(pt) ⊗H0(pt) →
H0(pt) coincides with the multiplication R ⊗R→ R.

Proof. Since HR and HR ∧HR are connected,

H0(HR ∧HR) = π0(HR ∧HR) = H0(HR;R) = H0(HR)⊗R
= π0(HR)⊗R = R⊗R.
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Hence, by 4.9,

H0(HR ∧HR;R) = Hom(H0(HR ∧HR), R) = Hom(R ⊗R,R).

Thus, the multiplication R ⊗ R → R yields a pairing μ : HR ∧HR → HR.
Furthermore, the unit 1 ∈ R = π0(R) yields a morphism ι : S → R, and it is
easy to see that (HR,μ, ι) is a ring spectrum. �

In particular, for every pair of spectra E,F we have the homomorphisms

μE,F : H∗(E;R)⊗H∗(F ;R)→ H∗(E ∧ F ;R)

and
μE,F : H∗(E;R)⊗H∗(F ;R)→ H∗(E ∧ F ;R).

4.11. Theorem (the Künneth Theorem). Let k be a field, and let E,F be a
pair of spectra.

(i) The homomorphism

μE,F : H∗(E; k)⊗H∗(F ; k)→ H∗(E ∧ F ; k)

is an isomorphism. In particular,

Hn(E ∧ F ; k) ∼=
∑

i+j=n

Hi(E; k)⊗k Hj(F ; k).

(ii) Assume that E is bounded below and F has finite type. Then the
homomorphism

μE,F : H∗(E; k)⊗H∗(F ; k)→ H∗(E ∧ F ; k)

is an isomorphism. In particular,

Hn(E ∧ F ; k) ∼=
∑

i+j=n

Hi(E; k)⊗k Hj(F ; k).

Proof. (i) Fixing E and considering F as indeterminate, we see that μE,F
is a morphism of additive homology theories on S , and so, by 3.19(iii), it is
an isomorphism.

(ii) Below H∗(−) denotes H∗(−; k). Let im : F (m) → F be the inclusion
of the skeleton. Clearly, for every j there exists N such that i∗N : Hj(F ) →
Hj(F (N)) is an isomorphism. Furthermore, since E is bounded below, for
every n there existts N such that the morphism 1E ∧ iN : E ∧F (N) → E ∧F
is an n-equivalence, see 4.5, and so (1E ∧ iN )∗ : Hn(E ∧F )→ Hn(E ∧F (N))
is an isomorphism. Now, since every skeleton of F is finite, it suffices to
prove the theorem for finite spectra F . Now, fixing E and considering F as
indeterminate, we see that μE,F is a morphism of homology theories on Sf ,
and so, by 3.19(i), it is an isomorphism for every finite F . �
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We need 4.11 only, but, of course, there is a Künneth exact sequence

0→
∑

i+j=n

Hi(E;R)⊗R Hj(F ;R)→ Hn(E ∧ F ;R)

→
∑

i+j=n−1

TorR(Hi(E;R), Hj(F ;R))→ 0

for every pair of spectra E,F and every ring R of homological dimension 1
(e.g., for a principal ideal domain R), see e.g. Margolis [1]. Moreover, under
suitable conditions there is a spectral sequence

TorR∗,∗(H∗(E;R), H∗(F ;R))⇒ H∗(E ∧ F ;R)

for every ring R, see e.g. Adams [5].

4.12. Definition. A Postnikov tower of a spectrum E is a homotopy com-
mutative diagram of spectra

· · · E E E · · ·

τn+1

⏐

⏐




τn

⏐

⏐




τn−1

⏐

⏐




· · · −−−−→ E(n+1)
pn+1−−−−→ E(n)

pn−−−−→ E(n−1) −−−−→ · · ·,

where for every n we have:
(i) πi(E(n)) = 0 for i > n,
(ii) (τn)∗ : πi(E)→ πi(E(n)) is an isomorphism for i ≤ n.
The spectrum E(n) is called the n-coskeleton, or the Postnikov n-stage, of

E. We prove below that E(n) is uniquely determined by E up to equivalence.

4.13. Theorem. Every spectrum E has a Postnikov tower.

Proof. Step 1. Fix an integer n. We construct a sequence

E(n, 0) ⊂ · · · ⊂ E(n, i) ⊂ E(n, i+ 1) ⊂ · · ·

of spectra with the following properties:
(1) E(n, 0) = E;
(2) πk(E(n, i)) = 0 for n < k ≤ n+ i;
(3) The homomorphism πk(E(n, i)) → πk(E(n, i+ 1)) induced by the

inclusion
E(n, i) ⊂ E(n, i+ 1)

is an isomorphism for k ≤ n.
We do this by induction on i. The case i = 0 is clear. Suppose that there

is a finite sequence
E(n, 0) ⊂ · · · ⊂ E(n, i);
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we construct the required inclusion E(n, i) ⊂ E(n, i + 1). Let {xλ} be a
family of generators of πn+i+1(E(n, i)), and let xλ be represented by a map
fλ : Sn+i+1

λ → E(n, i). Consider the morphism

f : ∨Sn+i+1
λ → E, f |Sn+i+1

λ = fλ,

and let E(n, i) ⊂ E(n, i+1) be the canonical inclusion in the cofiber sequence

∨Sn+i+1
λ

f−→ E(n, i) ⊂ E(n, i+ 1),

i.e., E(n, i+1) = Cf . Since f∗ : πn+i+1(∨Sn+i+1
λ )→ πn+i+1(E) is epic, con-

dition (2) holds, while (1) and (3) hold obviously. The induction is confirmed.
Step 2. We set E(n) := ∪∞i=0E(n, i) and define τn : E = E(n, 0) → E(n)

to be the inclusion. It is clear that 4.12(i) and 4.12(ii) hold.
Step 3. We construct pn : E(n) → E(n−1) such that pnτn � τn−1. Consider

the commutative diagram

F
q−−−−→ E

τn−−−−→ E(n)
∥

∥

∥

∥

∥

∥

F
q−−−−→ E

τn−1−−−−→ E(n−1)

where the top line is a cofiber sequence. The exactness of the sequence

π∗(F )
q∗−→ π∗(E)

(τn)∗−−−→ π∗(E(n))

implies that πi(F ) = 0 for i ≤ n. Hence, by 4.1(iv), [F,E(n−1)] = 0. In
particular, τn−1q is inessential, and so there is pn : E(n) → E(n−1) with
pnτn � τn−1. �

4.14. Definition. A morphism q = qEn : F → E is called an (n−1)-connective
covering of a spectrum E if πi(F ) = 0 for i < n and q∗ : πi(F )→ πi(E) is an
isomorphism for i ≥ n. A connective covering is a (−1)-connective covering.

Every spectrum F as in 4.14 is called an (n − 1)-killing spectrum of E
and denoted by E|n. We prove below that E|n is uniquely determined by E
up to equivalence.

4.15. Theorem. For every spectrum E and every n there exists an n-
connective covering.

Proof. (In fact, it was already proved in 4.13.) Consider the sequence

π∗(F )
q∗−→ π∗(E)

(τn)∗−−−→ π∗(E(n))

induced by a cofiber sequence F
q−→ E

τn−→ E(n). It is clear that πi(F ) = 0 for
i ≤ n and that q∗ : πk(F ) → πk(E) is an isomorphism for every i > n, i.e.,
q : F → E is an n-connective covering. �
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So, we have a cofiber sequence E|(n+ 1)→ E → E(n).

4.16. Theorem. Let q = qFn : F |n→ F be an (n− 1)-connective covering of
a spectrum F , and let θ : D → F be a morphism from an (n− 1)-connected
spectrum D. Then there exists θ̂ : D → F |n with qθ̂ = θ, and θ̂ is unique up
to homotopy. Moreover, if θ � θ′ then θ̂ � θ̂′. Finally, for every morphism
ϕ : E → F there exists a morphism ϕ|n : E|n→ F |n such that the diagram

E|n ϕ|n−−−−→ F |n

qEn

⏐

⏐




⏐

⏐



qFn

E
ϕ−−−−→ F

commutes up to homotopy, and such a morphism ϕ|n is unique up to homo-
topy. In particular, every two (n− 1)-killing spectra of E are equivalent.

Proof. By 4.1(iv), [D,Σ−1F(n−1)] = 0 = [D,F(n−1)]. Now, the exactness
of the sequence

[D,Σ−1F(n−1)]→ [D,F |n]→ [D,F ]→ [D,F(n−1)]

implies the existence and the uniqueness of θ̂ and the assertion about homo-
topy. To prove the second assertion, put D = E|n, θ = ϕqEn , and set ϕ|n = θ̂.
To prove the uniqueness of E|n, put ϕ = 1E . �

4.17. Theorem. Let θ : D → F be a morphism of spectra, where πi(F ) = 0
for i > n. Then there exists θ̄ : D(n) → F with θ̄τDn = θ, and θ̄ is unique up
to homotopy. Moreover, if θ � θ′ then θ̄ � θ̄′. Finally, for every morphism
ϕ : E → F there exists a morphism ϕ(n) : E(n) → F(n) such that the diagram

E
ϕ−−−−→ F

τEn

⏐

⏐



τFn

⏐

⏐




E(n)

ϕ(n)−−−−→ F(n)

commutes up to homotopy, and such a morphism ϕ(n) is unique up to homo-
topy. In particular, every two n-coskeletons of a spectrum are equivalent.

Proof. By 4.1(iv), [Σ(D|n+ 1), F ] = 0 = [D|n+ 1, F ], so, the exactness of
the sequence

[Σ(D|n+ 1), F ]→ [D(n), F ]
(τDn )∗−−−−→ [D,F ]→ [D|n+ 1, F ]

implies the existence and the uniqueness of θ̄. Now the proof can be completed
as in 4.16. �
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4.18. Corollary (naturality and uniqueness of Postnikov towers). Let ϕ :
E → F be a morphism of spectra, and let

· · · E E E · · ·
⏐

⏐




τn

⏐

⏐




⏐

⏐




· · · −−−−→ E(n+1) −−−−→ E(n)
pn−−−−→ E(n−1) −−−−→ · · ·

and

· · · F F F · · ·
⏐

⏐




σn

⏐

⏐




⏐

⏐




· · · −−−−→ F(n+1) −−−−→ F(n)
qn−−−−→ F(n−1) −−−−→ · · ·

be Postnikov towers of E and F . Then there exist morphisms ϕ(n) : E(n) →
F(n) such that the diagrams

E
ϕ−−−−→ F E(n)

ϕ(n)−−−−→ F(n)

τn

⏐

⏐




σn

⏐

⏐




pn

⏐

⏐




⏐

⏐




qn

E(n)

ϕ(n)−−−−→ F(n) E(n−1)

ϕ(n−1)−−−−→ F(n−1)

commute up to homotopy.

Proof. By 4.17, there exists ϕ(n) such that the left diagram commutes,
and this ϕ(n) is unique up to homotopy. Since the Postnikov tower of E(n) is
a segment of the Postnikov tower of E, one can find ψ(n−1) : E(n−1) → F(n−1)

with ψ(n−1)pn = qnϕ(n). But then ψ(n−1)τn−1 = σn−1ϕ, and hence, again by
4.17, ψ(n−1) � ϕ(n−1). �

Consider a Postnikov tower of a spectrum E. It is easy to see that the
cone of the morphism pn : E(n) → E(n−1) is the graded Eilenberg–Mac Lane
spectrum Σn+1H(πn(E)). So, we have a cofiber sequence

pn : E(n)
pn−→ E(n−1)

κn−→ Σn+1H(πn(E)).

4.19. Definition. The element κn ∈ Hn+1(E(n−1);πn(E)) is called the n-th
Postnikov invariant of E.

To be precise, the morphism κn is defined up to self-equivalence of the spectra

Σn+1H(πn(E)) and E(n−1), i.e., the real invariant is the corresponding orbit in

Hn+1(E(n−1);πn(E)). However, the above terminology is commonly accepted and

does not lead to confusion.

4.20. Proposition. The Postnikov invariant κn is trivial iff pn admits a
homotopy right inverse morphism
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s : E(n−1) → E(n), pns � 1E(n−1) .

Furthermore, in this case E(n) � E(n−1) ∨ ΣnH(πn(E)).

Proof. This follows from 1.17. �
Now we apply the Serre class theory (see Serre [1], Mosher–Tangora [1])

to spectra. Cf. also Margolis [1].

4.21. Definition. (a) A Serre class is a family of abelian groups C satisfying
the following axiom: If

0→ A′ → A→ A′′ → 0

is a short exact sequence, then A is in C iff both A′ and A′′ are in C.
(b) Let H(A) denote the Eilenberg–Mac Lane spectrum of an abelian

group A. A Serre class is called stable if it satisfies the following axiom: If
A ∈C, then Hi(H(A)) ∈C for every i.

(c) A homomorphism f : A → B of abelian groups is called a C-
monomorphism if Ker f ∈C, and f is called a C-epimorphism if Coker f ∈C.
Furthermore, f is called a C-isomorphism if Ker f ∈C and Coker f ∈C.

Notice that if C is a Serre class and A→ B → C is an exact sequence of
abelian groups then B ∈C provided A,C ∈C.

Recall that the Five Lemma mod C holds. This means that the Five
Lemma remains valid if we replace the words “monomorphism, epimor-
phism, isomorphism” by the words “C-monomorphism, C-epimorphism, C-
isomorphism”.

4.22. Proposition. Let C be a Serre class with the following properties:
(i) If A,B ∈C then A⊗B ∈C and Tor(A,B) ∈C;
(ii) If A ∈C then Hi(K(A, 1)) ∈C for every i > 0.

Then C is a stable Serre class.

Here K(A, 1) is the Eilenberg–Mac Lane space, π1(K(A, 1)) = A and
πi(K(A, 1)) = 0 for i > 1.

Proof. Let C be a class in question. Serre [1] proved the following theorem
(the so-called Hurewicz Theorem mod C): Given a simply connected space
X , suppose that πi(X) ∈C for every i. Then Hi(X) ∈C for every i > 0.

Now, let A ∈C. Then πi(K(A, n)) ∈C for every i and every n > 1, and
so Hi(K(A, n)) ∈C for every i > 0 and every n > 0. It remains to note that
Hi(H(A)) = Hi+N (K(A,N)) for N large enough. �

4.23. Proposition. (i) The class of all finite abelian groups is a stable Serre
class.

(ii) The class of all finitely generated abelian groups is a stable Serre class.
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(iii) Given a prime p, let C be the class of all abelian groups having p-
primary exponents (i.e., for every A ∈C there exists k such that pkA = 0).
Then C is a stable Serre class.

(iv) Given a prime p, the class of all finite p-primary abelian groups is a
stable Serre class.

Proof. (i) It is well known that Hi(K(Z/m, 1)) is Z/m for i odd and 0 for
i even, i > 0, see e.g. Mac Lane [2]. Hence, because of the Künneth Theorem,
Hi(K(A, 1)), i > 0, is a finite abelian group if A is. Now apply 4.22.

(ii) This can be proved similarly to (i), with the additional remark that
K(Z, 1) is the circle S1.

(iii) It suffices to prove that Hi(H(A)) ∈C whenever A ∈C. By 4.9,
[H(A), H(A)] = Hom(A,A) for every abelian group A. Given m ∈ Z, let
m : H(A)→ H(A) be a morphism which corresponds to the element m1A ∈
Hom(A,A). It is easy to see that, for every i,

m∗ : Hi(H(A))→ Hi(H(A))

is the multiplication by m. Now, let A ∈C have exponent pk. Then the
morphism pk : H(A) → H(A) is inessential, and so (pk)∗ : H∗(H(A)) →
H∗(H(A)) is the zero homomorphism. Thus, for every i, pkHi(H(A)) = 0,
i.e., Hi(H(A)) ∈C.

(iv) This class is the intersection of the classes from (i) and (iii). �

4.24. Theorem. Let C be a stable Serre class. Let E be a spectrum bounded
below such that πi(E) ∈C for i < n. Then Hi(E) ∈C for i < n, and the
Hurewicz homomorphism h : πn(E) → Hn(E) is a C-isomorphism. In par-
ticular, πi(E) ∈C for every i iff Hi(E) ∈C for every i provided E is bounded
below.

Proof. Let πk denote πk(E), and let En denote E(n). Fix any m such
that πi = 0 for i < m. We can assume that m < n, and so Hk(Em) =
Hk(H(πm)) ∈C for all k. For every s, there is a cofiber sequence ΣsH(πs)→
Es → Es−1. Now, using the exactness of the sequence

· · · → Hk(ΣsH(πs))→ Hk(Es)→ Hk(Es−1)→ · · · ,

one can prove by induction on s (starting with s = m) that Hk(Es) ∈C for
s < n and every k. Furthermore, for i < n we have an exact sequence

0 = Hi(ΣnH(πn))→ Hi(En)→ Hi(En−1)→ Hi−1(ΣnH(πn)) = 0

(the first and the last groups are trivial by 4.7(i)). So, Hi(En) ∈C for i < n.
Finally, for i < n the exactness of the sequence

0 = Hi(E|(n+ 1))→ Hi(E)→ Hi(En)

implies that Hi(E) ∈C for i < n.
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We prove that h : πn(E) → Hn(E) is a C-isomorphism. Notice that
πi(E|(n+1)) = 0 = Hi(E|(n+1)) for i ≤ n, and so we have the commutative
diagram

πn(E)
∼=−−−−→ πn(En)

h

⏐

⏐




⏐

⏐


h′

Hn(E)
∼=−−−−→ Hn(En)

where the horizontal arrows are isomorphisms. Hence, it suffices to prove that
h′ : πn(En)→ Hn(En) is a C-isomorphism. The cofiber sequence ΣnH(πn)→
En → En−1 induces the commutative diagram with exact rows (where the
vertical arrows are the Hurewicz homomorphisms):

0 −−−−→ πn → πn(En) → 0 −−−−→ 0

α1

⏐

⏐




α2

⏐

⏐




α3

⏐

⏐




α4

⏐

⏐




α5

⏐

⏐




Hn+1(En−1) −−−−→ Hn(ΣnH(πn)) → Hn(En) → Hn(En−1) −−−−→ 0.

Here α2 and α5 are isomorphisms. Furthermore, since H∗(En−1) ∈C, we
conclude that α1 and α4 are C-isomorphisms. Thus, α3 is a C-isomorphism
because of the Five Lemma mod C. �

4.25. Proposition. (i) Let C be a Serre class of abelian groups. If E is a
spectrum such that πi(E) ∈C for every i then Ei(X) ∈C and Ei(X) ∈C for
every finite spectrum X and all i.

(ii) Let E be a spectrum such that all the groups πi(E) are finite. Then
the groups Ei(X) and Ei(X) are finite for every finite spectrum X and all i.

(iii) Let R be a commutative Noetherian ring, and let E be a spectrum
such that Ei(X) and Ei(X) are natural in X R-modules. Suppose that each
group πi(E) is a finitely generated R-module. Then Ei(X), as well as Ei(X),
is a finitely generated R-module for every finite spectrum X and all i.

Proof. (i) By duality, it suffices to prove only that Ei(X) ∈C for every
finite spectrumX . Now, because of 1.5(iii), it suffices to prove that ˜Ei(X) ∈C

for every finite CW -complex X . Clearly, this holds for X = pt. Suppose by
induction that ˜Ei(X) ∈C wheneverX has ≤ n cells. Consider a CW -complex
Y which has n+ 1 cells. Then Y = X ∪ ek where X has n cells and ek is an
attached cell. We have the exact sequence

˜Ei(X)→ ˜Ei(Y )→ ˜Ei(Sk)

where the outside groups are in C. Thus, ˜Ei(X) ∈C. The induction is con-
firmed.

(ii) This follows from (i) and 4.23(i).
(iii) Let A → B → C be an exact sequence of R-modules. Since R is

Noetherian, B is finitely generated over R provided A and C are. Now the
proof can be completed similarly to (i). �
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4.26. Proposition. (i) If a spectrum X has finite type then all the groups
πi(X) are finitely generated.

(ii) If X is a spectrum bounded below and such that all the groups πi(X)
are finitely generated then X is equivalent to a spectrum of finite type.

Proof. (i) Since πi(X) = πi(X(N)) for N > i, it suffices to prove the
proposition for finite spectra X . But this follows from 4.25(i), since, by the
Serre theorem, all the groups πi(S) are finitely generated (and even finite for
i > 0, see Serre [1], Mosher–Tangora [1]).

(ii) We construct a sequence · · · ⊂ Y (0) ⊂ · · · ⊂ Y (n) ⊂ Y (n + 1) ⊂ · · ·
of spectra and morphisms fn : Y (n)→ X with the following properties:

(1) Each spectrum Y (n) is finite;
(2) Each morphism fn : Y (n)→ X is an n-equivalence;
(3) fn+1|Y (n) = fn.
Since X is bounded below, there is k such that πi(X) = 0 for i ≤ k. We

put Y (k − 1) = ∗. Now, suppose by induction that we have constructed a
finite spectrum Y (n) and an n-equivalence fn : Y (n) → X . Then (fn)∗ :
πn+1(Y (n)) → πn+1(X) is an epimorphism. Note that, by (i), the group
Kn := Ker(fn)∗ is finitely generated, and choose generators a1, . . . , am of
Kn. Let Sn+1

i , i = 1, . . . ,m, be a copy of the spectrum Sn+1. Consider a map
g : ∨mi=1S

n+1
i → Y (n) such that g|Sn+1

i represents ai, and set Z := C(g).
Then fn can be extended to a morphism h : Z → X , and h∗ : πi(Z)→ πi(X)
is an isomorphism for i ≤ n+1. Now, let b1, . . . , bl be generators of πn+2(X).
We set Y (n + 1) := Z ∨ (∨li=1S

n+2
i ) and define fn+1 : Y (n + 1) → X by

requiring fn+1|Y (n) = fn and fn+1|Sn+2
i represents bi. The induction is

confirmed.
Now, we set Y :=

⋃

Y (n) and define f : Y → X by setting f |Y (n) = fn.
Clearly, f is an equivalence, and Y has finite type. �

Now we explain how to equip connective coverings and Postnikov towers
of ring spectra with ring structures.

4.27. Lemma. For every pair of spectra E,F and every pair of integers m,n,
there exists a morphism αm,n : E|m ∧ F |n→ (E ∧ F )|(m+ n) such that the
diagram

E|m ∧ F |n αm,n−−−−→ (E ∧ F )|(m+ n)

qm∧qn
⏐

⏐




qm+n

⏐

⏐




E ∧ F E ∧ F
commutes up to homotopy (here the q’s are the connective coverings). Fur-
thermore, such a morphism α is unique up to homotopy.

Proof. By 4.5(i), E|m ∧ F |n is (m + n − 1)-connected. Now apply 4.16.
�
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4.28. Theorem.
(i) If E is a ring spectrum, then E|0 admits a ring structure such that the

(−1)-connective covering q : E|0→ E is a ring morphism.
(ii) Let ϕ : D → E be a ring morphism of ring spectra. Equip D|0 and E|0

with any ring structures as in (i). Then ϕ|0 : D|0→ E|0 is a ring morphism.
In particular, E|0 admits only one (up to ring equivalence) ring structure
such that q : E|0→ E is a ring morphism.

(iii) Let F be an E-module spectrum with the pairing (module structure)
m : E ∧ F → F . Then there exists a pairing m̃ : E|0 ∧ F |0 → F |0 turning
F |0 into a E|0-module spectrum such that the diagram

E|0 ∧ F |0 m̃−−−−→ F |0

qE0 ∧qFn

⏐

⏐




⏐

⏐



qF0

E ∧ F m−−−−→ F

commutes up to homotopy, and this morphism m̃ is unique up to homotopy.
(iv) If E is a commutative ring spectrum, then so is E|0.

Proof. (i) Firstly, the unit ι : S → E admits a q-lifting ι̃ := i|0 : S → E|0
because n ≤ 0. Furthermore, let μ : E ∧ E → E be the multiplication on E.
Consider the following diagram where q0 is the −1-connective covering and
αn,n as in 4.27:

E|0 ∧ E|0 α0,0−−−−→ (E ∧ E)|0 μ|0−−−−→ E|0
⏐

⏐




⏐

⏐




⏐

⏐




E ∧ E E ∧E μ−−−−→ E

We prove that the pairing μ̃ = (μ|0)αn, n is associative. Indeed, the mor-
phisms μ̃◦(1 ∧ μ̃)◦a and μ̃◦(μ̃ ∧ 1) : E|0 ∧ E|0 ∧ E|0 → E|0 (where
ã : (E|0 ∧ E|0) ∧ E|0 → E|0 ∧ (E|0 ∧ E|0) is as in 2.1(ii)) are homotopic
because they cover the homotopic morphisms μ◦(1 ∧ μ)◦a and μ◦(μ ∧ 1) re-
spectively. By the above, (E|0, μ̃, ι̃) is a ring spectrum and q : E|0 → E is a
ring morphism.

(ii) Let μD, μE be the multiplications on D,E respectively, let μ′, μ′′ be
the multiplications (as in (i)) on D|0, E|0 respectively, and let qD : D|0→ D,
qE : E|0 → E be the (−1)-connective coverings. We must prove that the
diagram

D|0 ∧D|0 ϕ|0∧ϕ|0−−−−−→ E|0 ∧E|0

μ′
⏐

⏐



μ′′
⏐

⏐




D|0 ϕ|0−−−−→ E|0
commutes up to homotopy. By 4.16, it suffices to prove that qEμ′′(ϕ|0∧ϕ|0) �
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qE(ϕ|0)μ′. But

qEμ′′(ϕ|0 ∧ ϕ|0) � μE(qE ∧ qE)(ϕ|0 ∧ ϕ|0) � μE(ϕ ∧ ϕ)(qD ∧ qD)
� ϕμD(qD ∧ qD) � ϕqDμ′ � qE(ϕ|0)μ′.

(iii) This can be proved as (i) was if one considers the diagram

E|0 ∧ F |0 β−−−−→ (E ∧ F )|0 m|0−−−−→ F |0
⏐

⏐




⏐

⏐




⏐

⏐




E ∧ F E ∧ F m−−−−→ F .

(iv) This holds because the morphism E|0 ∧ E|0
τE|0−−→ E|0 ∧ E|0 μ̃−→ E|0

covers the morphism E∧E τE−→ E∧E μ−→ E. But μτE � μ, and so μ̃τE|0 � μ̃.
�

4.29. Lemma. For every pair of connected spectra E,F the morphism

(τEn ∧ τFn )(n) : (E ∧ F )(n) → (E(n) ∧ F(n))(n)

is an equivalence.

Proof. By 2.1(vi), we have a cofiber sequence

E ∧ (F |(n+ 1))→ E ∧ F 1∧τFn−−−→ E ∧ F(n).

By 4.5(i), E ∧ (F |(n+ 1)) is n-connected. So,

(1 ∧ τFn )∗ : πi(E ∧ F )→ πi(E ∧ F(n))

is an isomorphism for i ≤ n. Similarly,

(τEn ∧ 1)∗ : πi(E ∧ F(n))→ πi(E(n) ∧ F(n))

is an isomorphism for i ≤ n. But (τEn ∧ τFn )(n) = ((τEn ∧ 1)◦(1∧ τFn ))(n) . �

4.30. Theorem. Let E = (E, μ, ι) be a connected ring spectrum. Fix any
n ≥ 0.

(i) E(n) admits a ring structure such that τn : E → E(n) is a ring mor-
phism.

(ii) Let ϕ : D → E be a ring morphism of ring spectra. Equip D(n) and
E(n) with any ring structures as in (i). Then ϕ(n) : D(n) → E(n) is a ring
morphism. In particular, E(n) admits only one (up to ring equivalence) ring
structure such that τn : E →: E(n) is a ring morphism.

(iii) Let F be an E-module spectrum with the pairing (module structure)
m : E ∧ F → F . Then there exists a pairing m̃ : E(n) ∧ F(n) → F(n) turning
F(n) into a E(n)-module spectrum and such that the diagram
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E(n) ∧ F(n)
m̃−−−−→ F(n)

τEn ∧τFn

⏐

⏐




⏐

⏐



τFn

E ∧ F m−−−−→ F

commutes up to homotopy, and this morphism m̃ is unique up to homotopy.
(iv) If E is a commutative ring spectrum then so is E(n).

Proof. Define μ̃ : E(n) ∧ E(n) → E(n) to be the composition

E(n) ∧E(n)
τn−→ (E(n) ∧ E(n))(n)

h−→ (E ∧ E)(n)
μ−→ E(n),

where h is an equivalence inverse to that of 4.29. Furthermore, define ι̃ :=
τnι : S → E(n). Following 4.28(i), one can prove that (E(n), μ̃, ι̃) is a ring
spectrum and that τn is a ring morphism. All the other assertions can be
proved similarly to those of 4.28. �

4.31. Remark. The connectedness of E in 4.30 cannot be omitted or re-
placed by the boundedness below of E. Indeed, given a prime p and a natu-
ral number n, consider the spectrum K(n) of the corresponding Morava K-
theory, see Ch. IX, §7. Let H(−) denote H(−; Z/p). We prove in IX.7.27(ii)
that H0(K(n)(0)) = 0 while H∗(K(n)(0)) 
= 0. But, for every ring spectrum
E with H0(E) = 0 we have Hn(E) = 0 for all n. Indeed, the homomorphism

π0(S)⊗Hn(E) ι∗⊗1−−−→ π0(E)⊗Hn(E) h⊗1−−→ H0(E)⊗Hn(E)
μE,E−−−→ Hn(E)

is an isomorphism, and henceH0(E) = 0 impliesHn(E) = 0. Thus,K(n)(0) is
not a ring spectrum. Similarly, consideringK(n)|N instead ofK(n), N << 0,
one obtains a counterexample for a spectrum E bounded below.

4.32. Theorem-Definition. For every abelian group A, there exists a spec-
trum M(A) with the following properties:

(i) πi(M(A)) = 0 for i < 0;
(ii) π0(M(A)) = A = H0(M(A));
(iii) Hi(M(A)) = 0 for i 
= 0.
Moreover, these properties determine M(A) uniquely up to equivalence.

This spectrum M(A) is called the Moore spectrum of the abelian group A.

Proof. Consider an exact sequence 0 → R
i−→ F

q−→ A → 0 with free
abelian groups F,R. Let {rβ}β∈B and {fγ}γ∈Γ be certain systems of free
abelian generators of R and F , respectively. Let Sβ and Sγ be copies of the
sphere spectrum S. Consider any morphism ϕ : ∨β∈BSβ → ∨γ∈ΓSγ such that
ϕ|Sβ yields the element i(rβ) ∈ F = π0(∨γ∈ΓSγ). Such a morphism ϕ exists,
because, by 1.16(i),
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[∨β∈BSβ , E] =
∏

β∈B
[Sβ , E] and π0(∨γ∈ΓSγ) = F.

It is clear that M(R) = ∨β∈BSβ and M(F ) = ∨γ∈ΓSγ . Now the exactness of
the sequences

· · · → Hn+1(Cϕ)→ Hn(∨β∈BSβ)→ Hn(∨γ∈ΓSγ)→ Hn(Cϕ)→ · · ·
· · · → πn+1(Cϕ)→ πn(∨β∈BSβ)→ πn(∨γ∈ΓSγ)→ πn(Cϕ)→ · · ·

implies that Cϕ satisfies (i)–(iii). Thus, we can set M(A) := Cϕ.
Now, let N be a spectrum satisfying (i)–(iii). Consider a morphism g :

∨γ∈ΓSγ → N such that g|Sγ yields q(fγ). Then gϕ|Sβ is inessential for every
β ∈ B, and so, by 1.16(i), gϕ is inessential. Hence, there exists f : M(A) =
Cϕ→ N with g � fψ, where ψ : ∨γ∈ΓSγ → Cϕ is the canonical morphism.
Clearly, f∗ : H∗(M(A))→ H∗(N) is an isomorphism, and thus, by 4.7(iii), f
is an equivalence. �

4.33. Proposition. Let E be a spectrum, and let h : A → πn(E) be a
homomorphism from an abelian group A. Then there exists a morphism f :
ΣnM(A)→ E such that h = f∗ : πn(ΣnM(A))→ πn(E).

Proof. We use the notation of 4.32. Consider a morphism g : ∨γ∈ΓS
n
γ → E

such that g|Snγ yields hq(fγ). Since gϕ is inessential, there exists f :
ΣnM(A)→ E with g � fψ, and, clearly, h = f∗. �

4.34. Remark. Given a spectrum F and a spectrum (or a space) X , we can
consider the exact couple (given by the cofiber sequences F(n) → F(n−1) →
Σn+1H(πn), n ∈ Z)

[X,F(n)]∗
i−−−−→ [X,F(n−1)]∗

k

�

⏐

⏐
j

⏐

⏐




[X,Σn+1H(πn)]∗ [X,Σn+1H(πn)]∗,

where πn = πn(F ) and deg k = −1 (cf. Mosher–Tangora [1], Ch. 14); here
[A,B]∗ := ⊕n[A,ΣnB]. This exact couple yields a spectral sequence E∗,∗

r (X)
with Ep,q2 (X) = Hp(X ;F q(S)) = Hp(X ;π−q), which converges (under cer-
tain conditions) to F ∗(X). (The diagram above gives us the term E2.) One
can prove (see Mosher–Tangora [1], Ch. 14) that this spectral sequence coin-
cides with the Atiyah–Hirzebruch spectral sequence. Hence, the differential
dp,qr : Hp(X ;π−q) → Hp+r(X ;πr−q−1) in the Atiyah–Hirzebruch spectral
sequence has the form

[X,ΣpH(π−q)]
k−→ [X,Σp+qF(−q)]

i←− [X,Σp+qF(1−q)]←− · · ·

←−[X,Σp+qF(r−q−2)]
j−→ [X,Σp+qΣr−qH(πr−q−1)] = [X,Σp+rH(πr−q−1)].
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Thus, dp,qr (considered as a higher cohomology operation) is the r-th Post-
nikov invariant of the spectrum F |q. In particular, if F is connected then dp,0r
is the r-th Postnikov invariant of F .

§5. Localization

Let Q be the field of rational numbers. Let p be a prime, and let Z[p] be
the subring of Q consisting of all irreducible fractions with denominators
relatively prime to p. The Z[p]-localization of an abelian group A is the ho-
momorphism A → A ⊗ Z[p], a �→ a⊗ 1. The group A⊗ Z[p] is simpler than
A in a certain sense: for example, it has no q-torsion if (p, q) = 1. On the
other hand, if we know the groups A ⊗ Z[p] for all p then we can obtain
a lot of information about A; for example, if A is finitely generated then
it is completely determined by the groups A ⊗ Z[p], where p runs through
all primes. So, we can describe an abelian group A via descriptions of the
simpler groups A ⊗ Z[p], and this trick is very effective. For example, it is
very convenient to describe the ring H∗(HZ) of cohomology operations via
the rings H∗(HZ[p]; Z[p]). Also, localization enables us to ignore the torsions
which are irrelevant to a particular problem.

More generally, it makes sense to consider subrings Λ of Q. In this case
the localization A→ A ⊗ Λ deletes the q-torsion with q ∈ S, where S is the
set of denominators of all irreducible fractions of Λ.

It is remarkable that the localization can be transferred from algebra to
topology, and, in particular, one can consider the Z[p]-homotopy type of a
space and a spectrum. As usual, not one but several mathematicians (J.F.
Adams, F.P. Peterson) proposed the idea of this transfer, while Serre [1]
asked about developing a C-homotopy types theory (where C is a Serre class of
abelian groups) in 1953. Nevertheless, usually Sullivan is treated as the author
of the theory of localization of topological spaces, because he amplified the
language and theory with useful applications. Localization theory for spaces
is discussed, e.g., in Sullivan [2], Postnikov [1], Hilton–Mislin–Roitberg [1].
Localization theory for spectra is similar (but simpler), and we expose it here,
see also Margolis [1].

Let Λ be a subring of Q ; its additive group is also denoted by Λ. Let π
be an abelian group.

5.1. Definition. The homomorphism l = lπΛ : π → π ⊗ Λ, a �→ a ⊗ 1 is
called the Λ-localization of π. The abelian group π is called Λ-local if l is an
isomorphism. A homomorphism u : π → τ Λ-localizes π if there exists an
isomorphism v : π ⊗ Λ→ τ with u = vl.

It is clear that lΛΛ : Λ→ Λ ⊗ Λ is an isomorphism. So, π ⊗ Λ is a Λ-local
group for every abelian group π.
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Let ι : S →M(Λ) be the morphism given by the unit 1 ∈ Λ = π0(M(Λ)),
where M(Λ) is the Moore spectrum of Λ. We set EΛ := E ∧M(Λ) for every
spectrum E.

5.2. Definition. The morphism j = jEΛ : E = E ∧ S 1∧ι−−→ E ∧M(Λ) = EΛ

is called the Λ-localization of a spectrum E. Furthermore, E is called Λ-local
if j is an equivalence. A morphism f : E → F Λ-localizes E if there exists an
equivalence g : EΛ → F with f = gj.

Sometimes (for simplicity) one says that the Λ-localization of E is just
the spectrum EΛ, keeping in mind the morphism j implicitly.

Given a morphism f : E → F , we define fΛ := f ∧ 1M(Λ) : EΛ → FΛ, and
it is clear that (gf)Λ = gΛfΛ. So, Λ-localization is a functor.

5.3. Proposition. If E
f−→ F

g−→ G is a cofiber sequence of spectra then
EΛ

fΛ−→ FΛ
gΛ−→ GΛ is. In particular, C(fΛ) = (Cf)Λ for every morphism

f : E → F of spectra.

Proof. This follows from 2.1(vi). �

5.4. Theorem. For every pair of spectra X,E there is an isomorphism

t : (EΛ)∗(X) ∼= E∗(X)⊗ Λ

which is natural with respect to X and E, and this isomorphism can be chosen
such that the diagram

E∗(X)
j∗−−−−→ (EΛ)∗(X)

l

⏐

⏐




∼=
⏐

⏐



t

E∗(X)⊗ Λ E∗(X)⊗ Λ

commutes. In other words, j∗ Λ-localizes E∗(X).
Similarly, there is a natural isomorphism t : (EΛ)∗(X) ∼= E∗(X)⊗Λ, and

this isomorphism can be chosen such that j∗ : E∗(X) → E∗
Λ(X) Λ-localizes

E∗(X).

Proof. We consider the case of homology only; cohomology can be con-
sidered similarly. Consider an exact sequence 0 → R → F

ε−→ Λ → 0, where
R,F are free abelian groups. The cofiber sequence M(R)→M(F )→M(Λ)
(see the proof of 4.32) induces a cofiber sequence

E ∧M(R) κ−→ E ∧M(F ) σ−→ E ∧M(Λ).

Let {fα} be a free basis of F , and let Sα, Eα be copies of S,E respectively.
We have M(F ) � ∨αSα, and so, by 2.1(v), E ∧M(F ) � ∨αEα. We define
the isomorphism
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b : (E ∧M(F ))∗(X) ∼= (∨αEα)∗(X) ∼= ⊕α(Eα)∗(X)
B,∼=−−→ E∗(X)⊗ F ,

where B(x) = x⊗ fα for x ∈ (Eα)∗(X). Consider the following commutative
diagram (where c is defined just as b) with exact rows:

(E ∧M(R))∗(X) κ∗−−−−→ (E ∧M(F ))∗(X) σ∗−−−−→ (E ∧M(Λ))∗(X)

∼=
⏐

⏐




c ∼=
⏐

⏐



b

0 → E∗(X)⊗R −−−−→ E∗(X)⊗ F −−−−→ E∗(X)⊗ Λ.

The bottom row is exact because Tor(A,Λ) = 0 for every abelian group
A, see e.g. Bourbaki [3]. So, κ∗ is monic, and hence σ∗ is epic. So, there
exists an isomorphism t : (E ∧M(Λ))∗(X)→ E∗(X)⊗Λ which preserves the
commutativity of the diagram.

In order to construct t with tj∗ = l we shall assume that there is f0 ∈ {fα}
with ε(f0) = 1 ∈ Λ. Then there exists a commutative diagram

S
f0−−−−→ M(F )

ι

⏐

⏐



M(ε)

⏐

⏐




M(Λ) M(Λ),

and the following diagram commutes:

(E ∧ S)∗(X)
(1∧f0)∗−−−−−→ (E ∧M(F ))∗(X)

(1∧M(ε))∗−−−−−−−→ (E ∧M(Λ))∗(X)
⏐

⏐



b

⏐

⏐



t

⏐

⏐




E∗(X)⊗ Z
(f0)∗−−−−→ E∗(X)⊗ F 1⊗ε−−−−→ E∗(X)⊗ Λ.

Now, tj∗ = l because E∗(X) = (E ∧ S)∗(X). �
Below we fix such a natural isomorphism t with tj∗ = l and use it

without any mention; e.g., the formula (EΛ)∗(X)
∼=−→ E∗(X) ⊗ Λ means

t : (EΛ)∗(X)
∼=−→ E∗(X)⊗ Λ.

5.5. Corollary. There are natural isomorphisms

πi(EΛ) ∼= πi(E)⊗ Λ, Hi(EΛ) ∼= Hi(E)⊗ Λ

such that the homomorphisms πi(E)
j∗−→ πi(EΛ) ∼= πi(E) ⊗ Λ, Hi(E)

j∗−→
Hi(EΛ) ∼= Hi(E)⊗Λ have the form x �→ x⊗1. So, j Λ-localizes homotopy and
homology groups. In particular, every Λ-local spectrum has Λ-local homotopy
and homology groups.
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Proof. We have

πi(EΛ) = (EΛ)i(S) ∼= Ei(S)⊗ Λ = πi(E)⊗ Λ,
Hi(EΛ) = (EΛ)i(HZ) ∼= Ei(HZ)⊗ Λ = Hi(E)⊗ Λ. �

5.6. Lemma. Let τ be any flat abelian group (e.g., τ is an additive subgroup
of Q). Then:

(i) Hτ ∧M(π) � H(τ ⊗ π) � Hπ ∧M(τ) for every abelian group π. In
particular, HZ ∧M(π) � Hπ.

(ii) M(τ) ∧M(π) �M(τ ⊗ π). In particular, M(Λ) ∧M(Λ) �M(Λ).
(iii) If π is a Λ-local group then the Λ-localizations jH : H(π) → H(π)Λ

and jM : M(π)→M(π)Λ are equivalences. In other words, H(π) and M(π)
are Λ-local spectra.

Proof. (i) If π is a free abelian group F with a basis {fα}, then τ ⊗ F =
⊕ατ , and hence

H(τ ⊗ F ) = H(⊕ατ) � ∨αHτ � (Hτ) ∧ (∨αSα) = Hτ ∧M(F ) ,

where Sα is a copy of S. For arbitrary π consider an exact sequence

0→ R→ F → π → 0

with free abelian groups R and F . Then the cofiber sequence M(R) →
M(F )→M(π) induces a cofiber sequence

Hτ ∧M(R)→ Hτ ∧M(F )→ Hτ ∧M(π) .

Since τ is a flat abelian group, the sequence 0 → τ ⊗ R → τ ⊗ F →
τ ⊗ π → 0 is exact, and hence we have a cofiber sequence

H(τ ⊗R)→ H(τ ⊗ F )→ H(τ ⊗ π).

Thus, we have a homotopy commutative diagram

H(τ ⊗R) −−−−→ H(τ ⊗ F ) −−−−→ H(τ ⊗ π) −→ ΣH(τ ⊗R)

α

⏐

⏐



β

⏐

⏐




⏐

⏐



Σα

Hτ ∧M(R) −−−−→ Hτ ∧M(F ) −−−−→ Hτ ∧M(π)−→Σ(Hτ ∧M(R))

where the rows are long cofiber sequences and α, β are equivalences. By
1.13(ii), there exists a morphism H(τ ⊗ π) → H(τ) ∧M(π) preserving the
commutativity of the diagram, and this morphism is an equivalence since it
induces an isomorphism of homotopy groups.

In particular, HZ ∧M(π) � Hπ. So, HF ∧M(τ) � H(τ ⊗ F ) for every
free abelian group F . As above, we have the homotopy commutative diagram
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H(τ ⊗R) −−−−→ H(τ ⊗ F ) −−−−→ H(τ ⊗ π) −→ ΣH(τ ⊗R)

�
⏐

⏐



�
⏐

⏐




⏐

⏐



�

HR ∧M(τ) −−−−→ HF ∧M(τ) −−−−→ Hπ ∧M(τ)−→Σ(HR ∧M(τ))

where the rows are long cofiber sequences, etc. Thus,H(τ⊗π) � H(π)∧M(τ).
(ii) We have

Hi(M(τ) ∧M(π)) = πi(HZ ∧ (M(τ) ∧M(π))) = πi((HZ ∧M(π)) ∧M(τ))
= πi((Hπ) ∧M(τ)) = πi(H(τ ⊗ π)) .

This group is τ ⊗ π for i = 0 and 0 for i 
= 0. Moreover, by 4.5(i), we have
πi(M(τ) ∧M(π)) = 0 for i < 0. Thus, M(π) ∧M(τ) = M(π ⊗ τ).

(iii) By 5.5,

jH∗ : π = π∗(H(π)) = π∗(H(π)Λ)→ π ⊗ Λ

Λ-localizes π, and so jH∗ is an isomorphism since π is Λ-local. Thus, jH is
an equivalence. Similarly, jM∗ : π = H∗(M(π)) → H∗(M(π)Λ) = π ⊗ Λ is an
isomorphism, and thus jM is an equivalence. �

5.7. Lemma. Let E be an arbitrary spectrum, and let Cj be the cone of the
localization j : E → EΛ. Then H∗(Cj;π) = 0 for every Λ-local group π.

Proof. Firstly, consider the localization ι : S → M(Λ). Set C = Cι. We
prove that ι∗ : Hd(M(Λ);π)→ Hd(S;π) is an isomorphism for all d. Clearly,
both groups are trivial for d 
= 0, 1. In view of 4.9, the homomorphism ι∗ for
d = 0 has the form k∗ : Hom(Λ, π) → Hom(Z, π) where k : Z → Λ is the
inclusion. But k∗is an isomorphism since π is Λ-local. Finally, for d = 1 we
have H1(M(Λ);π) = Ext(Λ, π), but Ext(Λ, π) = 0 for every Λ-local π. So,
H∗(C;π) = 0.

For arbitrary E we have Cj = E ∧ C. By the above, H∗(Sn ∧ C;π) = 0
for every n. Choose any k ∈ Z. By 4.1(ii), Hk(E(m) ∧C;π) = 0 for m << k.
Considering the cofiber sequences E(n−1) → E(n) → ∨Sn, n = m,m+ 1, . . . ,
we obtain by induction that Hk(E(n) ∧ C;π) = 0 for all n.

By 4.5(ii), in ∧ 1 : E(n) ∧ C → E ∧ C is an (n − 1)-equivalence because
in : E(n) → E is. Let X be the cone of in ∧ 1. We have πi(X) = 0 for i ≤ n,
and so, by 4.7(i) and 4.9, Hi(X ;π) = 0 for i ≤ n. Hence, Hk(E ∧ C;π) =
Hk(E(n) ∧ C;π) for n ≥ k. Thus, H∗(E ∧ C) = 0. �

5.8. Theorem. (i) For every spectrum E the morphism (jEΛ )Λ : EΛ → (EΛ)Λ
is an equivalence. In particular, EΛ is Λ-local.

(ii) If F is a Λ-local spectrum then j∗ : [EΛ, F ] → [E,F ] is an isomor-
phism.
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Proof. (i) Indeed, (jEΛ )Λ has the form

1E ∧ jM(Λ)
Λ : E ∧M(Λ)→ E ∧M(Λ) ∧M(Λ).

But, by 5.6(iii), jM(Λ)
Λ is an equivalence.

(ii) Let k be an equivalence inverse to jFΛ . Firstly, given a morphism
f : E → F , we construct a morphism g : EΛ → F such that g◦(jEΛ ) ∼= f , i.e.

(jEΛ )∗(g) = f . Namely, define g to be the composition EΛ
fΛ−→ FΛ

k−→ F .
Now we prove that such a morphism g is unique up to homotopy. Let

h : EΛ → F be such that h◦(= f . Then

jFΛ ◦h ∼= hΛ◦jEΛ
∼= hΛ◦jEΛ )Λ ∼= (h◦jEΛ )Λ ∼= fΛ.

Thus, h ∼= k◦fΛ ∼= g. �
In the first edition of the book I proved the claim 5.8(ii) under the con-

dition that at least one of spactra E,F is bounded below. I am grateful to
Javier Guttiérez who explained me how to get rid of this condition.

5.9. Corollary. Let E be an arbitrary spectrum, and let F be a Λ-local
spectrum.

(i) The morphism f : E → F of spectra Λ-localizes E iff f∗ : π∗(E) →
π∗(F ) Λ-localizes homotopy groups.

(ii) Suppose that both E,F are bounded below. Then the morphism f :
E → F Λ-localizes E iff f∗ : H∗(E)→ H∗(F ) Λ-localizes homology groups.

Proof. The “only if” part was proved in 5.5, so we shall prove the “if”
part. By 5.8(ii), there exists h : EΛ → F with f = hjEΛ . In case (i), h∗ :
π∗(EΛ)→ π∗(F ) is an isomorphism. In case (ii), h∗ : H∗(EΛ)→ H∗(F ) is an
isomorphism, and hence, by 4.7(iii), h is an equivalence. �

5.10. Corollary. Let E be a spectrum such that either πi(E) is Λ-local for
every i, or E is bounded below and Hi(E) is Λ-local for every i. Then E is
a Λ-local spectrum. In particular, if a spectrum F is Λ-local then so are F(n)

and F |n for every n.

Proof. By 5.8(i), EΛ is Λ-local. By 5.5, j : E → EΛ Λ-localizes homotopy
and homology groups. So, j is an equivalence provided πi(E) (resp. Hi(E)
for E bounded below) are Λ-local. �

5.11. Proposition. Let

· · · E E E · · ·

τn+1

⏐

⏐




τn

⏐

⏐




τn−1

⏐

⏐




· · · −−−−→ E(n+1)
pn+1−−−−→ E(n)

pn−−−−→ E(n−1) −−−−→ · · ·,
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be the Postnikov tower of E. Then

· · · EΛ EΛ EΛ · · ·

(τn+1)Λ

⏐

⏐



(τn)Λ

⏐

⏐



(τn−1)Λ

⏐

⏐




· · · −−−−→ (E(n+1))Λ
(pn+1)Λ−−−−−→ (E(n))Λ

(pn)Λ−−−−→ (E(n−1))Λ −−−−→ · · ·,

is the Postnikov tower of EΛ.

Proof. Clearly, πi((E(n))Λ) = 0 for i > n. Furthermore, by 5.5,

((τn)Λ)∗ : πi(EΛ) = πi(E)⊗ Λ
(τn)∗⊗1−−−−−→ πi(E(n))⊗ Λ = πi((E(n))Λ)

is an isomorphism for i ≤ n. �
This proposition enables us to construct localizations via Postnikov tow-

ers. Firstly, we have H(π)Λ � H(π ⊗ Λ), see 5.6(i). Furthermore, consider a
Postnikov tower of E:

· · · −−−−→ E(n) −−−−→ E(n−1) −−−−→ · · ·
⏐

⏐




κ

Σn+1H(πn(E)).

If a Λ-localization of E(n−1) is already constructed, we define (E(n))Λ to be
the cone of (Σ−1κ)Λ : (Σ−1E(n−1))Λ → ΣnH(πn(E)⊗Λ), and the localization
morphism j can be constructed in an obvious manner based on 5.11. Here we
have described the inductive step, but we must suppose that E is bounded
below in order to organize a base of the induction: namely, to set (E(m))Λ =
H(πm(E)⊗Λ), where πi(E) = 0 for i < m. Finally, one can prove that there is
a spectrum EΛ such that (EΛ)(m) is (E(m))Λ for every m, cf. III.6.3(ii) below.

This approach enables us to construct the localization of spaces also. The
main results of this theory are Theorems 5.12 and 5.13 below. The proofs can
be found in Hilton–Mislin–Roitberg [1], Postnikov [1], Sullivan [2]. (These
theorems hold for so-called nilpotent spaces, but we formulate them for a
more special case: simple spaces.) Recall that a connected space X is called
simple if the action of π1(X) on πn(X) is trivial for every n. In particular,
π1(X) must be an abelian group.

5.12. Theorem–Definition. For every simple space X there exist a simple
space XΛ and a map j = jXΛ : X → XΛ such that the homomorphisms

πi(X)
j∗−→ πi(XΛ) ∼= πi(X) ⊗ Λ and Hi(X)

j∗−→ Hi(XΛ) ∼= Hi(X) ⊗ Λ have
the form x �→ x ⊗ 1. So, j localizes homotopy and homology groups. Every
such a map j is called localization of X. �

As in 5.2, a simple space X is called Λ-local if j : X → XΛ is a homotopy
equivalence.
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5.13. Theorem–Definition. For every two simple spaces X,Y the following
conditions are equivalent:

(i) The map f : X → Y Λ-localizes homotopy groups;
(ii) The map f : X → Y Λ-localizes homology groups;
(iii) For every Λ-local space Z the map f∗ : [Y, Z]→ [X,Z] is a bijection.
If some (and hence all) of these conditions hold then there exists a homo-

topy equivalence h : XΛ → Y with f = hjXΛ . Furthermore, in this case we
say that f localizes X. �

So, by 5.9, if f : X → Y localizes a space X then Σ∞j : Σ∞X → Σ∞Y
localizes the spectrum Σ∞X . In particular, j∗ : E∗(XΛ) → E∗(X) is an
isomorphism for every Λ-local spectrum E, cf. 5.8. Similarly, if ϕ : E → F
localizes a spectrum E then Ω∞ϕ : Ω∞E → Ω∞F localizes the space Ω∞E.

Now we show that localization respects multiplicative structures.

5.14. Lemma. For every two spectra E, F there exists an equivalence

ϕ : (E ∧ F )Λ → EΛ ∧ FΛ

such that the diagram

E ∧ F jE∧F

−−−−→ (E ∧ F )Λ

jE∧jF
⏐

⏐




ϕ

⏐

⏐




EΛ ∧ FΛ EΛ ∧ FΛ

is homotopy commutative.

Proof. We have

(EΛ∧FΛ)Λ = ((E∧M(Λ))∧(F ∧M(Λ)))∧M(Λ) � (E∧M(Λ))∧(F ∧M(Λ)).

Hence, EΛ∧FΛ is a local spectrum, and so, by 5.8(ii), there exists a morphism
ϕ such that the diagram commutes. Now, the morphism jE ∧ jF induces a
homomorphism

h : F∗(E) = π∗(E ∧ F )
(jE∧jF )∗−−−−−−→ π∗(EΛ ∧ FΛ) = (FΛ)∗(EΛ) � F∗(EΛ)⊗ Λ

� (EΛ)∗(F )⊗ Λ � E∗(F )⊗ Λ ⊗ Λ = E∗(F )⊗ Λ � F∗(E)⊗ Λ,

where h(a) = a ⊗ 1. Thus, ϕ induces an isomorphism of homotopy groups.
�

5.15. Theorem. (i) If (E, μ, ι) is a ring spectrum then EΛ admits a ring
structure such that j : E → EΛ is a ring morphism, and this ring structure
is unique up to ring equivalence.
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(ii) Let (E, μ, ι) be a ring spectrum and (F,m) be an E-module spectrum.
Then there exists a pairing m : EΛ ∧ FΛ → FΛ turning FΛ into EΛ-module
spectrum such that the diagram

E ∧ F jE∧jF−−−−→ EΛ ∧ FΛ

m

⏐

⏐




⏐

⏐


m

F
j−−−−→ FΛ

commutes up to homotopy. Furthermore, this m is unique up to homotopy.

Proof. We prove only (i) because (ii) can be proved similarly. By 5.8(ii)
and 5.14, there exists a morphism μ̄ : EΛ∧EΛ → EΛ (unique up to homotopy)
such that the diagram

E ∧E μ−−−−→ E
j−−−−→ EΛ

⏐

⏐




∥

∥

∥

(E ∧ E)Λ
�−−−−→
ϕ

EΛ ∧ EΛ
μ̄−−−−→ EΛ

is homotopy commutative. Likewise, there exist gi, i = 1, 2, unique up to
homotopy, such that the diagrams

E ∧ E ∧ E ci−−−−→ E
⏐

⏐




⏐

⏐



j

EΛ ∧EΛ ∧ EΛ
gi−−−−→ EΛ,

i = 1, 2, are homotopy commutative. Here c1 = μ◦(μ∧ 1), c2 = μ◦(1∧μ). So,
g1 � μ̄◦(μ̄ ∧ 1), g2 � μ̄◦(1 ∧ μ̄)◦a. Now, g1 � g2 because c1 � c2. Hence, μ̄ is
associative. �

Most frequently one uses the cases Λ = Q ,Λ = Z[p], Λ = Z[1/p], where p
is a prime (and Z[1/p] is the subgroup of Q consisting of the fractions m/pk).
In these cases, XΛ (where X is a space or a spectrum) is denoted by X [0],
X [p], X [1/p] respectively.

5.16. Definition. A spectrum E has finite Λ-type if it is bounded below and
every group πi(E) is a finitely generated Λ-module.

5.17. Remarks. (a) Any spectrum of finite type has finite Z-type. Every
spectrum of finite Z-type is equivalent to a spectrum of finite type, see 4.26.
A spectrum of finite Λ-type is a Λ-local spectrum.

(b) It is easy to see that every submodule of a finitely generated Λ-module
is finitely generated. So, a Λ-module is finitely generated iff it is finitely
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presented. Furthermore, Λ is a principal ideal domain, and hence every finitely
presented Λ-module splits into a direct sum of cyclic Λ-modules. In particular,
every finitely generated Z[p]-module splits into a direct sum of Z[p]-modules
Z[p] and Z/pk.

5.18. Lemma. Let p be a prime.
(i) If E is a spectrum of finite Z[p]-type with Hi(E; Z/p) = 0 for i ≤ n,

then πi(E) = 0 for i ≤ n. In particular, a spectrum F of finite Z[p]-type is
contractible iff Hi(F ; Z/p) = 0 for all i.

(ii) Let E,F be two spectra of finite Z[p]-type. Then a morphism f : E →
F is an equivalence iff the homomorphism f∗ : H∗(F ; Z/p)→ H∗(E; Z/p) is
an isomorphism.

Proof. (i) Suppose that πi(E) = 0 for i < m < n and πm(E) 
= 0. Then
πm(E) contains a direct summand A = Z[p] or A = Z/pk. Thus,

Hm(E; Z/p) = Hom(Hm(E),Z/p) = Hom(πm(E),Z/p) ⊃ Hom(A,Z/p) 
= 0 .

(ii) The “only if” part is clear, so we prove the “if” part. By 5.3 and
5.17(b), the cone Cf of f is a spectrum of finite Z[p]-type. Now, by (i), Cf
is contractible since H∗(Cf ; Z/p) = 0. �

5.19. Proposition. (i) Let E be a spectrum such that every group πi(E)
is finitely generated. If E[p] is contractible for every prime p then E is con-
tractible.

(ii) Let E, F be two spectra such that every group πi(E), πi(F ) is finitely
generated. If f : E → F is such that f [p] is an equivalence for every prime
p, then f is an equivalence.

Proof. (i) We have 0 = πi(E[p]) = πi(E) ⊗ Z[p] for every p and every i.
Thus, πi(E) = 0 for every i.

(ii) By (i), Cf is contractible. �

5.20. Proposition. Let p be a prime, and let E be a ring spectrum such that
1 ∈ π0(E) has order p. Then E is a Z[p]-local spectrum.

Proof. Since all πi(E) are π0(E)-modules, they are Z/p-vector spaces and
thus Z[p]-local groups. Now apply 5.10. �

Finally, we remark that one can localize spaces (and spectra bounded
below) cell by cell, see Sullivan [2].
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§6. Algebras, Coalgebras, and Hopf Algebras

Here we discuss the notions mentioned in the title in order to use them in the
next section. We mainly follow Mac Lane [2] and Milnor–Moore [1]. Recall
that every ring is assumed to be associative and unitary.

Let R be a commutative ring. In this section ⊗ denotes ⊗R. We consider
R as a graded ring, where R0 = R,Ri = 0 for i 
= 0. The words “an R-
module” mean “a left graded R-module”. Given two R-modules M,N , the
words “R-homomorphism f : M → N” mean that f is a homomorphism of
R-modules with deg f(m) = degm,m ∈ M . We denote by T the switching
homomorphism T = TM,N : M⊗N → N⊗M, T (m⊗n) = (−1)|m||n|(n⊗m).

6.1. Definition. (a) An algebra over R (or simply an R-algebra) is a triple
(A, μ, η), where A is an R-module and μ : A ⊗ A → A, η : R → A are
R-homomorphisms such that the diagrams

A⊗A⊗A μ⊗1−−−−→ A⊗A R ⊗A η⊗1−−−−→ A⊗A 1⊗η←−−−− A⊗R

1⊗μ
⏐

⏐




⏐

⏐




μ ∼=
�

⏐

⏐

⏐

⏐




μ

�

⏐

⏐

∼=

A⊗A μ−−−−→ A A A A

commute. Here ∼= denotes the canonical isomorphisms R⊗ A ∼= A ∼= A⊗R,
e.g., A ∼= A ⊗ R has the form a �→ a ⊗ 1. Furthermore, μ is called the
multiplication and η is called the unit homomorphism. An algebra (A, μ, η) is
commutative if μTA,A = μ.

(b) A (left) module over an R-algebra (A, μ, η) is a pair (M,ϕ), where M
is an R-module and ϕ : A ⊗M → M is an R-homomorphism such that the
following diagrams commute:

A⊗A⊗M μ⊗1−−−−→ A⊗M A⊗M ϕ−−−−→ M

1⊗ϕ
⏐

⏐




⏐

⏐




ϕ η⊗1

�

⏐

⏐

�

⏐

⏐

∼=

A⊗M ϕ−−−−→ M R⊗M R⊗M.

As usual, we shall simply say “algebra A” or “A-module M”, omitting
μ, η, ϕ, and we shall write ab instead of μ(a⊗ b) and am instead of ϕ(a⊗m).

It is clear that A is a ring with multiplication μ and unit η(eR), where
eR is the unit of R. Furthermore, R can be tautologically considered as the
R-algebra (R,μR, 1R) where μR(r ⊗ r′) = rr′.

Note that every ring is a Z-algebra.

6.2. Definition. A homomorphism f : A → B of R-algebras is an R-
homomorphism such that the first two of the three diagrams below commute.
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A homomorphism h : M → N of A-modules is anR-homomorphism such that
the third diagram commutes.

(6.3)

A⊗A f⊗f−−−−→ B ⊗B R
ηA−−−−→ A A⊗M ϕM−−−−→ M

μA

⏐

⏐




⏐

⏐




μB

∥

∥

∥

⏐

⏐



f

⏐

⏐



1⊗h

⏐

⏐



h

A
f−−−−→ B R

ηB−−−−→ B A⊗N ϕN−−−−→ N

6.4. Definition. An augmented R-algebra is a quadruple (A, μ, η, ε), where
(A, μ, η) is an R-algebra and ε : A → R is a homomorphism of R-algebras
(called the augmentation). An augmented algebra (A, μ, η, ε) is called con-
nected if Ai = 0 for i < 0 and ε|A0 : A0 → R is an isomorphism.

6.5. Definition. Let A be a connected R-algebra, and let Ā be the R-
submodule consisting of all elements of positive degrees. The ideal ĀĀ is
denoted by Dec A, and its elements are called decomposable elements of A.
Given an A-module M , let GM denote the factor module M/ĀM . Further-
more, GĀ := Ā/Dec A usually is denoted by QA and is called (not very
aptly) the set of indecomposable elements of A.

Sometimes we write Dec rather than Dec A when A is clear.

The following lemma can be proved by an obvious induction on dimension.

6.6. Lemma. (i) Let h : M → N be a homomorphism of A-modules bounded
below over a connected R-algebra A. If the R-homomorphism Gh : GM →
GN is epic then so is h.

(ii) Let f : A → B be a homomorphism of connected R-algebras. If the
function Qf : QA→ QB is onto then f is epic. �

The concept of a coalgebra is dual to the concept of an algebra.

6.7. Definition. (a) A coalgebra over R is a triple (C,Δ, ε), where C is an
R-module and Δ : C → C ⊗ C, ε : C → R are R-homomorphisms such that
the diagrams

C
Δ−−−−→ C ⊗ C C C C

Δ

⏐

⏐




⏐

⏐



Δ⊗1 ∼=

⏐

⏐




⏐

⏐



Δ

⏐

⏐




∼=

C ⊗ C 1⊗Δ−−−−→ C ⊗ C ⊗ C R⊗ C ε⊗1←−−−− C ⊗ C 1⊗ε−−−−→ C ⊗R
commute. Here Δ is called the comultiplication, or the diagonal map, or just
the diagonal, and ε is called the augmentation, or the counit homomorphism.
A coalgebra (C,Δ, ε) is cocommutative if TC,CΔ = Δ.
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(b) A comodule over a coalgebra (C,Δ, ε) (or, briefly, a C-comodule)
is a pair (V, ψ), where V is a graded R-module and ψ = ψV is an R-
homomorphism V → C ⊗ V such that the following diagrams commute:

V
ψ−−−−→ C ⊗ V V

ψ−−−−→ C ⊗ V

ψ

⏐

⏐




⏐

⏐



1⊗ψ ∼=

⏐

⏐




⏐

⏐



ε⊗1

C ⊗ V Δ⊗1−−−−→ C ⊗ C ⊗ V R⊗ V R⊗ V .
(c) A homomorphism h : C → D of R-coalgebras is an R-homomorphism

such that ΔD◦h = (h⊗h)◦ΔC and εD◦h = εC . A homomorphism f : V →W
of comodules over a coalgebra (C,Δ, ε) is an R-homomorphism such that
(1C ⊗ f)◦ψV = ψW ◦f .

The set of all homomorphisms of C-comodules V → W will be denoted
by HomC(V,W ).

The duality between algebras and coalgebras is exhibited not only in the
defining diagrams. For instance, let R be a field k. Given a k-vector space C,
consider the dual vector space C∗ = Homk(C, k). If C is a k-algebra (C, μ, η)
then C∗ obtains a natural k-coalgebra structure (C∗,Δ, ε) provided that
every component Cn of C is a finite dimensional k-vector space. Namely,
Δ(f)(a ⊗ b) = f(ab), ε = η∗ : C∗ → k∗ = k. Conversely, if (C,Δ, ε) is
a coalgebra over k then C∗ obtains a k-algebra structure with (fg)(a) =
∑

f(a′i)g(a
′′
i ), where Δ(a) =

∑

a′i⊗a′′i . Moreover, a homomorphism h : C →
D of algebras induces a homomorphism h∗ : D∗ → C∗ of the coalgebras, and
vice versa. There is also a similar duality between modules and comodules.

Let (C,Δ, ε) be a coalgebra over R, and let M be an R-module. We turn
C ⊗M into a C-comodule (C ⊗M,ψM ) by setting ψM (c⊗m) = Δ(c)⊗m.

6.8. Lemma. For every C-comodule (V, ψ), the function

t : HomC(V,C ⊗M)→ HomR(V,M), t(f) = (ε⊗ 1)f,

is bijective.

Proof. Define s : HomR(V,M) → HomC(V,C ⊗ M) by setting s(g) =
(1⊗ g)◦ψ. Then ts(g) = (ε⊗ 1)(1⊗ g)ψ = g. On the other hand, the diagram

V
f−−−−→ C ⊗M C ⊗M

ψ

⏐

⏐




⏐

⏐



Δ

∥

∥

∥

C ⊗ V 1⊗f−−−−→ C ⊗ C ⊗M 1⊗ε⊗1−−−−→ C ⊗M
commutes, and thus

st(f) = s((ε⊗ 1)f) = (1⊗ (ε⊗ 1)f)ψ = (1 ⊗ ε⊗ 1)(1⊗ f)ψ = f. �
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6.9. Definition. A coalgebra (C,Δ, ε) is called connected if Ci = 0 for i < 0
and ε|C0 : C0 → R is an isomorphism. In this case the element v = ε−1(1) is
called the counit of C.

Given two coalgebras C,D, we can turn C⊗D into a coalgebra by defining
ΔC⊗D and εC⊗D to be the compositions

ΔC⊗D :C ⊗D ΔC⊗ΔD−−−−−→ C ⊗ C ⊗D ⊗D 1⊗T⊗1−−−−→ C ⊗D ⊗ C ⊗D,

εC⊗D :C ⊗D εC⊗εD−−−−→ R⊗R ∼= R.

It is easy to see that Δ : C → C ⊗C is a homomorphism of coalgebras if the
coalgebra (C,Δ, ε) is cocommutative.

Similarly, given two algebras A,B, we can turn A ⊗ B into an algebra
by setting μA⊗B = (μA ⊗ μB)◦(1 ⊗ T ⊗ 1) and ηA⊗B = ηA ⊗ ηB . Again,
μ : A⊗A→ A is a homomorphism of algebras if (A, μ, η) is commutative.

6.10. Lemma. Let (C,Δ, ε) be a connected coalgebra with counit v. Then:
(i) Δ(v) = v ⊗ v.
(ii) For every c ∈ C, |c| > 0, we have Δ(c) = v ⊗ c + c ⊗ v +

∑

c′i ⊗ c′′i
with |c′i| < |c|, |c′′i | < |c|, |c′|+ |c′′| = |c|.

(iii) Let (V, ψ) be a comodule over C. Then, for every x ∈ V , we have
ψ(x) = v ⊗ x+

∑

c′ ⊗ x′ with |x′| < |x|, |c′|+ |x′| = |x|.

Proof. (i) Since C is connected, Δ(v) = v⊗λv, λ ∈ R. Furthermore, λ = 1
because v = (ε⊗ 1)(Δ(v)) = (ε⊗ 1)(v ⊗ λv) = ε(v)⊗ λv = λv.

(ii) Because of the commutativity of the right diagram of 6.7(a), and since
C is connected, we conclude that Δ(c) = λv ⊗ c + c ⊗ μv +

∑

c′i ⊗ c′′i with
|c′i| < |c|, |c′′i | < |c|. Now, the equalities λ = 1 = μ can be proved as in (i).

(iii) This can be proved as (ii), using the commutativity of the right
diagram of 6.7(b). �

6.11. Examples. (a) Let p be a prime, and let (E, μ, ι) be a ring spectrum
of finite Z[p]-type. Then H∗(E; Z/p) has the natural structure of a Z/p-
coalgebra. Indeed, consider the homomorphism

Δ : H∗(E; Z/p)
μ∗

−→ H∗(E ∧E; Z/p)
∼=←−−−

μE,E
H∗(E; Z/p)⊗H∗(E; Z/p)

(by 4.11(ii), μE,E is an isomorphism) and set ε := ι∗ : H∗(E; Z/p) →
H∗(S; Z/p). It is easy to see that (H∗(E; Z/p),Δ, ε) is a coalgebra. The
naturality is clear.

(b) If the ring spectrum (E, μ, ι) in (a) is commutative then H∗(E; Z/p)
is a cocommutative coalgebra.

(c) If E is a spectrum as in (a) and F is any E-module spectrum of
finite Z[p]-type, then H∗(F ; Z/p) admits a structure of a comodule over
H∗(E; Z/p).
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Case (c) can be considered in the same manner as (a).
(d) Dually, given a ring spectrum (E, μ, ι), consider the homomorphism

μalg : H∗(E; Z/p)⊗H∗(E; Z/p)
μE,E−−−→ H∗(E ∧ E)

μ∗−→ H∗(E)

and set η := ι∗ : H∗(S; Z/p) → H∗(E; Z/p). Then (H∗(E; Z/p), μalg, η) is
a Z/p-algebra. Similarly, H∗(F ; Z/p) is an H∗(E; Z/p)-module for every E-
module spectrum F .

(e) For every CW -spaceX and every field k we have a coalgebraH∗(X ; k),
where the diagonal d : X → X ×X yields a comultiplication

Δ : H∗(X ; k) d∗−→ H∗(X ×X ; k)
∼=←− H∗(X ; k)⊗H∗(X ; k)

and the map X → pt yields an augmentation H∗(X ; k)→ k. This coalgebra
is connected iff X is connected.

(f) Dually to (e), H∗(X ; k) is a k-algebra for every field k and CW -space
X of finite type.

6.12. Definition. Let (C,Δ, ε) be a connected coalgebra with counit v.
(a) An element m ∈ C is called primitive if Δ(m) = m⊗ v + v ⊗m. The

set (in fact, R-submodule) of all primitive elements of C is denoted by PrC.
(b) Let (V, ψ) be a C-comodule. An element m ∈ V is called simple if

ψ(m) = v⊗m. The R-submodule of simple elements of V is denoted by SiV .

6.13. Remarks. (a) Under the duality between algebras and coalgebras over
a field, PrC is dual to QC∗.

(b) Sometimes simple elements are also called primitive, but we do not
like this because of the danger of confusion: PrC 
= SiC where C is regarded
as a coalgebra on the left and as comodule on the right.

6.14. Lemma. Let h : C → D be a homomorphism of connected coalgebras
over a field k. If the map h|PrC is injective in dimensions ≤ d then h is.

Proof. Let v be the counit of C. Since h(v) is the counit of D, we conclude
that h(v) 
= 0, i.e., h|C0 is monic. If h is monic on the subgroup of all
elements of dimension ≤ d, then h ⊗ h : C ⊗ C → D ⊗ D is monic on the
subgroup Ad generated by elements m ⊗m′ with |m| < d, |m′| < d. This is
true because C and D are k-vector spaces. Now, let x ∈ Kerh be a non-zero
element of minimal dimension. If dimx < d then x is not primitive, and so
Δ(x) = x⊗v+v⊗x+

∑

x′⊗x′′ where |x′| < |x|, |x′′| < |x| and
∑

x′⊗x′′ 
= 0.
Now

0 = Δ(h(x)) = (h⊗ h)Δ(x) = (h⊗ h)(v ⊗ x+ x⊗ v +
∑

x′ ⊗ x′′)

= h(v)⊗ h(x) + h(x) ⊗ h(v) +
∑

h(x′)⊗ h(x′′) =
∑

h(x′)⊗ h(x′′).
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However,
∑

h(x′) ⊗ h(x′′) 
= 0, since
∑

x′ ⊗ x′′ 
= 0 and h ⊗ h is monic on
Ad. This is a contradiction. �

6.15. Construction. (Boardman [1]). Given a connected coalgebra C, we
define a filtration FmC by setting

(FmC)n =
{

Cn if n ≤ m,
0 otherwise.

Given a C-comodule (V, ψ), we set

F−1V = 0, FmV = {x ∈ V |ψ(x) ∈ FmC ⊗ V }.

6.16. Proposition. (i)
⋃

m FmV = V for every V .
(ii) F0V = SiV .
(iii) f(FmV ) ⊂ FmW for every C-comodule homomorphism f : V →W .

Proof. This is obvious. �

6.17. Lemma. Let (V, ψ) be a comodule over a connected coalgebra (C,Δ, ε)
over a field. Then ψ(FmV ) ⊂

∑m
j=0 Cj ⊗ Fm−jV .

Proof. Choose x ∈ FmV . We have ψ(x) = v⊗x+
∑

ci⊗xi, where ci ∈ C
are assumed to be linearly independent. Since (Δ ⊗ 1)◦ψ = (1 ⊗ ψ)◦ψ, we
conclude that

∑

ci ⊗ ψ(xi) =
∑

(Δ(ci)− v ⊗ ci)⊗ xi

in C ⊗ C ⊗ V . Since x ∈ FmV , we conclude that ci ∈ FmC, and so

Δ(ci)− v ⊗ ci ∈
∑

r+s≤m
Cr ⊗ Cs

for every i. Hence, ci ⊗ ψ(xi) ∈
∑

r+s≤m
Cr ⊗ Cs ⊗ V . Thus, if ci ∈ Cj then

ψ(xi) ∈
∑

s≤m−j
Cs ⊗ V = Fm−jC ⊗ V , i.e., xi ∈ Fm−jV . �

6.18. Definition. Let M be a free R-module. Given a coalgebra (C,Δ, ε),
define its cofree M -extension to be the C-comodule (V, ψ) where V = C⊗M
and ψ(c ⊗ x) = Δ(c) ⊗ x, c ∈ C, x ∈ M . A C-comodule V is called cofree if
there is M such that V is isomorphic to the cofree M -extension of C.

Let C and V be as in 6.17. Define ψ′ : FmV → Cm ⊗ SiV to be the
composition

FmV
ψ−→

m
∑

j=0

Cj ⊗ Fm−jV
q−→ Cm ⊗ F0V = Cm ⊗ SiV
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where q is the quotient map. Since ψ′(Fm−1V ) = 0, ψ′ passes through the
homomorphism ψ = ψm : FmV/Fm−1V → Cm ⊗ SiV .

6.19. Lemma. For every m, the homomorphism ψ : FmV/Fm−1V →
Cm ⊗ SiV is a monomorphism, and it is an isomorphism if V is a cofree C-
comodule. Furthermore, ψ is natural in V , i.e., for every C-homomorphism
f : V →W and every m, the following diagram commutes:

(6.20)

FmV/Fm−1V
f∗−−−−→ FmW/Fm−1W

ψV

⏐

⏐




⏐

⏐


ψW

Cm ⊗ SiV
1⊗Si f−−−−→ Cm ⊗ SiW .

Proof. If ψ(x) = 0 then ψ(x) ∈
m−1
∑

j=0

Cj ⊗ Fm−jV ⊂ Fm−1C ⊗ V , i.e.,

x ∈ Fm−1V . Thus, ψ is monic. Furthermore, if V is cofree, V ∼= C ⊗M , then
FmV ∼= FmC ⊗M . So, ψ is an isomorphism. The naturality is clear. �

6.21. Corollary. Let C be as in 6.17, and let f : V →W be a homomorphism
of C-comodules.

(i) If Si f : SiV → SiW is a monomorphism then so is f .
(ii) If V is cofree and Si f : SiV → SiW is an isomorphism, then so is f .

Proof. (i) By 6.16(iii), the homomorphism f induces homomorphisms
Fmf : FmV → FmW . By 6.16(i), it suffices to prove that Fmf is monic. We
prove this by induction. By 6.16(ii), F0f is monic. Suppose that Fm−1f is
monic. But 1⊗Si f is monic, and so, by 6.19, FmV/Fm−1V → FmW/Fm−1W
is a monomorphism. Thus, by the Five Lemma, Fmf is a monomorphism. The
induction is confirmed.

(ii) By 6.16(i), it suffices to prove that Fmf is an isomorphism. Since V
is cofree, ψV is an isomorphism for every m, and so ψW is epic, and so it is
an isomorphism. Now the proof can be completed similarly to (i). �

6.22. Definition. A Hopf algebra over R is a quintuple (A, μ, η,Δ, ε) such
that (A, μ, η, ε) is an augmented R-algebra, (A,Δ, ε) is an R-coalgebra, Δ :
A → A ⊗ A and ε : A → R are homomorphisms of algebras, and η : R → A
is a homomorphism of coalgebras.

It is easy to see that μ : A ⊗ A → A is a homomorphism of coalgebras.
Also, if A is connected then its unit 1 coincides with its counit v, i.e., v = 1.

Note that if A is a Hopf algebra over a field k and if dimk An < ∞
for every n then A∗ = Hom(A, k) is a Hopf algebra also (see the text after
6.7), but the multiplication and comultiplication interchange roles (e.g. if
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the multiplication on A is commutative then the comultiplication on A∗ is
cocommutative).

The homomorphism A ⊗ R ε⊗1−−→ R ⊗ R = R turns R into an A-module;
the homomorphism R = R⊗R η⊗1−−→ A⊗R turns R into an A-comodule.

6.23. Constructions. Let (A, μ, η,Δ, ε) be a Hopf algebra.
(a) Given two A-modules (M,ϕ), (N,ψ), we form an A-module (M⊗N, θ)

by setting θ to be the composition

A⊗M ⊗N Δ⊗1−−−→ A⊗A⊗M ⊗N 1⊗T⊗1−−−−→ A⊗M ⊗A⊗N ϕ⊗ψ−−−→M ⊗N.

In other words, a(m⊗ n) =
∑

a′im⊗ a′′i n where Δ(a) =
∑

a′i ⊗ a′′i .
(b) Given two A-comodules (V, ψ) and (W,ϕ), we form an A-comodule

(V ⊗W, θ) by setting θ to be the composition

V ⊗W ψ⊗ϕ−−−→ A⊗ V ⊗A⊗W 1⊗T⊗1−−−−→ A⊗A⊗ V ⊗W μ⊗1−−→ A⊗ V ⊗W.

6.24. Definition. Let A be a Hopf algebra over R.
(a) An A-module algebra is a quadruple (M,μ, η, ϕ), where (M,μ, η) is

an R-algebra and (M,ϕ) is an A-module such that μ : M ⊗M → M is a
homomorphism of A-modules and ϕ : A ⊗M → M is a homomorphism of
R-algebras. A homomorphism of A-module algebras is a homomorphism of
A-modules which is at the same time a homomorphism of R-algebras.

(b) An A-comodule algebra is a quadruple (M,μ, η, ψ), where (M,μ, η) is
an R-algebra and (M,ψ) is an A-comodule such that μ : M ⊗M → M is a
homomorphism of A-comodules and ψ : M → A⊗M is a homomorphism of
R-algebras.

(c) An A-module coalgebra is a quadruple (V,Δ, ε, ϕ), where (V,Δ, ε) is
an R-coalgebra and (V, ϕ) is an A-module such that Δ : V → V ⊗ V is a
homomorphism of A-modules and ϕ : A ⊗ V → V is a homomorphism of
R-coalgebras.

(d) We leave it to the reader to define the A-comodule coalgebras (and
homomorphisms in cases (b), (c), (d)).

6.25. Recollection. A very important example of a Hopf algebra over the
field Z/p, p prime, is the Steenrod algebra

Ap = H∗(HZ/p; Z/p) =
⊕

d

[HZ/p,ΣdHZ/p].

The multiplication μ : HZ/p ∧HZ/p→ HZ/p induces the diagonal map

H∗(HZ/p; Z/p)→ H∗(HZ/p ∧HZ/p; Z/p)
∼= H∗(HZ/p; Z/p)⊗H∗(HZ/p; Z/p);
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the algebra structure is given by the composition of cohomology operations
HZ/p→ ΣnHZ/p.

All that we need to know about Ap can be found in Steenrod–Epstein [1],
Margolis [1]. The Steenrod algebra A2 is generated by elements Sqi of di-
mension i, where i = 1, 2, . . . , and all relations among Sqi follow from the
Adem relations

(6.26) SqaSqb =
[a/2]
∑

c=0

(

b− c− 1
a− 2c

)

Sqa+b−cSqc for a < 2b,

where Sq0 := 1. The comultiplication has the form Δ(Sqk) =
k
∑

i=0

Sqi⊗Sqk−i.

The Steenrod algebra Ap, p > 2, is generated by elements β (the Bockstein
homomorphism) and P i, dim β = 1, dimP i = 2i(p − 1), i = 1, 2, . . . . Again,
all relations in Ap follow from the Adem relations (for explicit formulae see
Steenrod–Epstein [1]). The comultiplication has the form Δ(β) = β⊗1+1⊗

β, Δ(P k) =
k
∑

i=0

P i ⊗ P k−i, where P 0 := 1.

Now we describe the primitive elements of Ap. Milnor [2] described the
Hopf algebra A ∗

p = Hom∗(Ap,Z/p). For p > 2 we have

A ∗
p = Z/p [ξ1, ξ2, . . . , ξn, . . . ]⊗ Λ(τ0, τ1, . . . , τn, . . . ) ,

where dim ξi = 2(pi−1), dim τi = 2pi−1. The comultiplication ∇ on A ∗
p has

the form

∇(ξk) =
k
∑

i=0

ξp
i

k−i ⊗ ξi, ∇(τk) =
k
∑

i=0

ξp
i

k−i ⊗ τi,

where ξ0 := 1. Let R be the set of all sequences R = {r1, . . . , rn, . . . }
of integers such that ri ≥ 0 and ri = 0 for all but a finite number
of i’s. The algebra A ∗

p has an additive basis {ξRτε00 · · · τεkk · · · } , where
εi = 0 or 1 and ξR = ξr11 · · · ξrnn , R = {r1, . . . , rn, . . . } ∈ R. The ele-
ment of Ap which is dual to τi is denoted by Qi, dimQi = 2pi − 1; the
dual to ξR is denoted by PR, dimPR =

∑

2ri(pi − 1). A Z/p-basis of
Ap is just {PRQε00 · · ·Q

εk
k · · · }, where εi = 0 or 1. There are the relations

PRQk−QkPR =
∑

Qk+1PR−pkΔi , where Δi is the sequence with 1 in the
i-th place and zeros elsewhere. Furthermore, Q2

i = 0 and QiQj +QjQi = 0.
The expansion of PRPS with respect to this basis can be found in Milnor [2].

Under this notation the comultiplication Δ on Ap has the form

Δ(Qi) = Qi ⊗ 1 + 1⊗Qi, Δ(PR) =
∑

R′+R′′=R

PR′ ⊗PR′′
.
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So, Qi and PΔi are primitive elements. Furthermore, there are no other
primitive elements (up to multiplication by constants), i.e.,

PrAp = Z/p{Q0, Q1, . . . , Qk, . . . ,P
Δ1,PΔ2 , . . . ,PΔn , . . . },

where Z/p{. . . } denotes “the Z/p-vector space spanned by . . . ”. This is true
because dim PrAp = dimQA ∗

p .
Mind the relations

Q0 = β, Qi = [P p
i−1
, Qi−1], PΔ1 = P 1, PΔi = [P p

i−1
,PΔi−1 ],

where [x, y] = xy− (−1)|x||y|yx. Furthermore, the two-sided ideal (Q0) of Ap

coincides with the left ideal Ap(Q0, . . . , Qn, . . . ).

For p = 2 we have A ∗
2 = Z/2[ζ1, ζ2, . . . , ζn, . . . ], dim ζn = 2n − 1, and

∇(ζk) =
∑k
i=0 ζ

2i

k−i ⊗ ζi. As in the case p > 2, there is a Z/2-basis {ζR} of
A ∗

2 , and so A2 has a Z/2-basis {SqR}, dimSqR =
∑

rn(2n − 1), and

PrA2 = Z/2{SqΔ1, . . . , SqΔn , . . . }.

Moreover, SqΔ1 = Sq1, SqΔi = [Sq2
i−1
, SqΔi−1 ].

It is possible and useful to introduce the notation Qi = SqΔi+1 , i =
0, 1, . . . , similar to the case p > 2. The relevance of this notation lies in the
fact that in this case some formulae for p = 2 look like those for p > 2. For
example,Q2

i = 0 andQiQj+QjQi = 0, and the left ideal A2(Q0, . . . , Qn, . . . )
coincides with the two-sided ideal (Q0) (prove this).

Note that the Hopf algebra A ∗
p can be described as H∗(H), where H =

HZ/p. The multiplication has the form

H∗(H)⊗H∗(H)
∼=−→ H∗(H ∧H)

μ∗−→ H∗(H)

where the isomorphism is μH,H , and the comultiplication has the form

H∗(H) = π∗(H ∧H) −→ π∗(H ∧ S ∧H) 1∧ι∧1−−−−→ π∗(H ∧H ∧H)
∼= H∗(H ∧H) ∼= H∗(H)⊗H∗(H).

6.27. Examples. (a) For every H-space X and every field k, we have a Hopf
algebra H∗(X ; k): the multiplication is induced by the H-structure X×X →
X while the comultiplication is induced by the diagonal d : X → X ×X , cf.
6.11(e). Similarly, H∗(X ; k) is a Hopf algebra for every H-space X of finite
type, and H∗(X ; k) is the Hopf algebra dual to H∗(X ; k).

(b) Let H(−) denote H(−; Z/p). For every spectrum E, the group H∗(E)
admits a natural Ap-module structure. The action

ϕ : Ap ⊗H∗(E)→ H∗(E), ϕ(a⊗ x) = a(x),
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is given by the evaluation of a cohomology operation a on an element x,
see 3.47. The detailed description of this action can be found in Steenrod–
Epstein [1], Margolis [1], Mosher–Tangora [1]. Here we recall that Sqi(x) = 0
if |x| < i, Sqi(x) = x2 if |x| = i, P i(x) = 0 if |x| < 2i(p − 1), P i(x) = xp

if |x| = 2i(p − 1). Finally, if f : Sn → Sn is a map of degree p and x is a
generator of the group Hn(Cf ; Z/p) = Z/p then β(x) 
= 0.

Furthermore, if E is a ring spectrum of finite Z- or Z[p]-type then H∗(E)
is a coalgebra over the Hopf algebra Ap, see 7.19(ii) below. Moreover, one
can easily prove that a ring morphism E → F of such spectra induces a
homomorphism H∗(F )→ H∗(E) of Ap-module coalgebras.

(c) Dually, let ι : S → H be the unit. Given a spectrum E, the morphism

bE : E
l,∼=←−− S ∧ E ι∧1−−→ H ∧ E induces a homomorphism

ψ : H∗(E) = H∗(S∧E)
(ι∧1)∗−−−−→ H∗(H∧E) = H∗(H)⊗H∗(E) = A ∗

p ⊗H∗(E),

and this homomorphism turns H∗(E) into a comodule over the Hopf algebra
A ∗
p . Furthermore, every ring morphism E → F induces a homomorphism

H∗(E)→ H∗(F ) of A ∗
p -comodule algebras.

Let C be a connected module coalgebra over a Hopf algebra A, and let v
be the counit of C.

6.28. Lemma. The map ν : A → C, ν(a) = av, is a homomorphism of
coalgebras.

Proof. Let Δ : C → C ⊗ C be the diagonal. We have

(ν ⊗ ν)(Δa) = (ν ⊗ ν)
(

∑

a′ ⊗ a′′
)

=
∑

ν(a′)⊗ ν(a′′) =
∑

a′v ⊗ a′′v .

On the other hand, by 6.10(i), Δ(v) = v ⊗ v, and so

Δν(a) = Δ(av) = aΔ(v) = a(v ⊗ v) =
∑

a′v ⊗ a′′v .

Thus, (ν ⊗ ν)(Δa) = Δν(a). �

6.29. Theorem. Let A be a connected Hopf algebra over a field k, let C
be a connected module coalgebra over A, and let v be the counit of C. Let
p : C → GC be the canonical epimorphism (see 6.5), and let λ : GC → C
be a k-homomorphism with pλ = 1GC. Let Bm be the subspace of A ⊗ GC
generated by all elements a⊗x with |a| ≤ m. If the map ν : A→ C, ν(a) = av,
is monic for |a| ≤ m then the A-homomorphism η : A⊗GC → C, η(a⊗x) =
a(λx) is monic on Bm. Furthermore, η is epic and thus is an isomorphism
in dimensions ≤ m.

Proof. This theorem is a version of the Milnor–Moore Theorem, and the
proof below follows its proof contained in Stong [3]. Consider the composition
of A-homomorphisms
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A⊗GC η−→ C
Δ−→ C ⊗ C 1⊗p−−→ C ⊗GC.

For every y, x ∈ C and for every a ∈ A (with Δ(a) =
∑

a′ ⊗ a′′), we have

(1 ⊗ p)(a · (y ⊗ x)) = (1⊗ p)
(

∑

a′y ⊗ a′′x
)

= (1⊗ p)(ay ⊗ x)

= ay ⊗ p(x)

(here · denotes the A-action on C⊗C) because p(a′′x) = 0 for |a′′| > 0. Now,

(1⊗ p)Δη(a⊗ x) = (1⊗ p)a · (Δ(λx))

=(1⊗ p)a · (v ⊗ λx+ λx ⊗ v +
∑

(λx)′ ⊗ (λx)′′) = av ⊗ x+ b,

where b ∈
⋃

k<|x| C ⊗ (GC)k. Since av 
= 0 for |a| ≤ m, we conclude that
av ⊗ x+ b 
= 0 (for dimensional reasons). Hence, (1⊗ p)Δη is monic on Bm,
and thus so is η.

To prove that η is epic, consider any k-basis {ei} of GC and set ci = λei.
So, ci ∈ Im η. Let c ∈ (C \ Im η) be a homogeneous element of minimal
dimension. We have pc =

∑

niei, ni ∈ k. So, p(c −
∑

nici) = 0, i.e., c −
∑

nici =
∑

akxk, ak ∈ Ā, xk ∈ C. So, dim ak > 0. Hence, dimxk < dim c,
and therefore xk ∈ Im η. Thus, c ∈ Im η. �

6.30. Corollary (The Milnor–Moore Theorem). Let A and C be as in 6.29.
If ν : A→ C, ν(a) = av, is monic then there is an isomorphism of A-modules
C ∼= A⊗GC. In particular, C is a free A-module. �

6.31. Corollary. Let A and C be as in 6.29. If ν(x) 
= 0 for every primitive
x ∈ A, x 
= 0, then C is a free A-module.

Proof. This follows from 6.28, 6.14, and 6.30. �

6.32. Remark. In fact, the proof of 6.29 shows that 6.29 and 6.30, 6.31
are valid also for “non-coassociative coalgebras”, i.e., for triples (C,Δ, ε) not
satisfying the commutativity of the left diagram from 6.7. This remark is
useful for applications.

6.33. Lemma. If (V, ψ) is a comodule algebra over a connected Hopf algebra
A then SiV is a comodule subalgebra of V .

Proof. Only that SiV is a subalgebra needs proof. But ψ : V → C ⊗ V is
a homomorphism of algebras, and thus

ψ(xy) = ψ(x)ψ(y) = (v ⊗ x)(v ⊗ y) = v ⊗ xy. �

6.34. Theorem (cf. Boardman [1], Milnor–Moore [1]). Let V be a commu-
tative comodule algebra over a connected Hopf algebra A over a field k. Let
b : A→ V be a homomorphism of A-comodule algebras. Then the composition
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f : A⊗ SiV b⊗1−−→ V ⊗ SiV −→ V ⊗ V μV−−→ V

is an isomorphism of A-comodule algebras.

Proof. Since V is commutative, μ is a homomorphism of algebras, and
therefore so is f . Clearly, f is a homomorphism of A-comodules. Furthermore,
SiA = k = k{v}, and so Si f : Si(A ⊗ SiV ) = k ⊗ SiV → SiV is an
isomorphism. But A ⊗ SiV is a cofree A-comodule, and thus, by 6.21(ii), f
is an isomorphism. �

6.35. Definition. Given a connected Hopf algebra (A, μ, η,Δ, ε), we define
a canonical antiautomorphism c : A→ A (called also an antipode) as follows.
Firstly, c(1) := 1. Now, if

Δ(x) = x⊗ 1 + 1⊗ x+
∑

x′ ⊗ x′′, |x′| < |x|, |x′′| < |x|

then c(x) := −x−
∑

c(x′)x′′.
One can prove that c2 = 1A and c(ab) = c(b)c(a). Moreover, c can be

characterized by commutativity of the diagrams

A
ηε−−−−→ A A

ηε−−−−→ A

Δ

⏐

⏐




�

⏐

⏐

μ Δ

⏐

⏐




�

⏐

⏐

μ

A⊗A 1⊗c−−−−→ A⊗A A⊗A c⊗1−−−−→ A⊗A,

see Milnor–Moore [1].
The first example of such an antiautomorphism was found by Thom [1];

this was the canonical antiautomorphism χ : Ap → Ap of the Steenrod
algebra Ap. For the dual Hopf algebra A ∗

p , this antiautomorphism has the
form

A ∗
p = H∗(H) = π∗(H ∧H) τ∗−→ π∗(H ∧H) = H∗(H) = A ∗

p

where H = HZ/p and τ switches the factors, see Switzer [1], Th. 17.8.

Every morphism θ : E → F of spectra induces a morphism θ∗ : E∗(X)→
F∗(X) of the corresponding homology theories. In particular, every opera-
tion ϕ ∈ Ap gives us a morphism ϕ∗ : H∗(X ; Z/p) → H∗(X ; Z/p), cf. 3.47.
On the other hand, we can define another morphism ϕ• : H∗(X ; Z/p) →
H∗(X ; Z/p) of homology theories by setting 〈ϕ•(x), y〉 = 〈x, ϕ(y)〉 for every
x ∈ H∗(X,Z/p), y ∈ H∗(X ; Z/p). In this case we have the right A ∗

p -action
on H∗(X ; Z/p).

6.36. Proposition. ϕ∗ = (χ(ϕ))• for every ϕ ∈ Ap.

Proof. Given ϕ ∈ Ap, define an operation
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λ(ϕ) : H∗(X ; Z/p)→ H∗(X ; Z/p)

via the formula

〈ϕ∗(x), y〉 = 〈x, λ(ϕ)(y)〉, x ∈ H∗(X ; Z/p), y ∈ H∗(X ; Z/p).

Now check that λ : Ap → Ap preserves the commutativity of the above
diagrams, i.e., λ = χ, cf. Thom [1], Th. III.23. �

6.37. Remarks. Hopf [1] found that ordinary (co)homology rings of Lie
groups (in fact, H-spaces) had certain specific algebraic properties. (For ex-
ample, the rational cohomology ring of a Lie group is a free commutative
algebra.) Afterwards Borel [1] clarified the situation: every algebra A (over
a field) admitting a diagonal Δ : A → A ⊗ A,Δ(ab) = Δ(a)Δ(b), has such
properties. Borel suggested the name “Hopf algebra” for such object; as far as
I know, the paper of Borel [1] was the original paper where the term “Hopf
algebra” appeared. A systematic treatment of Hopf algebras was given by
Milnor–Moore [1].

Milnor [2] discovered that the Steenrod algebra is a Hopf algebra. In this
way he got a new description of Ap, and this enabled him (and some others)
to compute initial terms of certain Adams spectral sequences.

Milnor–Moore [1] proved 6.30. Furthermore, they proved 6.34 for V
bounded below. Boardman [1] got rid of this restriction. To do this, he intro-
duced the filtration FmV as in 6.15 and proved its properties 6.16–6.21.

§7. Graded Eilenberg–Mac Lane Spectra

A graded Eilenberg–Mac Lane spectrum H(G) of a graded abelian group G
was defined in 3.32(d). For future reference we mention the following fact.

7.1. Proposition. For every two graded abelian groups G,G′ the homomor-
phism

[H(G), H(G′)]→ Hom0(G,G′), [f ] �→ π∗(f)

is epic.

Proof. Let Gi be the component of degree i of G. We have H(G) =
∨ΣiH(Gi). Similarly for G′. Consider the inclusion ji : ΣiH(Gi) → H(G)
and the projection pi : H(G′)→ ΣiH(G′

i). We have the homomorphism

hi : [H(G), H(G′)]
j∗i−→ [ΣiH(Gi), H(G′)]

(pi)∗−−−→ [ΣiH(Gi),ΣiH(G′
i)]

= [H(Gi), H(G′
i)] = Hom(Gi, G′

i);

the last equality follows from 4.9. Note that hi is an epimorphism since both
j∗i and (pi)∗ are. These epimorphisms hi yield the epimorphism
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h := {hi} : [H(G), H(G′)]→
∏

i

Hom(Gi, G′
i) = Hom0(G,G′).

We leave it to the reader to prove that this homomorphism h coincides with
the homomorphism in question. �

Every graded abelian group G can be realized as the total homotopy
group π∗(H(G)) of the graded Eilenberg–Mac Lane spectrum H(G), but
not every spectrum E is (equivalent to) the graded Eilenberg–Mac Lane
spectrum H(π∗(E)). (For example, the sphere spectrum S is not, because
otherwise H∗(HZ) would be a direct summand of H∗(S).) It is clear that it is
useful to know whether a spectrum is a graded Eilenberg–Mac Lane spectrum.
For example, Thom [2] proved that the spectrum MO of the non-oriented
(co)bordism is a graded Eilenberg–Mac Lane spectrum, and this enabled him
to compute the group π∗(MO) (i.e., non-oriented cobordism group) and to
prove the realizability of all Z/2-homology classes by singular manifolds, see
Ch. IV. In this section we give some sufficient conditions for a spectrum E
to be a graded Eilenberg–Mac Lane spectrum, i.e., E � H(π∗(E)); these
conditions will be used in next chapters.

7.2. Lemma. Let Y be a graded Eilenberg–Mac Lane spectrum, and let
f : Y → Z be a morphism of spectra such that f∗ : π∗(Y )→ π∗(Z) is a split
epimorphism. Then Z is a graded Eilenberg–Mac Lane spectrum, and f has
a homotopy right inverse s : Z → Y, fs � 1Z .

Proof. Since f∗ splits, there is a subgroup G of π∗(Y ) such that f∗|G :
G → π∗(Z) is an isomorphism. By 7.1, the inclusion G ⊂ π∗(Y ) is induced
by a morphism j : H(G) → Y , and fj is an equivalence. Now set s = jg,
where g : Z → H(G) is a homotopy inverse to fj. �

7.3. Proposition. (i) If E is a graded Eilenberg–Mac Lane spectrum then
so is each of its coskeletons E(n). In particular, every Postnikov invariant of
E is trivial.

(ii) If all Postnikov invariants of a spectrum E are trivial then E is a
graded Eilenberg–Mac Lane spectrum.

(iii) If every coskeleton of a spectrum E is a graded Eilenberg–Mac Lane
spectrum then E is a graded Eilenberg–Mac Lane spectrum.

Proof. (i) This follows from 7.2.
(ii) Set πk = πk(E). By 1.17, E(n) = E(n−1) ∨ ΣnH(πn) for every n. The

morphism E
τ−→ E(n)

proj−−→ ΣnH(πn) induces a homomorphism ϕn : [X,E]→
Hn(X ;πn), X ∈ S . So, we get a homomorphism ϕ := {ϕn} : [X,E] →
∏

nH
n(X ;πn). Furthermore, ϕ yields a morphism

Ei(X) = E0(Σ−iX)
ϕ−→
∏

n

Hn(Σ−iX ;πn) =
∏

n

Hn+i(X ;πn)
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of additive cohomology theories on S . Now, by 3.19(iii), this is an isomor-
phism of cohomology theories on S .

Similarly, by setting F :=
∨∞
n=−∞ ΣnH(πn), we get a natural isomor-

phism [X,F ] ∼=
∏

nH
n(X ;πn), X ∈ S . So, there is a natural isomorphism

[X,E] ∼= [X,F ], and thus, by general categorical reasons, E � F .
(iii) This follows from (ii). �

7.4. Proposition. Let E be a spectrum of finite Z-type such that its localiza-
tion E[p] is a graded Eilenberg–Mac Lane spectrum for every prime p. Then
E is a graded Eilenberg–Mac Lane spectrum.

Proof. By 7.3(i), every Postnikov invariant of E[p] is trivial. So, by 5.11,
the Z[p]-localization of every Postnikov invariant of E is trivial for every
p. Since E has finite Z-type, each of its Postnikov invariants belongs to a
finitely generated group, and so, by the above, every Postnikov invariant of
E is trivial. Thus, by 7.3(ii), E is a graded Eilenberg–Mac Lane spectrum.

�
Recall that HZ is a ring spectrum by 4.10. Let ι : S → HZ be its unit.

7.5. Theorem. Let E be a spectrum. Suppose that there exists a morphism
m : HZ ∧E → E such that the diagram

HZ ∧ E m−−−−→ E

ι∧1

�

⏐

⏐

∥

∥

∥

S ∧ E l(E)−−−−→
�

E

commutes up to homotopy. Then E is a graded Eilenberg–Mac Lane spectrum.

Proof. By 4.33, for every k there exists a morphism fk : ΣkM(πk(E))→ E
such that (fk)∗ : πk(ΣkM(πk(E)))→ πk(E) is an isomorphism. Consider the
morphism

gk : HZ ∧ ΣkM(πk(E))
1∧fk−−−→ HZ ∧ E m−→ E.

By 5.6(i), HZ∧M(π) � H(π), and so gk has the form gk : ΣkH(πk(E))→ E.
Furthermore, (gk)∗ : πk(ΣkH(πk(E)))→ πk(E) is an isomorphism, since the
diagram

S ∧ ΣkM(πk(E))
1∧fk−−−−→ S ∧E �−−−−→ E

ι∧1

⏐

⏐




⏐

⏐



ι∧1

∥

∥

∥

HZ ∧ ΣkM(πk(E))
1∧fk−−−−→ HZ ∧ E m−−−−→ E

commutes up to homotopy. Let ik : ΣkH(πk(E)) → ∨kΣkH(πk(E)) be the
inclusion. By 1.16(i), there is a morphism g : ∨kΣkH(πk(E))→ E such that
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gik � gk for every k. Then g induces an isomorphism of homotopy groups,
and thus it is an equivalence. �

7.6. Corollary. Every HZ-module spectrum is a graded Eilenberg–Mac Lane
spectrum. �

7.7. Corollary. Let E be a ring spectrum with the unit ιE : S → E. If there
exists a morphism f : HZ→ E such that the composition S

ι−→ HZ
f−→ E is

homotopic to ιE, then E is a graded Eilenberg–Mac Lane spectrum.

Proof. The composition HZ∧E f∧1−−→ E ∧E μ−→ E satisfies the conditions
of 7.5. �

7.8. Corollary. If a ring spectrum E admits a ring morphism HZ→ E then
E is a graded Eilenberg–Mac Lane spectrum. �

7.9. Corollary. For every spectrum E, the spectrum HZ ∧ E is a graded
Eilenberg–Mac Lane spectrum.

Proof. Let μ be the multiplication on HZ. The associativity of μ implies
that the morphism

m : HZ ∧ (HZ ∧ E) �−→ (HZ ∧HZ) ∧ E μ−→ HZ ∧ E

yields a HZ-module structure on HZ ∧ E. �

7.10. Corollary. (i) For every abelian group π and every spectrum E, the
spectrum H(π) ∧ E is a graded Eilenberg–Mac Lane spectrum.

(ii) If F is a graded Eilenberg–Mac Lane spectrum then E ∧F is a graded
Eilenberg–Mac Lane spectrum for every spectrum E.

Proof. (i) H(π) ∧ E � HZ ∧M(π) ∧ E.
(ii) This follows from (i) and 2.1(v). �

7.11. Theorem. (i) The Q -localization of the sphere spectrum S is HQ. In
particular, the Hurewicz homomorphism h : π∗(E) ⊗ Q → H∗(E) ⊗ Q is an
isomorphism for every spectrum E.

(ii) The Q -localization E[0] of every spectrum E is the graded Eilenberg–
Mac Lane spectrum H(π∗(E)⊗Q).

(iii) Let G,G′ be a pair of graded vector spaces over Q. Then the homo-
morphism [H(G), H(G′)]→ Hom0(G,G′) in 7.1 is an isomorphism.

(iv) For every two Q -local spectra E,F , the homomorphism μE,F :
π∗(E) ⊗ π∗(F )→ π∗(E ∧ F ) is an isomorphism.

(v) Given two ring Q -local spectra E,F , a morphism f : E → F is a ring
morphism iff f∗ : π∗(E)→ π∗(F ) is a ring homomorphism.
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Proof. (i) The groups πi(S) are finite for i 
= 0 by the Serre Theorem, see
Serre [3] or Mosher–Tangora [1]. So, πi(S[0]) = πi(S)⊗Q = 0 for i 
= 0, and
π0(S[0]) = Q.

(ii) Because of (i), π∗(MQ) ∼= π∗(S)⊗ Q ∼= π∗(HQ), and so MQ � HQ.
Hence, HQ ∧HZ � HQ. Thus,

E[0] = E ∧MQ � E ∧HQ � E ∧HQ ∧HZ � E[0] ∧HZ.

Now the result follows from 7.9.
(iii) By 1.16(i), we have [H(G), H(G′)] =

∏

i[Σ
iH(Gi), H(G′)]. By 5.8(ii),

[ΣiHQ , HG′] = [Si, HG′] = G′
i = [Si, HG′

i] = [ΣiHQ, HG′
i].

Hence,

[ΣiH(Gi), H(G′)] = [ΣiH(Gi),ΣiH(G′
i)] = Hom(Gi, G′

i),

and thus [HG,HG′] = Hom0(G,G′).
(iv) By 5.14, E ∧F is a Q -local spectrum, and hence H∗(X) = H∗(X ; Q)

for X = E,F,E ∧ F . Consider the commutative diagram

π∗(E)⊗ π∗(F )
μπ−−−−→ π∗(E ∧ F )

h⊗h
⏐

⏐




⏐

⏐



h

H∗(E)⊗H∗(F )
μH−−−−→ H∗(E ∧ F ).

Now, by (i), h is an isomorphism, and, by 4.11(i), μH is an isomorphism.
Thus, μπ is an isomorphism.

(v) We must prove that the left hand diagram below

E ∧ E f∧f−−−−→ F ∧ F π∗(E)⊗ π∗(E)
f∗⊗f∗−−−−→ π∗(F )⊗ π∗(F )

⏐

⏐




⏐

⏐




⏐

⏐




⏐

⏐




E
f−−−−→ F π∗(E)

f∗−−−−→ π∗(F )

commutes up to homotopy iff the right hand diagram commutes. But this
follows from (iii) and (iv). �

7.12. Corollary. Let F be a spectrum of finite Λ-type with Λ as in §5. Then:
(i) Each Postnikov invariant of F has finite order.
(ii) Let X be a spectrum bounded below. Consider the Atiyah–Hirzebruch

spectral sequence E∗∗
r (X) ⇒ F ∗(X), Ep,q2 (X) = Hp(X ;F q(pt)). Then ev-

ery differential in this spectral sequence for E∗(X) has finite order (i.e., it
becomes trivial after tensoring by Q). Simiarly, every differential in the ho-
mology spectral sequence Er∗∗(X)⇒ F∗(X) has finite order.
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Proof. (i) It follows from 4.25(iii) that each group (F(k))i(HΛ) is a finitely
generated Λ-module. Hence, each group Hi(F(k)) is a finitely generated Λ–
module. So by 4.9, each group Hi(F(k);πj(F )) is a finitely generated Λ–
module.

Consider a Postnikov invariant κ ∈ Hn+1(F(n−1);πn(F )) of F . By 5.11,

κ⊗ 1 ∈ Hn+1(F(n−1);πn(F ))⊗Q = Hn+1((F(n−1))[0];πn(F )⊗Q)

is the Postnikov invariant of F [0]. So, by 7.11(ii) and 7.3(i), κ⊗1 = 0. Thus, κ
has finite order since Hn+1(F(n−1);πn(F )) is a finitely generated Λ-module.

(ii) This follows from (i) and 4.34. �

7.13. Theorem-Definition (cf. Dold [1]). For every ring spectrum E there
exists a ring equivalence E[0]→ H(π∗(E)⊗Q). This equivalence is called the
Chern–Dold character with respect to E and is denoted by chE.

Proof. There is a ring isomorphism h : π∗(E[0])→ π∗(H(π∗(E)⊗Q)). By
7.11(ii,iii), h is induced by a morphism f : E[0] → H(π∗(E) ⊗ Q), and, by
7.11(v), f is a ring equivalence. �

7.14. Theorem. Let p be an odd prime, and let E be a Z[p]-local spectrum
of finite Z[p]-type. If E ∧M(Z/p) is a graded Eilenberg–Mac Lane spectrum
then so is E.

Proof. For simplicity, denote M(Z/p) by M(p). The spectrum M(p) ad-
mits a ring structure for p > 3, while for p = 3 it admits a pairing (non-
associative) M(3) ∧ M(3) → M(3). This can be proved directly, just by
considering the group [M(p) ∧ M(p),M(p)], see Araki–Toda [1], or, alter-
natively, this can be deduced from certain general results, see Ch. VIII of
this book. Since π0(M(p)) = Z/p, every group πi(M(p)) has exponent p.
Furthermore, if p > 3 then the group M(p)∗(X) is a π∗(M(p))-module
for every spectrum (space) X . Moreover, for p = 3 we have a pairing
(M(3))∗(X)⊗ (M(3))∗(X)→M(3)∗(X). So, the group M(p)∗(X) is a Z/p-
vector space. 8

Let
. . . E E . . .

τn

⏐

⏐




⏐

⏐




τn−1

. . . −−−−→ En
pn−−−−→ En−1 −−−−→ . . .

be a Postnikov tower of E (we are writing simply En instead of E(n)).

7.15. Lemma. The homomorphism (τn∧1)∗ : π∗(E∧M(p))→ π∗(En∧M(p))
is epic for every n.

8 This is not true for p = 2: the element 1M(2) ∈ M(2)∗(M(2)) has order 4, see

Araki–Toda [1].
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Proof. The cofiber sequence S
p−→ S

j−→ M(p) yields the commutative
diagram

πi(E)
p−−−−→ πi(E) −→ πi(E ∧M(p)) −→ πi−1(E)

p−−−−→ πi−1(E)

a1

⏐

⏐




a2

⏐

⏐




⏐

⏐



(τn∧1)∗

⏐

⏐




a3

⏐

⏐




a4

πi(En)
p−−−−→ πi(En)−→πi(En ∧M(p))−→πi−1(En)

p−−−−→ πi−1(En)

with exact rows. If i ≤ n then ak, k = 1, 2, 3, 4, is an isomorphism, and hence
(τn ∧ 1)∗ is an isomorphism. If i > n + 1 then πi(En) = 0 = πi−1(En), and
hence πi(En∧M(p)) = 0. Finally, if i = n+1 then (τn∧1)∗ is an epimorphism
because πi(En) = 0 and a3, a4 are isomorphisms. �

We continue the proof of the theorem. By 7.15, the homomorphism

(τn ∧ 1)∗ : π∗(E ∧M(p))→ π∗(En ∧M(p))

is epic, and it splits since π∗(E ∧ M(p)) is a Z/p-vector space. Hence, by
7.2, for every n, En ∧M(p) is a graded Eilenberg–Mac Lane spectrum and
pn∧1 : En∧M(p)→ En−1∧M(p) admits a homotopy right inverse morphism.

Suppose that E is not a graded Eilenberg–Mac Lane spectrum. Then, by
7.3(iii), there exists a minimal n such that En is not a graded Eilenberg–
Mac Lane spectrum. Hence, the first non-trivial Postnikov invariant of E is
k ∈ Hn+1(En−1;πn), where πn = πn(E). We have

H0(H(πn) ∧M(p);πn ⊗ Z/p) = Hom(H0(H(πn) ∧M(p); Z), πn ⊗ Z/p)
=Hom(π0(H(πn ∧M(p))), πn ⊗ Z/p) = Hom(H0(M(p);πn), πn ⊗ Z/p)
=Hom(πn ⊗ Z/p, πn ⊗ Z/p).

Let u ∈ H0(H(πn) ∧M(p);πn ⊗ Z/p) correspond to

1πn⊗Z/p ∈ Hom(πn ⊗ Z/p, πn ⊗ Z/p).

Consider the following commutative diagram:

En
pn−−−−→ En−1

k−−−−→ Σn+1H(πn)
⏐

⏐




⏐

⏐




⏐

⏐




r

En ∧M(p)
pn∧1−−−−→ En−1 ∧M(p) k∧1−−−−→ Σn+1H(πn) ∧M(p)

⏐

⏐


Σn+1u

Σn+1H(πn ⊗ Z/p) .

Here the rows are cofiber sequences and the morphism r has the form

Σn+1H(πn) = Σn+1H(πn) ∧ S 1∧j−−→ Σn+1H(πn) ∧M(p).
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Let π, τ be two cyclic Z[p]-modules (i.e., π, as well as τ , is isomorphic to
Z/pm or Z[p]). It is well-known that the group Hi(Hπ; τ), i > 0 has exponent
p, see e.g. Cartan [1]. Hence, the group H∗(En−1;πn) has the exponent p,
since En−1 is a graded Eilenberg–Mac Lane spectrum and πn is a direct sum
of the groups Z[p] and Z/pm. So, the reduction k̄ ∈ Hn+1(En−1;πn ⊗ Z/p)
of k is non-zero. However, k̄ = Σn+1u◦r◦k, and so k ∧ 1 is non-zero. Hence,
by 4.20, pn ∧ 1 does not admit a homotopy right inverse morphism. This is a
contradiction. �

Fix a prime p. Until the end of the section, H denotes HZ/p and H(−)
denotes H(−; Z/p). Let Ap be the mod p Steenrod algebra, Ap = H∗(H),
and let A ∗

p be the Hopf algebra dual to Ap, A ∗
p = H∗(H). Finally, let μ :

H ∧H → H be the multiplication on H .

7.16. Theorem. Let E be a spectrum of finite Z[p]-type. If H∗(E) is a free
Ap-module then E is a graded Eilenberg–Mac Lane spectrum.

Proof. Note that every group Hk(E) is finite. Let a1, . . . , as, . . . , |as| ≤
|as+1|, be a family of free Ap-generators of H∗(E). Every element ai yields
a morphism ai : E → Σ|ai|H . Set

F (s) = ∨si=1Σ
|ai|H, F = ∨∞i=1Σ

|ai|H.

We have obvious inclusions iks : Σ|ak|HZ/p → F (s), k ≤ s, of direct sum-
mands, and we have projections ps : F (s+1)→ F (s), qs : F → Fs onto direct
summands. By 1.16(ii), the morphisms ai form a morphism hs : E → F (s)
with pshs+1 � hs and iksak = hs. Clearly, for every N there exists s such
that h∗s : Hi(F (s)) → Hi(E) is an isomorphism for i ≤ N + 1. Hence,
Hi(Chs) = 0 for i ≤ N , and so, by 5.18(i), πi(Chs) = 0 for i ≤ N . Hence, hs
is an N -equivalence, and so (hs)(N) : E(N) → (F (s))(N) is an equivalence.

By 7.3(i), (F (s))(N) is a graded Eilenberg–Mac Lane spectrum. Hence,
E(n) is a graded Eilenberg–Mac Lane spectrum for every n, and thus, by
7.3(iii), E is a graded Eilenberg–Mac Lane spectrum. �

One can give a stronger version of the previous theorem.

7.17. Corollary (of the proof). Let E be a spectrum of finite Z[p]-type.
Suppose that there exist a free finitely generated Ap-module V and an Ap-
homomorphism f : V → H∗(E) such that f is an isomorphism in dimensions
≤ m+1. Then the coskeleton E(m) is a graded Eilenberg–Mac Lane spectrum.

Proof. Let {ai} be a family of free generators of V . As in 7.16, one can
construct a morphism h : E → F := ∨Σ|ai|H such that h∗ : H∗(F )→ H∗(E)
is an isomorphism in dimensions ≤ m+1. Thus, E(m) � F(m). But, by 7.3(i),
F(m) is a graded Eilenberg–Mac Lane spectrum. �

7.18. Lemma. Let E,F be a pair of spectra. Then the following hold:
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(i) The homomorphism μE,F : H∗(E) ⊗ H∗(F ) → H∗(E ∧ F ) is an iso-
morphism of comodules over the Hopf algebra A ∗

p ;
(ii) Assume that E is bounded below and F has finite Z- or Z[p]-type.

Then μE,F : H∗(E) ⊗ H∗(F ) → H∗(E ∧ F ) is an isomorphism of modules
over the Hopf algebra Ap.

Proof. (i) Because of 4.11(i), it suffices to prove that μE,F is a homomor-
phism of comodules over A ∗

p . Consider the morphisms bE : E → H ∧ E and
bF : F → H ∧ F as in 6.27(c). Because of the naturality of μX,Y in X,Y , we
have the following commutative diagram:

H∗(E)⊗H∗(F )
μE,F−−−−→ H∗(E ∧ F )

(bE)∗⊗(bF )∗

⏐

⏐




⏐

⏐



(bE∧bF )∗

H∗(H ∧ E)⊗H∗(H ∧ F )
μH∧E,H∧F−−−−−−−→ H∗(H ∧E ∧H ∧ F )

μH,E⊗μH,F
�

⏐

⏐

∼=
∥

∥

∥

H∗(H)⊗H∗(H)⊗H∗(E)⊗H∗(F ) H∗(H ∧E ∧H ∧ F )

1⊗T⊗1

⏐

⏐




⏐

⏐



(1∧τ∧1)∗

H∗(H)⊗H∗(E)⊗H∗(H)⊗H∗(F ) ν−−−−→ H∗(H ∧H ∧E ∧ F )

μH,H⊗1⊗1

⏐

⏐




⏐

⏐



(μ∧1∧1)∗

H∗(H)⊗H∗(E)⊗H∗(F ) H∗(H ∧E ∧ F )
∥

∥

∥

∼=
�

⏐

⏐

μH,E∧F

H∗(H)⊗H∗(E)⊗H∗(F )
1⊗μE,F−−−−−→ H∗(H)⊗H∗(E ∧ F )

where
ν := μH∧H,E∧F ◦(μH,H ⊗ μE,F ).

Now, the aggregated left vertical homomorphism

H∗(E)⊗H∗(F )→ H∗(H)⊗H∗(E)⊗H∗(F )

is the A∗
p-comodule structure map for H∗(E)⊗H∗(F ), and it easy to see that

the aggregated right vertical homomorphismH∗(E∧F )→ H∗(H)⊗H∗(E∧F )
is the A∗

p-comodule structure map for H∗(E ∧ F ).
(ii) Similarly to the above, one can prove that μE,F is a homomorphism

of modules over the Hopf algebra Ap. So, we must check that μE,F is an
isomorphism (of groups). If F has finite Z-type then this follows from 4.11(ii);
we leave it to the reader. Now, let F have finite Z[p]-type. Firstly, let F =
H(π) where π is a finitely generated Z[p]-module. Since π is a finite direct
sum of the groups isomorphic to Z[p] and Z/pk, we conclude that π ∼= τ⊗Z[p]
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where τ is a finitely generated abelian group. Since H(τ) has finite Z-type,
μE,H(τ) is an isomorphism. But H∗(H(τ)) = H∗(H(π)), and so μE,H(π) is an
isomorphism.

Now, given F as above, we prove that μE,F(n) is an isomorphism for every
n. We prove this by induction on n. For brevity, we write Fn instead of F(n)

and πk instead of πk(F ). Since F is bounded below, there is k such that
Fk = ΣkH(πk) and so, by the above, our claim is true for Fk. Now, suppose
that μE,Fn−1 is an isomorphism, and consider the cofiber sequence

ΣnH(πn)→ Fn → Fn−1.

It yields the commutative diagram

...
...

⏐

⏐




⏐

⏐




H∗(E)⊗H∗(Fn−1)
∼=−−−−→ H∗(E ∧ Fn−1)

⏐

⏐




⏐

⏐




H∗(E)⊗H∗(Fn)
μE,Fn−−−−→ H∗(E ∧ Fn)

⏐

⏐




⏐

⏐




H∗(E)⊗H∗(ΣnH(πn))
∼=−−−−→ H∗(E ∧ΣnH(πn))

⏐

⏐




⏐

⏐




...
...

with exact columns. Now, the Five Lemma implies that μE,Fn is an isomor-
phism. The induction is confirmed.

Finally, for every k there is N such that (1 ∧ τN )∗ : Hk(E ∧ F(N)) →
Hk(E ∧F ) is an isomorphism. Thus, μE,F is an isomorphism for every spec-
trum F of finite Z[p]-type. �

7.19. Corollary. Let (E, μ, ι) be a ring spectrum.
(i) Define the homomorphisms

μalg : H∗(E)⊗H∗(E)
μE,E−−−→ H∗(E ∧ E)

μ∗−→ H∗(E)

and ι∗ : Z/p = H∗(S)→ H∗(E). Then (H∗(E), μalg , ι∗) is a comodule algebra
over the Hopf algebra A ∗

p .
(ii) In addition, suppose that E has finite Z- or Z[p]-type. Define the

homomorphisms

μalg : H∗(E)
μ∗

−→ H∗(E ∧ E)
μE,E ,∼=←−−−−− H∗(E)⊗H∗(E)
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and ι∗ : H∗(E)→ H∗(S) = Z/p. Then (H∗(E), μalg , ι∗) is a module coalgebra
over the Hopf algebra Ap. �

7.20. Lemma. If E is a connected spectrum and π0(E) = Z/p then H0(E) =
Z/p. Furthermore, Q0(u) 
= 0 for every u ∈ H0(E), u 
= 0.

Proof. By 4.7, the Hurewicz homomorphism h : π0(E) → H0(E; Z) is an
isomorphism, i.e., H0(E; Z) = Z/p. Furthermore, by 4.9, the homomorphism

H0(E) −→ Hom(H0(E; Z), π0(H)) h∗
−→ Hom(π0(E), π0(H)) = Z/p

is an isomorphism. In particular, H0(E) = Z/p.
Let u : E → H represent a non-zero element u ∈ H0(E). Then, by the

above, the induced homomorphism u∗ : π0(E) → H0(E; Z) is an isomor-
phism, and so u is a 0-equivalence. Hence, u∗ : H0(H) → H0(E) is an iso-
morphism and u∗ : H1(H)→ H1(E) is a monomorphism. Thus, Q0(u) 
= 0.

�

7.21. Lemma. Let E be a connected ring spectrum (E, μ, ι) of finite Z[p]-type
with π0(E) = Z/p. Then H∗(E) is a connected Ap-coalgebra, and its counit
v ∈ H0(E) yields a ring morphism v : E → H.

Proof. By 7.19(ii), H∗(E) is an Ap-coalgebra. Furthermore, the argu-
ments in the proof of 7.20 show that the augmentation ι∗ : Z/p = H0(E)→
H0(S) = Z/p is an isomorphism. So, H∗(E) is a connected coalgebra. Its
counit v is defined by the condition ι∗(v) = 1 ∈ Z/p = H0(S). We must
prove that v : E → H is a ring morphism, i.e., that the diagram

E ∧ E μ−−−−→ E

v∧v
⏐

⏐




⏐

⏐




v

H ∧H μH−−−−→ H.

commutes (up to homotopy). The morphism

S = S ∧ S ι∧ι−−→ E ∧ E μ−→ E
v−→ H

coincides (up to homotopy) with vι, while the morphism

S = S ∧ S ι∧ι−−→ E ∧ E v∧v−−→ H ∧H μH−−→ H

coincides with the unit ιH of H . Also, ιH � vι since ι∗(v) = 1 ∈ H0(S).
Hence,

v◦μ◦(ι ∧ ι) � vι � ιH � μH◦(v ∧ v)◦(ι ∧ ι).
Since (ι∧ ι)∗ : H0(E ∧E)→ H0(S∧S) is an isomorphism, v◦μ � μH◦(v∧v).

�
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Let E be a spectrum as in 7.21. We define ν : Ap → H∗(E) by setting
ν(a) = a(v).

7.22. Theorem. If ν is monic in dimension ≤ m + 1 then the coskeleton
E(m) of E is a graded Eilenberg–Mac Lane spectrum. Furthermore, if ν is
monic then E is a graded Eilenberg–Mac Lane spectrum.

Proof. By 6.29, the homomorphism η : Ap ⊗ G(H∗(E)) → H∗(E) is
an isomorphism in dimensions ≤ m + 1. Now, by 7.17, E(m) is a graded
Eilenberg–Mac Lane spectrum. Furthermore, the last claim follows from the
above and 7.3(iii). �

7.23. Corollary. Fix a natural number m. Suppose either
(i) p = 2 and ν(Qi) 
= 0 for 2i+1 − 1 ≤ m+ 1, or
(ii) p > 2 and ν(Qi) 
= 0 for 2pi−1 ≤ m+1, ν(PΔj ) 
= 0 for 2(pj −1) ≤

m+ 1.
Then E(m) is a graded Eilenberg–Mac Lane spectrum.

Proof. This follows from 6.14 and 7.22, because the elements Qi for p = 2
and the elements Qi,PΔj for p > 2 form a Z/p-basis of the vector space
PrAp of primitives. �

7.24. Corollary. Suppose either
(i) p = 2 and ν(Qi) 
= 0 for i = 0, 1, . . . , or
(ii) p > 2 and ν(Qi) 
= 0 for i = 0, 1, . . . , ν(PΔj ) 
= 0 for j = 1, 2, . . . .

Then E is a graded Eilenberg–Mac Lane spectrum, E � H(π∗(E)). In other
words, E is a wedge of iterated suspensions over HZ/p. �

7.25. Remark. It follows from 6.32 that 7.22–7.24 are valid for “non-
associative ring spectra” also, i.e., for spectra which satisfy Definition 2.12
with condition (1) omitted.

Now we consider ring structures on graded Eilenberg–Mac Lane spectra
(following Boardman [1]). We work here with homology rather than with
cohomology because the homology Künneth formula holds without any re-
strictions, unlike the cohomology one.

7.26. Lemma. If a commutative ring spectrum E is a graded Eilenberg–
Mac Lane spectrum with pπ∗(E) = 0, then there exists a homomorphism
b : A ∗

p → H∗(E) of A ∗
p -comodule algebras.

Proof. We consider the case p = 2 only; the case p > 2 can be proved sim-
ilarly. By 7.1, the inclusion Z/p = π0(E)→ π∗(E) is induced by a morphism
ϕ : H → E, and f = ϕ∗ : A ∗

p = H∗(H) → H∗(E) is a homomorphism of
A ∗
p -comodules.
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Recall that A ∗
2 = Z/2[ζ1, . . . , ζn, . . . ] and define a homomorphism of

Z/2-algebras b : A ∗
2 → H∗(E; Z/2) by setting b(ζi) = f(ζi). Such a homo-

morphism of algebras exists (and is unique) because E is commutative. We
check that b is a homomorphism of A ∗

2 -comodules, i.e., that the diagram

A ∗
2

b−−−−→ H∗(E; Z/2)

∇
⏐

⏐




⏐

⏐



ψ

A ∗
2 ⊗A ∗

2
1⊗b−−−−→ A ∗

2 ⊗H∗(E; Z/2)

commutes. In this diagram all arrows are homomorphisms of Z/2-algebras (b
and 1⊗b by construction, ∇ by definition and ψ by general reasons, cf. 6.25).
So, it suffices to prove that (1⊗ b)∇(ζi) = ψb(ζi) for every i. We have

(1⊗ b)∇(ζk) = (1⊗ b)
(

∑

ζ2i

k−i ⊗ ζi
)

=
∑

ζ2i

k−i ⊗ b(ζi) =
∑

ζ2i

k−i ⊗ f(ζi)

= (1⊗ f)∇(ζk) = ψf(ζk) = ψb(ζk).

The fifth equality holds because f is a homomorphism of comodules. �
Let E be a ring spectrum with π0(E) = Z/p. We turn π∗(E) into an A ∗

p -
comodule by requiring π∗(E) = Si(π∗(E)). In this way π∗(E) turns into a
A ∗
p -comodule algebra, and the Hurewicz homomorphism h : π∗(E)→ H∗(E)

is a homomorphism of A ∗
p -comodule algebras.

7.27. Lemma. If a commutative ring spectrum E is a graded Eilenberg–
Mac Lane spectrum with pπ∗(E) = 0, then the Hurewicz homomorphism
h : π∗(E)→ H∗(E) is a monomorphism, and h(π∗(E)) = Si(H∗(E)).

Proof. Since E � ∨ΣdH , h is monic. Furthermore, because of this
equivalence, H∗(E) is just a cofree extension H∗(H) ⊗ h(π∗(E)). Finally,
Si(H∗(H)) = Z/p = H0(H), and thus Si(H∗(E)) = h(π∗(E)). �

7.28. Corollary. If a commutative ring spectrum E is a graded Eilenberg–
Mac Lane spectrum with pπ∗(E) = 0, then there is an isomorphism H∗(E) ∼=
A ∗
p ⊗ π∗(E) of Ap-comodule algebras.

Proof. The homomorphism b : A ∗
p → H∗(E) in 7.26 yields, by 6.34, an

isomorphism H∗(E) ∼= A ∗
p ⊗ Si(H∗(E)). But Si(H∗(E)) ∼= π∗(E). �

7.29. Proposition. Let E,F be two graded Eilenberg–Mac Lane spectra with
pπ∗(E) = 0 = pπ∗(F ).

(i) The homomorphism ϕ : [E,F ] → HomA ∗
p
(H∗(E), H∗(F )), ϕ(f) = f∗,

is an isomorphism.
(ii) In addition, suppose that E,F are ring spectra. Then f : E → F is a

ring morphism iff f∗ : H∗(E)→ H∗(F ) is a homomorphism of A ∗
p -comodule

algebras.
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Proof. (i) The spectrum E is a wedge of spectra of the form ΣdH . Since
each of the groups [E,F ] and HomA ∗

p
(H∗(E), H∗(F )) is additive with respect

to E, it suffices to prove (i) for E = H .
Since H is a ring spectrum and F = ∨ΣdH , we conclude that F is an

H-module spectrum. By 7.28 and 6.8, we have an isomorphism

h : HomA ∗
p
(H∗(H), H∗(F )) ∼= HomA ∗

p
(H∗(H),A ∗

p ⊗ π∗(F ))
∼= HomZ/p(H∗(H), π∗(F )).

We leave it to the reader to check that hϕ : F ∗(H)→ HomZ/p(H∗(H), π∗(F ))
coincides with the homomorphism ev as in 3.45. Hence, by 3.45, hϕ is an
isomorphism, and thus ϕ is an isomorphism.

(ii) If f∗ is a homomorphism of comodule algebras then the diagram

H∗(E)⊗H∗(E) H∗(F )⊗H∗(F )

∼=
⏐

⏐




∼=
⏐

⏐




H∗(E ∧ E)
(f∧f)∗−−−−→ H∗(F ∧ F )

⏐

⏐



μE∗ μF∗

⏐

⏐




H∗(E)
f∗−−−−→ H∗(F )

commutes. By 7.10(ii), E ∧ E and F ∧ F are graded Eilenberg–Mac Lane

spectra, and so, by (i), the morphisms E ∧ E μE−−→ E
f−→ F and E ∧ E f∧f−−→

F ∧ F μF−−→ F are homotopic. Furthermore, the Hurewicz homomorphism
h : π∗(X)→ H∗(X), X = E,F , is a ring monomorphism, and so f preserves
the units. Thus, f is a ring morphism. The converse is obvious. �

7.30. Theorem (Boardman [1]). Let E,F be two commutative ring spectra.
Suppose that E,F are graded Eilenberg–Mac Lane spectra with pπ∗(E) =
0 = pπ∗(F ). Then every ring homomorphism r : π∗(E) → π∗(F ) is induced
by a ring morphism f : E → F . So, if there exists a ring isomorphism
π∗(E) ∼= π∗(F ) then there exists a ring equivalence E � F .

In particular, there is a ring equivalence E � H(π∗(E)).

Proof. The composition

H∗(E)
∼=−→ A ∗

p ⊗ π∗(E) 1⊗r−−→ A ∗
p ⊗ π∗(F )

∼=−→ H∗(F )

(where the first and the last isomorphisms come from 7.28) is a homomor-
phism of comodule algebras. By 7.29(i), it is induced by a morphism E → F ,
which is a ring morphism by 7.29(ii). The last assertion follows if we put
F = H(π∗(E)). �



Chapter III. Phantoms

A phantom, or a phantom map, is an essential map f : X → Y of a CW -
complex X such that f |X(n) is inessential for every n. Adams–Walker [1]
found an example of a phantom, and many other authors found phantoms
later. The existence of phantoms was very exotic at that time and adorned
(and adorns now, by the way) any results. However, as usual, the other ten-
dency occurred afterwards: phantoms began to frustrate mathematicians be-
cause they appeared (or could appear) in very unexpected situations. Keeping
in mind the two above tendencies, we give examples of phantoms and some
sufficient conditions for the absence of phantoms. In fact, this chapter can
be treated as an exposition of some effects arising when we pass from finite
dimensional spaces (spectra) to infinite dimensional ones. In this context it
is also natural to consider spaces (spectra) which have the same n-type for
all n.

Many other things about phantoms one can find in McGibbon [1].

§1. Phantoms and the Inverse Limit Functor

Let X = {Xα} be a family of subspaces of a space X (or subspectra of a
spectrumX). Given a space (spectrum) Y , we say that maps f, g : X → Y are
X -homotopic if f |Xα � g|Xα for every α. Similarly, elements a, b ∈ E∗(X)
are called X -equivalent if a|Xα = b|Xα for every α. The classes of X -
homotopic maps (or X -equivalent elements) form a set [X,Y ]X (or a group
E∗

X (X)) with the distinguished element ∗ given by a constant map . There
are the obvious quotient functions σ : [X,Y ] → [X,Y ]X and σ : E∗(X) →
E∗

X (X).

1.1. Definition. A map f : X → Y of spaces (or a morphism of spectra)
is called an X -phantom if σ[f ] = ∗ while [f ] 
= ∗. Similarly, an element
a ∈ E∗(X) is an X -phantom if σ(a) = 0 while a 
= 0.

This definition is given for an arbitrary family X , but really interesting
are families with ∪Xα = X . Moreover, to justify the term “phantom” the
subspaces Xα must be sufficiently “massive”, otherwise phantoms do not live
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up to their name. For example, if {Xα} is a family of charts of a manifold X ,
then every non-trivial element of ˜E∗(X) is a phantom. Usually one considers
the families {Xλ} of all finite CW -subcomplexes (subspectra) and {X(n)} of
skeletons of a CW -complex (spectrum) X . We fix these cases in the following
definition.

1.2. Definition. (a) Given a CW -complex (spectrum) X , let X be the fam-
ily {X(n)} of all skeleta of X . Then an X -phantom is called just a phantom.

(b) Given a CW -complex (spectrum) X , let X denote the family {Xλ}
of all finite subcomplexes (subspectra) of X . Then an X -phantom is called
a weak phantom.

Propositions 1.3 and 1.4 below are formulated for a spectrum X and
phantoms in E∗(X). We leave it to the reader to consider the case of spaces
X and sets [X,Y ].

1.3. Proposition. Let h : X → Y be an equivalence of spectra, and let
h∗ : E∗(Y ) → E∗(X) be the induced isomorphism. Then h∗ maps phantoms
to phantoms and weak phantoms to weak phantoms.

Proof. Exercise. Use II.3.14 (cf. 1.14 and 1.15 below). �

1.4. Proposition. Let X,E be a pair of spectra. Then every phantom in
E∗(X) is a weak phantom. Furthermore, if X has finite Z-type then every
weak phantom in E∗(X) is a phantom.

Proof. The first assertion is trivial. The second assertion is clear if X has
finite type, since in this case each skeletonX(n) is finite. Finally, by II.4.26(ii),
every spectrum of finite Z-type is equivalent to a spectrum of finite type, and
the result follows from 1.3. �

1.5. Example of a weak phantom. Let X = Sn[1/3] be a Z[1/3]-localized
sphere Sn, n > 1, i.e., the telescope of a sequence

Sn
f−→ Sn

f−→ · · · f−→ Sn
f−→ · · · ,

where f : Sn → Sn is a map of degree 3. If we regard Sn as a CW -complex
with two cells, we obtain a cellular decomposition ofX with 0-, n- and (n+1)-
dimensional cells. This gives us a chain complex {C∗(X), ∂∗}, where Cn(X)
has Z-basis {a1, . . . , ai, . . . }, and Cn+1(X) has Z-basis {b1, . . . , bn, . . . }, and
∂n+1bi = ai − 3ai+1. Let X = {Xλ} be the family of all finite CW -
subcomplexes of X . It is clear that Hn+1

X (X) = Hn+1(Sn) = 0. On the
other hand, Hn+1(X) 
= 0 because the cocycle ϕ : Cn+1(X) → Z, ϕ(bi) = 1
for every i, is not a coboundary. Indeed, if ϕ = δψ for some ψ : Cn(X)→ Z,
then ψ(ai)− 3ψ(ai+1) = 1. In particular,
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ψ(a1) =
3k − 1

2
+ 3kψ(ak+1)

for every k. Hence, 3k divides 2ψ(a1) + 1 for every k, and so 2ψ(a1) = −1.
This is a contradiction. Thus, the subgroup of weak phantoms of Hn+1(X)
is nontrivial (and even uncountable, see 5.1 below).

1.6. Example of a phantom (Adams–Walker [1]). Let X = S1 ∧ CP∞.
Consider the space T = S3[0], the telescope of the sequence

S3
1

ϕ1−→ S3
2

ϕ2−→ · · · −→ S3
n

ϕn−−→ S3
n+1 −→ · · · ,

where S3
n is a copy of S3 and degϕn = n. As in 1.5, we have C3(T ) =

{a1, . . . , an, . . . }, C4(T ) = {b1, . . . , bn, . . . } and ∂bi = ai − iai+1. Let f0 :
X → T be any essential map: they exist because T � K(Q, 3). (This holds,
in turn, since πi(S3) is finite for i > 3, cf. II.7.11(i).) We regard every sphere
S3
i as a subspace of T : namely, S3

i = S3
i × {i+ 1} ⊂ T . Let Y be the space

obtained by attaching a cone Ci = C(S3
i ) across each sphere S3

i , and let
i : T → Y be the inclusion. Set f = if0; we now prove that f is a phantom.

Firstly, f |X(m) is inessential for every m. Indeed, let Tk be the telescope
of the finite sequence

S3
1

ϕ1−→ S3
2

ϕ2−→ · · · ϕk−1−−−→ S3
k;

it is clear that Tk contracts to S3
k. The space X(m) is compact, and hence

f(X(m)) is contained in some TN . But the sphere S3
N is coned off in Y , and

hence f |X(m) is inessential.
On the other hand, f is essential. Indeed, otherwise it can be extended to

a map F : (CX,X)→ (Y, T ). Let z be a generator of the groupH4(CX,X) =
Z, and let ci be a generator of the group H4(Ci, Ci ∩ T ) = Z. Since the ele-

ments ci generate H4(Y, T ), there exists N such that F∗(z) =
N
∑

i=1

nici, where

ni ∈ Z. Let ∂ : H4(CX,X) → H3(X) be the connecting homomorphism.
It is clear that ∂z generates H3(X), and hence F∗(z) = ±(f0)∗(∂z). But
(f0)∗(∂z) 
= 0 by construction, and so there exists k such that nk 
= 0. Let p
be any prime which does not divide nk, and let c̄i be the mod p reduction of
ci. Consider the class c∗k ∈ H4(Y, T ; Z/p) dual to c̄k with respect to the basis
{c̄i}. We have F ∗c∗k 
= 0. Since P 1 : H2(CP∞; Z/p) → H2p(CP∞; Z/p) is
an isomorphism, so is P 1 : H4(CX,X ; Z/p) → H2p+2(CX,X ; Z/p). Hence,
P 1F ∗c∗k 
= 0. But P 1c∗k ∈ H2p+2(Y, T ; Z/p) = 0. This contradiction proves
that f is essential.

1.7. Remarks. (a) There is no commonly accepted terminology concerning
phantoms. For example, some people use the term “phantoms” for what we
call weak phantoms; Margolis [1] uses the term “fff-map” for weak phantoms,
etc.
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(b) Let X be the family of all suspension subspectra of a spectrum X .
Margolis [1] introduced the term “hyperphantom” for X -phantoms. I think
it is still unknown whether hyperphantoms exist.

(c) Probably, “theoretically” it is preferably to define, say, weak phantoms
as essential maps f : X → Y such that fϕ is inessential for every map
ϕ : A → X of a finite CW -complex. In this way X in 1.1 should be a
(small?) category with the terminal object X , etc. However, we do need this
flavor, preferring the style “for working mathematicians”.

Now we want to describe the groups E∗
X (X). Sometimes the inverse limit

concept helps to do it.

1.8. Definition. (a) Let Λ = (Λ,≤) be a quasi-ordered directed set. Let K
be an arbitrary category. An inverse system over Λ, or, briefly, an inverse
Λ-system, in K is a contravariant functor M : Λ → K . In other words,
M is a family M = {Mλ, j

μ
λ}λ,μ∈Λ where Mλ ∈ K and where jμλ : Mμ →

Mλ, λ ≤ μ, are morphisms such that jμλj
ν
μ = jνλ for λ ≤ μ ≤ ν and jλλ = 1Mλ

.
(b) A morphism f : {Mλ, j

μ
λ} → {Nλ, h

μ
λ} of inverse Λ-systems is a natural

transformation of the functors, i.e., a family {fλ : Mλ → Nλ} with hμλfμ =
fλj

μ
λ .
It is clear that there arises a category KΛ of inverse Λ-systems in K .

1.9. Definition. Let K be one of the following categories: E ns, W , groups
and homomorphisms, R-modules over some ring R and R-homomorphisms,
topological groups (in W ) and continuous homomorphisms. Given a quasi-
ordered set Λ, let M = {Mλ} be an inverse Λ-system in K . An element
{aλ} ∈

∏

λMλ is called a string if jμλaμ = aλ for every λ, μ ∈ Λ with λ ≤ μ.
The set of all strings is called the inverse limit or projective limit of the inverse
system M and is denoted by lim←−M or lim←−{Mλ} or lim←−Λ{Mλ}.

Clearly, lim←−{Mλ} =
∏

Mλ if Λ is a discrete quasi-ordered set.
It is obvious that lim←− is a functor KΛ → K . Furthermore, lim←− commutes

with the forgetful functor K → E ns.

Note that the projections pλ :
∏

λ

Mλ →Mλ yield functions

(1.10) qλ : lim←−M →Mλ, qλ = pλ| lim←−M .

1.11. Proposition. Let {fλ : N →Mλ} be a family of morphisms such that
jμλfμ = fλ for every λ ≤ μ. Then there exists a morphism f : N → lim←−M
with qλf = fλ, and this morphism is unique.

Similarly to I.2.5, we denote this f by {fλ| lim←−}.
Proof. Set f(n) = {fλ(n)} ∈

∏

λMλ. Then {fλ(n)} is a string, and pλf =
fλ. The uniqueness of f is obvious. �

As an illustration, consider the following important example.
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1.12. Example. Let E be a spectrum, let X be a CW -complex (resp. a
spectrum), and let X = {Xλ} be a family of CW -subcomplexes (resp.
subspectra) of X ordered with respect to inclusions. We also assume that
Xλ ∪ Xμ ∈ X , Xλ ∩ Xμ ∈ X for every λ, μ ∈ Λ. Let iλ : Xλ → X
and iμλ : Xλ → Xμ be the inclusions. Then we have an inverse system
{E∗(Xλ), (i

μ
λ)

∗}. Considering homomorphisms qλ : lim←−{E
∗(Xλ)} → E∗(Xλ)

as in (1.10), we conclude that the family {fλ := (iλ)∗ : E∗(X) → E∗(Xλ)}
satisfies the conditions of 1.11. Thus, there exists a unique homomorphism
ρ = {i∗λ| lim←−} : E∗(X)→ lim←−{E

∗(Xλ)} with qλρ = i∗λ.

1.13. Proposition. The morphism ρ : E∗(X) → lim←−{E
∗(Xλ)} can be de-

composed as
E∗(X) σ−→ E∗

X (X) κ−→ lim←−{E
∗(Xλ)},

where σ is the epimorphism defined at the beginning of this section and κ is
a monomorphism.

Proof. It is easy to see that i∗λ : E∗(X)→ E∗(Xλ) can be decomposed as
E∗(X) σ−→ E∗

X (X) κλ−−→ E∗(Xλ) with some κλ. Furthermore, the homomor-
phisms κλ satisfy 1.11, and so there exists κ : E∗

X (X)→ lim←−{E
∗(Xλ)} with

qλκ = κλ. The equality ρ = κσ follows from 1.11.
We prove that κ is monic. Suppose that κ(a) = 0 and choose b ∈ E∗(X)

with σ(b) = a. Then i∗λ(b) = 0 for every λ. Thus, b is X -equivalent to 0, i.e.,
a = 0. �

In particular, Kerσ = Ker ρ. Hence, X -phantoms are just (nontrivial)
elements of the group Ker{ρ : E∗(X)→ lim←−{E

∗(Xλ)}}.

1.14. Construction. Given two spectra X,Y , let {Xλ}, resp. {Yμ} be the
family of all finite subspectra of X , resp. Y , and f : X → Y be a map of
spectra. By II.3.14, there are families {Xω} ⊂ {Xλ}, {Yω} ⊂ {Yμ} and maps
fω : Xω → Yω, ω ∈ Ω, such that {Xω} is cofinal in {Xλ}, {Yω} is cofinal in
{Yμ}, and the composition

Xω
fω−→ Yω ⊂ Y

coincides with f |Xω. Now, for every spectrum E we have the homomorphisms
f∗
ω : E∗(Yω)→ E∗(Xω). They yield the homomorphism

f∗ := lim←− f
∗
ω : lim←−{E

∗(Yμ)} = lim←−{E
∗(Yω)} → lim←−{E

∗(Xω)} = lim←−{E
∗(Xλ)}.

Furthermore, if f : X → Y is not a map but a morphism of spectra, we can
consider a map f ′ : X → Y where X ′ is cofinal in X , and get the similar
homomorphism f∗ : lim←−{E

∗(Yμ)} → lim←−{E
∗(Xλ)}.

1.15. Proposition. Let X,Y,E be three spectra, and let {Xλ}, resp. {Yμ}
be the family of all finite subspectra of X, resp. Y .
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(i) Given a morphism f : X → Y , the homomorphism

f∗ : lim←−{E
∗(Yμ)} → lim←−{E

∗(Xλ)}

in 1.14 does not depend on the choice of {Xω} and {Yω}. In particular, the
group lim←−{E

∗(Xλ)} is natural in X.
(ii) If f � g : X → Y then f∗ = g∗ : lim←−{E

∗(Yμ)} → lim←−{E
∗(Xλ)}. In

particular, if h : X → Y is a homotopy equivalence then h∗ : lim←−{E
∗(Yμ)} →

lim←−{E
∗(Xλ)} is an isomorphism.

Proof. We leave it to the reader. �

1.16. Proposition. Let · · · ⊂ Xn ⊂ Xn+1 ⊂ · · · be a CW -filtration
of a CW -complex X. Then for every space Y the function ρ : [X,Y ] →
lim←−{[Xn, Y ]} is surjective. Similarly, if, in addition, we equip X and Y with
base points and assume that {Xn} is a pointed filtration, then the function
ρ : [X,Y ]• → lim←−{[Xn, Y ]•} is surjective.

Proof. We consider only the case of non-pointed spaces. Let an element
a ∈ lim←−{[Xn, Y ]} be represented by a family of maps {fn : Xn → Y } with
fn+1|Xn � fn. Using the homotopy extension property for CW -pairs, one can
construct (by induction) a family of maps {gn : Xn → Y } with gn+1|Xn = gn
and gn � fn. If we define g : X → Y by setting g|Xn = gn, we conclude that
ρ[g] = {[gn]} = {[fn]} = a. �

1.17. Lemma. Let · · · → Kn
fn−→ Kn−1 → · · · be an inverse sequence of

non-empty finite sets. Then lim←−{Kn} 
= ∅.

Proof. We set Pn :=
⋂∞
m=n Im{Km → Kn}. Clearly, Pn 
= ∅ for every n,

and every function gn : Pn → Pn−1 (the restriction of fn) is surjective. So,
we can find elements xn ∈ Pn, n ∈ Z, such that gn(xn) = xn−1. Now, {xn} is
a string in {Kn}. �

1.18. Theorem. Let Y = (Y, y0) be a pointed space which is connected and
simple.

(i) Let (Z,A) be a CW -pair such that the group Hk(Z,A;πk(Y )) is finite
for every k > 0. Given a map u : A→ Y , suppose that u can be extended to
Z(n) ∪A for every n. Then u can be extended to the whole space Z.

(ii) Let X = (X,x0) be a pointed CW -complex such that the group
Hk−1(X ;πk(Y )) is finite for every k > 0. Then both functions ρ : [X,Y ]• →
lim←−{[X

(n), Y ]•} and ρ : [X,Y ]→ lim←−{[X
(n), Y ]} are bijections.

Proof. (i) It suffices to construct a family {vn : Z(n) ∪A→ Y } such that
v|A = u and vn+1|Z(n) � vn. Indeed, then, deforming vn map by map, we
can construct a family {v′n} such that v′n+1|Z(n) = v′n and v′n|A = u, cf. the
proof of 1.16. Then we define v(x) := v′n(x) if x ∈ Z(n).
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We set kn := {v : Z(n) ∪ A → Y
∣

∣ v|A = u} and Kn := {[v]
∣

∣ v ∈ kn}
(where [v] denotes, as usual, the homotopy class of v). Then we have the
inverse sequence

· · · → Kn
fn−→ Kn−1 → · · · → K0

where fn[v] = [v|Zn−1 ∪A]. Since every group Hk(Z,A;πk(Y )) is finite, we
conclude, using the elementary obstruction theory, that every set Kn is finite.
So, by 1.17, there is a string [vn] ∈ lim←−{Kn}, i.e., the desired family {vn}.

(ii) The surjectivity of ρ is proved in 1.16. We prove the injectivity of ρ.
Firstly, we consider pointed maps. Let f, g : (X,x0) → (Y, y0) be two

pointed maps such that ρ[f ] = ρ[g]. We must prove that there a pointed
homotopy between f and g.

We set Z := X×I, A = X×{0}∪X×{1}∪{x0}×I and define u : A→ Y
by setting u(x, 0) = f(x), u(x, 1) = g(x), u(x0, t) = y0. Since ρ[f ] = ρ[g], we
conclude that f |X(n) and g|X(n) are homotopic for every n, and so u can be
extended to (X × I)(n) ∪A for every n. Now,

˜Hk(Z,A;πk(Y )) = ˜Hk(X × I/(X × {0, 1} ∪ {x0} × I);πk(Y ))

= ˜Hk(SX ;πk(Y )) ∼= Hk−1(X ;πk(Y )).

So, every groupHk(Z,A;πk(Y )) is finite, and hence, by (i), u can be extended
to X, i.e., f and g are homotopic as pointed maps.

Now we consider non-pointed maps, i.e., we prove the injectivity of ρ :
[X,Y ] → lim←−{[X

(n), Y ]}. So, we consider two maps f, g : X → Y and prove
that f � g whenever ρ[f ] = ρ[g]. Without loss of generality we can assume
that f(x0) = g(x0) = y0. Since ρ[f ] = ρ[g], for every n there is a homotopy
Hn : X(n)× I → Y between f and g. We fix such a family {Hn}. Then every
loopHn(x0, t), t ∈ I gives us an element αn ∈ π1(Y, y0). Since (X×I, {x0}×I)
is a cofibered pair, we can assume that Hm(x0, t) = Hn(x0, t) whenever
αm = αn. Note that π1(Y ) is finite since the groupH0(X ;π1(Y )) is finite. So,
there is an infinite subset M = {n1, . . . , nk, . . . } of N such that αni = αn1 for
every i ∈M . Now we define a new family {H ′

n : X(n)×I → Y } of homotopies
by setting H ′

m := Hn|X(m) × I where n := min{k|k ∈ M and m ≤ k}.
In particular, H ′

n(x0, t) does not depend on n. We set Z := X × I, A =
X × {0} ∪ X × {1} ∪ {x0} × I and define u : A → Y by setting u(x, 0) =
f(x), u(x, 1) = g(x), u(x0, t) = H ′

n(x0, t). Now the proof can be completed
similarly to the previous case. �

Let M be an inverse Λ-system, and let Λ′ be a subset of Λ with the
quasi-ordering inherited from Λ. Consider the morphisms

qλ : lim←−
Λ

M →Mλ, λ ∈ Λ and q′λ : lim←−
Λ′

M →Mλ, λ ∈ Λ′

as in (1.10). Based on 1.11, we define

(1.19) M Λ
Λ′ : lim←−

Λ

{Mλ} → lim←−
Λ′
{Mλ}

to be the unique morphism such that q′λM
Λ
Λ′ = qλ for every λ ∈ Λ′.
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1.20. Lemma. If Λ′ is cofinal in Λ then M Λ
Λ′ is an isomorphism for every

inverse Λ-system M .

Proof. This is obvious. �
We finish this section with some algebraic remarks. Let Λ, Λ′ be two quasi-

ordered sets. Consider the quasi-ordered set Λ × Λ′, where (λ, λ′) ≤ (μ, μ′)
iff λ ≤ μ and λ′ ≤ μ′.

1.21. Lemma. lim←−Λ×Λ′{Aλ,λ′} = lim←−Λ{lim←−Λ′{Aλ,λ′}} = lim←−Λ′{lim←−Λ{Aλ,λ′}}.
In particular, if Λ′ is a discrete ordered set, then

lim←−
Λ

{

∏

Λ′

Aλ,λ′

}

=
∏

Λ′

lim←−
Λ

{Aλ,λ′}.

Proof. Routine. �

1.22. Definition. Let R be a commutative ring. Let {Mλ}, resp. {Nλ′}, be
inverse systems of R-modules. Set M = lim←−{Mλ}, N = lim←−{Nλ′}. Define the
Λ− Λ′-completed tensor product M ⊗Λ−Λ′

N := lim←−{Mλ ⊗Nλ′}.
Given a ∈ M, b ∈ N , it is useful to denote the string {aλ ⊗ bλ′} by

a⊗Λ−Λ′
b.

1.23. Examples. (a) Let A,B be two graded abelian groups, and let A[k] be
the subgroups of elements of degree ≤ k, A[k] = ⊕i≤kAi. We have the inverse
Z-system {A[k], j

l
k}, where jlk|Ai = 1Ai for i ≤ k and jlk|Ar = 0 for k < r ≤ l.

In this way we have the completed graded tensor product

A⊗grad B := lim←−{A[k] ⊗B[l]}.

(b) Let E,F,X, Y be any spectra. Suppose that E∗(X) = lim←−{E
∗(Xλ)}

and F ∗(Y ) = lim←−{F
∗(Yλ′ )}, where {Xλ}, {Yλ′} are the families of all finite

subspectra of X,Y respectively. (See §4 about conditions when this holds.)
Then we have the profinitely completed tensor product

E∗(X)̂⊗F ∗(Y ) := lim←−{E
∗(Xλ)⊗ F ∗(Yλ′)}.

Furthermore, if E is a ring spectrum and F is an E-module spectrum, we
define

E∗(X)̂⊗E∗(S)F
∗(Y ) := lim←−{E

∗(Xλ)⊗E∗(S) F
∗(Yλ′ )}.
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§2. Derived Functors of the Inverse Limit Functor

From here to the end of this chapter the words “ inverse system” mean
“ inverse system in A G ” unless something else is said explicitly. Moreover, if
we use a script letter (say, A ) in order to denote an inverse Λ-system then
we use the same capital letter (Aλ in this case) in order to denote terms of
this system.

2.1. Definition. A sequence · · · → A → B → C → · · · of inverse Λ-systems
is called exact if for every λ ∈ Λ the sequence

· · · → Aλ → Bλ → Cλ → · · ·

is exact.

2.2. Theorem. If the sequence

0→ A → B → C → 0

is exact, then the induced sequence

0→ lim←−A → lim←−B → lim←−C

is exact. In other words, the functor lim←− is a left exact functor.

Proof. This follows immediately from the definitions, see e.g. Switzer [1],
7.63, or Eilenberg–Steenrod [1], VIII.5.3. �

However, the functor lim←− is not a right exact functor, i.e., the homomor-
phism lim←−B → lim←−C in 2.2 is not epic in general. There is the following
well-known example.

2.3. Example. Consider the following short exact sequence of inverse sys-
tems (the latter are vertically situated)

...
...

...
⏐

⏐



3

⏐

⏐



3

∥

∥

∥

0 −−−−→ Z
2−−−−→ Z −−−−→ Z/2 −−−−→ 0

⏐

⏐



3

⏐

⏐



3

∥

∥

∥

0 −−−−→ Z
2−−−−→ Z −−−−→ Z/2 −−−−→ 0

where the number at the arrow means the multiplication by this number.
Applying the functor lim←− to this sequence, we get a non-exact sequence

0→ 0→ 0→ Z/2→ 0.
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This suggests the existence of right derived functors lim←−
k of lim←−, converting

the exact sequence 0→ A → B → C → 0 into an exact sequence

(2.4)
0 −→ lim←−A −→ lim←−B −→ lim←−C −→ lim←−

1A −→ · · · −→ lim←−
k−1C

−→ lim←−
kA −→ lim←−

kB −→ lim←−
kC −→ lim←−

k+1A −→ · · · .

These functors really exist, and now we describe them.

2.5. Definition. An inverse Λ-system A is called flabby if the homomorphism
A Λ

Λ′ : lim←−λ∈ΛAλ → lim←−λ∈Λ′Aλ as in (1.19) is epic for every Λ′ ⊂ Λ.
Note that {Aλ|λ ∈ Λ′} is flabby for every Λ′ ⊂ Λ if {Aλ|λ ∈ Λ} is

flabby. Furthermore, if the system {Aλ} is flabby, then every homomorphism
jμλ : Aμ → Aλ, λ ≤ μ, is epic.

2.6. Theorem (cf. Godement [1], Th. 3.1.2). Let

0→ A → B → C → 0

be an exact sequence of inverse systems. If A is flabby, then the sequence

0→ lim←−A → lim←−B → lim←−C → 0

is exact.

Proof. Given a string {cλ} ∈ lim←−C , we prove that it is the image of a string
{bλ} ∈ lim←−B. Consider the set E of all “substrings” {bλ ∈ Bλ|λ ∈ Λ′ ⊂ Λ}
such that bλ �→ cλ for every λ ∈ Λ′ and Λ′ runs over all subsets of Λ. We
say that {b′λ|λ ∈ Λ′ ⊂ Λ} ≤ {b′′λ|λ ∈ Λ′′ ⊂ Λ} iff Λ′ ⊂ Λ′′ and b′λ = b′′λ
for every λ ∈ Λ′. It is clear that E is an inductive set. Therefore, by Zorn’s
Lemma, it has a maximal element {bλ|λ ∈ Ω}. We prove that Ω = Λ. Indeed,
let ν ∈ Λ, ν /∈ Ω. Set [ν] := {α|α ≤ ν} ⊂ Λ. Choose an element bν with
bν �→ cν and set bα = jναbν for every α ≤ ν. It is clear that the difference of
the substrings {bβ|β ∈ [ν] ∩ Ω} and {bβ|β ∈ [ν] ∩ Ω} is the image of some
substring {aβ ∈ Aβ |β ∈ [ν]∩Ω}. Since A is flabby, we can find aν ∈ Aν with
aβ = jνβaν for every β ≤ ν. Set b′ν = bν + aν and b′β = jνβb

′
ν for β ≤ ν. Then

{bλ|λ ∈ Ω} and {b′β|β ∈ [ν]} agree on [ν] ∩ Ω. But in this case they produce
a substring indexed by [ν] ∪Ω. Hence, {bλ|λ ∈ Ω} is not a maximal element.
This is a contradiction. �

2.7. Corollary. Let 0→ A
f−→ B

g−→ C → 0 be an exact sequence of inverse
systems. If A and B are flabby then so is C .

Proof. In the commutative diagram
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lim←−λ∈ΛBλ −−−−−−−−→ lim←−λ∈ΛCλ

BΛ
Λ′

⏐

⏐

⏐

⏐




⏐

⏐

⏐

⏐




C Λ
Λ′

lim←−λ∈Λ′Bλ
lim←−{gλ}−−−−−−−−→ lim←−λ∈Λ′Cλ

the homomorphisms lim←−{gλ} and BΛ
Λ′ are epic. Thus, C Λ

Λ′ is epic. �

2.8. Corollary. If 0 → A 0 f0

−→ A 1 f1

−→ · · · fn−→ A n+1 −→ · · · is an exact
sequence of flabby inverse systems, then the induced sequence

0→ lim←−A 0 → lim←−A 1 → · · · → lim←−A n → · · ·

is exact.

Proof. It follows from 2.7 (inductively) that

0→ 0→ A 0 → Im f0 → 0, 0→ Im fn → A n+1 → Im fn+1 → 0

are exact sequences of flabby inverse systems. Now use 2.6. �
Let A = {Aλ, jμλ} be an inverse system. Following Roos [1], consider an

inverse system R(A ) = {Rλ(A ), πμλ}, where Rλ =
∏

α≤λ
Aα and πμλ is defined

as follows: πμλ |Aα = 1Aα for α ≤ λ and πμλ |Aα = 0 otherwise. There is a
canonical embedding

r : A → R(A ), rλ = {jλα} : Aλ →
∏

α≤λ
Aα = Rλ(A ).

It is easy to see that R is an autofunctor on the category of inverse Λ-
systems and that r : 1→ R is a morphism of functors.

2.9. Proposition. The inverse system R(A ) is flabby for every inverse
system A . Thus, every inverse system can be embedded in a flabby one.

Proof. This follows immediately from the definition of R. �
Given an inverse system A , we set R0(A ) = R(A ) and R1(A ) =

R(R0(A)/r(A )). We define the morphism

e0 : R0(A )
quotient−−−−−→ R0(A )/r(A ) r−→ R(R0(A )/r(A )) = R1(A ).

Now, by induction, for n = 0, 1, 2, . . . we define

Rn+1(A ) = R(Rn(A)/en−1(Rn−1(A)))
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and

en : Rn(A ) −→ Rn(A )/en−1(Rn−1(A ))
r−→ R(Rn(A )/en−1(Rn−1(A ))) = Rn+1(A ).

2.10. Definition. The Roos resolution of an inverse system A is the exact
sequence

0→ A
r−→ R0(A ) e0−→ R1(A ) −→ · · · −→ Rn(A ) en−→ · · · .

It is clear that the Roos resolution is natural with respect to A .

2.11. Proposition. If a sequence

0→ A → B → C → 0

of inverse systems is exact, then for every n the sequence

0→ Rn(A )→ Rn(B)→ Rn(C )→ 0

is exact. More generally, if a sequence

0→ A 0 → A 1 → · · · → A k → · · ·

is exact, then the sequence

0→ Rn(A 0)→ Rn(A 1)→ · · · → Rn(A k)→ · · ·

is exact.

Proof. The exactness of the sequence 0→ R(A )→ R(B) → R(C )→ 0
follows from the definition of R. Furthermore, the sequence

0→ R(A )/A → R(B)/B → R(C )/C → 0

is exact, and so the short sequence of the proposition is exact for n = 1.
By iteration of these arguments, we can prove the exactness of this short
sequence for every n. This implies the last assertion of the proposition: it can
be deduced from the previous one just as we deduced 2.8 from 2.7. �

2.12. Definition. Given an arbitrary inverse system A , we set

δn := lim←−{e
n} : lim←−Rn(A )→ lim←−Rn+1(A ).

Thus, we get a cochain complex

lim←−R0(A ) δ0−→ lim←−R1(A ) δ1−→ · · · → lim←−Rn(A ) δn−→ lim←−Rn+1(A )→ · · · .



§2. Derived Functors of the Inverse Limit Functor 147

We define
lim←−

0A := Ker δ0, lim←−
nA := Ker δn/ Im δn−1.

It is clear that lim←−
n is a functor on the category of inverse systems.

2.13. Proposition. (i) lim←−
0A = lim←−A .

(ii) For every short exact sequence 0 → A
f−→ B

g−→ C → 0 of inverse
systems, there is a natural long exact sequence

0 −→lim←−A
lim←− f
−−−→ lim←−B

lim←− g
−−−→ lim←−C −→ lim←−

1A −→ · · · → lim←−
n−1C −→

lim←−
nA

lim←−
n
f

−−−−→ lim←−
nB

lim←−
n
g

−−−−→ lim←−
nC −→ lim←−

n+1A −→ · · · .

(iii) If an inverse system A is flabby then lim←−
nA = 0 for every n > 0.

Proof. (i) We have the exact sequences

0→ lim←−A → lim←−R(A ) h−→ lim←−(R(A )/r(A ))

and

0→ lim←−(R(A )/r(A ))
lim←−(r)
−−−−→ lim←−R1(A ),

where h is induced by the quotient map and lim←−(r)h = δ0. Thus, lim←−
0A =

lim←−A .
(ii) Consider the following commutative diagram with exact rows and

columns:

0 0 0
⏐

⏐




⏐

⏐




⏐

⏐




0 −−−−→ A −−−−→ B −−−−→ C −−−−→ 0
⏐

⏐




⏐

⏐




⏐

⏐




0 −−−−→ R(A ) −−−−→ R(B) −−−−→ R(C ) −−−−→ 0
⏐

⏐




⏐

⏐




⏐

⏐




...
...

...
⏐

⏐




⏐

⏐




⏐

⏐




0 −−−−→ Rn(A ) −−−−→ Rn(B) −−−−→ Rn(C ) −−−−→ 0
⏐

⏐




⏐

⏐




⏐

⏐




...
...

...
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It induces a commutative diagram

0 −−−−→ lim←−R0(A ) −−−−→ lim←−R0(B) −−−−→ lim←−R0(C ) −−−−→ 0
⏐

⏐




⏐

⏐




⏐

⏐




0 −−−−→ lim←−R1(A ) −−−−→ lim←−R1(B) −−−−→ lim←−R1(C ) −−−−→ 0
⏐

⏐




⏐

⏐




⏐

⏐




...
...

...
⏐

⏐




⏐

⏐




⏐

⏐




0 −−−−→ lim←−Rn(A ) −−−−→ lim←−Rn(B) −−−−→ lim←−Rn(C ) −−−−→ 0
⏐

⏐




⏐

⏐




⏐

⏐




...
...

...

By 2.6 and 2.9, its rows are exact. Furthermore, each of its columns is a com-
plex, i.e., this diagram is a short exact sequence of complexes. The homology
exact sequence of this short exact sequence is the desired sequence.

(iii) This follows from 2.8. �
One says that an inverse system A is lim←−-acyclic, or simply acyclic, if

lim←−
iA = 0 for all i > 0. For example, every flabby system is acyclic. One

expects that one can compute lim←−
i via any acyclic resolution, and in fact this

is true.

2.14. Theorem. Let

0→ A → A 0 f0

−→ A 1 f1

−→ · · · → A n fn−→ · · ·

be an exact sequence of inverse systems with acyclic A i for every i ≥ 0. Then
lim←−

0A = Ker δ0, lim←−
nA = Ker δn/ Im δn−1, where

δn = lim←− f
n : lim←−A n → lim←−A n+1.

Proof. Consider the following commutative diagram:
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0 0 0
⏐

⏐




⏐

⏐




⏐

⏐




0 −−−−→ A −−−−→ A 0 −−−−→ · · · −−−−→ A j −−−−→ · · ·
⏐

⏐




⏐

⏐




⏐

⏐




0 −−−−→ R0(A ) −−−−→ R0(A 0) −−−−→ · · · −−−−→ R0(A j) −−−−→ · · ·
⏐

⏐




⏐

⏐




⏐

⏐




...
...

...
⏐

⏐




⏐

⏐




⏐

⏐




0 −−−−→ Ri(A ) −−−−→ Ri(A 0) −−−−→ · · · −−−−→ Ri(A j) −−−−→ · · ·
⏐

⏐




⏐

⏐




⏐

⏐




...
...

...

We apply lim←− to this diagram and obtain the bicomplex lim←−Ri(A j). As
usual, there are two spectral sequences ′Ep,qr and ′′Ep,qr , both converging to
the same limit. Here for ′Ep,qr (given by the horizontal level filtration) we
have ′Ep,q2 = 0 for q 
= 0 and ′Ep,02 = lim←−

pA , i.e., ′Ep,0∞ = lim←−
pA . On the

other hand, by 2.8 and 2.9, ′′Ep,q2 = 0 for p 
= 0, while ′′E0,q
2 coincides with

the group Ker δq/ Im δq−1 of the theorem. Thus, lim←−
nA = Ker δn/ Im δn−1.

�
Now we consider the important special case: the index set Λ is the set

Z of integers. So, let A = {An, jmn } be an arbitrary inverse system over Z.
Define the endomorphism

δ :
∞
∏

n=−∞
An →

∞
∏

n=−∞
An

by setting

δ(. . . , a1, . . . , an, . . . ) = (. . . , a1 − j21a2, . . . , an − jn+1
n an+1, . . . ), ak ∈ Ak.

2.15. Theorem. lim←−A = Ker δ, lim←−
1A = Coker δ, lim←−

iA = 0 for i > 1.

Proof. Consider the inverse system S (A ) = {Sn(A ), pmn } where

Sn(A ) =
∏

k≤n−1

Ak

and the homomorphisms pmn : Sm(A )→ Sn(A ),m ≥ n, have the form
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pmn |Ak =
{

1Ak if k ≤ n− 1,
0 if n− 1 < k ≤ m.

Define ϕ = {ϕn} : R(A ) → S (A ) by setting ϕn(. . . , a1, . . . , an) =
(. . . , a1 − j21a2, . . . , an−1 − jnn−1an). Obviously, the sequence of the inverse
systems

0→ A
r−→ R(A )

ϕ−→ S (A )→ 0

is exact. Also, it is easy to see that S (A ) is flabby, and hence this sequence
is an acyclic resolution of A , i.e., it satisfies the condition of 2.14. It remains
to note that lim←−{ϕ : R(A )→ S (A )} = δ :

∏

An →
∏

An. �
Now we describe a useful class of acyclic resolutions, cf. Kuz’minov [1].

2.16. Definition. (a) An inverse system {Aλ, jμλ} of topological abelian
groups and continuous homomorphisms is called compact if all the groups
Aλ are compact.

(b) An inverse system A of abelian groups is called algebraically compact
or, briefly, a-compact if it can be obtained from a compact one by ignoring
the topology. Similarly, a group is called a-compact if it can be obtained from
a compact topological group by ignoring the topology.

(c) Given an inverse system A , an exact sequence

0→ A → A 0 ϕ0

−→ · · · → A n ϕn−−→ · · ·

of inverse systems is called an a-compact resolution of A if every inverse
system A i, i ≥ 0, is a-compact. An a-compact resolution of a group is defined
similarly.

Clearly, every finite group is a-compact. The group Z is not a-compact.

2.17. Theorem. Let {Aλ}
{fλ}−−−→ {Bλ}

{gλ}−−−→ {Cλ} be an exact sequence of
compact inverse systems such that all the homomorphisms fλ, gλ are contin-
uous. Then the induced sequence lim←−{Aλ} → lim←−{Bλ} → lim←−{Cλ} is exact.

Proof. See Eilenberg–Steenrod [1], Theorem VIII.5.6. �

2.18. Corollary. (i) Every compact inverse system A is acyclic.
(ii) Every a-compact inverse system is acyclic. In particular, every system

of finite abelian groups is acyclic.
(iii) Let

0→ A → A 0 ϕ0

−→ · · · → A n ϕn−−→ · · ·
be an a-compact resolution of A . Then lim←−

nA = ker δn/ Im δn−1, lim←−
0A =

Ker δ0, where δn = lim←−ϕ
n : lim←−A n → lim←−A n+1.
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Proof. (i) Since the product of compact topological spaces is compact, all
the groups Rλ(A ) are compact. 9 It is easy to see that all the projections
πμλ : Rμ(A )→ Rλ(A ) are continuous, as well as the maps rλ : Aλ → Rλ(A ).

Hence, the Roos resolution 0→ A → R0(A )→ · · · en−→ Rn+1(A )→ · · · of
A consists of compact inverse systems, and all the homomorphisms enλ are
continuous. Hence, by 2.17, the sequence

lim←−R0(A )→ · · · → lim←−Rn(A ) δn−→ lim←−Rn+1(A )→ · · ·

is exact. Thus, lim←−
n(A ) = 0 for every n > 0.

(ii) This follows from (i).
(iii) This follows from 2.14 and (ii). �

2.19. Lemma. Every abelian group can be naturally embedded in an a-
compact one. In other words, there exist a functor Φ : A G → A G and a
natural transformation c : 1A G → Φ such that, for every abelian group A,
Φ(A) is algebraically compact and cA : A→ Φ(A) is a monomorphism.

Proof. Given a topological group G, let χ(G) be the character group of
G, i.e., the topological group of all continuous homomorphisms G→ SO(2).
Recall that the canonical map ω : G → χ(χ(G)), ω(g)(ϕ) = ϕ(g), is an iso-
morphism and that χ(A) is a compact group for every discrete group A, see
Pontrjagin [1], Th. 39 and 36. Clearly, the correspondence A �→ χ(A) yields
a contravariant functor A G → A G . Let χδ(G) be the discrete group which
has the same underlying set as χ(G). Then ε : χδ(G) → χ(G) is a contin-
uous epimorphism, and hence χ(ε) : χ(χ(G)) → χ(χδ(G)) is a continuous
monomorphism. Now, given an abelian group A, we set Φ(A) = χδχδ(A),
and we define c by setting cA to be the composition

(2.20) cA : A ω−→ χ(χ(A))
χ(ε)−−→ χ(χδ(A))

∼=−→ χδχδ(A) = Φ(A)

where the last arrow is the additive isomorphism ε−1
χδ(A)

. �

2.21. Definition. In future we write ̂A instead of Φ(A) and call the homo-
morphism c = cA : A→ ̂A the canonical a-compactification of A.

2.22. Definition. Let A be an abelian group, and let c : A → A0

be the canonical a-compactification of A. We consider the canonical a-
compactification c0 : Coker c → A1 and define c0 : A0 h0−→ Coker c c0−→ A1,
where h0 is the canonical epimorphism. Inductively, let cn : Coker cn−1 →
An+1 be the canonical a-compactification, and let hn : An → Coker cn−1 be

9 Recall that we use definition I.3.6 of the product of topological spaces. It is well-

known that
∏c

Xi is compact provided everyXi is compact, see e.g. Bourbaki [2].

However, kY is compact if Y is compact.



152 Chapter III. Phantoms

the canonical epimorphism. Set cn = cnhn : An → An+1. Then we have an
exact sequence

0→ A
c−→ A0 c0−→ A1 → · · · c

n−1

−−−→ An
cn−→ · · ·

where all the groups Ai are a-compact. This exact sequence is called the
canonical a-compact resolution of A.

2.23. Theorem. Every inverse system A admits an a-compact resolution.
Furthermore, this resolution can be constructed naturally with respect to A .

Proof. Given an inverse Λ-system A , consider the canonical a-compact
resolution of Aλ

0→ Aλ → A0
λ → · · · → Anλ

cnλ−→ An+1
λ → · · ·

for every λ ∈ Λ. By naturality, these sequences form an exact sequence of
inverse systems

0→ A → A 0 −→ · · · −→ A n {cnλ}−−−→ A n+1 → · · · .

Clearly, this is the desired a-compact resolution of A . �

§3. Representability Theorems

According to II.3.22, one can assign a (co)homology theory to a spectrum.
This situation turns out to be invertible.

3.1. Notation. As in Ch. II, §3, let K • denote one of the categories
C •,C •

fd,C
•
f , and let L denote one of the categories S ,Ss,Sfd,Ssfd,Sf .

3.2. Definition. (a) One says that a reduced cohomology theory ˜h∗ (resp.
homology theory ˜h∗) on K • is represented by a spectrum E if there is an
isomorphism ˜h∗ ∼= ˜E∗ of cohomology theories (resp. an isomorphism ˜h∗ ∼= ˜E∗
of homology theories) on K •.

(b) One says that a cohomology theory h∗ (resp. homology theory h∗) on
L is represented by a spectrum E if there is an isomorphism h∗ ∼= E∗ of
cohomology theories (resp. an isomorphism h∗ ∼= E∗ of homology theories)
on L .

3.3. Definition. (a) Let K •, L be as in 3.1. Two morphisms f, g : E → F of
spectra (resp. maps of spaces) are called L -homotopic (resp. K •-homotopic)
iff fi � gi : A → F for every morphism (resp. map) i : A → E of every
spectrum A of L (resp. every space A of K •).



§3. Representability Theorems 153

(b) Two Sf -homotopic morphisms (resp. C •
f -homotopic maps) are called

weakly homotopic. In this case we write f �w g.

Clearly, f �w g : E → F iff f |Eλ � g|Eλ for every finite subspectrum
(subspace) Eλ of E.

3.4. Theorem–Definition. Let h∗ be an additive cohomology theory on S ,
and let · · · → X(n)

fn−→ X(n + 1) → · · · be a sequence of morphisms of
spectra. Then there exist a spectrum X and morphisms in : X(n)→ X with
the following properties:

(i) in+1fn � in;
(ii) The homomorphism

〈(in)∗| lim−→〉 : lim−→{π∗(X(n))} → π∗(X)

as in I.2.5 is an isomorphism;
(iii) There is an exact sequence

(3.5) 0 −→ lim←−
1{hk−1(X(n))} −→ hk(X)

ρ−→ lim←−{h
k(X(n))} −→ 0

where ρ = {i∗n| lim←−} as in 1.11. Such a spectrum X is called a weak homotopy
direct limit of the sequence {X(n)}.

Proof (cf. Milnor [5], Margolis [1], Ch. 3). In fact, X is a suitable telescope
of the sequence {X(n)}. Consider the morphism

gn : X(n) ∇−→ X(n) ∨X(n)
1∨(−fn)−−−−−→ X(n) ∨X(n+ 1) ⊂

∨

n

X(n),

where ∇ is the coaddition. Let g :
∨

nX(n) →
∨

nX(n) be the morphism
such that g|X(n) = gn. Set X := C(g) and define in to be the morphism
X(n) ⊂

∨

nX(n)→ X . We prove properties (i)–(iii).
The property (i) follows from the definition of gn.
To prove (ii), consider the homomorphism

g∗ : ⊕nπ∗(X(n)) = π∗

(

∨

n

X(n)

)

→ π∗

(

∨

n

X(n)

)

= ⊕nπ∗(X(n)).

Then there is the following commutative diagram with the exact rows:

0−→⊕nπ∗(X(n))
g∗−−−−→ ⊕nπ∗(X(n)) −−−−→ lim−→{π∗(X(n))} −−−−→ 0

∥

∥

∥

∥

∥

∥

⏐

⏐



〈(in)∗| lim−→〉

0−→⊕nπ∗(X(n))
g∗−−−−→ ⊕nπ∗(X(n)) −−−−→ π∗(X) −−−−→ 0,

and so 〈(in)∗| lim−→〉 is an isomorphism, and (ii) is proved. (Here the top row
is exact because of the definition of lim−→, see I.2.4.)



154 Chapter III. Phantoms

The cofiber sequence
∨

nX(n)
g−→
∨

nX(n) −→ X induces the exact se-
quence

∏

hk−1(X(n)) δ−→
∏

hk−1(X(n)) −→ hk(X)

−→
∏

hk(X(n)) δ−→
∏

hk(X(n))

where δ is as in 2.15. Now, by 2.15, the exact sequence

0→ Coker δ → hk(X)→ Ker δ → 0

yields the desired exact sequence (3.5). �

3.6. Theorem. (i) Every additive cohomology theory h∗ on S can be repre-
sented by a spectrum.

(ii) Let E,F be two spectra. Every morphism E∗(−)→ F ∗(−) of cohomo-
logy theories on S can be induced by a morphism E → F of spectra, and this
morphism of spectra is unique up to homotopy. In particular, a representing
spectrum for a cohomology theory on S is unique up to equivalence.

Proof. (i) Given a spectrum F , every element f ∈ h0(F ) yields a morphism
̂f : F ∗(X) → h∗(X) of cohomology theories on S , ̂f(a) = a∗(f) for every
a : X → ΣnF . We construct a spectrum E and an element e ∈ h0(E) such
that ê : E0(Sn) → h0(Sn) is an isomorphism for every n ∈ Z. Then, by
II.3.19(iii), E represents h∗.

Let Ar = {ai(r)} be a family of generators of the group h0(Sr), r ∈ Z.
Consider a spectrum E(0) :=

∨

r∈Z

(

∨

Ar
Srai(r)

)

, where Sra is a copy of the

spectrum Sr. By additivity, there exists e0 ∈ h0(E(0)) such that e0|Srai(r) =
ai(r) for every r, i. It is clear that ê0 : E(0)0(Sr) → h0(Sr) is epic. By
induction, suppose that we have constructed a sequence

E(0) −→ · · · ϕn−1−−−→ E(n)

and elements ei ∈ h0(E(i)), i ≤ n, with the following properties:
(1) ϕ∗

k(ek+1) = ek for every k < n. In particular, ên : E(n)0(Sr) →
h0(Sr) is epic for every r.

(2) For every r ∈ Z and every k ≤ n, Ker êk ⊂ Ker(ϕk)∗ in the diagram

h0(Sr) êk←− E(k)0(Sr)
(ϕk)∗−−−→ E(k + 1)0(Sr).

In order to construct ϕn, En+1 and en+1, let Br = {bi(r)} be a family of
generators of Ker (ên : E(n)0(Sr)→ h0(Sr)). Set Y :=

∨

r

(

∨

Br
Srbi(r)

)

, and

let x ∈ h0(Y ) be such that x|Srbi(r) = bi(r) for every r, i. By (1), there exists



§3. Representability Theorems 155

y ∈ E(n)0(Y ) such that ên(y) = x. Constructing a cofiber sequence

Y
y−→ E(n)

ϕn−−→ E(n+ 1),

we get an exact sequence

h0(E(n+ 1))
ϕ∗
n−−→ h0(E(n))

y∗−→ h0(Y ).

Now, y∗(en) = 0, and hence there exists en+1 ∈ h0(E(n + 1)) such that
ϕ∗
n(en+1) = en. The induction is confirmed.

Consider the sequence

E(0)→ · · · ϕn−1−−−→ E(n)
ϕn−−→ · · ·

and its weak homotopy direct limit E. Then, by 3.4(iii), ρ : h0(E) →
lim←−{h

0(E(n))} is an epimorphism, and so there exists e ∈ h0(E) such that
e|E(n) = en. Hence, ê : E0(Sr)→ h0(Sr) is an epimorphism for every r.

Now we prove that ê : E0(Sr) → h0(Sr) is monic. Let f : Sr → E be
such that ê(f) = 0 ∈ h0(Sr). Since π∗(E) = lim−→{π∗(E(n))}, there is n such
that f can be decomposed as Sr

g−→ E(n) −→ E with ên(g) = 0. But then, in
view of (2), (ϕn)∗(g) = 0, and so f : Sr

g−→ E(n) −→ E is inessential.
(ii) This follows from the Yoneda Lemma I.1.5. �
Now we prove the Representability Theorem for cohomology theories on

Sf . We need some preliminaries.

3.7. Definition. We say that an inverse Λ-system I = {Iλ, jμλ} of sets is
totally surjective if every function jμλ is surjective and every set Iλ is non-
empty.

3.8. Definition. A quasi-ordered sequence is a quasi-ordered set {bi}∞i=1 such
that bi ≤ bi+1 for every i. (Of course, it may happen that bi ≥ bi+1 for some
i, or that bi = bj for i 
= j.)

3.9. Lemma. If I is a totally surjective inverse system over a quasi-ordered
sequence then lim←−I 
= ∅. �

3.10. Lemma. Every countable directed quasi-ordered set A contains a co-
final quasi-ordered sequence.

Proof. Let A = {ai}∞i=1. By induction, define a sequence {bi} by setting
b1 = a1 and choosing bn so that bn ≥ an and bn ≥ bn−1. It is clear that {bi}
is a desired quasi-ordered sequence. �

3.11. Lemma. Let I = {Iλ, jμλ} be a totally surjective inverse Λ-system of
sets. If Λ contains a countable cofinal subset then lim←−I 
= ∅.
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Proof. Indeed, by 3.10, Λ contains a cofinal quasi-ordered sequence, and
so, by 1.20 and 3.9, lim←−I 
= ∅. �

3.12. Construction. Let I be a totally surjective inverse Λ-system of sets.
Given λ, μ ∈ Λ, we say that λ � μ iff there exists a commutative diagram

Iν Iν

jνμ

⏐

⏐




⏐

⏐




jνλ

Iμ
kμ
λ−−−−→ Iλ

with some kμλ . It is clear that λ � μ if λ ≤ μ, and for every λ � μ there is
just one function kμλ : Iμ → Iλ (and kμλ = jμλ for λ ≤ μ). Now we define a
quasi-ordered set Λ̄, which has the same objects as Λ and where a morphism
λ→ μ exists iff λ � μ. Let I be the inverse system {Iλ, kμλ} over Λ̄.

3.13. Lemma. Let I = {Iλ, jμλ} be a totally surjective inverse Λ-system of
sets. If Λ̄ contains a countable cofinal subset then lim←−I 
= ∅.

Proof. It is clear that I is totally surjective. Hence, by 3.11, lim←−I 
= ∅.
But every string {xλ} ∈ lim←−I is at the same time an element of lim←−I . �

3.14. Lemma. Let A
f−→ B

g−→ C
h−→ D be an exact sequence of inverse

Λ-systems of abelian groups. Suppose that A is a system such that Aλ = A

and jμλ = 1A for every λ ≤ μ. Set Pλ := Ker(A = Aλ
fλ−→ Bλ). Suppose that

there exists a countable set {λi}∞i=1 such that every Pλ contains some Pλi .
Then the sequence

lim←−B → lim←−C → lim←−D

is exact.

Proof. Choose a string {yλ} ∈ lim←−C and set Iλ := g−1
λ (yλ). Let B =

{Bλ, ϕμλ}. Clearly, ϕμλ(Iμ) ⊂ Iλ; we define jμλ : Iμ → Iλ to be the restriction
of ϕμλ and set I := {Iλ, jμλ}. We must prove that lim←−{Iλ} 
= ∅. So, it suffices
to prove that I satisfies 3.13. Firstly, we prove that jμλ is surjective for every
λ ≤ μ. Consider the commutative diagram

A
fμ−−−−→ Bμ −−−−→ Cμ

∥

∥

∥

ϕμ
λ

⏐

⏐




⏐

⏐




A
fλ−−−−→ Bλ −−−−→ Cλ.

Take any xλ ∈ Iλ. Given xμ ∈ Iμ, we have ϕμλxμ − xλ = fλ(a), and so
ϕμλ(xμ − fμ(a)) = xλ, i.e., xλ ∈ Im jμλ .
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3.15. Sublemma. If Pμ ⊂ Pλ then there is a function kμλ : Iμ → Iλ as in
3.12.

Proof. Choose ν such that ν ≥ μ, λ and consider the commutative diagram

A
fμ−−−−→ Bμ −−−−→ Cμ

∥

∥

∥

�

⏐

⏐

ϕνμ

�

⏐

⏐

A
fν−−−−→ Bν −−−−→ Cν

∥

∥

∥

⏐

⏐




ϕνλ

⏐

⏐




A
fλ−−−−→ Bλ −−−−→ Cλ.

Given x′, x′′ ∈ Iν , we must prove that ϕνλ(x
′) = ϕνλ(x

′′) if ϕνμ(x′) = ϕνμ(x′′).
We have x′ − x′′ = fν(a) for some a ∈ A. Hence, ϕνλ(x

′ − x′′) = fλ(a) and
ϕνμ(x′ − x′′) = fμ(a). But fλ(a) = 0 if fμ(a) = 0, since Pμ ⊂ Pλ. �

Now, given λ ∈ Λ, choose λi such that Pλi ⊂ Pλ. Then, by 3.15, λ � λi.
Thus, {λi} is a countable cofinal subset of Λ̄. �

3.16. Lemma. (i) There is a countable family F of finite spectra such that
every finite spectrum is equivalent to some spectrum of F .

(ii) For every pair of finite spectra F,A, the set [A,F ] is countable.

Proof. (i) Every finite spectrum is equivalent to one of the form ΣnΣ∞X
for some n ∈ Z and some X ∈ C •

f (cf. II.1.5(iii)). Furthermore, every finite
CW -space is homotopy equivalent to a finite polyhedron. But every poly-
hedron is completely determined (up to homeomorphism) by its scheme of
vertices. Thus, finite polyhedra form a countable set.

(ii) Following (i), we can assume that F = Σ∞X,A = Σ∞Y where X
and Y are finite polyhedra. Then [F,A] ∼= [X,Y ]•. But every map X → Y of
finite polyhedra is homotopic to a simplicial map Xr → Y where Xr is the
r-th barycentric subdivision of X , see e.g. Hilton–Wiley [1]. But a simplicial
map is determined by its values on vertices, and so the set Mr of simplicial
maps Xr → Y is countable, and hence

⋃

Mr is. �

3.17. Corollary. Let F be as in 3.16(i). Then the set
⋃

F∈F [F,A] is count-
able for every finite spectrum A. �

Given a cohomology theory h∗ on S , set

̂h∗(X) := lim←−{h
∗(Xλ)}

where {Xλ} is the family of all finite subspectra of a spectrum X . Because
of 1.15, ̂hi is a functor S → A G .
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3.18. Proposition. Let {Xα},
⋃

Xα = X, be a family of subspectra of a spec-
trum X. Then ̂h∗(X) = lim←−{̂h

∗(Xα)}. In particular, ̂h∗(∨Xβ) =
∏

̂h∗(Xβ)
for every family {Xβ} of spectra.

Proof. This follows from 1.21. �

3.19. Theorem. Let X
f−→ Y → Cf be a strict cofiber sequence of maps of

spectra such that X = ∨Xα with finite Xα. Then the induced sequence

̂h∗(Cf)→ ̂h∗(Y )→ ̂h∗(X)

is exact.

Proof. Firstly, let X be a finite spectrum. Put Z = Cf and consider a
cofiber sequence

X
f−→ Y → Z

k−→ ΣX.

By II.3.15, we can form an exact sequence of the inverse systems

{h∗(Xω)} ←− {h∗(Yω)} ←− {h∗(Zω)} ←− {h∗(Σ(Xω))}, ω ∈ Ω,

with finite Aω for every ω and such that every finite CW -subspectrum of A is
contained in some Aω, where A denotes X,Y, Z or ΣX . Passing to a certain
cofinal system Λ of Ω, we can assume that Xλ = X for every λ ∈ Λ and get
an exact sequence of inverse systems

{h∗(X)} ←− {h∗(Yλ)} ←− {h∗(Zλ)}
k∗λ←− {h∗(ΣX)}

with ̂h∗(A) = lim←−{̂h
∗(Aλ)} for A = X,Y, Z. By 3.14, it suffices to prove that

the set of subgroups Ker{k∗λ : h∗(ΣX) → h∗(Zλ)} of h∗(ΣX) is countable.
But this holds because, by 3.17, the set

⋃

λ[Zλ, X ] is countable.
Now, let X = ∨Xα with finite Xα. Note that Y is a subspectrum of Cf .

Let y ∈ ̂h∗(Y ) be such that f∗(y) = 0. We can and shall assume that f :
∨Xα → Y is an inclusion. Given a subset Γ ⊂ {α}, set ZΓ := C(f |∨α∈ΓXα).
Consider the set Z of all pairs (Γ, z) where Γ runs over all subsets of {α}
and z ∈ ̂h∗(ZΓ) is such that z|Y = y. We say that (Γ, z) ≤ (Γ′, z′) if Γ ⊂ Γ′

and z′|ZΓ = z. In this way Z becomes a partially ordered set. By 3.18, Z
is inductive, and so it contains a maximal element (Γ0, z0). We prove that
ZΓ0 = Cf , and this will complete the proof.

We have Cf = Y ∪ C(∨Xα). So, if ZΓ0 
= Cf then there exists α with
C(Xα) 
⊂ ZΓ0 . We let Ω = Γ ∪ {α} and consider the inclusion g : ZΓ0 → ZΩ.

Consider the composition i : Xα → ∨αXα
f−→ Y ⊂ ZΓ0 . Since C(∨βEβ) �

∨βCEβ for every family {Eβ} of spectra, we conclude that

Xα
i−→ ZΓ0

g−→ ZΩ
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is a cofiber sequence. By the above, the sequence

̂h0(ZΩ)
g∗−→ ̂h0(ZΓ0)

i∗−→ h0(Xα)

is exact. Since f∗(y) = 0, we conclude that i∗(z0) = 0, and so there is
z ∈ ̂h0(ZΩ) with g∗z = z0, i.e., z|ZΓ0 = z0, i.e., (Γ0, z0) is not a maximal
element. This is a contradiction. �

3.20. Theorem. (i) Every cohomology theory h∗ on Sf can be represented
by a spectrum.

(ii) For every cohomology theory h∗ on S and every spectrum X the
homomorphism ρ : h∗(X)→ ̂h∗(X) is an epimorphism.

(iii) Given two spectra E,F , every morphism ϕ : E∗(−) → F ∗(−) of co-
homology theories on Sf can be induced by a morphism E → F of spectra,
and this morphism of spectra is unique up to weak homotopy. Furthermore, a
representing spectrum for a cohomology theory on Sf is unique up to equiv-
alence.

Proof. (i) Because of 3.18 and 3.19, we can follow the proof of 3.6. So, we
get a spectrum E and an element x ∈ ̂h0(E) such that the homomorphism
x̂ : E0(Sr)→ ̂h0(Sr) is an isomorphism for every r ∈ Z. Thus, by II.3.19(iii),
x̂ : E∗(X) → ̂h∗(X) = h∗(X) is an isomorphism for every X ∈ Sf , i.e., E
represents h∗.

(ii) (Brown’s trick.) Given Y ∈ S and y ∈ ̂h0(Y ), we prove that y ∈
Im{ρ : h0(Y )→ ̂h0(Y )}. Let E and e ∈ h0(E) be as in 3.6. Set E′(0) := Y ∨E,
and let e′0 ∈ ̂h0(E′(0)) be such that e′0|E = ρ(e) and e′0|Y = y. Such e′0 exists
by 3.18. Note that ê′0 : E′(0)0(Sr) → h0(Sr) is an epimorphism for every r.
Now, we can follow the proof of 3.6 and construct a sequence

E′(0)→ · · · → E′(n)→ · · · ,

its weak homotopy direct limit E′ and an element e′ ∈ ̂h0(E′) such that
ê′ : (E′)0(X)→ ̂h0(X) = h0(X) is an isomorphism for every X ∈ Sf .

Let a : Y → E′(0), b : E → E′(0), c : E′(0) → E′ be the obvious inclu-
sions. Consider the commutative diagram

E0(Sr) ê−−−−→ h0(Sr)

b∗

⏐

⏐




∥

∥

∥

(E′(0))0(Sr)
ê′0−−−−→ h0(Sr)

c∗

⏐

⏐




∥

∥

∥

(E′)0(Sr) ê′−−−−→ h0(Sr).
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Since ê and ê′ are isomorphisms, we conclude that cb : E → E′ is an equiv-
alence. Let i : E′ → E be homotopy inverse to cb. We set f := ica : Y → E
and prove that ρ(f) = y.

We have b∗c∗(e′) = ρ(e). Furthermore, cbf = cbica = ca. Now,

y = a∗e′0 = a∗c∗e′ = f∗b∗c∗e′ = f∗ρ(e) = ρ(f).

(iii) Let {Eλ} be the family of all finite subspectra of E. The inclusions
iλ : Eλ ⊂ E form a string {iλ} ∈ ̂E0(E). Since ρ : F 0(E) → ̂F 0(E) is an
epimorphism, there exists θ ∈ F 0(E) such that ρ(θ) = {ϕ(iλ)}. It is clear
that θ induces ϕ.

If there is another morphism θ′ which induces ϕ then θiλ � θ′iλ for every
λ, and so θ and θ′ are weak homotopic.

Finally, if both spectra E,F represent h∗, then every morphism θ : E → F
inducing 1h is an equivalence. �

3.21. Theorem. Let L be as in 3.1. Every additive cohomology theory h∗ on
L can be represented by a spectrum, and this representing spectrum is unique
up to equivalence. Furthermore, every morphism of cohomology theories on L
can be induced by a morphism of the representing spectra, and this morphism
of spectra is unique up to L -homotopy.

Proof. The case L = Sf is proved in 3.20. We consider the case L = Ssfd

only, all the other cases can be considered similarly. Given a spectrum X ∈
Ssfd, set ̂h∗(X) = lim←−m,n{h

∗(Σ−nΣ∞(X(m)
n ))}. It is clear that the analog

of 3.18 holds for ̂h∗. Furthermore, if ∨αXα → Y → Z is a cofiber sequence
with Xα ∈ Ssfd then the sequence ̂h∗(∨Xα) ←− ̂h∗(Y ) ←− ̂h∗(Z) is exact.
This can be proved just as 3.19, but we do not need 3.17 because the family
{Σ−nΣ∞(X(m)

n )} is countable for every spectrum X . Now we can complete
the proof just as the one of 3.20. �

3.22. Corollary. Let K • be as in 3.1. Then every additive cohomology the-
ory (reduced) on K • can be represented by a spectrum, and this representing
spectrum is unique up to equivalence. Furthermore, every morphism of co-
homology theories on K • can be induced by a morphism of the representing
spectra.

Proof. This follows from 3.21 in view of II.3.18. �
Now we turn to homology theories. First, if a homology theory on S •

f is
represented by some spectrum, then its unique additive extension to S (see
II.3.20(iii)) is represented by the same spectrum. This is true because each
spectrum produces an additive homology theory on S . Second, given any
homology theory on Sf , one can construct the dual cohomology theory on
S •

f and use 3.20 and II.3.23 in order to represent the homology theory. In
other words, we have the following theorem.
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3.23. Theorem. (i) Every additive homology theory on K •, as well as on
L , can be represented by a certain spectrum. Furthermore, its representing
spectrum is unique up to equivalence.

(ii) Every morphism of additive homology theories on K • or on L can
be induced by a morphism of corresponding spectra, and this morphism of
spectra is unique up to weak homotopy. �

Let H C •
con be the homotopy category for the category C •

con of all con-
nected pointed CW -spaces and maps. Let H be the category H C •

con or its
full subcategory consisting of all finite dimensional CW -spaces.

3.24. Definition. A contravariant functor F : H → E ns• is called half-exact
if it satisfies the following axioms:

(i) Let (X ;A,B) be a (pointed, CW -) triad such that X,A,B,A∩B ∈H .
Then for every a ∈ F (A), b ∈ F (B) with a|A ∩ B = b|A ∩ B there exists an
element x ∈ F (X) such that x|A = a, x|B = b (the Mayer–Vietoris axiom,
below simply the MV-axiom).

(ii) Let Xα be a family of objects of H such that X := ∨αXα ∈H , and
let iα : Xα → X be the inclusions. Then {F (iα)} : F (X) →

∏

α F (Xα) is a
bijection (the wedge axiom, or the additivity axiom).

It is clear that every representable functor F : H → E ns• is half-exact.

3.25. Theorem (the Brown Representability Theorem). For every half-exact
functor F : H → E ns• there exists a connected CW -space B such that there
is a natural equivalence F (−) → [−, B]• of functors on H . In other words,
every half-exact functor F : C •

con → E ns• is representable.

Proof (some words about). In Switzer [1], Ch. 9 this theorem is stated for
functors on the category H C •, not only on H C •

con (Theorem 9.12 there).
In this general form the theorem is wrong, see Heller [1], Matveev [1], but
the proof in Switzer [1] can be used and appears correct for the formulation
above.

The case when H is the category of finite dimensional connected spaces
can be considered similarly; or see Dold [3]. �

3.26. Example. Let Eα be a family of spectra. Then F ∗(X) :=
∏

αE
∗
α(X) is

an additive cohomology theory on S , and so, by 3.6(i), it can be represented
by a spectrum F . This spectrum is called the product of spectra Eα and is
denoted by

∏

α Eα.
By 3.6(ii), for every α the projections pXα : F ∗(X) → E∗

α(X), X ∈ S
yield a morphism pα : F → Eα.

By 3.6(ii), the inclusion E∗
α(X) ⊂ (

∏

αEα)∗(X) can be induced by a
morphism jα : Eα →

∏

αEα of spectra. So, by II.1.16(i), we get a morphism
j :
∨

αEα →
∏

αEα with j|Eα = jα. It induces a homomorphism
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j∗ :
⊕

α

πk(Eα) = πk

(

∨

α

Eα

)

→ πk

(

∏

α

Eα

)

=
∏

α

πk(Eα)

of homotopy groups, which coincides with the standard inclusion. Hence,
j is not an equivalence in general. For example, j is not an equivalence if
Eα = HZ and {α} is a countable set. On the other hand, the morphism
j :
∨

n ΣnH(πn)→
∏

n ΣnH(πn) is an equivalence.

3.27. Proposition. Given a family {fα : X → Eα} of morphisms of spectra,
there is a morphism f : X →

∏

αEα such that pαf � fα for every α, and
this f is unique up to homotopy.

Proof. Left as an exercise, based on what was said above. �

3.28. Example. Given two spectra X,E, we have an additive cohomology
theory [X ∧ Y,E] on S ; here Y is a variable. Hence, by 3.21, there is a
unique spectrum F (X,E) such that [X∧Y,E] = [Y, F (X,E)]. This spectrum
F (X,E) is called the functional spectrum. (Note that the equality looks like
the exponential law.)

3.29. Remarks. (a) The Representability Theorems enable us to reduce any
research of (co)homology theories and interconnections between them to an
investigation of universal objects – namely, spectra. Spectra, in turn, can be
studied by the powerful machinery of stable homotopy theory. This approach
was originally demonstrated by Serre [2] and Thom [2], and the further de-
velopment of algebraic topology affirms the fruitfulness of this methodology.

(b) It was Brown [1] who discovered that half-exactness implies repre-
sentability. He proved 3.22 for K • = C •. Furthermore, Adams [7] proved
3.23 for K • = C •

f (without uniqueness of a representing spectrum).
(c) In the proofs of the Representability Theorems we followed Margo-

lis [1], which, in turn, followed the original papers of Brown [1] (in case 3.6)
and Adams [7] (in case 3.20).

§4. A Spectral Sequence

Throughout this section {Xλ} denotes the family of all finite subspectra of a
spectrum X . The goal of this section is to express E∗(X) in terms of E∗(Xλ),
see 4.11–4.22.

By 3.20(ii), the homomorphism ρ = ρEX : E∗(X) → lim←−{E
∗(Xλ)} is epic

for every X,E ∈ S , and, by 1.15, ρEX is natural with respect to X and E.

4.1. Definition. A cohomology theory E on Sf is called compact if all groups
En(X), X ∈ Sf , are compact topological groups and all induced homo-
morphisms f∗ : En(X) → En(Y ) and suspension isomorphisms En(X) ∼=
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En+1(ΣX) are continuous. A cohomology theory E on Sf is called alge-
braically compact, or a-compact, if it can be obtained from some compact
cohomology theory by ignoring the topology. The spectrum F is called a-
compact if it represents an a-compact cohomology theory on Sf .

For example, by II.4.25(ii), F is a-compact if every group πi(F ) is finite.

4.2. Theorem. If a spectrum F is a-compact then the homomorphism ρ =
ρX : F ∗(X)→ lim←−{F

∗(Xλ)} as in 1.12 is an isomorphism for every X ∈ S .
In other words, F ∗(X) does not contain weak phantoms.

Proof. ConsideringX as a variable, we prove that G∗(X) := lim←−{F
∗(Xλ)}

is an additive cohomology theory on S . Firstly, we prove that G∗ is a func-
tor. Indeed, given f : X → Y , consider a family {fω : Xω → Yω} as in
II.3.14. Then G∗(A) = lim←−{F

∗(Aω)} for A = X,Y , and hence f induces a
homomorphism

f∗ : G∗(Y ) = lim←−{F
∗(Yω)} → lim←−{F

∗(Xω)} = G∗(X).

Now we prove the exactness of G∗. Firstly, consider a strict cofiber sequence
X

f−→ Y
g−→ Z = Cf of maps of spectra. Now, the cofiber sequences Xω →

Yω → Zω as in II.3.15 yield an exact sequence of the inverse systems

{F ∗(Zω)} → {F ∗(Yω)} → {F ∗(Xω)}.

Furthermore, 2.17 and the a-compactness of F imply the exactness of the
sequence

lim←−{F
∗(Zω)} → lim←−{F

∗(Yω)} → lim←−{F
∗(Xω)} ,

i.e., the sequence

G∗(Z)
g∗−→ G∗(Y )

f∗

−→ G∗(X)

is exact.
Finally, given an arbitrary cofiber sequence X

f−→ Y
g−→ Z, we have a

commutative diagram

X
f−−−−→ Y −−−−→ Cf

∥

∥

∥

∥

∥

∥

⏐

⏐



h

X
f−−−−→ Y

g−−−−→ Z

where h is a homotopy equivalence. Hence, the sequence

G∗(Z)
g∗−→ G∗(Y )

f∗

−→ G∗(X)

is exact.
Clearly, the homotopy axiom is valid.
The additivity holds because lim←− and

∏

commute, see 1.21.
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Thus, G∗ is an additive cohomology theory on S . Therefore, the family

{ρX : F ∗(X)→ lim←−{F
∗(Xλ)} = G∗(X)}

is a morphism F ∗(−) → G∗(−) of additive cohomology theories. Because of
II.3.19(iii), this morphism is an equivalence. �

4.3. Corollary. Let F,X be as in 4.2. Let {Xμ} be a family of subspectra
of X such that every finite subspectrum of X is contained in some Xμ. Then
F ∗(X) = lim←−{F

∗(Xμ)}. In particular, F ∗(X) = lim←−{F
∗(X(n))}.

Proof. This follows from 4.2 and 1.20. �
Let c and ̂A be as in 2.21.

4.4. Lemma. If A
f−→ B

g−→ C is an exact sequence of abelian groups, then
the sequence

̂A
̂f−→ ̂B

ĝ−→ ̂C

is exact. In other words, the functor c is exact.

Proof. The functor Hom(−, SO(2)) is exact because of the infinite divisi-
bility of the group SO(2). Thus, c is exact. �

4.5. Theorem. For every spectrum F , there exists a morphism c : F →
̂F such that the spectrum ̂F is a-compact and c induces the canonical a-
compactification F ∗(X) → ̂F ∗(X) for every X ∈ Sf . In other words, for
every n ∈ Z there is a natural isomorphism aX : ̂Fn(X)→ ̂Fn(X) such that
the following diagram commutes for every X ∈ Sf :

(4.6)

Fn(X) cX−−−−→ ̂Fn(X)
∥

∥

∥

aX

⏐

⏐




∼=

Fn(X)
cFn(X)−−−−→ ̂Fn(X).

Proof. For every X ∈ Sf we consider the canonical a-compactification
cFn(X) : Fn(X)→ ̂Fn(X). By 2.19 and 4.4, ̂F ∗(−) is a cohomology theory on
Sf . Hence, it can be represented by a certain spectrum ̂F , and this spectrum
is a-compact. Now, given X ∈ S , consider the homomorphism

cX : F ∗(X)
ρ−→ lim←−{F

∗(Xλ)}
lim←−{c∗Xλ}−−−−−−→ lim←−{ ̂F

∗(Xλ)} = ̂F ∗(X),

the last equality holding by 4.2. Arguments like 4.2 show that cX is natural
with respect to X , and in fact the family {cX} is a morphism of cohomology
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theories on S . Hence, by 3.20(iii), it is induced by a morphism c : F → ̂F .
It is clear that c is the desired morphism. �

4.7. Definition. A morphism c : F → ̂F as in 4.5 is called an a-
compactification of the spectrum F .

4.8. Remark. One can ask why we do not use the a-compactification
F ∗(X) → ̂F ∗(X) with X ∈ S . The answer is that the cohomology theory
̂F ∗(X) is not additive in general, and so it cannot be represented.

4.9. Lemma. Let G be a spectrum such that the canonical epimorphism ρ :
G∗(X) → lim←−{G

∗(Xλ)} splits naturally with respect to X for every X ∈ S .
Then ρ is an isomorphism for every X ∈ S .

Proof. It suffices to prove that lim←−{G
∗(Xλ)} is an additive cohomology

theory on S , cf. 4.2. Only the exactness axiom needs to be verified. Firstly,
consider a strict cofiber sequence X

f−→ Y
g−→ Z = Cf of maps of spec-

tra. Choose {Xω → Yω → Zω} as in II.3.15 and consider the commutative
diagram

lim←−{G
∗(Zω)} ḡ−−−−→ lim←−{G

∗(Yω)} f̄−−−−→ lim←−{G
∗(Xω)}

⏐

⏐


τ ′
⏐

⏐




τ

⏐

⏐




G∗(Z)
g∗−−−−→ G∗(Y )

f∗

−−−−→ G∗(X)
⏐

⏐



ρ′

⏐

⏐




ρ

⏐

⏐




lim←−{G
∗(Zω)} ḡ−−−−→ lim←−{G

∗(Yω)} f̄−−−−→ lim←−{G
∗(Xω)}

with the exact middle row, where τ ′ and τ are natural splittings (here ḡ =
lim←−{gω}, f̄ = lim←−{fω}). Let a ∈ lim←−{G

∗(Yω)}, f̄(a) = 0. Then f∗(τ(a)) = 0,
i.e., τ(a) = g∗(b). Now, a = ρτa = ρg∗b = ḡρ′b, i.e., a ∈ Im ḡ. Thus, the
bottom (as well as top) row is exact. The exactness for a general cofiber
sequence X → Y → Z can be proved as in 4.2. �

4.10. Lemma. Let F be a spectrum such that lim←−
1{F ∗(Xλ)} = 0 for every

X ∈ S . Then the epimorphism ρ : F ∗(X) → lim←−{F
∗(Xλ)} is an isomor-

phism for every X ∈ S .

Proof. Let c : F → ̂F be an a-compactification of F . The cofiber sequence

F
c−→ ̂F

σ−→ G := C(c)

induces the following exact sequence of inverse systems:

0→ {F ∗(Xλ)} c−→ { ̂F ∗(Xλ)} σ−→ {G∗(Xλ)} → 0.



166 Chapter III. Phantoms

Note that
σ̄ := lim←−σ : lim←−{ ̂F

∗(Xλ)} → lim←−{G
∗(Xλ)}

is an epimorphism since lim←−
1{F ∗(Xλ)} = 0. Consider the following commu-

tative diagram with exact rows:

0 −→ lim←−{F
∗(Xλ)} c̄−−−−→ lim←−{ ̂F

∗(Xλ)} σ̄−−−−→ lim←−{G
∗(Xλ)}−→ 0

�

⏐

⏐

ρ ∼=
�

⏐

⏐

ρ1

�

⏐

⏐

ρ2

· · ·−→ F ∗(X) c∗−−−−→ ̂F ∗(X) σ∗−−−−→ G∗(X) −→ · · · .

Since ρ is epic, ρ1(Im c∗) = Im c̄. By 4.2, ρ1 is an isomorphism. Hence, the
monomorphism ̂F ∗(X)/ Im c∗ → G∗(X) yields a monomorphism

lim←−{G
∗(Xλ)} = lim←−{F

∗(Xλ)}/ Im c̄

= ρ1( ̂F ∗(X)/ Im c∗)
ρ−1
1−−→
∼=

̂F ∗(X)/ Im c∗ → G∗(X).

This is a natural splitting of ρ2. Hence, by 4.9, ρ2 is an isomorphism. Thus,
by the Five Lemma, ρ : F ∗(X)→ lim←−{F

∗(Xλ)} is an isomorphism. �

4.11. Theorem. Given a spectrum F , suppose that there exists a number
N such that lim←−

q{F ∗(Xλ)} = 0 for every q > N and every X ∈ S (resp.
X ∈ C ). Then for every X ∈ S (resp. X ∈ C ) there is a spectral sequence
E∗,∗
r (X) converging to F ∗(X) and such that Ep,q2 (X) = lim←−

p{F q(Xλ)}.

Proof. We consider the case of a spectrum X only. Let c0 : F → F0 be
an a-compactification of F . Let G1 be the fiber of c0 (i.e., ΣG1 is the cone of
c0). Consider an a-compactification c1 : G1 → F1. Let G2 be the fiber of c1,
consider an a-compactification c2 : G2 → F2, and so on. For every n we get
a long cofiber sequence

(4.12) · · ·Σ−1Fn
δn−→ Gn+1

pn−→ Gn
cn−→ Fn

Σδn−−→ ΣGn+1 → · · · ,

where cn is an a-compactification ofGn and ΣGn+1 is the cone of cn. Consider
the following diagram:

Σ−1Fn Σ−1Fn−1 Σ−1F0

δn

⏐

⏐




⏐

⏐




δn−1

⏐

⏐



δ0

· · ·→ Gn+1 −−−−→ Gn −−−−→ Gn−1→ · · · → G1 −−−−→ G0= F
⏐

⏐




cn

⏐

⏐




cn−1

⏐

⏐




c1

⏐

⏐




c0

Fn Fn−1 F1 F0 .

For every Y ∈ Sf the sequence (4.12) induces the short exact sequence
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0→ Gin(Y )→ F in(Y )→ Gi+1
n+1(Y )→ 0.

Hence, there arises an exact sequence

0→ Fn(Y )→ Fn0 (Y )→ Fn+1
1 (Y )→ · · · ckδk−1−−−−→ Fn+k

k (Y )→ · · ·

which is an a-compact resolution of the group Fn(Y ).
We can compute the groups F ∗(X), X ∈ S , using the spectral sequence

{Ep,qr , dp,qr : Ep,qr → Ep+r,q−r+1
r }

based on the tower

(4.13) {· · · → Gn+1
pn−→ Gn → · · · → G1 → F}.

Here Ep,q1 = F p+qp (X), and the differential d1 : Ep,q1 → Ep+1,q
1 is (cp+1δp)∗ :

F p+qp (X) → F p+q+1
p+1 (X). Hence, Ep,q2 is the p-th cohomology group of the

cochain complex

· · · → F p+q−1
p−1 (X)→ F p+qp (X)→ F p+q+1

p+1 (X)→ · · · .

Now, by 4.2, F ∗
p (X) = lim←−{F

∗
p (Xλ)}, and so this complex has the form

(4.14) · · · → lim←−{F
p+q−1
p−1 (Xλ)} → lim←−{F

p+q
p (Xλ)} → · · · ,

where {F q(Xλ)} → {F q0 (Xλ)} → · · · → {F p+qp (Xλ)} → · · · is an a-compact
resolution of the inverse system {F q(Xλ)}. Hence, Ep,q2 is the p-th cohomo-
logy of the cochain complex (4.14), i.e., Ep,q2 = lim←−

p{F q(Xλ)}.
We prove that this spectral sequence converges to F ∗(X). It suffices to

prove that for every m there exists M = M(m) such that the homomorphism
G∗
M (X) → G∗

m(X) is trivial. We prove more: namely, the homomorphism
(pn)∗ : G∗

n+1(X)→ G∗
n(X) is trivial for n > N . The exactness of the sequence

0→ {G∗
k(Xλ)} → {F ∗

k (Xλ)} → {G∗
k+1(Xλ)} → 0

and the equality lim←−
i{F ∗

k (Xλ)} = 0, i > 0, imply (using 2.13(ii)) that
lim←−

i{G∗
k+1(Xλ)} = lim←−

i+1{G∗
k(Xλ)}, i > 0. Hence,

lim←−
i{G∗

q(Xλ)} = lim←−
i+q{F ∗(Xλ)} = 0

for i+q > N . Therefore, if q > N then lim←−
i{G∗

q(Xλ)} = 0 for every i > 0 and
every X . Thus, by 4.10, G∗

n(X) = lim←−{G
∗
n(Xλ)} for n > N , and it remains

to note that the homomorphism (pk)∗ : G∗
k+1(Xλ) → G∗

k(Xλ) is trivial for
every k, since Xλ ∈ Sf . �

The following proposition gives us a sufficient condition for the existence
of the number N in 4.11. (Observe that the existence of such N is the con-
vergence condition of the spectral sequence.)
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4.15. Proposition (see Roos [2], Jensen [1]). Let R be a commutative Noethe-
rian ring of homological dimension d, and let M be any inverse system of
finitely generated R-modules. Then lim←−

iM = 0 for i > d. �

4.16. Corollary. Let R be a commutative Noetherian ring, and let F be a
spectrum such that F i(X), i ∈ Z are natural in X R-modules. Suppose that
πk(F ) is a finitely generated R-module for every k.

(i) If R has homological dimension ≤ 1 (for example, a subring of Q),
then for every X ∈ S there is an exact sequence

0→ lim←−
1{F k−1(Xλ)} → F k(X)

ρ−→ lim←−{F
k(Xλ)} → 0.

(ii) If R has homological dimension 0 (e.g., R is a field), then the homo-
morphism ρ : F k(X) → lim←−{F

k(Xλ)} is an isomorphism for every X ∈ S .
In particular, lim←−{F

k(Xλ)} is a cohomology theory on S .

Proof. (i) By II.4.25(iii), F k(Y ) is a finitely generated R module for every
Y ∈ Sf . So, by 4.15, lim←−

i{F ∗(Xλ)} = 0 for every i > 1 and every X ∈ S .
Now apply 4.11.

(ii) This follows from (i), since lim←−
1{F k−1(Xλ)} = 0. �

4.17. Corollary. Let F be a spectrum such that πi(F ) is a finite abelian
group for every i. Then the homomorphism ρ : F k(X)→ lim←−{F

k(Xλ)} is an
isomorphism for every X ∈ S . In particular, lim←−{F

k(Xλ)} is a cohomology
theory on S .

Proof. If Y is finite then, by II.4.25(ii), F k(Y ) is a finite abelian group
for every k. Hence, by 2.18(iii), lim←−

i{F ∗(Xλ)} = 0 for every i > 0 and every
X ∈ C . Now the result follows from 4.11. �

Now, let · · · ⊂ X(0) ⊂ · · · ⊂ X(r) ⊂ · · · ⊂ X, X =
⋃∞
r=−∞X(r) be a

filtration of a spectrum X by spectra X(r). Then for every a-compact spec-
trum F the homomorphism ρ : F ∗(X)→ lim←−{F

∗(X(r))} is an isomorphism
by 4.3. Furthermore, by 2.15, lim←−

i{F ∗(X(r))} = 0 for i > 1. Thus, we can
replace {Xλ} by {X(r)} in the proof of 4.11 and obtain the following fact.

4.18. Corollary. For every spectrum F and every X ∈ S with a filtration
as above there is an exact sequence

0→ lim←−
1{F k−1(X(r))} → F k(X)

ρ−→ lim←−{F
k(X(r))} → 0.

In particular, there is an exact sequence

(4.19) 0→ lim←−
1{F k−1(X(n))} → F k(X)

ρ−→ lim←−{F
k(X(n))} → 0. �

Thus, phantoms are just elements (
= 0) of the group lim←−
1{F ∗(X(n))}.
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4.20. Remarks. (a) Milnor [5] first proved 4.18. Moreover, 4.18 holds for an
arbitrary filtration X(0) ⊂ · · · ⊂ X(n) ⊂ · · ·X = ∪X(n) (as defined in I.3.1)
of an arbitrary space X , if we define F k(X) as in II.3.31. The proof can be
done just as in Milnor [5].

(b) The spectral sequence in 4.11 was constructed (for a space X) by
Bousfield–Kan [1] and Araki–Yosimura [1] (in different manners).

4.21. Theorem. For every two spectra E,F , there is an exact sequence

0→ lim←−
1{F k+n−1(En)} → F k(E)→ lim←−{F

k+n(En)} → 0.

Proof. Consider the filtration {Σ−nΣ∞En} of E and apply 4.18. �

4.22. Theorem. For every two spectra E,F , the homomorphism

r : lim−→Fk+n(En)→ Fk(E)

is an isomorphism.

Proof. This holds if E is a suspension spectrum. Hence, this holds for
a wedge of suspension spectra. In particular, r is an isomorphism for the
spectra τevE and τodE as in II.1.23. The Mayer–Vietoris sequence of the
triad (τE; τevE, τodE), see II.3.12(iii), yields a commutative diagram

· · ·→ Lk+1(τevE ∩ τodE)→Lk(τE)→ Lk(τevE)⊕ Lk(τodE)→· · ·
⏐

⏐


r′′
⏐

⏐


r′
⏐

⏐




r

⏐

⏐


r′′
⏐

⏐


r′

· · ·→ Fk+1(τevE ∩ τodE)→Fk(τE)→ Fk(τevE)⊕ Fk(τodE)→· · ·

where Li(A) := lim−→{Fn+i(An)}. Here the top row is exact because lim−→ pre-
serves exactness, see I.2.7. Since r′ and r′′ are isomorphisms, r is an isomor-
phism by the Five Lemma. �

4.23. Proposition. Let F(n) be the Postnikov n-stage of a spectrum F . Then
for every X ∈ S there is an exact sequence

0→ lim←−
n

1{F i−1
(n) (X)} → F i(X)→ lim←−

n
{F i(n)(X)} → 0,

where
· · · → F ∗

(n)(X)
(pn)∗−−−→ F ∗

(n−1)(X)→ · · ·
is the obvious inverse system.

Proof. Given Y ∈ S , consider the homomorphism
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∏

n

F ∗
(n)(Y )→

∏

n

F ∗
(n)(Y ),

{. . . , an, an−1, . . . } �−→ {. . . , an − (pn+1)∗an+1, an−1 − (pn)∗an, . . . }

where an ∈ F ∗
(n)(Y ). Considering Y as an indeterminate, we get a morphism

of additive cohomology theories on S . By 3.6(ii), this morphism is repre-
sented by a morphism δ :

∏

n F(n) →
∏

n F(n) of spectra, cf. 3.26. Let us

form a cofiber sequence G k−→
∏

n F(n)
δ−→
∏

n F(n). Then we have the exact
sequence
∏

n

F i−1
(n) (X) δ∗−→

∏

n

F i−1
(n) (X) −→ Gi(X) k∗−→

∏

n

F i(n)(X) δ∗−→
∏

n

F i(n)(X).

By 2.15, it yields the exact sequence

0→ lim←−
n

1{F i−1
(n) (X)} → Gi(X) k̄∗−→ lim←−

n
{F i(n)(X)} → 0.

We must prove that G � F . Given Y ∈ S , we define the homomorphism
F ∗(Y ) →

∏

n F
∗
(n)(Y ), a �→ {(τn)∗(a)}. In this way we obtain a morphism

of cohomology theories. By 3.6(ii), this morphism is represented by a mor-
phism μ : F →

∏

F(n) of spectra, and, by 3.6(ii) again, the morphism

F
μ−→
∏

n F(n)
δ−→
∏

n F(n) is inessential. Hence, there is f : F → G such
that kf = μ. So, we have the commutative diagram

F i(X)
μ̄∗−−−−→ lim←−n{F

i
(n)(X)}

f∗

⏐

⏐




∥

∥

∥

Gi(X)
μ̄∗−−−−→ lim←−n{F

i
(n)(X)}.

Clearly, both horizontal arrows are isomorphisms for X = Sn, n ∈ Z. Thus,
f is an equivalence. �

4.24. Remarks. (a) Let F be a sheaf of abelian groups over a space X .
Let U = {U} be the family of all open subsets of X ordered with respect to
inclusion. By definition, F is a functor U → A G , and so it is just an inverse
U -system. Namely, FU = F (U) for every U ∈ U . Now, by the definitions,
we have lim←−

iF = Hi(X ; F ), see Godement [1].
(b) I did not prove yet that lim←−

i can be non-zero for every i. But now
this is clear because of (a). Indeed, if A is a constant sheaf over ∨∞i=1S

i then
lim←−

iA 
= 0 for every i.
(c) Let X,U be as in (a), and let f : Y → X be a map. Given a spectrum

F , define a sheaf F k by setting F k(U) = F k((f−1U)+). (In fact, f−1U might
not be a CW -space, but here I do not care about it.) Since the set {f−1(U)}
is cofinal in the quasi-ordered set {Yλ}, we get (under suitable conditions) a
spectral sequence



§5. A Sufficient Condition for the Absence of Phantoms 171

(4.25) Ep,qr (Y )⇒ F ∗(Y ), Ep,q2 = lim←−
p{F q((f−1U)+)} = Hp(X ; F q).

In particular, if f = 1X then there is a spectral sequence

(4.26) Ep,qr (X)⇒ F ∗(X), Ep,q2 = lim←−
p{F q(U+)} = Hp(X ; F q).

For a good space X (defined below), we have Hp(X ; F q) = Ȟp(X ;F q(S0)),
where Ȟ means the Čech cohomology, and the spectral sequence (4.26) is just
the Atiyah–Hirzebruch spectral sequence. We recommend also comparing the
spectral sequence (4.25) with that in 15.27 from Switzer [1]. Probably, there
is some folklore about the spectral sequences (4.25) and (4.26), but, as far as
I know, nobody has written this down accurately. (Of course, the case F = H
in (4.25) is well known, see e.g. Godement [1].)

I want to explain what is meant to be a good space. We say that a covering U =
{U} is strongly contractible if it is locally finite and every finite intersection U1 ∩
· · · ∩ Uk, Ui ∈ U is contractible. If U is strongly contractible then Hi(X ; F ) =
Ȟi(NU ; FU ), where NU is the nerve of U and FU is the local system given

by F , see e.g. Godement [1]. We say that X is good if every covering of it admits

a strongly contractible refinement. Since F i(U+) = F i(S0) for every contractible

U , we conclude that Hp(X ; F q) = Ȟp(X ;F q(S0)) for every good space X .

§5. A Sufficient Condition for the Absence of Phantoms

The results of this section are due to Anderson [1], cf. also Atiyah [2].

As well as in §4, in this section {Xλ} denotes the family of all finite
subspectra of a spectrum X .

5.1. Lemma. Let {· · · → An+1 → An → · · · → A0} be an inverse system
of monomorphisms of countable abelian groups. If lim←−

1{Ar} = 0, then there
exists m such that An → Am is an isomorphism for every n ≥ m.

Proof. Set Cr = Coker{Ar → A0}. Since lim←−
1{Ar} = 0, the sequence

0 → lim←−{Ar} → A0 → lim←−{Cr} → 0 is exact by 2.13(ii). Hence, lim←−{Cr} is
countable. It is clear that the inverse system

{· · · → Cn
qn−→ Cn−1 → · · · }

consists of epimorphisms. If it does not stabilize then there exists an ar-
bitrarily large n with qn 
= 0. Thus, lim←−{Cr} is not countable. This is a
contradiction. �

5.2. Definition. We say that an inverse system {· · · → An+1 → An →
· · · → A0} satisfies the Mittag-Leffler condition if for every r there exists
m = m(r) such that Im{An → Ar} = Im{Am → Ar} for all n ≥ m.
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5.3. Lemma. (i) If an inverse system A satisfies the Mittag-Leffler condition
then lim←−

1A = 0.
(ii) If all the groups Ar are countable and lim←−

1A = 0, then A satisfies
the Mittag-Leffler condition.

(iii) Let A satisfy the Mittag-Leffler condition. Suppose that a sequence
A

κ−→ B
σ−→ C of inverse systems be exact (at B). Then the sequence

lim←−A → lim←−B → lim←−C is exact.

Proof. (i) See Switzer [1], Th. 7.75.
(ii) If A is an inverse system of monomorphisms then the assertion follows

from 5.1. Given an arbitrary system A , we set Bmn = An for m ≤ n and
Bmn = Im{Am → An} for m > n. For every r we have the inverse system
· · · ⊂ Bm+1

r ⊂ Bmr ⊂ · · · ⊂ Brr = Ar of monomorphisms, and, by 5.1, it
stabilizes as m → ∞. Hence, there exists m such that Bnr → Bmr is an
isomorphism for n ≥ m. Thus, A satisfies the Mittag-Leffler condition.

(iii) We prove that for every string {bn} ∈ B with σ{bn} = 0 there exists
{an} with κn(an) = bn. Set Pn = κ

−1
n (bn), Qn = ∩∞m=n Im{Pm → Pn}. The

homomorphisms pn of the inverse system A induce epimorphisms qn : Qn →
Qn−1. The Mittag-Leffler condition for A implies that Qr 
= ∅ for every r.
Thus, there exist elements an ∈ Qn with qnan = an−1 for every n, and it is
clear that {an} is a string with κn(an) = bn. �

Now let A = {· · · → An
pn−→ An−1 → · · · → A0} be an inverse system of

countable abelian groups. Suppose that for every n there is a filtration

An = An(−1) ⊃ An(0) ⊃ · · · ⊃ An(n) ⊃ An(n+ 1) = 0

with pn(An(i)) ⊂ An−1(i), i.e., that a certain decreasing filtration of A is
given. Consider the inverse system B(i) = {· · · → Bn(i) → Bn−1(i) → · · · }
where Bn(i) = An(i)/An(i+ 1).

5.4. Lemma. If lim←−B(i) = 0 for every i then lim←−
1A = 0.

Proof. We prove that A satisfies the Mittag-Leffler condition. Since
An(n+1) = 0, it suffices to prove that {An/An(i)} satisfies the Mittag-Leffler
condition for every i. Since An/An(i) is a finite extension of the groups Bn(j)
and lim←−

1Bn(j) = 0, we conclude that lim←−
1{An/An(i)} = 0. Thus, by 5.3(ii),

{An/An(i)} satisfies the Mittag-Leffler condition. �

5.5. Theorem. Let X be a spectrum of finite Z-type. Fix a natural num-
ber m. Let F be a spectrum such that Fm(X(n)) is a finitely generated
abelian group for every n. Consider the Atiyah–Hirzebruch spectral sequence
Ep,qr (X,F ), Ep,q2 (X,F ) = Hp(X ;π−q(F )). Suppose that for every (p, q) with
p+ q = m the differentials

dp,qr : Ep,qr (X,F )→ Ep+r,q−r+1
r (X,F )
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are trivial for all but a finite number of r. Then

Fm(X) = lim←−
n
{Fm(X(n))} = lim←−

λ

{Fm(Xλ)}.

In particular, Fm(X) does not contain phantoms.

Proof. Because of II.4.26(ii) and 1.15(ii), we can assume that X has finite
type. So, the family {Xλ} is cofinal in {X(n)}, and it suffices to prove that
Fm(X) = lim←−n{F

m(X(n))}. Now, because of 4.18, it suffices to prove that
lim←−

1Fm(X(n)) = 0. Set An = Fm(X(n)) and consider the filtration

An(i) := Ker{Fm(X(n))→ Fm(X(i))}

of An. Then An(i)/An(i − 1) = Ei,m−i
∞ (X(n), F ). Since the groups An are

finitely generated, it suffices to prove (by 5.4) that lim←−
1Ei,m−i

∞ (X(n), F ) = 0
for every i.

Recall that Ep,q1 (X,F ) = F p+q(X(p), X(p−1)). Hence, Ep,q1 (X(n), F ) = 0
for p > n, and the restriction Ep,q1 (X,F )→ Ep,q1 (X(n), F ) is an isomorphism
for p ≤ n. This implies that Ep,qr (X,F ) → Ep,qr (X(n), F ) is an isomorphism
for p ≤ n−r+1, i.e., for n ≥ p+r−1. If p+q = m, then Ep,qr (X,F ) does not
depend on r for r large enough. Hence, Ep,q∞ (X(n), F ) stabilizes as n → ∞.
Thus, lim←−

1Ep,q∞ (X(n), F ) = 0. �

5.6. Corollary. If the conditions of 5.5 hold for all m, then Ep,qr (X,F )
converges to F ∗(X).

Proof. By 5.5, lim←−{F
∗(X(n))} = F ∗(X). But E∗,∗

∞ (X,F ) is associated to
the graded group lim←−{F

∗(X(n))}. �

5.7. Corollary. Let X,F be two spectra of finite Z-type. Then

Fm(X) = lim←−
n
{Fm(X(n))} = lim←−

λ

{Fm(Xλ)}

provided at least one of the following conditions holds:
(i) All the groups π∗(F ) are finite;
(ii) All the groups H∗(X) are finite;
(iii) All the groups H∗(X) and π∗(F ) are torsion free.

Proof. (i), (ii) This follows from 5.5.
(iii) All the groups Ep,q2 (X,F ) are torsion free, and so, by II.7.12, all the

differentials are trivial. �

5.8. Proposition. Let X,F be two spectra, and suppose that there exists N
such that πi(F ) = 0 for i ≥ N . Then:

(i) ρ : F k(X)→ lim←−{F
k(X(n))} is an isomorphism for every k.
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(ii) Two morphisms ϕ, ψ : X → F are homotopic iff the homomorphisms
ϕ∗, ψ∗ : X∗(Y )→ F ∗(Y ) coincide for every Y ∈ Sfd.

Proof. Fix any k. The cofiber sequence X(n) → X(n+1) → ∨Sn+1 yields
the exact sequence

F k−1(∨Sn+1)→ F k−1(X(n+1))→ F k−1(X(n))→ F k(∨Sn+1).

Since πi(F ) = 0 for i ≥ N , we conclude that F i(Sm) = 0 for m− i ≥ N , and
so F k−1(∨Sn+1) = 0 = F k(∨Sn+1) for n large enough. Hence, the sequence
{F k−1(X(n))} stabilizes as n → ∞, and so it satisfies the Mittag-Leffler
condition. Hence, by 5.3, lim←−

1{F k−1(X(n))} = 0, and thus, by 4.19, ρ is an
isomorphism.

(ii) Only “if ” needs proving. Let f : X → F be a morphism with [f ] =
[ϕ] − [ψ]. If ϕ∗, ψ∗ : X∗(Y ) → F ∗(Y ) coincide for every Y ∈ Sfd then the

morphism X(n) ⊂ X
f−→ F is inessential. But, by (i), lim←−

1{F 0(X(n))} = 0,
and thus ϕ � ψ. �

§6. Almost Equivalent Spectra (Spaces)

6.1. Definition. We say that two spectra (spaces) E,F are almost equiva-
lent if the coskeletons E(n) and F(n) are equivalent for all n, i.e., if E and F
have the same n-type for all n.

Let [F ] denotes the equivalence class of a spectrum F , and let

ALEQ(E) := {[F ]
∣

∣ F is almost equivalent to E}.

The term “almost equivalent” and notation ALEQ are innovations. Tradition-

ally one uses the notation SNT (X) (same n-type) instead of ALEQ.

Here we describe the set ALEQ(E) for a spectrum (space) E, but first
we give an example of almost equivalent but inequivalent spaces.

6.2. Example (Adams [1]). Let Am, m = 1, 2, . . . , be a countable family
of pointed CW -complexes with finite skeletons. Consider the subset A of
∏∞
m=1Am consisting of the elements (x1, . . . , xn, . . . ), xn ∈ An, such that all

but a finite number of xk coincide with the base points. Products of cells of
Am give the cells in A, and we introduce the weak topology with respect to
these cells. We call A the direct sum of Am and denote it by ⊕Am.

Consider the sphere Sd, d ≥ 2. Set X = ⊕∞
m=d(S

d
(m)), Y = Sd × X .

Then X(n) � Y(n) for every n. Indeed, given n, let Z be the direct sum
of a countable set of copies of Sd(n). One has Sd(n) × Z = Z, and therefore
X(n) �

∏

d≤m<n S
d
(m) × Z � Y(n). Hence, X and Y are almost equivalent.
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We prove that they are not equivalent. Suppose that there are f : X →
Y, g : Y → X with fg � 1Y , gf � 1X . Consider the direct summand Sd

of Y = Sd × X . The subspace g(Sd) of X is contained in a finite cellular
subspace of X , and so g(Sd) ⊂

∏

d≤m<N S
d
(m) for some N . Then the map

Sd
g−→

∏

d≤m<N
Sd(m) ⊂ X

f−→ Y
proj−−→ Sd

is homotopic to 1Sd . Since πi
(

∏

d≤m<N S
d
(m)

)

= 0 for i ≥ N , we conclude

that πi(Sd) = 0 for i ≥ N . On the other hand, by a well-known theorem of
Serre [3], the groups πi(Sd) are non-trivial for arbitrarily large i (namely, the
dimension of the first nontrivial p-component increases with increasing p).
This is a contradiction.

Now we pass to a description of ALEQ(E).

6.3. Lemma. (i) Let E,F be two spectra (resp. spaces), and let

· · · E E E · · ·
⏐

⏐




τn

⏐

⏐




⏐

⏐




· · · −−−−→ E(n+1) −−−−→ E(n)
pn−−−−→ E(n−1) −−−−→ · · ·

and

· · · F F F · · ·
⏐

⏐




σn

⏐

⏐




⏐

⏐




· · · −−−−→ F(n+1) −−−−→ F(n)
qn−−−−→ F(n−1) −−−−→ · · ·

be Postnikov towers of E and F . Let ϕn : E(n) → F(n) be morphisms (resp.
maps) such that every diagram

E(n)
ϕn−−−−→ F(n)

pn

⏐

⏐




⏐

⏐




qn

E(n−1)
ϕn−1−−−−→ F(n−1)

commutes up to homotopy. Then there exists ϕ : E → F such that every
diagram

E
ϕ−−−−→ F

τn

⏐

⏐




σn

⏐

⏐




E(n)
ϕn−−−−→ F(n)

commutes up to homotopy.
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(ii) Given a sequence of morphisms of spectra

· · · ←− E(0)←− E(1)←− · · · ←− E(n− 1)
pn←− E(n)←− · · ·

such that πi(E(0)) = 0 for i > 0 and that the cone of pn is an Eilenberg–
Mac Lane spectrum Σn+1H(πn) for some πn, there exist a spectrum E and
morphisms τn : E → E(n) such that

· · · E E E · · ·
⏐

⏐




τn

⏐

⏐




⏐

⏐




· · · −−−−→ E(n+ 1) −−−−→ E(n)
pn−−−−→ E(n− 1) −−−−→ · · ·

is a Postnikov tower of E, and this spectrum E is unique up to equivalence.
(iii) Given a sequence of maps of spaces

pt←− X(1)←− · · · ←− X(n− 1)
pn←− X(n)←− · · · ,

suppose that for every n the following holds: πi(X(n)) = 0 for i > n and
(pn)∗ : πi(X(n)) → πi(X(n − 1)) is an isomorphism for i < n. Then there
exist a space X and maps τn : X → X(n) such that

· · · X X X · · ·
⏐

⏐




τn

⏐

⏐




⏐

⏐




· · · −−−−→ X(n+ 1) −−−−→ X(n)
pn−−−−→ X(n− 1) −−−−→ · · ·

is a Postnikov tower of X, and this X is unique up to homotopy equivalence.

Proof. (i) Since the inclusion ik : E(k) → E is a (k − 1)-equivalence, for
fixed n the function i∗k : [E,F(n)] → [E(k), F(n)] is a bijection for k large
enough (for spectra this follows from II.4.1(iv), for spaces from the obstruc-
tion theory). Similarly, since σn : F → F(n) is an n-equivalence, for fixed k

the function (σn)∗ : [E(k), F ]→ [E(k), F(n)] is a bijection for n large enough.
So, we have the commutative diagram

[E,F ] h−−−−→ lim←−n[E,F(n)]

ρ

⏐

⏐




⏐

⏐




∼=

lim←−k[E
(k), F ]

∼=−−−−→ lim←−k,n[E(k), F(n)]

where h = {(σn)∗| lim←−}. By 3.20(ii) (for spectra) and 1.16 (for spaces), ρ is a
surjection. Hence, h : [E,F ] −→ lim←−n{[E,F(n)]} is a surjection. Thus, there is
ϕ : E → F with h(ϕ) = {ϕnτn}

(ii) Set E∗(X) = lim←−{E(n)∗(X)} for every finite dimensional spectrum
X . Fixing X , by II.4.1(ii) we have Ei(X) = E(N)i(X) for N large enough.
So, E∗ is a cohomology theory on Sfd. By 3.21, it can be represented by a
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spectrum E. Furthermore, also by 3.21, the morphisms E∗(−) → E(n)∗(−)
of cohomology theories are induced by certain morphisms τn : E → E(n). By
5.8(ii), pnτn � τn−1. Hence, the diagram of the lemma is a Postnikov tower
of E. Finally, if there is a spectrum F with the same Postnikov tower, then,
by (i), E � F .

(iii) We can assume spaces and maps to be pointed. Given a tower as in
the lemma, define F (Y ) := lim←−[Y,X(n)]• for every finite dimensional con-
nected CW -space Y . Then F is a half-exact functor on the category H of
pointed connected finite dimensional pointed CW -spaces, and so, by 3.25,
F (Y ) = [Y,X ]• for a certain pointed connected CW -space X and every
Y ∈ H . Because of the universality of lim←−, we have certain natural maps
an : [Y,X ]• → [Y,X(n)]•.

Given a CW -space Z, consider the diagram

[Z,X ]• [Z,X(n)]•

ρ

⏐

⏐




⏐

⏐




∼=

lim←−m[Z(m), X ]•
lim←−m an−−−−−→ lim←−m[Z(m), X(n)]•.

Here the right arrow is a bijection because πi(X(n)) = 0 for i > n. Hence,
we get a natural map (lim←−m an)ρ : [Z,X ]• → [Z,X(n)]•. It yields a certain
map τn : X → X(n), and pnτn � τn−1. Thus, the tower above is a Postnikov
tower of X . The uniqueness of X follows from (i). �

Consider an inverse system of groups (not necessary abelian)

· · · ←− G0
j1←− G1 ←− · · · ←− Gn−1

jn←− Gn ←− · · · .

The group G =
∞
∏

n=−∞
Gn acts on the set

∞
∏

n=−∞
Gn as follows:

{gn}{αn} = {gnαnjn+1(g−1
n+1)}.

Define lim←−
1{Gn} to be the set of all orbits of this G-action. This construction

coincides with that given above (e.g. in 2.15) for abelian groups Gn.

6.4. Proposition (cf. 2.15). If {Gn, jn} is an inverse system of compact
topological groups and continuous homomorphisms, then lim←−

1{Gn} is trivial
(i.e., it is just a one-point set ). In particular, lim←−

1{Gn} is trivial for every
system of finite groups Gn.

Proof. We leave it to the reader, but give a hint. (Also, see Wilkerson [1].)
Firstly, one must prove that {Gn} satisfies the Mittag-Leffler condition (using
the criterion for compactness in terms of the nested systems of closed sets).
This implies that lim←−

1{Gn} is trivial, cf. Switzer [1], Th. 7.75. �
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Let autE be the group (under the composition law) of the homotopy
classes of all self-equivalences E → E of a spectrum (space) E. Because of
II.4.18, we obtain the inverse system of groups (non-abelian)

· · · ←− autE(n) ←− autE(n+1) ←− · · · .

6.5. Theorem (cf. Wilkerson [1]). There is a bijective correspondence be-
tween ALEQ(E) and lim←−

1{autE(n)}.

Proof. We write Ek instead of E(k). Firstly, we construct a map ϕ :
∏∞
n=−∞ autEn → ALEQ(E). Consider a Postnikov tower of E

· · · ←− E0
p1←− E1 ←− · · · ←− En−1

pn←− En ←− · · · .

Given {αn} ∈
∏∞
n=−∞ autEn, consider the tower

· · · ←− E0
α0p1←−−− E1 ←− · · · ←− En−1

αn−1pn←−−−−− En ←− · · · .

By 6.3(ii), it is a Postnikov tower of a certain spectrum (space) F , and it is
clear that the spectra (spaces) F and E are almost equivalent. Define ϕ({αn})
to be the equivalence class [F ] of F .

We prove that ϕ is surjective. Let F be almost equivalent to E, and let
fn : Fn → En be the corresponding equivalences. By II.4.18, the morphism
fn+1 induces a morphism (fn+1)n : Fn = (Fn+1)n → (En+1)n = En. Set
αn = fn◦((fn+1)n)−1. It is easy to see that ϕ({αn}) = [F ].

We prove that ϕ induces a well-defined map lim←−
1{autEn} → ALEQ(E).

Let {βn} = {gn}{αn}. For every n the diagram

En+1
gn+1−−−−→ En+1

pn+1

⏐

⏐




pn+1

⏐

⏐




En En

αn

⏐

⏐



βn

⏐

⏐




En
gn−−−−→ En

commutes up to homotopy. Now one can construct an equivalence ϕ({αn})→
ϕ({βn}) in the same manner as in 6.3.

Finally, given spectra F,G with [F ] = ϕ({αn}), [G] = ϕ({βn}), there are
equivalences an : En → Fn and bn : Gn → En such that in the diagram
below the left and the right squares are commutative. Suppose that there
exists an equivalence h : F → G. By II.4.18, it induces maps hn : Fn → Gn
such that the middle square of the diagram below commutes. Hence, there is
the homotopy commutative diagram
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En+1
an+1−−−−→ Fn+1

hn+1−−−−→ Gn+1
bn+1−−−−→ En+1

αnp
E
n+1

⏐

⏐



pFn+1

⏐

⏐




⏐

⏐



pGn+1

⏐

⏐



βnp

E
n+1

En
an−−−−→ Fn

hn−−−−→ Gn
bn−−−−→ En .

So, {gn}{αn} = {βn}, where gn = bnhnan. Hence, ϕ : lim←−
1{autE(n)} →

ALEQ(E) is injective, and thus it is bijective. �

6.6. Corollary. If E is bounded below and every group πi(E) is finite, then
ALEQ(E) = {[E]}.

Proof. Every group autE(n) is finite, being a subset of the finite set
E0

(n)(E(n)). Thus, by 6.4, lim←−
1{autE(n)} = 0. �

6.7. Theorem. Let E be a spectrum of finite Z-type. Given a sequence

E
ϕ−→ F

α−→ G
β−→ ΣE

Σϕ−−→ ΣF Σα−−→ · · ·
of spectra such that the sequence

· · · → Ei(X)
ϕ∗−→ Fi(X) α∗−→ Gi(X)

β∗−→ Ei−1(X)→ · · ·
is exact for every CW -space X, suppose that ϕ∗ : π∗(E)→ π∗(F ) is monic.
Then the following hold:

(i) The spectra G and Cϕ are almost equivalent;

(ii) If G0(E) does not contain phantoms, then G � Cϕ, and E
ϕ−→ F

α−→ G
is a cofiber sequence.

Proof. (i) By duality, for every finite spectrum Y we have the exact se-
quence · · · → Ei(Y ) → F i(Y ) → · · · . By II.4.26(ii), we can assume that
E(n) is a finite spectrum for every n. Putting Y = E(n), i = 0 in this exact

sequence, we conclude that the morphism E(n) ϕ(n)

−−−→ F (n) α(n)

−−−→ G(n+1) is
trivial. Hence, there exists h : C(ϕ(n)) → G(n+1) such that the following
diagram commutes:

E(n) ϕ(n)

−−−−→ F (n) −−−−→ C(ϕ(n))
∥

∥

∥

∥

∥

∥

⏐

⏐



h

E(n) ϕ(n)

−−−−→ F (n) α(n)

−−−−→ G(n+1) .

For i < n−1 this diagram induces the following diagram with the exact rows:

0 −−−−→ πi(E(n)) −−−−→ πi(F (n)) −−−−→ πi(C(ϕ(n))) −−−−→ 0
∥

∥

∥

∥

∥

∥

∥

∥

∥

⏐

⏐



h∗

∥

∥

∥

0 −−−−→ πi(E(n)) −−−−→ πi(F (n)) −−−−→ πi(G(n+1)) −−−−→ 0.

Hence, C(ϕ(n)) and G(n+1) are (n− 2)-equivalent for every n.
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This implies that Cϕ and G are almost equivalent. Indeed, the inclu-
sion G(n+1) → G is an (n + 1)-equivalence, and so the induced morphism
G

(n+1)
(n) → G(n) is an equivalence. Similarly, there is an (n − 2)-equivalence

C(ϕ(n))→ C(ϕ), and so we obtain an equivalence C(ϕ(n))(n−2) → C(ϕ)(n−2).
So, since C(ϕ(n)) and G(n+1) are (n − 2)-equivalent, C(ϕ)(n−2) and G(n−2)

are equivalent. Since this holds for every n, we conclude that C(ϕ) and G are
almost equivalent.

(ii) The morphism αϕf is inessential for every morphism f : Y → E
of a finite spectrum Y . In particular, for every n the morphism αϕ|E(n) is
inessential because E(n) is a finite spectrum. Hence, αϕ is inessential because
G0(E) does not contain phantoms. Therefore, there exists f : Cϕ→ G such

that the diagram (where E
ϕ−→ F

ψ−→ Cϕ is the strict cofiber sequence)

E
ϕ−−−−→ F

ψ−−−−→ Cϕ
∥

∥

∥

∥

∥

∥

⏐

⏐



f

E
ϕ−−−−→ F

α−−−−→ G

commutes. Hence, in the diagram

0 −−−−→ π∗(E) −−−−→ π∗(F ) −−−−→ π∗(Cϕ) −−−−→ 0
∥

∥

∥

∥

∥

∥

∥

∥

∥

⏐

⏐



f∗

∥

∥

∥

0 −−−−→ π∗(E) −−−−→ π∗(F ) −−−−→ π∗(G) −−−−→ 0

f∗ is an isomorphism, and thus f is an equivalence. �

§7. Multiplications and Quasi-multiplications

Every ring spectrum (E, μ, ι) yields a family

{μ(X,A),(Y,B) :Ei(X,A)⊗ Ej(Y,B)→ Ei+j(X × Y,X ×B ∪A× Y )},
(X,A), (Y,B) ∈ C 2.

However, for certain homology theories E∗(−), one can easily construct a
family {μX,Y } even when knowing neither the multiplication μ nor the spec-
trum E. Typical examples are geometrically defined homology theories, like
bordism and bordism with singularities, see Ch. VIII, IX. Moreover, some-
times one can construct a family {μX,Y } with suitable properties even if we do
not know whether the multiplication μ exists. We call such a family {μX,Y }
a quasi-multiplication. So, every multiplication yields a quasi-multiplication,
and we are interested in the converse of this situation.
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Recall that every spectrum E is an S-module spectrum. Hence, for all
CW -pairs (X,A), (Y,B) there is a natural pairing

ϕ = ϕ(X,A),(Y,B) : Πi(X,A)⊗ Ej(Y,B) −→ Ei+j(X × Y,X ×B ∪A× Y )

where ϕ(α ⊗ β) is given by the morphism

Si ∧ Sj α∧β−−−→Σ∞(X/A) ∧ Σ∞(Y/B) ∧ E � Σ∞(X/A ∧ Y/B) ∧ E
=Σ∞((X × Y )/(X ×B ∪A× Y )) ∧ E

for α : Si → Σ∞(X/A), β : Sj → Σ∞(Y/B) ∧ E.
Similarly, there is a natural pairing

ψ = ψ(X,A),(Y,B) : Ei(X,A)⊗Πj(Y,B) −→ Ei+j(X × Y,X ×B ∪A× Y ).

7.1. Definition. (a) A quasi-ring spectrum is a triple (E, {μ(X,A),(Y,B)}, ι),
where:

E is a spectrum;

{μ(X,A),(Y,B) : Ei(X,A)⊗Ej(Y,B)→ Ei+j(X ×Y,X ×B ∪A×Y ), i, j ∈ Z}

is a certain family (called the quasi-multiplication) of natural pairings, defined
for all CW -pairs (X,A), (Y,B);

ι : S → E is a certain morphism (called the unit).
Furthermore, we require that the following four diagrams are commuta-

tive:

Πi(X,A)⊗ Ej(Y,B)
ϕ−−−−→ Ei+j(X × Y,X ×B ∪A× Y )

ιX⊗1

⏐

⏐




∥

∥

∥

Ei(X,A)⊗ Ej(Y,B)
μ−−−−→ Ei+j(X × Y,X ×B ∪A× Y )

and the similar diagram for ψ;

Ei(X,A)⊗ Ej(Y,B)
μ(X,A),(Y,B)−−−−−−−−→ Ei+j(X × Y,X ×B ∪A× Y )

∂⊗1

⏐

⏐




⏐

⏐



d

Ei−1(A) ⊗ Ej(Y,B) Ei(X ×B ∪A× Y,X ×B)
∥

∥

∥

c

⏐

⏐




∼=

Ei−1(A) ⊗ Ej(Y,B)
μA,(Y,B)−−−−−→ Ei+j−1(A× Y,A×B)

and the similar for ∂ : Ej(Y,B)→ Ej−1(B). Here d is the (boundary) homo-
morphism in the exact sequence II.3.2(iv) of the triple (X × Y,X ×B ∪A×
Y,X ×B) and

c : E∗(X ×B ∪A× Y,X ×B)
∼=−→ E∗(A× Y/A×B)

∼=←− E∗(A× Y,A×B)

is the composition of the collapsing isomorphisms.
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A quasi-multiplication is commutative if the diagram

Ei(X,A)⊗ Ej(Y,B)
μ(X,A),(Y,B)−−−−−−−−→ Ei+j(X × Y,X ×B ∪A× Y )

χ

⏐

⏐




⏐

⏐




τ∗

Ej(Y,B)⊗ Ei(X,A)
μY,X−−−−→ Ei+j(Y ×X,Y ×A ∪B ×X).

commutes. Here χ(a⊗b) = b⊗a and τ = τ(X,Y ) : X×Y → Y ×X . We leave
it to the reader to define the associativity condition for a quasi-multiplication.

(b) Let E,F be two quasi-ring spectra. A morphism ϕ = {ϕ(X,A) :
E∗(X,A) → F∗(X,A)} is a quasi-ring morphism if the following diagrams
commute for all pairs (X,A), (Y,B):

Π∗(X,A)
ιE∗−−−−→ E∗(X.A)

∥

∥

∥ ϕ(X,A)

⏐

⏐




Π∗(X,A)
ιF∗−−−−→ F∗(X,A)

E∗(X,A)⊗ E∗(Y,B)
μE−−−−→ E∗((X,A)× (Y,B))

ϕ(X,A)⊗ϕ(Y,B)

⏐

⏐




⏐

⏐


ϕ(X,A)×(Y,B)

F∗(X,A)⊗ F∗(Y,B)
μF−−−−→ F∗((X,A)× (Y,B))

where, as usual, (X,A)× (Y,B) := (X × Y,X ×B ∪A× Y ).

7.2. Construction. Let (E, {μ(X,A),(Y,B)}, ι) be a quasi-ring spectrum.
(a) Given two pointed CW -spaces X,Y , we define a pairing

˜Ei(X)⊗ ˜Ej(Y ) = Ei(X, ∗)× Ej(Y, ∗)
μ(X,∗),(Y,∗)−−−−−−−→ Ei+j(X × Y,X ∨ Y )

= ˜Ei+j(X ∧ Y ).

We leave it to the reader to prove that these pairings commute with the sus-
pension isomorphisms, i.e., that the diagrams like II.(3.37) (with Σ replaced
by S) commutes.

(b) Because of (a), we have a pairing

μA,B : Ei(A)⊗ Ej(B)→ Ei+j(A ∧B)

for every pair of finite spectraA,B. Now, given two arbitrary spectraX,Y , let
Xλ, resp.Yλ′ be the family of all finite subspectra ofX , resp. Y . By II.3.20(ii),
there is a canonical isomorphism Ei(X) ∼= lim−→{Ei(Xλ)}, and similarly for
E∗(Y ). Now, we define the pairing

μX,Y :Ei(X)⊗ Ej(Y ) = lim−→{Ei(Xλ)} ⊗ lim−→{Ei(Yλ′)}
= lim−→{Ei(Xλ)⊗ Ej(Yλ′ )} → lim−→{Ei+j(Xλ ∧ Yλ′)} → Ei+j(X ∧ Y )

(recall that lim−→ and ⊗ commute, see e.g. Bourbaki [1], §6, n07).
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As we have already remarked, every multiplication induces a quasi-
multiplication, and we are interested in the converse of this situation.

7.3. Theorem (cf. Switzer [1], 13.80 ff.). Let (E, {μ(X,A),(Y,B)}, ι) be a quasi-
ring spectrum of finite Z-type. Let Ek denote the k-skeleton of E. Then :

(i) There exists a pairing μ : E∧E → E inducing the pairings μ(X,A),(Y,B).
(ii) If lim←−

1{E−1(En ∧En)} = 0 then the pairing μ as in (i) is unique up
to homotopy.

(iii) If lim←−
1{E−1(En)} = 0 then the morphism S ∧ E ι∧1−−→ E ∧ E μ−→ E

(with μ as in (i)) is homotopic to l(E) : S ∧ E → E. Thus, the diagrams as
in 7.1 commute for every μ as in (i).

(iv) If lim←−
1{E−1(En ∧ En ∧ En)} = 0 and the quasi-multiplication on E

is associative then every pairing μ as in (i) is associative.
(v) If lim←−

1{E−1(En ∧ En)} = 0 and the quasi-multiplication on E is
commutative then every pairing μ as in (i) is commutative.

In particular, if E is a spectrum of finite Z-type with finite groups πi(E)
for every i then every associative quasi-multiplication on E is induced by a
multiplication μ : E ∧E → E. This multiplication is unique up to homotopy,
and it is commutative if the quasi-multiplication is.

Proof. (i) By 7.2(a) and duality, we have pairings μA,B : Ei(A)⊗Ej(B)→
Ei+j(A∧B) for all finite spectra A,B. By II.4.26(ii), we can assume that all
skeletons of the spectra E,E∧E,E∧E∧E are finite. Hence, there are certain
pairings

μE
n,En : E0(En)⊗ E0(En)→ E0(En ∧ En).

Let an : En → E be the inclusion, and let a morphism vn : En∧En → E give
the element μE

n,En(an⊗an). Since the inclusions an∧an : En∧En → E∧E
and b2n : (E ∧ E)2n → E ∧ E are n-equivalences, there exists a unique n-
equivalence hn : (E ∧ E)2n → En ∧ En such that (an ∧ an)h � b2n. Set
u2n := vnhn : (E ∧ E)2n → E. Then u2n+2|(E ∧ E)2n � u2n. Hence, the
family {u2n} gives an element u ∈ lim←−{E

0((E ∧ E)n)}. Now, the exactness
of the sequence

(7.4) 0→ lim←−
1{E−1((E ∧ E)n)} → E0(E ∧ E)→ lim←−{E

0((E ∧ E)n)} → 0

(see (4.19)) implies the existence of the pairing μ : E ∧E → E.
(ii) This follows from the exactness of (7.4).
We only prove (iv) because the assertions (iii)–(v) can be proved in a

similar way. Let f : E ∧ E ∧ E → E be a morphism with [f ] = [μ◦(μ ∧ 1)]−
[μ◦(1 ∧ μ)]. In the diagram

En ∧ En ∧En an∧an∧an−−−−−−−→ E ∧E ∧ E 1∧μ−−−−→ E ∧ E

μ∧1

⏐

⏐




⏐

⏐




μ

E ∧ E μ−−−−→ E
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the morphisms μ◦(μ ∧ 1)◦(an ∧ an ∧ an) and μ◦(1 ∧ μ)◦(an ∧ an ∧ an) are
homotopic (by associativity of the quasi-multiplication) for every n. Hence,
if f is essential then it must be a phantom. But E0(E ∧ E ∧ E) does not
contain phantoms because lim←−

1{E−1(En ∧ En ∧ En)} = 0.
Finally, the validity of (ii)–(v) for spectra with finite homotopy groups

follows from 5.7(i). �
The following proposition can be proved similarly to 7.3(ii).

7.5. Proposition. Let E,F be two ring spectra. Let θ : E → F be a morphism
such that {θX : E∗(X) → F∗(X)} is a quasi-ring morphism. If F 0(E ∧ E)
does not contain phantoms, i.e., lim←−

1{F−1(E(n) ∧ E(n))} = 0 (for example,
E has finite Z-type and every group πi(F ) is finite), then the diagram (7.6)
below commutes up to homotopy.

(7.6)

E ∧E θ∧θ−−−−→ F ∧ F

μE

⏐

⏐




⏐

⏐




μF

E
θ−−−−→ F .

In other words, θ is a ring morphism. �

Similarly to quasi-ring spectra, we can consider quasi-module spectra.

7.7. Definition. Let (E, {μ(X,A),(Y,B)}, ι) be an associative quasi-ring spec-
trum. A quasi-module spectrum over E is a pair (F, {m(X,A),(Y,B)}) where F
is a spectrum and

{m(X,A),(Y,B) : Ei(X,A)⊗Fj(Y,B)→ Fi+j(X ×Y,X×B ∪A×Y ), i, j ∈ Z}

is a family of natural pairings, defined for all CW -pairs (X,A), (Y,B). Fur-
thermore, we require that the following diagram commutes:

Em(X,A)⊗ En(Y,B)⊗ Fp(Z,C) −→Em(X,A)⊗ Fn+p((Y,B)× (Z,C))
⏐

⏐




⏐

⏐




Em+n((X,A)× (Y,B))⊗ Fp(Z,C)−→Fm+n+p((X,A)× (Y,B)× (Z,C)) .

Clearly, every module spectrum over a ring spectrum E is a quasi-module
spectrum over E. We suggest that the reader carries out an analog of 7.3 for
quasi-module spectra. We formulate its special case which will be used below.

7.8. Theorem. Let E be a ring spectrum of finite Z-type, and let F be a
quasi-module spectrum over E. If every group πi(F ) is finite, then the quasi-
module structure on F extends to a unique E-module structure on F . �



Chapter IV. Thom Spectra

In the introduction we discussed the importance and usefulness of Thom
spaces (spectra). In this chapter we develop a general theory of Thom spec-
tra, investigate some special Thom spectra and apply this to certain geomet-
rical problems. Some aspects of a general theory of Thom spectra are also
considered in Lewis–May–Steinberger [1]. Now it is clear that a proper theory
of Thom spaces occurs in the context of sectioned spherical fibrations, and
so we pay a lot of attention to sectioned fibrations; they are discussed at the
beginning of the chapter.

§1. Fibrations and Their Classifying Spaces

Following Husemoller [1], we treat a bundle as “just a map viewed as an
object of a particular category”.

1.1. Definition. A bundle ξ over a space B is a map p : E → B. The spaces
E,B are called the total space and the base (or base space) of ξ, respectively,
and the map p is called the projection. The subspace Fb := p−1(b) of E is
called the fiber of ξ over b ∈ B.

We use the notation ts ξ for E, bs ξ for B and projξ (or simply pξ) for p.
A subbundle of a given bundle ξ is just a map q : Y → X , where Y ⊂

ts(ξ), X ⊂ bs(ξ) and q(y) = pξ(y) for every y ∈ Y .

1.2. Definition. (a) Given a bundle ξ = {p : E → B} and a map f : X → B,
a p-lifting of f to E, or a lifting of f with respect to p, is an arbitrary map
g : X → E with pg = f . If such a lifting exists, we say that the map f can
be lifted to a map g. Two p-liftings g, g′ of f are called vertically homotopic
if there exists a map H : X × I → E (called a vertical homotopy) with
H(x, 0) = g(x), H(x, 1) = g′(x) and pH(x, t) = f(x) for every x ∈ X, t ∈ I.
The set of all p-liftings of f we denote by Liftp f , and the set of the vertical
homotopy classes of all p-liftings of f we denote by [Liftp f ].

(b) A p-lifting of the map 1B is called a section of ξ. In other words, a
section is a map s : bs ξ → ts ξ such that ps = 1B. We use the notation
Sec ξ := Liftp 1B, [Sec ξ] := [Liftp 1B].
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(c) A sectioned bundle is a pair (ξ, sξ) where ξ is a bundle and sξ is a
section of ξ.

1.3. Definition. Let ξ = {p : E → B}, η = {p′ : E′ → B′} be two bundles.
(a) A fiberwise map is a map g : E → E′ such that p′gx = p′gy whenever

px = py.
(b) A bundle morphism ϕ : ξ → η is a pair ϕ = (g, f) of maps such that

the diagram
E

g−−−−→ E′

p

⏐

⏐




⏐

⏐



p′

B
f−−−−→ B′

commutes.
We use the notation tsϕ for g and bsϕ for f . So, tsϕ is always a fiberwise

map.
In particular, there is the identity bundle morphism 1ξ := (1E , 1B). Fur-

thermore, a bundle isomorphism is a morphism ϕ : ξ → ξ′ such that there
exists a morphism ψ : ξ′ → ξ with ψϕ = 1ξ and ϕψ = 1ξ′ .

(c) A bundle morphism ϕ : ξ → η of the form (g, 1B) is called a morphism
over B. In this case we say also that g is a map over B.

(d) Given two sectioned bundles (ξ, sξ), (η, sη), a sectioned bundle mor-
phism is a bundle morphism ϕ : ξ → η which respects the sections, i.e.,
(tsϕ)sξ = sη bsϕ. A sectioned bundle morphism of the form (g, 1B) is called
a sectioned morphism over B.

Let ξ, η be two bundles, and let ζ be a subbundle of ξ. Given a bundle
morphism ϕ : ζ → η, define a bundle p : ts(ξ)∪ts(ϕ) ts(η)→ bs(ξ)∪bs(ϕ) bs(η)
by setting p(x) = pξ(x) for x ∈ ts(ξ), p(x) = pη(x) for x ∈ ts(η). This bundle
is denoted by ξ ∪ϕ η and called a gluing of ξ and η via ϕ.

1.4. Constructions–Definitions. (a) The product of two bundles ξ, η is the
bundle ξ× η := {p× p′ : E×E′ → B×B′}. Given two morphisms ϕ : ξ → ξ′

and ψ : η → η′ of bundles, define a morphism ϕ × ψ : ξ × η → ξ′ × η′ by
setting ts(ϕ× ψ) := tsϕ× tsψ.

(b) In particular, we can consider a space P as a bundle P over a point
and get the bundle ξ × P over bs ξ. On the other hand, we can consider the
bundle 1P and construct the bundle ξ × 1P over (bs ξ)× P .

(c) Given a morphism ψ : ξ → η over B, we define the mapping cylinder
Cyl(ψ) over B to be the bundle ξ × I ∪ψ η, where ψ is considered as a
morphism ψ : ξ × {0} → η.

(d) Given a diagram η1
ϕ1←− ξ

ϕ2−→ η2 of morphisms over B = bs ξ =
bs ηi, i = 1, 2, we define its double mapping cylinder over B to be the bundle

DCyl(ϕ1, ϕ2) := ξ × [0, 2] ∪ψ (η1 	 η2),
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where ψ is the morphism ψ : (ξ × {0}) 	 (ξ × {2}) = ξ 	 ξ ϕ1	ϕ2−−−−→ η1 	 η2.
As in I.3.18, there are morphisms ileft : η1 ⊂ DCyl(ϕ1, ϕ2), iright : η2 ⊂
DCyl(ϕ1, ϕ2) and imid : ξ = ξ × {1} ⊂ DCyl(ϕ1, ϕ2).

(e) Note that pξ yields a morphism p̂ξ : ξ → 1bs ξ of bundles. Define the
bundle join ξ ∗ η of bundles ξ, η to be the double mapping cylinder of the
diagram

1bs ξ × η
p̂ξ×1←−−− ξ × η 1×p̂η−−−→ ξ × 1bs η

of bundles over bs ξ × bs η. It is easy to see that the fiber of ξ ∗ η over
(b1, b2) ∈ bs ξ × bs η = bs(ξ ∗ η) is Fb1 ∗ Fb2 where ∗ is the usual join of the
spaces.

(f) Note that sξ yields a morphism ŝξ : 1bs ξ → ξ of bundles for every
sectioned bundle (ξ, sξ). Given two sectioned bundles ξ, η over B, we define
the bundle h-wedge

ξ ∨h η := DCyl(ξ
ŝξ←− 1B

ŝη−→ η).

For every b ∈ B the fiber of ξ ∨h η over b is the h-wedge of the (pointed)
fibers of ξ, η. We equip ξ ∨h η with the section ts(imid) : B → ts(ξ ∨h η).

There is the following fiberwise analog of I.3.33. Let ϕ : ξ → ζ, ψ : η → ζ
be sectioned morphisms over B. Then there exists a unique sectioned mor-
phism ϕ�ψ : ξ ∨h η → ζ over B such that (ϕ�ψ)ileft = ϕ, (ϕ�ψ)iright = ψ
and ts(ϕ�ψ)(b, t) = sζ(b) for every b ∈ B, t ∈ [0, 2].

(g) Given two sectioned bundles (ξ, sξ), (η, sη), we define the bundle h-
smash product ξ ∧h η as follows. Set ξ̄ = ξ × 1bs η, η̄ = 1bs ξ × η. Define

ϕ : ξ̄ = ξ × 1bs η
1×ŝη−−−→ ξ × η, ψ : η̄ = 1bs ξ × η

ŝξ×1−−−→ ξ × η,

and let ϕ�ψ : ξ̄ ∨h η̄ → ξ × η be as in (f). We set

ξ ∧h η := DCyl(1bs ξ×bs η

p̂
ξ̄∨hη̄←−−−− ξ̄ ∨h η̄ ϕ
ψ−−−→ ξ × η).

We equip ξ ∧h η with the section ts(ileft) : bs ξ × bs η → ts(ξ ∧h η). Clearly,
the fiber of ξ ∧h η over (b1, b2) is Fb1 ∧h Fb2 .

Given morphisms ϕ : ξ → ξ′ and ψ : η → η′, the diagram

1bs ξ × η
p̂ξ×1←−−−− ξ × η 1×p̂η−−−−→ ξ × 1bsη

bsϕ×ψ
⏐

⏐



ϕ×ψ

⏐

⏐




⏐

⏐



ϕ×bsψ

1bs ξ′ × η′
p̂ξ′×1
←−−−− ξ′ × η′

1×p̂η′−−−−→ ξ′ × 1bs η′

induces a morphism of the double mapping cylinders. We denote this mor-
phism by ϕ ∗ ψ : ξ ∗ η → ξ′ ∗ η′. Moreover, if ϕ and ψ preserve the given
sections, then ϕ∨h ψ and ϕ∧h ψ can be defined in an obvious way (do it). In
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other words, the constructions ×, ∗,∨h,∧h are natural with respect to bundle
morphisms.

1.5. Definition. (a) A bundle homotopy between two morphisms ϕ,ϕ′ : ξ →
η is a morphism H : ξ × 1I → η such that H |ξ × 1{0} = ϕ and H |ξ × 1{1} =
ϕ′. If such a bundle homotopy H exists, we say that ϕ and ϕ′ are bundle
homotopic and write ϕ �bun ϕ′.

A bundle morphism ϕ : ξ → η is a bundle homotopy equivalence if there
exists ψ : η → ξ such that ϕψ and ψϕ are bundle homotopic to the corre-
sponding identity maps.

(b) A homotopy over B between two morphisms ϕ,ϕ′ : ξ → η over B is
a morphism H : ξ × I → η over B such that H |ξ × {0} = ϕ,H |ξ × {1} =
ϕ′. If such a homotopy exists, we say that ϕ and ϕ′ are homotopic over B
and write ϕ �B ϕ′ or H : ϕ �B ϕ′. A morphism ϕ : ξ → η over B is a
homotopy equivalence over B if there exists ψ : η → ξ over B such that
ϕψ �B 1η, ψϕ �B 1ξ.

(c) If sξ is a section of ξ, then sξ × 1I : bs ξ × I → ts ξ × I is a section
of ξ × 1I . A sectioned bundle homotopy between two sectioned morphisms
ϕ,ϕ′ : (ξ, sξ) → (η, sη) is a bundle homotopy H : ξ × 1I → η between them
which respects the sections, i.e., (tsH)(sξ × 1I) = sη bsH ; furthermore, one
can define a sectioned bundle homotopy equivalence. Similarly, one can define
a sectioned homotopy over B and a sectioned homotopy equivalence over B
(do it). If there is a sectioned homotopy H over B between two morphisms
ϕ,ϕ′ over B, we use the notation ϕ �•

B ϕ′ or H : ϕ �•
B ϕ′.

(d) Let ξ be a subbundle of a bundle η, bs ξ = bs η = B. We say that the
inclusion i : ξ ⊂ η is a cofibration over B if every morphism ξ × I ∪ η → ζ
over B can be extended to a morphism η × I → ζ over B.

1.6. Remark. If B is a point then a bundle over B is just a space, and a
sectioned bundle over B is just a pointed space; furthermore, a homotopy
(resp. a cofibration) over B is just an ordinary homotopy (resp. cofibration).
So, notions “overB” can be regarded as fiberwise versions of ordinary notions.
Note that categorists call “a space over B” what we call “a bundle over B”,
etc., but this categorical flavor is irrelevant in our context.

1.7. Lemma. (i) Let (ξ, sξ) be a sectioned bundle over B. We set η := Cyl ŝξ
and define sη : B → ts η, sη(b) := (sξ(b), 1). Then the inclusion (ξ, sξ) →
(η, sη) is a sectioned homotopy equivalence over B, and ŝη : 1B → η is a
cofibration over B.

(ii) If i : ξ ⊂ η is a cofibration over B, then ts i : ts ξ ⊂ ts η is a cofibration.

Proof. (i) This is a fiberwise version of I.3.26(i) (more precisely, of the
special case of I.3.26(i) with X = pt). The proof is left to the reader.

(ii) We set A = ts ξ,X = ts η. We prove that every map f : A×I∪X → Y
can be extended to a map g : X × I → Y . We set ζ = {p2 : Y × B → B}
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and define ϕ : ξ × I ∪ η → ζ by setting tsϕ(x) = (f(x), pη(x)). Now, there
is ψ : η × I → ζ which extends ϕ, and we define g : X × I → Y to be the
composition

X × I tsψ−−→ Y ×B p1−→ Y. �

1.8. Definition. For every bundle ξ = {p : E → B} and every map f : X →
B the induced bundle f∗(ξ) = {p′ : E′ → X} is defined via the pull-back
diagram

E′ −−−−→ E

p′
⏐

⏐




⏐

⏐




p

X
f−−−−→ B.

In other words, E′ = {(x, e) ∈ X × E|f(x) = p(e)}, and p′(x, e) = x. We
define the canonical morphism I = If,ξ : f∗ξ → ξ, ts I(x, e) = e.

1.9. Proposition. (i) There are canonical bijections

Liftp f = Sec f∗(ξ), [Liftp f ] = [Sec f∗(ξ)].

(ii) Given a morphism ϕ : ξ → η, there exists a unique morphism Fϕ :
ξ → (bsϕ)∗η over bs ξ such that ϕ = Ibsϕ,ηFϕ.

(iii) Let ϕ : ξ → η be a morphism over B, and let f : X → B be a map.
Then there exists a unique morphism f∗ϕ : f∗ξ → f∗η over X such that the
following diagram commutes:

f∗ξ
f∗ϕ−−−−→ f∗η

If,ξ

⏐

⏐




If,η

⏐

⏐




ξ
ϕ−−−−→ η .

(iv) If (ξ, sξ) is a sectioned bundle, then s : X → E′, s(x) = (x, sξ(f(x)))
is a section of f∗ξ, and If,ξ : f∗ξ → ξ maps s to sξ, i.e., If,ξ is a sectioned
morphism.

(v) If ξ, η are homotopy equivalent bundles (resp. sectioned bundles) over
B, then f∗ξ, f∗η are homotopy equivalent bundles (resp. sectioned bundles)
over X for every map f : X → B.

Proof. Decode the definitions. �

1.10. Notation and Convention. (a) If i : A ⊂ B is an inclusion, we write
ξ|A rather than i∗ξ for a bundle ξ and ϕ|A rather than i∗ϕ for a morphism
ϕ in 1.9(iii).

(b) Sometimes E′ is denoted by X ×B E.
(c) We shall say just “equivalence over B” rather than “homotopy equiv-

alence over B”.
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1.11. Definition. Given a space F , the product F -bundle, or the standard
trivial F -bundle θB = θFB over B is just the projection p1 : B × F → B. A
trivial F -bundle over B is a bundle which is isomorphic to the product F -
bundle. An isomorphism of a trivial F -bundle ξ with the product F -bundle
is called a trivialization of ξ. A trivial bundle is a bundle which is a trivial
F -bundle for some F . A locally trivial bundle over B is a bundle ξ such that,
for some covering {Ui} of B, the bundle ξ|Ui is trivial for every i. A fiberwise
homotopy trivial bundle is a bundle which is equivalent over the base to a
trivial bundle.

1.12. Definition. (a) A fibration (or a Hurewicz fibration) is a bundle ξ =
{p : E → B} which satisfies the following covering homotopy property: For
every map F : X × I → B and every g : X → E with pg(x) = F (x, 0), there
exists G : X × I → E with G(x, 0) = g(x) and pG = F .

(b) A Dold fibration (a weak fibration in the terminology of Dold [2])
is a bundle ξ = {p : E → B} which satisfies the following weak covering
homotopy property: For every map F : X × [0, 1]→ B and every g : X → E
with pg(x) = F (x, 0) there exists G : X × [−1, 1]→ E such that G(x,−1) =
g(x), pG(x, t) = F (x, 0) for t ∈ [−1, 0], pG(x, t) = F (x, t) for t ∈ [0, 1].

(c) A quasi-fibration is a bundle ξ = {p : E → B} such that for every
x ∈ B and for every a ∈ Fx the map p∗ : πk(E,Fx, a)→ πk(B, x) is bijective
for every k ≥ 1. In particular, one has the homotopy exact sequence (induced
by the homotopy exact sequence of the pointed pair (E,Fx, a0))

· · · → πi(Fx, a0)→ πi(E, a0)→ πi(B, x)→ πi−1(Fx, a0)→ · · ·

for every x ∈ B.
(d) A sectioned fibration is a sectioned bundle (ξ, sξ) such that ξ is a

fibration and ŝξ : 1bs ξ ⊂ ξ is a cofibration over bs ξ.

1.13. Proposition. Every fibration is a Dold fibration. Every Dold fibration
is a quasi-fibration.

Proof. Only the second claim needs proof. This is well known for fibrations,
see e.g. Switzer [1], Hu [1], and the proof can be immediately generalized for
Dold fibrations. �

1.14. Proposition. Let f : X → B be a map. If ξ = {p : E → B} is a
fibration (resp. Dold fibration, resp. sectioned fibration) then so is f∗ξ.

Proof. Exercise. �
The advantage of Dold fibrations is that they are invariant under bundle

homotopy equivalences, unlike fibrations.

1.15. Proposition. Let ξ → η be an equivalence over a space B. Then ξ is
a Dold fibration if η is.
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Proof. See Dold [2], 5.2 or tom Dieck–Kamps–Puppe [1], 6.7. �
1.16. Example. Consider the bundle p : [−1, 1] → [0, 1], p(t) = 0 for
t ≤ 0, p(t) = t for t ≥ 0. This bundle is equivalent over [0, 1] to the fibration
1[0,1], but it is not a fibration (prove this). On the other hand, by 1.15, it is
a Dold fibration.

1.17. Theorem (Strøm [1]). Let p : E → B be a fibration.
(i) Let (Y, Z) be a pair such that Z is a strong deformation retract of Y .

Suppose that there exists a map h : Y → I with h−1(0) = Z. Then for all
maps u′′ : Z → E and u′ : Y → B with pu′′ = u′ there exists u : Y → E with
pu = u′ and u|Z = u′′.

(ii) Let (X,A) be a cofibered pair (e.g., a CW -pair). Then for every map
F : X × I → B and every map g : X ∪A× I → E with pg = F |(X ∪A× I)
there exists G : X × I → E with G|(X ∪A× I) = g and pG = F .

Proof. (i) Let D : Y × I → Y be a map such that D(y, 1) = y for every
y, D(y, 0) ∈ Z and D(z, t) = z for every z ∈ Z, t ∈ I. Such a map D exists
because Z is a strong deformation retract of Y . Define

D(y, t) :=
{

D(y, t/h(y)) if t < h(y),
y otherwise.

It is easy to see that D is continuous.
Since p : E → B is a fibration, the map u′D : Y × I → B can be lifted

to F : Y × I → E such that F (y, 0) = u′′D(y, 0) for every y ∈ Y . Now set
u(y) = F (y, h(y)).

(ii) This follows from (i), if we put Y = X × I, Z = X ∪ A × I, u′′ =
g, u′ = F and prove that Z is a strong deformation retract of Y . Let p1 :
X × I → X, p2 : X × I → I be the projections. Firstly, Z is a retract of
Y by I.3.25(ii). We choose a retraction r : X × I → X ∪ A × I, and set
h(x, t) := supt∈I |t− p2r(x, t)|. Considering the homotopy D : ir � 1X×I rel
X ∪ A × I, D(x, t, s) := (p1r(x, (1 − s)t), (1 − s)p2r(x, t) + st), s ∈ [0, 1], we
conclude that Z is a strong deformation retract of Y . �

1.18. Lemma. Let ξ = {p : E → B, s : B → E} be a sectioned bundle
such that ŝ : 1B → ξ is a cofibration over B. The following conditions are
equivalent:

(i) ξ is a fibration;
(ii) Let ζ = {q : D → A, r : A → D} be an arbitrary sectioned bundle

such that r̂ : 1A → ζ is a cofibration over A, and let ϕ = (g, f) : ζ → ξ be a
sectioned morphism. Then for every homotopy h : A× I → B, h(a, 0) = f(a)
there is a homotopy H : D×I → E such that H |D×{0} = g, pH = h(q×1I)
and H preserves the sections, i.e., H(r(a), t) = s(h(a, t)).

Proof. The implication (i)⇒ (ii) follows from 1.17(ii) and 1.7(i). To prove
that (ii)⇒ (i), consider certain maps F : X×I → B and u : X → E, pu(x) =



192 Chapter IV. Thom Spectra

F (x, 0). We must find G : X× I → E such that pG = F and G|X ×{0} = u.
Let Xi, i = 1, 2, be a copy of X . We put

D := X1 	X2 = X 	X, A := X,h := F,

q : X1 	X2 → X, q|Xi := 1X ,
r : X → X1 	X2, r(x) := x1, i.e., r is the embedding on X1

g : X1 	X2 → E, g(x) := s(F (x, 0)) for x ∈ X1, g(x) := u(x) for x ∈ X2.

If (ii) holds, then there is a homotopy H : D × I → E, and we set G =
H |X2 × I. �

1.19. Remark. Why do I need this lemma? Here I want to quote some results
of May [2], but he defined sectioned fibrations as in 1.18(ii), see May [2], 2.1
and 5.2. So, 1.18 just shows the equivalence of the definitions.

1.20. Lemma. (i) If ξ = {p : E → X×I} is a Dold fibration, then ξ|(X×{0})
and ξ|(X × {1}) are Dold fibrations and equivalent over X.

(ii) If ξ = {p : E → X × I} is a sectioned fibration, then ξ|(X ×{0}) and
ξ|(X × {1}) are sectioned fibrations and are equivalent over X.

Proof. See Dold [2], 6.6, May [2], 2.4. �

1.21. Corollary. (i) Let f � g : X → B, and let η be a Dold fibration
(resp. a sectioned fibration) over B. Then f∗η and g∗η are equivalent Dold
fibrations (resp. equivalent sectioned fibrations).

(ii) Let ξ be a Dold fibration over a connected base. Then all its fibers are
homotopy equivalent.

Proof. (i) Let H : X × I → B be a homotopy between f and g, H(x, 0) =
f(x), H(x, 1) = g(x). Set ξ = H∗η. Then f∗η = ξ|(X × {0}) and g∗η =
ξ|(X × {1}). Now apply 1.20.

(ii) For every two points b1, b2 ∈ B, the inclusions {b1} ⊂ B, {b2} ⊂ B
are homotopic maps. Now the result follows from (i). �

1.22. Lemma. Let ξ be a Dold fibration over a space B.
(i) If f � 1B : B → B then If,ξ : f∗ξ → ξ is a bundle homotopy

equivalence.
(ii) If f : X → B is a homotopy equivalence then If,ξ : f∗ξ → ξ is a

bundle homotopy equivalence.

Proof. (i) We let ξ = {p : E → B} and f∗ξ = {p′ : E′ → B} where

E′ = {(b, e)|b ∈ B, e ∈ E, f(b) = p(e)}.

Consider a homotopy
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F : B × [−1, 1]→ B, F (b, t) = b for t ∈ [−1, 0], F (b, 1) = f(b).

It can be covered by a homotopy

G : E × [−1, 1]→ E, G|E × {−1} = 1E.

We set g = G|E×{1} and ϕ = (g, f) : ξ → ξ. By 1.9(ii), ϕ can be decomposed
as

ξ
Fϕ−−→ f∗ξ

If,ξ−−→ ξ.

It is clear that ϕ is bundle homotopy equivalent to 1ξ, i.e., If,ξFϕ � 1ξ. On
the other hand, the map ts(FϕIf,ξ) has the form (b, e) �→ (f(b), g(e)). Now,
the homotopy

E′ × [−1, 1]→ E′, ((b, e), t) �−→ (F (b, t), G(e, t))

yields a bundle homotopy 1f∗ξ � FϕIf,ξ.
(ii) Let g : B → X be homotopy inverse to f . We set I = If,ξ, I

′ = Ig,f∗ξ.
By (i),

g∗f∗ξ
I′
−→ f∗ξ

I−→ ξ

is a bundle homotopy equivalence; let α be bundle homotopy inverse to II′.
Note that I′α is bundle homotopy right inverse to I. Furthermore, similarly,
I′ has a bundle homotopy right inverse, say, β. Now, 1 � αII′, and so

I′αI � I′αII′β � I′β � 1.

Thus, I and I′α are bundle homotopy inverse. �

1.23. Definition. A covering (not necessarily open) {Ci} of a space X is
numerable if there exists a family {fi} of maps fi : X → [0, 1] such that

1. For every x ∈ X , fi(x) = 0 for all but finitely many indices.
2.
∑

i fi(x) ≡ 1.
3. f−1

i (0, 1] ⊂ Ci for every i.

In other words, fi is a partition of unity such that f−1
i (0, 1] refines {Ci}.

1.24. Recollection. Recall that every locally finite covering of a paracom-
pact space is numerable, see e.g. Munkres [2]. Every CW -space is paracom-
pact, Miyazaki [1], see also Fritsch-Piccinini [1].

1.25. Theorem (Dold [2]). Let {Ci} be a numerable covering of a space B,
and let ξ be a bundle over B. If ξ|Ci is a fibration for every i, then so is ξ.
If ξ|Ci is a Dold fibration for every i, then so is ξ.

Proof. See Dold [2], 4.8 or tom Dieck–Kamps–Puppe [1], 9.4 and 9.5. �

1.26. Corollary. Every locally trivial bundle over a paracompact space (e.g.,
over a CW -space) is a fibration.
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Proof. Note that every trivial bundle is a fibration. Now, let ξ be a locally
trivial bundle, and let {Ui} be a covering of bs ξ such that ξ|Ui is trivial for
every i. Then {Ui} admits a locally finite refinement {Vj}, which is numerable.
Thus, by 1.25, ξ is a fibration since ξ|Vj is a fibration for every j. �

1.27. Theorem (Dold [2]). Let ξ, η be two Dold fibrations over a space B,
and let ϕ : ξ → η be a morphism over B such that tsϕ : ts ξ → ts η is a
homotopy equivalence. Then ϕ is an equivalence over B.

Proof. See Dold [2], 6.1 or tom Dieck–Kamps–Puppe [1], 6.21. �

1.28. Corollary. Let ϕ : ξ1 → ξ2 be a morphism of Dold fibrations such that
tsϕ : ts ξ1 → ts ξ2 and bsϕ : bs ξ1 → bs ξ2 are homotopy equivalences. Then
ϕ is a bundle homotopy equivalence.

Proof. Set f = bsϕ. By 1.9(ii), ϕ can be decomposed as

ξ1
Fϕ−−→ f∗ξ2

If,ξ2−−−→ ξ2.

By 1.22(ii), If,ξ2 is a bundle homotopy equivalence, and so ts Fϕ is a fiberwise
homotopy equivalence. Hence, by 1.27, Fϕ is a bundle homotopy equivalence,
and thus ϕ = If,ξ2Fϕ is a bundle homotopy equivalence. �

1.29. Theorem. Let {Ui} be a numerable covering of a space B such that
every inclusion Ui ⊂ B is inessential. Then the following hold.

(i) Let ϕ : ξ → η be a morphism of Dold fibrations over B. If ϕb :
p−1
ξ (b) → p−1

η (b) is a homotopy equivalence for every b ∈ B then ϕ is a
homotopy equivalence over B.

(ii) Let ϕ : (ξ, sξ) → (η, sη) be a sectioned morphism of sectioned fibra-
tions over B. If ϕb : (p−1

ξ (b), sξ(b)) → (p−1
η (b), sη(b)) is a pointed homotopy

equivalence for every b ∈ B then ϕ is a sectioned equivalence over B.

Proof. The proof of (i) can be found in Dold [2] or tom Dieck–Kamps–
Puppe [1], the proof of (ii) can be found in May [2], §§2, 5. �

1.30. Corollary. (i) Let B be a CW -space, and let ϕ : ξ → η be a morphism
of Dold fibrations over B. If ϕb : p−1

ξ (b)→ p−1
η (b) is a homotopy equivalence

for every b ∈ B then ϕ is a homotopy equivalence over B.
(ii) Let B be a CW -space, and let ϕ : (ξ, sξ)→ (η, sη) be a sectioned mor-

phism of sectioned fibrations over B. If ϕb : (p−1
ξ (b), sξ(b))→ (p−1

η (b), sη(b))
is a pointed homotopy equivalence for every b ∈ B then ϕ is a sectioned
homotopy equivalence over B.

(iii) Let ϕ : ξ → η be a morphism of Dold fibrations. Suppose that bsϕ :
bs ξ → bs η is a homotopy equivalence, that bs ξ and bs η are CW -spaces, and
that ϕb : p−1

ξ (b) → p−1
η (bsϕ(b)) is a homotopy equivalence for every b ∈ B.

Then ϕ is a bundle homotopy equivalence.
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Proof. (i), (ii) These follows from 1.29 because B admits a covering of
the type required by 1.29. Indeed, every CW -space is locally contractible,
i.e., it admits a covering {Ui} such that every Ui is contractible. Since B
is paracompact, {Ui} admits a locally finite refinement {Vj}. Now, {Vj} is
numerable, and the inclusion Vj ⊂ B is inessential.

(iii) For simplicity, we put f = bsϕ. By 1.9(ii), ϕ can be decomposed as

ξ
Fϕ−−→ f∗η

If,η−−→ η.

By 1.22(ii), If,η is a bundle homotopy equivalence, while, by (i), Fϕ is an
equivalence over bs ξ. �

1.31. Remarks. (a) For every CW -space B, a simple direct construction of
its covering required by 1.29 is given in Dold [2] and is credited to Puppe.

(b) Using 1.17 or 1.18, one can prove a sectioned analog of 1.22 and, based
on this, deduce a sectioned analog of 1.30(iii). We do not need this, but the
reader can do it as an exercise.

1.32. Lemma. Let (ξ, sξ) and (ξ, s′ξ) be two sectioned fibrations over a CW -
space B. If sξ �B s′ξ : bs ξ → ts ξ then (ξ, sξ) and (ξ, s′ξ) are equivalent
sectioned fibrations over B.

Proof. Let ξ = {p : E → B}, and let H : B × I → E be a vertical
homotopy H : sξ �B s′ξ. We consider the maps

F : E × I → B, F (e, t) = p(e)

and
g : E ∪ sξ(B)× I → E, g(e) = e, g(sξ(b), t) = H(b, t).

By 1.17(ii) and 1.7(i), there is a map G : E × I → E which extends g and
covers F . Now we have the map

G|E × {1} : (E, sξ(B))→ (E, s′ξ(B))

which yields a bundle morphism (ξ, sξ) → (ξ, s′ξ) over B. By 1.30(ii), this
map is a sectioned equivalence over B. �

1.33. Definition. The homotopy fiber of a Dold fibration ξ over a connected
base is the homotopy type of its fibers. By 1.21(ii), this is well–defined.

1.34. Proposition. Let ξ, η be two Dold fibrations over connected bases. If
ξ and η are bundle homotopy equivalent then they have the same homotopy
fiber. �

1.35. Proposition–Definition–Construction. For every bundle ξ = {p :
E → B}, there exists a morphism ϕ : ξ → ξ over B such that ξ is a fibration
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and tsϕ is a homotopy equivalence. In other words, there exists a commutative
diagram

E
h−−−−→ E

p

⏐

⏐




⏐

⏐



p

B B

where ξ = {p : E → B} is a fibration and h := tsϕ is a homotopy equivalence.
Every such fibration ξ is called a fibrational substitute of the bundle ξ (or
the map p : E → B).

Proof. Following Serre [1], we set

E = {(e, ω)|e ∈ E,ω : [0, 1]→ B,ω(0) = p(e)}

and define p : E → B, p(e, ω) = ω(1). We define h : E → E by setting
h(e) := (e, ωe), where ωe(t) = p(e) for every t ∈ I. It is easy to see that
p : E → B is a fibration and h is a homotopy equivalence, see e.g. Fuks–
Rokhlin [1]. �

1.36. Proposition. (i) If two maps pi : Ei → Bi, i = 1, 2, are homotopy
equivalent then their fibrational substitutes are bundle homotopy equivalent.
Moreover, every two fibrational substitutes of a map p : E → B are equivalent
over B.

(ii) Let ξ = {p : E → B} be a bundle, let ξ be a fibrational substitute of
ξ, and let u : A→ B be a map. Then u∗ξ is a fibrational substitute of u∗ξ.

Proof. (i) Let ξi = {pi : Ei → Bi}, i = 1, 2, be a fibrational substitute of
ξi. Then there is a diagram

E1
v−−−−→ E2

p1

⏐

⏐




⏐

⏐




p2

B1
u−−−−→ B2

which commutes up to homotopy and where u, v are homotopy equivalences.
Since ξ2 is a fibration, we can replace v by a homotopic map v̂ : E1 → E2

such that the diagram will commute strictly. Now, by 1.28, v̂ is a bundle
homotopy equivalence.

Now, if we have two fibrational substitutes of a map f : E → B then
there is a diagram as above with u = 1B. Thus, by 1.27, v is an equivalence
over B.

(ii) By (i) and 1.9(v), it suffices to prove the assertion for some particular
fibrational substitute ξ. We choose ξ as in the proof of 1.35 and use the same
notation. Let u∗ξ = {g : Y → A}, where Y = {(a, e)|u(a) = p(e)} and
g(a, e) = a. Furthermore, u∗ξ = {q : V → A} where
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V = {(a, e, ω)
∣

∣ u(a) = ω(1), p(e) = ω(0)}, a ∈ A, e ∈ E,ω ∈ BI

and q(a, e, ω) = a. We consider the map j : Y → V, j(a, e) = (a, e, ωe)
and prove that j is a homotopy equivalence. Indeed, we define k : V →
Y, k(a, e, ω) = (a, e) and

G : V × I → V, G((a, e, ω), s) = (a, e, ωs) where ωs(t) = ω(st), s ∈ I.

Clearly, kj = 1Y . Furthermore, G|V × {1} = 1V and G|V × {0} = jk, i.e.,
jk � 1V . �

1.37. Definition. The homotopy fiber of a bundle (or, if you prefer, of a map)
p : E → B over a connected base B is the homotopy fiber of its fibrational
substitute. By 1.36(i) and 1.34, this is well defined.

Given a space F , we say “F is the homotopy fiber of p” meaning that the
homotopy type of F is the homotopy fiber of p.

1.38. Proposition. Let B be a connected CW -space, and let p : E → B
be a fibration such that every (or equivalently, some single) fiber of p has the
homotopy type of a CW -space. Then E has the homotopy type of a CW -space.

Proof. See e.g. Fritsch–Piccinini [1], Appendix. �

1.39. Examples (Serre [1]). (a) Let X be a connected space, and let i :
{x0} → X be the inclusion of a point. What is the homotopy fiber of i?
Using the Serre construction as in 1.35, we get a fibration PX → X with
contractible PX , and its fiber over x0 is just Ω(X,x0). Thus, the homotopy
fiber of i is ΩX .

(b) Similarly to II.4.14, we define an (m − 1)-connective covering of a
space X to be a map q = qm : Y → X such that πi(Y ) = 0 for i < m and
q∗ : πi(Y ) → πi(X) is an isomorphism for i ≥ m. As in II.4.14, we denote
Y by X |m, and call every such Y a killing space. For example, the universal
covering ˜X → X of a connected space X is its 1-connective covering.

How to construct an m-connective covering for an arbitrary m? Consider
a space X such that πi(X) = 0 for i < n, where n > 0, and set π = πn(X).
Then there is a map f : X → K(π, n) such that f∗ : πn(X) → πn(K(π, n))
is an isomorphism. (In fact, f is given by the element 1π ∈ Hom(π, π) =
Hn(X ;π).) Let p : E → K(π, n) be a fibrational substitute of f , and let
i : F → E be the inclusion of a fiber. Then i is an n-connective covering of E,
and so qn : F i−→ E � X is an n-connective covering of X , i.e., F = X |(n+1).
Similarly, we can consider an (n + 1)-connective covering F1 → X |(n + 1),
and the composition

F1 → X |(n+ 1)
qn+1−−−→ X

is an (n+ 1)-connective covering of X , i.e., F1 = X |(n+ 2). And so on.
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Summing up, in this way we get a tower of fibrations

· · · −→ X |(n+ k)
qn+k−−−→ X |(n+ k − 1) −→ · · · −→ X |(n+ 1)

qn+1−−−→ X

where the (homotopy) fiber of qn+k is K(πn+k(X), n+ k). Furthermore, the
composition qn+1◦ · · · ◦qn+k : X |(n + k) → X is an (n + k − 1)-connective
covering of X . This tower is natural with respect to X , and the obvious
analog of II.4.16 holds, see e.g. Hu [1], Whitehead [1].

Serre [1] suggested the following program to compute homotopy groups.
Suppose that we are able to compute homology of killing spaces (e.g., using
the Leray–Serre spectral sequence). Then, because of the Hurewicz Theorem,

πn(X) = Hn(X),
πn+1(X) = πn+1(X |(n+ 1)) = Hn+1(X |(n+ 1)),
πn+2(X) = πn+2(X |(n+ 2)) = Hn+2(X |(n+ 2)),

. . .

Unfortunately, really we can’t proceed to the very end, since the computation
of H∗(X |k) becomes more and more complicated as k increases, but, for
example, in this way Serre proved the finiteness of πi(S2n+1), i 
= 2n+ 1.

1.40. Proposition. Every Dold fibration ξ over B is equivalent over B to its
fibrational substitute ξ. In particular, every Dold fibration over B is equivalent
over B to a fibration.

Proof. Let ϕ : ξ → ξ be as in 1.35. Then, because of 1.27, ϕ is an equiva-
lence over B. �

1.41. Proposition. (i) If ξ is a quasi-fibration over a connected base B, then
each of its fibers is CW -equivalent to the homotopy fiber of ξ. In particular,
every two fibers of ξ are CW -equivalent.

(ii) (Dold–Thom [1]) Consider the commutative diagram

E′ ⊂−−−−→ E

p′
⏐

⏐




⏐

⏐




p

B′ ⊂−−−−→ B

where p′ is a quasi-fibration and p′ = p|E′. Assume that there exist defor-
mations Rt : E → E, rt : B → B, t ∈ I, with the following properties:
pRt = rtp,R0 = 1E , R1(E) ⊂ E′, r0 = 1B, r1(B) ⊂ B′. Furthermore, suppose
that (R1)∗ : πi(Fx) → πi(Fr1(x)) is an isomorphism for every x ∈ B and
every i. Then p is a quasi-fibration.
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(iii) Consider the commutative diagram

· · · −−−−→ En
gn−−−−→ En+1 −−−−→ · · ·

pn

⏐

⏐




⏐

⏐




pn+1

· · · −−−−→ Bn
fn−−−−→ Bn+1 −−−−→ · · ·.

Assume that all maps gn, fn are inclusions. Set E = ∪En, B = ∪Bn and
define p : E → B, p|En = pn. Assume that every compact subset of B is
contained in some Bn. Then p is a quasi-fibration provided that every pn is
a quasi-fibration.

(iv) Given the diagram in (iii), assume that gn, fn are arbitrary maps
(not necessary inclusions). Suppose that every space Bk is connected. Given
a CW -space F , suppose that every vertical map in the diagram is a quasi-
fibration such that each of its fibers is homotopy equivalent to F . Moreover,
suppose that gk|Fx : Fx → Fgk(x) is a homotopy equivalence for every k
and every x ∈ Bk. Let E, resp. B, be the telescope of the top, resp. bottom,
sequence. Define p : E → B to be the telescope of the maps pn. Then p is a
quasi-fibration. Furthermore, every fiber of p is CW -equivalent to F .

Proof. (i) Consider ϕ : ξ → ξ as in 1.35, and set F x = (p)−1(x). Let
ϕx : Fx → F x, ϕx(f) = (tsϕ)(f), be the induced map of fibers. Choose
a0 ∈ Fx and set b0 = ϕx(a0). Consider the following commutative diagram
of exact sequences:

· · ·→ πk+1(B, x)→πk(Fx, a0)→ πk(E, a0)→πk(B, x)→ · · ·

1

⏐

⏐



(ϕx)∗

⏐

⏐




∼=
⏐

⏐




ϕ∗ 1

⏐

⏐




· · ·→ πk+1(B, x)→πk(F x, b0)→ πk(E, b0)→πk(B, x)→ · · ·.

By the Five Lemma, (ϕx)∗ is an isomorphism for every k ≥ 1 and a bijection
for k = 0.

(ii) Consider the deformation retractions a := R1 : E → E′ and
b := r1 : B → B′. They induces certain isomorphisms a∗ : πi(E, y) →
πi(E′, a(y)), b∗ : πi(B, x) → πi(B′, b(x)). Now, a yields a map of pointed
pairs (E,Fx, y) → (E′, Fb(x), a(y)), and so, by the Five Lemma, we get iso-
morphisms a∗ : πi(E,Fx, y)→ πi(E′, Fb(x), a(y)). Hence, in the diagram

π∗(E,Fx, y)
a∗−−−−→ π∗(E′, Fb(x), a(y))

⏐

⏐




p∗

⏐

⏐



p′∗

π∗(B, x)
b∗−−−−→ π∗(B′, b(x))

the horizontal arrows are isomorphisms, and the right arrow is an isomor-
phism because p′ is a fibration. Thus, the left arrow is an isomorphism.
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(iii) Given f : (Sn, ∗) → (B, x), we conclude that f(Sn, ∗) ⊂ (Bm, x)
for some m, and so f � pg for some g : (Dn, Sn−1) → (Em, Fx) (because
pm is a quasi-fibration). Thus, p∗ is epic. Furthermore, let g : (Dn, Sn−1)→
(E,Fx) be such that p∗[g] = 0 ∈ πn(B, x). Then the map pg extends to
h : (Dn+1, 0)→ (B, x). Now, [g] = 0 ∈ πn(E,Fx) since h(Dn+1, 0) ⊂ (Bm, x)
for some m.

(iv) For every k there is a commutative diagram

Ek
⊂−−−−→ Mgk

pk

⏐

⏐




⏐

⏐



M(pk)

Bk
⊂−−−−→ Mfk,

where M denotes the ordinary mapping cylinder. By (ii), the right-hand map
is a quasi-fibration. Thus, by (iii), p is a quasi-fibration. The last assertion
follows from (i). �

1.42. Definition. (a) Let F be a topological space (in W , as usual). An F -
fibration, resp. a Dold F -fibration, is a fibration, resp. a Dold fibration, such
that all its fibers are homotopy equivalent to F . A morphism ϕ = (g, f) : ξ →
η of (Dold) F -fibrations, or simply an F -morphism, is a bundle morphism
such that

g|Fx : Fx → Ff(x)

is a homotopy equivalence for every x ∈ bs ξ. An equivalence of (Dold) F -
fibrations over B is just an equivalence over B of them.

(b) Let (F, ∗) be a well-pointed space. Define an (F, ∗)-fibration to be a
sectioned F -fibration (ξ, sξ) such that (Fx, s(x)) is pointed homotopy equiv-
alent to (F, ∗) for every x ∈ bs ξ. A morphism ϕ = (g, f) : (ξ, sξ)→ (η, sη) of
(F, ∗)-fibrations, or simply an (F, ∗)-morphism, is a sectioned morphism such
that ϕ is an F -morphism and

g|Fx : (Fx, sξ(x))→ (Ff(x), sη(f(x)))

is a pointed homotopy equivalence for every x ∈ bs ξ. An equivalence of
(F, ∗)-fibrations over B is just a sectioned homotopy equivalence over B.

Sometimes we shall say “a fibration F → E → B” instead of “an F -
fibration E → B”. Recall that a (Dold) fibration over a connected base is a
(Dold) F -fibration for some F .

Given a space X , we define π = πX : XI → X by setting π(ω) = ω(0).

1.43. Proposition. (i) Given a bundle p : E → B, consider the pull-back
diagram

Y
τ−−−−→ E

q

⏐

⏐




⏐

⏐




p

BI
πB−−−−→ B.
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The bundle p : E → B is a fibration iff there exists a map h : Y → EI such
that πEh = τ and pIh = q, where pI : EI → BI , pI(ω) = pω.

(ii) The product of two (Dold ) fibrations is a (Dold ) fibration.
(iii) Let ϕ : ξ1 → ξ2 be a morphism of fibrations over B. Then Cyl(ϕ) is

a fibration over B.
(iv) The double mapping cylinder of two fibrations over B is a fibration

over B.
(v) If ξ is an F -fibration and η is a G-fibration then ξ ∗ η is an F ∗ G-

fibration.
(vi) If ξ is an (F, ∗)-fibration and η is a (G, ∗)-fibration then ξ ∧h η is an

(F ∧h G, ∗)-fibration.

Proof. (i) Suppose that there exists h as required. Consider maps F :
X × I → B and g : X → E with F (x, 0) = pg(x). We must construct
a p-lifting G of F with G(x, 0) = g(x). Define F : X → BI by setting
F (x)(t) = F (x, t). Since πBF = pg, there is a map k : X → Y such that
qk = F and τk = g. Now, the map hk : X → EI yields the desired map
G : X × I → E, G(x, t) = hk(x)(t).

Conversely, if p is a fibration, we define the map F : Y × I → B,F (y, t) =
q(y)(t). Then pτ(y) = F (y, 0). Since p is a fibration, there exists a p-lifting
G : Y × I → E of F . Now we define the required h : Y → EI , h(y)(t) =
G(y, t).

(ii) This is obvious.
(iii) (cf. Clapp–Puppe [1].) Let ξi = {pi : Ei → B}, i = 1, 2, and let

Cylϕ = {p : E → B}. Let hi : Yi → EIi , i = 1, 2, be the maps as in (i).
We construct h : Y := E ×B BI → EI as follows. Firstly, let (e, t) ∈ E, e ∈
E1, t ∈ I, and let ω ∈ BI . We define

h(e, t, ω)(s) =

⎧

⎪

⎨

⎪

⎩

(h1(e, ω)(s), t− s+ st) if t ≥ 1/2,
(h1(e, ω)(s), t− s/2) if t ≤ 1/2 and s ≤ 2t,
h2(tsϕ(h1(e, ω)(2t)), ω2t)(s− 2t) if t ≤ 1/2 and s ≥ 2t,

where ω2t(r) = ω(min{2t + r, 1}). Finally, we define h(e, ω) = h2(e, ω) for
(e, ω) ∈ Y2. Thus, by (i), Cylϕ is a fibration.

(iv) This follows from (iii). Let ξ = DCyl(ξ2
ϕ1←− ξ1

ϕ2−→ ξ3). We set
ξ4 := Cyl(ϕ2), and let ξi = {pi : Ei → B}. Let hi : Yi → EIi , i = 1, 2, 3, be as
(i), and let h4 : Y4 → EI4 be as in (iii). Let ξ = {p : E → B}. We construct
h : Y → EI as follows. Firstly, let e ∈ E1, t ∈ [0, 2], ω ∈ BI . Set

h(e, t, ω) =
{

h4(e, t, ω) if 0 ≤ t ≤ 1,
h4(e, 2− t, ω) if 1 ≤ t ≤ 2.

Finally, we set h(e, ω) = hi(e, ω) if (e, ω) ∈ Yi, i = 2, 3.
(v) This follows from (iv) because the join is a double mapping cylinder.
(vi) By (iv), (ξ×1bsη)∨h (1bs ξ×η) is a fibration, and thus, again by (iv),

ξ ∧h η is. �
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Let t(X) = tF (X) (resp. w(X) = wF (X)) be the class of all classes of
equivalent over X F -fibrations (resp. Dold F -fibrations) over X . We regard t
and w as functors on H C (namely, t(f) := Iξ,f : f∗(ξ) �→ ξ for f : Y → X ,
etc.), and we want to prove the representability of the functors t and w.

We want to apply the Brown Representability Theorem III.3.25, but we
can’t do it directly. Recall that III.3.25 deals with functors H C •

con → E ns•.
So, preliminarily, we should treat t and w as functors on H C •

con and prove
that t, w are set-valued functors.

We need some brief preliminaries about set theory. Here we follow Kel-
ley [1], Appendix. We use the notion of a class, which is primitive and a wider
notion than a set. Furthermore, there are two primitive constants (besides
logical constants): ∈ (belongs to) and

{

...
∣

∣ ...
}

(the class of all ...
∣

∣ such that
...). The operations ∪ and ∩ and the relation ⊂ are defined in the usual way.
A set is defined to be a class which belongs to some other class, i.e., A is a set
iff, for some B, A ∈ B. (An example of a class which is not a set is the class of
all sets. One can prove this, using the Hilbert–Bernays–von Neumann–Gödel
axioms following Kelley [1], Addendum. Informally, if it were a set, then one
would have the well-known Russell Paradox, and in fact the classes were in-
troduced in order to avoid paradoxes like this one.) The singleton {X} of
a set X is defined to be a one-element class containing as an element only
the set X . An ordered pair (X,Y ) of sets is a class {{X}, {X} ∪ {Y }}. The
Cartesian product X × Y of classes X,Y is defined to be a class of ordered
pairs

{

(x, y)
∣

∣ x ∈ X, y ∈ Y
}

. Given two classes X,Y , a function f : X → Y
is a class f in X × Y with the following property: if (x, y) ∈ f and (x, z) ∈ f
then y = z; this y is denoted by f(x). The class of all functions X → Y is
denoted by Fun(X,Y ). A relation on a class X is a subclass of X ×X . The
notions of equivalence relation is defined in the usual way.

1.44. Theorem. (i) A class that is contained in a set is a set.
(ii) If X and Y are sets, then X × Y is a set.
(iii) If X and Y are sets, then Fun(X,Y ) is a set.
(iv) If Λ is a set and {Aλ}λ∈Λ is a set of sets, then ∪λAλ is a set.
(v) If R is an equivalence relation on a set X then the class X/R is a set.

Proof. (i)–(iv) See Kelley [1], Addendum, Theorems 33, 74, 77 and Axiom
VI respectively.

(v) Given x ∈ X , we set [x] := {y ∈ X
∣

∣ (x, y) ∈ R}. Let {[x]} be the
singleton of [x]. By (iv),

⋃

x∈X{[x]} is a set. But this set is just X/R. �
Define a rooted Dold F -fibration ξ over a pointed space (X,x0) to be

a Dold F -fibration with a fixed homotopy equivalence (called a root) i =
iξ : F → p−1

ξ (x0) (cf Milnor [7], §7). A rooted equivalence of rooted Dold
F -fibrations ξ, η is an equivalence ϕ : ξ → η over X such that ϕiξ � iη.
Let r(X) denote the class of all rooted equivalence classes of rooted Dold
F -fibrations over the pointed space X .
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1.45. Lemma. Let (X,x0) be a pointed space, and let {U, V } be a numerable
covering of X such that x0 ∈ U ∩ V . Let ξ be a rooted Dold fibration over U ,
let η be a rooted Dold fibration over V , and let ϕ : ξ|U ∩ V → η|U ∩ V be a
rooted equivalence over U ∩V . Then there exist a rooted Dold fibration ζ over
X and rooted equivalences a : ζ|U → ξ, b : ζ|V → η such that the following
diagram commutes up to homotopy over U ∩ V :

ζ|U ∩ V a|U∩V−−−−→ ξ|U ∩ V
∥

∥

∥

⏐

⏐




ϕ

ζ|U ∩ V b|U∩V−−−−→ η|U ∩ V .

Furthermore, a|U \ V : ζ|U \ V → ξ|U \ V and b|U \ V : ζ|U \ V → η|U \ V
are fiberwise homeomorphisms over the bases.

Proof. For simplicity, denote U ∩ V by W . Consider the map

ξ|W 	 η|W ψ−→ η|W, ψ|(ξ|W ) = ϕ, ψ|(η|W ) = 1η.

Set ω = Cylψ, bsω = W . We have the standard mapping cylinder inclusions

r : ξ|W → ω, s : η|W → ω

which both are homotopy equivalences over W (this is clear for s, and one
can prove this for r following Fox [1], cf. also Kamps [1], 8.2). Moreover, r and
s are cofibrations over W . Set ξ′ := ξ ∪r ω, η′ := η ∪s ω. Then the inclusions
i : ξ → ξ′, j : η → η′ are equivalences over the bases because r and s are
equivalences over W . (Note that bs(ξ′) = U, bs(η′) = V .) So, by 1.15, ξ′ and
η′ are Dold fibrations. We set

(1.46) ζ = ζϕ := ξ′ ∪1ω η
′, bs ζ = X.

By 1.25, ζ is a Dold fibration because ξ′ and η′ are.
Let a : ζ|U → ξ (resp. b : ζ|V → η) be an equivalence over U (resp. over

V ) inverse to the one ξ → ζ|U (resp. to η → ζ|V ). Since all the diagrams

ξ′
�←−−−− ω ω ω ω

�−−−−→ η′

i

�

⏐

⏐

�

⏐

⏐

r r

�

⏐

⏐

�

⏐

⏐

s s

�

⏐

⏐

�

⏐

⏐
j

ξ
⊃←−−−− ξ|W ξ|W ϕ−−−−→ η|W η|W ⊂−−−−→ η

are commutative up to homotopy over W , so is the diagram of the lemma.
The last assertion follows from the construction of ζ. �

1.47. Lemma (the MV property for r). Let (X ;A,B;x0) be a pointed CW -
triad. Let ξ be a rooted Dold fibration over A, let η be a rooted Dold fibration
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over B, and let ϕ : ξ|A ∩ B → η|A ∩ B be a rooted equivalence. Then there
exist a rooted Dold fibration ζ over X and rooted equivalences a : ζ|A →
ξ, b : ζ|B → η such that the following diagram commutes up to homotopy
over A ∩B:

(1.48)

ζ|A ∩B a|A∩B−−−−→ ξ|A ∩B
∥

∥

∥

⏐

⏐




ϕ

ζ|A ∩B b|A∩B−−−−→ η|A ∩B.

Proof. Let C = A ∩B. Consider the double mapping cylinder

Y = A× {0} ∪ C × [0, 1] ∪B × {1} ⊂ X × [0, 1]

with the base point (x0, 1/2). Put U = A×{0}∪C×[0, 2/3); V = C×(1/3, 1]∪
B × {1}. Consider the map f : Y → X, f(a, 0) = a, f(b, 1) = b, f(c, t) = c,
where t ∈ [0, 1]. It is easy to see that f is a homotopy equivalence. Indeed, f
has the form

A× {0} ∪ C × [0, 1] ∪B × {1} α−→ A× [0, 1/2]∪B × [1/2, 1]
β−→ A ∪B,

where α is the obvious inclusion and β(a, t) = a, β(b, t) = b. It is clear that α
is the inclusion of a deformation retract (because the inclusions C ⊂ A and
C ⊂ B are cofibrations) and that β is a deformation retraction.

We define f1 : U → A, f1(u) = f(u), and f2 : V → B, f2(v) = f(v). We
set ξ′ := f∗

1 ξ, η
′ := f∗

2 η, ψ = ϕ × 1[1/3,2/3] : ξ′|(U ∩ V ) → η′|(U ∩ V ). By
1.45, there exist a Dold F -fibration ζ′ over Y and equivalences a′ : ζ′|U →
ξ′, b′ : ζ′|V → η′ such that ψa′|U ∩ V = b′|U ∩ V . Now, set ζ = g∗ζ′ where
g : X → Y is homotopy inverse to f . �

1.49. Lemma (the wedge property for r). Let {(Xλ, xλ)} be a set of pointed
CW -spaces. Suppose that r(Xλ, xλ) is a set for every λ. Then

h : r(∨λ(Xλ, xλ))→
∏

λ

r(Xλ, xλ), h(ξ) = {ξ|Xλ},

is a bijection. In particular, r(∨λ(Xλ, xλ)) is a set.

Proof. Throughout the proof “equivalence” means “rooted equivalence”
and “F -fibration” means “rooted Dold F -fibration”. Firstly, some construc-
tions. Let (Iλ, 0) be a copy of the pointed space (I, 0). Let Yλ := Xλ ∨ Iλ,
let yλ ∈ Yλ be the image of 1 ∈ Iλ, and let fλ : (Yλ, yλ)→ (Xλ, xλ) collapse
Iλ; by I.3.26(iii) and I.3.29, fλ is a pointed homotopy equivalence. Let gλ
be a homotopy equivalence which is pointed homotopy inverse to fλ, and let
g := ∨λgλ : ∨λ(Xλ, xλ)

�−→ (Y, y0), where (Y, y0) := ∨λ(Yλ, yλ).
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Given a family of F -fibrations {ξλ}, bs(ξλ) = Xλ, let Fλ be the fiber of
ξλ over xλ, and let iλ : F → Fλ be the root. Set ξλ = f∗

λξλ, bs(ξλ) = Yλ. Let
Fλ � F be the fiber of ξλ over yλ; then the root iλ yields a root hλ : F → Fλ
of ξλ. Consider a bundle morphism ϕ = ϕλ : F → ξλ where tsϕ has the
form F

hλ−→ F̄λ ⊂ ts ξλ, and set ξ′λ = ξλ ∪ϕ F . By 1.15, ξ′λ is an F -fibration.
The fiber of ξ′λ over yλ is the mapping cylinder M(hλ), and the inclusion
F = F×{0} →M(hλ) is the root of ξ′λ. Furthermore, we have the equivalence
ξ′λ � ξλ � f∗

λξλ over (Yλ, yλ).
Let Φλ denote the subspace F ×{0} of M(hλ), and let jλ = 1F : Φλ → F .

Let E be the push-out of the diagram

F
�

⏐

⏐
〈jλ〉

	Φλ
	kλ−−−−→ 	 ts(ξλ),

where kλ : Φλ → ts(ξλ) is the inclusion and 〈jλ〉|Φλ = jλ. Then there exists
a map p : E → Y such that the diagram (where pλ is the projection in ξλ
and 〈pλ〉|ξλ = pλ)

	 ts(ξλ) −−−−→ E

〈pλ〉
⏐

⏐




⏐

⏐




p

Y Y

commutes. We set ξ′ = {p : E → Y }. Now, ξ′|([0, 2/3)λ) = ξ′λ|([0, 2/3)λ) and
ξ′|(Xλ ∨ (1/3, 1]λ) = ξ̄λ|(Xλ ∨ (1/3, 1]λ) are F -fibrations. So, by 1.25, ξ′ is an
F -fibration.

We prove that h is surjective. Consider a family {ξλ}, bs(ξλ) = Xλ. Then
h maps g∗(ξ′) to {ξλ}, because

(g∗ξ′)|Xλ = g∗λ(ξ
′|Xλ) = g∗λ(ξ

′
λ) � g∗λf∗

λξλ � ξλ .

We prove that h is injective. Let ξ, η be two F -fibrations over X := ∨Xλ,
and suppose that for every λ an equivalence eλ : ξ|Xλ → η|Xλ over Xλ is
given. We set ξλ := ξ|Xλ, ηλ := η|Xλ and construct ξ′ and η′ as above. The
equivalences eλ : ξλ → ηλ yield equivalences

e′λ : ξ′λ � f∗
λξλ → f∗

ληλ � η′λ

over Xλ, and there is a morphism e : ξ′ → η′ over X such that e|ηλ coincides
with e′λ. By 1.30(ii), e is an equivalence over X . Since ξ′λ � f∗

λξλ, we conclude
that ξ′ � f∗ξ, i.e., g∗ξ′ � ξ. Now, ξ � g∗ξ′ � g∗η′ � η . �

Now we prove that r is a set-valued (contravariant) functor. This means
that for every (X, ∗) there exists a set {ξλ} such that every rooted Dold F -
fibration over (X, ∗) is equivalent to some ξλ and ξλ 
� ξμ for λ 
= μ. Every
such set {ξλ} is called a representing set for r(X, ∗).
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1.50. Lemma. (i) Suppose that there is a set {ξλ} of rooted Dold F -fibrations
over (X, ∗) such that every rooted Dold F -fibration over (X, ∗) is equivalent
over Xλ (as a rooted fibration) to some ξλ. Then r(X, ∗) is a set.

(ii) If f : X → Y is a pointed homotopy equivalence and r(Y, ∗) is a set,
then r(X, ∗) is a set.

(iii) r(SX, ∗) is a set for every pointed CW -space X.
(iv) Let f : X → Y be a map of CW -spaces. If r(Y, ∗) is a set, then

r(Cf, ∗) = r(Y ∪f CX, ∗) is a set.

Proof. Again, equivalence means “rooted equivalence over the base”, and
“F -fibration” means “rooted Dold F -fibration”.

(i) This follows from 1.44(ii).
(ii) Let {ξλ} be a representing set for r(Y, ∗). Then {f∗(ξλ)} is a repre-

senting set for r(X, ∗). Indeed, let g : Y → X be homotopy inverse to f . If
f∗(ξλ) = f∗(ξμ), then g∗f∗(ξλ) = g∗f∗(ξμ), and thus ξλ = ξμ. Furthermore,
given η over X , one has η � f∗g∗η, but g∗η � ξλ for some λ.

(iii) Let X−, resp. X+ be the subspace of SX given by X × [0, 2/3), resp.
X × (1/3, 1]. Note that, for every F -fibration ξ over SX , the fibration ξ|X+

is fiberwise homotopy trivial since the inclusion X+ ⊂ SX is inessential.
Similarly for ξ|X−. Let θ−, resp. θ+ be the product F -bundle over X−, resp.
X+. Let a+ : θ+ → ξ|X+, a− : θ− → ξ|X− be fixed equivalences over the
bases. We set X0 := X− ∩X+. Choose a morphism ϕ : θ+|X0 → θ−|X0 over
X0 such that a−ϕ �X0 a+|X0.

Consider the bundle θ+|X0 	X0 θ−|X0 := {p : X0 × F 	X0 × F → X0}
where p|X0 × F is the projection on X0. We define the morphism

ψ : θ+|X0 	X0 θ−|X0 −→ θ−|X0, ψ
∣

∣ (θ+|X0) = ϕ, ψ
∣

∣ (θ−|X0) = 1

and set ω = Cylψ, bsω = X0. A homotopy a−ϕ � a+|X0 over X0 yields a
morphism a0 : ω → ξ|X0 over X0, and, by 1.30(i), it is an equivalence. We
consider the inclusions-equivalences

r+ : θ+|X0 = (θ+|X0)× {1} → ω, r− : θ−|X0 = (θ−|X0)× {1} → ω

and set ζ+ = θ+ ∪r+ ω, ζ− = θ− ∪r− ω and ζ = ζ+ ∪1ω ζ−. As in 1.45, one
can prove that ζ is an F -fibration. Furthermore, by 1.30(i), the morphism
a+ ∪ a0 ∪ a− : ζ → ξ is an equivalence over SX .

Note that ζ is completely determined by ϕ, i.e., ζ = ζϕ. By 1.44(iii),
all functions X0 × F → X0 × F form a set, and so, by 1.44(i), all maps
X0 × F → X0 × F form a set. So, all F -fibrations ζϕ form a set. We have
proved that every F -fibration ξ over SX is equivalent to some F -fibration
ζϕ. So, by (i), r(SX, ∗) is a set.

(iv) Let j : Y → Y ∪fCX be the inclusion. Roughly speaking, we consider
an “exact sequence of classes” r(Y, ∗) ←− r(Y ∪f CX, ∗) ←− r(SX, ∗), where
the group r(SX, ∗) acts on r(Y ∪f CX, ∗). So, orbits of the action are sets,
and the class of orbits is contained in the set r(Y, ∗), and thus it is a set, etc.
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Consider the map l : Y ∪fCX → (Y ∪fCX)∨SX which pinchesX×{1/2},
see the picture.

If you prefer formulae, we parametrize (SX, ∗) as

X × [1, 2]/(X × {1, 2} ∪ {∗} × I)

and define l by setting

l(y) = y, l(x, t) =
{

(x, 2t) ∈ CX if 0 ≤ t ≤ 1/2,
(x, 2t) ∈ SX if 1/2 ≤ t ≤ 1.

Given two F -fibrations μ over Y ∪f CX and λ over SX , there is (by 1.49)
just one F -fibration (μ, λ) over (Y ∪f CX)∨ SX which restricts to μ and λ.
Set λμ := l∗(μ, λ). Clearly, the equivalence class of λμ depends only on the
equivalence classes of λ, μ.

Consider two F -fibrations ξ, η over Y ∪f CX such that ξ|Y � η|Y . Then
there is an equivalence c : ξ|Y ∪f X × (1/3, 1] → η|Y ∪f X × (1/3, 1]. Set
X0 = X × (1/3, 2/3) and define h : X0 → X0, h(x, t) = (x, 1− t). Let X+ be
the image of X × [0, 2/3) in Y ∪f CX . Since X+ is contractible in Y ∪f CX ,
there are equivalences a : θX+ → ξ|X+ and b : η|X+ → θX+ . Let ϕ be the
composition

(1.51) θX0

a|X0−−−→ ξ|X0
c|X0−−−→ η|X0

b|X0−−−→ θX0

ψ−→ θX0

where ψ = Ih,θX0
. One can check that ξ � ζϕη, where ζϕ is as in (iii). In

other words, ξ � λη for some λ over SX .
Let Λ be a representing set for r(SX, ∗), and let Γ be a representing set for

Im{j∗ : r(Y ∪f CX, ∗)→ r(Y, ∗)}. Given γ ∈ Γ, choose η = ηγ over Y ∪f CX
with j∗η � γ. By 1.44(iv), Vγ :=

{

λη
∣

∣ λ ∈ Λ
}

= ∪λλη is a set, and so, by
1.44(iv), ∪γVγ is a set. Now, given ξ over Y ∪f CX , one has j∗ξ � γ for some
γ ∈ Γ, and so ξ � ληγ for some λ. Thus, ξ is equivalent to ξ′ ∈ ∪γVγ , and
so, by (i), r(Y ∪f CX, ∗) is a set. �

1.52. Theorem. r(X, ∗) is a set for every connected pointed CW -space
(X, ∗). Furthermore, it can be turned into a pointed set naturally with respect
to (X, ∗). So, r is a functor H C • → E ns•.



208 Chapter IV. Thom Spectra

Proof. Firstly, we prove that r(X, ∗) is a set.
Step 1. r(Sn, ∗) is a set for every n. This follows from 1.50(iii).
Step 2. r(∨λ∈ΛS

n
λ , ∗) is a set for every n and every index set Λ. This

follows from 1.49 and Step 1.
Step 3. r(X, ∗) is a set for every finite dimensional connected CW -space

X . Indeed, X(n) is a cone of a certain map f : ∨Sn−1 → X(n−1). Now the
assertion can be proved by induction, using 1.50(iv) and Step 2.

Step 4. r(∨λ(Xλ, xλ)) is a set for every family of finite dimensional con-
nected CW -spaces Xλ. This follows from Step 3 and 1.49.

Step 5. r(X, ∗) is a set for every connected CW -space X . Let (T, ∗) be
the reduced telescope of the skeletal filtration of X , see I.3.23(d). Note that
Tev, as well as Tod, is the wedge of the finite dimensional summands, and
hence by Step 4, r(Tev, ∗) and r(Tod, ∗) are sets. Since (X, ∗) is homotopy
equivalent to Tev(X) ∨ Tod(X), r(X, ∗) is a set.

Now, we turn r(X, ∗) into a pointed set, if we define the distinguished
element of r(X, ∗) to be the equivalence class of the trivial fibration. �

The restriction of r to H C •
con is also denoted by r.

Now III.3.25, 1.47, 1.49 and 1.52 imply

1.53. Corollary. The functor r : H C •
con → E ns• is representable. In other

words, there exists a pointed CW -space (B, ∗) such that for every pointed
connected space (X, ∗) one has a natural equivalence

(1.54) r(X, ∗) = [(X, ∗), (B, ∗)]. �

1.55. Theorem. wF (X) is a set for every X. Furthermore, the space B
from 1.53 represents the functor w = wF : H C → E ns. In other words, for
every CW -space X we have a natural bijection w(X) = [X,B]. Finally, the
forgetful transformation tF → wF is a natural equivalence, and so the functor
tF : H C → E ns is representable by the same space B.

Proof. Because of 1.49, the standard map S1 → S1 ∨ S1 (pinching S0)
turns r(S1, ∗) into a group. This group acts on r(X, ∗), and now we describe
this action.

Recall that there is the well-known π1(Y, ∗)-action on [(X, ∗), (Y, ∗)] for
all spaces X,Y , see e.g. Hu [1], Spanier [2]. In particular, π1(B, ∗) acts on
[(X, ∗), (B, ∗)], and the orbit set of this action is just [X,B]. Consider the
elements

α ∈ π1(S1 ∨X, ∗) = [(S1, ∗), (S1 ∨X, ∗)] and x ∈ [(X, ∗), (S1 ∨X, ∗)]

given by the inclusions of the direct summands S1 → S1 ∨ X and X →
S1 ∨X . The π1(S1 ∨X, ∗)-action on [(X, ∗), (S1 ∨X, ∗)] gives us the element
αx ∈ [(X, ∗), (S1 ∨X, ∗)]. Consider

r(αx) : r(S1, ∗)× r(X, ∗) = r(S1 ∨X, ∗)→ r(X, ∗)
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This is the action mentioned above. The orbit set of this action is w(X). In
particular, w(X) is a set for every X . Furthermore, this action is compati-
ble with the π1(B, ∗)-action on [(X, ∗), (B, ∗)] under the equivalence (1.54).
Hence, we have a natural equivalence w(X) = [X,B] for every connected X .
Finally, if a CW -space X is a disjoint union of connected spaces, X = 	Xα,
then w(X) =

∏

w(Xα). So, w(X) = [X,B] for every CW -space X .
Since every F -fibration is a Dold F -fibration, we have a natural forgetful

transformation t→ w. Conversely, let ξ̄ be a fibrational substitute of a Dold
fibration ξ. By 1.36 and 1.40, the correspondence ξ �→ ξ̄ is a well-defined
natural transformationw → t, which is inverse to the forgetful transformation
t→ w. So, the forgetful transformation is a natural equivalence. �

1.56. Definition. (a) A universal F -fibration is an F -fibration

γF = {pF : EF → BF }

with the following properties:
(1) Every F -fibration over a CW -space X is equivalent to a fibration

f∗γF for some f : X → BF .
(2) Let f, g : X → BF be two maps of a CW -space X . Then F -

fibrations f∗γF and g∗γF are equivalent iff f � g.
(b) The base BF of a universal F -fibration is called a classifying space for

F -fibrations. If an F -fibration ξ is equivalent to f∗γF for some f : bs ξ → BF ,
we say that f classifies ξ or that f is a classifying map for ξ.

(c) A classifying morphism for an F -fibration ξ is any F -morphism ϕ :
ξ → γF .

1.57. Theorem. There exists a universal F -fibration γF . Furthermore, the
base BF of γF can be chosen to be a CW -space, and in this case BF is
uniquely defined up to homotopy equivalence. Moreover, γF can be chosen so
that Fb0 is the space F for some point b0 ∈ BF .

Proof. Considering B as in 1.55, we see that B is a CW -space. Further-
more, under the bijection tF (B) ∼= [B,B] the element 1B ∈ [B,B] corre-
sponds to an equivalence class of a certain F -fibration over B. By 1.55, every
fibration in this class is a universal F -fibration. So, we have proved the exis-
tence of a universal F -fibration over a CW -base. The homotopy uniqueness
of B follows from the Yoneda Lemma I.1.5.

We prove the last assertion. Consider any universal F -fibration γ = {p :
E → B} over a CW -base B. Choosing a point b ∈ B, consider B′ := (B, b)∨
(I, 0), and let b0 ∈ B′ be the image of 1 ∈ I. Let p : B′ �−→ B collapse I. Set
U := B∨[0, 2/3), V := (1/3, 1] ⊂ I ⊂ B′, W := U∩V, η := (p|U)∗γ, ξ := θFV .
One has ts(ξ|W ) = W×F, ts(η|W ) = W×Fb. Choose h : F �−→ Fb and define
ϕ : ξ|W → η|W,ϕ(w, f) = (w, h(f)), w ∈W, f ∈ F . Constructing ζ as in 1.47,
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bs ζ = B′, we see that ζ � p∗γ, and the fiber of ζ over b0 is F . Since p is a
homotopy equivalence, ζ is a universal F -fibration. Now put γF := ζ. �

In future we always assume that γF is a fibration as in the last phrase of
1.57. In particular, BF is a CW -space.

1.58. Proposition. Let ξ be an F -fibration over a CW -base X.
(i) If ϕ : ξ → γF is a classifying morphism for ξ then Fϕ : ξ → (bsϕ)∗γF

is an equivalence over X.
(ii) If ϕ : ξ → γF is a classifying morphism for ξ then bsϕ is a classifying

map for ξ.
(iii) If f : X → BF is a classifying map for ξ then there exists a classifying

morphism ϕ : ξ → γF with bsϕ = f .

Proof. (i) This follows from 1.30(i) since Fϕ induces a homotopy equiva-
lence of fibers.

(ii) By (i), (bsϕ)∗γF and ξ are equivalent over X .
(iii) Since f∗γF and ξ are equivalent over X , we have the F -morphism

ϕ : ξ → f∗γF
If,γ−−→ γF , bsϕ = f. �

We have proved that a classifying space for F -fibrations exists. However,
sometimes one prefers to have a more or less explicit construction of BF . To
do this, it is useful to use classifying spaces for monoids.

1.59. Definition. A topological monoid is a triple (M,μ, e) where M is a
topological space, μ : M × M → M is an associative multiplication and
e ∈ M is a two-sided unit of μ. A monoid is well-pointed if the inclusion
{e} ⊂ M of the unit e is a cofibration. A monoid is grouplike if μ induces a
group structure on π0(M).

1.60. Definition. (a) Let M be a monoid with the unit e. A principal M -
bundle is a pair (ξ, ν), where ξ = {p : E → B} is a bundle and ν : E×M → E
is a map such that (below y ∈ E, h, h′ ∈M and yh means ν(y, h), hh′ means
μ(h, h′)):

(1) ye = y, (yh)h′ = y(hh′) for every y, h, h′;
(2) p(yh) = p(y) for every y;
(3) For every y the mapM → Fp(y), h �→ yh is a Whitehead equivalence.

(b) The map ν is called an M -action on ξ.
(c) A principal M -(quasi-)fibration is a principal M -bundle which is at

the same time a (quasi-)fibration.
If M is grouplike, then condition (3) of (a) holds automatically. Moreover,

if M is a topological group, then the maps h �→ yh are homeomorphisms.
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1.61. Proposition. Let M be a topological monoid. For every principal M -
quasi-fibration ξ = {p : E → B} there is a principal M -fibration ξ̄ = {p̄ :
Ē → B} which is a fibrational substitute of ξ.

Proof. Consider the fibrational substitute ξ = {p : E → B} of ξ as in 1.35,
i.e., E := {(e, ω)|e ∈ E,ω : [0, 1] → B,ω(0) = p(e)} and p(e, ω) := ω(1). We
define an M -action ν on ξ by setting ν((e, ω), h) := (ν(e, h), ω) where h ∈M
and ν is the M -action on ξ. We leave it to the reader to check that (ξ, ν) is
a principal M -bundle (to prove 1.60(a,3), use the proof of 1.41(i)). �

1.62. Definition. A classifying space for a grouplike monoid M is any space
B which is the base of a principal M -quasi-fibration EM → BM such that
EM is an aspherical space. 10

Let Δn be the standard n-simplex,

Δn = {(t0, . . . , tn) ∈ R
n+1|0 ≤ ti ≤ 1,

∑

ti = 1}.

For every i = 0, 1, . . . , n we define

δi : Δn−1 → Δn, δi(t0, . . . , tn−1) = (t0, . . . , ti−1, 0, ti, . . . , tn−1),
σi : Δn+1 → Δn, σi(t0, . . . , tn+1) = (t0, . . . , ti−1, ti + ti+1, ti+2, . . . , tn).

Given a well-pointed topological monoid M , consider left and right M -
spaces X and Y , respectively. Following May [2], [4], we set Bn(Y,M,X) =
Y ×Mn × X and define the maps ∂i : Bn(Y,M,X) → Bn−1(Y,M,X), i =
0, 1, . . . , n and si : Bn(Y,M,X)→ Bn+1(Y,M,X), i = 0, 1, . . . , n as follows.
Let [y|m1| · · · |mn|x] be the typical element of Bn(Y,M,X). Put

∂i[y|m1| · · · |mn|x] =

⎧

⎪

⎨

⎪

⎩

[ym1|m2| · · · |mn|x] if i = 0,
[y|m1| · · · |mimi+1|mi+2| · · · |mn|x] if 1 ≤ i ≤ n,
[y|m1| · · · |mn−1|mnx] if i = n.

and si[y|m1| · · · |mn|x] = [y|m1| · · · |mi|e|mi+1| · · · |mn|x].
Consider the disjoint union B =

⊔∞
n=0Bn(Y,M,X) ×Δn and define an

equivalence relation ∼ on B to be that generated by:

(∂iu, v) ∼ (u, δiv) for u ∈ Bn(Y,M,X), v ∈ Δn−1,

(siu, v) ∼ (u, σiv) for u ∈ Bn(Y,M,X), v ∈ Δn+1.

We set

(1.63) B•(Y,M,X) := B/(∼).

10Recall that a space Z is called aspherical if πi(Z, z0) = 0 for every z0 ∈ Z and

every i. In particular, every contractible space is aspherical, and, for CW -spaces,

the converse is also true.
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The construction B•(−,−,−) is natural: let h : M → M ′ be a monoid
homomorphism, and let X (resp. Y ) be a left (resp. right) M -space. Let
f : X → X ′, g : Y → Y ′ be two maps such that the diagrams

M ×X h×f−−−−→ M ′ ×X ′ Y ×M g×h−−−−→ Y ′ ×M ′
⏐

⏐




⏐

⏐




⏐

⏐




⏐

⏐




X
f−−−−→ X ′ Y

g−−−−→ Y ′

commute (here the vertical arrows are the actions). Then the maps

Y ×Mn ×X g×hn×f−−−−−→ Y ′ × (M ′)n ×X ′

induce a map B•(g, h, f) : B•(Y,M,X) → B•(Y ′,M ′, X ′) with the usual
functorial properties.

Given a map α : Y × X → Z such that α(ym, x) = α(y,mx) for every
m ∈M , we define

bn : Bn(Y,M,X)×Δn p1−→ Bn(Y,M,X) an−→ Z

where an[y|m1| · · · |mn|x] = α(ym1 · · ·mn, x). The family bn, n = 0, 1, . . . ,
yields a map b : 	Bn → Z, b|Bn = bn which, in turn, induces a well-defined
quotient map

εα : B•(Y,M,X)→ Z.

This construction is natural in the following sense. Let f : X → X ′, g :
Y → Y ′, h : M →M ′ be as above. Given α′ : Y ′×X ′ → Z ′ with α′(ym, x) =
α′(y,mx), let k : Z → Z ′ be a map such that the left hand diagram below
commutes. Then the right hand diagram commutes.

Y ×X α−−−−→ Z B•(Y,M,X) εα−−−−→ Z

g×f
⏐

⏐




⏐

⏐



k B•(g,h,f)

⏐

⏐




⏐

⏐



k

Y ′ ×X ′ α′
−−−−→ Z ′ B•(Y ′,M ′, X ′)

εα′−−−−→ Z ′.

Finally, for every rightM -space Y we define the rightM -actionB•(Y,M,M)×
M → B•(Y,M,M) of the form: [y|m1| · · · |mn|m]m′ = [y|m1| · · · |mn|mm′].

We set EM := B•(pt,M,M), B•M := B•(pt,M, pt), and

(1.64) pM := B•(1pt, 1M , cM ) : EM → B•M,

where cM : M → pt.
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1.65. Theorem. For every well-pointed monoid M the following hold:
(i) Let ν : Y ×M → Y be an action. Then the map εν : B•(Y,M,M)→ Y

is a map of right M -spaces and a homotopy equivalence. In particular, EM
is contractible.

(ii) If M is grouplike, then B•(cY , 1M , 1X) : B•(Y,M,X)→ B•(pt,M,X),
resp. B•(1Y , 1M , cX) : B•(Y,M,X)→ B•(Y,M, pt), is a quasi-fibration with
fiber (homotopy equivalent to) Y , resp. X. Furthermore, pM : EM → B•M
is a principal M -quasi-fibration.

(iii) If M is a topological group (not necessary well-pointed) then pM :
EM → B•M is a locally trivial principal M -bundle.

Proof. See May [2], [4]. �

1.66. Corollary. Let M be either a well-pointed topological monoid or a
topological group. Then the following hold:

(i) The space B•M is a classifying space for M .
(ii) Let p : E → B be a principal M -quasi-fibration. Consider the map α :

E × pt = E
p−→ B. Then εα : B•(E,M, pt)→ B is a Whitehead equivalence.

Proof. (i) This follows from 1.65.
(ii) Consider the commutative diagram

E
εν←−−−− B•(E,M,M)

p

⏐

⏐




⏐

⏐




π

B
εα←−−−− B•(E,M, pt)

where π = B•(1E, 1M , cM ). Both vertical maps are quasi-fibrations with
fibers CW -equivalent to M , and εν , εα induce Whitehead equivalences of
fibers. By 1.65(i), εν is a homotopy equivalence, and so εα is a Whitehead
equivalence. �

Because of 1.66(i), we call B•M May’s model of a classifying space for M .

1.67. Corollary. Let M be either a well-pointed grouplike monoid, or a
topological group. Then the classifying space for M is defined uniquely up to
CW -equivalence. Furthermore, every CW -substitute of any classifying space
for M is a classifying space for M .

Proof. Let p : E → B be a principal M -quasi-fibration with aspherical E,
i.e., B is a classifying space for M . Consider the diagram

B
εα←− B•(E,M, pt)

B•(cE ,1M ,1pt)−−−−−−−−−→ B•(pt,M, pt) = B•M

Now, by 1.66(ii) and 1.65(ii), εα and B•(cE , 1M , 1pt) are Whitehead equiva-
lences.



214 Chapter IV. Thom Spectra

Furthermore, let Y be a CW -space and f : Y → B be a Whitehead
equivalence. By 1.61, there is a principalM -fibration ξ over B with aspherical
ts ξ. Now, it is easy to see that f∗ξ is a principal M -fibration with aspherical
total space. �

1.68. Corollary. Let M be a grouplike monoid or a topological group. Then
there is a Whitehead equivalence M → ΩB•M . In particular, if BM is a
classifying space for M then πi(M) ∼= πi+1(BM).

Proof. Let pM : EM → B•M be the M -quasi-fibration (1.64) and let
PB•M → B•M be as in 1.39(a). Since EM is contractible, there exists a
commutative diagram

EM
p̂−−−−→ PB•M

pM

⏐

⏐




⏐

⏐




B•M B•M .

This diagram is a morphism of quasi-fibrations with contractible total spaces.
Thus, the induced map M → ΩB•M of the fibers is a Whitehead equivalence
of fibers (consider the ladder of the homotopy exact sequences).

The last assertion follows from 1.66(i) and 1.67. �
Let H (F ) be the monoid of all homotopy equivalences F → F topologized

as the subspace of FF . Let ξ = {p : E → B} be an F -fibration. Following
Dold–Lashof [1], we define a bundle

Prin ξ = {Prin p : PrinE → B}

as follows. PrinE is the subspace of EF consisting of all maps ϕ : F →
E such that pϕ(F ) is a point x = x(ϕ) ∈ B and ϕ : F → p−1(x) is a
homotopy equivalence; and (Prin p)(ϕ) = x(ϕ). We define the action ν :
PrinE ×H (F )→ PrinE, ν(ϕ, h) = ϕh. By I.3.10(iii), ν is continuous.

1.69. Proposition (cf. Stasheff [1]). (Prin ξ, ν) is a principal H (F )-
fibration.

Proof. We recall the exponential law (AF )Y = AY×F , see I.3.10(ii). Given
maps f : X → PrinE, h : X × I → B with (Prin p)f(x) = h0(x) := h(x, 0),
consider the map π : X × I p1−→ X = X × {0} ⊂ X × I and set a := Iπ,h∗ξ :
(πh)∗ξ → h∗ξ. Then a is an equivalence over X × I. Define g : X × F →
ts(h∗0ξ), g(x, y) = (x, f(x)y). Then the map

X × F × I g×1−−→ ts(h∗0ξ)× I = ts((πh)∗ξ) ts a−−→ ts(h∗ξ)→ ts ξ

induces a homotopy equivalence of fibers. So, the adjoint map can be decom-
posed as X × I H−→ PrinE ⊂ (ts ξ)F , and H is a (Prin p)-lifting of h with
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H |X × {0} = f . Thus, Prin ξ is a fibration. Furthermore, it is easy to check
that ν turns Prin ξ into a principal H (F )-fibration. �

1.70. Theorem (cf. Allaud [1], [2]). An F -fibration ξ = {p : E → B} over
a CW -base is a universal F -fibration iff Prin(E) is aspherical.

Proof. Consider a universal F -fibration as in 1.57. The inclusion i0 : F =
Fb0 → EF induces the inclusion I0 : H (F ) → Prin(EF ). We prove that
Prin(EF ) is aspherical. We do it in two steps. Firstly, we prove that the map
(I0)∗ : [X,H (F )] → [X,Prin(EF )] is onto for every X ∈ C . Then we prove
that Im(I0)∗ consists of just one element for every X .

Step 1. Consider a map ϕ : X → Prin(EF ). It yields the adjoint map
ϕ : X × F → EF , and we have the commutative diagram

X × F ϕ−−−−→ EF

p1

⏐

⏐




⏐

⏐




pF

X
f−−−−→ BF .

Since ϕ yields a homotopy equivalence of fibers, f∗γF is fiberwise homotopy
trivial. So, f � ∗. Deforming f to the constant mapX → b0, we can cover this
deformation by a deformation ϕt of ϕ such that ϕ0 = ϕ and ϕ1(X×F ) ⊂ F .
This implies that (I0)∗ is onto.

Step 2. Given ρ : X → FF with ρ(x) ∈H (F ), consider the equivalence

ψ : X × (1/3, 2/3)× F → X × (1/3, 2/3)× F, ψ(x, t, f) = (x, t, ρ(x)(f)).

Let U ⊂ SX (resp. V ⊂ SX) be the image of X × (0, 2/3) (resp. of X ×
(1/3, 1)). If θ− (resp. θ+) is the product F -bundle over U (resp. over V ) then
ψ induces an equivalence ϕ : θ−|U ∩ V → θ+|U ∩ V . Let ζ = ζϕ , bs ζ = SX ,
be the (Dold) F -fibration which was constructed in the proof of 1.45. This ζ
is classified by the diagram

ts ζ
g−−−−→ EF

⏐

⏐




⏐

⏐




SX
f−−−−→ BF ,

and we can assume that f(X × [1/2, 1]) = b0 ∈ B. Consider the inclusion
i0 : F = Fb0 ⊂ EF . Clearly, the composition X × {3/4} × F → ts ζ

g−→ EF is
homotopic to X ×F p2−→ F

i0−→ EF , while the composition X × {1/4}×F →
ts ζ

g−→ EF is homotopic to X × F ψ−→ F
i0−→ EF . Thus, ψ : X → FF →

Prin(EF ) is homotopic to the constant map.
Conversely, suppose that PrinE is aspherical. Let f : B → BF classify

ξ. Then f can be covered by a fiberwise map ̂f : E → EF , which yields a
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fiberwise map Prin(E) → Prin(EF ). This map induces a homotopy equiva-
lence of fibers, and thus, because of the asphericity of the total spaces, f is a
homotopy equivalence of the bases. �

1.71. Corollary (Stasheff [1]). If F is a CW -space then BH (F ) �CW BF .

Proof. Lewis [1] proved that H (X) is a well-pointed monoid for every
CW -space X . So, because of 1.67, it suffices to prove that BF is a classifying
space for H (F ). But this follows from 1.69 and 1.70. �

In fact, for every finite CW -space F , Stasheff [1] constructed a classifying
space BH (F ) and proved that BH (F ) classifies F -fibrations.

Thus, any CW -substitute for BH (F ) can play the role of BF , i.e.,
B•H (F ) gives us a more or less explicit construction of BF .

1.72. Theorem (cf. Allaud [2]). Let ξ be an F -fibration over a CW -space
X, and let A be a CW -subspace of X. Then every F -morphism ϕ : ξ|A→ γF

can be extended to an F -morphism ψ : ξ → γF .

Proof. It suffices to consider the case X = Dn, A = Sn−1. (Then we can
perform transfinite induction on cells.) Firstly, let ξ be the product F -bundle
θF . The map tsϕ : A× F → EF yields the adjoint map

ϕad : A→ PrinEF ϕad(a)(u) = (tsϕ)(a, u), a ∈ A, u ∈ F.

But, by 1.70, PrinEF is aspherical, and so ϕad can be extended to a map
b : X → PrinEF . Now, define ψ : ξ → γF by setting

(tsψ)(x, u) = b(x)(u), x ∈ X,u ∈ F.

Clearly, ψ is an extension of ϕ.
In the general case ξ is not trivial, but it is fiberwise homotopy trivial since

X = Dn is a contractible space. So, we have fiberwise homotopy equivalences

θFX
α−→ ξ

β−→ θFX .

By the above, the morphism θFA
α|A−−→ ξ

ϕ−→ γF can be extended to a morphism
ψ : θFX → γF , and there is the commutative diagram

ξ
β−−−−→ θFX

ψ−−−−→ γF

∪
�

⏐

⏐

�

⏐

⏐
∪

∥

∥

∥

ξ|A β|A−−−−→ θFA
ψ|A−−−−→ γF .

Notice that (ψ|A)(β|A) = ϕ(α|A)(β|A) �bun ϕ. Now, we can deform the
morphism (ψ|A)(β|A) to ϕ, and, by 1.17(ii), this deformation can be extended
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to a deformation of ψβ. Thus, in the end of this extended deformation we
get the desired extension of ϕ. �

In fact, the property of γF formulated in 1.72 can be treated as a criterion
of the universality, cf. Steenrod [1], §19.

Let θ be the product S0-bundle over pt, and let σ : BF → BSF classify
the SF -fibration γF ∗ θ. Consider the map

i : H (F )→H (SF ), i(h)[x, t] = [h(x), t], h ∈H (F ) , x ∈ F, t ∈ I.

1.73. Proposition. (i) There are Whitehead equivalences g, f such that the
diagram

EF
g−−−−→ B•(pt,H (F ), F )

pF

⏐

⏐




⏐

⏐




r

BF
f−−−−→ B•(pt,H (F ), pt),

r = B•(1pt, 1H (F ), cF ), commutes up to homotopy.
(ii) There are Whitehead equivalences h1 and h2 such that the diagram

BF
σ−−−−→ BSF

h1

⏐

⏐




⏐

⏐



h2

B•(pt,H (F ), pt) Bi−−−−→ B•(pt,H (SF ), pt)

commutes up to homotopy.

Proof. (i) We consider the commutative diagram

EF
εμ←−−−− B•(PrinEF ,H (F ), F )

B•(c,1H ,1F )−−−−−−−−→ B•(pt,H (F ), F )

pF

⏐

⏐




⏐

⏐




q

⏐

⏐




r

BF
εα←−−−− B•(PrinEF ,H (F ), pt)

B•(c,1H ,1pt)−−−−−−−−→ B•(pt,H (F ), pt)

where

1H = 1H (F ), q = B•(1PrinEF , 1H , cF ),
α = Prin pF : PrinEF → BF , c = cPrinEF

and μ : PrinEF ×F → EF has the form μ(ϕ, f) = ϕ(f), ϕ ∈ PrinEF , f ∈ F.
All vertical maps are quasi-fibrations with fibers CW -equivalent to F , and, by
1.66(ii), εα is a Whitehead equivalence. Hence, εμ is a Whitehead equivalence.
Now, by I.3.46, there are Whitehead equivalences

v : EF → B•(PrinEF ,H (F ), F ) and u : BF → B•(PrinEF ,H (F ), pt)
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such that vεμ �CW 1, εμv � 1, uεα �CW 1, εαu � 1. Hence, qv �CW upF .
Moreover, qv � upF since EF has the homotopy type of a CW -space. Finally,
both maps B•(c, 1, 1) are Whitehead equivalences, and we set

g := B•(c, 1H , 1pt)v, f := B•(c, 1H , 1F )u.

(ii) Let S∗EF := ts(γF ∗ θ). Consider the commutative diagram

S∗EF
p−−−−→ BF

ερ

�

⏐

⏐

�

⏐

⏐

εα

B•(PrinEF ,H (F ), SF )
q−−−−→ B•(PrinEF ,H (F ), pt)

B•(d,i,1SF )

⏐

⏐




⏐

⏐




B•(d,i,1pt)

B•(PrinESF ,H (SF ), SF ) r−−−−→ B•(PrinESF ,H (SF ), pt)

εν

⏐

⏐




⏐

⏐




εβ

ESF
pSF−−−−→ BSF

where α is as in (i), β is similar to α, ν is similar to μ as in (i),

q = B•(1PrinEF , 1H (F ), cSF ), r = B•(1PrinESF , 1H (SF ), cSF ),

d : PrinEF → PrinESF maps ϕ : F → EF to the composition

SF
Sϕ−−→ S∗EF

ts I
σ,γF−−−−−→ ESF , and ρ : PrinEF × SF → S∗EF has the form

ρ(ϕ, [f, t]) = [ϕ(f), t], ϕ ∈ PrinEF , f ∈ F, t ∈ I.
Similarly to (i), we conclude that all the ε’s are Whitehead equivalences.

Now, let u : BF → B•(PrinEF ,H (F ), pt) be as in (i), and let v : S∗EF →
B•(PrinEF ,H (F ), SF ) be such that ερv � 1, vερ �CW 1. Then, as in (i),
qv � up. This implies easily that

εβB•(d, i, 1pt)u � σ.

(Indeed, the left-hand map classifies γF ∗ θ.) Furthermore, we construct

w : BSF → B•(PrinESF ,H (SF ), pt)

analogous to u, i.e., such that εβw � 1, wεβ �CW 1.
Now, we consider the Whitehead equivalences

B•(cPrinEF , 1H (F ), 1pt) : B•(PrinEF ,H (F ), pt) −→ B•(pt,H (F ), pt)
B•(cPrinESF , 1H (SF ), 1pt) : B•(PrinESF ,H (SF ), pt) −→ B•(pt,H (SF ), pt)

and notice that

(Bi)B•(cPrinEF , 1H (F ), 1pt) = B•(cPrinESF , 1H (SF ), 1pt)B•(d, i, 1pt).
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Now we complete the proof by setting h1 = B•(cPrinEF , 1H (F ))u, h2 =
B•(cPrinESF , 1H (SF ), 1pt)w. �

Now we pass to (F, ∗)-fibrations. Let ξ = {Y → X} be an (F, ∗)-fibration
with the section s : X → Y . Let t(F,∗)(X) be the class of the equivalence
classes of all the (F, ∗)-fibrations over X . Similarly to (and based on) the
above, one can prove that t(F,∗)(X) is a set for every X . By 1.20(ii), t(F,∗) is
a functor on H C .

1.74. Theorem. The functor t(F,∗) : H C → E ns is representable.

Proof. The proof is similar to that of 1.55, therefore we give only a sketch.
Given a well-pointed space (F, f0), we define a rooted (F, ∗)-fibration over
(X,x0) to be an (F, ∗)-fibration ξ = {p : Y → X, s : X → Y, ps = 1} with
a given pointed homotopy equivalence (root) ιξ : (F, f0) → (Fx0 , s(x0)). A
rooted equivalence of rooted (F, ∗)-fibrations ξ, η over (X,x0) is an equiva-
lence ϕ : ξ → η of (F, ∗)-fibrations such that ϕiξ � iη rel s(x0). Consider
an auxiliary functor r• : H C •

con → E ns• such that r(X,x0) is the set of
the equivalence classes of rooted (F, ∗)-fibrations over (X,x0), and r• acts on
maps as t(F,∗) acts.

As in 1.55, the representability of t(F,∗) follows from the representability
of r•.

We prove that r• satisfies the MV axiom. Given a pointed CW -triad
(X ;A,B;x0), let ξ (resp. η) be a rooted (F, ∗)-fibration over A (resp. B).
Given an (F, ∗)-equivalence ϕ : ξ|C � η|C, C := A ∩ B, which preserves
roots, we get a rooted F -fibration ζ over X such that the diagram (1.48)
commutes. (Indeed, take the Dold fibration ζ from 1.47 and consider its
fibrational substitute.) Now, the equivalence ξ → ζ|A gives us the section
sA : A

sξ−→ ts ξ → ts(ζ|A). Similarly, we get a section sB : B → ts(ζ|B).
Moreover, sA|C �C sB|C because ξ|C and η|C are rooted equivalent (F, ∗)-
fibrations. By 1.17(ii), one can construct a section s = sX : X → ts ζ such
that s|A = sA and s|B �B sB.

Let ŝ : 1X → ζ be the bundle morphism given by s. It would be good if
(ζ, s) were a cofibration over X , but we can’t claim this. So, we consider the
(F, ∗)-fibration ζ′ := Cyl ŝ. Denoting by i : ζ = ζ × 1{1} ⊂ ζ′ the inclusion,
we get the sections

s′Y : Y sY−→ ts(ζ|Y )
ts(i|Y )−−−−→ ts(ζ′|Y )

for Y = A,B,X . In particular, s′ = s′X is a section of ζ′. Now, s′A �A sA,
and so, by 1.7(i) and 1.32,

(ζ′|A, s′|A) �A (ζ′|A, s′A) �A (ζ|A, sA) �A (ξ, sξ).

Similarly, (ζ′|B, s′|B) �B (η, sη), i.e., ζ′ is the desired rooted (F, ∗)-fibration.
We leave it to the reader to prove that r• satisfies the wedge axiom. �
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Similarly to 1.57, we can prove the existence of a universal (F, ∗)-fibration
γ(F,∗) = {p(F,∗) : E(F,∗) → B(F,∗)}. Here B(F,∗) is a classifying space for t(F,∗).
Let H (F, ∗) be the monoid of self-equivalences (F, ∗) → (F, ∗) topologized
as the subspace of (F, ∗)(F,∗).

Given a map f : (F, ∗)→ (F, ∗), consider the map

f ∧ 1 : (SF, ∗) = (F ∧ S1, ∗)→ (F ∧ S1, ∗) = (SF, ∗).

We define i : H (F, ∗) → H (SF, ∗), i(f) = f ∧ 1. Let θ be the product
(S1, ∗)-bundle over pt, and let σ : B(F,∗) → B(SF,∗) classify the (SF, ∗)-
fibration γ(F,∗) ∗ θ.

Given an (F, ∗)-fibration ξ = {p : E → B} with the section s, we define

Prin• ξ = {Prin• p : Prin• E → B}

as follows. Prin•E is the subspace of EF consisting of all maps ϕ : (F, ∗)→
(E, s(B)) such that pϕ(F ) is a point x = x(ϕ) ∈ B and ϕ : (F, ∗) →
(p−1(x), s(x)) is a homotopy equivalence; and Prin• p(ϕ) = x(ϕ).

The following pointed analog of 1.69, 1.70, 1.71 and 1.73 holds; we leave
the proof to the reader.

1.75. Theorem. (i) Prin• ξ is a principal H (F, ∗)-fibration for every (F, ∗)-
fibration ξ.

(ii) An (F, ∗)-fibration ξ over a CW -base is universal iff ts(Prin• ξ) is
aspherical.

(iii) B(F,∗) and BH (F, ∗) are CW -equivalent.
(iv) There are Whitehead equivalences g, f such that the diagram

E(F,∗)
g−−−−→ B•(pt,H (F, ∗), F )

p(F,∗)

⏐

⏐




⏐

⏐




r

B(F,∗)
f−−−−→ B•(pt,H (F, ∗), pt),

r = B•(1pt, 1H (F,∗), cF ), commutes up to homotopy.
(v) There are Whitehead equivalences h1 and h2 such that the diagram

B(F,∗)
σ−−−−→ B(SF,∗)

h1

⏐

⏐




⏐

⏐



h2

B•(pt,H (F, ∗), pt) Bi−−−−→ B•(pt,H (SF, ∗), pt)

commutes up to homotopy. �

Since every (F, ∗)-fibration is an F -fibration, we have a forgetful map
B(F,∗) → BF . Because of 1.35, we can consider this map as a fibration q :
B(F,∗) → BF .
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1.76. Theorem (cf. Gottlieb [1]). The fibration q is a universal F -fibration.
In particular, the homotopy fiber of q is F .

Proof. Consider a universal F -fibration γF = {pF : EF → BF }. Clearly,
p∗Fγ

F has a canonical section s (given by the p-lifting 1EF of pF ). Let λ be
the (F, ∗)-fibration (p∗Fγ

F , s). We set D = tsλ and P = ts(Prin• λ). Firstly,
we prove that P is aspherical. In fact, given a map f : Sn → P , we prove
that it can be extended to a map CSn → P . Indeed, let g : Sn × F → D
be the adjoint map to f . Regarding D as the subset of EF × EF , see 1.8,
define h : Sn × F → EF by setting h = p2g. The adjoint map to h has the
form Sn → Prin(EF ) ⊂ (EF )F , and it is inessential because Prin(EF ) is
aspherical. Thus, h can be extended to a fiberwise map h : CSn × F → EF .
Define g : CSn × F → D, g(x, y) = (h(x, ∗), h(x, y)). Let f : CSn → P be
the map adjoint to g. Since g extends g, f extends f . So, P is aspherical.

By 1.75(ii), λ is the universal (F, ∗)-fibration over EF . Let a homotopy
equivalence u : EF → B(F,∗) classify λ. Then, clearly, qu : EF → BF classifies
p∗Fγ

F , i.e., qu � pF . Thus, pF : EF → BF and q : B(F,∗) → BF are homotopy
equivalent. �

1.77. Remarks. (a) The Representability Theorem 1.53 was proved by Al-
laud [1] and Dold [3] (without proof that t is set-valued), in the proof of 1.53
we also followed Schön [1]; the Representability Theorem 1.55 was remarked
by Dold [3].

(b) The construction of BΠ for a topological group Π was originally given
by Milnor [1]. In fact, he constructed a locally trivial principal Π-bundle with
aspherical total space. The classifying space for a monoid M was considered
by Dold–Lashof [1] and Stasheff [1]. The construction (1.63) of the classifying
space B•M is taken from May [2]. Similar constructions are in Boardman–
Vogt [1] and Milgram [1]. Each of these constructions can be treated as a
geometric realization of a certain bar-construction. All these constructions
are homotopy equivalent to one another.

(c) Every locally trivial bundle has a structure group. What is an ana-
log of structure group for F -fibrations? Of course, the monoid H (F ) can
play this role, but this is not perfect because the fibers of the fibration are
different. It seems better to consider the category J (F ) with objects homo-
topy equivalent to F and the homotopy equivalences as morphisms. May [2]
developed this approach, cf. also Segal [1].
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§2. Structures on Fibrations

Now we discuss structures on fibrations. We will define not one but several
notions of structures. While all are equivalent each has certain advantages in
different situations.

Consider an F -fibration ξ over a CW -space X .

2.1. Definition (cf. Browder [2], [3]). (a) Let λ = {q : E → B} be an
F -fibration. A λ-prestructure on ξ is a morphism of F -fibrations a : ξ → λ
such that Fa : ξ → bs(a)∗λ is an equivalence over X . Two λ-prestructures
a0 : ξ → λ, a1 : ξ → λ are equivalent if there exists a prestructure b : ξ×1I →
λ such that b|(ξ ×{i}) = ai, i = 0, 1. An equivalence class of prestructures is
called a λ-structure on ξ.

In particular, a γF -prestructure on ξ is just a classifying morphism for ξ.
(b) Given a map ϕ : B → BF , a (B,ϕ)-structure on ξ is a λ-structure on

it where λ := ϕ∗γF .

2.2. Proposition. If ϕ : B → BF and ψ : C → BF are homotopy equiva-
lent maps then (B,ϕ)-structures on ξ are in a bijective correspondence with
(C,ψ)-structures on it.

Proof. This is obvious. �
Because of 2.2 and 1.35, it suffices to consider (B,ϕ)-structures such that

ϕ : B → BF is a fibration.

2.3. Theorem (cf. Browder [3]). Let ξ be an F -fibration over a CW -space
X, and let ϕ : B → BF be an arbitrary fibration.

(i) Every classifying morphism ω : ξ → γF induces a bijection

Φω : [Liftϕ bsω]→ {(B,ϕ)-structures on ξ}.

(ii) Let f : X → BF classify ξ. Then the set of all (B,ϕ)-structures on ξ
is in a bijective correspondence with the set [Liftϕ f ].

Proof. (i) For simplicity, we denote γF by γ and set λ := ϕ∗γ. We say
that a λ-prestructure a : ξ → λ is special if

ξ
a−→ λ

Iϕ,γ−−−→ γ

coincides with ω. Furthermore, we say that two special λ-prestructures a0, a1 :
ξ → λ are specially equivalent if there is an equivalence b : ξ×1I → λ between
them which is itself a special prestructure on ξ × 1I .

Let g : X → B be a ϕ-lifting of f := bsω. Then

ag : ξ Fω−−→ f∗γ = g∗λ
Ig,λ−−→ λ
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is a λ-prestructure on ξ, and it is clear that vertically homotopic liftings yield
equivalent λ-prestructures. So, we get a correspondence

Φ = Φω : [Liftϕ f ] −→ {λ-structures on ξ}, g �→ ag.

It suffices to prove that every λ-prestructure is equivalent to a special one (the
surjectivity of Φ) and that equivalent special λ-prestructures are specially
equivalent (the injectivity of Φ).

We prove the surjectivity of Φ. We are given a λ-prestructure a : ξ → λ.
By 1.72, there is an F -morphism H : ξ×1I → γ such that H |ξ×1{0} = Iϕ,γa
and H |ξ × 1{1} = ω. Furthermore, by 1.9(ii), H can be decomposed as

ξ × 1I
FH−−→ u∗γ

Iu,γ−−−→ γ

where u = bsH . Since ϕ is a fibration, there is a ϕ-lifting v : X × I → B of
u such that v|X × {0} = bs a. Now, consider the F -morphism

b : ξ × 1I
FH−−→ u∗γ = v∗λ

Iv,λ−−→ λ.

Clearly, b|ξ×1{1} is a special λ-prestructure. Finally, Iϕ,γ◦(b|ξ×1{0}) = Iϕ,γa,
and so b|ξ × 1{0} = a (we use the claim about uniqueness from 1.9(ii)).

We prove the injectivity of Φ. Let a0, a1 : ξ → λ be two special λ-
prestructures on ξ, and let b : ξ × 1I → λ be an equivalence between
a0 and a1. Consider the subspaces Y := I × {0} ∪ I × {1} ∪ {0} × I,
Z := I × {0} ∪ I × {1} ∪ {1} × I of I × I. We define an F -morphism
c : ξ × 1I2 |(X × ∂I2) → γ as follows: c|ξ × 1Y is just the morphism

ξ × 1Y
proj−−→ ξ

ω−→ γ and c|ξ × {1} × 1I = Iϕ×1,γb : ξ × 1I → γ. Then,
by 1.72, there is an F -morphism d : ξ × 1I2 → γ which extends c. By 1.9(ii),
d can be uniquely decomposed as

ξ × 1I2
Fd−→ k∗γ

Ik,γ−−→ γ

where k = bs d. Since ϕ is a fibration, there is a ϕ-lifting l : X × I2 → B of
k such that l|Z = (bs c)|Z. Consider the morphism

R : ξ × 1I2
Fd−→ k∗γ = l∗λ

Il,λ−−→ λ.

Now, R|ξ × 1{0}×I : ξ × 1I −→ λ is a special equivalence between a0 and a1.
(ii) This follows from (i), because, by 1.58(iii), f = bsω for some classi-

fying morphism ω : ξ → γ. �
Lashof [1] and Stong [3] considered a fibration ϕ : B → BF and defined

a (B,ϕ)-structure on (ξ, f) to be an element of [Liftϕ f ] where f classifies ξ.
Because of 2.3, their definition is equivalent (in some sense) to 2.1. (I said “in some

sense” since their definition deals not just with ξ but with the pair (ξ, f).)
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2.4. Definition (cf. May [2]). Given a space K, consider the space KF of all
maps F → K. We define the right H (F )-actionKF×H (F )→ KF , (ϕ, h) �→
ϕh. Consider any H (F )-invariant subset M of KF . An (M ,K)-prestructure
on ξ is a map l : ts ξ → K such that for every x ∈ bs ξ and every homotopy
equivalence u : F → p−1(x) the composition

F
u−→ p−1(x) ⊂ ts ξ l−→ K

belongs to M . Two (M ,K)-prestructures l0, l1 : ts ξ → K on ξ are called
equivalent if there exists a prestructure L : ts ξ × I → K on ξ × 1I such that
L| ts ξ ×{i} = li, i =0,1. An (M ,K)-structure on ξ is an equivalence class of
(M ,K)-prestructures on ξ.

Every F -morphism ξ → η induces a function

{structures on η} −→ {structures on ξ}

in an obvious way. So, the correspondence ξ �→ {structures on ξ} is natural
in ξ.

One says that two structured fibrations over the same base X are equiv-
alent if there exists an equivalence over X which carries one structure to
another. More precisely, we have the following definition.

2.5. Definition. Consider two F -fibrations ξi, i = 1, 2, over X and two
(M ,K)-prestructures li : ts ξi → K, i =1,2, one says that (ξ1, l1) and (ξ2, l2)
are (M ,K)-equivalent structured fibrations if there exists an equivalence α :
ξ1 → ξ2 over X such that l2 ts(α) and l1 yield equivalent prestructures on
ξ1. Similarly, given two λ-prestructures ai : ξi → λ, i = 1, 2, one says that
(ξ1, a1) and (ξ2, a2) are λ-equivalent structured fibrations if there exists an
equivalence α : ξ1 → ξ2 over X such that a2 ts(α) and a1 yield equivalent
prestructures on ξ1.

Given λ as in 2.1, set Kλ := E and Mλ := ts(Prinλ).

2.6. Proposition. For every F -fibration ξ over a CW -base, there is a natural
bijective correspondence {λ-structures on ξ} → {(Mλ,Kλ)-structures on ξ}.

Proof. Clearly, any λ-prestructure ξ → λ yields an (Mλ,Kλ)-prestructure
on ξ. Conversely, every (Mλ,Kλ)-prestructure on ξ yields a fiberwise map
f : ts ξ → E which induces a homotopy equivalence of fibers. Let a : ξ → λ
be a morphism with bs a = f . Then Fa : ξ → (bs a)∗λ is an equivalence over
bs ξ, i.e., we get a λ-prestructure on ξ. It is easy to see that in this way we
obtain the desired correspondence. �

Now we prove that every (M ,K)-structure can be regarded as a certain
λ-structure. Let t(M ,K)(X) be the set of all equivalence classes of (M ,K)-
structured F -fibrations over X . (It is a set because (M ,K)-structures on
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every fibration ξ form a set, say, by 1.52; and if ξ, η are equivalent then there
is an obvious bijective correspondence between (M ,K)-structures on ξ and
those on η.) Clearly, in this way we get a functor t = t(M ,K) : H C → E ns.

2.7. Theorem. The functor t(M ,K) : H C → E ns is representable.

Proof. The proof is similar to that of 1.55, and so we give only a sketch.
In the proof “F -fibration” means “rooted F -fibration”.

1. Fix a map f : F → K in M . Given an F -fibration with a root i,
we define a rooted (M ,K)-prestructure on ξ to be an (M ,K)-prestructure
l : ts ξ → K such that the composition li is homotopic to f . Then one can
define a rooted (M ,K)-structure on ξ and equivalence of rooted (M ,K)-
structured F -fibrations. Let s(X,x0) = s(M ,K)(X,x0) be the class of all
equivalence classes of rooted (M ,K)-structured F -fibrations over (X,x0).
Since r(X,x0) as in 1.53 is a set for every (X,x0), we conclude that s(X,x0) is
a set. To prove the representability of t, it suffices to prove the representability
of s : H C •

con → E ns•.
2. We prove that s satisfies the MV-axiom. Let (X ;A,B;x0) be a CW -

triad, set C := A ∩ B. Let (ξ, l), bs ξ = A and (η,m), bs η = B, be two
structured F -fibrations, and let ϕ : ξ|C → η|C be an equivalence of structured
F -fibrations. By 1.47, there exists ζ over X and the rooted equivalences
a : ζ|A → ξ, b : ζ|B → η such that the diagram (1.48) commutes up to
homotopy over C. (More precisely, we take a fibrational substitute of a Dold
fibration ζ from 1.47.) In particular, l◦ ts(a|C) � m◦ ts(b|C). So, using the
homotopy extension property for CW -pairs, one can construct an (M ,K)-
prestructure ts(ζ)→ K which extends both l and m.

We leave it to the reader to check that s satisfies the wedge axiom. �
So, we have the universal (M ,K)-structured F -fibration

λ(M ,K) = {p(M ,K) : E(M ,K) → B(M ,K)},

where B(M ,K) is the classifying space for t(M ,K). Of course, λ(M ,K) is clas-
sified by the forgetful map p : B(M ,K) → BF . Below we assume that p is a
fibration and that λ(M ,K) = p∗γF .

2.8. Theorem. (i) For every F -fibration ξ over a CW -base, there is a nat-
ural bijective correspondence between (M ,K)-structures on ξ and λ(M ,K)-
structures on ξ.

(ii) For every F -fibration ξ over a CW -base, each classifying morphism
ω : ξ → γF induces a bijective correspondence

Ψω : (M ,K)-structures on ξ → [Liftp bsω].

(iii) The homotopy fiber of p : B(M ,K) → BF is M , i.e., p is an M -
fibration.
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Proof. (i) Let an (M ,K)-structure on ξ be classified by h : bs ξ → B(M ,K).
By 1.58(iii), there is a classifying morphism ω : ξ → γF with bsω = ph. We
define ah = ah,ω : ξ → λ := λ(M ,K) to be the composition

ξ
Fω−−→ h∗p∗γF = h∗λ

Ih,λ−−−→ λ.

Clearly, ah is just a λ-prestructure on ξ. Furthermore, if h1 � h2 : bs ξ →
B(M ,K), then the λ-prestructures ah1 and ah2 are equivalent. Conversely,

every λ-prestructure a : ξ → λ yields a map ts ξ → tsλ l−→ K, where l is given
by the universal (M ,K)-structure. One can check that these correspondences
are mutually inverse.

(ii) This follows from (i) and 2.3(i).
(iii) Let Φ be the homotopy fiber of p. Consider the product F -bundle θX

over a CW -space X . We require that θX is classified by a morphism ω such
that tsω : X × F → EF has the form X × F p2−→ F = Fb0 ⊂ EF with b0
as in 1.57. Then, by (ii), (M ,K)-structures on θX are in a natural bijective
correspondence with [X,Φ]. On the other hand, the (M ,K)-prestructures on
θX are just the maps l : X×F → K such that l|({x}×F ) : F → K belongs to
M for every x ∈ X . Furthermore, under the exponential lawKX×F = (KF )X

the (M ,K)-prestructures on θX are in a bijective correspondence with the
mapsX →M . Moreover, the set of all (M ,K)-structures on θ is in a bijective
correspondence with the set [X,M ]. In other words, we have the natural
equivalence [X,Φ] = [X,M ], and hence Φ �M . �

Thus, by 2.6 and 2.8, Definitions 2.1 and 2.4 are equivalent. We can refine
and develop this equivalence as follows.

2.9. Lemma. Every F -fibration λ over a CW -base is bundle equivalent to
the F -fibration λ(Mλ,Kλ).

Proof. By 2.6 and 2.8(i), we have a natural in ξ bijection

{λ-structures on ξ} ←→ {λ(Mλ,Kλ)-structures on ξ}.

Now, let a fibration ϕ : B → BF (resp. ψ : C → BF ) classify λ
(resp λ(Mλ,Kλ)). By 2.3(ii), for every f : X → BF we have a bijection
[Liftϕ f ] ∼= [Liftψ f ], and this bijection is natural in the category of bun-
dles over BF . Now, standard category-theoretical arguments imply that ϕ
and ψ are equivalent over BF , and the result follows. �

Let λ be an F -fibration over a CW -space B, and let ϕ : B → BF classify
λ. Similarly to the above, we define a functor tλ : H C → E ns by setting
tλ(X) to be the set of equivalence classes of λ-structured F -fibrations.

2.10. Theorem. The functor tλ is representable. Moreover, tλ(X) = [X,B].
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Proof. By 2.9, λ � λ(Mλ,Kλ), and so B � B(Mλ,Kλ). Furthermore, simi-
larly to 2.6, one can prove that tλ(X) = t(Mλ,Kλ)(X). Now,

tλ(X) = t(Mλ,Kλ)(X) = [X,B(Mλ,Kλ)] = [X,B]. �

2.11. Comments. (a) Let ξ be classified by a map f : X → BF , and let
λ := ϕ∗γF where ϕ : B → BF is a fibration. Because of 2.9, we have a
commutative square

{λ-structures on ξ} ←→ [Liftϕ f ]
⏐

⏐




⏐

⏐




{equivalence classes of λ-structured F -fibrations over X} ←→ [X,B].

Here the horizontal arrows are bijections and the vertical arrows are forgetful
maps. Namely, the left-hand vertical arrow sends a structured fibration ξ to
its equivalence class, the right-hand vertical arrow sends a vertical homotopy
class of a map X → B to its homotopy class.

Similarly, let p : B(M ,K) → BF be the forgetful map. Then we have the
commutative square

{(M ,K)-structures on ξ} ←→ [Liftp f ]
⏐

⏐




⏐

⏐




{classes of (M ,K)-structured F -fibrations over X} ←→ [X,B(M ,K)].

(b) Of course, the space B•(M ,H (F ), pt) in (1.63) can play the role of
the classifying space B(M ,K). In fact, May [2] proved that B•(M ,H (F ), pt)
represents t(M ,K), and this was the original proof of 2.7.

Structures on (F, ∗)-fibrations can be introduced similarly to structures
on F -fibrations. (By the way, observe that the section can be treated as a
structure, see 1.74.) Definition 2.1 can be reformulated for (F, ∗)-fibrations
word for word, with the replacement of F by (F, ∗). Definition 2.4 changes in
the following way.

2.12. Definition. Consider a pointed space (K, ∗) and a pointed H (F, ∗)-
invariant subspace N of (K, ∗)(F,∗). An (N , (K, ∗))-prestructure on an
(F, ∗)-fibration (ξ, s) over X is a map l : (ts ξ, s(X)) → (K, ∗) such that for
every x ∈ bs ξ and every homotopy equivalence u : (F, ∗) → (p−1(x), s(x))
the composition

(F, ∗) u−→ (p−1(x), s(x)) ⊂ (ts ξ, s(X)) l−→ (K, ∗)

belongs to N .
The equivalence of (N , (K, ∗))-prestructures can be defined just as in

2.5, and an equivalence class of (N , (K, ∗))-prestructures is an (N , (K, ∗))-
structure on ξ. As above, there is a functor t = t(N ,(K,∗)), where t(X) is the
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set of all equivalence classes of (N , (K, ∗))-structured (F, ∗)-fibrations over
X . The following theorem holds and can be proved as 2.7 and 2.8 were.

2.13. Theorem. (i) The functor t(N ,(K,∗)) : H C → E ns is representable.
(ii) Let B(N ,(K,∗)) be the representing space for t(N ,(K,∗)). Then the ho-

motopy fiber of the forgetful map p : B(N ,(K,∗)) → B(F,∗) is N .
(iii) Let ξ be an (F, ∗)-fibration classified by f : X → B(F,∗) where X is

a CW -space. Then the set of all (N , (K, ∗))-structures on ξ is in a bijective
correspondence with the set [Liftp f ]. �

§3. A Glance at Locally Trivial Bundles

3.1. Recollections. Let Π be a topological group. For a definition of
a locally trivial principal Π-bundle and their morphisms, see e.g. Fuks–
Rokhlin [1], Husemoller [1], Steenrod [1], Switzer [1]. The equivalence (=iso-
morphism) of locally trivial principal Π-bundles over the same base is defined.
Given a left Π-space F , the term “(F,Π)-bundle” means a locally trivial bun-
dle with fiber F and structure group Π. So, every (F,Π)-bundle ξ is associated
with a unique locally trivial principal Π-bundle η, ts ξ = (ts η) ×Π F, bs ξ =
bs η. One says that two (F,Π)-bundles over the same base are equivalent if
the corresponding locally trivial principal Π-bundles are equivalent.

Given two locally trivial principal Π-bundles η, η′, a Π-bundle morphism
η → η′ is just a bundle morphism ϕ : η → η′ such that tsϕ : ts η → ts η′ is a
Π-equivariant map.

Let ξ (resp. ξ′) be the (F,Π)-bundle associated with the locally trivial
principal Π-bundle η (resp. η′). Clearly, every Π-bundle morphism ϕ : η → η′

induces a bundle morphism ϕ̄ : ξ → ξ′ where

bs ϕ̄ = bsϕ, ts ϕ̄ = tsϕ×Π F : ts η ×Π F → ts η′ ×Π F.

We define an (F,Π)-bundle morphism to be a bundle morphism ψ : ξ → ξ′

which has the form ψ = ϕ̄ for some Π-bundle morphism ϕ : η → η′. In partic-
ular, every (F,Π)-bundle morphism yields a Π-equivariant homeomorphism
of fibers.

Given an (F,Π)-bundle ξ, an admissible inclusion i : F → ts ξ is any map
F → Fx ⊂ ts ξ such that F → Fx is a morphism of (F,Π)-bundles, where
F at the domain is the (F,Π)-bundle over pt. Admissible inclusions can also
be described as follows. Let η = {p : E → B} be the principal Π-bundle
associated with ξ. Then admissible inclusions are just maps of the form

F
ie−→ E × F quotient−−−−−→ E ×Π F = ts ξ, ie(f) = (e, f), e ∈ E, f ∈ F.

Finally, we notice that the space of all admissible inclusions is equivariantly
homotopy equivalent to E (prove this).
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As in 1.56, the universal locally trivial principal Π-bundle is defined to be
a locally trivial principal Π-bundle γ = {p : E → B} such that every locally
trivial principal Π-bundle ξ over a CW -space X is equivalent to a locally
trivial principal Π-bundle of the form f∗γ for some f : X → B, and that two
maps f, g : X → B are homotopic iff f∗γ and g∗γ are equivalent.

According to 1.66, there exists a classifying space BΠ for Π, and, by 1.67,
BΠ is uniquely defined up to CW -equivalence.

Let uF,Π(X), resp. uΠ(X), be the class of all equivalence classes of (F,Π)-
bundles, resp. locally trivial principal Π-bundles over X . By definition, the
functors uF,Π and uΠ are equivalent. Furthermore, one can check that uΠ is
homotopy invariant.

3.2. Theorem. (i) uΠ(X) is a set for every CW -space X, and the functor
uΠ : H C → E ns is representable. In particular, there exists a universal
locally trivial principal Π-bundle.

(ii) A locally trivial principal Π-bundle is universal iff its total space is
aspherical.

(iii) Let γ be the universal locally trivial principal Π-bundle, let ξ be a
locally trivial principal Π-bundle over a CW -space X, and let A be a CW -
subspace of X. Then every morphism ξ|A→ γ of Π-bundles can be extended
to the whole of ξ.

(iv) Every CW -substitute for BΠ represents uΠ.

Proof (Sketch). (i) Analogs of 1.47 and 1.45 can be proved in this case more
easily than for fibrations. One can just glue bundles, without any homotopy
tricks, see e.g. Switzer [1], Ch. 11. So, the representability holds.

(ii) See Steenrod [1], Switzer [1], Ch.11, Husemoller [1], Ch.4.
(iii) See Steenrod [1], §19.
(iv) This follows from (ii). �

3.3. Proposition. If a locally trivial principal Π-bundle ξ admits a section
then ξ is trivial.

Proof. The map f : bs ξ × Π→ ts ξ, f(x, g) = s(x)g, x ∈ bs ξ, g ∈ Π gives
an equivalence of ξ with the product Π-bundle over bs ξ. �

Let i : Σ → Π be an inclusion of a closed subgroup. Any locally trivial
principal Σ-bundle E → B gives us a locally trivial principal Π-bundle
E ×Σ Π → B. So, there is a natural transformation i∗ : uΣ → uΠ, and thus
we get a map Bi : BΣ→ BΠ.

3.4. Theorem. Let Σ be a closed subgroup of a Lie group Π. Then Bi is
homotopy equivalent to a (Π/Σ,Π)-bundle BΣ→ BΠ.
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Proof. Let EΠ→ BΠ be the universal locally trivial principal Π-bundle.
Since Σ is a closed Lie subgroup of Π, the quotient map

(3.5) p : EΠ→ EΠ/Σ

turns out to be a locally trivial bundle, and hence EΠ/Σ can be regarded
as BΣ. Now, the further factorization yields a (Π/Σ,Π)-bundle BΣ → BΠ.
Clearly, this map yields the transformation i∗ : uΣ → uΠ. �

3.6. Definition. Let ξ be an (F,Π)-bundle.
(a) Given an (F,Π)-bundle λ, a λ-prestructure on ξ is an (F,Π)-bundle

morphism a : ξ → λ. Two λ-prestructures a0, a1 : ξ → λ are equivalent if
there exists a λ-prestructure b : ξ×1I → λ such that b|(ξ×{i}) = ai, i =0,1.
An equivalence class of prestructures is called a λ-structure on ξ.

(b) Given a map ϕ : B → BΠ, a (B,ϕ)-structure on ξ is a λ-structure on
it where λ := ϕ∗γ̄ and γ̄ is the (F,Π)-bundle associated with the universal
principal π-bundle γ.

(c) An analog of 2.4 can also be formulated for (F,Π)-bundles: here M
is required to be a Π-invariant subset of KF and the map l : ts ξ → K is
required to be such that the map F

i−→ ts ξ l−→ K belongs to M for every
admissible inclusion i.

3.7. Example. Let Σ be a subgroup of Π. We can regard every Π-space
F as a Σ-space, and so every (F,Σ)-bundle can be regarded as an (F,Π)-
bundle. Now, let λ be an (F,Σ)-bundle associated with the universal principal
Σ-bundle. Then, by the above, we can consider λ-structures on any (F,Π)-
bundle ξ. If a l-structure on ξ exists, one says that the structure group Π of
ξ can be reduced to Σ, cf. Steenrod [1], Husemoller [1].

Another examples (namely, orientations) appear in §5 and Ch. V below.

3.8. Theorem. Let f : X → BΠ be a map of a CW -space, and let ξ := f∗γ̄
where γ̄ is the (F,Π)-bundle associated with the universal principal Π-bundle.

(i) For every map ϕ : B → BΠ the set of all (B,ϕ)-structures on ξ is in
a natural bijective correspondence with the set [Liftϕ f ].

(ii) Given an (F,Π)-bundle λ, set Kλ := tsλ and let Mλ be the set of all
admissible inclusions F → tsλ. Then the set of all λ-structures on ξ is in a
natural bijective correspondence with the set of all (Mλ,Kλ)-structures on ξ.

(iii) Given a pair (M ,K) as in 3.6(c), we turn the right Π-space M into a
left Π-space by setting gx = xg−1, x ∈M , g ∈ Π. Consider the (M ,Π)-bundle
λ(M ,K) = {q : B → BΠ} associated with the universal Π-bundle. Then the
set of all λ(M ,K)-structures on ξ is in a natural bijective correspondence with
the set of all (M ,K)-structures on ξ.

Proof. (i) This is similar to 2.3.
(ii) This is similar to 2.6.
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(iii) By (i), it suffices to prove that (M ,K)-structures on ξ = f∗γ̄ are in a
natural (with respect to f) bijective correspondence with [Liftq f ]. Consider a
principal Π-bundle η = {E → X} associated with ξ. Then f∗λ is an (M ,Π)-
bundle associated with η. Furthermore,

Liftq f = Sec f∗λ = { all Π-equivariant maps E →M },

see Husemoller [1], Ch. 4. Under the exponential law (KF )E = KF×E , the
last set transforms into

{all maps ϕ : E × F → K such that ϕ(eg, y) = ϕ(e, gy) for every
g ∈ Π, e ∈ E, y ∈ F , and ϕ|{e} × F : {e} × F → K belongs to M for every
e ∈ E}

={all maps ψ : E ×Π F → K such that F i−→ E ×Π F
ψ−→ belongs to M

for every admissible inclusion i}
={all M -prestructures on ξ},

because ts ξ = E ×Π F . So, Liftq f = {all M -prestructures on ξ}.
Clearly, under this correspondence vertical homotopy classes of q-liftings

of f correspond to M -structures on ξ. �
We leave it to the reader to define equivalent λ-structured, resp. (M ,K)-

structured, (F,Π)-bundles following 2.5. Let uλ(X), resp. u(M ,K)(X) be the
set of all equivalence classes of λ-structured, resp. (M ,K)-structured, (F,Π)-
bundles over X . The following analog of 2.10 holds.

3.9. Theorem. There are natural equivalences

uλ(X) = [X, bsλ], u(M ,K)(X) = [X,B(M ,K)]

where B(M ,K) := bsλ(M ,K) with λ(M ,K) as in 3.8(iii).

Proof. This is similar to that of 2.10, so we give only a sketch. Firstly,
we can prove that uλ : H C → E ns is a representable functor, i.e., uλ(X) =
[X,B] for some B ∈ C . So, there exists a universal λ-structured (F,Π)-bundle
μ over B. Let μ be classified by a map q : B → BΠ; we assume that q is a
fibration. Now, for every f : X → BΠ, we have natural bijections

{λ-structures on f∗γ̄} ∼= [Liftq f ] ∼= {μ-structures on f∗γ̄}

where γ̄ is the (F,Π)-bundle associated with the universal principal Π-bundle.
The existence of the first bijection can be proved as in 2.8(i), the existence
of the second bijection follows from 3.7(i). Hence, λ and μ are equivalent
(F,Π)-bundles, i.e., B � bsλ, cf. 2.9. Similarly for u(M ,K). �

3.10. Remarks. (a) The obvious analog of 2.11(a) holds for (F,Π)-bundles.
(b) Clearly, 3.8(iii) is an analog of 2.8, but for bundles we are able to give,

and have given, an explicit construction of λ(M ,K), cf. 2.11(b).



232 Chapter IV. Thom Spectra

§4. R
n-Bundles and Spherical Fibrations

4.1. Recollection. We consider the following classes of objects arising in
geometric topology.

(a) Sn−1-fibrations. They are classified by a space BSn−1 . By 1.71,
BSn−1 � BGn, where Gn := H (Sn−1).

(b) Locally trivial R
n-bundles equipped with sections. These are just

((Rn, 0), T OPn)-bundles, where T OPn is the topological group of home-
omorphisms (Rn, 0) → (Rn, 0) topologized as in I.3.9(a). Thus, by 3.2(i),
they can be classified by the space BT OPn. Note that two ((Rn, 0), T OPn)-
bundles ξ, η over B are equivalent iff there exists a homeomorphism

(ts ξ, sξ)→ (ts η, sη)

over B. Indeed, consider the space E(ξ) of all maps f : (Rn, 0)→ (ts(ξ), sξ)
such that f is a homeomorphism onto a fiber. Then

P (ξ) := {p : E(ξ)→ B, p(f) = pξf(0)}

is a locally trivial principal T OPn-bundle, and ξ is associated with P (ξ).
Now, the fiberwise homeomorphism ts ξ → ts η induces an equivalence
P (ξ)→ P (η) over B.

(c) Piecewise linear (in future PL) R
n-bundles. (See Rourke–Sanderson [1]

about PL notions.) These are ((Rn, 0), T OPn)-bundles p : Y → X , where X
and Y are simplicial complexes (not necessarily finite, see Hilton–Wiley [1],
I.10) and the projection p and the section X → Y are PL maps, and, more-
over, for every simplex Δ ⊂ B there exists a PL isomorphism ϕ such that
the diagram

p−1(Δ)
ϕ−−−−→ Δ× R

n

p

⏐

⏐




⏐

⏐




p1

Δ Δ
commutes. Equivalence of such bundles is defined to be a fiberwise PL iso-
morphism which preserves the sections. One can formulate (and prove) a
variant of the Brown Representability Theorem for the category of simplicial
complexes and check that both MV and wedge properties hold for piecewise
linear R

n-bundles, cf. Kirby–Siebenmann [1], Essay 4, § 8. The corresponding
classifying space is denoted by BPLn.

Justification of the last notation. Let Δk be be the standard k-dimensional

simplex. Let pln be a simplicial group such that its k-simplices are PL isomor-

phisms Δk × R
n → Δk × R

n preserving the zero section and commuting with

the projections on Δk. The faces and the degeneracies are induced by the cor-

responding maps of Δi. Let PLn be the geometric realization of pln. Then the
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classifying space BPLn for the group PLn classifies piecewise linear R
n-bundles,

see Lashof–Rothenberg [1], Kuiper–Lashof [1].

(d) Vector bundles. These are well-known objects, see Fuks–Rokhlin [1],
Atiyah [4], Karoubi [1], Switzer [1], Fuks–Rokhlin [1], Husemoller [1], etc. Let
On be the group of all orthogonal transformations of R

n. Every ((Rn, 0),On)-
bundle can be regarded as an n-dimensional vector bundle, and every vector
bundle over a CW -space admits a Riemannian metric and so can be turned
into an ((Rn, 0),On)-bundle. Thus, vector bundles can be classified by the
space BOn, see loc cit.

4.2. Conventions. (a) Sometimes, when it is possible, we say just PL-bundle
rather than ((Rn, 0),PLn)-bundle, and so on. We also call objects of the four
classes above Gn-, T OPn-, PLn- and On-objects, respectively. The reason is
that frequently we shall consider these four classes simultaneously. Therefore
we introduce the uniform symbol V in order to denote any of the four symbols
G, T OP ,PL,O. For example, we can (and shall) speak about Vn-objects, V-
equivalences of V-objects, classifying space BVn, etc. The universal V-object
over BVn will be denoted by γnV .

(b) We denote by θnB the standard trivial Vn-object over a space B; there
is no necessity to specify V . Moreover, sometimes we shall omit the subscript
B if it is clear from the context.

(c) Because of 1.67, we can and shall assume that every space BVn is a
CW -space.

Traditionally there arise PL and topological microbundles in geometric topol-

ogy (e.g., as tangent and normal microbundles of the corresponding manifolds).

However, one can prove that they are equivalent (as microbundles) to bundles of

the corresponding classes, cf. 7.7 below.

There is a hierarchy of the four classes above. Every n-dimensional vector
bundle over a simplicial complex is a PLn-object, every PLn-object is a
T OPn-object by definition, and every ((Rn, 0), T OPn)-bundle can be turned
into a spherical fibration by deleting the section. This hierarchy induces the
sequence of forgetful maps

(4.3) BOn
aOPL−−→ BPLn

aPL
T OP−−−−→ BT OPn

aT OP
G−−−−→ BGn,

where, say, aOPL = aOPL(n) classifies the universal ((Rn, 0),On)-bundle re-
garded as an ((Rn, 0),PLn)-bundle. We introduce the ordering

O ≤ PL ≤ T OP ≤ G;

e.g., V ≤ T OP means that V = O, PL or T OP . Thus, for V ′ ≤ V one has a
forgetful map aV

′

V (n) : BV ′
n → BVn. The homotopy fiber of aV

′

V (n) is denoted
by Vn/V ′

n.
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4.4. Definition. Let ξ be a Vn-object.
(a) Given a Vn-object λ, we define a λ-prestructure on ξ to be a Vn-

morphism a : ξ → λ. We say that two λ-prestructures are equivalent if there
is a Vn-morphism b : ξ × 1I → λ such that b|(ξ × {i}) = ai, i = 0, 1. An
equivalence class of prestructures is called a λ-structure on ξ.

(b) Given a map ϕ : B → BVn, we define a (B,ϕ)-structure on ξ to be a
(ϕ∗γnV)-structure on it.

4.5. Remarks. (a) If V ≤ V ′ then λ can be canonically regarded as a V ′-
object, cf. (4.3). So, we can talk about λ-structures on V ′-objects provided
V ≤ V ′. For example, we can consider γnO-structures on Gn-objects, i.e., vector
structures on spherical fibrations, cf. Browder [3].

(b) We leave it to the reader to prove the following analog of 2.3 for
V-objects: Every classifying morphism ω : ξ → γnV induces a bijection

Φω : [Liftϕ bsω]→ {(B,ϕ)-structures on ξ}.
(c) Every morphism σ : η → ξ of Vn-objects induces a function

σ� : {λ-structures on ξ} −→ {λ-structures on η},
{a : ξ → λ} �−→ {σa : η → λ}.

Consider a Vm-object ξ over X and a Vn-object η over Y . If V ≤ T OP
then the product ξ×η is a Vm+n-object. If V = G then, by 1.43(v), the bundle
join ξ ∗ η is a Gm+n-object. Given two V-objects ξ, η over the same base X ,
we define the Whitney sum ξ ⊕ η to be d∗(ξ × η) for V ≤ T OP and d∗(ξ ∗ η)
for V = G, where d : X → X ×X is the diagonal.

Let θn = θnBV denote the standard trivial Vn-object over BV , and let a
morphism ρn = ρVn : γnV ⊕ θ1 → γn+1

V classify γnV ⊕ θ1. We set rn := bs ρn :
BVn → BVn+1. Furthermore, let μV

m,n : BVm × BVn → BVm+n classify the
V-object γnV × γmV for V ≤ T OP and γnG ∗ γmG for V = G.

4.6. Proposition. (i) For every m,n, p the following diagram commutes up
to homotopy:

BVm ×BVn ×BVp
μm,n×1−−−−−→ BVm+n ×BVp

1×μn,p
⏐

⏐




⏐

⏐




μm+n,p

BVm ×BVn+p
μm.n+p−−−−−→ BVm+n+p .

(ii) For every m,n, p, q, the following diagram commutes up to homotopy:

BVm ×BVn
Rmp ×Rnq−−−−−→ BVp ×BVq

μ

⏐

⏐




⏐

⏐




μ

BVm+n

Rm+n
p+q−−−−→ BVp+q .

Here Rab = rb−1◦rb−2◦ · · · ◦ra+1◦ra : BVa → BVb, a ≤ b.
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(iii) For every m,n and every V ′ ≤ V, the following diagram commutes
up to homotopy:

BV ′
m ×BV ′

n

μ′
m,n−−−−→ BV ′

m+n

a×a
⏐

⏐




⏐

⏐




a

BVm ×BVn
μm,n−−−−→ BVm+n.

(iv) For every m,n, the following diagram commutes up to homotopy:

BVm ×BVn
μm,n−−−−→ BVm+n

T

⏐

⏐




∥

∥

∥

BVn ×BVm
μn,m−−−−→ BVm+n.

Here T switches the factors.

Proof. (i) This is clear for V ≤ T OP , since (ξ × η) × ζ = ξ × (η × ζ) for
all T OP-objects ξ, η, ζ. So, it remains to prove that (ξ ∗ η) ∗ ζ is equivalent
to ξ ∗ (η ∗ ζ) for every spherical fibrations ξ, η, ζ. Recall that every point of
ts(ξ ∗ η) can be written as a suitable equivalence class [x, t, y], x ∈ ts ξ, y ∈
ts η, t ∈ [0, 2]. Given any three bundles ξ, η, ζ, we define a bundle morphism
ϕ : (ξ ∗ η) ∗ ζ → ξ ∗ (η ∗ ζ) by setting

tsϕ((x, t, y), s, z) = (x, t, (y, s, z)), x ∈ ts ξ, y ∈ ts η, z ∈ ts ζ, s, t ∈ [0, 2].

Now, if ξ, η, ζ are spherical fibrations, then tsϕ induces a homotopy equiv-
alence of fibers (prove it!), and so, by 1.30(i), ϕ is a homotopy equivalence
over the base.

(ii) This can be proved as (i), so we leave it to the reader.
(iii) This is clear for V ≤ T OP , and so it suffices to consider V ′ =

T OP ,V = G. Let ξ, η be two T OP-objects over CW -bases, dim ξ = i,
dim η = j. Given a T OP-object ζ, let ζ′ be the spherical fibration (in fact, a
locally trivial bundle) obtained from ζ by deleting the zero section. We must
prove that ξ′ ∗ η′ �B (ξ × η)′ where B = bs(ξ × η).

The group T OPm×T OPn acts on R
m×R

n, as well as on (Rm×R
n)\0,

in the obvious way. Furthermore, it acts on (Rm \ 0) ∗ (Rn \ 0) as follows:

(g, g′)[x, t, y] = [gx, t, g′y],
g ∈ T OPm, g′ ∈ T OPn, [x, t, y] ∈ (Rm \ 0) ∗ (Rn \ 0).

Now, (ξ × η)′ (resp. ξ′ × η′) is the ((Rm × R
n) \ 0, T OPm × T OPn)-bundle

(resp. ((Rm \ 0) ∗ (Rn \ 0), T OPm × T OPn)-bundle) associated with ξ × η.
We define the map

f : (Rm\0)∗(Rn\0)→ (Rm×R
n)\0, f [x, t, y] =

1√
2t2 − 4t+ 4

(tx, (2 − t)y) .
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(Comment: t2 + (2 − t)2 = 2t2 − 4t+ 4.) Clearly, f is a T OPm × T OPn-
equivariant map, and so it yields a morphism ϕ : ξ′ ∗ η′ → (ξ × η)′ of the
associated bundles.

Furthermore, f is a homotopy equivalence. Indeed, it is easy to see that

f |Sm−1 ∗ Sn−1 : Sm−1 ∗ Sn−1 → Sm+n−1

is a homeomorphism, where Sk−1 := {x ∈ R
k
∣

∣ ||x|| = 1}.
(iv) We leave it to the reader. �
Let BV be the telescope of the sequence

· · · → BVn−1 → BVn
rn−→ BVn+1 → · · · .

We denote by

(4.7) jn = jVn : BVn → BV

the obvious inclusion BVn = BVn × {n} ⊂ BVn × [n, n+ 1]→ BV .

It is well known that for every finite (and in fact finite dimensional, see
4.27(viii) below) CW -space X the set [X,BV ] can be described as follows.
One says that two V-objects ξ and η, dim ξ = m, dim η = n, are stably
equivalent if ξ ⊕ θN+n � η ⊕ θN+m for some (large) N . Then, the set of all
stable V-objects over X is in a bijective correspondence with [X,BV ].

Based on this, we give the following definition.

4.8. Definition. (a) Given a space X ∈ C , we define a stable V-object ξ over
X to be a map f : X → BV . In this case we also write ξ = {f : X → BV}
and say (tautologically) that f classifies ξ. We say that two stable V-objects
α = {f : X → BV} and β = {g : X → BV} are equivalent if f � g : X →
BV .

(b) Given two stable V-objects ξ = {f : X → BV} and η = {g : Y →
BV}, a morphism q : ξ → η is a map q : X → Y such that gq = f .

For every map h : X → Y and every stable V-object ξ = {f : Y → BV}
we define the induced V-object h∗ξ := {fh : X → BV}. We also have the
canonical morphism Ih,ξ := h : h∗ξ → ξ.

Notice that 1BV is a universal stable V-object. We denote it also by γV .
(c) Let ξ be a Vn-object classified by f : X → BVn. We define its stabi-

lization ξst = (ξ, f)st to be the stable V-object X
f−→ BVn

jn−→ BV .

4.9. Definition. Let ξ = {f : X → BV} be a stable V-object. Given a map
ϕ : B → BV , a (B,ϕ)-prestructure on ξ is a pair (a,H) where a : X → B is
a map and H : X × I → BV is a homotopy from ϕa to f . Two prestructures
(a0, H0) and (a1, H1) are equivalent if there are maps b : X × I → B and
J : X × I × I → BV such that b|X × {i} = ai, i = 0, 1 and J |X × I × {0} =
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ϕb, J(x, t, 1) = f(x) for every t ∈ I, J |X × {i} × I = Hi, i = 0, 1. A (B,ϕ)-
structure on ξ is an equivalence class of prestructures. We denote by [a,H ]
the equivalence class of (a,H).

Below in this context we sometimes call ϕ a structure map, i.e., we use
the term “structure map” when we want to emphasize that ϕ is not just a
map but a map which is used for structuralization of V-objects.

4.10. Proposition. Let ξ = {f : X → BV} be a stable V-object.
(i) If ϕ : B → BV and ψ : C → BV are homotopy equivalent maps then

(B,ϕ)-structures on ξ are in a bijective correspondence with (C,ψ)-structures
on it.

(ii) If ϕ : B → BV is a fibration then the set of all (B,ϕ)-structures on ξ
is in a canonical bijective correspondence with the set [Liftϕ f ].

Proof. (i) We leave it to the reader.
(ii) Let g : X → B be a ϕ-lifting of f . Considering the (stationary) ho-

motopy H : X × I → BV , H(x, t) := f(x), we conclude that (g,H) is a
(B,ϕ)-prestructure on ξ. Clearly, vertically homotopic liftings yield equiva-
lent prestructures, and so we have a correspondence

Φ : [Liftϕ f ] −→ {(B,ϕ)-structures on ξ}.

We prove that Φ is surjective. Consider a (B,ϕ)-prestructure (a0, H0) on ξ
where a0 : X → B is a map and H0 : X×I → BV is a homotopy from ϕa0 to
f . Then there is a homotopy b : X×I → B with b|X×{0} = a0 and ϕb = H0.
We set a1 := b|X×{1} and define H1 : X×I → BV , H1(x, t) := f(x). Finally,
we define J : X × I × I → BV , J(x, s, t) := H0(x, s + t− st), and it is clear
that (b, J) yields an equivalence between (a0, H0) and (a1, H1).

We prove that Φ is injective. Let g0, g1 : X → B be two ϕ-liftings of f ,
and let Hi : ϕgi � f, i = 1, 2, be the stationary homotopies. Suppose that
(g0, H0) and (g1, H1) are equivalent (B,ϕ)-prestructures on ξ, and consider
b : X×I → B and J : X×I×I → BV such that (b, J) yields this equivalence,
see 4.9. By 1.17(ii), there is a ϕ-lifting ̂J : X × I × I → B of J such that
̂J |X × I × {0} = b, ̂J(x, i, t) = gi(x) for every x ∈ X, t ∈ I, i = 0, 1. Then
̂J |X × I × {1} is a vertical homotopy between g0 and g1. �

4.11. Proposition-Construction. Let ξ = {f : X → BV} and η = {g :
X → BV} be two equivalent stable V-objects over X. Then every homotopy
F : f � g induces a bijection

{(B,ϕ)-structures on ξ} ←→ {(B,ϕ)-structures on η}

for every structure map ϕ : B → BV.

Proof. Let (a,H) be a (B,ϕ)-prestructure on ξ. We define the homotopy
H ′ : ϕa � f � g where the first homotopy is H and the second one is F .
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Then, clearly, (a,H ′) is a (B,ϕ)-prestructure on η, and it is easy to see that
in this way we get a well-defined correspondence

LF : {(B,ϕ)-structures on ξ} −→ {(B,ϕ)-structures on η}.

Furthermore, we define a homotopyG : g � f,G(x, t) := F (x, 1−t). Similarly
to above, we get a correspondence

LG : {(B,ϕ)-structures on η} −→ {(B,ϕ)-structures on ξ}.

We leave it to the reader to check that LG is inverse to LF . �

4.12. Proposition–Construction. Let ω : ξ → γnV be a classifying mor-
phism for a Vn-object ξ, and let ϕ : B → BV be an arbitrary fibration.

(i) Consider the pull-back diagram

Bn −−−−→ B

ϕn

⏐

⏐




⏐

⏐




ϕ

BVn
jn−−−−→ BV.

Then ω induces a bijection

Φω : {(B,ϕ)-structures on ξst} −→ {Bn, ϕn)-structures on ξ}

(ii) Every morphism σ : η → ξ of Vn-objects induces a function

σ! : {(B,ϕ)-structures on ξst} −→ {(B,ϕ)-structures on ηst}.

Proof. (i) We let f := bsω. Because of 4.10(ii) and 4.5(b), we have the
bijections

{(B,ϕ)-structures on ξst} ←→[Liftϕ jnf ]

=[Liftϕn f ] Ψω−−→ {(Bn, ϕn)-structures on ξ}.

(ii) We equip η with the classifying morphism ωσ : η → γnV . We define σ!

to be a function such that the diagram

{(B,ϕ)-structures on ξst}
Φω−−−−→ {(Bn, ϕn)-structures on ξ}

σ!

⏐

⏐




⏐

⏐


σ�

{(B,ϕ)-structures on ηst}
Φωσ−−−−→ {(Bn, ϕ)-structures on η}

commutes. Here the horizontal arrows are the bijections from (i) and σ� is
the function described in 4.5(c) (recall that a (Bn, ϕn)-structure is just a
(ϕ∗
nγ

n
V)-structure). �

Recall that θkX denotes the standard trivial Vk-object over a space X .
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4.13. Lemma. Let ξ be a Vn-object classified by a map f : X → BVn. Then
for every fibration ϕ : B → BV there is a canonical bijection

Kf : {(B,ϕ)-structures on ξst} ←→ {(B,ϕ)-structures on (ξ ⊕ θ1X)st}

where we assume that ξ ⊕ θ1X is classified by rnf : X → BVn+1.

Proof. Consider the composition BVn
rn−→ BVn+1

jn+1−−−→ BV . The stan-
dard deformation F : Mrn × I → BVn+1, see I.3.16(a), yields canonically
a homotopy H : jn � jn+1rn. Now, by 4.11, the homotopy Hf induces the
desired bijection. �

4.14. Constructions. Note that ts θ1X = X×F where F = R for V ≤ T OP
and F = {−1, 1} for V = G. For simplicity, we write γn instead of γnV .

(a) We define a morphism e = eX : θ1X → θ1X by setting (ts e)(x, f) :=
(x,−f), x ∈ X, f ∈ F .

(b) For simplicity, we denote θ1pt by θ1. Let ω : ξ → γnV classify a Vn-object
ξ over X . We define

ω̂ : ξ ⊕ θ1X = ξ × θ1 ω×1−−−→ γnV × θ1 = γnV ⊕ θ1BV
ρn−→ γn+1

V .

(c) Given ω as in (b), consider the morphism ω̂ : ξ ⊕ θ1X → γn+1. Now,
because of 4.12 and 4.13, we have the bijection

Φ
ω̂
Kbsω : {(B,ϕ)-structures on ξst} ↔ {(Bn+1, ϕn+1)-structures on ξ⊕θ1X}.

4.15. Definition. Let ξ be a Vn-object over X .
(a) Given a Vn+1-object λ, let a morphism a : ξ⊕θ → λ give a λ-structure

on ξ ⊕ θ, see 2.1. Then the morphism

ξ ⊕ θ 1⊕e−−→ ξ ⊕ θ a−→ λ

gives us a certain (in general, another) λ-structure on ξ ⊕ θ. This structure
is called the opposite λ-structure to the given one.

We leave it to the reader to prove that the opposite structure is well-
defined and that opposite to opposite yields the original structure.

(b) Given a map ψ : C → BVn+1, we set λ = ψ∗γn+1 and recall that, by
definition,

{(C,ψ)-structures on ξ ⊕ θ1X} = {λ-structures on ξ ⊕ θ1X},

So, two (C,ψ)-structures on ξ ⊕ θ1X are called opposite to one another if the
corresponding λ-structures on ξ ⊕ θ are opposite, as defined in (a).

(c) Now we assume that ξ is equipped with a classifying morphism ξ → γnV .
Given a fibration ϕ : B → BV , consider the bijection as in 4.14(c). Two
(B,ϕ)-structures on ξst are called opposite to one another if the corresponding
(Bn+1, ϕn+1)-structures on ξ ⊕ θ1X are opposite, as defined in (b).
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Now we consider (Sn, ∗)-fibrations. By 1.74, they are classified by a space
B(Sn,∗). By 1.75(iii), B(Sn,∗) � BFn, where Fn := H (Sn, ∗). We shall use
the simpler notation BFn rather then B(Sn,∗), and we shall use the term
“Fn-objects” for (Sn, ∗)-fibrations. The universal Fn-object over BFn will
be denoted by γnF .

Let θ = θ1F be the (standard trivial) (S1, ∗)-bundle over pt. Let ρFn :
γnF ∧h θ → γn+1

F be the classifying morphism for γnF ∧h θ. We set rFn := bs ρnF
and define BF to be the telescope of the sequence

{· · · → BFn
rFn−−→ BFn+1 → · · · },

and we denote by jn = jFn : BFn → BF the obvious inclusion, cf. (4.7).

4.16. Definition. Similarly to 4.8, we define a stable F -object α over X to
be a map f : X → BF . Given two stable F -objects α = {f : X → BF} and
β = {g : Y → BF}, a morphism ϕ : α→ β is a map a : X → Y with ga = f .

Given an Fn-object α = {f : X → BFn}, we define its stabilization

αst = (α, f)st to be a stable F -object X
f−→ BFn

jn−→ BF .

4.17. Construction. The T OPn-action on R
n can be extended to a T OPn-

action on the one-point compactification Sn = R
n ∪ {∞} of R

n. So, we have
a T OPn-space (Sn, ∗) where the base point ∗ is ∞. Now, given a T OPn-
object ξ, one can form the ((Sn, ∗), T OPn)-bundle ξ• using the fiberwise one-
point compactification, where the “infinities” of fibers form the section. More
accurately, if ξ is associated with a locally trivial principal T OPn-bundle λ,
then ξ• is the ((Sn, ∗), T OPn)-bundle associated with λ. Similarly, for every
Vn-object ξ with V ≤ T OP we can construct the ((Sn, ∗),Vn)-object ξ•.

Furthermore, consider S0 = {−1,+1} as the trivial S0-bundle θ over pt.
Given a Gn-object ξ, set ξ• = ξ ∗ θ. Then the points of ts ξ• are suitable
equivalence classes [x, t, y] of triples (x, t, y), x ∈ ts ξ, t ∈ [0, 2], y ∈ {−1, 1}.
Now, we define

s : bs ξ → ts ξ•, s(b) = [x, 2, 1], where b = pξ(x).

So, every Vn-object ξ can be naturally converted into an Fn-object ξ•.
Note that the correspondence ξ �→ ξ• yields maps

(4.18) aVF (n) : BVn → BFn and (as n→∞) aVF : BV → BF .

So, the sequence (4.3) can be elongated as

BO aOPL−−→ BPL aPL
T OP−−−−→ BT OP

aT OP
G−−−−→ BG

aGF−−→ BF

and we extend the ordering above by setting O ≤ PL ≤ T OP ≤ G ≤ F .
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4.19. Lemma. For every Vm-object ξ and Vn-object η over CW -bases,

(ξ † η)• �B ξ• ∧h η•

where B = bs ξ × bs η and † means × for V ≤ T OP and ∗ for V = G.
Proof. Because of 4.6(iii), it suffices to consider only V = G. Firstly, some

constructions for spaces. Given a space Z, we regard (parametrize) the sus-
pension SZ as SZ = Z× [0, 1]/(Z×{0}∪Z×{1}), and we denote by [i] ∈ SZ
the point given by Z × {i}, i = 0, 1. As usual, points of the join X ∗ Y are
written as triples [x, t, y], x ∈ X, y ∈ Y, t ∈ [0, 2].

Given two spaces X,Y , we consider the map f : SX × SY → S(X ∗ Y ),

f([x, s], [y, t]) =

{

[[

x, 2t
s+t , y

]

, s+ t− st
]

if (s, t) 
= (0, 0),

[0] otherwise,

where x ∈ X, y ∈ Y, s, t ∈ [0, 1].
We regard SZ as a pointed space with base point [1]. Now, f maps the

wedge
SX ∨ SY = SX × {∗} ∪ {∗} × SY

to the base point of S(X ∗Y ), and so one can pass f through a quotient map
g : SX ∧h SY → S(X ∗ Y ) such that g|C(SX ∨ SY ) is a constant map.

We prove that g is a pointed homotopy equivalence if X = Sm−1, Y =
Sn−1. Indeed, g can be decomposed as

g : Sm ∧h Sn q−→ Sm ∧ Sn h−→ S(Sm−1 ∗ Sn−1)

where the quotient map q is a homotopy equivalence. Note that both spaces
Sm ∧ Sn and S(Sm−1 ∗ Sn−1) are homeomorphic to Sm+n. Now, let

U =
{

[[x, λ, y], μ] ∈ S(Sm−1 ∗ Sn−1)
∣

∣ 0 < λ < 1/2, 0 < μ < 1
}

.

Then U is an open set of S(Sm−1 ∗ Sn−1), and h|h−1U : h−1U → U is a
homeomorphism because for every (λ, μ) ∈ (0, 1/2)× (0, 1) the system

{ 2t
s+t = λ

s+ t− st = μ

has just one solution (s, t) ∈ (0, 1)× (0, 1). Thus, deg h = 1, and so, by I.3.29,
g is a pointed homotopy equivalence.

Now, the desired sectioned equivalence ψ : ξ• ∧h η• → (ξ ∗ η)• oc-
curs as a “fiberwise version” of the above g. Let θ be as in 4.17. Since
p−1
ξ∗θ(b) = Sp−1

ξ (b), we can write points of ts(ξ ∗ θ) as suitable equivalence
classes [x, t], x ∈ ts ξ, t ∈ I. Furthermore, the points of ts(ξ ∗ η) will be writ-
ten as suitable equivalence classes [x, t, y], x ∈ ts ξ, y ∈ ts η, t ∈ [0, 2]. We
define a morphism

ϕ : ξ• × η• = (ξ ∗ θ)× (η ∗ θ)→ (ξ ∗ η) ∗ θ = (ξ ∗ η)•
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by setting

tsϕ ([x, s], [y, t]) =

{

[[

x, 2t
s+t , y

]

, s+ t− st
]

if (s, t) 
= (0, 0),

[0] otherwise,

where x ∈ ts ξ, y ∈ ts η, s, t ∈ [0, 1]. Since the composition

ξ• ∨h η• −→ ξ• × η• ϕ−→ (ξ ∗ η)•

maps ts(ξ•∨hη•) onto the section of (ξ∗η)•, we can pass ϕ through a sectioned
morphism ψ : ξ• ∧h η• → (ξ ∗ η)• which maps ts(ξ ∨h η) × I to the section.
Now, ψ induces a pointed homotopy equivalence of fibers, since its restriction
to fibers coincides with g. Thus, by 1.30(ii), ψ is a sectioned equivalence over
B. �

So, the homotopy smash product plays the same role for F -objects which
the direct product (or join) plays for V-objects. Now, given an Fm-object ξ
and Fn-object η, we define the Whitney sum ξ⊕η by setting ξ⊕η := d∗(ξ∧hη)
where d : X → X ×X is the diagonal.

Let μF
m,n : BFm ×BFn → BFm+n classify the F -object γmF ∧h γnF .

It follows from 4.19 that the diagram

BVm ×BVn
μV

−−−−→ BVm+n

aVF×aVF

⏐

⏐




⏐

⏐



aVF

BFm ×BFn
μF

−−−−→ BFm+n

commutes up to homotopy. Moreover, an obvious analog of 4.6 holds for μF

(and the above diagram is the analog of 4.6(iii)); we leave it to the reader to
figure it out.

4.20. Theorem. Let Z denote one of the symbols V ,F . There is a map
μ = μZ : BZ ×BZ → BZ such that, for every m,n, the diagram

BZm ×BZn
jm×jn−−−−→ BZ ×BZ

μm,n

⏐

⏐




⏐

⏐




μ

BZm+n
jm+n−−−−→ BZ

commutes up to homotopy.

Proof. Let Bn be the telescope of the finite sequence · · · → BZm → · · · →
BZn. Then we have a filtration {· · · ⊂ Bn ⊂ Bn+1 ⊂ · · · } of BZ, and it
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is clear that BZ × BZ = ∪n(Bn × Bn). So, by III.1.16, we have a surjec-
tion ρ : [BZ × BZ, BZ] → lim←−{[Bn × Bn, BZ]}. We can form a homotopy
commutative diagram where uk is a standard deformation retraction.

Bm ×Bn
νm,n−−−−→ Bm+n

um×un
⏐

⏐




⏐

⏐




um+n

BZm ×BZn
μm,n−−−−→ BZm+n.

Now, we define f : Bn × Bn
νn,n−−−→ B2n ⊂ BZ and note that, by 4.6(ii),

fn+1|(Bn×Bn) � fn. So, {[fn]} is a string, and we define μ : BZ×BZ → BZ
by requiring ρ[μ] = {[fn]}, i.e., μ|(Bn ×Bn) � fn. The commutativity of the
diagram is obvious. �

4.21. Definition. Given two stable V-objects ξ, η, we define their product
(or join for V = G) to be the map X × Y f×g−−→ BV × BV μ−→ BV where f
(resp. g) classifies ξ (resp. η). The Whitney sum of two stable V-objects ξ,
η over X is the V-object ξ ⊕ η := d∗(ξ × η) where d : X → X × X is the
diagonal. Similarly, given two stable F -objects α, β, we define

α ∧h β := {X × Y f×g−−→ BF ×BF μ−→ BF}

where f (resp. g) classifies α (resp. β). The Whitney sum of two stable F -
objects α, β over X is the F -object α⊕ β := d∗(α ∧h β).

Because of 4.20, (α× β)st = αst × βst, etc.

For future needs, we give the following definition.

4.22. Definition. A multiplicative structure map is a structure map ϕ : B →
BV equipped with a map μB : B ×B → B (multiplication) and a homotopy
H : ϕμB � μ◦(ϕ× ϕ).

The space ΩnSn can be interpreted as the space (Sn, ∗)(Sn,∗) of all pointed
maps Sn → Sn. Let ΩnkS

n be the subspace of ΩnSn consisting of all maps of
degree k. It is clear that Fn � Ωn±1 := Ωn1 ∪ Ωn−1.

Every self-equivalence f : (Sn, ∗)→ (Sn, ∗) gives a self-equivalence

f ∧ 1 : (Sn+1, ∗) = (Sn ∧ S1, ∗)→ (Sn ∧ S1, ∗) = (Sn+1, ∗).

We define in : Fn → Fn+1, in(f) = f ∧ 1.

4.23. Lemma. Let k : Sn → ΩSn+1 be the adjoint map to 1Sn+1 . Then
(Ωnk)±1 : Ωn±1S

n → Ωn+1
±1 Sn+1 is homotopic to in : Fn → Fn+1. Further-

more, the homotopy fiber of in is (n− 2)-connected.
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Proof. Only the last assertion needs proof. The map

πi(Sn) k∗−→ πi(ΩSn+1) ∼= πi+1(Sn+1)

is just the suspension map, and, by the Freudenthal Suspension Theorem, it
is an isomorphism for i < 2n− 2 and an epimorphism for i = 2n− 2. Thus,
the homotopy fiber of k is (2n − 2)-connected, and therefore the homotopy
fiber of Ωnk is (n− 2)-connected. �

Let pn : BFn → BGn+1 be the forgetful map (regarding (Sn, ∗)-fibrations
as Sn-fibrations).

4.24. Proposition. (i) The homotopy fiber of the forgetful map pn is Sn. In
particular, BF � BG.

(ii) The homotopy fiber of rFn : BFn → BFn+1 is (n− 1)-connected.
(iii) The homotopy fiber of rGn : BGn → BGn+1 is (n− 2)-connected.

Proof. (i) This follows from 1.76.
(ii) This follows from 4.23 and 1.75(v).
(iii) This follows from (i) and (ii), because rGn+1pn � pn+1r

F
n . �

4.25. Let Un be the group of all unitary transformations of the complex vector
space C

n. Its classifying space BUn also classifies n-dimensional complex
vector bundles, see e.g. Husemoller [1], Stong [3]. Let γn

C
be the universal

(Cn,Un)-bundle over BUn, and let θ be the product C
1-bundle over pt. Then

γn
C
× θ is classified by a map rUn : BUn → BUn+1, and we define BU to be

the telescope of the sequence {rUn }. Note that rUn is homotopic to Bin, where
the inclusion in : Un → Un+1 is given by the splitting C

n+1 = C
n ⊕ C

1, cf.
3.4. Furthermore, similarly to (4.7), we define the map jUn : BUn → BU as
the inclusion BUn = BUn × {n} ⊂ BUn × [n, n+ 1]→ BU . Finally, there is
a map μU

m,nBUm × BUn → BUm+n which classifies γm × γn. Based on this,
one can construct a map

(4.26) μU : BU ×BU → BU

with properties like 4.20.
Similarly to 4.8, we define a stable complex vector bundle to be the ho-

motopy class of a map X → BU . In particular, there is a universal stable
complex vector bundle γC given by 1BU .

Regarding γn
C

as a real vector bundle, we can classify it by a map Rn :
BUn → BO2n, called realification. Conversely, given a real vector bundle ξ,
the vector bundle ξ⊗C admits a canonical complex structure and thus can be
considered as a complex vector bundle. In particular, γnO ⊗ C is classified by
a map Cn : BOn → BUn, called complexification. As usual, there are maps
R : BU → BO and C : BO → BU as n→∞.
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Now we recall the necessary information on the homotopy of classifying
spaces.

4.27. Theorem. (i) πi(BG) = πi−1(S) for every i > 1, where S is the sphere
spectrum. In particular, every group πi(BG) is finite.

(ii) πi(BO) = Z for i ≡ 0, 4 mod 8, i > 0; πi(BO) = Z/2 for i ≡
1, 2 mod 8, πi(BO) = 0 otherwise. Moreover, Ω8BO � BO × Z. Further-
more, π2i(BU) = Z, i > 0, π2i+1(BU) = 0, and Ω2BU � BU × Z.

(iii) Each of the maps C∗ : Z = π4k(BO) → π4k(BU) = Z and R∗ : Z =
π4k+4(BU) → π4k+4(BO) = Z is multiplication by ak, where ak = 1 for k
even and ak = 2 for k odd.

(iv) The groups πi(PL/O) are finite. Moreover, πi(PL/O) = 0 for i < 7
and π7(PL/O) = Z/28.

(v) T OP/PL � K(Z/2, 3), π4(BT OP) = Z. Furthermore, the homo-
morphism

Z = π4(BPL)
(αPL

T OP )∗−−−−−−→ π4(BT OP) = Z

is multiplication by 2.
(vi) π4k(G/PL) = Z for k > 0, π4k+2(G/PL) = Z/2, π2k+1(G/PL) = 0.
(vii) πi(G/T OP) ∼= πi(G/PL) for every i.
(viii) For every n there exists N = N(n) such that rk : BVk → BVk+1,

as well as jk : BVk → BV, is an n-equivalence for every k > N .
(ix) The spaces BVn and BV are connected, π1(BVn) = π1(BV) = Z/2,

and the groups πi(BV) are finitely generated. Furthermore, the space BV is
simple, and the groups Hi(BV) are finitely generated.

Proof-survey. (i) If i << N , then

πi(BG) = πi(BGN+1) = πi−1(GN+1) = πi−1(FN )
= πi−1(ΩNSN ) = πi+N−1(SN ) = πi−1(S).

(ii), (iii) This is the famous Bott Periodicity Theorem, see e.g. Milnor [6]
or Husemoller [1] (or the original paper, Bott [1]).

(iv) Hirsch–Mazur [1] proved that the group πi(PL/O) is isomorphic to
the group Φi of smooth structures on a PL sphere Si. One can prove that
every smooth manifold which is PL isomorphic to the sphere is a so-called
twisted sphere, i.e., it can be constructed by gluing the two standard disks
along the boundary. The group (under the connected sum) of twisted n-
spheres is denoted by Γn. So, πn(PL/O) = Γn. It is easy to see that Γn = 0
for n < 3. Smale [2] and Munkres [1] proved that Γ3 = 0, Cerf [1] proved
that Γ4 = 0. The h-cobordism Theorem of Smale [3] (a good proof can be
found in Milnor [8]) implies that Γn = Θn for n > 4, where Θn is the group of
homotopy n-spheres. Kervaire–Milnor [1] considered these groups and proved
that Θ5 = 0 = Θ6, Θ7 = Z/28 and Θn is finite for n > 3.

(v) This is a theorem of Kirby–Siebenmann [1].
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(vi) This is a theorem of Sullivan [1]. A good proof can be found in
Madsen–Milgram [1].

(vii) Consider the homotopy exact sequence of the T OP/PL-fibration
G/PL → G/T OP . Since T OP/PL = K(Z/2, 3) and π3(G/PL) = 0, we
conclude that πi(G/PL) ∼= πi(G/T OP) for i 
= 4. Furthermore, this fibration
yields the exact sequence

0→ π4(G/PL)→ π4(G/T OP)→ π3(T OP/PL)→ 0.

Kirby–Siebenmann [1] proved that this exact sequence does not split. Thus,
π4(G/T OP) = Z.

(viii) The case V = G follows from 4.24(iii), and for V = O it is clear
because there is a locally trivial bundle BOn → BOn+1 with fiber Sn. The
remaining cases can be found in Kirby–Siebenmann [1].

(ix) The spaces BVn are connected because there is just one Vn-object
over pt. The connectedness of BV follows from that of BVn. Furthermore,
π1(BOn) = π0(On) = Z/2, π1(BGn) = π0(Gn) = Z/2. Hence, by (viii),
π1(BO) = Z/2 = π1(BG), and so, by (iv) and (v), π1(BPL) = π1(BT OP) =
Z/2. The isomorphisms π1(BPLn) = Z/2 = π1(BT OPn) are proved in
Kirby–Siebenmann [1]. The groups πi(BG) and πi(BO) are finitely generated
by (i) and (ii), respectively. The groups πi(BPL) are finitely generated by (iv)
or (vi), and πi(BT OP) are finitely generated by (v). Furthermore, BV is a
simple space since, by 4.20 and (viii), the map BV×pt→ BV×BV μ−→ BV is
weakly homotopic to the identity (the proof can be done just as for H-spaces,
see e.g. Hu [1], Whitehead [2]). Thus, Hi(BV) are finitely generated because
so are πi(BV) (use the Hurewicz Theorem mod C for spaces, where C is the
Serre class of finitely generated abelian groups, see e.g. Mosher–Tangora [1]).

�

4.28. Theorem. Let Z denote one of the symbols V ,F . The map μ : BZ ×
BZ → BZ in 4.20 is uniquely determined up to homotopy. Furthermore, the
following diagrams commute up to homotopy:

(i) (Associativity.)

BZ ×BZ ×BZ μ×1−−−−→ BZ ×BZ

1×μ
⏐

⏐




⏐

⏐




μ

BZ ×BZ μ−−−−→ BZ.
(ii) (Commutativity.)

BZ ×BZ T−−−−→ BZ ×BZ

μ

⏐

⏐




⏐

⏐




μ

BZ BZ
where T switches the factors.
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(iii)

BZ ′ ×BZ ′ μ′

−−−−→ BZ ′

a×a
⏐

⏐




⏐

⏐




a

BZ ×BZ μ−−−−→ BZ .
where Z ′ ≤ Z.

Similarly, the map μU : BU ×BU → BU in 4.26 is associative and com-
mutative, and the properties like 4.20 determine it uniquely up to homotopy.

Proof. Since, by 4.24(i), BF � BG, it suffices to consider the case of
the spaces BV . Firstly, we prove that μ = μV is uniquely determined up to
homotopy. Let Bn be the telescope of the finite sequence BV0 −→ · · ·

rn−1−−−→
BVn. We prove the homotopy uniqueness of μ if we prove that

ρ : [BV ×BV , BV ]→ lim←−{[Bn ×Bn, BV ]}

is an injection (and so, by III.1.16, a bijection).
By 4.27(viii), for every n there is N = N(n) such that

(jN × jN )∗ : [(BV ×BV)(n), BN ×BN ]→ [(BV ×BV)(n), BV ×BV ]

is a bijection. Let hn : (BV × BV)(n) → BV × BV be a map such that
(jN × jN )∗(hn) is the inclusion (BV ×BV)(n) ⊂ BV ×BV . Then the family
{[hn]} yields a function

h := {hn| lim←−} : lim←−{[Bn ×Bn, BV ]} → lim←−{[(BV ×BV)(n), BV ]},

and we have the commutative diagram

[BV ×BV , BV ]
ρ−−−−→ lim←−{[Bn ×Bn, BV ]}

∥

∥

∥
h

⏐

⏐




[BV ×BV , BV ]
ρ̄−−−−→ lim←−{[(BV ×BV)(n), BV ]}.

So, it suffices to prove that ρ̄ is injective, and now we do it.
By 4.27(ix), BV is a simple space. So, by III.1.18(ii), it suffices to prove

that all the groups Hi−1(BV × BV ;πi(BV)) are finite. Since, by 4.27(ix),
all the groups πi(BV) and Hi(BV) are finitely generated, it suffices to prove
that Hi−1(BV ×BV ;πi(BV))⊗Q = 0, i.e., that

Hi−1(BV ×BV ; Q)⊗ πi(BV)⊗Q = 0.

If V = G then, by 4.27(i), πi(BG) ⊗Q = 0 for every i > 0, and the result
follows.

If V = O thenHi(BO×BO; Q) = 0 for i 
= 4k, see e.g. Milnor–Stasheff [1].
But, by 4.27(ii), πi(BO) ⊗ Q = 0 for i 
= 4k. So, Hi−1(BO × BO; Q) ⊗
πi(BO) ⊗Q = 0 for every i.
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Finally, if V = PL, T OP then, by 4.27(iv,v), the groups πi(V/O) are
finite, and hence aOV [0] : BO[0]→ BV [0] is a homotopy equivalence, i.e., BO
and BV have the same rational homotopy type. Thus,

Hi−1(BV ×BV ; Q)⊗ πi(BV)⊗Q = Hi−1(BO×BO; Q)⊗ πi(BO)⊗Q = 0.

The commutativity of the diagrams in question can be proved similarly.
For example, we prove the associativity of μ. Consider the diagram

BVm ×BVn ×BVp
jm×jn×jp−−−−−−−→ BV ×BV ×BV μ×1−−−−→ BV ×BV

1×μ
⏐

⏐




⏐

⏐




μ

BV ×BV μ−−−−→ BV .

By 4.6(i) and 4.20, μ(μ × 1)(jm × jn × jp) � μ(1 × μ)(jm × jn × jp). So, it
suffices to prove that ρ : [BV × BV ×BV , BV ] → lim←−{[Bn ×Bn ×Bn, BV ]}
is an injection. This can be done as above; we leave it to the reader. �

Let SVn be the submonoid of Vn consisting of the orientation preserving
maps R

n → R
n or Sn−1 → Sn−1 (we leave it to the reader to fix the case

V = PL). By 4.25(ix), π1(BVn) = Z/2 for n ≥ 0, and it is clear that BSVn
is a 2-sheeted (i.e., the universal) covering of BVn. Furthermore, the space
BSV = lim

n→∞
BSVn can be defined to be the universal covering space of BV .

Finally, there is a hierarchy BSO → BSPL → BST OP → BSG similar
to (and given by) (4.3), and the homotopy fiber, say, of BSO → BSPL is
PL/O.

The (co)homology of BV has been studied quite extensively, but we use
only a small part of the known information. Additional information can be
found in Madsen–Milgram [1] and May [4].

4.29. Theorem. (i) H∗(BO; Z/2) = Z/2 [w1, . . . , wn, . . . ], dimwi = i. Fur-
thermore, H∗(BO; Z/2) is contained in H∗(BV ; Z/2) as a subalgebra for ev-
ery V, and the homomorphism (aOV )∗ : H∗(BV ; Z/2) → H∗(BO; Z/2) is an
epimorphism.

(ii) If R is a ring such that 1/2 ∈ R, then

H∗(BO;R) = H∗(BSO;R) = R[p1, . . . , pk, . . . ], dim pk = 4k.

(iii) H∗(BU) = Z[c1, . . . cn, . . . ], dim ci = 2i.

Proof. See e.g. Milnor–Stasheff [1]. �
We have U1 =

{

z ∈ C
∣

∣ |z| = 1
}

. Set SUn := Ker(det : Un → U1),
where det maps a matrix to its determinant. So, we have the inclusion tn :
SUn → Un. Furthermore, the inclusion in : Un → Un+1 induces the inclusion
kn : SUn → SUn+1. Since tn+1kn = intn, we get the homotopy commutative
diagram
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(4.30)

BSUn
Bkn−−−−→ BSUn+1

Btn

⏐

⏐




⏐

⏐




Btn+1

BUn
Bin−−−−→ BUn+1 .

We can and shall assume that Btn is a fibration.

4.31. Lemma. (i) The homotopy fiber of Btn is S1.
(ii) The fibration Btn : BSUn → BUn is a 3-connective covering.
(iii) The square (4.30) is a morphism of S1-fibrations for every n.

Proof. (i) This follows from 3.4 since Un/SUn = S1.
(ii) Let i : U1 → Un map z ∈ U1 to the matrix with a11 = z, aii = 1 for i >

1, and aij = 0 for i 
= j. We have π1(Un) = Z, π2(Un) = 0, see e.g. Milnor [6].
Since det ◦i = 1U1 , det∗ : π1(Un) → π1(U1) is an isomorphism. Considering
the homotopy exact sequence of the locally trivial bundle SUn → Un det−−→ S1,
we conclude that πi(SUn) = 0 for i < 3. Thus, πi(BSUn) = 0 for i < 4. Since
Btn is an S1-fibration and πi(S1) = 0 for i > 1, (ii) is proved.

(iii) The square (4.30) induces a morphism of the homotopy exact se-
quences of the vertical fibrations. Since πi(BSUn) = 0 for i < 3, the map
Bkn provides an isomorphism of the fundamental groups of fibers. �

The squares (4.30) can be aggregated in a homotopy commutative dia-
gram

· · · −−−−→ BSUn
Bkn−−−−→ BSUn+1 −−−−→ · · ·

Btn

⏐

⏐




⏐

⏐




Btn+1

· · · −−−−→ BUn
Bin−−−−→ BUn+1 −−−−→ · · ·,

where every vertical map is an S1-fibration. We can assume that this lad-
der commutes (changing Bkn map by map, using the covering homotopy
property). Defining BSU to be the telescope of the top sequence, we have
the map q : BSU → BU (the telescope of the Btn’s). By 1.41(iii), q is a
quasi-fibration, and each fiber is homotopy equivalent to S1. Passing to a
fibrational substitute of q, we have a fibration F → BSU p−→ BU , where F is
CW -equivalent to S1.

4.32. Lemma. (i) The fibration p : BSU → BU is a 3-connective covering.
(ii) H∗(BSU) = Z[c2, . . . , cn, . . . ], dim cn = 2n.

Proof. (i) By 3.4, the homotopy fiber of Bkn is SUn+1/SUn = S2n+1,
and so πi(BSU) = πi(BSUn) for i < n. Thus, πi(BSU) = 0 for i < 4. Since
πi(F ) = πi(S1) = 0 for i > 1, p is a 3-connective covering.

(ii) Consider the cohomology Leray–Serre spectral sequence of the fi-
bration F → BSU p−→ BU . We have H∗(BU) = Z[c1, . . . , cn, . . . ] and
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H∗(F ) = H∗(S1). Let x ∈ H1(F ) = Z be a generator, and let τ denote
the transgression. Since Hi(BSU) = 0 for i < 4, τ(x) = c1 (up to sign).
Hence, τ(cα1

1 · · · cαrr x) = cα1+1
1 · · · cαrr . Thus, Ei,j∞ = 0 for j > 1, E∗,0

∞ =
Z[c2, . . . , cn, . . . ]. �

§5. Thom Spaces and Thom Spectra

5.1. Definition. (a) Let α = {p : Y → X} be an Fn-object with a section
s. We define the Thom space Tα of α by setting Tα := Y/s(X). We set
Tα := pt if bsα = ∅.

(b) Given a Vn-object ξ, define the Thom space Tξ of ξ as Tξ := T (ξ•),
where ξ• is as in 4.17.

Notice that Tα has a canonical base point (the image of s(X)). Further-
more, Tα = (bs(α))+ for every F0-object α.

It is easy to see that every morphism ϕ : α → β of Fn-objects induces a
map Tϕ : Tα→ Tβ of Thom spaces, and in fact we have a Thom functor T .
Moreover, an F -equivalence of F -objects induces a homotopy equivalence of
Thom spaces.

5.2. Examples. (a) The Thom space of the (trivial) Vn-object over a point
is Sn.

(b) The open Möbius band fibered over the middle circle can be considered
as a line bundle. In greater detail, if we glue (identify) the points (−1,−x) and
(1, x) in [−1, 1]×R, we obtain a space Y homeomorphic to the open Möbius
band. Now, the projection p1 : [−1, 1]× R → [−1, 1] yields the ((R, 0),O1)-
bundle ζ = {p : Y → S1 = [−1, 1]/{−1, 1}}. Then Tζ is the real projective
plane RP 2 (prove this).

(c) More generally, let ξn be the canonical line bundle over RPn. Then
Tξn = RPn+1 (prove this, or see e.g. Stong [3]).

(d) Similarly to (c), let λn be the canonical complex line bundle over the
complex projective space CPn. Then Tλn = CPn+1.

(e) There is the Thom space TγnV of the universal Vn-object γnV . It is
usually denoted by MVn or TBVn.

5.3. Definition. Given a point x ∈ X , the pair (p−1(x), s(x)) can be regarded
as an (Sn, ∗)-fibration θ = θnF over {x}. The morphism (the inclusion of the
fiber) θ → α of Fn-objects induces a map j = jx : Sn = Tθ → Tα. We call
this map jx a root of Tα at x.

If X is connected, then the homotopy class of jx is uniquely determined
up to sign. In this case we write just j (and say just root).

There are also some other models of Tξ. For example, given a spherical fibration

ξ, one can define Tξ := C(pξ). Furthermore, given a V-object with V ≤ T OP , one
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can consider the underlying (see (4.3)) spherical fibration ξ and set Tξ := C(pξ).
These Thom spaces are homotopy equivalent (but not homeomorphic) to ours.

Furthermore, given a vector bundle ξ, let D(ξ) (resp. S(ξ)) be the unit disk (resp.

unit sphere) subbundle of ξ with respect to some Riemannian metric in ξ. Then Tξ
is homeomorphic to ts(D(ξ))/(ts(S(ξ))). Moreover, if V ≤ T OP and the base of

a V-object ξ is compact (e.g. it is a finite CW -space) then Tξ is (homeomorphic

to) the one-point compactification of ts(ξ).

5.4. Construction–Definition. Let ξ be any Vn-object. Define a section
s′ : bs ξ → ts ξ• of ξ• as follows. If V ≤ T OP then s′ is the composition

bs ξ s−→ ts ξ ⊂ ts ξ•

where s is the zero section of ξ. If V = G then

s′(b) := [x, 2,−1] where b ∈ bs ξ, 2 ∈ [0, 2],−1 ∈ S0 = {−1, 1} and pξ(x) = b,

cf. 4.17. We define the zero section of Tξ

z : bs ξ → Tξ

to be the composition bs ξ s′−→ ts ξ• quotient−−−−−→ Tξ. Clearly, z is an injective
map.

5.5. Proposition. (i) Given an Fm-object α and an Fn-object β, we have
T (α ∧h β) � Tα ∧ Tβ.

(ii) T (ξ×η) � Tξ∧Tη for all V-objects ξ, η with V ≤ T OP, and T (ξ∗η) �
Tξ ∧ Tη for all G-objects ξ, η.

(iii) T (ξ ⊕ θ1) � ST (ξ). In particular, T (θnX) � SnX+. Furthermore, for
every x ∈ X the root jx is homotopic (up to sign) to the inclusion Sn({x}+) ⊂
SnX+.

Proof. Exercise. �
Again, consider an Fn-object α = {p : Y → X}. Choose a point x ∈ X

and set F = p−1(x). Given a loop ω : [0, 1] → X at x, ω(0) = x = ω(1),
consider a covering homotopy ht : F → Y, t ∈ [0, 1] such that pht(a) = ω(t)
for every a ∈ F, t ∈ [0, 1]. Since h1(F ) ⊂ F , there is a map f : F → F

such that the composition F
f−→ F ⊂ Y coincides with h1. Since F � Sn,

the degree of f is defined, and we set d(ω) = deg f . It is clear that d(ω) is
well-defined, and d(ω) = ±1 because f is a self-equivalence.

5.6. Definition. An Fn-object α over X is called orientable if d(ω) = 1 for
every x ∈ X and every loop ω at x. A Vn-object ξ is called orientable if ξ• is
orientable.
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It is clear that an Fn-object over a connected base is orientable iff d(ω) = 1
for some single point x and every ω at x.

Given α as above and an abelian group G, there are the homology local
system 11 { ˜Hn(Fx;G)} and the cohomology local system { ˜Hn(Fx;G)}, x ∈
X , over X . Recall that Fx � Sn, and so ˜Hn(Fx;G) ∼= G ∼= ˜Hn(Fx;G) for
every x ∈ X .

Thom [1], [2] discovered the following important fact.

5.7. Theorem-Definition. For every abelian group G and every i there are
isomorphisms

Hi(X ; { ˜Hn(Fx;G)}) ∼= ˜Hi+n(Tα;G),

Hi(X ; { ˜Hn(Fx;G)}) ∼= ˜Hi+n(Tα;G).

These isomorphisms are called Thom isomorphisms. They are natural in α
and G.

Proof. We can assume that X is connected. We prove only the homological
Thom isomorphism. Let s : X → Y be the section. Consider the homology
Leray–Serre spectral sequence of the relative fibration (Y, s(X))→ X (see e.g.
Switzer [1], p.351–352, or, in detail, Prieto [1]). This spectral sequence con-
verges to H∗(Y, s(X);G) � ˜H∗(Tα;G), and E2

p,q = Hp(X ; {Hq(Fx, ∗;G)}).
So, E2

p,q = 0 for q 
= n. Therefore, E2
p,q = E∞

p,q, and Hp(X ; { ˜Hn(Fx;G)}) =
Hp(X ; {Hn(Fx, ∗;G)}) = E2

p,n = E∞
p,n = ˜Hp+n(Tα;G).

The naturality of the Thom isomorphisms follows from the naturality of
the Leray–Serre spectral sequence. �

5.8. Corollary. (i) ˜Hi(Tα;G) = 0 = ˜Hi(Tα;G) for i < n. Furthermore,
if the base X of α is connected, then ˜Hn(Tα;G) = G = ˜Hn(Tα;G) for
orientable α and ˜Hn(Tα;G) = G/2G, ˜Hn(Tα;G) =

{

g ∈ G
∣

∣ g = −g
}

for
non-orientable α.

(ii) πi(Tα) = 0 for every i < n. Furthermore, if the base X of α is
connected, then πn(Tα) = Z for orientable α, and πn(Tα) = Z/2 for non-
orientable α. Finally, the root j : Sn → Tα yields a generator of πn(Tα) in
both cases.

Proof. (i) The first assertion is a trivial corollary of 5.7. The last assertion
follows from 5.7, because H0(X ;M) = M/{tm−m} and H0(X ;M) =

{

m
∣

∣

tm = m
}

,m ∈M, t ∈ π1(X), for every π1(X)-module M .
(ii) Since α has a section, the map p∗ : πk(Y )→ πk(X) is onto for every

k. Let q : Y → Y/s(X) = Tα be the quotient map. Consider the diagram

11See e.g. Hilton–Wiley [1], Hu [1], Spanier [2], Fuks–Rokhlin [1], Hatcher [1] about

local systems.
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π1(X) π1(X)

s∗

⏐

⏐




∥

∥

∥

0 −−−−→ π1(Sn)
i∗−−−−→ π1(Y )

p∗−−−−→ π1(X) −−−−→ 0
∥

∥

∥

q∗

⏐

⏐




π1(Sn)
j∗−−−−→ π1(Tα)

with exact row. We prove that j∗ is epic. Indeed, by the van Kampen Theo-
rem,

π1(Y/s(X)) = π1(Y ∪ Cs(X))
= π1(Y ) ∗π1(s(X)) π1(Cs(X)) = π1(Y ) ∗π1(s(X)) {1}.

Hence, q : Y → Y/s(X) induces an epimorphism

q∗ : π1(Y )→ π1(Y ) ∗π1(s(X)) {1} = π1(Y/s(X)) = π1(Tα).

So, for every x ∈ π1(Tα) there exists y ∈ π1(Y ) with q∗(y) = x. Furthermore,
y − s∗p∗(y) = i∗(z) for some z ∈ π1(Sn). Now, j∗(z) = q∗i∗(z) = q∗(y −
s∗p∗(y)) = q∗(y) = x, and so j∗ is epic.

If n > 1, then π1(Tα) = 0, and so, by the Hurewicz Theorem, πi(Tα) �
Hi(Tα) for 0 < i ≤ n. Thus, πi(Tα) = 0 for i < n, and πn(Tα) has the
required properties.

The inclusion of a fiber yields a morphism of relative fibrations

(Sn, ∗) −−−−→ (Y, s(X))
⏐

⏐




⏐

⏐




pt −−−−→ X.

Considering the corresponding morphism of the homology Leray-Serre spec-
tral sequences (as in 5.7), we conclude that j∗ : Hn(Sn; Z/2)→ Hn(Tα; Z/2)
is an isomorphism; moreover, j∗ : Hn(Sn) → Hn(Tα) is an isomorphism for
orientable α. Hence, j yields a generator of πn(Tα).

Let n = 1. Since j∗ is epic, π1(Tα) is cyclic and j yields a generator. So,
again π1(Tα) = H1(Tα), etc. �

It makes sense to separate the orientable and non-orientable cases in 5.7.
Suppose that X = bsα is connected. It follows from 5.8 that Hn(Tα; Z/2) =
Z/2. The non-trivial element uZ/2 ∈ Hn(Tα; Z/2) is called the Thom class
(mod 2) of α. Moreover, if α is orientable, then, by 5.7, Hn(Tα) = Z. A
generator uZ (either one) of Hn(Tα) is called the Thom class (integral) of α.
Thus, orientability is equivalent to the existence of the integral Thom class.
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5.9. Corollary. (i) If 2G = 0 then there are Thom isomorphisms

ϕG : Hi(X ;G) �−→ Hi+n(Tα;G), ϕG : Hi(X ;G) �−→ Hi+n(Tα;G).

(ii) If α is orientable then there are Thom isomorphisms

ϕG : Hi(X ;G) �−→ Hi+n(Tα;G), ϕG : Hi(X ;G) �−→ Hi+n(Tα;G).

Proof. In both cases the local systems {Hn(Fx;G)} and {Hn(Fx;G)} are
simple (prove this). Because of this, Hi(X ; {Hn(Fx;G)}) = Hi(X ;G) and
Hi(X ; {Hn(Fx;G)}) = Hi(X ;G). �

In the next chapter we discuss the orientability problem, interconnections
between orientability and Thom classes, etc. Here we remark that a Vn-object
is orientable iff its structure group (monoid) can be reduced to SVn (prove
this).

The line bundle ζ in 5.2(b) gives us an example of a non-orientable bundle.
You can see it immediately, or notice that Tζ = RP 2 and apply 5.8.

It is clear that α = {p : Y → X} is orientable iff α⊕ θ1X is (cf. V.1.10(iii)
below). Hence, ζ ⊕ θkX is non-orientable for every k, i.e., for every n there
exists a non-orientable Vn-object. Moreover, if α is orientable then f∗α is
orientable for every map f : Z → bsα. Thus, the universal Vn-object γnV is
non-orientable.

Consider a pointed space K = (K, ∗), and let A ⊂ πn(K) be such that
±A = A.

5.10. Definition. Let α = {p : Y → X} be an Fn-object over a space X ,
and let jx : Sn → Tα be a root with respect to a point x ∈ X . We regard jx
as a canonically pointed map. An element v ∈ [Tα,K]• is called an (A,K)-
marking of α if j∗x(v) ∈ A for all x ∈ X . An (A,K)-marking of a Vn-object ξ
is defined to be an (A,K)-marking of ξ•.

It is clear that if the base X of α is connected then v is an (A,K)-marking
iff j∗x0

(v) ∈ A for some single point x0 ∈ X .

Let ΩnA(K) be the subspace of ΩnK = (K, ∗)(Sn,∗) consisting of all maps
ϕ : (Sn, ∗)→ (K, ∗) such that [ϕ] ∈ A ⊂ πn(K, ∗).

5.11. Theorem. Let Z be one of the symbols V ,F . There exists a CW -space
B(Zn, A,K) with the following properties:

(i) The set of equivalence classes of (A,K)-marked Zn-objects over X is
in a bijective correspondence with the set [X,B(Zn, A,K)], i.e., B(Zn, A,K)
is a classifying space for (A,K)-marked Z-objects;

(ii) The homotopy fiber of the forgetful map B(Zn, A,K) → BZn is
ΩnA(K).
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Proof. An (A,K)-marking of any Fn-object α is just an (ΩnA(K), (K, ∗))-
structure on α, see 2.12. Thus, the case Z = F follows from 2.13. Let a =
aVF(n) : BVn → BFn be as in (4.18), and let λ = {B(Fn, A,K)→ BFn} be
the forgetful ΩnA(K)-fibration. Defining B(Vn, A,E) to be the total space of
the fibration a∗λ, we conclude that (i) and (ii) are true for Z = V . (Note
that, by 1.38, B(Vn, A,E) has the homotopy type of a CW -space.) �

If V is O or T OP , then B(Vn, A,K) has an explicit geometrical descrip-
tion, see 3.9.

Now we turn to stable objects.

5.12. Constructions, Definitions, Notation. Let BFn be the telescope

of the finite sequence {BF1 → · · ·
rFn−1−−−→ BFn}. We regard BFn as a CW -

subcomplex of BF , i.e., there is a CW -filtration {BFn} of BF . Recall that
BFn � BFn, and so we have the universal Fn-object γnF over BFn.

(a) Let α = {f : X → BF} be a stable F -object over a CW -complex
X , and let F = {∅ = X−1 ⊂ X0 ⊂ · · · ⊂ Xn ⊂ · · · }, ∪Xn = X be a
CW -filtration such that f(Xn) ⊂ BFn. We define fn : Xn → BFn, fn(x) =
f(x) and put for simplicity ζn := f∗

nγ
n
F . Clearly, i∗nζn+1 = ζn ⊕ θ1 where

in : Xn → Xn+1 is the inclusion. Considering the maps sn := TIin,ζn+1 :
STζn = T (ζn ⊕ θ)→ Tζn+1, we get the Thom spectrum

T (F , α) := {Tζn, sn}.

In most applications Tζn is a CW -space. Nevertheless, if not, one can apply

II.1.19 in order to get a spectrum T (F , α).

(b) If X is connected, then the family of roots jn : Sn → Tζn yields a
morphism j : S → T (F , α) of spectra, which we call a root of T (F , α).

(c) Given a stable F -object α = {f : X → BF} over a CW -complex X ,
let Xn(α) be the maximal CW -subcomplex which is contained in f−1(BFn).
So, we have a canonical filtration X = {Xn(α)} of X , and we set

Tα := T (X , α).

(d) Given a stable F -object α = {f : X → BF} and a map h : Y → X ,
we define a map hn : Yn(h∗α) → Xn(α), hn(y) := h(y). Then we have the
map TIhn,ζn : Th∗nζn → Tζn. So, we get a morphism

Th := {TIhn,ζn} : T (Y, h∗α)→ Tα.

(e) Given a stable V-object ξ = {u : X → BV}, we set Tξ := Tξ• where,

as usual, ξ• := {X u−→ BV aVF−−→ BF}.
(f) Given a structure map ϕ : B → BV , we can regard it as a stable

V-object ϕ∗γV and construct the spectrum T (ϕ∗γV). However, as usual, we



256 Chapter IV. Thom Spectra

introduce a special notation T (B,ϕ) := T (ϕ∗γV) in order to emphasize that
ϕ is a structure map.

(g) Because of (e), there is the Thom spectrum TγV of the universal
stable V-object γV . This spectrum is usually denoted by MV (or by TBV ,
as in Stong [3]). Clearly, its n-th term is (homotopy equivalent to) MVn.
In greater detail, let BVn be the telescope of the finite sequence {BV1 →

· · ·
rVn−1−−−→ BVn}; so, we have the filtration {BVn} of BV . Then the maps

aVF(n) : BVn → BFn yield a map aVF : BV → BF of filtered spaces, i.e.,
(aVF )−1(BFn) = BVn, and the n-th term of MV is the Thom space MVn of
the universal Vn-object over BVn.

5.13. Lemma. Let α = {f : X → BF} and F be as in 5.12(a). Then
T (F , α) � Tα, i.e., the homotopy type of the Thom spectrum does not depend
on filtration.

Proof. We define fn : Xn(α) → BFn, fn(x) = f(x). We set En :=
T (f∗

nγ
n), Fn := T (f∗

nγ
n|Xn). Then Tα = {En} and T (F , α) = {Fn}.

According to II.(1.4), we regard Σ−nΣ∞En as a subspectrum of Tα, and
Tα =

⋃

n

Σ−nΣ∞En. Similarly, T (F , α) =
⋃

n

Σ−nΣ∞Fn. Clearly, T (F , α) ⊂

Tα. On the other hand, Σ−nΣ∞En ⊂
∞
⋃

m=1

Σ−mΣ∞Fm for every n, and so

T (F , α) is cofinal in Tα. �

5.14. Lemma. Let α = {f : X → BF} and β = {g : Y → BF} be two
stable F-objects.

(i) Let u, v : α → β be two morphisms of stable F-objects, see 4.16. If
u �BF v : X → Y then Tu � Tv : Tα→ Tβ.

(ii) Let a : α → β be a morphism of stable F-objects. If a : X → Y is a
homotopy equivalence then Ta : Tα→ Tβ is an equivalence.

(iii) Here we assume that Y = X. If f � g : X → BF (i.e., α and β are
equivalent stable F-objects) then Tα � Tβ.

Proof. (i) Let U : u �BF v be a homotopy over BF . We have the com-
mutative diagram

X × I U−−−−→ Y

p1

⏐

⏐




⏐

⏐




g

X
f−−−−→ BF .

Then

T (U∗β) = T (U∗g∗γF ) = T (p∗1f
∗γF) = T (p∗1α) = Tα ∧ I+.

Now, TU : Tα ∧ I+ = T (U∗β)→ Tβ is a homotopy between Tu and Tv.
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(ii) Let ̂f : ̂X → BF be the fibrational substitute of f constructed in the
proof of 1.35. Given a filtration X = {Xn} of X , we define the filtration ̂X

of ̂X by setting ̂Xn = {(x, ω)|x ∈ Xn, ω ∈ XI
n, ω(0) = f(x)}. The inclusion

X → ̂X,x �→ (x, ωx) maps Xn to ̂Xn and so yields a map T (X , f) →
T ( ̂X , ̂f) of Thom (pre)spectra, and this map induces an isomorphism

πi(T (X , f))→ πi(T ( ̂X , ̂f)) = lim−→{πi+N (Tζn)}

where ζn is as in 5.12(a). So, without loss of generality, we can assume that
f and g are fibrations. But then, by 1.27, a is an equivalence over BF , and
the result follows from (i).

(iii) Let F : X × I → BF be a homotopy between f and g. Considering
the commutative diagram

X
a−−−−→ X × I

f

⏐

⏐




⏐

⏐



F

BF BF
where a(x) = (x, 0), we conclude, by (ii), that Ta : Tα → T (F ∗γF ) is an
equivalence. Similarly, Tβ � T (F ∗γF ), and thus Tα � Tβ. �

5.15. Construction. Let ξ be a stable V-object classified by f : X → BV ,
and let ϕ : B → BV be a map. Consider a (B,ϕ)-(pre)structure (a,H) on ξ
as defined in 4.9, i.e., H : X × I → BV is a homotopy between f and ϕa.
The inclusions ik : X = X × {k} → X × I, k = 0, 1, yield the morphisms

b0 := T i0 : Tξ → T (H∗γV), b1 := T i1 : T (a∗ϕ∗γV)→ T (H∗γV),

and each bi is an equivalence by 5.14(ii). We define a morphism

TH(a) : Tξ b0−→ T (H∗γV)
b−1
1−−→ T (a∗ϕ∗γV) Ta−−→ T (B,ϕ).

By 5.14(i), equivalent prestructures yield homotopic morphisms, i.e., the ho-
motopy class of the morphism TH(a) : Tξ → T (B,ϕ) depends only on the
(B,ϕ)-structure.

5.16. Remark. Let α = {f : X → BFk} be an Fk-object, and let αst be its
stabilization. Considering the Thom spectrum T (αst), we see that its n-th
term Tn(αst) is T (α⊕ θn−k), n ≥ k, i.e., Tn(αst) = Σn−kTα. So, we have an
isomorphism in S

e : T (αst) ∼= Σ−kΣ∞Tα.

5.17. Definition. Given a CW -complex X , we say that a map f : X → BF
is regular if f(X(n−2)) ⊂ BFn for every n. A stable F -object α is called
regular if it is classified by a regular map.
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5.18. Lemma. Let (X,A) be a CW -pair, and let h : X → BF be such that
h|A is regular. Then h is homotopic rel A to a regular map f : X → BF .

Proof. This follows from 4.24 in a routine way. �

5.19. Construction, Notation. Let α be a stable F -object classified by a
regular map f : X → BF . We define fn : X(n−2) → BFn, fn(x) = f(x) for
every x ∈ X(n−2) and set

αn := f∗
nγ

n
F .

Note that we are able to write Tα = {Tαn}. Clearly, αnst = α|X(n−2)

(where, of course, αnst = (αn)st).

5.20. Lemma. Let h : Y → X be a k-connected cellular map.
(i) If n > 1 then, for every Fn-object α over X, the map T (Ih,α) :

T (h∗α)→ Tα is (n+ k)-connected.
(ii) For every stable F-object α over X, the map Th : T (h∗α) → Tα is

k-connected.

Proof. (i) The homomorphism h∗ : Hi(Y ; {Hn(Fy)})→ Hi(X ; {Hn(Fx)})
is an isomorphism for i ≤ k and an epimorphism for i = k + 1. So, in
view of the Thom isomorphism 5.7, T (Ih,α)∗ : Hi(T (h∗α)) → Hi(Tα) is an
isomorphism for i ≤ k+n and an epimorphism for i = k+n+1. Since n > 1,
both Thom spaces are simply connected, and thus TIh,α is (n+k)-connected.

(ii) By 5.14(iii) and 5.18, we can assume that α is classified by a regular
map f : X → BF . Moreover, by 5.13, Tα � T (F , f) where F is the filtration
such that Xn = X(n−2). Since h : Y (N−2) → X(N−2) is k-connected for
N >> k, the map T (Ih,αN ) : Th∗(αN )→ TαN is (k +N)-connected by (i).
Thus, by II.4.5(iii), Th is k-connected. �

5.21. Theorem. (i) T (α∧h β) � Tα∧ Tβ for all stable F-objects α, β, and
this equivalence can be chosen naturally with respect to α and β.

(ii) T (ξ † η) � Tξ ∧ Tη for all stable V-objects ξ, η, and this equivalence
can be chosen naturally with respect to ξ and η. (Here, as in 4.19, † means
× for V ≤ T OP and ∗ for V = G.)

Proof. (i) We let α = {f : X → BF} and β = {g : Y → BF}. Without
loss of generality we can assume that μF (BFn×BFn) ⊂ BF2n. Then there
is an inclusion

hn : Xn(α) × Yn(β) ⊂ (X × Y )2n(α ∧h β).

This map hn induces a map

Thn : T (f∗
nγ

n
F) ∧ T (g∗nγ

n
F )→ T ((f × g)∗2nγ2n

F ),
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and these maps form a morphism Th : Tα∧ Tβ → T (α∧h β). Clearly, Th is
natural with respect to α and β. We prove that Th is an equivalence.

By 5.14(iii) and 5.18, we can assume that α and β are regular. Then
X(n−2) ⊂ Xn(α) and Y (n−2) ⊂ Yn(β), and we have the following commuta-
tive diagram of inclusions:

X(n−2) × Y (n−2) a1−−−−→ Xn(α)× Yn(β)

a2

�

⏐

⏐

⏐

⏐



hn

(X × Y )(n−2) a3−−−−→ (X × Y )2n(α ∧h β).

Clearly, every ai, i = 1, 2, 3, is an (n−3)-equivalence. Hence, hn is an (n−3)-
equivalence. So, by 5.20, Thn is a (2n− 3)-equivalence, and so, by II.4.5(iii),
Th is an (n− 3)-equivalence for every n. Thus, Th is an equivalence.

(ii) This is an immediate consequence of (i). �

5.22.Corollary. The spectrum MV is a commutative ring spectrum.

Proof. Firstly, we considerMG. Let μ = μG : BG×BG → BG be as in 4.20
and 4.28. For simplicity, let γ denote γG and ∧ denote ∧h. So, γ ∧ γ = μ∗γ,
and so there is a morphism ν := Iμ,γ : γ ∧ γ → γ which yields a pairing

μ : Tγ ∧ Tγ → T (γ ∧ γ) Tν−−→ Tγ. In order to prove the associativity of μ we
must prove that the morphisms ν◦(ν∧1) and ν◦(1∧ν) are bundle homotopic,
i.e., that there exists a bundle homotopy Φ : γ ∧ γ ∧ γ ∧ 1I → γ such that
Φ|γ ∧ γ ∧ γ ∧ 1{0} = ν◦(ν ∧ 1) and Φ|γ ∧ γ ∧ γ ∧ 1{1} = ν◦(1 ∧ ν). But this
follows easily from 1.72. Clearly, the root j : S → Tγ of Tγ can play the role
of the unit for μ.

The commutativity can be proved similarly.
The proof for the spectra MV with V ≤ T OP can be done similarly to

that for MG, using the universal property 3.2(iii) and the bijective correspon-
dence between principal Vn-bundles and ((Rn, 0),Vn)-bundles. Here PLn is
the group described in 4.1(c). �

Given a regular stable F -object α, we say that α is orientable if α4 is
orientable. Given a stable F -object β, we say that β is orientable if it is
equivalent to an orientable regular stable F -object α. Finally, we say that a
stable V-object ξ is orientable if ξ• is.

The following stable version of 5.7–5.9 holds.

5.23. Theorem. Let α be a stable F-object over a CW -complex X.
(i) πi(Tα) = 0 for i < 0. If X is connected then π0(Tα) = Z for orientable

α and π0(Tα) = Z/2 for non-orientable α, and the root j : S → Tα yields a
generator of π0(Tα).
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(ii) Let G be an abelian group. Suppose that either 2G = 0 or α is ori-
entable. Then there are Thom isomorphisms

ϕG : Hi(X ;G) �−→ Hi(Tα;G), ϕG : Hi(X ;G) �−→ Hi(Tα;G).

Notice that the (co)homology of a space X appears as the domain, while the
(co)homology of a spectrum Tα appears as the range.

Proof. (i) We have πi(Tα) = lim−→πi+n(Tαn). So, by 5.8(ii), πi(Tα) = 0
for i < 0. Furthermore, if j : Sn → Tαn is a root of Tαn then

SSn
Sj−→ STαn −→ Tαn+1

is a root of Tαn+1. Hence, by 5.8(ii), πn(Tαn)→ πn+1(Tαn+1) is an isomor-
phism, and thus π0(Tα) is such as claimed.

(ii) The isomorphism, say, ϕG can be constructed as

Hi(X ;G) = Hi(X(N−2);G) ∼= Hi+N (TαN ;G) = Hi(Tα;G),

where i << N . �
In particular, if the base of α is connected, then H0(Tα; Z/2) = Z/2,

and H0(Tα) = Z for orientable α. Thus, one can define a stable Thom class
uZ/2 ∈ H0(Tα; Z/2) and, for orientable α, uZ ∈ H0(Tα) to be a generator of
the group.

Frequently we shall write simply u instead of uZ or uZ/2.

Recall that, for every connected spectrum E, there is a morphism τ0 :
E → H(π0(E)) as in II.4.12.

5.24. Proposition. Let α be a stable F-object, and let u ∈ H0(Tα;π0(Tα))
be a Thom class. We assume that bsα is connected.

(i) If α is orientable then the morphism u : Tα → HZ coincides (up to
sign) with τ0 : Tα→ HZ.

(ii) If α is non-orientable then the morphism u : Tα → HZ/2 coincides
with τ0 : Tα→ HZ/2.

Proof. We prove (i) only. For simplicity, we denote τ0 by τ . It suffices to
prove that τ ∈ H0(Tα) generates H0(Tα) = Z. By II.4.9, the evaluation

ev : Z = H0(Tα)→ Hom(H0(Tα),Z) = Hom(Z,Z) = Z

is an isomorphism, and so we must prove that τ∗ : H0(Tα) → H0(HZ) is
an isomorphism. But, since τ∗ : π0(Tα) → π0(HZ) is an isomorphism, this
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follows from the commutativity of the diagram

π0(Tα)
τπ∗−−−−→ π0(HZ)

∼=
⏐

⏐




⏐

⏐




∼=

H0(Tα)
τH∗−−−−→ H0(HZ)

where the vertical isomorphisms are the Hurewicz homomorphisms. �
Now we introduce a stable analog of (A,K)-markings.

5.25. Definition. (a) Let E be a spectrum, let α be a stable F -object over
X , and let A ⊂ π0(E) be such that ±A = A. If X is connected, we define
an (A,E)-marking of α to be an element v ∈ E0(Tα) such that j∗(v) ∈ A,
where j : S → Tα is a root of Tα. If X = 	Xλ with connected Xλ, we define
an (A,E)-marking of α to be a family {vλ}, where vλ is an (A,E)-marking
of α|Xλ. Furthermore, an (A,E)-marking of a stable V-object ξ is defined to
be an (A,E)-marking of ξ•.

(b) An equivalence of two (A,E)-marked F -, resp. V-objects is an equiv-
alence of F -, resp. V-objects which carries one of the given (A,E)-markings
to the other.

Let t(F ,A,E)(X) be the set of all equivalence classes of (A,E)-marked F -
objects over X . An F -object induced from an (A,E)-marked one gets an
obvious (A,E)-marking. So, t(F ,A,E) is a functor. I can’t prove the repre-
sentability of t(F ,A,E) on C , but this holds on Cfd. We prove this below, but
we need some preliminaries.

Let E be an Ω-spectrum {En}, and let Ω∞
A E be the union of all com-

ponents of Ω∞E belonging to A. Since π0(E) = πn(En) for every n, one
can regard A as a subset of πn(En) and consider (A,En)-markings of Fn-
objects. For simplicity, let Bn denote the space B(Fn, A,En) as in 5.11, and
let ζn be the universal (A,En)-marked Fn-object over Bn with the universal
(A,En)-marking an : Tζn → En. Then the map

T (ζn ⊕ θ1) = STζn
San−−→ SEn → En+1

gives us an (A,En+1)-marking of ζn ⊕ θ1. This marking can be classified
by a map bn : Bn → Bn+1. We define B(F , A,E) to be the telescope of

the sequence · · · → Bn
bn−→ Bn+1

bn+1−−−→ · · · , and we define Bn (resp. BFn)
to be the telescope of the finite sequence · · · → Bi

bi−→ · · · bn−1−−−→ Bn (resp.
· · · → BFi

ri−1−−−→ · · · rn−1−−−→ BFn). So, {Bn} (resp. {BFn}) is a filtration of
B(F , A,E) (resp. BF). Recall that there are standard deformation retrac-
tions dn : Bn → Bn and d′n : BFn → BFn.

Let ln : Bn → BFn classify ζn.
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5.26. Lemma. The map bn : Bn → Bn+1 is (n− 1)-connected.

Proof. Let qn : Cn → BFn be a fibrational substitute of ln. Then there are
maps cn : Cn → Cn+1 homotopy equivalent to bn and such that the square

(5.27)

Cn
cn−−−−→ Cn+1

qn

⏐

⏐




⏐

⏐




qn+1

BFn
rn−−−−→ BFn+1

commutes up to homotopy, and we can assume (deforming cn if necessary,
using the covering homotopy property) that it commutes. Recall that E0 �
ΩnEn � Ω∞E. Thus, by 5.11(ii), the homotopy fiber of qn is ΩnAEn � Ω∞

A E.
We fix x ∈ BFn and set Φn = q−1

n (x),Φn+1 = q−1
n+1(rnx). First, we consider

the map c̄n : Φn → Φn+1, c̄n(a) = cn(a) for every a ∈ Φn, and prove that c̄n
is a homotopy equivalence.

Given a connected CW -space X , let Mn(X) be the set of all (A,En)-
markings of θnX . Every (A,En)-marking v of θnX gives us the (A,En+1)-
marking

v̂ : Tθn+1
X = STθnX

v−→ SEn →n+1,

and we define
a : Mn(X)→Mn+1(X), a(v) = v̂,

for every (A,En)-marking v of θnX . Consider the map f : X → {x} ⊂ BFn
and the commutative diagram

Mn(X) [Liftqn f ] [X,Φn]

a

⏐

⏐




⏐

⏐



(cn)∗

⏐

⏐



(c̄n)∗

Mn+1(X) [Liftqn+1 cnf ] [X,Φn+1]

where (cn)∗[g] = [cng] for every qn-lifting g : X → Cn of f . Clearly, for every
connected CW -space X , a is a bijection, and so (c̄n)∗ is a bijection, and thus
cn is a homotopy equivalence (since Φn � Ω∞

A E is homotopy equivalent to a
CW -space).

Now, the square (5.27) induces a ladder of the homotopy exact sequences
of fibrations qn, qn+1. By the above, cn yields a homotopy equivalence of
fibers. Furthermore, by 4.24(ii), rn is (n− 1)-connected, and so cn is (n− 1)-
connected (by a diagram chase). �

We define l̄n : Bn
dn−→ Bn

ln−→ BFn ⊂ BFn and consider the ladder

· · · −−−−→ Bn
⊂−−−−→ Bn+1

⊂−−−−→ · · ·

l̄n

⏐

⏐




⏐

⏐



l̄n+1

· · · −−−−→ BFn ⊂−−−−→ BFn+1
⊂−−−−→ · · ·.



§5. Thom Spaces and Thom Spectra 263

This ladder commutes up to homotopy, and we can assume that it is commu-
tative (deforming l̄n map by map if necessary, using the homotopy extension
property). Thus, we get a map l = ∪l̄n : B(F , A,E) = ∪Bn → ∪BFn = BF
of filtered spaces. We set η = l∗γF .

Clearly, the universal (A,En)-marking an on ζn yields an (A,E)-marking
vn on ζnst. Furthermore, we have e∗nη = ζnst where en : Bn → B(F , A,E) is
the inclusion. Consider the morphism T (en, η) : Tζnst → Tη.

5.28. Proposition. The F-object η admits an (A,E)-marking v such that
T (en, η)∗(v) = vn for every n.

Proof. We have l∗nζ
n+1 = ζn ⊕ θ1. Consider the Thom spectrum T :=

{Tζn, sn}, where sn = TIln,ζn+1 : STζn → Tζn+1. For every k ≥ n there is
a map sk−1◦ · · · ◦Sk−1sn : Sk−nTζn → Tζk. These maps form a morphism
σn : Tζnst → T of spectra.

The family of the universal (A,En)-markings an, n = 1, 2, . . . , yields an
element a ∈ E0(T ), and it is clear that σ∗

n(a) = vn for every n.
By 5.26, the map 1B(F ,A,E) is homotopic to a map f : B(F , A,E) →

B(F , A,E) such that f(B(F , A,E)(n−2)) ⊂ Bn. Clearly, f∗η � η. We have

g∗ζn � ηn, where g is the composition g : B(F , A,E)(n−2) f−→ Bn
dn−→ Bn.

Thus, for every n, we get a map Tηn � Tg∗ζn TIg,ζn−−−−→ Tζn, and these maps
form a morphism τ : Tη → T . Now, since the diagram

Tζnst
T (en,η)−−−−−→ Tη

∥

∥

∥

⏐

⏐




τ

Tζnst
σn−−−−→ T

commutes, we are able to set v := τ∗(a). �
We assume that η is equipped with the (A,E)-marking v, and we define

φ : [X,B(F , A,E)]→ t(F ,A,E)(X), X ∈ C ,

by setting φ(f) = f∗(η) for every map f : X → B(F , A,E).

5.29. Theorem. The function φ is bijective for every X ∈ Cfd. In other
words, the functor t(F ,A,E) : Cfd → E ns can be represented by B(F , A,E).
Furthermore, φ is surjective for every X ∈ C .

Proof. Let t(Fn,A,En)(X) be the set of all equivalence classes of (A,En)-
marked Fn-objects over X . For every Fn-object β the equivalence e :
Tβst → Σ−nΣ∞Tβ as in 5.16 induces an isomorphism e∗ : ˜En(Tβ) =
E0(Σ−nΣ∞Tβ) → E0(Tβst), which maps (A,En)-markings of β to (A,E)-
markings of βst. So, we have a function

σn : t(Fn,A,En)(X)→ t(F ,A,E)(X), σn(β) = βst.
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On the other hand, for every stable α there is the morphism T in : Tαnst →
Tα, where in : X(n) → X is the inclusion. It induces a homomorphism

E0(Tα)
(Tin)∗−−−−→ E0(Tαnst)

e−1
∗−−→ E0(Σ−nΣ∞Tαn) = ˜En(Tαn)

which maps (A,E)-markings of α to (A,En)-markings of αn. So, we have a
function

τn : t(F ,A,E)(X)→ t(Fn,A,En)(X(n−2)), τn(α) = αn.

If dimX << n, then τn is inverse to σn. In particular, σn is bijective if
dimX << n.

Consider the following diagram, where φn(f) = f∗ζn and k : Bn →
B(F , A,E) is the obvious inclusion like (4.7):

[X,Bn]
k∗−−−−→ [X,B(F , A,E)]

φn

⏐

⏐




⏐

⏐



φ

t(Fn,A,En)(X) σn−−−−→ t(F ,A,E)(X) .

By 5.28, this diagram commutes. Now, by 5.11(i), φn is bijective. Further-
more, if dimX << n then, by 5.26, k∗ is bijective, and, by the above, σn is
bijective. Thus, φ is bijective for every X ∈ Cfd.

The surjectivity of φ follows because, by III.1.16, the map ρ : [X,Y ] →
lim←−[X(n), Y ] is surjective for all X,Y and, in particular, for Y = B(F , A,E).

�

5.30. Proposition. The homotopy fiber of l : B(F , A,E)→ BF is Ω∞
A E.

Proof. Consider the ladder which is composed of the squares (5.27),

(5.31)

· · · −−−−→ Cn
cn−−−−→ Cn+1

cn+1−−−−→ · · ·

qn

⏐

⏐




⏐

⏐




qn+1

· · · −−−−→ BFn
rn−−−−→ BFn+1

rn+1−−−−→ · · · ,

where the (forgetful) maps qn are (Ω∞
A E)-fibrations. This ladder commutes

up to homotopy, and we can assume that it is commutative (deforming cn
map by map, using the covering homotopy property). Defining C(A,E) to
be the telescope of the top sequence

· · · → Cn
cn−→ Cn+1

cn+1−−−→ · · · ,

we get the map q : C(A,E)→ BF , which is the telescope of qn’s. Since qn is
homotopy equivalent to ln, its homotopy fiber is ΩnAEn � Ω∞

A E, see 5.11(ii).
So, by 1.41(i), every fiber of qn is homotopy equivalent to Ω∞

A E. Furthermore,
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by 1.41(iv), q is a quasi-fibration, and every fiber of q is CW -equivalent to
Ω∞
A E. So, by 1.41(i), the homotopy fiber of q is Ω∞

A E. Now the proposition
holds because q is homotopy equivalent to l. �

We have considered Ω-spectra E, but this is not a real restriction. Indeed,
if E is an arbitrary spectrum, take an Ω-spectrum E′ equivalent to E, see
II.1.21, and set B(F , A,E) := B(F , A,E′). Clearly, 5.29 and 5.30 hold in this
case also.

Now we turn to V-objects. Let ̂l : C(F , A,E) → BF be a fibrational
substitute of the forgetful map l : B(F , A,E) → BF . We define B(V , A,E)
via the pull-back diagram

B(V , A,E) h−−−−→ C(F , A,E)
⏐

⏐




⏐

⏐


̂l

BV aVF−−−−→ BF .

By 1.38. B(V , A,E) has the homotopy type of a CW -space. Now, one has an
(A,E)-marked stable V-object ηV := h∗η.

Let t(V,A,E)(X) be the set of all equivalence classes of (A,E)-marked V-
objects overX . Define φV : [X,B(V , A,E)]→ t(F ,A,E)(X), X ∈ C , by setting
φV(f) = f∗(ηV). Now, 5.29 and 5.30 imply the following theorem.

5.32. Theorem. (i) The map φV is bijective for every X ∈ Cfd. In other
words, the functor t(V,A,E) : Cfd → E ns can be represented by B(V , A,E).
Furthermore, φV is surjective for every X ∈ C .

(ii) The homotopy fiber of the forgetful map B(V , A,E) → BV is Ω∞
A E.

�

From here to the end of this section, we choose a natural number N and
fix a base point s0 ∈ SN .

5.33. Construction. Consider a map t : X → FN of a CW -space X . It
yields a map τ : X × SN → X × SN , τ(x, s) := (x, t(x)(s)). Let i : X ⊂
CX, i(x) = (x, 0), be the inclusion of the bottom. We regard X × SN as the
subspace i(X)× SN of CX × SN and define

p : (CX × SN )left ∪τ (CX × SN )right
p1∪p1−−−−→ (CX)left ∪ (CX)right = SX.

One can prove that p is a quasi-fibration, see Dold–Thom [1]. Furthermore,
p has a section

SX → (CX × SN )left ∪τ (CX × SN )right, a �→ (a, s0),

where a ∈ (CX)left or a ∈ (CX)right.
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Let ξ = ξt be a fibrational substitute of p. Then, by 1.41(i), ξ is an
(SN , ∗)-fibration (i.e, an FN -object) over SX .

Alternatively, ξ is classified by a map h : SX → BFN which is the adjoint

map to t : X → FN � ΩBFN .

We define ϕ : X × SN
τ−→ X × SN

p2−→ SN . It is clear that ϕ factors
through

ϕ :
X × SN

X
=

X × SN
X × {s0}

→ SN .

Consider the diagram

CX × SN
CX

⊃ X × SN
X

ϕ−→ SN .

5.34. Lemma. Tξ � CX×SN
CX ∪ϕ SN .

Proof. Clearly, Tξ � Cp. Now, Cp =
(

CX×SN
CX

)

left

⋃

X×SN
X

(

CX×SN
CX

)

right
,

where X×SN
X ⊂

(

CX×SN
CX

)

left
is induced by the inclusion i : X ⊂ CX and the

map X×SN
X →

(

CX×SN
CX

)

right
is induced by θ : X×SN → CX×SN , θ(x, s) =

(i(x), ϕ(x, s)). Now the lemma follows because X ×SN θ−→ CX ×SN p2−→ SN

coincides with ϕ. �
There are two H-space structures on ΩNSN . One of them is given via

the loop structure, while another one is given via the compositions of maps
SN → SN . The corresponding multiplications are denoted by ∗ and ◦. These
H-structures do not coincide: for example, if x ∈ ΩNk S

N , y ∈ ΩNl S
N , then

x ∗ y ∈ ΩNk+lS
N while x◦y ∈ ΩNklS

N . Note that ∗1SN : ΩNk S
N → ΩNk+1S

N is
a homotopy equivalence for every k.

Let X be a pointed connected space, let f : SNX → SN be a pointed
map, and let g : X → ΩNSN be the adjoint map to f . It is easy to see that
g(X) ⊂ ΩN0 S

N . Consider the composition

t : X
g−→ ΩN0 S

N ∗1SN−−−→ ΩN1 S
N ⊂ SFN .

This t gives an FN -object ξ over SX as in 5.33.

5.35. Theorem (cf. May [3], Ravenel [1]). Tξ � C(f).

Proof. For simplicity, let q : X × SN → SN denote the projection p2, and
let π : SN ∨ SN → SN be the folding map, π|SN = 1SN for each of the two

summands. Consider the map h : X × SN → X ∧ SN f−→ SN , where the first
map collapses the wedge. Since h(x, s0) = s0 = q(x, s0) for every x ∈ X ,
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the map π◦(h ∨ q) : (X × SN ) ∨ (X × SN ) → SN factors through a map
k : (X × SN )

⋃

X×{s0}(X × S
N )→ SN . Consider the composition

ψ : X × SN → X × (SN ∨ SN ) = (X × SN)
⋃

X×{s0}(X × SN ) k−→ SN

and denote by σ : X → ΩN1 SN the adjoint map to ψ. It is easy to see that
σ is homotopic to t = g ∗ 1SN : X → ΩN1 S

N . Thus, in order to prove the
theorem it suffices to prove that

Cf � CX × SN
CX

⋃

ψ

SN ,

where ψ : X×SN
X → SN is constructed as ϕ was in 5.34. Consider the diagram

CX×(SN∨SN )
CX ⊃ X×(SN∨SN )

X
∥

∥

∥

∥

∥

∥

CX×SN
CX ∨ CX×SN

CX ⊃ X×SN
X ∨ X×SN

X

h∨q−−−−→ SN ∨ SN π−−−−→ SN

where h, q are as in 5.34. By construction, h collapses the factor SN and
therefore induces the map ̂h : X ∧ SN → SN . Clearly, ̂h � f . There are the
diagrams

(CX ∧ SN ) ∨ CX × S
N

CX
⊃ (X ∧ SN ) ∨ X × S

N

X

̂h∨q−−→ SN ∨ SN π−→ SN ,

and

(CX ∧ SN ) ∨ Sn ⊃ SNX ∨ SN ̂h∨1−−→ SN ∨ SN π−→ SN .

We set a = π◦(h ∨ q), b = π◦(̂h ∨ q), c = π◦(̂h ∨ 1SN ). We have

CX × SN
CX

⋃

ψS
N �

(

CX × SN
CX

∨ CX × SN
CX

)

⋃

aS
N

�
(

(CX ∧ SN )
∨ CX × SN

CX

)

⋃

bS
N �

(

(CX ∧ SN ) ∨ SN
)

⋃

cS
N

�(CX ∧ SN )
⋃

̂h
SN .

Now, the last space is homotopy equivalent to Cf because ̂h � f . �

5.36. Construction. Let ξ be an Vn-object over X , V ≤ T OP , and let θ0 be
the trivial V0-object overX . We have T (ξ×θ0) = Tξ∧X+, and d∗(ξ×θ0) = ξ
where d : X → X ×X is the diagonal. Thus, one has the map

Δn := TId,ξ×θ0 : Tξ → Tξ ∧X+.
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In order to construct Δn for V = G, we do the following. Let p1 : X×X → X
be the projection, p1(x, y) = x. Then T (p∗1ξ) � Tξ ∧ X+ (prove this; note
also that p∗1ξ = ξ× θ0 for V ≤ T OP). Furthermore, d∗p∗1ξ = ξ, and we define
Δn := TId,p∗1ξ.

Similarly, if ξ is a stable V-object over X , we have a morphism (of spectra)

Δ := T (d) : Tξ → Tξ ∧X+.

§6. Homotopy Properties of Certain Thom Spectra

Recall that Ap denotes the mod p Steenrod algebra, see II.6.25.

6.1. Proposition. The homotopy groups of the Thom spectrum MV are
finitely generated Z/2-vector spaces. In particular, MV is a Z[2]-local spec-
trum of finite Z[2]-type.

Proof. By 4.27(ix), every group Hi(BV) is finitely generated, and so every
group Hi(BV ; Z/2) is finite. Thus, by 5.23(ii), every group Hi(MV ; Z/2) is
finite.

By 5.23(i), MV is connected. The universal stable V-object over BV
is non-orientable, and so, by 5.23(i), π0(MV) = Z/2. Since MV is a ring
spectrum, πi(MV) is a Z/2-vector space for every i. Hence, by II.4.24,
2kHi(MV) = 0 for some k = k(i) (take C to be the Serre class of all abelian
groups having 2-primary exponents, see II.4.23(iii)). Furthermore, Hi(MV)
is a finite 2-primary group because Hi(MV ; Z/2) is finite (use the Univer-
sal Coefficient Theorem II.4.9). So, by II.4.24, πi(MV) is a finite 2-primary
group for every i (take C to be the Serre class of all finite 2-primary abelian
groups, see II.4.23(ii)). Thus, πi(MV) is a finite dimensional Z/2-vector space
for every i. �

6.2. Theorem (Thom [2]). The spectrum MV is a wedge of suspensions over
HZ/2, i.e., it is a graded Eilenberg–Mac Lane spectrum, MV = H(π∗(MV)).

Proof. Let u ∈ H∗(MV ; Z/2) be the Thom class. By 6.1, MV is a con-
nected Z[2]-local ring spectrum with π0(MV) = Z/2, and so, by II.7.24 (for
p = 2), it suffices to prove that Qi(u) 
= 0 for all i = 0, 1, . . . . Since the
canonical morphisms MO → MV maps the Thom class to the Thom class,
it suffices to prove that Qi(u) 
= 0 for the Thom class u ∈ H∗(MO; Z/2).
In view of universality of MO and stability of Qi, it suffices to find a vector
bundle ξ with Qi(uξ) 
= 0.

Let η be the canonical 1-dimensional vector bundle over RP∞ = BO1.
It is well known (see e.g. Stong [3]) that Tη = RP∞ and that x := uη is
the generator of H1(RP∞; Z/2) = Z/2. We prove by induction that Qi(x) =



§6. Homotopy Properties of Certain Thom Spectra 269

x2i+1
. Firstly, Q0(x) = Sq1x = x2. Suppose that Qn−1(x) = x2n . Then

Qn(x) = [Qn−1, Sq
2n ](x) = Qn−1Sq

2nx+ Sq2
n

Qn−1x = Sq2
n

x2n = x2n+1
.

The induction is confirmed. �
Now we consider the Thom spectra MSV of orientable V-objects.

6.3. Proposition. Let ξ be a V-object over a connected base, and let u =
uξ ∈ Hn(Tξ; Z/2) be the Thom class. Then ξ is orientable iff Sq1(u) = 0.

Proof. Recall that Sq1 is the coboundary homomorphism in the exact
sequence

· · · → Hi(X ; Z/2)→ Hi(X ; Z/4)→ Hi(X ; Z/2)
Sq1−−→ Hi+1(X ; Z/2)→ · · ·

induced by the exact sequence 0→ Z/2→ Z/4→ Z/2→ 0, see e.g. Mosher–
Tangora [1]. If ξ is not orientable, then Hi(Tξ) = 0 for i < n, Hn(Tξ) = Z/2,
and so Sq1u 
= 0. If ξ is orientable, then u is the reduction mod 2 of a class
v ∈ Hn(Tξ), and so Sq1u = 0. �

6.4. Proposition. Every group πi(MSV) is finitely generated. So, MSV has
finite Z-type.

Proof. Since BSV is the universal covering of BV , we conclude that
π1(BSV) = 0 and πi(BV) = πi(BSV) for i > 1. By 4.27(ix), the groups
πi(BSV) are finitely generated, and so the groups Hi(BSV) are finitely gen-
erated (use the mod C Hurewicz Theorem for spaces, where C is the class of
finitely generated abelian groups). So, the groups Hi(MSV) ∼= Hi(BSV) are
finitely generated. Thus, by II.4.24, πi(MSV) are finitely generated. �

6.5. Theorem. MSO[2] is a wedge of spectra of the form ΣkHZ and
ΣkHZ/2. In particular, MSO[2] is a graded Eilenberg–Mac Lane spectrum,
and every torsion element of π∗(MSO) has order 2.

Proof. See Wall [1] (the original proof), Stong [3], Ch. IX, or Theorem
IX.5.14 below. �

6.6. Theorem. MSV [2] is a graded Eilenberg–Mac Lane spectrum.

Proof. By II.7.1, the homomorphism π0(HZ[2])→ π0(MSO[2]), 1 �→ 1, is
induced by a morphism f : HZ/2→MSO[2]. Since the composition

HZ→ HZ[2]
f−→MSO[2]

αO
V [2]−−−→MSV [2]

satisfies II.7.7, the result follows. �
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Now we fix an odd prime p and discuss p-primary properties of MSV .
Let j : S → MSV be a root; choose the Thom class v ∈ H0(MSV) with
j∗(v) = 1 ∈ H0(S). Let u ∈ H0(MSV ; Z/p) be the reduction mod p of v.
We consider the action of Ap on the class u. Since j : S → MSV is the
unit of the ring spectrum MSV , the class u is the counit of the coalgebra
H∗(MSV ; Z/p), cf. II.7.20.

6.7. Lemma. The operations Qi, i ≥ 0, act trivially on H∗(MSO; Z/p). In
particular, H∗(MSO; Z/p) is an Ap/(Q0)-module.

Proof. By 4.29(ii), Hk(BSO; Z/p) = 0 for odd k, and so, by 5.23,
Hk(MSO; Z/p) = 0 for odd k. Hence, Qi acts on H∗(MSO; Z/p) trivially
because dimQi is odd. Since the left ideal Ap(Q0, . . . , Qn, . . . ) coincides with
the two-sided ideal (Q0), H∗(MSO; Z/p) is an Ap/(Q0)-module. �

The following theorem was proved by Averbuch [1], Milnor [4], and
Novikov [1].

6.8. Theorem. H∗(MSO; Z/p) is a free Ap/(Q0)-module.

Proof. There is a unique morphism Δ such that the diagram

Ap
Δ−−−−→ Ap ⊗Ap

⏐

⏐




⏐

⏐




Ap/(Q0)
Δ−−−−→ Ap/(Q0)⊗Ap/(Q0)

commutes. This Δ turns Ap/(Q0) into a Hopf algebra. Furthermore, the space
of primitives of this Hopf algebra is just Z/p{PΔi|i = 1, 2, . . . }. Indeed, the
dual Hopf algebra (Ap/(Q0))∗ is the subalgebra Z/p [ξ1, . . . , ξn, . . . ] of A ∗

p .
Thus, by II.6.31, it suffices to prove that PΔi(u) 
= 0.

Let η be the canonical 1-dimensional complex vector bundle over CP∞.
It is well known (see e.g. Husemoller [1], Stong [3]) that Tη = CP∞ and
that x := uη is a generator of H2(CP∞; Z/p) = Z/p. We prove by induction
that PΔi(x) = xp

i

(and thus PΔi(x) 
= 0). This implies immediately that
PΔi(u) 
= 0 because of the universality of u. We have PΔ1(x) = P 1(x) = xp.
Suppose that PΔn(x) = xp

n

. Now,

PΔn+1(x) = [P p
n

,PΔn ](x) = P p
n

PΔn(x)±PΔnP p
n

(x)

= P p
n

(xp
n

) = xp
n+1

.

The induction is confirmed. �
Based on 6.8, one can prove that π∗(MSO) has no odd torsion. More pre-

cisely, we have the following theorem (Averbuch–Milnor–Novikov). A proof
can be found in Stong [3].
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6.9. Theorem. For every odd prime p,

π∗(MSO[p]) = Z[p][x1, . . . , xk, . . . ], dimxn = 4n. �

Now we consider the spectrum MSG.

6.10. Theorem. Qiu 
= 0, i = 1, . . . , and PΔju 
= 0, j = 1, 2, . . . for the
class u = uG ∈ H∗(MSG; Z/p).

Proof. The inequality PΔju 
= 0 holds because it holds in MSO.
We prove that Q1u 
= 0. Consider the Postnikov tower of the p-localized
sphere SN [p], N large. Since Hi(SN [p]) = 0 for i > N , the first non-
trivial Postnikov invariant of SN [p] is P 1. So, πi(SN [p]) = 0 for N < i <
N + 2p − 3, πN+2p−3(SN [p]) = Z/p. Let f : SN+2p−3 → SN [p] be an es-
sential map. Then HN(Cf ; Z/p) = HN+2p−2(Cf ; Z/p) = Z/p, and gener-
ators x ∈ HN (Cf ; Z/p), y ∈ HN+2p−2(Cf ; Z/p) can be chosen such that
P 1(x) = y. Let X be the cone of a map SN+2p−3 → SN+2p−3 of degree p;
then the Bockstein homomorphism

β : HN+2p−3(X ; Z/p)→ HN+2p−2(X ; Z/p)

is an isomorphism, cf. II.6.27(b). Since [f ] ∈ πn+2p−3(SN [p]) has order p, f
can be extended to a map g : X → SN [p]. So, the group ˜H∗(Cg; Z/p) is
generated by three elements x, y, z, dimx = N, dim y = N + 2p− 2, dim z =
N + 2p− 1. Moreover, βP 1x = βy = z. Since βx = 0,

Q1x = P 1βx − βP 1x = −βP 1x = −z 
= 0.

By 5.35, the space Cg is the Thom space of a certain SN -fibration ξ over M ,
and it is clear that x is the Thom class uξ of this fibration. Hence, Q1uξ 
= 0,
and so Q1u 
= 0.

Now we prove that Qiu 
= 0 (following Tsuchia [1], [2]). We use some facts
about the stable homotopy groups of spheres and some standard notation for
their elements, see Toda [1].

Set q = 2p − 2. Consider a map h : Spq−1 → Spq−1 of degree p and
set M = Ch. The cofiber sequence Spq−1 h−→ Spq−1 → M induces an exact
sequence

πpq+2p−3(M) h∗−→ πpq+2p−3(Spq)
p−→ πpq+2p−3(Spq).

(This sequence is exact since, by the Freudenthal Suspension Theorem, these
homotopy groups coincide with the stable ones.) Since πpq+2p−3(Spq) = Z/p,
the generator of this group has the form h∗(α) for some α ∈ πpq+2p−3(M). Set
L = M ∪α e(p+1)q. It is easy to see that π(p+1)q(L)⊗Q = Q, i.e., π(p+1)q(L)
contains Z as a direct summand. Let ι be a generator of this subgroup Z. Set
K = L ∪pι e(p+1)q+1.
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Let b : Spq−1 → BSG yield the element β1 ∈ πpq−2(S) (under the iso-
morphism πi(S) ∼= πi+1(BSG)). Since pβ1 = 0, b can be extended to M .
Furthermore, since π(p+1)q−1(BSG) = 0 and π(p+1)q(BSG) = Z/p, f can be
extended to some c : K → BSG. Thus, there arises an SN -fibration ξ over
K, and

Tξ = SN ∪β1 e
N+pq−1 ∪p eN+pq ∪α eN+(p+1)q ∪p eN+(p+1)q+1.

Here α1 is the N -fold suspension of α ∈ πpq+2p−3(M) and p corresponds to
the element p ∈ πk(Dk, Sk−1) = Z for k = N + pq − 1, N + (p+ 1)q. Let s ∈
HN (Tξ; Z/p), epq−1 ∈ HN+pq−1(Tξ; Z/p), epq ∈ HN+pq(Tξ; Z/p), etc., be
the cohomology classes corresponding to the cells above. Then in Tξ we have:

1. P p(s) = epq.
2. P 1P p(s) = P p+1(s) = e(p+1)q;P pP 1(s) = 0.
3. βP p+1(s) = e(p+1)q+1;P p+1β(s) = 0.
4. P pP 1β(s) = βP pP 1(s) = P pβP 1(s) = P 1βP p(s) = 0.
5. β(epq−1) = epq.
6. P 1(epq) = e(p+1)q;βP 1(epq) = e(p+1)q+1.
7. β(e(p+1)q) = e(p+1)q+1.

This implies that Q1(s) = 0 and

Q2(s) = P pQ1(s)−Q1P
p(s) = −Q1(epq) = βP 1epq = e(p+1)q+1 
= 0.

So, Q2(s) 
= 0, and hence Q2(u) 
= 0. Furthermore, Qi(s) = 0 for i > 2
because dimQi(s) > dimK.

Let Σp be the symmetric group of degree p, and let π be its cyclic subgroup
of order p generated by the permutation which sends i to i + 1 mod p. Let
E be a contractible free π-space. Consider the SpN−1-fibration ξ ∗ · · · ∗ ξ (p
times) over Kp with the projection q : Y → Kp, Y := ts(ξ ∗ · · · ∗ ξ). Since π
acts on Y and Kp (via permutations), one can construct the SpN−1-fibration
η of the form 1 ×π q : E ×π Y → E ×π Kp. (Here A ×π B is (A × B)/π.)
Furthermore,

Tη = (E �π (Tξ)∧p = E ×π (Tξ ∧ · · · ∧ Tξ))/((E/π)× pt)

where A �π B := (A ×π B)/A. Let P : HN(Tξ; Z/p) → HpN (Tη; Z/p) be
the Steenrod construction, see Steenrod–Epstein [1], Ch. VII, §2. Since P (s)
generates HpN (Tη; Z/p), it is the Thom class of η. Let d : Tξ → (Tξ)∧p be
the diagonal, and let

d1 := 1 �π d : (E/π) � Tξ = E �π Tξ → E �π (Tξ)∧p.

Finally, let x ∈ H1(E/π; Z/p) = Z/p and y ∈ H2(E/π; Z/p) = Z/p be the
generators. By the definition of the Steenrod operations P j (see Steenrod–
Epstein [1], Definition VII.3.2), we have

d∗1P (s) =
∑

j

(−1)N+j+m
N(N+1)

2 (m!)Nym(N−2j)⊗P j(s)+xym(N−2j)−1βP j(s)
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where 2m = p− 1. In view of the properties 1–7 above, every summand with
j 
= 0, p, p+ 1 is zero. Hence,

d∗1P (s) = (m!)N (ε0ymN ⊗ s+ εpy
mN−p2+p ⊗ epq + εp+1y

mN−p2+1 ⊗ e(p+1)q)

+ (−1)N+m(N2+N)/2xymN−p2 ⊗ e(p+1)q+1,

where εi is 1 or (−1). If i > 2, then Qi(a) = 0 for a = s, epq, e(p+1)q, e(p+1)q+1.
Furthermore, Qi(y) = 0, Qi(x) = yp

i

. Since Qi is primitive, we conclude that

Qid
∗
1P (s) = (−1)N+m(N2+N)/2yp

i

ymN−p2 ⊗ e(p+1)q+1 
= 0.

So, QiP (s) 
= 0, and thus Qiu 
= 0. �

6.11. Theorem (Peterson–Toda [1]). MSG is a graded Eilenberg–Mac Lane
spectrum.

Proof. By II.7.4, it suffices to prove that MSG[p] is a graded Eilenberg–
Mac Lane spectrum for every prime p. For p = 2 this follows from 6.6. If p > 2,
then, by II.7.14, it suffices to prove that E := MSG ∧M(Z/p) is a graded
Eilenberg–Mac Lane spectrum. If p > 3, then E is a ring spectrum because
M(Z/p) is (cf. the proof of II.7.14). Furthermore, the spectrum M = M(Z/3)
admits a non-associative pairing M ∧M → M , and so E admits a pairing
E ∧E → E (possibly non-associative).

Now, π0(E) = Z/p because π0(MSG) = Z. Hence, H∗(E; Z/p) is a con-
nected coalgebra (possibly non-associative for p = 3). Let v ∈ H0(E; Z/p) be
its counit. Then, by II.7.20, Q0(v) 
= 0 because π0(E) = Z/p. Furthermore,
let ι : S →M(Z/p) represent a generator of π0(M(Z/p)) = Z/p. Considering
the map

f : MSG = MSG ∧ S 1∧ι−−→MSG ∧ (M(Z/p)) = E

we conclude that f∗(v) = u ∈ H∗(MSG,Z/p) with u as in 6.10. Hence, by
6.10, Qi(v) 
= 0 for i > 0 and PΔj (v) 
= 0 for j > 0. Thus, by II.7.24 (and
II.7.25), E is a graded Eilenberg–Mac Lane spectrum. �

Now we consider the action of the Steenrod algebra Ap on the Thom class
uPL ∈ H∗(MSPL; Z/p), p > 2.

6.12. Theorem. Q0(uPL) = 0, Q1(uPL) = 0.

Proof. We have π0(MSPL) = Z. Hence, H0(MSPL) = Z = H0(MSPL),
and thus Q0(u) = 0.

Furthermore, Sullivan established a splitting

BSPL[p] � BSO[p]×B CokerJp,
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where B CokerJp is some mysterious space (a good proof can be found in
Madsen–Milgram [1]). The notation B CokerJp is inspired by the isomor-
phism

πi(B CokerJp) ∼= Coker(J [p] : πi−1(SO[p])→ πi−1(SG[p])).

So, πi(B CokerJp) = 0 for i < 2p2 − 2p − 1, see e.g. Toda [1]. This implies
that Hi(B CokerJp; Z/p) = 0 for i < 2p, and hence

H2p−1(BSPL[p]; Z/p) = H2p−1(BSO[p]; Z/p) = 0.

Thus, Q1(u) = 0 since H2p−1(MSPL; Z/p) = 0. (Another proof of the equal-
ity Q1(u) = 0 can be found in VI.3.32 below). �

6.13. Theorem. If i > 1 then Qi(uPL) 
= 0.

Proof. We use the notation from the proof of 6.10. We have the exact
sequence

πpq−1(G/PL[p]) −→ πpq−1(BSPL[p])
(αPL

G )∗−−−−→ πpq−1(BSG[p])
−→ πpq−2(G/PL[p]).

By 4.27(vi), πpq−1(G/PL[p]) = 0 and πpq−2(G/PL[p]) = Z[p]. Hence, (αPL
G )∗

is an isomorphism because πpq−1(BSG[p]) is finite.
Let f : Spq−1 → BSG yield the element β1 ∈ πpq−2(S) (under the iso-

morphism πi(S) ∼= πi+1(BSG)). Since (αPL
G )∗ is an isomorphism, there exists

˜f : Spq−1 → BSPL with αPL
G
˜f � f . We prove that ˜f can be extended to a

map K → BSPL, and then we can follow the proof of 6.10 and prove that
Qi(uPL) 
= 0.

Elementary obstruction theory implies that ˜f can be extended to some
h : L → BSPL. Given a map M → BSPL, any two of its extensions
h1, h2 : L → BSPL differ by a certain element d(h1, h2) ∈ π(p+1)q(BSPL),
and every element of π(p+1)q(BSPL) can be realized as d(h1, h2) with fixed
h1. So, one can construct h : L→ BSPL such that h extends ˜f and h∗(ι) = 0.
Thus, ˜f can be extended to K. �

Tsuchia [2] has proved the following conjecture of Peterson [1].

6.14. Theorem. The kernel of the homomorphism

ϕ : Ap → H∗(MSPL; Z/p), ϕ(a) = a(uPL),

is Ap(Q0, Q1).

Proof. It is clear that Ap/Ap(Q0, Q1) admits a unique structure of a
coalgebra such that the quotient map q : Ap → Ap/Ap(Q0, Q1) is a homo-
morphism of coalgebras. Moreover, the dual homomorphism of algebras
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q∗ : (Ap/Ap(Q0, Q1))∗ = Z/p [ξi|i > 0]⊗ Λ(τj |j > 1) ⊂ A ∗
p

is monic. Since the vector space of indecomposables of (Ap/Ap(Q0, Q1))∗

has basis {ξi, τj |i > 0, j > 1}, we conclude that the vector space of prim-
itives of Ap/Ap(Q0, Q1) has basis {PΔi, Qj |i > 0, j > 1}. By 6.12, the
coalgebra homomorphism ϕ factors through a coalgebra homomorphism
ψ : Ap/Ap(Q0, Q1)→ H∗(MSPL; Z/p), and we must prove that ψ is monic.
By 6.13, ψ(Qi) 
= 0 for i > 1. Furthermore, considering the forgetful mor-
phism MSO → MSPL, we conclude, by 6.8, that ψ(PΔi) 
= 0. So, ψ is
injective on primitives, and thus, by II.6.14, it is monic. �

6.15.Theorem. The morphism

T (aPL
T OP)[1/2] : MSPL[1/2] −→MST OP [1/2]

is an equivalence. In particular, for every odd prime p the morphism

T (aPL
T OP)[p] : MSPL[p] −→MST OP [p]

is an equivalence. So, theorems 6.12− 6.14 hold if we replace PL by T OP.

Proof. Let a denote

aPL
T OP : BSPL → BST OP .

By 4.27(v), a[1/2] : BSPL[1/2]→ BST OP [1/2] is an equivalence, and so

a∗ : H∗(BST OP ; Z/p)→ H∗(BSPL; Z/p)

is an isomorphism for every odd prime p. Hence, by 5.23(ii),

(Ta)∗ : H∗(MST OP ; Z/p)→ H∗(MSPL; Z/p)

isomorphism, and so, by II.5.18(ii), (Ta)[p] : TBST OP [p] → TBSPL[p] is
an equivalence for every odd prime p. Recall that X [1/2][p] = X [p] for p
odd and X [1/2][2] = X [0]. Thus, by II.5.19(ii), T (a)[1/2] : MSPL[1/2] →
MST OP [1/2] is an equivalence. �

6.16. Remark. Mahowald [1] proved that HZ is a Thom spectrum of some
stable spherical fibration and that HZ/2 is a Thom spectrum of some stable
vector bundle, see IX.5.8 below. In fact, it makes sense to state the following
problem: how can one recognize whether a given spectrum is a Thom spec-
trum? For example, Rudyak [10] proved that the spectra k and kO are not
Thom spectra.
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§7. Manifolds and (Co)bordism

Throughout this book the word “manifold” means “metrizable, separable, tri-
angulable topological manifold with a finite number of components”. Hence,
every manifold belongs to W since every metrizable space does, see Kelley [1].
The boundary of a manifold M is denoted by ∂M . When we write Mn, it
means that the manifold M has dimension n. We consider here topological
(in future TOP), piecewise linear (in future PL), and smooth, i.e., C∞, (in
future DIFF) manifolds. The necessary preliminary information can be found
in Kirby–Siebenmann [1], Munkres [2], [3].

Every DIFF manifold admits a canonical structure of a PL manifold, see
loc. cit., while every PL manifold is a topological manifold for trivial reasons.

Similarly to bundles, we introduce a uniform symbol T in order to speak
about manifolds of these three classes simultaneously. For example, “a T map
of T manifolds” is a map of topological manifolds, or a smooth map of smooth
manifolds, or a PL map of PL manifolds. Furthermore, a T isomorphism
is a homeomorphism of topological manifolds, or a PL isomorphism of PL
manifolds, or a diffeomorphism of smooth manifolds.

In view of a well-known connection between manifolds and ((Rn, 0),Vn)-
bundles, we introduce a uniform notation VT , where VT

n -bundle means
((Rn, 0),On)-bundle, ((Rn, 0),PLn)-bundle, and ((Rn, 0), T OPn)-bundle if
T is DIFF, PL and TOP respectively.

Clearly, every ((Rn, 0),On)-bundle is an ((Rn, 0),DIFFn)-bundle where
DIFFn is the group of self-diffeomorphisms of (Rn, 0). Recall that, con-
versely, every ((Rn, 0),DIFFn)-bundle is equivalent to an ((Rn, 0),On)-
bundle (via assigning to a diffeomorphism its linear part), see loc. cit.

To justify the notation above, we formulate the following obvious fact.

7.1. Proposition. The total space of any VT -object over a T manifold is
a T manifold. �

7.2. Definition. A T embedding (of T manifolds) is a T map i : M →
V such that i(M) is a T submanifold of V and i : M → i(M) is a T
isomorphism. A bordered T embedding is a map i : (M,∂M) → (V, ∂V )
such that the induced maps M → V and ∂M → ∂V are T embeddings
and, moreover, i(m, t) = (i(m), t) for some collars ∂M × I ⊂M,∂V × I ⊂ V,
where m ∈ ∂M, t ∈ I, and i(M \ (∂M × I)) ⊂ (V \ (∂V × I)).

7.3. Definition. Fix any T , and let V = VT .
(a) Let i : (M,∂M) → (V, ∂V ), dimV = dimM + k, be a bordered

T embedding of T manifolds. A T tubular neighborhood of i is a triple
(U, q, ξ) such that U is a neighborhood of i(M), ξ is a Vk-object over M and
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q : (U, i(M)) → (ts ξ, s(M)) is a T isomorphism where s : M → ts ξ is the
zero section of ξ.

(b) A bundle ξ which figures in (a) is called a normal bundle of the
embedding i.

7.4. Construction. Given a tubular neighborhood (U, q, ξ) of a bordered
embedding (M,∂M)→ (V, ∂V ), consider the map

b : U
q−→ ts ξ ⊂ ts ξ• quotient−−−−−→ Tξ.

Notice that Tξ = ts ξ ∪ {∗} where ∗ is the base point of Tξ, and define
c(U,q,ξ) : V → Tξ by setting

c(U,q,ξ)(x) =
{

b(x) if x ∈ U,
∗ otherwise.

Clearly, c(U,q,ξ)(x) can be decomposed as

V
quotient−−−−−→ V/(V \ U) h−→ Tξ.

7.5. Proposition. The map h : V/(V \U)→ Tξ is a homeomorphism. �

7.6. Definition. (a) An n-dimensional microbundle over a space X is a
diagram ξ = {X s−→ E

p−→ X} with the following properties:
(1) ps = 1X ;
(2) For every x ∈ X , there are neighborhoods U of x and V of s(x)

and a homeomorphism hx : U × R
n → V such that phx(u, v) = u

for all (u, v) ∈ U × R
n, hx(u, 0) = s(u) for every u ∈ U .

(b) Two microbundles ξi = {X si−→ Ei
pi−→ X}, i = 1, 2, over X are

equivalent if there are neighborhoods Vi of si(X) in Ei, i = 1, 2, and a home-
omorphism h : V1 → V2 such that the following diagram commutes:

X
s1−−−−→ V1

p1−−−−→ X
∥

∥

∥
h

⏐

⏐




∥

∥

∥

X
s2−−−−→ V2

p2−−−−→ X.

(c) If X,E are T manifolds and ξ = {X s−→ E
p−→ X} is a microbundle,

we say that ξ is a T microbundle if s and p are T maps and hx is (can be
chosen to be) a T isomorphism for every x.

(d) If X,E1, E2 are T manifolds, we say that two T microbundles ξi =
{X si−→ Ei

pi−→ X}, i = 1, 2, over X are T equivalent if there are V1, V2 and
h such as in (b), but the inclusions Vi ⊂ Ei are required to be T maps and
h is required to be a T isomorphism.
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7.7. Theorem. (i) Every VT -bundle over a T manifold is a T microbundle.
(ii) Every T microbundle over a T manifold is equivalent to a VT -

bundle, and this VT -bundle is unique up to isomorphism.

Proof. (i) This is trivial.
(ii) This is difficult. We give the references. If T is TOP, this is proved in

Kister [1], Siebenmann–Guillou–Hahl [1]. If T is PL, resp. DIFF, the proof
can be found in Kuiper–Lashof [1], resp. Milnor [7]. All these cases are also
considered in Kirby–Siebenmann [1]. �

7.8. Theorem. Given a bordered T embedding i : (M,∂M)→ (V, ∂V ), there
exists N such that the embedding

(M,∂M) i−→ (V, ∂V )
j−→ (V × R

N , ∂V × R
N ), j(v) = (v, 0),

admits a tubular neighborhood.

Proof. We refer the reader to Kirby–Siebenmann [1]. In fact, there the
existence of a neighborhood isomorphic to the total space of a microbundle
is proved, but, because of 7.7(ii), the required result follows. �

We set R
N
+ := {(x1, . . . , xN ) ∈ R

N |xN ≥ 0}.

7.9. Theorem (the Whitney Theorem). Every T manifold Mn admits a
bordered T embedding (M,∂M)→ (RN+n

+ , ∂R
N+n
+ ) for some N = N(M).

Proof. The proof can be found e.g. in Munkres [3] or Dubrovin–Novikov–
Fomenko [1] for T = DIFF, but the proof for any T can be done in a similar
way. �

7.10. Definition. Given a T manifold M , a tangent bundle τM of M is
a VT -bundle which is equivalent to the microbundle M d−→ M ×M p1−→ M
where d is the diagonal, d(m) = (m,m).

7.11. Proposition. Let ξ be a normal VT -bundle of a bordered T embedding
i : (M,∂M)→ (V, ∂V ). Then the VT -bundles i∗τV and τM ⊕ ξ over M are
equivalent.

Proof. Do it as an exercise, or see Milnor [7]. �
Of course, if M is a smooth manifold, then τM is equivalent to the usual

tangent bundle of M (prove it as an exercise, or see Milnor [7]). Furthermore,
if i : M → V is a smooth embedding of smooth manifolds, then ξ is equivalent
to the quotient bundle (i∗τV )/τM .

7.12. Definition. A normal bundle of a T manifold Mn is a pair (νN , ω)
where νN is a normal VT -bundle of any bordered T embedding (M,∂M)→
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(RN+n
+ , ∂R

N+n
+ ) and ω : νN → γNVT is a classifying morphism for νn. A stable

normal bundle of M is a stable VT -object ν = νM of the form (νN )st =
(νN , ω)st, where (νN , ω) is a normal bundle of M .

Clearly, if M is closed then there is no essential difference between em-
beddings M → R

N and bordered embeddings M → R
N
+ . Because of this, we

shall consistently treat a normal bundle of a closed manifold M as a normal
bundle of an embedding M → R

N .

7.13. Theorem. Let (νN1 , ω1) and (νN
′

2 , ω2) be two normal bundles of a
T -manifold M . Then the VT -bundles νN1 and νN

′

2 are stably equivalent. In
particular, the stable normal bundle of M is uniquely defined up to equiva-
lence.

Proof. This follows from 7.11. �

7.14. Proposition. If (νN , ω) is a normal bundle of M then (ν|∂M,ω|∂M)
is a normal bundle of ∂M (provided ∂M 
= ∅).

Proof. Let (U, q, νN ) be a tubular neighborhood of a bordered embedding
(M,∂M)→ (RN+n

+ , ∂R
N+n
+ ). Then q(U ∩ ∂R

N+n
+ ) ⊂ ts(νN |∂M), and so we

get a map
q′ : U ∩ ∂R

N+n
+ → ts νN |∂M, q′(x) := q(x).

Clearly, (U ∩∂R
N+n
+ , q′, νN |∂M) is a tubular neighborhood of i|∂M : ∂M →

R
N+n−1 = ∂R

N+n
+ . Finally, it is obvious that ω|∂M classifies νN |∂M . �

7.15. Definition. (a) The following special case of 7.4 turns out to be very
important. Let Mn be a closed manifold, and let (U, q, νN ) be a tubular
neighborhood of an embedding i : Mn → R

N+n. We regard SN+n as the
one-point compactification of R

N+n, and we consider (U, q, νN ) as a tubular
neighborhood of the embedding M i−→ R

N+n ⊂ SN+n. The map

cN := c(U,q,νN ) : SN+n → TνN

as in 7.4 is called the Browder–Novikov map.
(b) Given data as in (a), let ν = (νN )st. We define a morphism

c : Snspectrum = Σ−NΣ∞SN+n
space

Σ−NΣ∞cνN−−−−−−−−→ Σ−NΣ∞TνN = Tν

of spectra, where the last equality follows from 5.16. We call this morphism
c the Browder–Novikov morphism.

(c) Let Dk be the standard k-dimensional disk. Similarly to above, given
a bordered embedding i : (M,∂M) → (RN+n

+ , ∂R
N+n
+ ), we can construct

a Browder–Novikov map (DN+n, ∂DN+n) → (TνNM , T (νN |∂M)), we leave
details to the reader.
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7.16. Data. Let M be a compact T manifold, let f : M → Y be a map, and
let ξ be a VT -bundle over a CW -space Z. Suppose that ts ξ is an open subset
of the space Y . Considering the inclusion Z

sξ−→ ts ξ ⊂ Y , set N = f−1Z and
define g : N → Z, g(n) := f(n), n ∈ N . We set U := f−1(ts ξ), and we denote
by i : N →M the inclusion.

7.17. Definition. Given data 7.16, the map f : M → Y is called transverse
to ξ if the following hold:

(i) N is a T submanifold of M .
(ii) There is a tubular neighborhood of i of the form (U, q, g∗ξ) such that

the following diagram commutes:

U
f |U−−−−→ Y

q

⏐

⏐




�

⏐

⏐

⋃

ts(g∗ξ)
ts(Ig,ξ)−−−−−→ ts ξ.

7.18. Theorem. We assume data 7.16. Suppose that T is TOP and
dimM 
= 4, or T is PL, or T is DIFF. Then every map f ′ : M → Y
is homotopic to a map f : M → Y which is transverse to ξ. Moreover, if
A ⊂ B ⊂M with A closed and B open and if f ′|B is transverse to ξ, then f
can be chosen such that f ′|A = f |A.

Proof. If T is DIFF, this can be deduced from the well-known Thom
Transversality Theorem. If T is PL, this was proved by Williamson [1] (for
microbundles). Both these cases are also considered in Kirby–Siebenmann [1].
Furthermore, Kirby–Siebenmann [1] proved the theorem when T is TOP
and dimM 
= 4 
= dimM − dim ξ. Scharlemann [1] (cf. also Matsumoto [1])
proved that the theorem holds for dimM − dim ξ = 4 if there exists a four-
dimensional almost parallelizable topological manifold having signature 8,
and such a manifold was constructed by Freedman [1]. �

7.19. Definition. Fix any T and let V = VT . Let ϕ : B → BV be a
(structure) map. Roughly speaking, a (B,ϕ)-structure on a manifold is a
(B,ϕ)-structure on its stable normal bundle. We pass to a rigorous definition.

(a) A strict (B,ϕ)-structure on M is a tuple i = (i, U, q, νN , ω, [a,H ])
where i : (M,∂M)→ (RN+n

+ , ∂R
N+n
+ ) is a T bordered embedding, (U, q, νN)

be a T tubular neighborhood of i, ω is a classifying morphism for νN and
[a,H ] is a (B,ϕ)-structure on νNst = (νN , ω)st, see 4.9.

(b) Given a strict (B,ϕ)-structure i = (i, U, q, νN , ω, [a,H ]) on M , we
define its suspension σi to be a strict (B,ϕ)-structure

(i′, U ′, q′, νN ⊕ θ1, ω̂, [a′H ′])
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where i′ is the embedding

(M,∂M) i−→ (RN+n
+ , ∂R

N+n
+ ) ⊂ (RN+n

+ × R, ∂R
N+n
+ × R)

= (RN+n+1
+ , ∂R

N+n+1
+ ),

U ′ := U ×R, q′ := q× 1 : U ×R→ (ts νN )×R = ts(νN ⊕ θ1), ω̂ : νN ⊕ θ1 →
γN+1
V is the classifying morphism as in 4.14(b), and [a′, H ′] = Kbsω[a,H ] as

in 4.13.
(c) Let ik = (ik, Uk, qk, νNk , ωk, [ak, Hk]), k = 0, 1 be two (B,ϕ)-structures

onM . We say that i0 and i1 are equivalent if there is a morphism h : νN0 → νN1
over M and a family Jt : (RN+n

+ , ∂R
N+n
+ )→ (RN+n

+ , ∂R
N+n
+ ), t ∈ I with the

following properties:
(1) The map J : (RN+n

+ , ∂R
N+n
+ )× I → (RN+n

+ , ∂R
N+n
+ )× I, J(x, t) =

(Jt(x), t), is a T isomorphism;
(2) J1(U0) = U1, J1(i0(m)) = i1(m) for every m ∈M ;

(3) The composition ts νN0
(q0)−1

−−−−→ U0
J1−→ U1

q1−→ ts νN1 coincides with
tsh;

(4) ω0 = ω1h : νN0 → γNV ;
(5) the (B,ϕ)-structure [a1, H1] on (νN0 )st is induced by h from the

(B,ϕ)-structure [a0, H0] on (νN0 )st, as it is defined in 4.12(ii), i.e.,
[a′H ′] = h![a,H ].

(d) We say that two strict (B,ϕ)-structures i0 and i1 are stably equivalent
if there are non-negative integers k, l such that the (B,ϕ)-structures σki0 and
σli1 are equivalent. (Here, of course, σ0i = i and σki = σσk−1i.) We denote
by [i] the class of stable equivalence of the strict (B,ϕ)-structure i.

(e) A (B,ϕ)-structure on M is a class of stably equivalent strict (B,ϕ)-
structures on it. A (B,ϕ)-manifold is a manifold equipped with a (B,ϕ)-
structure.

7.20. Constructions. (a) Let a (B,ϕ)-structure on M be represented by a
strict (B,ϕ)-structure i = (i, U, q, νN , ω, [a,H ]), and let j : ∂M →M be the
inclusion. We define the induced (B,ϕ)-structure

i′ = (i′, U ′, q′, νN |∂M,ω′, [a′, H ′])

on ∂M as follows: (U ′, q′, νN |∂M) is the tubular neighborhood defined in the
proof of 7.14, ω′ := ω|∂M , and [a′, H ′] := j![a,H ], as it is defined in 4.12.

(b) For every strict (B,ϕ)-structure i = (i, U, q, νN , ω, [a,H ]) on M , there
exists a strict (B,ϕ)-structure i′ = (i′, U ′, q′, νN |∂M,ω′, [a′, H ′]) such that
[i] = [i′] and U ′ ⊂ {(x1, . . . , xN+n) ∈ R

N+n
+

∣

∣ xN+n > 0} (prove this).
(c) Given two (B,ϕ)-manifolds M and M ′ of the same dimension n, we

equip the disjoint union M 	 M ′ with the following (B,ϕ)-structure. Let
i = (i, U, q, νN , ω, [a,H ]) (resp. i′ = (i′, U ′, q′, νN

′ |∂M,ω′, [a′, H ′])) represent
a (B,ϕ)-structure on M (resp. on M ′). Without loss of generality we can
assume that N ′ = N and that U ⊂ {(x1, . . . , xN+n) ∈ R

N+n
+

∣

∣ x1 > 0},
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U ′ ⊂ {(x1, . . . , xN+n) ∈ R
N+n
+

∣

∣ x1 < 0}. We define j : M 	M ′ → R
N+n
+ by

requiring j|M = i, j|M ′ = i′. Then we get a strict (B,ϕ)-structure (j, U ∪U ′,
etc.) on M 	M ′.

The construction 7.20(a) can be generalized. If Mm is a submanifold of V n

with a trivial normal bundle ν = νMV then every trivialization of ν yields an

isomorphism νM ∼= νV |M ⊕ ν. (This is more or less clear, but it is not so easy

to write it down neatly.) Then, in view of 4.11–4.14, every (B,ϕ)-structure on V
yields a (B,ϕ)-structure on M . In fact, in 7.20(a) we considered the (equivalence

class of a) trivialization given by the inner normal.

7.21. Definition. Let a (B,ϕ)-structure on M be represented by a strict
(B,ϕ)-structure i := (i, U, q, νN , ω, [a,H ]). Consider the suspension σi =
(i′, U ′, q′, νN ⊕ θ, ω̂, [a,H ]), see 7.19(b). The morphism 1 ⊕ e as in 4.14(a)
defines the opposite (B,ϕ)-structure (1 ⊕ e)![a,H ] on νN ⊕ θ, and we set
−σi := (i′, U ′, q′, νN ⊕ θ, ω̂, (1 ⊕ e)![a,H ]). The (B,ϕ)-structure on M given
by −σi is called the opposite (B,ϕ)-structure to that given by i.

The opposite (B,ϕ)-structure to [i] is denoted by −[i]. Furthermore, given
a (B,ϕ)-manifold M , we denote by −M the (B,ϕ)-manifold which coincides
with M as a manifold but has the opposite (B,ϕ)-structure.

We leave it to the reader to prove that opposite to opposite is the original
(B,ϕ)-structure, i.e., that “to be opposite” is a symmetric relation.

An example of the opposite structure is the opposite orientation, see V.1.1.
We recommend it to the reader to keep it in the mind whenever we discuss
opposite structures.

Consider a closed (B,ϕ)-manifold M and choose a representing strict
(B,ϕ)-structure i0 = (i, U, q, νN , ω, [a,H ]). Here we assume that i is an em-
bedding i : M → R

N+n and that U ⊂ {(x1, . . . , xN+n) ∈ R
N+n|xN+n > 0}.

Let (u1, . . . , uN+n) be the coordinates of a point u ∈ U . We define a bordered
embedding j : U × I → {x ∈ R

N+n+1
∣

∣ xN+n+1 ≥ 0} by setting

j(u, t) = (u1, . . . , uN+n−1, uN+n cosπt, uN+n sinπt), t ∈ I.
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Furthermore, we define a tubular neighborhood (j(U × I), r, νN × 1I) of
j|(i(M)× I) by setting

r(j(u, t)) := (a(u), t) ∈ ts(νN )× I = ts(νN × 1I).

Finally, we define the morphism ψ : νN×1I → νN , tsψ(x, t) = x. Then we
get a strict (B,ϕ)-structure (j, j(U × I), r, νN × 1I , ωψ, ψ![a,H ]) on M × I.
Hence, by 7.20, this (B,ϕ)-structure yields a strict (B,ϕ)-structure i1 on
M = M × {1}.

7.22. Proposition. The (B,ϕ)-structures i0 and i1 on M are opposite to
one another.

Proof. We define Jt : R
N+n+1 → R

N+n+1 by setting

Jt(x1, . . . , xN+n, xN+n+1) := (x1, . . . , xN+n−1, xN+n cosπt, xN+n+1 sinπt),

and we define h : ν0 ⊕ θ1 → ν1 ⊕ θ1 to be the unique morphism with the
property 7.19(c,3). It is easy to see that {Jt, h} gives an equivalence between
σi1 and −σi0. �

7.23. Construction. Let ϕ : B → BVT be a structure map. Given a (B,ϕ)-
manifold M and a T isomorphism f : L → M , we can canonically equip L
with a (B,ϕ)-structure. Namely, the embedding i : M → R

N+n
+ yields the

embedding if : L→ R
N+n
+ , etc. We denote this (B,ϕ)-structure on L by f ![i]

where [i] is the (B,ϕ)-structure on M .
Furthermore, given a T isomorphism f : L→M of (B,ϕ)-manifolds, we

say that f is a (B,ϕ)-isomorphism of (B,ϕ)-manifolds if f ![iM ] = [iL].

7.24. Construction. Given two compact n-dimensional (B,ϕ)-manifolds
L,M , let

f : ∂L→ ∂M

be a T isomorphism such that f ![i∂M ] = −[i∂L]. Recall that L∪fM admits a
canonical structure of a T manifold. We equip L∪fM with a (B,ϕ)-structure
as follows. Take strict (B,ϕ)-structures iL = (i0, U0, q0, ν

N
0 , [a0, H0]) and

−iM = (i1, U1, q1, ν
N
1 , [a1, H1]). Since f ![i∂L] = −[i∂M ], we can assume that

i0|∂L = i1|∂M . Furthermore, we assume that, for some collar ∂L× I of ∂L,
we have i0(l, t) = (i0(l), txN+n), i.e., L meets R

N+n−1 = ∂R
N+n
+ orthogo-

nally. Similarly for i1. We can also assume that U0 ∩ ∂R
N+n
+ = U1 ∩ ∂R

N+n
+

and q0|∂L : U0 ∩ ∂R
N+n
+ → ts(ν0|∂L) coincides with q1|∂M : U1 ∩ ∂R

N+n
+ →

ts(ν1|∂M).
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Consider the map

χ : R
N+n → R

N+n, χ(x1, . . . , xN+n) = (x1, . . . ,−xN+n)

and define the embedding i : L∪f M → R
N+n by setting i(l) = i0(l) if l ∈ L

and i(m) = χi1(m) if m ∈M . Now we can regard i as a T embedding, and
the (B,ϕ)-structures on L and M yield a certain (B,ϕ)-structure on L∪fM .
In other words, the (B,ϕ)-structure on L∪fM is the result of gluing the ones
on L and M , and we are able to make a gluing because f ![i∂M ] = −[i∂L].

7.25. Definition. (a) A singular (B,ϕ)-manifold (Mn, f) of dimension n in
a space X is a map f : Mn → X , where Mn is a compact (B,ϕ)-manifold.
The singular manifold (M, f) is called closed if M is closed. We say that a
closed singular (B,ϕ)-manifold f : Mn → X bounds if there is a singular
manifold F : V n+1 → X , where V is a (B,ϕ)-manifold such that ∂V = M as
(B,ϕ)-manifolds and F |M = f . In this case we write ∂(V, F ) = (M, f). We
say that two closed singular (B,ϕ)-manifolds e : L→ X and f : M → X are
(B,ϕ)-bordant if e	 (−f) : L	 (−M)→ X bounds. Here (−f) : (−M)→ X
coincides with f as a map of spaces, but −M is equipped with the opposite
(B,ϕ)-structure toM . A singular manifold (V, F ) with ∂(V, F ) = (L	−M, e	
−f) is called a membrane or a bordism between (L, e) and (M, f).

(b) The relation “to be bordant” is called also the bordism relation. This
is an equivalence relation (prove this; the reflexivity follows from 7.22). The
(B,ϕ)-bordism class of a closed singular (B,ϕ)-manifold f : M → X is
denoted by [M, f ]. When X is a point we write just [M ] rather then [M, f ].
The set of all n-dimensional bordism classes in X is called an n-dimensional
(B,ϕ)-bordism set of X and is denoted by Ω(B,ϕ)

n (X), cf. Atiyah [1].

7.26. Proposition. The operation 	 of disjoint union of singular manifolds
induces an abelian group structure on the set Ω(B,ϕ)

n (X).

Proof. It is easy to see that 	 induces a well-defined associative and com-
mutative operation + on Ω(B,ϕ)

n (X), [L, e] + [M, f ] := [L 	M, e 	 f ].
Any singular (B,ϕ)-manifold which bounds can play the role of the

neutral element. Indeed, let (A, o) bound. Consider a singular manifold
f : M → X and recall that, by 7.22, (M, f) 	 (−M,−f) bounds. So,
(−M,−f)	 (M, f)	 (A, o) bounds, i.e., (M, f) is bordant to (M, f)	 (A, o),
i.e., [M, f ]+ [A, o] = [M, f ], i.e., [A, o] is the neutral element 0. Furthermore,
since (−M,−f)	(M, f)	(A, o) bounds, we conclude that [−M,−f ]+[M, f ] =
0, i.e., we find the opposite element for every [M, f ].

It remains to find a singular manifold (A, o) which bounds. Consider the
disk D = Dn+1 and define O : D → X to be a constant map. Since the stable
normal bundle of D is classified by a constant map D → BV , D admits a
(B,ϕ)-structure, and so (D,O) converts into a singular (B,ϕ)-manifold. Now,
set (A, o) := ∂(D,O) = (Sn, constant).
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Thus, Ω(B,ϕ)
n (X) gets the structure of an abelian group. �

Frequently one chooses the bordism class of the empty set as the neutral ele-

ment, but I did not do it since I want to avoid a discussion about structures on the

empty manifold.

According to 5.12(f), there is a Thom spectrum T (B,ϕ). The following
theorem connects homotopy theory and geometry and plays the pivotal role
in algebraic topology.

7.27. Theorem (the Pontrjagin–Thom Theorem). There is a natural iso-
morphism Ω(B,ϕ)

n (X) ∼= T (B,ϕ)n(X).

Proof. Throughout the proof Sk denotes the space (not the spectrum),
while S denotes the sphere spectrum.

We construct a function Θ : Ω(B,ϕ)
n (X)→ T (B,ϕ)n(X) and prove that it

is an isomorphism. Recall that

T (B,ϕ)n(X) = πn(T (B,ϕ) ∧X+).

Let f : Mn → X be a closed singular (B,ϕ)-manifold in X , and let
the (B,ϕ)-structure on M be represented by a strict (B,ϕ)-structure i =
(i, U, q, νN , ω, [a,H ]); here we consider i as an embedding Mn ⊂ R

N+n. By
5.15, the (B,ϕ)-prestructure (a,H) on ν = νNst yields a morphism

TH(a) : Tν → T (B,ϕ),

and its homotopy class depends only on the (B,ϕ)-structure [a,H ].
Let Δ : Tν → Tν∧M+ be the morphism as in 5.36, and let c : ΣnS → Tν

be the Browder–Novikov morphism as in 7.15(b). The composition

β(M,f) : ΣnS c−→ Tν
Δ−→ Tν ∧M+ TH (a)∧f+

−−−−−−→ T (B,ϕ) ∧X+

gives us an element [β(M,f)] ∈ T (B,ϕ)n(X), and we set Θ[M, f ] = [β(M,f)].
We prove that stably equivalent strict (B,ϕ)-structures on (M, f) give

the same element [β(M,f)]. Clearly, βσi
(M,f) = βi

(M,f). Hence, we must prove
that equivalent strict (B,ϕ)-structures on (M, f) give homotopic morphisms
ΣnS → T (B,ϕ). So, let (Jt, h) as in 7.19(c) give an equivalence between strict
(B,ϕ)-structures i and i′ on M . Define J : R

N+n × I → R
N+n, J(x, t) :=

Jt(x, t). Consider the bordered embedding

j : M × I → R
N+n × I, j(m, t) = (Jt(m), t)

and its tubular neighborhood (U, q, νN × 1I) where

U := J(U × I), q(J(u, t)) = (q(u), t) ∈ (ts νn)× I = ts(νN × 1I).
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Now, following 7.4, and 7.15(a), construct a map u′′ : SN+n×I → T (νN×1I)
(by collapsing the complement of U). Clearly, u′′ can be decomposed as

SN+n × I quotient−−−−−→ SN+n ∧ I+ u′
−→ T (νN × I).

Furthermore, the projection νN×1I → νN induces a map T (νN×I)→ TνN ,
and we get the map

u : SN+n ∧ I+ u′
−→ T (νN × I)→ TνN .

Now we consider the morphism

Σ−NΣ∞u : ΣnS ∧ I+ = Σ−NΣ∞(SN+n ∧ I+) Σ∞u−−−→ Σ−NΣ∞TνN ∼= Tν,

the last isomorphism is given by 5.16. Finally, we define

E : ΣnS ∧ I+ Σ−NΣ∞u−−−−−−→ Tν
Δ−→ Tν ∧M+ TH(a)∧f+

−−−−−−→ T (B,ϕ) ∧X+.

It is easy to see that E is a homotopy between βi
(M,f) and βi′

(M,f).
We prove that Θ is well-defined, i.e., that [β(M,f)] = [β(L,e)] if (M, f) and

(L, e) are (B,ϕ)-bordant. Clearly, [β(M,f)	(N,g)] = [β(M,f)] + [β(N,g)]. So, it
suffices to prove that [β(M,f)] = 0 if (M, f) bounds.

Let (M, f) = ∂(V, f) as (B,ϕ)-manifolds. Choose a representing strict
(B,ϕ)-structure on V and consider the induced (B,ϕ)-structure on M . Let
νNV , resp. νNM , be the corresponding normal bundle of V , resp. M ; recall that
νNM = νNV |M . Then, by 7.15(c), we have the commutative diagram

SN+n cN−−−−→ T (νNM )

∩
⏐

⏐


 lN

⏐

⏐



∩

DN+n+1 −−−−→ T (νNV )

where cN is the Browder–Novikov map and lN is induced by the inclusion
νNM ⊂ νNV . In particular, the map lNcN is inessential. Let νM := (νNM )st
and νV := (νNV )st. Then the above diagram induces the following homotopy
commutative diagram in S :

ΣnS c−−−−→ TνM −−−−→ TνM ∧M+ −−−−→ T (B,ϕ) ∧X+

l

⏐

⏐



∩

⏐

⏐



∩

∥

∥

∥

TνV −−−−→ TνV ∧ V + −−−−→ T (B,ϕ) ∧X+;

here l = Σ−NΣ∞lN , the top line is β(M,f) and the morphisms in the bottom
line are similar to the corresponding morphisms in the top line. Now, we
conclude that β(M,f) is inessential since lc = Σ−NΣ∞(lNcN ) is.
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So, we have constructed a well-defined map

Θ : Ω(B,ϕ)
n (X)→ T (B,ϕ)n(X).

It is easy to see that Θ is a homomorphism.
Now we prove that Θ is an isomorphism. Firstly, we prove that Θ is epic.

Let BVn be the telescope of the finite sequence {BV1 → · · ·
rVn−1−−−→ BVn},

and let Bk be the maximal CW -complex contained in ϕ−1(BVk). We set
ζk := ϕ∗

kγ
k where γk is the universal Vk-bundle over BVk, and ϕk : Bk →

BVk is a restriction of ϕ. Note that ts(ζk × θ0) is a neighborhood of Bk ×X
in Tζk ∧X+. Clearly, T (B,ϕ) = {Tζk}, cf 5.12(a,b), 5.15.

Let x ∈ T (B,ϕ)n(X) be represented by h′ : SN+n → TζN ∧ X+, N =
N(x). By 7.18, we can deform h′ into a map h : SN+n → TζN ∧X+ which
is transverse to ζN × θ0. We set M := h−1(BN ×X) and consider the map

f = fh : M
̂h−→ BN ×X

p2−→ X

where ̂h(m) = h(m) for every m ∈ M . Furthermore, we set g := p1f :
M → BN . Finally, we notice that (ζN )st gets a canonical (B,ϕ)-prestructure
(ϕv,G) where v : BN → B is the inclusion and G(b, t) = ϕv(b) for every
(b, t) ∈ BN × I.

By 7.17(i), M is a T -manifold. Now we equip M with the following strict
(B,ϕ)-structure i = (i, U, q, g∗ζN , ω, [a,H ]):

i : M ⊂ R
N+n = SN+n \ {∞} is given by the inclusion M ⊂ SN+n;

(U, q, g∗ζN ) is the tubular neighborhood provided by 7.17(ii);
ω := Ig,ζNIϕN ,γN : g∗ζN → γN ;

[a,H ] := I!
g,ζN [ϕv,G], see 4.12(ii).

So, f : M → X turns into a singular (B,ϕ)-manifold in X . Clearly,
Θ[M, f ] = x, i.e., Θ is an epimorphism.

We prove that Θ is monic, but we need some preliminaries. Let (M, f)
be a closed singular (B,ϕ)-manifold in X , and let i = (i, U, q, f∗ζN , ω, [a,H ])
be a strict (B,ϕ)-structure on M . Given k ≥ N , we denote by νk the bundle
νN ⊕ θk−N , i.e., the normal bundle of M with respect to σk−ni. Now, given
a morphism ψ = ψk : νk → ζk of Vk-bundles, we have the map

(7.28) bψ = bψ,i : Sk+n ck−→ Tνk
Δk

−−→ Tνk ∧M+ ψ∧f+

−−−−→ Tζk ∧X+

where ck is the Browder–Novikov map and Δk is a map as in 5.36.

7.29. Lemma. Given a closed singular (B,ϕ)-manifold f : Mn → X, there
exists a natural number k and a morphism ψ : νk → ζk such that the mor-
phism β(M,f) : ΣnS → T (B,ϕ) ∧X+ is homotopic to the morphism
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ΣnS = Σ−kΣ∞Sn+k Σ−kΣ∞bψ−−−−−−→ Σ−kΣ∞(Tζk ∧X+) ik−→ T (B,ϕ) ∧X+

where ik is the morphism II.(1.4). Moreover, if β(M,f) is an inessential mor-
phism then k and ψ can be chosen so that bψ is an inessential map.

Proof. We have the strict (B,ϕ)-structure i = (i, U, q, νN , ω, [a,H ]). Given
k ≤ N , we define ωk : νk → γk to be the composition

νk = νN ⊕ θk−N ω⊕1−−−→ γN ⊕ θk−n ρN⊕1−−−→ γN+1 ⊕ θk−N−1 −→ · · ·
−→ γk−1 ⊕ θ1 ρk−1−−−→ γk,

and we set fk := bsωk. Fix a (B,ϕ)-structure on ν = νNst = νkst.
Since M is compact, and since

⋃

Bn = B, there is a number k and maps
ak : M → Bk and Hk : M × I → BVk with the following properties:

(1) The composition M ak−→ Bk ⊂ B coincides with a;
(2) The composition M × I Hk−−→ BVk → BV coincides with H ;
(3) H is a homotopy between ϕkak and fk.
We define r : M×I →M×I, r(m, t) = (m, 1). So,Hkr = fk◦p1 : M×I →

BVk, and hence we have the morphism

u : νk × 1I
Fωk−−→ (fk◦p1)∗(γk) = r∗H∗

kγ
k

I
r,H∗

k
γk

−−−−−→ H∗
kγ

k.

Since Hk|(M ×{0}) = ϕkak, the restriction of u to the bundles over M ×{0}
yields the morphism

ψ : νk = νk × {0} −→ a∗kϕ
∗
kγ

k = a∗kζ
k

I
ak,ζ

k

−−−−→ ζk.

It is clear that β(M,f) has the form

ΣnS = Σ−kΣ∞Sk+n
Σ−kΣ∞bψ−−−−−−→ Σ−kΣ∞(Tζk ∧X+) ik−→ T (B,ϕ) ∧X+

with bψ as in (7.28).
Now we prove the last assertion (about inessential morphisms). Recall

that πn(T (B,ϕ) ∧X+) = limr→∞ πn+r(Tζr), and, by the above, the homo-
morphism

πn+k(Tζk)→ lim
r→∞

πn+r(Tζr)

maps [bk] = [bψ,i] ∈ πn+k(Tζk) to [β(M,f)]. Let rk : BVk → BVk+1 be the
inclusion. Given ak and Hk as above, we set ak+1 := rkak and Hk+1 := rkHk.
Then the pair (ak+1, Hk+1) yields a new morphism ψ = ψk+1 : ζk+1 → γk+1,
and we get an element bk+1. Clearly, the homomorphism

πn+k(Tζk)→ πn+k+1(Tζk+1)



§7. Manifolds and (Co)bordism 289

maps [bk] to [bk+1]. So, we have a sequence

[bk] �−→ [bk+1] �−→ · · · �−→ [bm] �−→ · · ·

where each [bm] maps to β(M,f) under the homomorphism

πn+m(Tζm)→ lim
r→∞

πn+r(Tζr).

Thus, if [β(M,f)] = 0 then [bm] = 0 for m large enough. �
We continue the proof of the theorem. We prove that Θ is monic, i.e., we

suppose that [β(M,f)] = 0 and prove that (M, f) bounds. Consider any map
b = bψ : Sn+k → Tζk as in 7.29; by 7.29, we can assume that b is inessential,
i.e., b can be extended to a map g′ : Dn+k+1 → Tζk. We regard Dn+k+1 as
Sk+n × I/Sk+n × {1}, and we let [x, t] ∈ Dn+k+1 be the equivalence class of
(x, t) ∈ Sk+n×I. Given ε ∈ (0, 1), we can assume that g′[x, t] = g′[x, 0] = b(x)
for every (x, t) ∈ Sn+k × [0, ε). Then, clearly, g′

∣

∣ Sk+n × [0, ε) is transverse
to ζk×θ0. Hence, by 7.18, g′ is homotopic to a map g : Dn+k+1 → Tζk ∧X+

which is transverse to ζk × θ0 and , moreover, g
∣

∣ Sk+n = g′
∣

∣ Sk+n = b. We
set V := g−1(BK ×X) and define

F : V
ĝ−→ Bk ×X

p2−→ X, ĝ(v) := g(v) for every v ∈ V.

Now, asserting as in the proof of the epimorphicity of Θ, we turn (V, F ) into a
certain (B,ϕ)-manifold. Clearly, ∂(V, F ) = (M, f) as (B,ϕ)-manifolds. �

Theorem 7.27 shows that Ω(B,ϕ)
∗ can be considered as a homology theory.

Namely, we can set Ω(B,ϕ)
n (X,A) := Ω(B,ϕ)

n (X/A) = πn(T (B,ϕ)∧(X/A)), etc.
Geometrically, the group Ω(B,ϕ)

n (X,A) can be described as follows. A closed
singular (B,ϕ)-manifold in a pair (X,A) is a map f : (M,∂M) → (X,A)
of a compact (B,ϕ)-manifold M . Of course, ∂M = ∅ if A = ∅. We say that
a closed singular manifold f : (M,∂M) → (X,A) bounds if there exists a
map F : V → X such that M is a (B,ϕ)-submanifold of ∂V , F |M = f ,
and F (∂V \ M) ⊂ A. Now, similarly to 7.25, we can define the bordism
classes [M, f ], which form a group Ω(B,ϕ)

n (X,A). Furthermore, we define ∂ :
Ω(B,ϕ)
n (X,A) → Ω(B,ϕ)

n−1 (A) by setting ∂[M, f ] = [∂M, f |∂M ]. One can prove
that {Ω(B,ϕ)

n , ∂} is a homology theory. See the details in Conner [1], Stong [3].

7.30. Definition. The homology theory T (B,ϕ)∗(−) = Ω(B,ϕ)
∗ (−) is called

a (B,ϕ)-bordism theory. The dual cohomology theory T (B,ϕ)∗(−) is called
a cobordism theory.

If ϕ : B → BV is a multiplicative structure map (see 4.22), then there
is the following pairing T (B,ϕ) ∧ T (B,ϕ) → T (B,ϕ). Set γ = γV and λ :=
ϕ∗γV . Now, the homotopy H yields the following equivalence over B

μ∗
B(λ) = μ∗

Bϕ
∗γ �B (ϕ× ϕ)∗μ∗(γ) = (ϕ× ϕ)∗(γ ∧h γ) = λ ∧h λ,
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and we get a pairing

μ : T (B,ϕ) ∧ T (B,ϕ) = Tλ ∧ Tλ � T (λ ∧h λ)
TμB−−−→ Tλ = T (B,ϕ),

where the equivalence is given by 5.21(i). This pairing induces a pairing

T (B,ϕ)m(X)⊗ T (B,ϕ)n(Y )→ T (B,ϕ)m+n(X × Y ),

i.e., by 7.27, a pairing

Ω(B,ϕ)
m (X)⊗ Ω(B,ϕ)

n (Y )→ Ω(B,ϕ)
m+n (X × Y ).

We leave it to the reader to prove that this pairing has the form

{f : M → X} ⊗ {g : N → Y } �−→ {f × g : M ×N → X × Y }.

7.31. Examples. (a) (Pontrjagin, 1937, the available publication is Pontr-
jagin [2]). Let B be a contractible space. Then T (B,ϕ) � S, i.e., the corre-
sponding bordism group is just Π∗(X) for every space X . Geometrically, a
(B,ϕ)-manifold is just a manifold with an equivalence class of trivializations
of its normal bundle. Such manifolds are called framed manifolds.

Pontrjagin used (proved) 7.27 with T = DIFF in order to compute π∗(S),
and this was the first application of (co)bordism.

(b) (Milnor [4], Novikov [1]). There is a Thom spectrum T (BU , R) where
R : BU → BSO is the realification. Geometrically, (BU , R)-manifold is
a smooth manifold with an equivalence class of complex vector bundle
structures on νN , N >> dimM . Such a manifold is called a stably almost
complex manifold. The corresponding (co)bordism group is called complex
(co)bordism.

The spectrum T (BU , R) is usually denoted by MU and can also be
described as follows. Let MUn be the Thom space Tγn

C
of the univer-

sal n-dimensional complex vector bundle γn
C

over BUn. Let rn = rUn :
BUn → BUn+1 classify the bundle γn

C
⊕ θ1

C
. Without loss of general-

ity we can assume that rn is a CW -embedding. We consider the map
Trn := TIrn,γn+1 : S2MUn → MUn+1. Then MU = {(MU)n, sn}, where
(MU)2n = MUn, (MU)2n+1 = SMUn and s2n = 1SMUn , s2n+1 = Trn.

Following 5.22, one can prove that MU is a ring spectrum.
(c) Let ϕ : BSV → BV ,V ≤ T OP , be the direct limit of the two-sheeted

coverings BSVn → BVn, see the text after 4.28. Then a V-object ξ admits a
(B,ϕ)-structure iff it is orientable in the sense of 5.6. It is easy to see that in
this case a (B,ϕ)-manifold is in fact a manifold which is oriented in the clas-
sical sense (see the definition e.g. in Dold [5]), cf. V.2.4 below. In particular,
Hn(M,∂M) = Z for every connected (B,ϕ)-manifold Mn, and an orientation
[M,∂M ] of M is just a generator (either of two) of the group Hn(M,∂M) =
Z. Furthermore, if M = 	ki=1M

n
i where every Mi is a connected manifold,

then Hn(M,∂M) = ⊕Hn(Mi, ∂Mi) = Z
k, and an orientation [M,∂M ] of M
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is an element [M,∂M ] = ([M1, ∂M1], . . . , [Mk, ∂Mk]) ∈ Z
k = Hn(M), where

[Mi, ∂Mi] is an orientation of Mi.
The groups π∗(MSO) were computed by Averbuch–Milnor–Novikov–

Rochlin–Wall–Thom; the complete information about these groups is con-
tained in Stong [3] (cf. 6.5 and 6.9). The groups π∗(MSPL) have not been
computed yet.

(d) We can consider the structure 1 : BV → BV . In this case opposite
structure coincides with the original one. In particular, every element of the
group MV∗(X) has order 2. Of course, this follows also from 6.1. Actually,
π∗(MO) was the first example of the successful complete calculation of the
(co)bordism groups, Thom [2]. Namely,

π∗(MO) = Z/2 [xi
∣

∣ dimxi = i, i ∈ N, i 
= 2s − 1].

Furthermore, the groups π∗(MPL) and π∗(MT OP) are computed by
Brumfiel–Madsen–Milgram [1]

(e) Many other interesting examples are considered in Stong [3]. I want
also to remark that the general concept of (B,ϕ)-(co)bordism was originated
by Lashof [1] and developed by Stong [3].

Pontrjagin used bordism in order to calculate homotopy groups, while
in other examples one applies homotopy techniques in order to investigate
bordism. It is reflected in the following: Pontrjagin introduced exotic objects
(framed manifolds) in order to compute homotopy groups of very natural
objects (spheres), while Thom computed homotopy groups of exotic objects
(Thom spacesMSOn,MOn) in order to deal with very natural objects (man-
ifolds).

Now we consider the problem of realizability of homology classes. Let
Mn be a closed connected manifold and [[M ]] ∈ Hn(M ; Z/2) = Z/2 be its
fundamental class mod 2, i.e., [[M ]] 
= 0 ∈ Z/2. If M = 	ki=1M

n
i where every

Mi is a closed connected manifold, set

[[M ]] = ([[M1]], . . . , [[Mk]]) ∈ (Z/2)k = Hn(M ; Z/2).

Given a space X and a map f : M → X , we get a homology class f∗[[M ]] ∈
Hn(X ; Z/2). We say that a homology class z ∈ Hn(X ; Z/2) can be realized
(by a manifold) if it can be represented as f∗[[M ]] with some f : M → X .

Similarly, we say that a homology class z ∈ Hn(X) can be realized if it
can be represented as f∗[M ] with some f : M → X , where Mn is a closed
oriented manifold and [M ] ∈ Hn(M) is an orientation as in 7.31(c).

Question: Can every homology class be realized? If not, how can one
describe the realizable classes? Moreover, we can restrict this problem, con-
sidering T manifolds with given T , or even (B,ϕ)-manifolds with some
(B,ϕ).
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Define a homomorphism

tX : MSVn(X)→ Hn(X)

as follows. By 7.27, MSVn(X) can be interpreted as the bordism group of
oriented manifolds. If an element a ∈MSVn(X) is represented by a singular
oriented manifold f : M → X , set tX(a) := f∗[M ] ∈ Hn(X). We leave it to
the reader to prove that tX is a well-defined homomorphism. It is clear that
the image of t consists precisely of all realizable integral homology classes.

Similarly, we define a homomorphism

t̄X : MVn(X)→ Hn(X ; Z/2)

by setting t̄X [M, f ] = f∗[[M ]] ∈ Hn(X ; Z/2) for every f : Mn → X . The
image of t̄ consists precisely of all realizable homology classes mod 2.

The homomorphisms tX , t̄X are called the Steenrod–Thom homomor-
phisms.

The Thom class u ∈ H0(MSV) gives us a morphism u : MSV → HZ.
Hence, for every space X we have a homomorphism

uX : MSV∗(X)→ H∗(X).

Furthermore, u generates H0(MSV), and so, by 5.24(i), the homomorphism

upt : Z = MSV0(pt)→ H0(pt) = Z

is an isomorphism. We choose u such that upt(1) = 1.
Similarly, the Thom class ū ∈ H0(MV ; Z/2) gives us a homomorphism

ūX : MV∗(X)→ H∗(X ; Z/2) natural in X .

7.32. Proposition. (i) The homomorphism uX coincides with tX . Further-
more, uX coincides with the edge homomorphism

MSVn(X)→ ⊕iE∞
i,n−i(X)→ E∞

n,0(X) ⊂ E2
n,0(X) = Hn(X)

in the AHSS E∗
∗,∗(X) =⇒MSV∗(X), E2

p,q(X) = Hp(X ;πq(MSV)).
(ii) The homomorphism ūX coincides with t̄X . Furthermore, ūX coincides

with the edge homomorphism

MVn(X)→ ⊕iE∞
i,n−i(X)→ E∞

n,0(X) ⊂ E2
n,0(X) = Hn(X ; Z/2)

in the AHSS E∗
∗,∗(X) =⇒MV∗(X), E2

p,q(X) = Hp(X ;πq(MV)).

Proof. We prove only (i). Given a CW -pair (X,A), we define a homomor-
phism

t(X,A) : MSVn(X,A)→ Hn(X,A)

as follows. Let f : (M,∂M)→ (X,A) be a singular oriented manifold in the
pair (X,A), and let [M,∂M ] ∈ Hn(M,∂M) be the orientation of M . Then
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we have a homology class f∗[M,∂M ] ∈ Hn(X,A). Now, we set t(X,A)[M, f ] =
f∗[M,∂M ]. Clearly, t(X,∅) = tX .

It is obvious that the family t = {t(X,A) : MSV∗(X,A) → H∗(X,A)} is
a morphism of homology theories. By III.3.23(ii), this morphism t is induced
by a morphism t : MSV → HZ of spectra. Since tpt : Z = MSV0(pt) →
H∗(pt) = Z is an isomorphism, the element t ∈ H0(MSV) = Z must be a
generator, cf. 5.24. So, t = ±u. But both morphisms t and u map 1 to 1, and
so t = u.

Similarly, one can see that the edge homomorphism is natural, and so it
coincides (up to sign) with u∗. �

7.33. Theorem. The homomorphism t̄X : MV∗(X) → H∗(X ; Z/2) is epic
for every X and every V. Thus, every homology class mod 2 can be realized,
and, in particular, by a smooth manifold.

Proof. By 6.2, MV is a graded Eilenberg–Mac Lane spectrum. Further-
more, by 5.23(i), π0(MV) = Z/2. Hence, by II.7.2, there is a morphism
j : HZ/2→ MV such that HZ/2

j−→MV ū−→ HZ/2 is an equivalence. Thus,
t̄X = ūX is epic. �

On the other hand, tX is not an epimorphism in general.

Given an odd prime p, consider a morphism

̂Qn : HZ→ HZ/p
Qn−−→ Σ2pn−1HZ/p,

where the first morphism is the mod p reduction. Let ( ̂Qn)∗ : H∗(X) →
H∗(X ; Z/p) be the induced homomorphism.

7.34. Lemma. (i) If a homology class z ∈ H∗(X) can be realized by a DIFF
manifold, then ( ̂Qi)∗(z) = 0 for every i and every odd prime p.

(ii) If a homology class z ∈ H∗(X) can be realized by a TOP manifold,
then ( ̂Q1)∗(z) = 0 for every odd prime p.

Proof. (i) By 6.7, the composition MSO u−→ HZ
Q̂i−→ Σ2pi−1HZ is trivial.

(ii) By 6.15 and 6.14, the composition MST OP u−→ HZ
Q̂1−−→ Σ2p−1HZ is

trivial. �

7.35. Theorem. There exists an element z ∈ H7(K(Z/3, 2)) such that
( ̂Q1)∗(z) 
= 0 (for p = 3). In particular, z cannot be realized by a (topological)
manifold.

Proof. Let ι ∈ H3(K(Z/3, 2); Z/3) = Z/3 be a generator of this group. Let
z be a generator of H7(K(Z/3, 2)) = Z/3, and let z̄ be the mod 3 reduction
of z. Consider the Z/3-basis {βP 1ι, Q1ι} of H7(K(Z/3, 2); Z/3). We have
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〈βP 1ι, z̄〉 = 0, because z̄ comes from integral homology. So, 〈Q1ι, z̄〉 
= 0.
Now, by II.6.36,

0 
= 〈Q1ι, z̄〉 = 〈ι, (Q1)•z̄〉 = 〈ι, (χ(Q1))∗(z̄)〉.

But χ(Q1) = −Q1. Thus, 0 
= Q1(z̄) = ( ̂Q1)∗(z). �

7.36. Theorem. For every z ∈ Hn(X) there exists k such that (2k+1)z can
be realized by a smooth manifold.

Proof. The proof is similar to that of 7.33. By 6.5, MSO[2] is a graded
Eilenberg–Mac Lane spectrum. Furthermore, by 5.23(i), π0(MSO) = Z.
Hence, t[2] : MSO[2]∗(X)→ H∗(X ; Z[2]) is epic. �

7.37. Theorem. Every homology class z ∈ Hi(X) with i ≤ 6 can be realized
by a smooth manifold. Furthermore, the morphism t : MSO → HZ is a 3-
equivalence, and hence the homomorphism t : MSOi(X) → Hi(X ; Z) is an
isomorphism for i ≤ 3.

Proof. To prove the first claim, it suffices to prove that the homomorphism

t[p] : MSO[p]∗(X)→ H∗(X ; Z[p])

is epic for every prime p and every i ≤ 6. For p = 2 this follows from
7.36. If p > 2, then, by 6.9, MSO[p](3) = HZ[p], π4(MSO[p]) = Z[p] and
MSO[p](4) = MSO[p](7), where the subscript denotes the coskeleton. So, the
cofiber sequence

MSO[p](4)
p4−→MSO[p](3)

κ−→ Σ5HZ[p],

see II.4.19, can be rewritten as

MSO[p](7)
p4−→ HZ[p] κ−→ Σ5HZ[p].

Furthermore, by 7.32 and 5.24(i), the morphism

MSO[p] τ7−→MSO[p](7)
p4−→ HZ[p]

coincides with t[p]. Now, by II.4.5(ii), the homomorphism

(τ7)∗ : (MSO[p])i(X) −→ (MSO[p](7))i(X)

is epic for i ≤ 6 and every CW -space X . So, for i ≤ 6, we have an exact
sequence

(MSO[p])i(X)
t[p]−−→ Hi(X ; Z[p]) κ∗−→ Hi−5(X ; Z[p]).
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Hence, for i ≤ 6, t[p] : (MSO[p])i(X) −→ Hi(X ; Z[p]) is epic if κ∗ :
Hi(X ; Z[p]) → Hi−5(X ; Z[p]) is a zero homomorphism. So, trivially, t[p] is
epic if i ≤ 4.

If p > 3 then H5(HZ[p]; Z[p]) = 0, see e.g. Cartan [1], and so κ∗ = 0.
Thus, t[p] : MSO[p]i(X)→ Hi(X ; Z[p]) is epic for p > 3 and i ≤ 6.

Let p = 3. We have

H5(HZ[3]; Z[3]) = Z/3 = {δP 1ρ},

where δ : HZ/p → HZ[p] is the integral Bockstein homomorphism and ρ :
HZ[p] → HZ/p is the reduction mod p, i.e., κ = λδP 1ρ, λ ∈ Z/3. (In fact,
it follows from 6.8 that λ 
= 0, but we do not need it here.) So, it suffices to
prove that (δP 1ρ)∗ : Hi(X ; Z[3]) → Hi−5(X ; Z[3]) is a zero homomorphism
for i ≤ 6. This is clear for i < 5.

We choose any z ∈ Hi(X ; Z[3]), i = 5, 6, and prove that (δP 1ρ)∗(z) = 0.
To the contrary, suppose that (δP 1ρ)∗(z) 
= 0.

Firstly, let i = 5. We have 0 
= (P 1ρ)∗(z) ∈ H1(X ; Z/3). So, there is
y ∈ H1(X ; Z/3) such that 0 
= 〈(P 1ρ)∗(z), y〉 ∈ Z/3. Since P 1(x) = 0 for
every x ∈ H1(X ; Z/3), we conclude that

0 
= 〈(P 1ρ)∗(z), y〉 = 〈z, ρP 1y〉 = 0.

This is a contradiction.
Now, let i = 6. We can assume that X is a finite CW -space (since z is con-

tained in a finite CW -subspace of X .) In particular, H1(X ; Z[3]) is a finitely
generated Z[3]-module. Since H1(X ; Z/3m) = Hom(H1(X ; Z[3]),Z/3m) and
since (δP 1ρ)∗(z) 
= 0, there exist a natural number m and a class y ∈
H1(X ; Z/3m) such that

0 
= 〈(δP 1ρ)∗(z), y〉 ∈ Z/3m.

Let f : X → K(Z/3m, 1) be a map such that f∗ι = y, where

ι ∈ H1(K(Z/3m, 1); Z/3m) = Z/3m

is a generator. Note that f∗z = 0 because H6(K(Z/3m, 1)) = 0. Now

0 
= 〈(δP 1ρ)∗(z), y〉 = 〈(δP 1ρ)∗(z), f∗ι〉 = 〈(δP 1ρ)∗(f∗z), ι〉 = 0.

This is a contradiction.

To prove the last claim, note that H1(HZ[2]; Z/2) = 0 and Hi(HZ[2];
Z/2) = Z/2 for i = 1, 2. This can be proved directly or deduced from the
equality H∗(HZ[2]; Z/2) = A /AQ0, cf. IX.1.3. Because of Theorem 6.6,

MSO[2] = HZ[2] ∨ ΣaHZ[2] ∨i ΣaiHZ[2] ∨ΣbHZ/2 ∨i ΣbiHZ/2
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with ai ≥ a and bi ≥ b. Furthermore, we have

H∗(MSO[2]; Z/2) = H∗(MSO; Z/2) = H∗(BSO; Z/2)
= Z/2[w2, . . . , wn, . . . ]

In particular, Hi(MSO[2]; Z/2) = Hi(HZ[2]; Z/2) for i ≤ 3. Hence, a, b ≥ 4
and so πi(MSO[2]) = πi(HZ[2]) for i ≤ 3. So, in view of Theorem 6.9,
πi(MSO) = πi(HZ) for i ≤ 3. Since π4(HZ) = 0, we conclude that t :
MSO → HZ is a 3-equivalence. �

7.38. Theorem. (i) There exists a class z ∈ H∗(X) which can be realized by
a PL manifold, but cannot be realized by a DIFF manifold.

(ii) If a homology class can be realized by a TOP manifold, then it can be
realized by a PL manifold.

Proof. (i) By 7.34, it suffices to find z ∈ H∗(X) such that ( ̂Q2)∗(z) 
= 0
and z can be realized by PL manifolds. Dually, it suffices to find a finite
CW–space Y and a class y ∈ H∗(Y ) such that ̂Q2(y) 
= 0 and

y ∈ Im(uYPL : MSPL∗(Y )→ H∗(Y )) .

(Then we set z = Dy, where D : Hi(Y ) → HN−i(X) is the duality isomor-
phism and X is N -dual to Y .) Let Y be the 2N -skeleton of MSPLN , and
let y = i∗uN , where N > 2p2, uN ∈ HN(MSPLN ; Z/p) is the Thom class
and i : Y → MSPLN is the inclusion. It is clear that y can be represented
by a morphism

Σ−NΣ∞Y ⊂ Σ−NΣ∞ ⊂MSPLN →MSPL uPL−−−→ HZ.

Hence, y ∈ Im(uYPL : MSPL∗(Y )→ H∗(Y )). Finally, by 6.13, ̂Q2(y) 
= 0.
(ii) Suppose that a class z can be realized by a TOP manifold. By 6.15,

MSPL[1/2] � MST OP [1/2]. Hence, there exists k such that 2kz can be
realized by a PL manifold. On the other hand, by 7.36, there is n such that
(2n+1)z can be realized by a DIFF (and hence a PL) manifold. Taking a, b ∈
Z such that 2ka+ (2n+ 1)b = 1, we conclude that z = a(2kz) + b((2n+ 1)z)
can be realized by a PL manifold. �

7.39. Remarks. (a) The problem of realizing homology classes was for-
mulated explicitly by Steenrod, see Eilenberg [1]. However, it is really a
much older question in algebraic topology, dating back to Poincaré. In fact,
Poincaré [1] used the term “homology” for what we call bordism, and one can
say that Poincaré constructed a bordism theory. Of course, (sub)manifolds are
good naive models for cycles, but the correct definition of homology joins ge-
ometric and algebraic concepts. So, the problem of realizing homology classes
can be considered as an attempt to compare a naive conception of homology
with its strict definition.
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(b) The problem of realizing homology classes was solved by Thom [2] in
principle. Namely, Thom proved 7.32 and hence reduced the problem to a
pure homotopy problem. In this way he proved 7.33 and 7.37. Moreover, he
proved that a certain class z ∈ H7(K(Z/3⊕Z/3, 1)) cannot be realized by a
smooth manifold. In fact, his proof was like that of 7.35, but at that time there
was no information about BT OP . We remark that Thom [2] introduced the
spaces MOk and MSOk in order to attack the realizability problem.

(c) Thom [2] constructed the map Θ : ΩO
n (X) → MOn(X) (as in the

proof of 7.27) as follows. Let Mn be embedded in SN+n. Then we have a
map U

q−→ ts νN → ts γNO and it can be extended to a map SN+n →MON =
TγNO . (In fact, Thom did not distinguish U and ts ξ.) The collapsing map
c : SN+n → Tν arose later, in papers of Browder [1] and Novikov [2]. Of
course, this construction follows general ideas of Thom, but, I think, it is a
certain step further: we have here some universality. For this reason, I named
the collapsing map c the Browder–Novikov map.

I want to remark that Browder and Novikov introduced the collapsing map
for needs of differential topology, i.e., in some sense, outside of cobordism
theory. Namely, Browder [1] described homotopy types containing smooth
closed manifolds; Novikov [2,3] also did it and even classified smooth closed
manifolds which are homotopy equivalent to a given one. So, we have here
another remarkable application of Thom spaces. However, this topic is beyond
this book; we refer the reader to Browder [3], Novikov [3].

7.40. Remarks. (a) It follows from 7.35 that for every i > 6 there is a class
y ∈ Hi(X) which cannot be realized by a manifold. Namely, given i, consider
the suspension isomorphism s : H7(K(Z/3, 2)) = Hi(Si−7K(Z/3, 2)) and put
y = sz for z as in 7.35. Then ̂Q1(z) 
= 0 (for p = 3).

(b) The minimal dimension n in 7.38(i) is n = 19, Brumfiel [1]. The proof
is similar to that of 7.37. Namely, 6 = dimQ1 + 1, while 18 = dimQ2 + 1, if
p = 3. Now, similarly to (a), one can see that the class in 7.38(i) exists for
every n > 18.

Résumé on Realizability

(i) Every homology class z ∈ H∗(X ; Z/2) can be realized by a smooth
manifold.

(ii) Every class z ∈ Hi(X) with i ≤ 6 can be realized by a smooth manifold.
(iii) For every i > 6, there is a class z ∈ Hi(X) which cannot be realized

by a topological manifold.
(iv) Given a class z ∈ Hi(X), there is a natural number n such that

(2n+ 1)z can be realized by a smooth manifold.
(v) If a homology class can be realized by a topological manifold, then it

can be realized by a PL manifold.
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(vi) If a homology class of dimension ≤ 18 can be realized by a topological
manifold, then it can be realized by a smooth manifold.

(vii) For every i > 18, there is a class z ∈ Hi(X) which can be realized by
a PL manifold but cannot be realized by a smooth manifold.



Chapter V. Orientability and Orientations

It seems that the orientability concept arose implicitly in the infancy of hu-
manity, when people became able to distinguish upward and downward (as
well as left and right) directions. Many epochs later we had suitable concepts
of the orientation of the line (arrow), the plane (circle arrow) and space (right-
left triples of vectors, spiralled arrow, etc.). Finally, in the nineteenth century
a satisfactory concept of the orientation of the space R

n as an equivalence
class of frames was formulated.

The orientability concept was developed further by considering families
X of spaces R

n, the orientation of X being a family of compatible (in some
sense) orientations of the members R

n of X . For example, an orientation of
a manifold is given by a family of compatible orientations of the charts, an
orientation of a bundle is given by the family of compatible orientations of
fibers.

Later the (co)homological nature of orientability was understood. For in-
stance, an orientation of R

n can be treated as one of the two generators of the
group Hn(R̂n) (or Hn(R̂n)), where R̂

n = Sn is the one-point compactifica-
tion of R

n. In this way we can define an orientation of an R
n-bundle ξ to be a

compatible family of orientations of the fibers, i.e., (successfully formalizing
this naive idea) to be a Thom class u ∈ ˜Hn(Tξ). Similarly, an orientation of
a (closed) manifold Mn can be defined to be a compatible family of orienta-
tions of the charts, i.e., to be a fundamental class [M ] ∈ Hn(M). It is clear
that the definitions above are suitable for any (co)homology theory, and in
fact this generalization has been made and has turned out to be very fruitful.
For example, it makes very lucid such matters as Poincaré duality, integrality
phenomena, characteristic classes, etc.
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§1. Orientations of Bundles and Fibrations

As in §IV.5, we deal “theoretically” with Fn-objects, i.e., with (Sn, ∗)-
fibrations, but the results will be applied to Vn-objects.

Let E be a ring spectrum, and let σd ∈ ˜Ed(Sd) be the image of 1 ∈
π0(E) = ˜E0(S0) via the iterated suspension isomorphism ˜E0(S0) ∼= ˜Ed(Sd).

1.1. Definition (Dold [1]). Let α be an Fd-object over a CW -space X ,
and let jx : Sd → Tα be a root with respect to a point x ∈ X . The element
u = uα,E ∈ ˜Ed(Tα) is called an orientation of α with respect to E, or, briefly,
an E-orientation of α, if j∗x(u) = ±σd for all x ∈ X . Furthermore, we define
an E-orientation of a Vn-object ξ to be an E-orientation of ξ•.

Here the sign before σd can depend on x. Note that we are forced to
say j∗x(u) = ±σd rather than j∗x(u) = σd, because the homotopy class of a
root j is determined up to sign only. More precisely, the sign arises when
we want to fix a homotopy equivalence of the standard sphere Sn with the
fiber Fx in order to construct the root jx : Sd → Fx ⊂ Tα. From another
viewpoint, the sphere admits an involution of degree -1. This indeterminacy
can be eliminated if we consider rooted V-objects. Maybe, sometimes this
makes sense, but for a lot of applications such rigidity is not necessary.

Of course, the sign ±1 really depends only on the component of the
base X . More precisely, for a connected base it is possible to choose homo-
topy equivalences of the standard sphere Sd with fibers such that all maps
jx : Sd → Tα are homotopic, cf. §IV.5. Thus, for a connected base X an ori-
entation can be characterized by the equality j∗x0

(u) = ±σd for some single
point x0 ∈ X .

An F -object with a fixed E-orientation is said to be E-oriented. In other
words, an E-oriented F -object is a pair (α, u) where u is an E-orientation
of the F -object α. An F -object is said to be E-orientable if it admits an
E-orientation. Similar terminology is used for V-objects (replacing F by V).

It is obvious that E-orientability is an invariant of the F -equivalence
because Thom spaces of F -equivalent F -objects are homotopy equivalent.

Corollary IV.5.8 shows that orientability as defined in IV.5.6 is just HZ-
orientability. Here, roughly speaking, a Thom class u ∈ H∗(Tα) enables us
to cohere orientations of fibers. Indeed, using the cohomological description
of orientability (see the introduction to this chapter) we conclude that the
restriction of the Thom class to each fiber induces an orientation of the fiber.
In other words, the existence of a Thom class enables us to equip the fibers
with compatible orientations. It seems that, rigorously speaking, we must
treat orientations of the fibers (i.e., generators of the groups H∗(R̂dx)) as
being compatible iff there exists a Thom class. Thus, it makes sense to call a
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Thom class an orientation of an F -object. This argument justifies the term E-
orientation of Definition 1.1; it is a generalization of HZ-orientation (Thom
class). For this reason an E-orientation is also called a generalized Thom
class, or a Thom–Dold class, because Dold [1] introduced this concept for
arbitrary E. This generalization turns out to be very fruitful, e.g., in this
way it is possible to generalize the Thom Isomorphism Theorem IV.5.9, see
1.3 and/or 1.7 below.

Theorem IV.5.7 can also be generalized to an arbitrary ring spectrum E, see

Becker [1], Rudyak [3], but this generalization does not seem completely satisfactory,

e.g. I cannot immediately deduce from it Theorem 1.3 (or even (1.7)) below (as we

deduced IV.5.9 from IV.5.7).

Let α be an Fd-object over X , and let Δd : Tα → Tα ∧ X+ be a map
as in IV.5.36. Let F = (F,m) be any E-module spectrum with the pairing
m : E ∧ F → F . Define

ϕ : ˜Ed(Tα)⊗ ˜Fn(X+) mTα,X
+

−−−−−−→ ˜Fn+d(Tα ∧X+)
(Δd)∗−−−−→ ˜Fn+d(Tα),

ϕ : ˜Ed(Tα)⊗ ˜Fn(Tα)
1⊗Δd

∗−−−−→ ˜Ed(Tα)⊗ ˜Fn(Tα ∧X+)
mTα

•,X+
−−−−→ ˜Fn−d(X+).

Now suppose that α is equipped with an E-orientation u ∈ ˜Ed(Tα). Define

ϕF = ϕF,X,u : Fn(X) = ˜Fn(X+)→ ˜Fn+d(Tα), ϕF (x) = ϕ(u⊗ x),
ϕF = ϕF,X,u : ˜Fn(Tα)→ ˜Fn−d(X+) = Fn−d(X), ϕF (x) = ϕ(u⊗ x).

1.2. Proposition. Let ω : α → β be a morphism of Fd-objects, and let
Tω : Tα→ Tβ be the induced map of the Thom spaces.

(i) If u ∈ ˜Ed(Tβ) is an E-orientation of β then (Tω)∗(u) is an orientation
of α. In particular, α is E-orientable if β is.

(ii) We set X := bsα, Y := bs β, f := bsω : X → Y . Let u be an
E-orientation of β. If we equip α with the orientation (Tω)∗(u), then the
following diagrams commute:

Fn(Y )
ϕF−−−−→ ˜Fn+d(Tβ) ˜Fn(Tβ)

ϕF−−−−→ Fn−d(X)

f∗
⏐

⏐




⏐

⏐



(Tω)∗ (Tω)∗

�

⏐

⏐

�

⏐

⏐
f∗

Fn(X)
ϕF−−−−→ ˜Fn+d(Tα), ˜Fn(Tα)

ϕF−−−−→ Fn−d(Y ).

Proof. This is obvious. �

1.3. Theorem-Definition. For every CW -space X the homomorphisms
ϕF and ϕF are isomorphisms. These isomorphisms are called Thom–Dold
isomorphisms.
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Proof. The case X = ∅ is trivial. So, we assume that X 
= ∅. Firstly, we
prove that ϕF is an isomorphism. We need some preliminaries.

For every X the pairing mSd,X+
: ˜Ei(Sd) ⊗ ˜F j(X+)→ ˜F i+j(X+) yields

a homomorphism

hF = hXF : ˜F i(X+)→ ˜F i+d(SdX+), a �→ mSd,X+
(σd ⊗ a).

Since m commutes with suspensions, hF coincides with the iterated suspen-
sion isomorphism si+d−1 · · · si : ˜F i(X+) → ˜F i+d(X+). In particular, hF is
an isomorphism.

Similarly to the above, using the multiplication μ : E ∧E → E instead of
the pairing m : E ∧ F → F , we have an isomorphism

hE = hXE : ˜Ei(X+)→ ˜Ei+d(SdX+).

Now we start to prove that ϕF is an isomorphism.
Step 1. We prove that ϕF is an isomorphism if α is the standard trivial Fd-

object over a connected finite dimensional CW -space X . By IV.5.5(iii), Tα �
SdX+, and so En(X) ∼= ˜En+d(Tα), but we must prove that ϕF establishes
an isomorphism of these groups. Fix a point x0 ∈ X and let i : {x0} ⊂ X be
the inclusion. We set j := Sd(i+) : Sd({x0}+)→ SdX+. By IV.5.5(iii), j is a
root of Tα. Now, we have the commutative diagram

˜E0({x0}+) i∗←−−−− ˜E0(X+)

∼=
⏐

⏐


h′ ∼=
⏐

⏐


h′′

˜Ed(Sd({x0}+))
j∗←−−−− ˜Ed(SdX+)

where h′ and h′′ are the isomorphisms hE for the spaces {x0} and X , respec-
tively. In order to distinguish units of the rings ˜E0({x0}+) and ˜E0(X+), we
use the notation 1′ for 1 ∈ ˜E0({x0}+) and 1′′ for 1 ∈ ˜E0(X+).

Let u ∈ ˜Ed(SdX+) be an E-orientation of α. Firstly, we prove that u =
±h′′(1′′ + a) where

a ∈ Ker{i∗ : E0(X)→ E0({x0})} = Ker{i∗ : ˜E0(X+)→ ˜E0({x0}+)}.

Indeed, let u = h′′(x) for some x ∈ ˜E0(X+) = E0(X). Without loss of
generality we can assume that j∗u = σd. Then j∗h′′x = σd, and so h′i∗x = σd.
Since σd = h′1′, we conclude that h′(i∗x − 1′) = 0, i.e., i∗x − 1′ = 0, i.e.,
i∗(x− 1′′) = 0. Thus, x = 1 + a where a ∈ Ker i∗.

Now, the E-orientation u yields the homomorphism ϕF , and it is easy to
see that ϕF is a composition of the isomorphism hF and multiplication by
±(1 + a). So, it suffices to prove that 1 + a is invertible in E0(X).

Since X is connected, the reduced iterated diagonal

d : (X,x0) −→ (X,x0) ∧ · · · ∧ (X,x0)
︸ ︷︷ ︸

k times

= (X ∧ · · · ∧X, ∗)
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is inessential if k > dimX . Hence, ak = 0 if k > dimX , and thus 1 + a is an
invertible element of E0(X).

Step 2. We prove that ϕF is an isomorphism if α is the standard trivial
Fd-object over a finite dimensional CW -space X . Let X = 	Xλ with Xλ

connected. Then (cf. II.3.16(c))

Fn(X) =
∏

λ

Fn(Xλ) ∼=
∏

λ

˜Fn+d(Tαλ) = ˜Fn+d(∨λTαλ) = ˜Fn+d(Tα)

where the second homomorphism is given by Step 1.
Step 3. We prove that ϕF is an isomorphism if α is Fd-equivalent to the

standard trivial Fd-object θdX over a finite dimensional CW -space X (i.e.,
there is a sectioned bundle homotopy equivalence between α and θdX). This
follows from Step 2, because the equivalence α → θdF yields a homotopy
equivalence Tα→ TθnF , and the last one commutes with ϕF , cf. 1.2(ii).

Now we pass to the general case. Given a CW -subspace Y of X , let
ϕY : Fn(Y )→ ˜Fn+d(T (α|Y )) be the restriction of ϕF to Y .

1.4. Lemma. (i) Let Y be a CW -subspace of X, and let (Y ;A,B) be a CW -
triad. Set C = A∩B. If ϕA, ϕB and ϕC are isomorphisms then so is ϕY . In
particular, if ϕA is an isomorphism and B is a finite dimensional space such
that α|B is Fd-equivalent to a trivial Fd-object, then ϕY is an isomorphism.

(ii) Let X0 ⊂ · · · ⊂ Xn ⊂ · · · be a sequence of CW -subspaces of X
such that X =

⋃

Xn. If ϕXn is an isomorphism for every n then ϕX is an
isomorphism.

Proof. (i) By 1.2(i), we have the following commutative diagram of the
Mayer–Vietoris sequences, where TZ denotes T (α|Z) for Z = Y,A,B,C (the
bottom sequence is the Mayer–Vietoris sequence of the triad (TY ;TA, TB);
notice that TC = TA ∩ TB, even if C = ∅):

· · · → Fn−1(C) −−−−→ Fn(Y ) −−−−→ Fn(A) ⊕ Fn(B) → · · ·
∼=
⏐

⏐




ϕC

⏐

⏐




ϕY ∼=
⏐

⏐




ϕA⊕ϕB

· · · → ˜Fn+d−1(TC) −−−−→ ˜Fn+d(TY ) −−−−→ ˜Fn+d(TA)⊕ ˜Fn(TB)→ · · ·.

Now, by the Five Lemma, ϕY is an isomorphism.
If α|B is Fd-equivalent to a trivial Fd-object then, by the above, ϕB and

ϕC are isomorphisms provided B is finite dimensional.
(ii) By III.4.18, we have the following diagram, where Tr := T (α|Xr) and

ϕr := ϕXr :

0−→ lim←−
1{Fn−1(Xr)} −−−−→ Fn(X) −−−−→ lim←−{F

n(Xr)} −→ 0

∼=
⏐

⏐


lim←−
1{ϕr}

⏐

⏐




ϕX ∼=
⏐

⏐



lim←−{ϕr}

0−→ lim←−
1{ ˜Fn+d−1(Tr)} −−−−→ ˜Fn+d(Tr) −−−−→ lim←−{ ˜F

n+d(Tr)}−→ 0.
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It is commutative by 1.2(ii). Since the left and right vertical arrows are iso-
morphisms, ϕX is an isomorphism. �

For pedantic persons, we remark that TC, etc. in (i) and Tr in (ii) are not

CW -spaces in general. Nevertheless, all used sequences are exact, cf. II.3.31 and

III.4.20(a).

We continue the proof of the theorem. Consider the subsets

Dn
+ = {x ∈ Dn

∣

∣ ||x|| ≥ 1/2}, Dn
− = {x ∈ Dn

∣

∣ ||x|| ≤ 1/2}

of the unit disk Dn = {x ∈ R
n
∣

∣ ||x|| ≤ 1}. Given an n-dimensional cell
en, n > 0, in X with the characteristic map χ : Dn → X , we set en+ = χ(Dn

+)
and en− = χ(Dn

−). Given n > 0, let An (resp. Bn) be the union of all subsets
en+ (resp. en−) where en runs over all n-cells of X . Let Xn be the n-skeleton
of X . We prove by induction that ϕXn is an isomorphism for every n.

The assertion is trivial for n = 0. Suppose that ϕXn is an isomorphism.
Set Yn = Xn ∪An+1. Then ϕYn is an isomorphism since Yn is a deformation
retract of Xn. Now, Xn+1 = Yn ∪ Bn+1, and α|Bn+1 is Fd-equivalent to a
trivial Fd-object since Bn+1 is a disjoint union of contractible spaces. So, by
1.4(i), ϕF = ϕXn+1 is an isomorphism.

Thus, by 1.4(ii), ϕ = ϕX is an isomorphism.
The proof of that ϕF is an isomorphism is similar, but it is simpler because

we use the direct limit instead of the inverse one. �

1.5. Corollary. Let α be an E-oriented Fd-object over X.
(i) Let A be a CW -subspace of X. Then there are the relative Thom–Dold

isomorphisms

ϕF : Fn(X,A) −→ Fn+d(Tα, T (α|A)),
ϕF : Fn(Tα, T (α|A)) −→ Fn−d(X,A).

(ii) Let β be an F-object over X. Then there are the Thom–Dold isomor-
phisms

ϕF : ˜Fn(Tβ) −→ ˜Fn+d(T (α⊕ β)),

ϕF : ˜Fn+d(T (α⊕ β)) −→ ˜Fn(Tβ)).

Proof. (i) One can prove this, just following the proof of 1.3. Another way:
consider the exact sequences of pairs (X,A) and (Tα, T (α|A)), map one of
them to the other and use 1.3 and the Five Lemma.

(ii) We consider the cohomological case only. We set λ := p∗β(α). Then
T (α⊕β) � T (λ)/T (λ|s(X)), where s : X → ts β is the section. Furthermore,
by 1.2(i), the canonical morphism λ → α equips λ with an E-orientation,
and we obtain an isomorphism
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˜Fn(Tβ) = Fn(ts(β), s(X))
ϕF−−→ Fn+d(T (λ), T (λ|s(X))) = ˜Fn+d(T (α⊕ β))

where ϕF is as in (i). �

1.6. Proposition. Let τ : D → E be a ring morphism of ring spectra. Then
for every D-orientation u of α the element τ(u) is an E-orientation of α.
Furthermore, let (F,m) be any D-module spectrum, and let (G,n) be any
E-module spectrum. Let ρ : F → G be a morphism such that the diagram

D ∧ F τ∧ρ−−−−→ E ∧G

m

⏐

⏐




⏐

⏐




n

F
ρ−−−−→ G

commutes. Then the diagrams

F ∗(X)
ρ∗−−−−→ G∗(X) F∗(X)

ρ∗−−−−→ G∗(X)

ϕF

⏐

⏐




⏐

⏐




ϕG ϕF
�

⏐

⏐

�

⏐

⏐ϕG

˜F ∗(Tα)
ρ∗−−−−→ ˜G∗(Tα) ˜F∗(Tα)

ρ∗−−−−→ ˜G∗(Tα)

commute. Here ϕF , ϕF are given by u and ϕG, ϕG are given by τ(u).

Proof. Decode the definitions. �
Clearly, the relative version (with (X,A) instead of X , etc.) of 1.6 holds

as well.
Since every ring spectrum E is an E-module spectrum, we can put F = E

in 1.5 and obtain Thom–Dold isomorphisms

(1.7)
ϕE : En(X,A)→ En+d(Tα, T (α|A)),

ϕE : En(Tα, T (α|A))→ En−d(X,A).

Similarly, we can put F = D, G = E in 1.6 and get the commutative diagrams

D∗(X) τ∗−−−−→ E∗(X) D∗(X) τ∗−−−−→ E∗(X)

ϕD

⏐

⏐




⏐

⏐




ϕE ϕD
�

⏐

⏐

�

⏐

⏐ϕE

˜D∗(Tα) τ∗−−−−→ ˜E∗(Tα), ˜D∗(Tα) τ∗−−−−→ ˜E∗(Tα).

Notice a curious consequence of Theorem 1.3.

1.8. Corollary. Let (X,x0) be a connected pointed space, and let i : {x0} →
X be the inclusion. We set ˜E∗(X) := Ker{i∗ : E∗(X) → E∗({x0})}. Then
for every a ∈ ˜E0(X) the element 1 + a ∈ E0(X) is invertible in the ring
E0(X).
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Proof. Clearly, 1 + a is an E-orientation of the 0-dimensional V-object
over X , and the corresponding Thom–Dold isomorphism coincides with the
multiplication by 1 + a : E0(X)→ E0(X) = ˜E0(X+). �

Now we compute the number of E-orientations of any E-orientable Fd-
object α. Let S(α) denote the set of all E-orientations of α, and let X be the
base of α.

1.9. Proposition. (i) Suppose that X is a connected space. Choose a point
x0 ∈ X, let i : {x0} ⊂ X be the inclusion and regard ˜E∗(X) := ˜E∗(X,x0) as
the subset Ker{i∗ : E∗(X) → E∗({x0})} of E∗(X). Then every Thom–Dold
isomorphism

ϕ : E0(X)→ ˜Ed(X)

establishes a bijection between the subset {1 + ˜E0(X)} ∪ {−1 + ˜E0(X)} of
E0(X) and the set S(α). In other words, S(α) is in a bijective correspondence
with Z/2 × Ē0(X) where Ē0(X) := Coker{ε∗ : E0(pt) → E0(X)} and ε :
X → pt.

(ii) If X is a disjoint union of its connected components Xλ, then

S(α) =
∏

λ

S(α|Xλ).

Proof. (i) Let j : Sd → Tα be a root at x0. Choose any E-orientation u
of α such that j∗(u) = σn and consider the commutative diagram

˜Ed(Tα)
j∗−−−−→ ˜Ed(Sd)

ϕ

�

⏐

⏐

�

⏐

⏐
ϕ′

E∗(X) i∗−−−−→ E∗({x0})

where ϕ (resp ϕ′) is the Thom–Dold isomorphism given by u (resp. by σd).
Firstly, we prove that ϕ establishes a bijection between the sets {1+ ˜E0(X)}
and {v ∈ ˜Ed(X)|j∗v = σd}. Indeed, let b = 1 + a for some a ∈ ˜E0(X). Then

j∗ϕ(b) = j∗ϕ(1 + a) = ϕ′i∗(1 + a) = ϕ′i∗(1) = σd.

Conversely, let v be an E-orientation of α with j∗v = σd. We set b := ϕ−1(v).
Then

0 = σd − σd = j∗v − j∗u = j∗ϕ(b)− j∗ϕ(1) = j∗ϕ(b− 1) = ϕ′i∗(b− 1).

So, i∗(b − 1) = 0, i.e., b = 1 + a for some a ∈ ˜E0(X).
Now we prove that ϕ establishes a bijective correspondence between the

sets {−1 + ˜E0(X)} and {v ∈ ˜Ed(X)|j∗v = −σd}. Indeed,
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{b ∈ {−1 + ˜E0(X)}} ⇐⇒ {−b ∈ {1 + ˜E0(X)}} ⇐⇒ {j∗ϕ(−b) = σd}
⇐⇒ {j∗ϕ(b) = −σd}.

Finally, since X is connected, we conclude that S(α) = {v|j∗(v) = ±σd}.
(ii) This is obvious. �

1.10. Proposition. (i) If α is an E-orientable F-object over Y then f∗α is
E-orientable for every map f : X → Y .

(ii) If any two of three F-objects α, β, α ∧h β are E-orientable, then so is
the third one.

(iii) If any two of three F-objects α, β, α ⊕ β over the same base X are
E-orientable, then so is the third one.

(iv) The standard trivial Fn-object θn over any space X is E-orientable
for every ring spectrum E.

Proof. (i) This holds by 1.2(i), since there is a morphism If,α : f∗α→ α.
(ii) Let uα ∈ ˜Em(Tα), uβ ∈ ˜En(Tβ) be E-orientations of α, β respec-

tively. Then the image of the class uα ⊗ uβ under the pairing

˜Em(Tα)⊗ ˜En(Tβ)→ ˜Em+n(Tα ∧ Tβ)

is an E-orientation of α ∧h β. Conversely, let α ∧h β and α be E-oriented
F -objects. Set v = ϕE(1) ∈ ˜E∗(Tα). Then the image of uα∧hβ ⊗ v under the
homomorphism

μ•,Tα
Tβ : ˜E∗(Tα ∧h Tβ)⊗ ˜E∗(Tα)→ ˜E∗(Tβ)

(see II.(3.40)) is an E-orientation of β. Indeed, one can check it by simple
verification on fibers, i.e., for the case when the bases are points.

(iii) The E-orientability of α ⊕ β follows from (i) and (ii). Suppose now
that α⊕ β and α are E-oriented. Then the isomorphism

˜E∗(T (α⊕ β)) ∼= ˜E∗(Tβ).

(as in 1.5(ii)) maps the E-orientation of α⊕ β to an E-orientation of β. One
can check it by a verification of fibers, i.e., for the case when X is a point.

(iv) Without loss of generality we can assume that X is connected. Choose
a point x0 ∈ X and consider the maps i : {x0} ⊂ X and ε : X → {x0}. Then
the composition

Sn({x0}+)
Sn(i+)−−−−→ SnX+ Sn(ε+)−−−−→ Sn({x0}+)

is the identity map, and so (Sni+)∗ : E∗(SnX+) → E∗(Sn({x0}+)) is an
epimorphism for every spectrum E. By IV.5.5(iii), Tθn � SnX+, and Sni+

is a root j at x0. In other words, j∗ : E∗(Tθn)→ E∗(Sn) is an epimorphism.
Thus, θn is E-orientable for every ring spectrum E. �
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Note that if E is an Ω-spectrum and if Y = En and A = {±1}, then an
(A, Y )-marking is just an E-orientation. Thus, we can apply IV.5.11 to the
classification of E-oriented V-objects and prove the following fact.

1.11. Theorem. There exists a space B(Vn, E) which classifies E-oriented
Vn-objects. Thus, for every X the set of all equivalence classes of E-oriented
Vn-objects over X is in a natural bijective correspondence with the set
[X,B(Vn, E)]. The construction B(Vn, E) is natural with respect to mor-
phisms E → F preserving the elements ±1 of the coefficient rings. The homo-
topy fiber of the forgetful map p : B(Vn, E) → BVn is Ω∞

±1E, i.e., the union
of the components of Ω∞E which correspond to {±1} ⊂ π0(Ω∞E) = π0(E).

�

Now we consider orientation theory for stable objects.

1.12. Definition. Let Tα be the Thom spectrum of a stable F -object α over
X . (Recall that, according to IV.5.12, X is assumed to be a CW -complex.)
If X is connected, define an E-orientation of α to be an element u ∈ ˜E0(Tα)
such that j∗(u) = ±1 ∈ π0(E), where j : S → Tα is a root of Tα.

If X = 	Xλ with connected Xλ, then an E-orientation of α is a family
{uλ}, where uλ is an E-orientation of α|Xλ. Furthermore, an E-orientation
of a stable V-object ξ is defined to be an E-orientation of ξ•.

For every Fn-object α the isomorphism e : T (αst) → Σ−nΣ∞Tα in
IV.5.16 induces an isomorphism e∗ : ˜En(Tα) = E0(Σ−nΣ∞Tα) −→ E0(Tαst).

1.13. Proposition. The isomorphism e∗ yields a bijective correspondence
between E-orientations of α and αst. Hence, α is E-orientable iff αst is.

Proof. It suffices to consider α over a connected base. Choose roots j1 :
S → T (αst) and j2 : Sn → Tα. Then ej1 and Σ−nΣ∞j2 are homotopic (up
to sign), and the result holds because e∗ is an isomorphism. �

Let α be a stable F -object over X . Consider the morphism Δ : Tα →
Tα ∧X+ as in IV.5.36. Let (F,m) be any E-module spectrum. Define

ϕ : E0(Tα)⊗ F i(X) = E0(Tα)⊗ ˜F i(X+) mTα,X
+

−−−−−−→ F i(Tα ∧X+)
Δ∗
−−→ F i(Tα),

ϕ : E0(Tα)⊗ Fi(Tα) 1⊗Δ∗−−−−→ E0(Tα)⊗ Fi(Tα ∧X+)

mTα
•,X+

−−−−→ ˜Fi(X+) = Fi(X).

Now suppose that α is equipped with an E-orientation u ∈ E0(Tα). Define
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ϕF : F i(X)→ F i(Tα), ϕF (x) = ϕ(u⊗ x),
ϕF : Fi(Tα)→ Fi(X), ϕF (x) = ϕ(u⊗ x).

1.14. Theorem-Definition. The homomorphisms ϕF and ϕF are isomor-
phisms for every CW -space X. These isomorphisms are called stable Thom–
Dold isomorphisms.

Proof. We consider only the cohomology case. Let αn be as in IV.5.19.
Step 1. Let X be finite dimensional. Then one has the commutative dia-

gram

· · · ←−−−− F i(X(n−2)) ←−−−− F i(X(n−1)) ←−−−− · · ·
∼=
⏐

⏐




⏐

⏐




∼=

· · · ←−−−− ˜F i+n(Tαn) ←−−−− ˜F i+n+1(Tαn+1) ←−−−− · · ·,
which stabilizes as n→∞ and gives the desired isomorphism.

Step 2. Let X be a disjoint union of finite dimensional spaces, X = 	Xλ.
Then Tα = ∨λT (α|Xλ), and so (cf. II.3.16(c))

F i(Tα) ∼=
∏

λ

F i(T (α|Xλ)) ∼=
∏

λ

F i(Xλ) ∼= F i(	Xλ) ∼= F i(X).

The second isomorphism is given by Step 1.
Step 3. Consider the telescope T = Tev ∪ Tod of the skeletal filtration of

X . We have

T � X,Tev �
∞
∨

n=0

X(2n), Tod �
∞
∨

n=0

X(2n+1), Tev ∩ Tod �
∞
∨

n=0

X(n).

Let h : T → X be the canonical homotopy equivalence. Set α = h∗α, αev =
α|Tev, αod = α|Tod. It is easy to see that Tαev∩Tαod � T (α|(Tev∩Tod)). Con-
sider the following commutative diagram of Mayer–Vietoris exact sequences:

· · ·−→F k−1(Tαev ∩ Tαod)−→F k(Tα)−→F k(Tαev)⊕ F k(Tαod)−→· · ·
∼=
�

⏐

⏐
ϕ′′ ∼=

�

⏐

⏐
ϕ′

�

⏐

⏐

ϕF ∼=
�

⏐

⏐
ϕ′′ ∼=

�

⏐

⏐
ϕ′

· · ·−→ F k−1(Tev ∩ Tod) −→ F k(T ) −→ F k(Tev)⊕ F k(Tod) −→ · · ·.
Now, by Step 2, ϕ′ and ϕ′′ are isomorphisms, so, by the Five Lemma, ϕF is
also an isomorphism. �

The Thom–Dold isomorphism ϕF can be lifted to a geometric level.

1.15. Theorem (Mahowald–Ray [1]). Let α be a stable F-object over X
equipped with an E-orientation u : Tα→ E. Then the morphism

Tα∧F Δ∧1−−−→ Tα∧X+∧F τ∧1−−→ X+∧Tα∧F 1∧u∧1−−−−→ X+∧E∧F 1∧m−−−→ X+∧F

is an equivalence.



310 Chapter V. Orientability and Orientations

Proof. This morphism induces a homomorphism of homotopy groups
which coincides (up to sign) with the isomorphism ϕF . �

Let p : ̂E → E be a connective covering of a spectrum E.

1.16. Proposition. An F-object α is E-orientable iff it is ̂E-orientable.
Furthermore, for every F-object α the morphism p induces a bijection between
̂E-orientations of α and E-orientations of it.

Proof. Firstly, let α be a stable F -object. By IV.5.8(ii), Tα is connected.
Hence, by II.4.16, every E-orientation u : Tα→ E can be lifted to ̂E, and this
lifting is an ̂E-orientation because p∗ : π0( ̂E) → π0(E) is an isomorphism.
Furthermore, again by II.4.16, the morphism p yields the desired bijection.
So, the proposition holds for stable F -objects. Finally, it holds for Fn-objects
because of 1.13. �

Considering A = {±1} ⊂ π0(E), we conclude that an (A,E)-marking of
a stable V-object (or F -object) ξ is just an E-orientation of ξ. Let t(V,E)(X)
be the set of all equivalence classes of E-oriented (i.e., (A,E)-marked) stable
V-objects over X . Now, IV.5.29 yields the following theorem.

1.17. Theorem. There exist a CW -space B(V , E) and an E-oriented sta-
ble V-object η = ηV,E over B(V , E) such that the map [X,B(V , E)] →
t(V,E)(X), f �→ f∗η is bijective for every finite dimensional CW -space X. In
other words, B(V , E) classifies E-oriented stable V-objects over finite dimen-
sional CW -spaces. The homotopy fiber of the forgetful map p : B(V , E)→ BV
is Ω∞

±1E. Furthermore, for every CW -space X the map [X,B(V , E)] →
t(V,E)(X) is surjective. �

We set M(V , E) := Tη. The E-orientation uη of η is called a universal E-
orientation for stable V-objects, and η is called a universal E-oriented stable
V-object.

1.18. Theorem (naturality with respect to E). Given a ring morphism
τ : D → E of ring spectra, there are maps B(V , τ) : B(V , D)→ B(V , E) and
M(V , τ) : M(V , D)→M(V , E) such that B(V , τ)∗ηE � ηD and the following
diagrams commute up to homotopy:

Ω∞
±1D −−−−→ Ω∞

±1E M(V , D)
M(V,τ)−−−−−→ M(V , E)

⏐

⏐




⏐

⏐




uD

⏐

⏐




⏐

⏐




uE

B(V , D)
B(V,τ)−−−−→ B(V , E) D

τ−−−−→ E.
⏐

⏐




⏐

⏐




BV BV
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Proof. The composition M(V , D) uD−−→ D
τ−→ E is an E-orientation of

ηD, and hence, by 1.17, it yields a map B(V , τ) : B(V , D) → B(V , E) with
B(V , τ)∗ηE � ηD. So, we get the map

M(V , τ) := TIB(V,τ),ηE : M(V , D)→M(V , E).

Now, the right diagram commutes because M(V , τ)∗(uE) is the E-orientation
τuD of ηD.

Now we prove that the left diagram commutes. It suffices to prove
that the maps [X,Ω∞

±1D] → [X,Ω∞
±1E] → [X,B(V , E)] and [X,Ω∞

±1D] →
[X,B(V , D)] → [X,B(V , E)] coincide for every X . But each of these maps
treats a trivial E-oriented V-object as a certain E-oriented V-object. �

1.19. Remarks. (a) Dold [1] proved Theorem 1.3.
(b) As we remarked in Ch. IV, the classifying spaces B(Vn, E) were in-

troduced by May [2].
(c) Sometimes one defines an E-orientation by the condition j∗(u) = εσn,

where ε is an invertible element of the ring π0(E), see May [3] or Switzer [1].
Certainly, the class of E-orientable V-objects in this case is just the same as
in our case. Furthermore, this situation is in some sense a direct sum of ours.
For example, in this case the classifying space B(V , E) is just the disjoint
union of copies of ours.

(d) There are some reasons to write simply ab instead of ϕ(a ⊗ b), a ∈
˜E∗(Tα), b ∈ F ∗(X), cf. II.3.43. Then we can write ϕF (x) = uEx, and, for
instance, the commutativity of the left diagram after (1.7) can be expressed
as τ(ux) = τ(u)τ(x).

(e) We have seen above that one can consider an E-orientation as a struc-
ture on V-objects. Moreover, we say that a structure map ϕ : B → BV is
E-orientable if there exists a map (B,ϕ) → B(V , E) over BV , i.e., if ϕ∗γV
is E-oriented. In this case we have a morphism T (B,ϕ) → M(V , E), which
induces an E-orientation u ∈ E0(T (B,ϕ)) of ϕ∗γV . So, in this case every
(B,ϕ)-structured V-object gets a certain E-orientation.

(f) Similarly to 1.15, the cohomological Thom–Dold isomorphism can
also be lifted to the spectra level. This “geometric lifting” has the form
ϕ : F (X+, E)→ F (Tα,E) where F (−,−) is the functional spectrum. More-
over, an analogous “geometric lifting” also exists for Thom–Dold isomor-
phisms as in 1.5 (see Lewis–May–Steinberger [1], p. 436).

Now we consider the relations between E- and E[p]-orientability, where p
runs over all primes and E[p] is the Z[p]-localization of E.

Let q be the order of the element 1 ∈ π0(E) in the additive group
π0(E), 0 ≤ q <∞.

1.20. Proposition. An F-object α is E-orientable iff it is E[p]-orientable
for all primes p such that p|q.
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Proof. By 1.13, we can concentrate our attention on stable F -objects
only, and we can assume that bsα is connected. By 1.6 and II.5.15(i), E-
orientability implies E[p]-orientability. We prove the converse. Let j∗p :=

E[p](j) : ˜E[p]n(Tα) → ˜E[p]n(Sn) be the homomorphism induced by the
root j : Sn → Tα.

Firstly, suppose that q = 0. Then for every p there exists an element
ṽp ∈ ˜E[p]n(Tα) such that j∗p ṽp = σn⊗1 ∈ ˜En(Sn)⊗Z[p] = ˜E[p]n(Sn). Hence,
for every p there exists an element vp ∈ ˜En(Tα) such that j∗vp = apσ

n + yp,
where ap ∈ Z, (ap, p) = 1, and yp ∈ ˜En(Tα) is such that mpyp = 0 for some
mp ∈ Z with (mp, p) = 1. Set up := mpvp. Then j∗up = apmpσ

n = bpσ
n

with (bp, p) = 1. Since (bp, p) = 1, there exists a finite set {p1, ..., pk} of
primes such that (bp1 , ..., bpk) = 1. Hence, there exists a finite set {x1, ..., xk}
of integers such that

∑

xibpi = 1. Now, j∗u = σn if u =
∑

xiupi , i.e., α is
E-orientable.

The case q 
= 0 is similar; the only difference is that we have the equality
∑

xibpi = t, where (t, q) = 1. Let s ∈ Z be such that st ≡ 1 mod q. Then
j∗u = σn if u = s

∑

xiupi . �

1.21. Proposition. Let E be a ring spectrum, and let l : E → EΛ be the
localization with respect to a subring Λ of Q. Let u = uE : M(V , E)→ E be
the universal E-orientation, and let uEΛ : M(V , EΛ) → EΛ be the universal
EΛ-orientation. Set û = (uEΛ)Λ, and let l# := M(V , l) be as in 1.18. Then
the diagram

M(V , E)Λ
uΛ−−−−→ EΛ

(l#)Λ

⏐

⏐




=

⏐

⏐




M(V , EΛ)Λ
û−−−−→ EΛ

commutes up to homotopy, i.e., ûl# � uΛ.

Proof. By 1.18, the following diagram commutes up to homotopy:

M(V , E) u−−−−→ E

l#

⏐

⏐



l

⏐

⏐




M(V , EΛ)
uEΛ−−−−→ EΛ.

The Λ-localization of this diagram is the desired diagram since lΛ = 1EΛ .
�

1.22. Definition. Let α be an Fd-object over a CW -space X , and let u ∈
˜Hd(Tα; Z/2) be the Thom class of α. We define the i-th Stiefel–Whitney class
of α by setting

wi(α) := ϕ−1
HZ/2Sq

iu ∈ Hi(X ; Z/2).
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Similarly, given a stable F -object α, we set wi(α) := ϕ−1Sqiu where u is the
stable Thom class and ϕ is the Thom isomorphism as in IV.5.23(ii). Finally,
given a V-object ξ, we set wi(ξ) := wi(ξ•).

1.23. Examples. (a) Every F -object is HZ/2-orientable, see § IV.2. Vice
versa, if a ring spectrum E is such that every F -object is E-orientable, then
there exists a morphismMO → E and hence, by IV.6.2, a morphismHZ/2→
E compatible with the units. Hence, by II.7.7, E is a graded Eilenberg–Mac
Lane spectrum and 2π∗(E) = 0.

(b) By IV.5.8(ii), orientability as defined in IV.5.6 is justHZ-orientability.
It is easy to see that B(Vn, HZ) is just the two-sheeted (universal) covering
BSVn over BVn. In particular, a vector bundle is HZ-orientable iff its struc-
ture group can be reduced to SO. Observe that B(SVn, HZ) is just the
disjoint union of two copies of BSVn. Besides, HZ-orientability of any F -
object ξ is equivalent to the equality w1(ξ) = 0. This holds because BSV can
be obtained from BV just by killing the class w1. Alternatively, this follows
from IV.6.3 since w1(ξ) = ϕ−1Sq1uξ.

(c) Atiyah–Bott–Shapiro [1] proved that a vector bundle ξ is KO-
orientable iff it admits a Spin-structure. This holds, in turn, iff w1(ξ) =
0 = w2(ξ). This condition is purely homotopic and can be formulated for
every F -object. It is necessary for KO-orientability of any F -object, but it is
not sufficient for KO-orientability of PL-bundles, see Ch. VI. One the other
hand, Sullivan proved that every ST OP-bundle is KO[1/2]-orientable, see
Madsen–Milgram [1] for a good proof.

(d) The complexification C : BO → BU induces a ring morphism
KO → K, see VI.3.3 below. So, every KO-orientable F -object is K-
orientable. Atiyah–Bott–Shapiro [1] proved that a vector bundle ξ is K-
orientable iff it admits a SpinC-structure. The last condition is equivalent
to the purely homotopic conditions w1(ξ) = 0 = δw2(ξ), where δ is the
connecting homomorphism in the Bockstein exact sequence

· · · → H∗(X) 2−→ H∗(X) mod 2−−−−→ H∗(X ; Z/2) δ−→ H∗(X)→ · · · .

As in the KO-case, this condition is necessary for K-orientability of any
F -object, but it is not sufficient for K-orientability of PL-bundles, see Ch.
VI. One the other hand, every ST OP-bundle is K[1/2]-orientable in view of
Sullivan’s result mentioned in example (c).

(e) An Fd-object α over a finite CW -space is orientable with respect to
the sphere spectrum S iff it has trivial stable fiber homotopy type, i.e., iff
there exists N such that α⊕ θN is equivalent to θN+d. The simple proof (for
vector bundles, but this does not matter) can be found in Husemoller [1], Ch.
XV, Th. 7.7.

By 1.6, an S-orientable α is E-orientable for every ring spectrum E, cf.
also 1.10(iv). So, (a) and (e) appear as two extremal cases.
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1.24. Definition. Let (ξ, u) be an E-oriented Vn-object over X . The Euler
class of ξ is

χ(ξ) = χE(ξ, u) := ε∗z∗u ∈ ˜En(X+) = En(X),

where z : X → Tξ is the zero section as in IV.5.4, and ε : X+ → X is a map
such that ε|X = 1X .

1.25. Theorem (The Gysin exact sequence). Let ξ = {p : Y → X} be
any E-oriented Sn−1-fibration (i.e., Gn-object). Then there exists an exact
sequence

· · · −→ Ek(X)
χ−→ Ek+n(X)

p∗−→ Ek+n(Y ) −→ Ek+1(X) −→ · · · ,

where χ denotes the multiplication by the Euler class χ = χ(ξ).

Proof. Since Tξ � C(p), we have a long cofiber sequence Y
p−→ X

z−→
Tξ −→ · · · . It yields a long cofiber sequence

Y + p+−→ X+ ẑ−→ Tξ −→ · · · .

where ẑ = zε. This sequence induces an exact sequence

· · · −→ ˜Ek(Tξ)
ẑ∗−→ Ek(X)

(p+)∗−−−→ Ek(Y ) −→ · · · .

Now, the composition Ek−n(X)
ϕ−→ ˜Ek(Tξ)

ẑ∗−→ Ek(X) coincides with χ,
because

ẑ∗(ϕ(x)) = ẑ∗(ux) = ẑ∗(u)x = χx ,

the second equality holding because of commutativity of the diagram

Tξ
Δn

−−−−→ Tξ ∧X+

ẑ

�

⏐

⏐

�

⏐

⏐
ẑ∧1

X+ d+−−−−→ X+ ∧X+

with Δn as in IV.5.36.
If we replace ˜Ek(Tξ) by Ek−n(X), we get the desired exact sequence. �

1.26. Proposition. (i) Let f : Z → X be a map, and let ξ be any E-oriented
Vn-object over X. Then χ(f∗ξ) = f∗(χ(ξ)) provided f∗ξ is equipped with the
induced orientation.

(ii) Let ξ be an E-oriented Vm-object over X, and let η be an E-oriented
Vn-object over Y . Assume that ξ× η (or ξ ∗ η for V = G) is equipped with the
product E-orientation (see 1.10(ii)). Then χ(ξ × η) = μ(χ(x), χ(η)), where
μ : E∗(X)⊗ E∗(Y )→ E∗(X × Y ) is given by the multiplication in E.
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(iii) Let ξ, η be two E-oriented V-objects over X. Assume that ξ ⊕ η is
equipped with the sum E-orientation as in 1.10(iii). Then χ(ξ⊕η) = χ(ξ)χ(η).

(iv) Let ξ = {p : Y → X} be an HZ-oriented Sn−1-fibration over a
connected base X. If E = HZ, then χ(ξ) coincides up to sign with the char-
acteristic class of ξ, i.e., χ(ξ) = ±τι, where τ : Hn−1(F ) → Hn(X) is the
transgression, ι ∈ Hn−1(F ) = Z is a generator and F = Fx � Sn−1 is the
fiber of ξ; here x is an arbitrary point of X.

Proof. The properties (i)–(iii) are clear. We prove (iv). We denote χ(ξ)
just by χ. Put κ = τι. Consider the following diagram, where the bottom
line is the exact sequence of the pair (Y, F ):

Hn(X) Hn(X)

p̄∗
⏐

⏐




⏐

⏐



p∗

Hn−1(F ) δ−−−−→ Hn(Y, F ) k∗−−−−→ Hn(Y ).

We have τ = (p̄∗)−1δ, i.e κ = (p̄∗)−1δι. By 1.25, the group Kerp∗ is cyclic
(because H0(X) = Z), and χ generates this cyclic group. Since p∗κ = 0,
κ = mχ for some m ∈ Z.

On the other hand, p̄∗κ generates a cyclic group Im δ. Since k∗p̄∗χ =
p∗χ = 0, p̄∗χ ∈ Im δ, and so χ = m′

κ for some m′ ∈ Z. Thus, χ = ±κ. �

1.27. Proposition. Let (ξ, u) be an E-oriented Vn-object over X, and let
z : X → Tξ and ε : X+ → X be as in 1.24. Then ε∗z∗(ϕ(x)) = χ(ξ)x for
every x ∈ E∗(X) where ϕ : E∗(X)→ ˜E∗(Tξ) is a Thom–Dold isomorphism
with respect to u.

Proof. Let d : X → X ×X be the diagonal, and let Δn : Tξ → Tξ ∧X+

be as in IV.5.36. Let z1 : X ×X → Tξ ∧X+ be the zero section for ξ × θ0
(i.e., for p∗1ξ, see IV.5.36), and let i : X → X+ be the inclusion. Consider the
commutative diagram

˜E∗(Tξ)⊗ ˜E∗(X+)
μ−−−−→ ˜E∗(Tξ ∧X+)

(Δn)∗−−−−→ ˜E∗(Tξ)

z∗⊗i∗
⏐

⏐




⏐

⏐



z∗1

⏐

⏐



z∗

˜E∗(X)⊗ ˜E∗(X)
μ−−−−→ ˜E∗(X ×X) d∗−−−−→ ˜E∗(X)

where μ := μTξ,X
+

E and μ := μX,XE . Given x ∈ E∗(X) = ˜E∗(X+), we have

z∗ϕ(x) = z∗Δ∗μ(u⊗ x) = d∗μ(z∗ ⊗ i∗)(u⊗ x) = d∗μ(z∗u⊗ i∗x) = (z∗u)(i∗x).

Hence, ε∗z∗ϕ(x) = (ε∗z∗u)(ε∗i∗(x)) = χ(ξ)x. �
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1.28. Exercises. (a) Prove the following stable version of 1.5(ii). Let α, β
be two stable F -objects over X , and let α be equipped with an E-orientation
u. Then there are the Thom–Dold isomorphisms

F i(Tβ) u�−→ F i(Tα ∧ Tβ) τ∗
−→ F i(T (α⊕ β)), u�(x) = mTα,Tβ(u⊗ x),

Fi(T (α⊕ β)) τ∗−→ Fi(Tα ∧ Tβ) u�−→ Fi(Tβ), u�(x) = mTα
•,Tα∧Tβ(u⊗ x),

where τ = TId,α∧hβ : T (α ⊕ β) → Tα ∧ Tβ and d : X → X × X is the
diagonal.

(b) Let α be a stable F -object over X equipped with an E-orientation
u : Tα→ E where E is a commutative ring spectrum, and let f : X → BF
classify α. Let X be equipped with a homotopy associative multiplication
ν : X × X → X , and let f : X → BF respect the multiplications. Clearly,
the pairing E∗(X) ⊗ E∗(X) → E∗(X × X) ν∗−→ E∗(X) turns E∗(X) into a
ring. Furthermore, ν∗α � α ∧h α, and so, by IV.5.21(i), ν yields a pairing
(possibly non-associative) Tα ∧ Tα → Tα. So, similarly to above, E∗(Tα)
turns out to be a “non-associative ring”. Nevertheless, prove that

ϕE : E∗(Tα) −→ E∗(X)

is a ring isomorphism. In particular, E∗(Tα) is actually a ring. (Hint: consider
the morphism in 1.15 and prove that it respects pairings.)

§2. Orientations of Manifolds

LetM be a topological n-dimensional manifold. Consider a pointm ∈M\∂M
and a disk neighborhood U of m. Let ε = εm,U : M → Sn be the map
which collapses the complement of U . Let E be a ring spectrum, and let
sn ∈ En(Sn, ∗) be the image of 1 ∈ π0(E) under the homomorphism

π0(E) = ˜E0(S0) ∼= ˜En(Sn) = En(Sn, ∗).

2.1. Definition. Let M be a compact topological manifold. An element
[M,∂M ] = [M,∂M ]E ∈ En(M,∂M) is called an orientation of M with re-
spect to E, or, briefly, an E-orientation of M , if εm,U∗ [M,∂M ] = ±sn for
every m and every disk neighborhood U of m.

A manifold with a fixed E-orientation is called E-oriented, and a mani-
fold which admits an E-orientation is called E-orientable. So, an E-oriented
manifold is in fact a pair (M, [M ]E).

Clearly, a connected manifold M is HZ-orientable iff Hn(M,∂M) = Z,
i.e., iff M is orientable in the classical sense.

Note that sn is a canonical E-orientation of the sphere Sn.
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2.2. Proposition. Let M be a connected manifold, and let U0 be a disk
neighborhood of a point m0 ∈ M . If an element [M,∂M ] ∈ En(M) is such
that εm0,U0

∗ [M,∂M ] = ±sn, then [M,∂M ] is an E-orientation of M .

Proof. If a disk neighborhood V of m0 satisfies V ⊂ U0, then εm0,U0 �
εm0,V . Hence, εm,U � εm,U ′

for everym ∈M and every pair of disk neighbor-
hoods U,U ′ of m. Connect an arbitrary point m ∈ M with m0 by some arc
(homeomorphic to I) and consider a neighborhood W of this arc such that
W is homeomorphic to a disk. Let V0 ⊂W,V ⊂W be disk neighborhoods of
m0 and m, respectively. Then εm0,V0 � εm,V , and hence εm0,U0 � εm,U for
every pair (m,U). �

Consider an embedding of a closed manifold Mn in R
N+n and a tubular

neighborhood (U, q, νN ) of this embedding. The diagonal d : M → M ×M
induces the map ΔN : TνN → TνN ∧M+, see IV.5.36. Let v : SN+n →
TνN ∧M+ be the composition

v : SN+n cN−−→ TνN
ΔN

−−→ TνN ∧M+

where cN is the Browder–Novikov map as in IV.7.15(a). As in IV.7.12, set
ν = (νN )st. Then, by IV.5.16, Tν = Σ−NΣ∞TνN . For simplicity, denote
Σ−nΣ∞M+ by ̂M . The map v induces a morphism

v := Σ−N−nΣ∞v : S −→ Σ−N−nΣ∞(TνN ∧M+)

= Σ−NΣ∞TνN ∧ Σ−nΣ∞M+ = Tν ∧ ̂M

of spectra. Furthermore, the root j : SN → TνN yields a stable root J :=
Σ−NΣ∞j : S → Tν. Finally, the collapse ε : M → Sn yields a pointed map
ε : M+ → Sn, ε|M = ε, and we set E := Σ−nΣ∞ε : ̂M → S.

2.3. Theorem. (i) For every closed manifold M , the map v : SN+n →
TνN ∧M+ is an (N + n)-duality map between Tν and M+. In other words,
v : S → Tν ∧ ̂M is a duality morphism.

(ii) Let Mn be a connected closed manifold. Then the root J : S → Tν is
dual (up to sign) to the morphism E .

Proof. (i) By IV.7.5, TνN � R
N+n/(RN+n \ U). Thus, by II.2.8(b), v is

an (N + n)-duality.
(ii) Let DJ : ̂M → S be the morphism which is dual to J , see

II.2.3(c). Since [M,Sn] = Hn(M), we have [M,Sn] = Z for HZ-orientable
M and [M,Sn] = Z/2 for HZ-non-orientable M , and [M,Sn] is gener-
ated by ε in both these cases. Thus, it suffices to prove that (DJ)∗ :
H0(̂M) = Hn(M) → Z is an isomorphism for HZ-orientable M and
(DJ)∗ : H0(̂M ; Z/2) = Hn(M ; Z/2) → Z/2 is an isomorphism for arbitrary
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M . Firstly, (DJ)∗ : Hn(M ; Z/2) → Z/2 is an isomorphism for every M be-
cause, by IV.5.9(i), J∗ : H0(Tν; Z/2)→ H0(S; Z/2) is an isomorphism. Fur-
thermore, if M is HZ-orientable, then Z = Hn(M) = ˜Hn(M+) = ˜HN (Tν).
Hence, ν is HZ-orientable, and hence, by IV.5.9(ii), J∗ : H0(Tν) → H0(S)
is an isomorphism. Thus, (DJ)∗ must be an isomorphism. �

2.4. Theorem. A closed manifold M is E-orientable iff its stable normal
bundle is E-orientable.

Notice that, by 1.13, the stable normal bundle ν is E-orientable iff νN is.

Proof. Without loss of generality, we can assume that M is connected.
Given a root j : SN → TνN , set J := Σ−NΣ∞j : S → Tν. The homeomor-
phism w : SN+n → SN ∧ Sn is an (N + n)-duality map between SN and
Sn, and w = Σ−N−nΣ∞w is just the identification S ∧ S = S. By 2.3(i) and
II.2.4(i), we have the commutative diagram

(2.5)

˜E0(Tν) [Tν,E] vE−−−−→ [S,E ∧ ̂M ] En(M)

J∗
⏐

⏐




⏐

⏐



(1∧DJ)∗

[S,E] wE−−−−→ [S,E ∧ S]

where all horizontal maps are isomorphisms.
We prove that vE gives a bijective correspondence between E-orientations

of ν and E-orientations of M . (In particular, ν is E-orientable iff M is.)
Indeed, E-orientations u ∈ ˜En(Tν) are defined by the equality J∗(u) = ±1,
while E-orientations [M ] ∈ En(M) = E0(̂M) of M are characterized by the
equality (E )∗[M ] = ±1 ∈ π0(E). But, by 2.3(i), DJ is homotopic (up to sign)
to E : ̂M → S, and the result follows. �

2.6. Corollary (of the proof). Every duality v : S → Tν ∧ ̂M yields a
bijective correspondence (given by vE) between E-orientations of M and E-
orientations of ν. �

2.7. Remarks. (a) Milnor–Spanier [1] established an (N+n)-duality between
Tν and M+.

(b) Note that, in fact, we do not need to know a concrete form of the
duality morphism v : S → Tν ∧ ̂M in order to prove 2.4: it suffices just to
know that such a duality exists.

The bijective correspondence noted in 2.6 admits another description. Let
[Tν]E ∈ En(Tν) be the image of the unit 1 ∈ E0(S) under the homomorphism

E0(S)
∼=−→ En(Sn)

c∗−→ En(Tν).
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Note that [Tν]E is completely determined by the Browder–Novikov morphism
c : Sn → Tν. Moreover, we have τ∗([Tν]E) = [Tν]F for every ring morphism
τ : E → F of ring spectra. Now, the following proposition holds.

2.8. Proposition. Let u ∈ E0(Tν) be an E-orientation of the stable bundle
ν of M , and let ϕ : En(M) → En(Tν) be the Thom–Dold isomorphism
associated with u. Then vE(u) = ϕ−1([Tν]E) (here we identify En(M) with
˜E0(̂M)), i.e., [M ]E = ϕ−1([Tν]E).

Proof. The class vE(u), as well as the class ϕ−1([Tν]E), is given by the
map S v−→ Tν ∧ ̂M u∧1−−→ E ∧ ̂M . �

Note that u is not a canonical element, but since ϕ, as well as [M ]E ,
depends on u, this indeterminacy vanishes for ϕ([M ]E) = [Tν]E .

Let F be an E-module spectrum. Given a closed E-oriented manifold
(M, [M ]E), consider the isomorphism

P = P[M ]E : F i(M)
ϕ−→ F i(Tν) ∼= Fi(̂M) = ˜Fn−i(M+) = Fn−i(M).

Here ϕ is the Thom–Dold isomorphism given by an E-orientation u of ν,
which, in turn, is given by the E-orientation [M ]E of M according to 2.4.

The isomorphism P is called Poincaré duality and admits the following
alternative description.

2.9. Theorem. The homomorphism

∩[M ]E : F i(M)→ Fn−i(M)

coincides with P .

Proof. Let d : M →M ×M be the diagonal, and let Δ : Tν → Tν ∧M+

be the morphism as in IV.5.36. We define

T : Tν Δ−→ Tν ∧M+ � Tν ∧ Σ∞M+ = Tν ∧ Σn̂M

and

∇ : Σn̂M = Σ∞M+ Σ∞d+−−−−→ Σ∞(M+ ∧M+) = Σn̂M ∧M+ � Σn̂M ∧ Σn̂M.

Since the maps

M
d−→M ×M d×1−−→M ×M ×M, M

d−→M ×M 1×d−−→M ×M ×M

coincide, we conclude that the morphisms

TνN
ΔN

−−→ TνN ∧M+ ΔN∧1−−−−→ TνN ∧M+ ∧M+,

T νN
ΔN

−−→ TνN ∧M+ 1∧(d+)−−−−→ TνN ∧M+ ∧M+
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are homotopic. Hence, the morphisms

Tν
T−→ Tν ∧ Σn̂M T∧1−−→ Tν ∧Σn̂M ∧Σn̂M

and
Tν

T−→ Tν ∧ Σn̂M ∇−→ Tν ∧ Σn̂M ∧ Σn̂M

are homotopic. In particular, in the diagram

[S, Tν ∧Σn̂M ]
⏐

⏐



(T ∧1)∗

[S, Tν ∧ Σn̂M ]
(1∧∇)∗−−−−→ [S, Tν ∧ Σn̂M ∧ Σn̂M ]

we have

(2.10) (1 ∧∇)∗(Σnv) � (T ∧ 1)∗(Σnv),

where Σnv : Sn → Σn(Tν ∧M+) = Tν ∧ Σn̂M .
Let u ∈ E0(Tν) be the E-orientation of ν which is dual to [M ]E , cf.

2.6. Given x ∈ F i(M) = F i(Σn̂M) = [Σn̂M,ΣiF ], consider the following
commutative diagram:

Σnv ∈ [S, Tν ∧ Σn̂M ]

(T ∧1)∗

⏐

⏐




Σnv ∈ [S, Tν ∧ Σn̂M ]
(1∧∇)∗−−−−→ [S, Tν ∧Σn̂M ∧Σn̂M ]

⏐

⏐



(u∧1)∗

⏐

⏐



(u∧1)∗

[M ]E ∈ [S,E ∧ Σn̂M ]
(1∧∇)∗−−−−→ [S,E ∧ Σn̂M ∧ Σn̂M ]

⏐

⏐



(1∧x∧1)∗

[S,E ∧ΣiF ∧ Σn̂M ]
⏐

⏐



m∧1)∗

[Sn,ΣiF ∧ Σn̂M ].

Now (the second equality follows from (2.10))

P (x) = (m ∧ 1)∗(1 ∧ x ∧ 1)∗(u ∧ 1)∗(T ∧ 1)∗(Σnv)
= (m ∧ 1)∗(1 ∧ x ∧ 1)∗(u ∧ 1)∗(1 ∧∇)∗(Σnv)
= (m ∧ 1)∗(1 ∧ x ∧ 1)∗(1 ∧∇)∗(u ∧ 1)∗(Σnv) = x ∩ [M ]E .

This completes the proof. �
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2.11. Definition. Let F be a module spectrum over a ring spectrum E. Let
f : Mm → Nn be a map of closed manifolds.

(a) Suppose that both M,N are E-oriented. We define transfers (other
names: Umkehrs, Gysin homomorphisms)

f ! : F i(M)→ Fn−m+i(N), f! : Fi(N)→ Fm−n+i(M)

to be the compositions

f ! :F i(M) ∼= Fm−i(M)
f∗−→ Fm−i(N) ∼= Fn−m+i(M), i.e., f ! = P−1

[N ]f∗P[M ]

f! :Fi(N) ∼= Fn−i(N)
f∗

−→ Fn−i(M) ∼= Fm−n+i(N), i.e., f! = P[M ]f
∗P−1

[N ].

The reader can find many good properties of transfers in Dold [5], Dyer [1].
(b) More generally, we do not assume that M and/or N is E-oriented,

but we suppose that there is a morphism ω : νM ⊕ ξ → νN , bsω = f where ξ
is an E-oriented stable bundle. (In other words, the difference νN − f∗νM is
E-orientable.) We define transfers

ω! : F i(M)→ Fn−m+i(N), ω! : Fi(N)→ Fm−n+i(M)

to be the compositions

ω! : F i(M) = F i−m(̂M) ∼= Fm−i(TνM )
ϕ−→ Fm−i(T (νM ⊕ ξ))

(Tω)∗−−−−→ Fm−i(TνN) ∼= F i−m( ̂N ) = Fn−m+i(N),

ω! : Fi(N) = Fi−n( ̂N) ∼= Fn−i(TνN)
(Tω)∗−−−−→ Fn−i(T (ξ ⊕ νM ))

ϕ−→ Fn−i(TνM ) ∼= Fi−n(̂M) = Fm−n+i(M)

where the ϕ’s are the Thom–Dold isomorphisms as in 1.28(a).

If f : Mn → Nn is a map of closed HZ-oriented manifolds then

f∗f!(x) = (deg f)x

for every x ∈ H∗(N) (prove this!). In particular, if deg f = 1 then f∗ :
H∗(M) → H∗(N) is epic. Similarly, f∗ : H∗(N) → H∗(M) is a monomor-
phism if deg f = 1. Theorem 2.13 below generalizes this fact.

2.12. Lemma. Let E be a ring spectrum. Let f : Mn → Nn be a map of
degree ±1 of closed HZ-orientable manifolds. If [M ] is an E-orientation of
M then f∗[M ] is an E-orientation of N . In particular, N is E-orientable if
M is.

Proof. The map M
f−→ N

ε−→ Sn has degree ±1, and so ε∗(f∗[M ]) =
(εf)∗[M ] = ±sn. Thus, f∗[M ] is an E-orientation of N . �
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2.13. Theorem. Let E be a ring spectrum. Let f : Mn → Nn be a map
of degree ±1 of closed HZ-orientable manifolds. If M is E-orientable then
f∗ : F ∗(N) → F ∗(M) is monic and f∗ : F∗(M) → F∗(N) is epic for every
E-module spectrum F .

Proof. Let [M ] be an E-orientation of M . Given x ∈ F ∗(N), we have
f∗(f∗(x) ∩ [M ]) = x ∩ f∗[M ]. But f∗[M ] is an E-orientation of N , and so
x ∩ f∗[M ] 
= 0 if x 
= 0, and thus f∗(x) 
= 0 if x 
= 0. Furthermore, since
f∗[M ] is an E-orientation of N , every a ∈ F∗(N) has the form

a = u ∩ f∗[M ] = f∗(f∗(u) ∩ [M ]). �

2.14. Remarks-Exercises. (a) The results of this section can be generalized
for compact manifolds with boundary. Namely, Atiyah [3] generalized 2.3 and
proved that M/∂M is (N +n)-dual to TνN , where νN is a normal bundle of
(M,∂M) in (RN+n

+ , ∂R
N+n
+ ). In this way one can generalize 2.4 and 2.6, i.e.,

the word “closed” can be replaced by the word “compact” there. Moreover,
there is an isomorphism P of the form

P : F i(M)
ϕ−→ ˜F i+N (TνN) ∼= ˜Fn−i(M/∂M) = Fn−i(M,∂M),

and it coincides with the isomorphism

∩[M,∂M ]E : F i(M)→ Fn−i(M,∂M).

(b) We note the following generalization of 2.5 and 2.6. Consider a spec-
trum E and a subset A ⊂ π0(E) with ±A = A. We regard A as a subset of
En(Sn, ∗) = ˜En(Sn) ∼= ˜E0(S0). We define an (A,E)-marking of a manifold
Mn to be an element V ∈ En(M,∂M) such that ε(V ) ∈ A ⊂ En(Sn, ∗),
where ε is as in 2.1. Based on 2.3, one can prove that M is (A,E)-markable
iff its normal bundle is (see Definition IV.5.25). Moreover, (A,E)-markings
of M are in a bijective correspondence with (A,E)-markings of ν.

(c) Interpret 2.11(a) as a special case of 2.11(b).
(d) Let Nn be a closed E-oriented manifold, and let V n−k be a closed

submanifold of N . Assume that the normal bundle ν of N is E-oriented
and let u ∈ Ek(Tν) be the E-orientaion of ν. Then ν ⊕ νM |V = νV , and so,
because of 1.10(iii) and 2.4, V gets an E-orientation [V ]E . Now, the inclusion
V ⊂ E yields an element y ∈ En−k(M). Let c : N → Tν be the collapsing
map. Prove that c∗(u) is Poincaré dual to y.

(e) Let N,V and y be as in the previous exercise. Let Mm be an E-
oriented manifold and f : M → N be a map transverse to V . Then f−1(V )
gets a certain E orientation and hence yields an element x ∈ Em−k(M).
Prove that f!(y) = x.
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§3. Orientability and Integrality

Here we establish some interconnections between orientability and some inte-
grality theorems. Let τ : D → E be a ring morphism of ring spectra. Let ξ be
anyD-orientable (and hence E-orientable) V-object overX , and let uD (resp.
uE) be a D- (resp. E-) orientation of ξ. We do not say that τ(uD) = uE . On
the contrary, integrality phenomena arise precisely because of incompatibility
of the orientations.

The orientation uE gives rise to the Thom–Dold isomorphism ϕE :
E∗(X)→ ˜E∗(Tξ). Set

(3.1) R(ξ) = RuD ,uE (ξ) := ϕ−1
E τ(uD) ∈ E0(X).

Now, let Mn be any D-orientable manifold, and let [M ]D, [M ]E be D-, E-
orientations of it respectively. Consider a stable normal bundle ν of M and
fix a Browder–Novikov morphism c : Sn → Tν, Then, according to 2.6,
the orientations [M ]D, [M ]E determine certain orientations uD(ν), uE(ν) in
a canonical manner, and so the class R(ν) is defined.

3.2. Theorem. For every x ∈ Dk(M) we have

〈τ(x)R(ν), [M ]E 〉 = τ〈x, [M ]D〉

(where 〈−,−〉 is the Kronecker pairing).

Proof. Let [Tν]D, [Tν]E be as in 2.8. We have

〈τ(x)R(ν), [M ]E〉 = 〈τ(x)ϕ−1
E τ(uD), [M ]E〉 = 〈ϕ−1

E (τ(x)τ(uD)), [M ]E〉
= 〈τ(xuD), ϕE [M ]E〉 = 〈τ(xuD), [Tν]E〉
= 〈τ(xuD), τ [Tν]D〉 = τ〈(xuD), [Tν]D〉
= τ〈(xuD), ϕD[M ]D〉 = τ〈ϕ−1

D (xuD), [M ]D〉
= τ〈x, [M ]D〉. �

3.3. Corollary (the “Integrality” Theorem). The element 〈τ(x)R(ν), [M ]E〉
of the group πn−k(E) belongs to the subgroup Im{τ∗ : πn−k(D)→ πn−k(E)}.

�

Now we give some examples, but to understand them the reader should
know something about characteristic classes and vector bundles. However, in
future we do not use these examples, they just give a nice illustration of 3.3.

3.4. Examples. (a) Given a complex vector bundle ξ, we define a class

T (ξ) :=
∏ ti

eti − 1
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where ti are the Wu generators, i.e., the Chern class ci(ξ) is the i-th elemen-
tary symmetric polynomial of ti, see Milnor–Stasheff [1]. We also define the
Todd class

T (ξ) :=
∏ ti

1− e−ti
Let ch : K0(X) → H∗∗(X ; Q) :=

∏

nH
n(X ; Q) be the classical Chern char-

acter.

3.5. Theorem (see Hirzebruch [1], Palais [1]). Let η be an arbitrary complex
vector bundle over an almost complex closed manifold M2n. Then

〈ch(η)T (τM), [M ]〉 and 〈ch(η)T (τM), [M ]〉
are integers for every HQ-orientation [M ] of M (here τM is the tangent
bundle of M).

Proof. Clearly, it suffices to prove the theorem for some single HQ-
orientation [M ]. Put D = K, E =

∏

n∈Z

Σ2nHQ =
∨

n∈Z

Σ2nHQ, see III.3.26,

i.e., Ei(X) =
∏

n∈Z
Hi+2n(X ; Q). Based on II.7.13, define τ : D → E to be

the composition

K
l[0]−−→ K[0] chK−−→ H(π∗(K)⊗Q) =

∨

n∈Z

Σ2nHQ.

The inclusion HQ ⊂ E equips the HQ-oriented manifold M with an E-
orientation, and every complex bundle ξ admits a canonical K-orientation uξ
such that ϕ−1

E chK uξ = T (−ξ), see e.g. Stong [3], p.294. (Stong considers
a family of isomorphisms ϕH , but really this family is an isomorphism ϕE .)
By Bott periodicity, we have π2i(K) = Z, π2i+1(K) = 0. Interpreting η as an
element of K0(M), we conclude that

〈ch(η)T (τM), [M ]E〉 = 〈ch(η)R(νM), [M ]E〉 ∈ Im{τ∗ : π2n(K)→ π2n(E)}.
Now, considering the projection E → HQ, we conclude that

〈ch(η)T (τM), [M ]〉 ∈ Im{π2n(K)→ π2n(E)→ π2n(HQ)} = Z.

Similarly, there exists a K-orientation vξ with ϕ−1
E ch vξ = T (−ξ). So, we

obtain integrality of the second number12. �
12We indicate a construction of such vξ. Let γ = γ1

C
be the universal complex line

bundle over BU1 = CP∞, and let t := c1(γ) ∈ H2(CP∞). We require that

ϕ−1 ch vγ = t
1−e−t , i.e., ch vγ = 1

1−e−t ; here ϕ = ϕH . Since chγ = et and

γ ⊗ γ̄ = θ1
C
, we have ch γ̄ = e−t, i.e., we can put vγ = β

1−γ̄ = β(1 + γ̄ +
γ̄2 + · · · ) ∈ K2(CP∞), where 1 ∈ K0(CP∞) represents θ1

C
and β ∈ K2(pt)

is the Bott element. Every complex line bundle ξ has the form ξ = f∗γ for some

f : bs ξ → CP∞, and we put vξ = f∗vγ . Now, using the splitting principle, we

can construct vξ with ϕ−1
E ch vξ = T (−ξ) for every complex vector bundle ξ, cf.

§VII.2 and Conner–Floyd [1].
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(b) Given a real vector bundle ξ, we define the class

Â(ξ) :=
∏ yi

2 sinh(yi/2)

where the Pontrjagin class pi(ξ) is the i-th elementary symmetric polynomial
of y2

i .

3.6. Theorem (see Hirzebruch [1], Palais [1]). Let M4n be a smooth closed
manifold with w1(M) = 0 and w2(M) = ρ(c) for some c ∈ H2(M), where
ρ : H2(M)→ H2(M ; Z/2) is the mod 2 reduction. Then

〈ec/2 ch(η)Â(τM), [M ]〉

is an integer for every complex vector bundle η over M and every HQ-
orientation [M ] of M .

Proof. This theorem also can be deduced from 3.3 with D,E, τ just the
same as in Example (a). Namely, M is K-orientable, and the element c
(in fact, the SpinC-structure on M) enables us to construct a canonical K-
orientation of M , see Stong [3], Ch. XI. (In fact, every K-orientation of a
V-object ξ yields some c with w2(ξ) = ρ(c), see Ch. VI. It can happen that
different K-orientations yield the same class c, but there exists a canonical
“lifting”, i.e., a canonical K-orientation, for every class c.) By 2.4, we get a
certainK-orientation u of a normal bundle ν, and ϕ−1

E τu = ec/2 ch(η)Â(τM),
see loc. cit. Now the proof can be finished as in Example (a). �

(c) There is a stronger version of 3.6.

3.7. Theorem (see Hirzebruch [1], Palais [1]). Let M8n+4 be a smooth closed
manifold with w1(M) = 0, w2(M) = 0. Then for every real vector bundle η
and for every HQ-orientation [M ] of M the number

〈ph(η)Â(τM), [M ]HZ〉

is even. Here ph is the Pontrjagin character, ph η = ch(η⊗RC).

Proof. This theorem can be deduced from 3.3 if we put Ei(X) =
⊕

n∈Z
Hi+4n(X ; Q), τ = ph : KO(X) → E∗(X). The complexification

C : BO → BU induces the homomorphism

C∗ : Z = π8n+4(BO)→ π8n+4(BU) = Z

which is multiplication by 2, see IV.4.27(iii), and so the image Im{ph :
π8n+4(KO) → π8n+4(E)} consists of even numbers, and the theorem holds.

�
(d) Considering the morphisms Sqi : HZ/2 → ΣiHZ/2, we get, by

III.3.27, a morphism Sq : HZ/2→
∞
∏

n=−∞
ΣnHZ/2 where Sq(x) =

∏

i≥0

Sqi(x).
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By the Cartan formula, Sq : D → E is a ring morphism. Let Mn be a closed
connected topological manifold, and let [[M ]] ∈ Hn(M ; Z/2) be its fundamen-
tal class mod 2, i.e., the non-zero element of the group Hn(M ; Z/2) = Z/2.
Let W (ξ) =

∑

wi(ξ). Since wi(ξ) = ϕ−1Sqi(u) where u ∈ ˜H(Tξ; Z/2) is a
Thom class of ξ, we deduce from 3.2 that

〈x, [[M ]]〉 = 〈Sq(x)W (ν), [[M ]]〉.

Indeed, put D = HZ/2, E =
∞
∏

n=−∞
ΣnHZ/2 =

∞
∨

n=−∞
ΣnHZ/2 and τ = Sq :

D → E. Then put [M ]D = [[M ]] and define [M ]E to be the image of [M ]D
under the inclusion HZ/2→ ∨nΣnHZ/2 of the summand.

This formula is well-known and can also be deduced from the Wu formula
〈Sq(x), [M ]〉 = 〈(V ∪ x), [M ]〉, where V is the so-called Wu class of M (see
the definition of V e.g. in Stong [3], pp. 98–100).

In particular, if dimx 
= n then

(3.8) 〈Sq(x)W (ν), [[M ]]〉 = 0.

This implies, for example, that wn(ν) = 0 (put x = 1 ∈ H0(M ; Z/2)). Be-
sides, it follows from (3.8) that every HZ-orientable 3-dimensional manifold
M is parallelizable. Indeed, it suffices to prove that wi(ν) = 0 for i = 1, 2, 3.
We have w1(ν) = 0, w3(ν) = 0. If w2(ν) 
= 0, then there exists (by duality) a
class l ∈ H1(M ; Z/2) with 〈l, w2(ν)〉 
= 0. But then 〈Sq(l)W (ν), [M ]〉 
= 0.

One can deduce from (3.8) the following theorem of Massey [1]. Let α(n)
be the number of ones in the dyadic expansion of n. Then wi(ν) = 0 for
i > n − α(n). In fact, all the relations between the Stiefel–Whitney classes
follow from (3.8), see Brown–Peterson [2].

(e) Similarly to Example (d) one can consider the operation P =
∑

P i

for an odd prime p.

Analogs of Examples (d), (e) hold also in some other cohomology theories.

(f) Let MU be the complex (co)bordism theory (see Ch. VII), and let
sω : MU → Σ|ω|MU be the Novikov cohomology operation associated with a
partition ω = (i1, ..., ik), where |ω| =

∑

ik. Put D = MU , E =
∨

ω Σ|ω|MU .
Given a finite CW -space X and x ∈ MUk(X), set S(x) := ⊕ωsω(x) ∈
⊕ωMUk+2|ω|(x) = Ek(X). Then, by III.3.23(ii), S is induced by a morphism
S : D → E of spectra, and we put τ := S. Furthermore, we note that
the inclusion MU → E of the summand equips every MU-oriented V-object
with an E-orientation. Let ξ be a complex vector bundle with the canonical
MU-orientation u. Then ϕ−1

MUsω(u) = cω(ξ), where cω(ξ) ∈ MU2|ω|(bs ξ)
is the Conner–Floyd–Chern class of ξ. So, ϕ−1

E S(u) = C(ξ) where C(ξ); =
∑

ω cω(ξ). Let M be a closed almost complex manifold with the canonical
MU-orientation [M ]. By 3.3,
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〈S(x)C(ν), [M ]〉 ∈
⊕

k≤n−i
π2k(MU)

for every x ∈ MU2i(M2n) (the point of this formula is the inequality k ≤
n− i).

More generally, one can consider an arbitrary set Λ of partitions such that
ω1, ω2 ∈ Λ iff (ω1, ω2) ∈ Λ and introduce the spectrum E = ∨ω∈ΛΣ|ω|MU ,
etc.

(g) The Adams power operation ψn : K0(X)→ K0(X) can be extended
to a stable operation, but this requires the expense of localization. More
precisely, there exists a ring morphism ψn : K∗(X)→ K∗(X)[1/n] which co-
incides with ψn on K0(X). Adams [6] defined a “cannibalistic” characteristic
class ρn(ξ) := ϕ−1ψn(u) ∈ K∗(X)[1/n] for every K-oriented (for example,
complex) vector bundle (ξ, u) over X . Thus, if M is any K-oriented (for ex-
ample, stably almost complex) manifold, then, by 3.2, for every x ∈ K∗(M)
we have

〈ψn(x)ρn(ν), [M ]〉 ∈ Z ⊂ Z[1/n].

Theorem 3.2 is a partial case of the following result. Let M, N be two
closed D-orientable manifolds, and let τ : D → E be a ring morphism of ring
spectra. Choose orientations [M ]D, [M ]E , [N ]D, [N ]E .

3.9. Theorem (Dyer [1]). For every f : M → N and every x ∈ D∗(M) we
have

f !
E(τ(x)R(νM )) = τ(f !

D(x)R(νN )).

Here f ! denotes the transfers defined in (2.11).

Proof. This can be easily deduced from 3.2, see Dyer [2]. �
Note that 3.2 follows from 3.9, if we take N to be a point.

§4. Obstructions to Orientability

In this and the next section we give an obstruction theory for orientability
with respect to spectra of finite type. By 1.16, it suffices to consider connected
spectra only. Furthermore, by 1.20, an F -object is E-orientable iff it is E[p]-
orientable for all primes p which divide the order of 1 ∈ π0(E). Thus, up
to the end of this chapter we fix any prime p and consider a connected p-
local ring spectrum E of finite Z[p]-type. As usual, Z[p]∗ denotes the set of
invertible elements of the ring Z[p].

In this and the next section the Postnikov n-stage of a spectrum E is
denoted simply by En. This is not compatible with the notation of Ch. II,
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where En was just the n-th term of E, and the Postnikov n-stage of a spec-
trum E was denoted by E(n), but this will not confuse us because we shall
not consider (nor even mention) terms of spectra in this chapter.

By 1.13, without loss of generality we may and shall restrict our attention
to stable V-objects only. So, up to the end of the chapter the term “V-object”
means “stable V-object over a connected CW -base”, and similarly for F -
objects.

4.1. Recollection (See Fomenko–Fuchs–Gutenmacher [1], Hu [1], Mosher–
Tangora [1], Spanier [1]).

(a) Recall that an F -fibration p : Y → X is called simple if the π1(B)-
action on πn(F ) is trivial for every n.

(b) Let F be a CW -space with πi(F ) = 0 for i < n where n > 1. Then,
by the Hurewicz Theorem, Hi(F ) = 0 for i < n, and so, by II.4.9, there
is a canonical isomorphism a : Hn(F ;πn(F ))

∼=−→ Hom(Hn(F ), πn(F )). Let
g : Hn(X)→ πn(X) be the inverse isomorphism to the Hurewicz isomorphism
h : πn(F )→ Hn(F ). The element

(4.2) ιn := a−1(g) ∈ Hn(F ;πn(F ))

is called the fundamental class of a space F .
(c) Now, let

(4.3) p : Y → X

be a simple F -fibration with F as in (b), let Fx be a fiber over a point x ∈ X ,
and let τ : Hn(Fx;πn(Fx)) → Hn+1(X ;πn(Fx)) be the transgression. We
define the characteristic class χ of the fibration (4.3) by setting

(4.4) χ := τιn ∈ Hn+1(X ;πn(F ))

(d) In particular, if F is an Eilenberg–Mac Lane space K(π, n) then there
is the fundamental class

ιn ∈ Hn(K(π, n);πn(K(π, n))) = Hn(K(π, n);π).

However, we must be careful with the last (traditionally used) equality.
Namely, this equality means that there is a standard group π, and we some-
how identify πn(K(π, n)) with π. A similar problem arises when we con-
sider characteristic classes. In other words, when we say, for instance, “Let
χ ∈ Hn+1(X ;π) be a characteristic class of the K(π, n)-fibration over X” it
means that χ is an element of the corresponding Autπ-orbit in Hn+1(X ;π),
cf. Spanier [1], Ch.8, §1. (By the way, cf. II.4.19.)

(e) Recall that a K(π, n)-fibration has trivial (i.e., =0) characteristic class
iff it admits a section, see loc. cit.
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4.5. Lemma. Let p be a prime, and let π = Z[p] or π be a cyclic group
of order pk. Let q : Y → B be a simple fibration with fiber K(π, n), n ≥ 1,
and with non-trivial characteristic class χ ∈ Hn+1(B;π). Furthermore, let
Y,B be homotopy equivalent to CW -spaces, and let Hn+1(B;π) be a finitely
generated Z[p]-module. Finally, let

Y
g−−−−→ Y

q

⏐

⏐




⏐

⏐




q

B −−−−→
f

B

be a commutative diagram such that f is a homotopy equivalence. Then g is
a homotopy equivalence.

Proof. Let f(b1) = b2, bi ∈ B, i = 1, 2, and let Fi := q−1(bi), i = 1, 2. Let
g : F1 → F2 be the restriction of g. In order to prove that g is a homotopy
equivalence, it suffices to prove that g is a homotopy equivalence. Let ιi ∈
Hn(Fi;π) = π be the fundamental class of Fi, i = 1, 2. It suffices to prove
that g∗(ι2) = λι1 with λ ∈ Z[p]∗, where

g∗ : H∗(F2;π)→ H∗(F1;π)

is the induced homomorphism. We have χ 
= 0. Furthermore, Hn+1(B;π) is a
finitely generated Z[p]-module, and so there exists r such that pr|χ, pr+1

� χ.
Set χi = τιi, where τ is the transgression in the Leray–Serre spectral sequence
of q. Since f is a homotopy equivalence, pr|f∗(χ2), pr+1

� f∗χ2 . Now, if
g∗(ι2) = psλι1 with s > 0, λ ∈ Z[p], then

(4.6) f∗(χ2) = f∗(τι2) = τg∗(ι2) = τ(psλι1) = psλχ1.

In particular, pr+1|f∗(χ2). This is a contradiction. �
We denote πi(E) by πi and consider the Postnikov tower of E

(4.7)

E
⏐

⏐




τn

· · · −−−−→ En+1 −−−−→ En
pn−−−−→ En−1 −→· · ·−→ E0

κn

⏐

⏐




∥

∥

∥

Σn+1H(πn) H(π0)

Here κn is the n-th Postnikov invariant of E (and also the corresponding
higher cohomology operation).

By II.4.30(i), every En is a ring spectrum.
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4.8. Proposition. Every E-orientable F-object α is En-orientable for every
n. In particular, it is H(π0)-orientable.

Proof. This holds by 1.6 since, by II.4.30(i), τn is a ring morphism. �
So, as a first step, we must clarify when α is H(π0)-orientable.

4.9. Proposition. Let R be a ring (non-graded), and let HR be the corre-
sponding Eilenberg–Mac Lane spectrum.

(i) If α is HZ-orientable then α is HR-orientable for every R.
(ii) If α is not HZ-orientable, then it is HR-orientable iff 2R = 0.

Proof. (i) The (unique) ring homomorphism Z → R induces a ring mor-
phism HZ→ HR of spectra. Thus, by 1.6, α is HR-orientable.

(ii) Since every F -object is HZ/2-orientable, we conclude that α is HR-
orientable if 2R = 0. Namely, the ring homomorphism Z/2 → R induces a
ring morphism HZ/2→ HR, and we can apply 1.6.

Now, if α is not HZ-orientable then, by IV.5.23(i) and II.4.7(i), H0(Tα) =
Z/2, and so, by II.4.9,

H0(Tα;R) = Hom(H0(Tα), R) = Hom(Z/2, R).

On the other hand, if α isHR-orientable thenH0(Tα;R) ∼= H0(bsα;R) = R.
Thus, 2R = 2 Hom(Z/2, R) = 0. �

Going further, consider any H(π0)-oriented F -object α with an H(π0)-
orientation v : Tα→ H(π0).

4.10. Proposition. Every lifting u : Tα→ E of v is an E-orientation of α.

Proof. Let j : S → Tα be a root of the spectrum Tα. The composition
S

j−→ Tα
u−→ E yields exactly the same element of π0(E) as the composition

S
j−→ Tα

v−→ H(π0) does. �

4.11. Proposition. A V-object α over a finite dimensional CW -base is E-
orientable iff 0 ∈ κn(v) for all n.

Proof. I explain here why the base should be finite dimensional. Because of
obstruction theory, if 0 ∈ κn(v) for every n then α is En-orientable for every
n, and vice versa. However, if bsα is not finite dimensional then we can’t
guarantee that α is E-orientable, since En-orientations can be incompatible.
In other words, we have a phenomenon of “phantomic orientability”. On the
other hand, if bsα is finite dimensional then E-orientability is equivalent to
EN -orientability with N >> dimX (prove this!), and the result follows. �

Since E is a ring spectrum, πn is a module over the ring π0, and so H(πn)
is a module spectrum over the ring spectrum H(π0). Hence, for every k, n we
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have a Thom isomorphism ϕ : Hk(X ;πn)
∼=−→ ˜Hk(Tα;πn). We introduce the

higher characteristic classes en(α) ⊂ Hn+1(X ;πn) by setting

(4.12) en(α) = ϕ−1κn(v).

Of course, en(α) is defined iff 0 ∈ ei(α) for all i < n. Now, 4.11 can be
reformulated as follows.

4.13. Proposition. An F-object α over a finite dimensional base is E-
orientable iff 0 ∈ en(α) for all n. �

As usual, we set

(4.14) en(ξ) := en(ξ•)

for any V-object ξ. We say that the characteristic class en can be realized by
V-objects if there exists a V-object ξ such that en(ξ) is defined and 0 /∈ en(ξ).
The realizability problem for characteristic classes seems to be of great in-
terest. We shall see below that for fixed E and different V this problem has
different solutions.

Let γn = γVn be the universal stable E-oriented V-object overB(V , En) (in
other words, γVn is ηV,En in the notation of 1.17). (Do not confuse γVn with the
n-dimensional V-object γnV from IV.4.2.) Let un ∈ E0

n(Tγn) = E0
n(M(V , En))

be the universal En-orientation of γn. Set

(4.15) eVn = ϕ−1κnun−1 ∈ Hn+1(B(V , En−1);πn).

4.16. Proposition (universality of eVn). Let ξ be any En-oriented V-object
over X, and let a ∈ en(ξ). Then a = f∗eVn for some f : X → B(V , En−1).

Proof. The element ϕ(a) is given by the composition

Tξ
h−→ En−1

κn−→ Σn+1H(πn)

where, by 4.10, h must be an En−1-orientation of ξ. Hence, h yields a map
f : X → B(V , En−1) such that (Tf)∗un−1 = h, where Tf := TIf,γn−1 :
Tξ → Tγn−1. Thus,

f∗eVn = f∗(ϕ−1κnun−1) = ϕ−1κn(Tf)∗un−1 = ϕ−1κnh = ϕ−1ϕa = a. �

Of course, it makes sense to realize classes en by the universal objects
γVn−1. Since eVn ∈ en(γVn−1), the condition eVn 
= 0 is necessary for the real-
izability of en. We shall see below that this condition is not sufficient for
the realizability of en. So, it would be useful to find some condition of non-
triviality of eVn and to find when this non-triviality implies that 0 /∈ en(γVn−1).
The first of these will be done in 4.19, and the second one will be done in
5.1, 5.6.
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By 1.18, B(V , E) is a functor of E (on the category of ring spectra and
ring morphisms). By II.4.30, each spectrum En is a ring spectrum and all the
morphisms τn, pn are ring morphisms for every n ≥ 0. Thus, we can apply
the functor B(V ,−) to the tower (4.7) and obtain the tower (4.17), where
ρn := B(V , τn), qn := B(V , pn).
(4.17)

B(V , E)
⏐

⏐




ρn

· · ·−→B(V , En)
qn−−−−→ B(V , En−1)−→· · ·−→B(V , E0)

q0−−−−→ BV

Because of IV.1.35, we can and shall assume that every map qn is a fibration.

4.18. Theorem. (i) The fiber of qn is K(πn, n). Thus, the tower (4.17) is
the Postnikov–Moore tower13 of the forgetful map q : B(V , E)→ BV.

(ii) The K(πn, n)-fibration qn has a section iff eVn = 0.

Proof. (i) This is obvious because the fiber of qn is just the fiber of
Ω∞

±1(pn), and hence it is the Eilenberg–Mac Lane space K(πn, n).
(ii) Note that eVn = 0 iff the universal En−1-orientation of γVn−1 can be

extended to an En-orientation of γVn−1, i.e., iff qn admits a section. �

4.19. Corollary. If Ω∞κn 
= 0, then eVn 
= 0.

Proof. The restriction of the tower (4.17) to a point b ∈ BV gives us the
Postnikov tower of Ω∞

±1E. One has the pull-back diagram

Ω∞
±1En −−−−→ B(V , En)

Ω∞pn

⏐

⏐




⏐

⏐




qn

Ω∞
±1En−1 −−−−→ B(V , En−1).

If Ω∞κn 
= 0, then Ω∞pn does not admit a section. So, qn does not admit a
section. Thus, by 4.18(ii), eVn 
= 0. �

4.20. Definition. We say that a connected ring spectrum E of finite Z[p]-
type is simple if the fibration qn+1 · · · qm : B(V , Em) → B(V , En) is simple
for every m,n, m > n and every V .

4.21. Lemma. (i) The spectrum E is simple iff every fibration qn :
B(V , En)→ B(V , En−1) is simple for every n and every V.

(ii) If the space B(V , E0) is simply connected (i.e., B(V , E0) � BSV),
then E is simple.

(iii) If 2π∗(E) 
= 0 then E is simple.

13See e.g. Spanier [2] about Postnikov–Moore towers.
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(iv) Let A be a finitely generated Z[p]-module. If a spectrum E is simple
then the group Hi(B(V , En);A) is a finitely generated Z[p]-module for every
i, n.

Proof. (i) Let F be a fiber of qn+1 · · · qm. It follows from 4.18(i) that
πi(F ) = πi for n + 1 ≤ i ≤ m and πi(F ) = 0 otherwise. Now, the
π1(B(V , En))-action on πi(F ), n+ 1 ≤ i ≤ m, coincides the π1(B(V , i− 1))-
action on πi(fiber of qi) = πi(F ).

(ii) The action of π1(B(V , En−1)) = π1 on πn(fiber of qn) = πn coincides
with the action of π1(Ω∞E) = π1 on πn = πn(Ω∞E); but the last action is
trivial because Ω∞E is an H-space. Now the result follows from (i).

(iii) If 2π∗(E) 
= 0 then the fiber of q0 is homotopy equivalent to Z/2.
Since [pt, B(V , H(π0))] is the one-point set, B(V , E0) = B(V , H(π0)) is a
connected space. Considering the homotopy exact sequence of the fibration
q0, we conclude that B(V , E0) is simply connected, and the claim follows
from (ii).

(iv) Firstly, we prove that every group Hi(B(V , E0);A) is a finitely gen-
erated Z[p]-module. There are two possibilities: q0 is the identity map or q0
is homotopy equivalent to the universal covering (cf. the proof of (iii)). If
q0 is the identity map then, by IV.4.27(ix), every group Hi(BV) is finitely
generated, and so Hi(BV ;A) = Hi(B(V , E0);A) is a finitely generated Z[p]-
module. Furthermore, if q0 is homotopy equivalent to the universal covering
then B(V , E0) is simply connected and πi(B(V , E0)) = πi(BV) for every
i > 1. So, πi(B(V , E0)) are finitely generated abelian groups by IV.4.27(ix).
Hence, Hi(B(V , E0)) are finitely generated abelian groups by the mod C

Hurewicz Theorem for spaces, where C is the Serre class of the finitely gen-
erated abelian groups, see e.g. Mosher–Tangora [1]. Thus, Hi(B(V , E0);A) is
a finitely generated Z[p]-module for every i.

Suppose inductively thatHi(B(V , En−1); Z[p]) is a finitely generated Z[p]-
module for every i. It is well known (or one can prove this as above) that
Hi(K(π, n);A) is a finitely generated Z[p]-module for every finitely gener-
ated Z[p]-module π and every i, n. Considering the Leray–Serre spectral se-
quence of the fibration K(πn, n) → B(V , En−1) → B(V , En), one can see
that Hi(B(V , En);A) is a finitely generated Z[p]-module for every i. The in-
duction is confirmed. �

4.22. Theorem. Suppose that E is a simple spectrum and that the group
πn is cyclic or isomorphic to Z[p]. Then eVn is a characteristic class of the
K(π, n)-fibration qn. (In other words, if χn is a characteristic class of the
K(π, n)-fibration qn then χn = εeVn for some ε ∈ Z[p]∗.)

Proof. Let χ = χn be a characteristic class of qn. If eVn = 0 then, by 4.18(ii),
qn admits a section, and so χ = 0. Similarly, the converse holds. So, we can
assume that eVn 
= 0 
= χ. Let r : B → B(V , En−1) be a simple K(πn, n)-
fibration with characteristic class eVn . (For example, take the fibration induced
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from the standard K(πn, n)-fibration PK(πn, n + 1) → K(πn, n + 1) (see
IV.1.39(a)) by the map eVn : B(V , En−1)→ K(πn, n+ 1).) We have

q∗n(e
V
n ) = q∗nϕ

−1κnun−1 = ϕ−1(Tqn)∗κnun−1 where Tqn := TIqn,γn−1 .

But T (qn)∗κnun−1 is given by the composition

M(V , En)
Tqn−−→M(V , En−1)

un−1−−−→ En−1
κn−→ Σn+1H(πn),

and, by 1.18,

κnun−1Tqn = κnun−1M(V , pn) = κnpnun−1.

So, q∗n(e
V
n ) = 0 since κnpn = 0. Hence, there exists a map α : B(V , En)→ B

over B(V , En−1). Similarly, since r∗(eVn) = 0, the En−1-oriented V-object
r∗γVn−1 admits an En-orientation, and hence there exists a map β : B →
B(V , En) over B(V , En−1).

B(V , En) α−−−−→ B B
β−−−−→ B(V , En)

qn

⏐

⏐




r

⏐

⏐




r

⏐

⏐




qn

⏐

⏐




B(V , En−1) B(V , En−1) B(V , En−1) B(V , En−1)

Since characteristic classes of the fibrations qn and r are non-zero, αβ and
βα are homotopy equivalences by 4.5. Hence, α is a homotopy equivalence.

Let K ′(π, n) (resp. K ′′(π, n)) be the fiber of r (resp. of qn), and let
ι′ ∈ Hn(K ′(π, n);π) (resp. ι′′ ∈ Hn(K ′′(π, n);π)) be a fundamental class
(we can’t say “the fundamental class”, see 4.1). Furthermore, the homotopy
equivalence α induces a homotopy equivalence α : K ′′(π, n) → K ′(π, n).
Since Hn(K(π, n);π) = π, we conclude that α∗ι′ = ει′′ for some ε ∈ Z[p]∗.
Thus, χ = εeVn . �

4.23. Remarks. (a) Resuming the above, we have two ways to E-orient a V-
object ξ = {f : X → BV}. The first way is to lift a morphism v : Tξ → H(π0)
to E along the tower (4.7), and in this way we meet the obstructions given
by the κn’s. The second way is to lift the map f : X → BV to B(V , E) along
the tower (4.17), and in this way we meet the obstructions given by the en’s.
So, the transfer from tower (4.7) to tower (4.17) can be considered as a form
of the Thom isomorphism.

(b) Theorems 4.18(ii) and 4.22 show that it makes sense to introduce a
class eV0 ∈ H1(BV ; {±1} ⊂ π0) as the characteristic class of the covering
B(V , E0) → BV . In fact, eV0 = 0 if 2π0(E) = 0 and eV0 = w1 otherwise.
Clearly, eV0 (ξ) is the obstruction to E0-orientability of ξ, i.e., it is the first
obstruction to E-orientability of ξ.

(c) Knapp–Ossa [1] defined the E-codegree of an Fn-object α to be the
minimal natural number k such that kσn ∈ Im{j∗ : ˜En(Tα) → ˜En(Sn)}.
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Clearly, the codegree of α is equal to 1 iff α is E-orientable. Knapp–Ossa [1]
considered just K- and KO-codegree of vector bundles; however, I think, the
general concept of E-codegree is interesting and is able to be considered in
some general context related to the results of this and the next section.

§5. Realizability of Obstructions to Orientability

Now we are ready to attack the problem of realizability of the classes en.
Let {πir}, 0 = i0 < i1 < · · · be the set of all non-trivial homotopy groups
of E. In other words, πi 
= 0 iff i = ir for some r. Note that Eir−1 = Eir−1

and γVir−1
= γVir−1. Of course, it makes sense to realize the classes eir only,

because each class ej with j 
= ir belongs to the trivial group. For simplicity,
denote eir by κr and κir by σr .

Let X |n → X be the (n − 1)-connective covering of X (see IV.1.39(b)).
Let (Ω∞σi)|n be the corresponding Postnikov invariants of (Ω∞E)|n. (Recall
that Ω∞ transforms the Postnikov tower of a spectrum to that of the space.)

5.1. Theorem. Let E be a simple spectrum, and let the group πj be cyclic
(possibly trivial) or Z[p] for every j. Suppose that there exists n such that

(i) 0 /∈ κn(γVin−1),
(ii) (Ω∞σr)|in 
= 0 for all r > n.
Then 0 /∈ κr(γVir−1) for r ≥ n. In other words, all characteristic classes

κr, r ≥ n can be realized by a V-object.

Proof. Firstly, we prove the following lemma.

5.2. Lemma. Let r > n , and let ω : Ω∞Eir−1 → Ω∞Eir−1 be a map such
that ω∗ : πin → πin is an isomorphism. Then ω cannot be lifted to Ω∞Eir
(with respect to the projection Ω∞Eir → Ω∞Eir−1 ).

Proof. Because of naturality, ω gives a self-map of the Postnikov–Moore
tower

Ω∞Eir−1 −−−−→ Ω∞Eir−2 −−−−→ · · · −−−−→ Ω∞Ein
⏐

⏐




ω

⏐

⏐




⏐

⏐




Ω∞Eir−1 −−−−→ Ω∞Eir−2 −−−−→ · · · −−−−→ Ω∞Ein .

Let Xs → Ω∞Eis be an (in − 1)-connective covering of Ω∞Eis . Because
of naturality of connective coverings, this diagram induces the diagram

Xr−1 −−−−→ Xr−2 −−−−→ · · · −−−−→ Xn

ωr−1

⏐

⏐




⏐

⏐




ωr−2

⏐

⏐




ωn

Xr−1 −−−−→ Xr−2 −−−−→ · · · −−−−→ Xn.
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Note that Xn = K(πin , in). Hence, ωn induces an isomorphism of homo-
topy groups, and so it is a homotopy equivalence. Suppose inductively that
ωs, n ≤ s < r − 1, is a homotopy equivalence. In the commutative diagram

Xs+1
ωs+1−−−−→ Xs+1

⏐

⏐




⏐

⏐




Xs
ωs−−−−→ Xs

the vertical arrows are K(πis+1, is+1)-fibrations with the characteristic class
Ω∞σs+1|in, which is non-trivial in view of the condition (ii) of the theorem.
Furthermore, ωs is a homotopy equivalence. Now, πi(Xs) are finitely gen-
erated Z[p]-modules, and hence Hi(Xs;πis+1) are finitely generated Z[p]-
modules. So, by 4.5, ωs+1 is a homotopy equivalence. Thus, inductively,
ωr−1 is a homotopy equivalence. But the characteristic class of the fibra-
tion Xr → Xr−1 is non-trivial according to the condition (ii) of the theorem,
and hence ωr−1 cannot be lifted to Xr. This implies that ω cannot be lifted
to Ω∞Eir . �

We continue the proof of the theorem. For simplicity, we denote B(V , Eik)
by Bk. The assertion 0 /∈ κr(γir−1) is equivalent to the following one: there
is no map Br−1 → Br−1 over BV which can be lifted to Br, i.e., that the
diagram (5.3) below cannot be completed:

(5.3)

Br−1 Br
∥

∥

∥

⏐

⏐




Br−1 −−−−→ Br−1
⏐

⏐




⏐

⏐




BV BV .

We prove the last assertion. Consider any map g : Bn → Bn over BV . By
naturality of Postnikov–Moore towers, we have a commutative diagram

K(πin , in) −−−−→ Bn −−−−→ Bn−1 −−−−→ BV

g

⏐

⏐




g

⏐

⏐




⏐

⏐



f

∥

∥

∥

K(πin , in) −−−−→ Bn −−−−→ Bn−1 −−−−→ BV .

Here K(πin , in) is the fiber of the fibration Bn → Bn−1, and g is the map of
fibers induced by g. Let ι ∈ Hin(K(πin , in);πin) be a fundamental class.

5.4. Lemma. The fibration Bn → Bn−1 is simple, and its characteristic
class τι has finite order.
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Proof. The fibration is simple because E is a simple spectrum. Now, let
u : TγVin−1 → En−1 be the universal En−1-orientation of γVin−1. By (4.15),
ϕ(κV

n ) = σnu = u∗σn, where σn ∈ Hin+1(Ein−1;πin) is the Postnikov invari-
ant of E. By II.7.12(i), σn has finite order, and so ϕ(κV

n ) has finite order,
and so κ

V
n has finite order. But, by 4.22, τι = εκV

n with ε ∈ Z[p]∗. �

5.5. Lemma. The map g is a homotopy equivalence, i.e., g∗ι = λι for some
λ ∈ Z[p]∗.

Proof. By the condition (i) of the theorem, 0 /∈ κn(γVin−1), and so κ
V
n 
= 0.

Hence, by 4.22, τι 
= 0. By 5.4, pNτι = 0 for some N . Suppose that g∗ι =
psλι, s > 0, λ ∈ Z[p]. Consider the commutative diagram (where fN denotes
f◦ · · · ◦f)

Bn
gN−−−−→ Bn

⏐

⏐




⏐

⏐




Bn−1 −−−−→
fN

Bn−1.

Note that γVin−1 is not Ein−1-orientable because 0 /∈ κn(γVin−1). Since f is a
map over BV , this non-orientability implies that fN cannot be lifted to Bn.
Hence, (fN )∗τι 
= 0. But

(fN )∗τι = τ((gN )∗ι) = τ(psNλN ι) = psNλNτι = 0.

This is a contradiction. �
Now we finish the proof of the theorem. Let r > n. We must prove that

0 /∈ κn(γVin−1), i.e., that any h : Br−1 → Br−1 over BV cannot be lifted to
Br, see (5.3). Suppose that there exists h which can be lifted to Br. Then
it induces a map of the Postnikov–Moore towers, and, in particular, a map
g : Bn → Bn over BV . We have the two diagrams below, where the bottom
vertical maps are the forgetful fibrations from 1.17 and the top vertical maps
are inclusions of fibers:

Ω∞
±1Eir−1

ω−−−−→ Ω∞
±1Eir−1 Ω∞

±1Ein
ψ−−−−→ Ω∞

±1Ein
⏐

⏐




⏐

⏐




⏐

⏐




⏐

⏐




Br−1
h−−−−→ Br−1 Bn

g−−−−→ Bn
⏐

⏐




⏐

⏐




⏐

⏐




⏐

⏐




BV BV , BV BV .

By 5.5, ψ∗ : πin(Ω∞Ein) → πin(Ω∞Ein) is an isomorphism. So, since
ψ is the “Postnikov in-stage” of ω, we conclude that ω∗ : πin(Ω∞Eir−1 ) →
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πin(Ω∞Eir−1 ) is an isomorphism. Now, by 5.2, ω cannot be lifted to Ω∞Eir ,
and hence h cannot be lifted to Br. �

Note that in Theorem 5.1 the class V appears in condition (i) only: condi-
tion (ii) is related purely to the spectrum E. It is possible to weaken condition
(ii) with simultaneous strengthening of condition (i) to obtain the following
theorem.

5.6. Theorem. Let E be a simple spectrum, and let the group πj be cyclic
or isomorphic to Z[p] for every j. Suppose that

(i) κ1(γV0 ) 
= 0,
(ii) κ

V
r 
= 0 for every r > 1.

Then 0 /∈ κr(γVir−1), r = 1, 2, . . . .

Proof. This is similar to the proof of 5.1, but simpler. It suffices to prove
that there is no map Br−1 → Br over BV . By 4.18(ii), non-triviality of the
class κ

V
r implies the the fibration Br → Br−1 does not admit a section,

r = 2, 3, . . . . Hence, it suffices to prove that every map Br−1 → Br−1 over
BV is a homotopy equivalence for every r > 0. For r = 1 this follows from
the equality B(V , E0) = BSV . Consider any r and suppose inductively that
every map Br−1 → Br−1 over BV is a homotopy equivalence. Given any map
g : Br → Br over BV , we have, by naturality, a diagram

Br
g−−−−→ Br

⏐

⏐




⏐

⏐




Br−1 −−−−→
f

Br−1

where f is an equivalence. Thus, by 4.21 (iv) and 4.5, g is a homotopy equiv-
alence. �

5.7. Remark. In Section 4 we discussed V-objects over finite dimensional
spaces. The spaces B(V , En) are not finite dimensional, but it is easy to see
that the classes κr from 5.1, 5.6 can be realized by V-objects over certain
skeletons of B(V , En).

5.8. Remark. The results of this and previous sections were obtained by
Rudyak [6,8].
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In this chapter we apply the results of the previous one to the orientability
of V-objects with respect to K and KO. The case V = O was considered
by Atiyah–Bott–Shapiro [1], the other cases were considered mainly by the
author, see Rudyak [6,8,9]. To be convenient, we collect the results as a
résumé, see the ends of §§ 3,4. Here K, resp. KO, means complex, resp. real
K-theory, see Atiyah [4], Husemoller [1], Karoubi [1], etc.

Set k := K|0, kO := KO|0. In view of V.1.17 K-, resp. KO -orientability
is equivalent to k-, resp. kO -orientabilty. So, it suffices to consider the k- and
kO -orientability problems.

As usual, given a space X and an abelian group π, we do not distinguish
elements of Hn(X ;π) and maps (homotopy classes) X → K(π, n). For exam-
ple, we can and shall speak about the map Sqk : K(Z/2, n)→ K(Z/2, n+k);
this map corresponds to the element Sqkιn where ιn ∈ Hn(K(Z/2, n); Z/2)
is the fundamental class.

Let G be one of the groups Z or Z[2]. In this chapter ρ : HG → HZ/2
(as well as ρ : K(Z, n) → K(Z/2, n)) denotes the reduction mod 2, and
δ : HZ/2→ ΣHG denotes the integral Bockstein morphism. We use the same
symbols ρ : Hn(X ;G) → Hn(X ; Z/2) and δ : Hn(X ; Z/2) → Hn+1(X ; G)
for the corresponding homomorphisms. Thus, there is the Bockstein exact
sequence, where 2 over the arrow means multiplication by 2,

· · · → Hn(X ;G) 2−→ Hn(X ;G)
ρ−→ Hn(X ; Z/2) δ−→ Hn+1(X ;G)→ · · · .

Finally, as usual, Z[2]∗ denotes the set of invertible elements of Z[2].

§1. Some Secondary Operations on Thom Classes

The results of this section were obtained by Hegenbarth [1]. In this section H
denotes HZ/2, H∗(A) denotes H∗(A; Z/2) and H∗(A) denotes H∗(A; Z/2).

The information that we shall need on secondary cohomology operations
can be found in Mosher–Tangora [1]. One says that a secondary operation Φ
can be realized by V-objects if there exists a V-object ξ such that Φ is defined
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on the Thom class uξ ∈ H∗(Tξ) and 0 /∈ Φ(uξ) (recall that usually Φ is a
multivalued map).

Consider an Adem relation

SqaSqb =
[a/2]
∑

c=0

(

b− c− 1
a− 2c

)

Sqa+b−cSqc

with a < 2b. Let Φ(a, b) be the secondary operation associated with this
relation. The goal of this section is to prove that Φ(2, 2) and Φ(3, 3) can be
realized by spherical fibrations.

We need some preliminaries about Kudo–Araki–Dyer–Lashof operations.
We just give a brief description of their properties: more detailed information
can be found in Cohen–Lada–May [1], Madsen–Milgram [1]. These operations
were introduced by Kudo–Araki [1] for p = 2, while Dyer–Lashof [1] have
given the construction for p > 2.

Let X be an n-fold loop space. The product on H∗(X) we denote by ∗.
There are operations Qi : Hk(X)→ Hk+i(X) with the following properties:

(1) Qi is defined for i− k < n− 1;
(2) Qi is natural with respect to n-fold loop maps (i.e., Qi(f) is defined

for f = Ωng);
(3) Qi(x) = 0 for i < dimx;
(4) Qi(x) = x ∗ x for i = dimx;
(5) Let σ : SΩX → X be the adjoint map to 1ΩX , and let

σ∗ : Hi(ΩX) ∼= Hi+1(SΩX)→ Hi+1(X)

be the homological suspension. Then Qi(σ∗x) = σ∗(Qix);
(6) (Cartan formula) Given x ∈ H∗(X), y ∈ H∗(Y ), one has

Qi(x⊗ y) =
∑

j+k=i

Qj(x)⊗Qk(y),

where x⊗ y ∈ H∗(X×Y ) and X×Y is equipped with the product
loop structure. By naturality,

Qi(x ∗ y) =
∑

j+k=i

Qj(x) ∗Qk(y)

for every x, y ∈ H∗(X), and

Qi(d∗x) =
∑

j+k=i

Qj(x′) ∗Qk(x′′),

where d : X → X ×X is the diagonal and d∗(x) =
∑

x′ ⊗ x′′;
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(7) (Adem relations) If r > 2s, then

QrQs =
∑

i

(

2i− r
r − s− i− 1

)

Qr+s−iQi;

(8) (Nishida relations) Let Sqi• : Hk(X)→ Hk−i(X) be the dual oper-
ation to Sqi, i.e., 〈Sqi(x), a〉 = 〈x, Sqi•(a)〉, cf. II.6.36. Then

Sqi•Q
j(a) =

∑

2k<i

Qj−i+kSqk• (a);

(9) If a ∈ H∗(ΩnkS
n), then Qi(a) ∈ H∗(Ωn2kS

n), where ΩnkS
n is the

component of ΩnSn consisting of all maps of degree k.

Let 0 
= ak ∈ H0(ΩnkS
n) = Z/2, and let [k] be the image of ak in

H0(ΩnSn). Note that [k] ∗ [l] = [k + l].
Given a connected space A, let ε be the non-trivial element of H0(A).

Let Kn denote K(Z/2, n), and let xn ∈ Hn(Kn), yn ∈ Hn(K(Z, n)) be the
generators.

Consider the two-stage Postnikov system (n is large, in fact n > k)

Kn+k−1
j−−−−→ E

⏐

⏐




p

K(Z, n)
Sqkρ−−−−→ Kn+k,

i.e., p : E → K(Z, n) is a fibration with fiber Kn+k−1 and characteristic class
Sqkρ, i.e., E is the homotopy fiber of Sqkρ. Here j is the inclusion of a fiber.
Let ι : Sn → E yield the generator 1 ∈ πn(E) = Z. The element (Ωnι)[l] ∈
H0(ΩnE) we denote also by [l]. The image (Ωnj)(xk−1) ∈ Hk−1(ΩnE) of
xk−1 we denote also by xk−1.

1.1. Lemma. Qk−1[1] = [2] ∗ xk−1 in H∗(ΩnE).

Proof. It is clear that Qk−1[1] = 0 or Qk−1[1] = [l] ∗ xk−1. Moreover, in
the latter case l = 2 because of the naturality of Qi and (9). Hence, we must
prove that Qk−1[1] 
= 0. Let

σk−1
∗ : H0(ΩnE)→ Hk−1(Ωn−k+1E)

be the iterated homological suspension. Under the homotopy equivalence (not
as loop spaces)

Ωn−k+1E � K(Z, k − 1)×K2k−2

we have σk−1
∗ [1] = yk−1 ⊗ ε. Now
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σk−1
∗ (Qk−1[1]) = Qk−1(σk−1

∗ [1]) = Qk−1(yk−1 ⊗ ε) = (yk−1 ⊗ ε)2,

(where a2 means a ∗ a). Hence, we must prove that (yk−1 ⊗ ε)2 
= 0.

Let u′ ∈ H2k−2(K2k−2) and v′ ∈ Hk−1(K(Z, k − 1)) be the generators.
Let

u ∈ H2k−2(Ωn−k+1E), v ∈ Hk−1(Ωn−k+1E)

be the images of u′ and v′ under the equivalence Ωn−k+1E � K(Z, k − 1)×
K2k−2. Let

ψ : H∗(Ωn−k+1E)→ H∗(Ωn−k+1E)⊗H∗(Ωn−k+1E)

be induced by the product on the loop space. It is clear that the inequality
(yk−1 ⊗ ε)2 
= 0 follows from the following fact.

1.2. Sublemma (Milgram [2]). ψ(u) = u⊗ 1 + v ⊗ v + 1⊗ u.

Proof. Put X = Ωn−kE and consider the Z/2-cohomology Leray–Serre
spectral sequence of the ΩX-fibration PX → X . This spectral sequence is
a spectral sequence of Hopf algebras because of the loop product on X . In
particular, there is a family of comultiplications ψr : E∗,∗

r → E∗,∗
r ⊗ E∗,∗

r

commuting with the differentials.
Let ⊗̄ be the multiplication in this spectral sequence. Since Sqk(τv) = 0

(τ is the transgression), τv⊗̄v is killed by an element of the fiber. Hence,
τv⊗̄v = dku. Now

dk(ψku) = ψk+1(dku) = ψk+1(τv⊗̄v) = ψ(τv)⊗̄ψ(v)
= (τv ⊗ 1 + 1⊗ τv)⊗̄(v ⊗ 1 + 1⊗ v)
= τv⊗̄v ⊗ 1 + v ⊗ τv + τv ⊗ v + 1⊗ τv⊗̄v =
dk(u⊗ 1 + v ⊗ v + 1⊗ u).

Hence, ψ(u) = u⊗ 1 + v⊗ v+ 1⊗u. Hence, 1.2, and thus 1.1, is proved. �

1.3. Lemma. (i) If k− 1 ≥ r > 0, then Ωn−rE � K(Z, r)×Kk+r−1 (not as
loop spaces), and Qk−1(yr ⊗ ε) = ε⊗ xk+r−1.

(ii) Consider the Postnikov tower

Kn+k−1
j̃−−−−→ ˜E

⏐

⏐




p

Kn
Sqk−−−−→ Kn+k.

If k−1 ≥ r > 0, then Ωn−r ˜E � Kr×Kk+r−1, and Qk−1(xr⊗ε) = ε⊗xk+r−1.

Proof. (i) The equivalence Ωn−rE � K(Z, r) ×Kk+r−1 is clear. Now, we
have the equality σ∗([j] ∗ xk−1) = ε⊗ xk, where
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σ∗ : Hk−1(ΩnE)→ Hk(Ωn−1E) ∼= H0(K(Z, 1))⊗Hk(Kk)

is the homological suspension. Furthermore, σ∗(yp⊗ε) = yp+1⊗ε and σ∗(ε⊗
xq) = ε⊗ xq+1, where

σ∗ : H∗(K(Z, p)×Kq)→ H∗(K(Z, p+ 1)×Kq+1).

Thus, by 1.1,

Qk−1(yr ⊗ ε) = Qk−1(σr∗ [1]) = σr∗(Q
k−1[1]) = σr∗([2] ∗ xk−1) = σr−1

∗ (ε⊗ xk)
= ε⊗ xk+r−1.

(ii) This follows from (i), because there is a morphism of Postnikov towers

E −−−−→ ˜E
⏐

⏐




⏐

⏐




K(Z, n)
ρ−−−−→ Kn

Sqk−−−−→ Kn+k.

�

1.4. Lemma. Given a Postnikov tower

Kn+2
j−−−−→ E

⏐

⏐




p

K(Z, n)
Sq3ρ−−−−→ Kn+3,

there is a map Φ : E → Kn+5 such that Φj = Sq3.

Proof. There is the Adem relation Sq3Sq3 +Sq5Sq1 = 0. Since Sq1ρ = 0,
we have the relation Sq3Sq3ρ = 0 which holds on integral cohomology classes.
Let ιn+2 ∈ Hn+2(Kn+2) be the fundamental class, and let τ denote the
transgression in the Leray–Serre spectral sequence of the Kn+2-fibration p.
We have

τ(Sq3ιn+2) = Sq3(τιn+2) = Sq3Sq3ρ = 0.
Hence,

Sq3ιn+2 ∈ Im{j∗ : H5(E)→ H5(Kn+2)}.
Thus, there is Φ ∈ H5(E) with j∗Φ = Sq3ιn+2, i.e., Φj = Sq3. �

Consider now the 3-stage Postnikov tower

E′′ E′

p′′
⏐

⏐




⏐

⏐



p′

Kn+2
j−−−−→ E

Φ−−−−→ Kn+5
⏐

⏐




p

K(Z, n)
Sq3ρ−−−−→ Kn+3,
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where Φj = Sq3, p′ : E′ → E is the Kn+4-fibration with characteristic class
ϕ, and p′′ is induced from p′ by j. Of course, E′′ is the homotopy fiber of pp′.
Moreover,

ΩnE′ � K(Z, 0)× ΩnE′′.

Furthermore, ΩnE′′ � K2 ×K4.

1.5. Lemma. In the group

H∗(ΩnE′) = H∗(K(Z, 0))⊗H∗(K2)⊗H∗(K4)

we have Q2Q2[1] = [4] ∗ (ε⊗ x4).

Proof. Firstly, we note that Qi[2] = 0 for i = 1, 2. Indeed, by the Adem
relations,

Qi[2] = QiQ0[1] =
∑

arsQ
rQs[1]

with 0 < s < i ≤ 2. But Hs(ΩnE′) = 0 for s < 2, and so Qs[1] = 0.
Now, ΩnE′ � K(Z, 0)×K2 ×K4, and the map

Ωnp′ : ΩnE′ → ΩnE � K(Z, 0)×K2

is the projection onto the first two factors. By 1.1, (Ωnp′)∗ : H∗(ΩnE′) →
H∗(ΩnE) maps Q2[1] to Q2[1] = 2 ∗ x2. It is clear that

(Ωnp′)∗([2] ∗ (x2 ⊗ ε)) = [2] ∗ x2.

But (Ωnp′)∗ is monic in dimension 2, and so Q2[1] = [2] ∗ x2 in H∗(ΩnE′). It
follows from the Cartan formula (6) that

Q2Q2[1] = Q2([2] ∗ (x2 ⊗ ε)) = [4] ∗Q2(x2 ⊗ ε),

because Q0[2] = [4] and Qi[2] = 0 for i > 0. In order to compute Q2(x2 ⊗ ε)
we can compute it in H∗(ΩnE′′). By 1.3(ii), Q2(x2⊗ε) = ε⊗x4 in H∗(ΩnE′′).
Thus, this holds in H∗(ΩnE′) also. �

Consider now any Adem relation

SqaSqb +
∑

SqliSqki = 0, a < 2b.

This relation implies the relation SqaSqbρ+
∑

SqliSqkiρ = 0, which holds on
integral cohomology classes. Moreover, it will hold if we exclude terms with
ki = 1 (since Sq1ρ = 0.) Thus, we get the relation

SqaSqbρ+
∑

SqliSqkiρ = 0, ki > 1

and the (partially defined, multivalued) operation Φ(a, b) : HZ → HZ/2
associated with this relation.
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Recall that

Φ = Φ(a, b) : Hi(X ; Z)→ Hi+a+b−1(X)

is defined on the subgroup Ker(Sqbρ ∩ (∩i KerSqkiρ)), and for i large Φ(x)
is a coset with respect to the indeterminacy subgroup

Φ(0) = Im(Sqa ⊕ (⊕i ImSqli)) ⊂ Hi+a+b−1(X).

1.6. Theorem. There exists an oriented stable spherical fibration ξ such
that:

(i) w2(ξ) = 0,
(ii) Φ(3, 3) is defined on the Thom class uξ ∈ H0(Tξ; Z),
(iii) Φ(3, 3) has zero indeterminacy on uξ,
(iv) Φ(3, 3)(uξ) 
= 0.

Proof. Let p : E → K(Z, n) be a Kn+2-fibration with characteristic class
Sq3ρ : K(Z, n)→ Kn+3. Consider the diagram

Kn+4
j′−−−−→ E′

⏐

⏐



p′

Kn+2
j−−−−→ E

Φ−−−−→ Kn+5
⏐

⏐




p

K(Z, n)
Sq3ρ−−−−→ Kn+3

where Φj = Sq3 and p′ is a Kn+4-fibration with characteristic class Φ, cf. 1.4.
Here j and j′ are the inclusions of fibers. Clearly, this diagram is a defining
diagram for the operation Φ(3, 3), i.e., Φ(3, 3) = Φ. (As usual, we use the
same symbol for a Postnikov invariant and the corresponding cohomology
operation.)

Let ζ be an SFn-object over X with w2(ξ) = 0. Then Φ is defined on uζ
because

Sq3ρ(uζ) = w3(ζ)uζ = Sq1w2(ζ)uζ = 0.

Furthermore, Φ has the indeterminacy

Im(Sq3 : Hn+2(Tζ)→ Hn+5(Tζ)).

Every x ∈ Hn+2(Tζ) has the form x = yuζ for some y ∈ H2(X). Thus,

Sq3(x) = Sq3(yuζ) =
∑

i+j=3

Sqi(y)Sqj(uζ).

But Sqj(uζ) = wj(ζ)uζ = 0 for 0 < j ≤ 3, while Sq3(y) = 0. Hence, Φ has
zero indeterminacy on uζ .
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Let D be the homotopy fiber of

Sq2ρ : K(Z, n)→ Kn+2.

Since Sq1Sq2 = Sq3, there exists a map e : D → E such that the diagram

D −−−−→ K(Z, n)
Sq2ρ−−−−→ Kn+2

e

⏐

⏐




∥

∥

∥

⏐

⏐



Sq1

E −−−−→ K(Z, n)
Sq3ρ−−−−→ Kn+3

commutes. Here every row is a fibration, where Sqiρ, i = 2, 3 is the projection
and the left arrow is the inclusion of a fiber. Consider the diagram

Kn+4
f ′

−−−−→ D′ e′−−−−→ E′

q′
⏐

⏐




⏐

⏐



p′

Kn+2
f−−−−→ D

e−−−−→ E

q

⏐

⏐




⏐

⏐




p

K(Z, n) K(Z, n),

where the top square is a pull-back diagram. Here ef = j, e′f ′ = j′. It follows
from 1.5 that

(1.7) Q2Q2[1] ∗ [−4] = (Ωnj′)∗(x4) 
= 0 ∈ H∗(ΩnD′).

Let ̂f be a fibrational substitute of f ′. Consider the pull-back diagram

M
b−−−−→ Kn+4

⏐

⏐



t

⏐

⏐



f ′

Sn
ι−−−−→ D′ q′−−−−→ D,

where ι gives 1 ∈ π0(D′) = Z. (So, the fibration t : M → Sn is induced
from ̂f by ι.) Clearly, the fibration t : M → Sn is induced from the standard
ΩD-fibration PD → D by q′ι, and so there arises the K2-fibration

Ωnt : ΩnM → Ωn0S
n.

Let τ be the transgression in the homology Leray–Serre spectral sequence of
this fibration. One has Sq1•(Q2Q2[1] ∗ [−4]) = 0 by the Nishida relations (8)
and property (3), and so

0 = τSq1• (Q2Q2[1] ∗ [−4]) = Sq1•τ(Q2Q2[1] ∗ [−4]).

Since Sq1• : H3(K2) → H2(K2) is an isomorphism, τ(Q2Q2[1] ∗ [−4]) = 0.
Hence
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(1.8) Q2Q2[1] ∗ [−4] ∈ Im(H4(ΩnM)→ H4(Ωn0S
n)).

Let a : SnΩnM → M be the map adjoint to 1ΩnM , and let Cg be the cone
of g := ta. By IV.5.35, Cg is the Thom space of a certain SFn-object α over
SΩnM . Let u ∈ Hn(Cg; Z) be the Thom class of α. Consider the following
diagram where the left vertical sequence is a long cofiber sequence:

SnΩnM a−−−−→ M
b−−−−→ Kn+4

g

⏐

⏐




⏐

⏐



t

⏐

⏐



f ′

Sn Sn
ι−−−−→ D′ e′−−−−→ E′

r

⏐

⏐




r

⏐

⏐




⏐

⏐



q′

⏐

⏐



p′

Cg Cg
v−−−−→ D

e−−−−→ E
Φ−−−−→ Kn+5

u

⏐

⏐




⏐

⏐




q

⏐

⏐




p

K(Z, n) K(Z, n) K(Z, n)
⏐

⏐



Sq2ρ

⏐

⏐



Sq3ρ

Kn+2 Kn+3.

Since q′ιt is inessential, there exists v : Cg → D with q′ι = vr. Furthermore,
qvr = ur, and r∗ : Hn(Cg; Z) → Hn(Sn; Z) is an isomorphism. Hence,
qv = u. So, Φ is defined on u.

We prove that it has zero indeterminacy on u. By the above, it suffices to
prove that w2(α) = 0. But w2(α)ρu = Sq2ρu = Sq2ρqv = 0.

We prove that Φ(u) 
= 0. If Φ(u) = 0, then Φev is inessential. (Indeed,
Φev is one of the values of Φ(u), but Φ has zero indeterminacy on u.) But
then there exists h : Cg → D′ with q′h = v. Since q′h = v, one has ι = hr.
Since rg is inessential, hrg is. Hence ιg = ιta is. But ιta is adjoint to

ΩnM 1−→ ΩnM Ωnt−−→ ΩnSn Ωnι−−→ ΩnD′.

Thus, if Φ(u) = 0, then (Ωnι)(Ωnt) is inessential. Consider the diagram

H∗(ΩnM)
(Ωnb)∗−−−−→ H∗(K4)

(Ωnt)∗

⏐

⏐




⏐

⏐



(Ωnf ′)∗

H∗(Ωn0S
n)

(Ωnι)∗−−−−→ H∗(Ωn0D
′).

By (1.7), Q2Q2[1] ∗ [−4] 
= 0 ∈ H∗(ΩnD′), while

Q2Q2[1] ∗ [−4] ∈ Im((Ωnι)∗(Ωnt)∗)

by (1.8). Hence, (Ωnι)(Ωnt) is essential, and hence Φ(u) 
= 0.
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Recall that BF � BG. Now, the stabilization of α is the desired stable
spherical fibration ξ. �

1.9. Theorem. There exists an oriented stable spherical fibration ξ such
that:

(i) w2(ξ) = 0,
(ii) Φ(2, 2) is defined on the Thom class u ∈ Hn(Tξ; Z),
(iii) Φ(2, 2) has zero indeterminacy on u,
(iv) Φ(2, 2)(u) 
= 0.

Proof. This can be proved as was 1.6, but we show another way. For n
large we have πn(Sn) = Z, πn+1(Sn) = Z/2 = πn+2(Sn). Furthermore, the
first Postnikov invariant of Sn is Sq2ρ, and the second one is Φ(2, 2), see e.g.
Mosher–Tangora [1]. In other words, the defining tower for Φ(2, 2) is just the
(n+ 2)-coskeleton of Sn.

Regarding w2 : BSG → K2 as a fibration (passing to a fibrational
substitute if necessary), let i : B → BSG be an inclusion of a fiber. We
set η := i∗γSG and ξ := η|B(3) (replacing B by a cellular substitute). If
Φ(uξ) = 0, then ξ must be S-orientable and so trivial, cf. V.1.23(e). But ξ is
non-trivial because the homomorphism i∗ : H3(BSG)→ H3(B) is non-zero.
Indeed,

H3(BSG) = Z/2⊕ Z/2 = {w3, e3},
where e3 is the Gitler–Stasheff class, see e.g. Madsen–Milgram [1]. Consider-
ing the Leray–Serre spectral sequence of the fibration B i−→ BSG w2−→ K2, we
conclude that i∗e3 
= 0. �

1.10. Remark. Hegenbarth [1] proved that every operation Φ(a, b), 1 < b ≤
a < 2b, can be realized by spherical fibrations. In fact, we followed this proof
in 1.6. It is based on ideas of Peterson [2] and Ravenel [1].

Here we considered the operations Φ(a, b) with a ≥ b. What about a < b?
In Rudyak–Khokhlov [1] it was asserted that every such an operation can be
realized by vector bundles. Unfortunately, there is a gap in that paper, and
now I can only prove that some such operations can be realized. Namely, let
B(i1, . . . , ik) be the homotopy fiber of the map

k
∏

j=1

wij : BO →
k
∏

j=1

Kij .

We say that the sequence {i1, . . . , is}, ir < ir+1 is apt if 0 
= wj ∈
H∗(B(i1, . . . , ij−1)) for every j = 1, . . . , s.

1.11. Theorem. Consider the Adem relation
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SqaSqb =
s
∑

i=1

SqliSqki , li ≥ 2ki,

where a < b and ki < ki+1. If 1 < k1 and the sequence {k1, . . . , ks, b} is apt,
then Φ(a, b) can be realized by vector bundles.

Proof. It is based on the ideas from Ch.V, §5. Set ls+1 := a, ks+1 :=
b, q := ki + li. Let

θ : H →
s+1
∨

i=1

ΣkiH

be the morphism which corresponds to {Sqk1 , · · · , Sqks+1} ∈ ⊕[H,ΣkiH ]
under the isomorphism

[H,
s+1
∨

i=1

ΣkiH ] ∼= ⊕[H,ΣkiH ].

Consider the diagram

E′
⏐

⏐



p′

s+1
∨

i=1

Σki−1H
j−−−−→ E

Φ−−−−→ Σq−1H

⏐

⏐




p

H
θ−−−−→

s+1
∨

i=1

ΣkiH,

where
∨

Σki−1H
j−→ E

p−→ H
θ−→
∨

ΣkiH

and
E′ p′−→ E

Φ−→ Σq−1H

are long cofiber sequences and

Φj|Σki−1H = Sqli .

This diagram is just the defining diagram for the secondary operation Φ, see
e.g. Mosher–Tangora [1]. The Postnikov tower of E has the form

E

=

⏐

⏐




τs+1

Es+1
ps+1−−−−→ Es −−−−→ · · · pn−−−−→ En−1

pn−1−−−−→ · · · p1−−−−→ H

σs+1

⏐

⏐




σn

⏐

⏐




⏐

⏐




σ1

Σks+1H ΣknH Σk1H
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where • pi−→ • σi−→ • is a cofiber sequence and

(1.12) (σi)∗(x) = Sqd+ki((p1◦ · · · ◦pi)∗(x)) ∈ Hki(X)

for every x ∈ (Ei)d(X), where Ei denotes the coskeleton E(k1+···+ki−i) of E.
Since k1 > 1, we conclude that E(0) = H and σ0 = Sqk1 .

We prove that the map Ω∞p′ : Ω∞E′ → Ω∞E does not admit a section.
Indeed,

Ω∞E = Z/2×
∏

Kki−1,

and Ω∞E′ is the homotopy fiber of the map

Ω∞Φ : Z/2×
∏

Kki−1 → Kq−1.

Furthermore, Ω∞Φ(ιkr−1) = Sqlr (ιkr−1), where ιr ∈ Hr(Kr) is the funda-
mental class. Since l0 < k0, Sql0(ιk0−1) 
= 0. Hence Ω∞Φ is an essential map.
Hence Ω∞p′ does not admit a section.

Since ki > 1, π0(E) � Z/2. Let ξ be the universal stable (1, E)-marked
vector bundle (see IV.5.25)14 , and let u ∈ H0(Tξ) be the Thom class. Let
B(O, 1, E) be the classifying space for (1, E)-marked stable vector bundles,
see IV.5.32(i). For simplicity, we denote B(O, 1, E) by B(O, E). Suppose
that 0 ∈ Φ(u). Then there exists a map M(O, E) → E′ such that the left
hand diagram of (1.13) below commutes. Hence ξ admits a (1, E′)-marking,
and hence there exists a map f such that the right hand diagram of (1.13)
commutes, cf. IV.5.32.

(1.13)

M(O, E) −−−−→ E′ B(O, E)
f−−−−→ B(O, E′)

∥

∥

∥

⏐

⏐



p′

∥

∥

∥

⏐

⏐




q

M(O, E) E B(O, E) B(O, E)
∥

∥

∥

⏐

⏐




p

∥

∥

∥

⏐

⏐




π

M(O, E) u−−−−→ H B(O, E) π−−−−→ BO.

Here π is the forgetful map and q := B(O, p′). Furthermore, q does not admit
a section because Ω∞p′ does not admit a section, cf. V.4.19. Hence, it suffices
to prove that qf is a homotopy equivalence for every map f : B(O, E) →
B(O, E′) over BO. (Indeed, if qf is a homotopy equivalence, then q admits
a section. This is a contradiction.)

We prove that every map g : B(O, E)→ B(O, E) over BO is a homotopy
equivalence. Consider any such a map g. It induces the following self-map of
the Postnikov–Moore tower, where qn := B(O, pn) is a Kkn−1-fibration and
gs+1 := g:

14We do not want to speak about E-orientations because E is not a ring spectrum.
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B(O, E)
gs+1−−−−→ B(O, E)

qs+1

⏐

⏐




⏐

⏐




qs+1

B(O, Es)
gs−−−−→ B(O, Es)

qs

⏐

⏐




⏐

⏐




qs

...
...

qn+1

⏐

⏐




⏐

⏐




qn+1

B(O, En)
gn−−−−→ B(O, En)

qn

⏐

⏐




⏐

⏐




qn

B(O, En−1)
gn−1−−−−→ B(O, En−1)

qn−1

⏐

⏐




⏐

⏐




qn−1

...
...

q1

⏐

⏐




⏐

⏐




q1

BO BO.
Set ξn = (qn◦ · · · ◦q1)∗γO. Let un ∈ H0(M(O, En)) be the Thom class of
ξn, and let v ∈ (En)0(M(O, En)) be the universal (1, En)-marking of ξ. Let
χn be the characteristic class of qn. Following V.4.22, one can prove that
χn = ϕ−1σnvn. Hence,

χn = ϕ−1σnvn = ϕ−1Sqknun = wkn(ξn)

(the second equality follows from (1.12)). So, B(O, En) = B(k1, . . . , kn−1).
By setting g0 = 1BO, suppose inductively that gn−1 is a homotopy equiv-

alence. Since the sequence {k1, . . . , ks} is apt, we have χn = wkn(ξn) 
= 0.
Hence, by 4.5, gn is a homotopy equivalence. Thus, g is a homotopy equiva-
lence. �

§2. Some Calculations with Classifying Spaces

Recall that K and KO are ring spectra. Hence, by II.4.28, k and kO are ring
spectra. Furthermore,

Ω∞K � BU × Z � Ω∞k; Ω∞KO � BO × Z � Ω∞kO.

Finally, by Bott periodicity, IV.4.27(ii), Σ2K � K, Σ8KO � KO.
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2.1. Lemma (cf. Adams [2]). If n > 2, then the first non-trivial Post-
nikov invariant of BU|(2n) is δSq2ρι2n ∈ H2n+3(K(Z, 2n)). Here ι2n ∈
H2n(K(Z, 2n)) is a fundamental class.

Proof. By IV.4.27(ii), Ω2BU � BU × Z. So,

Ω2n−4(BU|(2n)) � BU|4 � BSU .

Since H2n+3(K(Z, 2n)) = Z/2 = {δSq2ρι2n}, it suffices to prove the non-
triviality of the Postnikov invariant ψ ∈ H5(K(Z, 4)) of BSU . The Postnikov
tower of BSU has the form

...
⏐

⏐




BSU τ−−−−→ X
⏐

⏐




K(Z, 4)
ψ−−−−→ K(Z, 7).

It is clear that τ∗ : Hi(BSU ) → Hi(X) is an isomorphism for i ≤ 6. In
particular, H6(X) is torsion free, see IV.4.32. If ψ = 0, then X = K(Z, 4)×
K(Z, 6), i.e., H6(X) = Z/2. This is a contradiction. �

By Bott periodicity, π∗(K) = Z[t, t−1], dim t = 2. Thus, π∗(k) =
Z[t], dim t = 2.

The multiplication by t in k∗(X) is given by a morphism

t# : k = S ∧ k t∧1−−→ Σ−2k ∧ k μ−→ Σ−2k.

For simplicity, we also denote the suspension Σnt# : Σnk → Σn−2k, n ∈ Z,
of this morphism by t#.

Consider the morphism tr+1
# : Σ2r+2k→ k and denote its cone by kr. We

have the exact sequence

· · · → πi(k)→ πi+2r+2(k)→ πi+2r+2(kr)→ πi−1(k)→ · · · ,

and hence π∗(kr) = Z[t]/(tr+1). Moreover, k0 = HZ.

2.2. Proposition. If r > 0, then (Σ−2kr)|0 � kr−1.

Proof. There exists f such that the diagram

Σ2rk
tr#−−−−→ k −−−−→ kr−1

∥

∥

∥

t#

⏐

⏐




⏐

⏐



f

Σ2rk
tr+1
#−−−−→ Σ−2k −−−−→ Σ−2kr
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commutes. It is clear that f∗(ts) = ts for s < r, where f∗ : π∗(kr−1) →
π∗(Σ−2kr). Let ϕ : ̂Σ−2kr → Σ−2kr be a connective covering of Σ−2kr. Since
kr−1 is connected, there is a ϕ-lifting f̂ : kr−1 → ̂Σ−2kr of f . Clearly, f̂ is a
homotopy equivalence. �

2.3. Proposition. There exists a commutative diagram

Σ2r+2k
tr+1
#−−−−→ k −−−−→ kr

t#

⏐

⏐




∥

∥

∥

⏐

⏐




pr

Σ2rk
tr#−−−−→ k −−−−→ kr−1

such that (pr)∗(ts) = ts for s < r and (pr)∗(tr) = 0, where (pr)∗ : π∗(kr) →
π∗(kr−1). Furthermore, the cone of pr is Σ2r+1HZ, and so there is the long
cofiber sequence

(2.4) · · · → Σ2rHZ
jr−→ kr

pr−→ kr−1 σr−→ Σ2r+1HZ→ · · · .

Moreover, Σ2(σrjr−1) = σr+1jr.

Proof. The existence of pr follows from the commutativity of the left
square of the diagram. The properties of pr follow from the commutativity
of the right square of the diagram. The equality Σ2(σrjr−1) = σr+1jr follows
from 2.2. �

Consider the diagram
(2.5)

k HZ
⏐

⏐




τ2r

∥

∥

∥

· · · −−−−→ kr+1 −−−−→ kr
pr−−−−→ kr−1 −−−−→ · · · −−−−→ k0

σr

⏐

⏐




⏐

⏐




σ1

Σ2r+1HZ Σ3HZ

2.6. Theorem (cf. Adams-Priddy [1]). The diagram (2.5) is the Postnikov
tower of k, and for the Postnikov invariants σr we have:

(i) If i > n > 1, then ((Ω∞σi)|2n)[2] 
= 0.
(ii) Ω∞σ1 = 0 = Ω∞σ2, (Ω∞σi)[2] 
= 0 for every i ≥ 3.
(iii) The morphism σrjr−1 : Σ2r−2HZ→ Σ2r+1HZ is δSq2ρ. In particu-

lar, σ1 = δSq2ρ. Furthermore, (δSq2ρ)σn = 0 for every n ≥ 1, and the higher
operation σn+1 is associated with this relation.

Proof. The tower (2.5) is the Postnikov tower of k because of 2.3. Now we
prove the properties (i)–(iii).
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(i) Since Ω∞k = BU × Z, we deduce from 2.1 that (Ω∞σn+1)|2n =
δSq2ρι2n 
= 0. Now, (Ω∞σn+1)|2n[2] 
= 0 since the element δSq2ρι2n has
order 2.

(ii) We have Ω∞k0 = Ω∞HZ = Z,Ω∞k1 = CP∞ × Z. Hence Ω∞σ1 =
0 = Ω∞σ2. Moreover, (Ω∞σi)[2] 
= 0 for every i ≥ 3 by (i).

(iii) Consider the diagram

Σ2r−2HZ
jr−1−−−−→ kr−1 σr−−−−→ Σ2r+1HZ

⏐

⏐




pr−1

kr−2 σr−1−−−−→ Σ2r−1HZ
ψ−−−−→ Σ2r+2HZ

where ψ = Σ(σrjr−1). Note that σrjr−1 ∈ H2r+1(Σ2r−2HZ) = Z/2 =
{δSq2ρ}.

It follows from 2.1 that Ω∞(σrjr−1) = δSq2ρι2r. So σrjr−1 
= 0, and hence
σrjr−1 = δSq2ρ. Hence, ψ = δSq2ρ. Furthermore, the equality ψ = Σσrjr−1

means that σr is associated with the relation ψσr−1 = 0.15 But, by the above,
ψ = δSq2ρ. �

2.7. Lemma. We have H5(K(Z/2, 2); Z[2]) = Z/4. Furthermore, the element
δSq2ι ∈ H5(K(Z/2, 2); Z[2]) has order 2; here ι ∈ H2(K(Z/2, 2); Z/2) is the
fundamental class.

Proof (Sketch). Firstly, because of the Serre class theory, every group
Hi(K(Z/2, n); Z[2]) is a finite 2-primary group. Now, using information
about the ring H∗(K(Z/2, 2); Z/2) (see e.g. Mosher–Tangora[1]), and ap-
plying the Universal Coefficient Theorem, one can prove that the group
H5(K(Z/2, 2); Z[2]) is cyclic. Finally, considering the Z[2]-cohomology Leray–
Serre spectral sequence of the fibration

K(Z/2, 1)→ PK(Z/2, 2)→ K(Z/2, 2),

one can conclude that H5(K(Z/2, 2)) has order 4. Thus, it is Z/4.
Let a ∈ H1(RP 5; Z/2), a 
= 0. Since δSq2a2 = δa4 
= 0, we conclude that

δSq2ι 
= 0. Furthermore, ρδSq2ι = Sq1Sq2ι = Sq3ι = 0. Thus, δSq2ι has
order 2. �

Let Y be the homotopy fiber of the map δSq2 : K(Z/2, 2)→ K(Z[2], 5).
So, we have a fibration

(2.8) K(Z[2], 4)
j−→ Y

p−→ K(Z/2, 2).

with characteristic class δSq2.

15This relation holds because jr−1(Σ−1σr−1) = 0. Actually, this is a general

argument in the theory of higher order cohomology operations.
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2.9. Lemma. (i) H4(Y ; Z[2]) = Z[2].
(ii) The homomorphism j∗ : Z[2] = H4(Y ; Z[2])→ H4(K(Z[2], 4); Z[2]) =

Z[2] is multiplication by 2ε for some ε ∈ Z[2]∗.
(iii) A map h : Y → K(Z[2], 4) yields a generator (i.e., an element of

Z[2]∗) of H4(Y ; Z[2]) iff h∗ : Z[2] = π4(Y )→ π4(K(Z[2], 4)) = Z[2] is multi-
plication by 2ε for some ε ∈ Z[2]∗.

Proof. By 2.7, δSq2ι has order 2. Now the assertions (i) and (ii) can
be proved by routine calculations with the spectral sequence of the fi-
bration (2.8). Furthermore, (ii) implies that h : Y → K(Z[2], 4) yields
a generator iff (hj)∗(u) = 2u where u ∈ H4(K(Z[2], 4); Z[2]) = Z[2] is
a generator (fundamental class). Thus, the assertion (iii) follows because
j∗ : π4(K(Z[2], 4))→ π4(Y ) is an isomorphism. �

Since BSU = Ω∞k|4, the 8-stage of the Postnikov tower of BSU [2] has
the form (2.10) below, where we write σi instead of (Ω∞σi|4)[2]. Moreover,
by 2.6(iii), σ3i = δSq2ρ.

(2.10)

BSU [2](8)
⏐

⏐




K(Z[2], 6) i−−−−→ BSU [2](6)
σ3−−−−→ K(Z[2], 9)

⏐

⏐




π

K(Z[2], 4)
σ2=δSq2ρ−−−−−−→ K(Z[2], 7)

2.11. Lemma. Let h : Y → K(Z[2], 4) be a map such that σ2h = 0. (In
fact this is true for all h, but we do not use it.) Then for every two π-liftings
g1, g2 : Y → BSU [2](6) of h we have σ3g1 = σ3g2.

Proof. The difference g1 − g2 : Y → BSU [2](6) is homotopic to iϕ : Y →
BSU [2](6) for some ϕ : Y → K(Z[2], 6). Hence, σ3(g1−g2) = σ3iϕ = δSq2ρϕ.
But H6(Y ; Z[2]) = Z/2 = {p∗(δι)2} where p is as in (2.8). So, it suffices to
prove that δSq2ρ(p∗(δι)2) = 0. But Sq2ρ((δι)2) = Sq2(Sq1ι)2 = 0. �

2.12. Theorem (cf. Adams–Priddy [1]). The 8-stage of the Postnikov tower
of BSO[2] has the form

BSO[2](8)
⏐

⏐




BSO[2](4)
ψ−−−−→ K(Z[2], 9)

⏐

⏐




BSO[2](2) K(Z/2, 2) σ−−−−→ K(Z[2], 5),
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where the class ψ ∈ H9(BSO[2](4); Z[2]) is non-zero. Furthermore, σ = δSq2,
and hence BSO[2](4) = Y .

Proof. For simplicity, denote BSO[2](n) by Bn. The groups πi(BSO) are
well known in view of Bott periodicity, see IV.4.27(ii). In order to prove
the non-triviality of σ and ψ we must prove that Bn is not equivalent to
Bn−1 ×K(Z[2], n), where n = 4 (for σ) and n = 8 (for ψ). We prove this for
both values of n simultaneously.

Let Q∗(X) be the indecomposable quotient of H∗(X ; Z/2). Suppose that
Bn � Bn−1×K(Z[2], n). Then Qn(Bn) = Qn(Bn−1)⊕Qn(K(Z[2], n)) by the
Künneth formula. Since Qn(Bn) = Z/2, we have Qn(Bn−1) = 0. Thus, for
every x ∈ Hn(Bn; Z/2) we have (under the Künneth isomorphism) x = aιn+
d, where d is decomposable in Hn(Bn) and ιn ∈ Hn(K(Z[2], n); Z/2) = Z/2
is a generator. Since Sq1ιn = 0, Sq1x is decomposable in Hn+1(Bn) for every
x ∈ Hn(Bn).

Since Hi(Bn; Z/2) = Hi(BSO[2]; Z/2) for i ≤ n, the image of the homo-
morphism Sq1 : Hn(BSO[2]; Z/2)→ Hn+1(BSO[2]; Z/2) consists of decom-
posables. But this contradicts the equality Sq1wn = wn+1. Thus, σ and ψ
are non-trivial.

By 2.7, H5(K(Z/2, 2); Z[2]) = Z/4 = {x} with 2x = δSq2ι. Hence, σ
must be equal to one of the elements x, 3x or δSq2ι. We have

H5(BSO[2](4); Z/2) = H5(BSO[2](7); Z/2) = Z/2⊕ Z/2 = {w5, w2w3}.

If σ = x or σ = 3x, then H5(BSO[2](4); Z/2) would be Z/2. (To see this,
consider the spectral sequence of the fibration K(Z[2], 4) → E → K(Z/2, 2)
with characteristic class σ and use the fact that ρ(σ) is non-zero.) Hence,
σ = δSq2ι, and thus BSO[2](4) = Y . �

2.13. Lemma. Consider the following diagram:

BSU [2](8)
⏐

⏐




Y
g−−−−→ BSU [2](6)

σ3−−−−→ K(Z[2], 9)
∥

∥

∥

⏐

⏐




π

Y
h−−−−→ K(Z[2], 4)

σ2=δSq2ρ−−−−−−→ K(Z[2], 7).

Let the map h give a generator of H4 (Y ; Z[2]) = Z[2]. Then for every lifting
g : Y → BSU [2](6) of h we have σ3g 
= 0. In particular, h cannot be lifted to
BSU [2](8).

Proof. In view of 2.11, it suffices to prove the lemma for only one such a
lifting g. Let C : BO → BU be the complexification. Since H2(BSO) = 0,
there is a commutative diagram
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BSO c−−−−→ BSU

k

⏐

⏐



l

⏐

⏐




BO C−−−−→ BU
where k (resp. l) is a 1-connected (resp. 3-connected) covering. Then, passing
to Postnikov towers, we have the commutative diagram

BSO[2](8)
c8−−−−→ BSU [2](8)

p1

⏐

⏐




⏐

⏐




p2

BSO[2](7)
c7−−−−→ BSU [2](6)

σ3−−−−→ K(Z[2], 9)
∥

∥

∥

⏐

⏐




π

Y
h−−−−→ K(Z[2], 4),

where, by 2.12, BSO[2](7) = Y . By IV.4.27(iii), h∗ : π4(Y )→ π4(K(Z[2], 4))
is multiplication by 2, and so, by 2.9(iii), h is a generator of H4 (Y ; Z[2]).
Hence, the last diagram with c7 = g coincides with the diagram of the lemma.
Thus, by 2.11, it suffices to prove that σ3c7 
= 0.

Let Ki = Ki(Z[2], 8) be the fiber of pi, i = 1, 2, and let ui ∈ H8(Ki; Z[2])
be a fundamental class. By IV.4.27(iii), (c8)∗ : π8(BSO) → π8(BSU) is
an isomorphism, and so the map c̄8 : K1 → K2 of fibers is a homotopy
equivalence. In particular, (c̄8)∗(u2) = au1 for some a ∈ Z[2]∗. Let τi be the
transgressions in the Z[2]-cohomological spectral sequences of the fibrations
pi, i = 1, 2. By 2.12, τ1(u1) = ψ 
= 0, and so

0 
= τ1(au1) = τ1((c̄8)∗u2) = (c7)∗(τ2u2) = c∗7(σ3). �

Sullivan [1] established the homotopy equivalence

(2.14) G/PL [2] � Y ×
∏

i>1

K(Z[2], 4i)×K(Z/2, 4i− 2)

(for a good proof see Madsen–Milgram [1]). Basing on this and using
IV.4.27(v), one can prove (see loc. cit.) that

(2.15) G/T OP [2] �
∏

i≥1

K(Z[2], 4i)×K(Z/2, 4i− 2).

We define jPL : K(Z[2], 4)
j−→ Y

a−→ G/PL [2], where a is the inclusion
of the factor in (2.14). Similarly, let jT OP : K(Z[2], 4) −→ G/T OP [2] be the
inclusion of the factor in (2.15). Lemma 2.9 yields the following proposition.
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2.16. Proposition. (i) H4(G/PL [2]; Z[2]) = Z[2] = H4(G/T OP [2]; Z[2]).
(ii) j∗PL : H4 (G/PL [2]; Z[2]) → H4(K(Z[2], 4); Z[2]) is multiplication by

2ε for some ε ∈ Z[2]∗.
(iii) j∗T OP : H4(G/T OP [2]; Z[2]) → H4(K(Z[2], 4); Z[2]) is an isomor-

phism. �

Let p : ˜X → X be a 3-connective covering of X for X = G/PL [2] or
X = G/T OP [2].

2.17. Proposition. (i) The map

p∗ : Z[2] = H4(G/PL [2]; Z[2])→ H4
(

˜G/PL [2]; Z[2]
)

= Z[2]

is multiplication by 2ε for some ε ∈ Z[2]∗.
(ii) The map

p∗ : Z[2] = H4(G/T OP [2]; Z[2])→ H4
(

˜G/T OP [2]; Z[2]
)

= Z[2]

is an isomorphism.

Proof. This follows immediately from (2.14), (2.15) and 2.16. �
Consider the diagram

G/PL [2] −−−−→ BSPL [2] −−−−→ BSG[2]

ϕ

⏐

⏐




⏐

⏐



aPL
T OP

∥

∥

∥

G/T OP [2] −−−−→ BST OP [2] −−−−→ BSG[2]

with any ϕ such that the diagram commutes. Such a map ϕ exists, but it
is not unique. It follows from (2.14) and (2.15) that ϕ∗ : πi (G/PL [2]) →
πi(G/T OP [2]) is an isomorphism for i 
= 4 and that

ϕ∗ : Z[2] = π4 (G/PL [2]) −→ π4 (G/T OP [2]) = Z[2].

is multiplication by 2ε for some ε ∈ Z[2]∗. Fix one such map ϕ. It is easy to see
that ϕ admits a 3-connective covering (unique up to homotopy equivalence)
ϕ̃ : ˜G/PL [2]→ ˜G/T OP [2].

2.18. Proposition. (i) The map

ϕ∗ : Z[2] = H4(G/T OP [2]; Z[2])→ H4(G/PL [2]; Z[2]) = Z[2]

is an isomorphism.
(ii) The map

ϕ̃∗ : Z[2] = H4
(

˜G/T OP [2]; Z[2]
)

→ H4
(

˜G/PL [2]; Z[2]
)

= Z[2]

is multiplication by 2ε for some ε ∈ Z[2]∗.
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Proof. (i) Consider the composition (where a is the inclusion of the factor,
see (2.14))

b : Y a−→ G/PL [2]
ϕ−→ G/T OP [2]

proj−−→ K(Z[2], 4).

Since the map ϕ∗ : π4 (G/PL [2]) → π4(G/T OP [2]) is multiplication by 2ε,
so is the map b∗ : π4(Y )→ π4 (K(Z[2], 4)). By 2.9,

j∗ : H∗(Y ; Z[2]) = Z[2] −→ Z[2] = H∗(K(Z[2], 4); Z[2])

is also multiplication by 2ε. Hence b∗ : H4(K(Z[2], 4); Z[2])→ H4(Y ; Z[2]) is
an isomorphism, and hence ϕ∗ is an isomorphism.

(ii) By 2.17, in the diagram

H4( ˜G/T OP [2]; Z[2])
ϕ̃−−−−→ H4( ˜G/PL [2]; Z[2])

p∗1

�

⏐

⏐

�

⏐

⏐
p∗2

H4 (G/T OP [2]; Z[2])
ϕ−−−−→ H4 (G/PL [2]; Z[2])

p∗1 is an isomorphism, while p∗2 is multiplication by 2ε, and (ii) follows. �

§3. k-Orientability

Let σr : kr−1 → Σ2r+1HZ be just the same as in §2. Following V.4.23(b) and
the beginning of section V.5, we set κ0(ξ) = e0(ξ) = w1(ξ) for every stable
V-object ξ. Furthermore, following V.(4.6) and the beginning of section V.5,
for every stable HZ-oriented V-object (ξ, uξ) we set κr(ξ) = ϕ−1σruξ ⊂
H2r+1(bs ξ) where ϕ is the Thom isomorphism. By V.4.13, a V-object ξ over
a finite dimensional space X is k-orientable (and therefore K-orientable) iff
0 ∈ κr(ξ) ⊂ H2r+1(X), r = 0, 1, . . . .

Throughout this section γV2n = γV2n+1 means the universal kn-oriented
V-object over B(V , kn).

Notice that k, as well as k[2], is a simple spectrum by V.4.21.
In order to use the Realizability Theorems V.5.1, V.5.6, we set σ̂r = σr[2]

and consider also the classes κ̂r = ϕ−1(σ̂r ûξ) ⊂ H2r+1(X ; Z[2]), i.e., the
higher characteristic classes corresponding to k[2]; here ûξ ∈ H0(Tξ; Z[2]) is
the Z[2]-localization of uξ.

3.1. Proposition. (i) κ0(ξ) = 0 iff X is HZ-orientable.
(ii) κ1(ξ) = δw2(ξ) provided that κ1(ξ) is defined, i.e., if κ0(ξ) = 0.

Proof. (i) See V.1.23(b).
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(ii) Let v be an HZ-orientation of ξ. Then

κ1(ξ) = ϕ−1σ1v = ϕ−1δSq2ρv = δϕ−1Sq2ρv = δw2(ξ). �

Atiyah–Bott–Shapiro [1] proved that a stable vector bundle ξ is k-
orientable iff it admits a SpinC-structure. This holds, in turn, iff w1(ξ) = 0
and w2(ξ) is the reduction mod 2 of some integral class, i.e., δw2(ξ) = 0, see
e.g. Stong [3], Ch XI. In other words, we have the following fact:

3.2. Theorem. If κ0(ξ) = 0,κ1(ξ) = 0 for some vector bundle ξ, then
0 ∈ κr(ξ) for all r. In other words, none of the classes κr , r > 1, can be
realized by vector bundles. �

One should clarify the situation. Note that we cannot apply V.5.1 (for
n = 1) because Ω∞σ2 = 0 by 2.6(ii), and hence (Ω∞σ2)|4 = 0. Furthermore,
we cannot apply V.5.6 because κ

O
2 = 0.

3.3. Lemma. The complexification C : BO → BU can be lifted to a mor-
phism of spectra ̂C : KO → K.

Proof. In view of Bott periodicity it suffices to prove that the diagram

Ω8BO Ω8C−−−−→ Ω8BU

β

⏐

⏐




⏐

⏐



β′

BO C−−−−→ BU
commutes up to homotopy (where β, β′ are the homotopy equivalences given
by Bott periodicity). But this follows immediately from the commutativity
of the diagram

KO0(X) λ⊗−−−−→ KO0(S8X)

C

⏐

⏐




⏐

⏐



C

K0(X)
μ4⊗

C−−−−→ K0(S8X)

where λ ∈ KO0(S8) = Z and μ ∈ K0(S2) = Z are suitable generators. This
diagram commutes, in turn, because of IV.4.27(iii) (for n = 8). �

Sullivan [1] proved that every SPL-bundle is KO[1/2]-orientable, a good
proof can be found in Madsen–Milgram [1]. Hence, by IV.4.27(v), every
ST OP-bundle is KO[1/2]-orientable. Since the complexification ̂C : KO →
K preserves the units, every ST OP-bundle is K[1/2]-orientable. Hence, ev-
ery ST OP-bundle is k[1/2]-orientable by V.1.16. Thus, every SPL- and/or
ST OP-bundle is kr[1/2]-orientable for every r, 0 ≤ r ≤ ∞ (where k∞ means
k). By V.1.20, we have the following fact:
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3.4. Theorem. Given r, 0 ≤ r ≤ ∞, an ST OP-bundle (as well as an SPL-
bundle) is kr-orientable iff it is kr[2]-orientable. In particular, the class κr

can be realized by PL- or T OP-bundles iff κ̂r can. �

Put BRV=B(V , k1), i.e., BRV is the homotopy fiber of δw2 : BSV →
K(Z, 3). By the way, note that BRO = B Spin. Firstly, we compute the
order of the class κ̂

G
2 ∈ H5(BRG; Z[2]). Recall that κ̂

G
2 = ϕ−1σ̂2u1 where

u1 is the universal k1[2]-orientation. We have 4H∗(k1[2]; Z[2]) = 0, because
every group Hi(HZ[2]; Z[2]), i > 0 has exponent 2. Hence, the order of σ̂2 ∈
H5(k1[2]; Z[2]) is 2 or 4. Hence, the order of κ̂

G
2 is 2 or 4.

3.5. Lemma. ρ∗κ̂G
2 
= 0 ∈ H5(BRG; Z/2).

Proof. Let E be the homotopy fiber of Sq3ρ : HZ[2]→ Σ3HZ/2. It is easy
to see that there is a morphism a such that the diagram below commutes.

k1[2] a−−−−→ E

p

⏐

⏐




⏐

⏐



p′

HZ[2] HZ[2]

δSq2ρ

⏐

⏐



Sq3ρ

⏐

⏐




Σ3HZ[2] −−−−→
ρ

Σ3HZ/2

Consider the cofiber sequences Σ2HZ[2]
j−→ k1[2]

p−→ HZ[2],Σ2HZ/2
j′−→

E
p′−→ HZ[2] and Σ2HZ[2] i−→ k1[2] a−→ E. We have the diagram

(3.6)

Σ2HZ[2] Σ2HZ[2]

×2

⏐

⏐




⏐

⏐



i

Σ2HZ[2]
j−−−−→ k1[2] σ̂2−−−−→ Σ5HZ[2]

ρ

⏐

⏐




⏐

⏐




a

⏐

⏐




ρ

Σ2HZ/2
j′−−−−→ E

Φ−−−−→ Σ5HZ/2.

Clearly, the left bottom square commutes. It is easy to see that

Im{i∗ : Z[2] = π2(Σ2HZ[2])→ π2(k1[2]) = Z[2]} = 2Z[2].

One can prove that k1[2]∗(Σ2HZ[2]) = Z[2] and that the homotopy class of
any morphism f : Σ2HZ[2]→ k1[2] is determined by the homomorphism

f∗ : Z[2] = π2(Σ2HZ[2])→ π2(k1[2]) = Z[2].
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Hence, without loss of generality we can assume that i = 2j. So, the left top
square commutes. Furthermore,

ρσ̂2i = ρσ̂2(2j) = 2ρσ̂2j = 0.

Hence, there exists Φ : E → Σ5HZ/2 such that the diagram commutes. It is
clear that

Φj′ρ = ρσ̂2j = ρδSq2ρ = Sq3ρ,

and so Φj′ = Sq3 or Φj′ = Sq3 +Sq2Sq1. We want to prove that there exists
Φ with Φj′ = Sq3.

3.7. Sublemma. There is b : E → Σ5HZ[2] such that bj′ = Sq2Sq1, ba = 0.

Σ2HZ[2]
j−−−−→ k1[2]

ρ

⏐

⏐




⏐

⏐




a

Σ2HZ/2
j′−−−−→ E

b−−−−→ Σ5HZ/2
⏐

⏐



p′

HZ[2]

Proof. Consider an arbitrary morphism b with bj′ = Sq2Sq1. It exists
because (Sq2Sq1)(Sq3ρ) = 0. By 2.6(iii), the cofiber sequence

Σ2HZ[2]
j−→ k1[2]

p−→ HZ[2]

induces an exact sequence

H5(Σ2HZ[2]; Z/2)
j∗←− H5(k1[2]; Z/2)

p∗←− H5(HZ[2]; Z/2)
(δSq2ρ)∗←−−−−− · · · ,

where

(δSq2ρ)∗ : {Sq2ρ} = H2(HZ[2]; Z/2)→ H5(HZ[2]; Z/2) = {Sq5ρ}.

We have

(δSq2ρ)∗(Sq2ρ) = Sq2ρδSq2ρ = Sq2Sq3ρ = Sq5ρ+ Sq4Sq1ρ = Sq5ρ,

and therefore (δSq2ρ)∗ : H2(HZ[2]; Z/2) → H5(HZ[2]; Z/2) is an isomor-
phism. Hence, H5(k1[2]; Z/2) = Z/2 = {ρσ̂2} and j∗ρσ̂2 = Sq3ρ. Now, if
ba 
= 0 then ba = ρσ̂2 and so baj = Sq3ρ. Thus, bj′ρ = Sq3ρ, which contra-
dicts bj′ = Sq2Sq1. �

Now let Φ be any morphism such that (3.6) commutes. If Φj′ = Sq3 +
Sq2Sq1, then for every morphism b as in 3.7 we have (Φ + b)j′ = Sq3. But
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the replacement of Φ by Φ′ = Φ + b keeps the commutativity of the diagram
(3.6) because ba = 0. Hence, we may assume that Φj′ = Sq3 in (3.6).

Since E is the fiber of

Sq3ρ : HZ[2]→ Σ3HZ/2,

the morphism Φ : E → Σ5HZ/2 yields the secondary cohomology operation
related to Sq3(Sq3ρ) = 0, i.e., the operation Φ = Φ(3, 3) in the notation of
§1. Recall that κ̂

G
2 = ϕ−1σ̂2u for some k1[2]-orientation u of γG3 . Let MRG

denote the Thom spectrum of γG3 . Consider the diagram

MRG u−−−−→ k1[2] σ̂2−−−−→ Σ5HZ[2]
∥

∥

∥

a

⏐

⏐




⏐

⏐




ρ

MRG v−−−−→ E
Φ−−−−→ Σ5HZ/2

where v := au. Let x ∈ H0(MRG) be the Thom class of γG3 . The stable
spherical fibration ξ as in 1.6 is such that w1(ξ) = 0 = w2(ξ). Thus, ξ can be
induced from the universal fibration γG3 over BRG. By 1.6, Φ(uξ) 
= 0, and
so 0 /∈ Φ(x). Since x = (p′)∗(v), we conclude that Φv 
= 0, and so ρσ̂2u 
= 0.
Finally, κ̂

G
2 = ϕ−1σ̂2u, and hence ρ∗κ̂G

2 
= 0. �
Madsen [1] computed the Bockstein spectral sequence for the 2-torsion of

BSG, but we only need the following fact.

3.8. Lemma. H5(BSG; Z[2]) = Z/8⊕ Z/2.

Proof. Throughout the proof H∗(A) means H∗(A; Z[2]). Similarly for H∗.
Given a finite 2-primary group G, let c(G) denote the dimension of the Z/2-
vector space G⊗ Z/2.

Information about H∗(BSG; Z/2) can be found in Madsen–Milgram [1],
Theorem 3.35 or May [4]. By IV.4.27(i), the groups πi(BSG) are finite, and
so the groups Hi(BSG) are finite by the Hurewicz–Serre Theorem. Thus,
Hi(BSG) ∼= Hi+1(BSG) for every i > 0. Let

K(Z/8, 4) K(Z/2, 3)
⏐

⏐




⏐

⏐




· · · −−−−→ X −−−−→ E −−−−→ K(Z/2, 2)

be the Postnikov tower of BSG[2], so that E = BSG[2](3), X = BSG[2](4).
We have H3(BSG; Z/2) = (Z/2)2. Thus, H3(E; Z/2) = (Z/2)2. Hence in
the Z/2-cohomology spectral sequence of the fibration K(Z/2, 3) → E →
K(Z/2, 2) the fundamental class ι ∈ H2(K(Z/2, 2)) transgresses to zero,
and so this fibration is trivial, E � K(Z/2, 2) ×K(Z/2, 3). Thus, H4(E) =
H4(K(Z/2, 2)) = Z/4, H5(E) = (Z/2)3.
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The element δw4 ∈ H5(BSG) has order 2, and it is not divisible by 2
because w5 = ρδw4 is not divisible by 2. Since H4(X) = H5(X), we conclude
that H4(X) contains Z/2 as a direct summand.

Consider now the Z[2]-homology spectral sequence of the fibration

K(Z/8, 4)→ X → E.

We have E2
0,4 = Z/8, E2

4,0 = Z/4, E2
i,4−i = 0 otherwise; E2

5,0 = (Z/2)3,
E2
i,5−i = 0 otherwise. We prove that d5 : (Z/2)3 = E2

5,0 → E2
0,4 = Z/8

is non-zero. Indeed, suppose d5 = 0. Then H4(X) is an extension of Z/4
by Z/8. Since H4(X) contains Z/2 as a direct summand, we conclude that
c(H4(X)) = 2. Furthermore, if d5 = 0 then H5(X) = H5(E) = (Z/2)3. On
the other hand, H5(X ; Z/2) = H5(BSG; Z/2) = (Z/2)4 (the first equality
holds because π5(BSG) = 0). Now we have

4 = c(H5(X ; Z/2)) = c(H4(X)) + c(H5(X)) = 2 + 3 = 5.

This is a contradiction. Hence, d5 
= 0. Thus, E∞
0,4 = Z/4, and H4(X) is an

extension of Z/4 by Z/4. Since H4(X) contains Z/2 as a direct summand,
we conclude that H4(X) = Z/8⊕ Z/2. Thus, H5(BSG) = Z/8⊕ Z/2. �

3.9. Theorem. H5(BRG; Z[2]) = Z/4, and the class κ̂
G
2 generates this group.

Proof. By 3.8, H5(BSG; Z[2]) = Z/8 ⊕ Z/2 = {x, δw4} where ordx =
8. Let u ∈ H2(K(Z[2], 2); Z[2]) be a fundamental class. Consider the Z[2]-
cohomology spectral sequence of the fibration

K(Z[2], 2)→ BRG[2]→ BSG[2].

It is easy to see that τ(u2) = δw4 + αx, where α ∈ 2(Z/8). Thus,
H5(BRG; Z[2]) = Z/8 (for α = 0, 4) or H5(BRG; Z[2]) = Z/4 (for α = 2, 6).
Hence, H5(BRG; Z[2]) is cyclic, and, by 3.5, the element κ̂

G
2 generates this

group. But, as we noted before 3.5, the order of κ̂
G
2 is not more than 4, and

hence H5(BRG; Z[2]) = Z/4 = {κ̂G
2 }. �

3.10. Lemma. π2(BRV [2]) = Z[2].

Proof. By IV.4.27(i,ii), π2(BSV) = Z/2 and π3(BSV) is finite for V =
O, G. Because of (2.14), (2.15) and IV.4.27(iv,v), the same is valid for V =
PL, T OP also. Hence, the fibration

K(Z[2], 2)→ BRV [2]→ BSV [2]

induces the exact sequence

0→ Z[2]→ π2(BRV [2])→ Z/2→ 0.
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Furthermore, H3(BSV ; Z[2]) = Z/2 = {δw2} (for V = O see e.g. Milnor–
Stasheff [1], for V = G see e.g. Madsen–Milgram [1], for V = PL, T OP use
(2.14) and (2.15), or IV.4.27(iv,v)), and the Leray–Serre spectral sequence of
the fibration above implies that H3(BRV ; Z[2]) = 0. Thus, H2(BRV ; Z[2]) is
torsion free, and hence π2(BRV) is. Thus, π2(BRV) = Z[2]. �

Let q = qV : BRV = B(V , k1) → B(V , k0) = BSV be the map as in

V.(4.17). The map BRV [2]
q[2]−−→ BSV [2] → BSG[2] turns BRV [2] into a

bundle over BSG[2].

3.11. Lemma. The homotopy fiber of any map gPL : BRPL [2] →
BRG[2] over BSG[2] is G/PL [2]. The homotopy fiber of any map gT OP :
BRT OP [2]→ BRG[2] over BSG[2] is G/T OP [2].

Proof. We consider the PL case only; the T OP case can be considered
similarly. Consider the following diagram, where the rows are fibrations:

F −−−−→ BRPL [2]
g−−−−→ BRG[2]

h

⏐

⏐




⏐

⏐



qPL [2]

⏐

⏐



qG [2]

G/PL [2] −−−−→ BSPL [2] −−−−→ BSG[2].

By the Five Lemma, h induces an isomorphism of homotopy groups πi, i ≥ 3.
Applying π2 to the right hand square of the diagram, we obtain (by 3.10) the
square

Z[2]
g∗−−−−→ Z[2]

⏐

⏐




⏐

⏐




Z/2
∼=−−−−→ Z/2,

where the vertical arrows are epic. Furthermore, the bottom arrow is an
isomorphism because π1(G/PL) = 0. Thus, g∗ is an isomorphism. Hence, by
diagram chasing, h∗ : πi(F )→ πi(G/PL) is an isomorphism for i = 1, 2. �

Note that the Z[2]-localization in 3.11 is essential. Namely, there is a
certain map BRPL → BRG over BRG with homotopy fiber X such that
π1(X) is an abelian group of odd order.

3.12. Lemma. H5(BRPL; Z[2]) = 0.

Proof. By IV.4.27(iv),

H5(BRPL; Z/2) = H5(BRO; Z/2) = H5(B SpinC ; Z/2).

But (see e.g. Stong [3], Ch. XI)

H∗(B SpinC ; Z/2) = H∗(BSO; Z/2)
/

(A2w3).
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So, H5(B SpinC ; Z/2) = 0 since Sq2w3 = w2w3 + w5 in H∗(BSO; Z/2).
Hence, H5(BRPL; Z/2) = 0, and thus H5(BRPL; Z[2]) = 0. �

3.13. Theorem. If κ1(ξ) = 0 for some SPL-bundle ξ then 0 ∈ κ2(ξ) and
0 ∈ κ3(ξ). Thus, the classes κ2 and κ3 cannot be realized by PL-bundles.

Proof. By IV.4.27(iv), the map aOPL : BO → BPL is a 6-equivalence,
i.e, informally speaking, there is no difference between O-bundles and PL-
bundles over 6-dimensional CW -complexes. Now, the result follows from 3.2
since κ3 ⊂ H5(bs ξ). �

3.14. Theorem. 0 /∈ κ4(γPL
7 ). Furthermore, all the classes κn, n ≥ 4, as

well as the classes κ̂n, n ≥ 4, can be realized by PL-bundles.

Proof. Let q′ : B(G, k4)→ BRG = B(G, k1) be a map (fibration) induced
by a projection k4 → k1 in the Postnikov tower of k, cf. V.4.17. By 3.13,
every k1-orientable PL-bundle is k3-orientable. Hence, if 0 ∈ κ4(γPL

7 ), then
every k1-orientable PL-bundle is k4-orientable. In particular, the universal
PL-bundle γPL

3 over BRPL is k4-orientable, i.e., there exists a map f ′ :
BRPL → B(G, k4) over BSG. Thus, we have a commutative diagram

BRPL f ′

−−−−→ B(G, k4)
∥

∥

∥

⏐

⏐



q′

BRPL g′−−−−→ BRG
⏐

⏐




⏐

⏐




BSPL −−−−→ BSG,

where g′ := q′f ′. It induces a commutative diagram

BRPL [2]
f−−−−→ B(G, k4)[2]

∥

∥

∥

⏐

⏐




q

BRPL [2]
g−−−−→ BRG[2]

⏐

⏐




⏐

⏐




BSPL [2] −−−−→ BSG[2],

where q = q′[2], f = f ′[2], and g := qf is a map over BSG[2]. Without
loss of generality, we can assume q and f to be fibrations. By 3.11, the
homotopy fiber of g is G/PL [2], and, by V.4.18(i), the homotopy fiber of q
is (Ω∞k4)|4 = BSU [2](8). Thus, f induces a map of fibers

f̄ : G/PL [2]→ BSU [2](8).
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Let u ∈ H4(BSU [2](8); Z[2]) = Z[2] and v ∈ H4(G/PL [2]; Z[2]) = Z[2] be
generators, i.e., u, v ∈ Z[2]∗. Consider the Z[2] -cohomology spectral se-
quences of the fibrations g and q. By V.4.22, we have τu = εκG

2 where
ε ∈ Z[2]∗. Furthermore, by 3.12, H5(BRPL; Z[2]) = 0. Hence, τv = ±κ

G
2

since, by 3.9, κ̂
G
2 generates the group H5(BRG; Z[2]) = Z/4. Thus, f̄∗u = εv

with ε ∈ Z[2].
We define the map

h : Y a−→ G/PL [2]
f̄−→ BSU [2](8)

p−→ BSU [2](4) = K(Z[2], 4),

where a is the inclusion of the factor and p is the projection in the Postnikov
tower of BSU [2]. Since f̄∗u = εv, the map h : Y → K(Z[2], 4) yields a gener-
ator of H4(Y ; Z[2]) = Z[2]. Hence, by 2.11, h cannot be lifted to BSU [2](8).
This is a contradiction. Thus, 0 /∈ κ4(γPL

7 ).
Hence, by 3.4, 0 /∈ κ̂4(γPL

7 ). By V.5.1, all the classes κ̂n, n ≥ 4, can be
realized by PL-bundles, and so (by 3.4) all the classes κn, n ≥ 4, can. �

Now we pass to T OP-bundles.

Consider a commutative diagram

(3.15)

G/PL [2] iPL−−−−→ BRPL[2]
gPL−−−−→ BRG[2]

⏐

⏐


h̄

⏐

⏐



h

∥

∥

∥

G/T OP [2] iT OP−−−−→ BRT OP [2]
gT OP−−−−→ BRG[2]

where the rows are fibrations, gT OP is any map as in 3.11, h is a forgetful
map over BSG[2], gPL = gT OPh and h̄ is the induced map of the fibers.

3.16. Lemma. The homomorphism

h̄∗ : Z/2 = π2(G/PL [2])→ π2(G/T OP [2]) = Z/2

is an isomorphism.

Proof. Consider the fibration G/V [2]→ BRV [2]→ BRG[2]. By 3.10,

π2(BRPL[2]) = Z[2] = π2(BRT OP [2]).

Hence, if V = PL or T OP , then the boundary homomorphism

Z/2 = π3(BRG[2])→ π2(G/V [2]) = Z/2

for the above fibration is an epimorphism, and hence an isomorphism. �
We fix maps gT OP and gPL as in (3.15).

3.17. Proposition. Consider the map i = iPL : G/PL [2] −→ BRPL[2] in
(3.15). We have
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Im{i∗ : H4(BRPL [2]; Z[2])→ H4 (G/PL [2]; Z[2])} = 4H4 (G/PL [2]; Z[2]) .

Proof. Consider the fibration

G/PL [2] i−→ BRPL[2]
g−→ BRG[2]

as in (3.15).By 3.12, H5(BRPL[2]; Z[2]) = 0. Hence, g∗κ̂G
2 = 0. So, there ex-

ists ι ∈ H4 (G/PL [2]; Z[2]) = Z[2] such that τι = κ̂
G
2 in the Z[2]-cohomology

spectral sequence of the fibration. By 3.5, ι /∈ 2Z[2]. Furthermore, by 3.9,
τ(2ι) 
= 0, τ(4ι) = 0, and hence Im j∗ = 4H4 (G/PL [2]; Z[2]) . �

Consider the Postnikov–Moore tower of the fibration

G/PL [2] iPL−−→ BRPL [2]
gPL−−→ BRG[2]

as in (3.15). Its first term gives us a K(Z[2], 2)-fibration

(3.18) K(Z[2], 2)→ B
f−→ BRG[2],

and all remaining terms form a ˜G/PL [2]-fibration

(3.19) ˜G/PL [2]→ BRPL [2]→ B.

Similarly, consider the Postnikov–Moore tower of the fibration

G/T OP [2] iT OP−−−→ BRT OP [2]
gT OP−−−→ BRG[2]

as in (3.15). Its first term gives us a K(Z[2], 2)-fibration which, by 3.16, is
equivalent to (3.18), and all remaining terms form a ˜G/T OP [2]-fibration

(3.20) ˜G/T OP [2]→ BRT OP [2]
p−→ B.

3.21. Proposition. H5(B; Z[2]) = Z/8, and

f∗ : H5(BRG[2]; Z[2])→ H5(B; Z[2])

is a monomorphism (onto the subgroup of index 2 since H5(BRG; Z[2]) =
Z/4).

Proof. Firstly, Hi(BRG; Q) = 0 = Hi(K(Z[2], 2); Q) for i 
= 0, 2.
So, H5(B; Q) = 0, and hence H5(B; Z[2]) is finite. Furthermore, by 3.12,
H5(BRPL [2]; Z[2]) = 0. Hence in the Z[2]-cohomology spectral sequence of
the fibration (3.19) the transgression

τ : Z[2] = H4( ˜G/PL [2]; Z[2])→ H5(B; Z[2])

is epic. Hence H5(B; Z[2]) is cyclic. By 3.17 and 2.17(i),



§3. k-Orientability 369

Im{H4(BRPL [2]; Z[2])→ H4 (G/PL [2]; Z[2])→ H4( ˜G/PL [2]; Z[2])}

is 8H4( ˜G/PL [2]; Z[2]). Hence H5(B; Z[2]) = Z/8. Now it is easy to prove
that f∗ is monic by considering the Leray-Serre spectral sequence of (3.18).

�
Let e be a generator of H5(B; Z[2]) = Z/8. Let ιP ∈ H4( ˜G/PL [2]; Z[2]) =

Z[2] and ιT ∈ H4( ˜G/T OP [2]; Z[2]) = Z[2] be generators of the corresponding
groups.

3.22. Lemma. In the Z[2]-cohomology spectral sequence of (3.19) we have
τιP = εe, and in that of (3.20) we have τιT = 2ε′e, where τ is the transgres-
sion and ε, ε′ ∈ Z[2]∗.

Proof. By 3.12, H5(BRPL; Z[2]) = 0, and so τιP = εe. The diagram
(3.15) yields the diagram

˜G/PL [2] −−−−→ BRPL [2] −−−−→ B

ϕ̃

⏐

⏐




⏐

⏐




∥

∥

∥

˜G/T OP [2] −−−−→ BRT OP [2] −−−−→ B,

where the top line is (3.19), the bottom line is (3.20) and ϕ̃ is as in 2.18. By
2.18(ii), ϕ̃(ιT ) = 2ε′′ιP . Hence, τιT = 2ε′e because τιP = εe. �

The projection k2 → k1 in the Postnikov tower of k induces theK(Z[2], 4)-
fibration

(3.23) K(Z[2], 4)→ B(G, k2)[2]
q−→ B(G, k1)[2] = BRG[2].

3.24. Lemma. There is a map F such that the diagram

˜G/T OP [2] −−−−→ BRT OP [2]
p−−−−→ B

F

⏐

⏐



f

⏐

⏐




K(Z[2], 4) −−−−→ B(G, k2)[2]
q−−−−→ BRG[2]

commutes. (Here the top line is (3.20), the bottom line is (3.23), and f is as
in (3.18).)

Proof. By 3.22, τιT = 2εe, ε ∈ Z[2]∗. Hence, p∗(2e) = 0. Furthermore,
f∗(κ̂G

2 ) = ±2e because of 3.21 and 3.9. Hence, p∗f∗(κ̂G
2 ) = 0. Finally, by

V.4.22, κ̂
G
2 is a characteristic class of (3.23), and hence there exists a q-lifting

F of pf . �

3.25. Lemma. Let F be a map as in 3.24. Then F cannot be lifted to
B(G, k3)[2], i.e., there is no commutative diagram
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BRT OP [2] −−−−→ B(G, k3)[2]
∥

∥

∥

⏐

⏐



q′

BRT OP [2] F−−−−→ B(G, k2)[2]

p

⏐

⏐




⏐

⏐




q

B
f−−−−→ BRG[2] .

Proof. Suppose that there is a commutative diagram as above. Passing to
the fibers of p, q, and qq′, we have a commutative diagram of fibrations

˜G/T OP [2] s−−−−→ E
∥

∥

∥

⏐

⏐




π

˜G/T OP [2] F−−−−→ (K(Z[2], 4))

where F is the restriction of F , s is the restriction of a hypothetical lifting
of F , E is the homotopy fiber of

δSq2ρ : K(Z[2], 4)→ K(Z[2], 7),

and the projection π is homotopic to the inclusion of this fiber. In particular,
π does not admit a section.

Let ι ∈ H4(K(Z[2], 4); Z[2]) be a fundamental class such that τι = κ̂
G
2 in

the Z[2]-cohomology spectral sequence of q. Hence,

f∗(τι) = f∗(κ̂G
2 ) = ±2e = ε′τιT , ε′ ∈ Z[2]∗.

Therefore, F
∗
ι = ειT , ε ∈ Z[2]∗. Hence,

F
∗

: Z[2] = H4(K(Z[2], 4); Z[2])
∼=−→ H4( ˜G/T OP [2]; Z[2]) = Z[2]

is an isomorphism. Thus, F can be considered as the projection in (2.15),
and hence F admits a section t. Hence π admits a section st. This is a
contradiction. �

3.26. Theorem. The canonical bundle γT OP
3 over BRT OP is k2-orientable.

In particular, if κ1(ξ) = 0 for any ST OP-bundle ξ, then 0 ∈ κ2(ξ); in other
words, κ2 cannot be realized by T OP-bundles. On the other hand, for every
r ≥ 3 we have 0 /∈ κr(γT OP

2r−1 ). Thus, all the classes κr, r ≥ 3, as well as the
classes κ̂r, r ≥ 3, can be realized by ST OP-bundles.

Proof. The canonical bundle γT OP
3 is k2-orientable because of 3.24. In-

deed, the map F in 3.24 yields a k2-orientation of γT OP
3 . In order to prove the

realizability of all the classes κr, r ≥ 3, it suffices to prove that 0 /∈ κ3(γT OP
3 ).
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Indeed, this implies that 0 /∈ κ3(γT OP
5 ), because otherwise 0 ∈ κ3(ξ) for ev-

ery k2-oriented ξ and in particular for γT OP
3 , see 3.24. Hence 0 /∈ κr(γT OP

2r−1 )
in view of V.5.1.

Suppose that 0 ∈ κ3(γT OP
3 ), i.e., that the bundle γT OP

3 is k3-orientable,
i.e., that there exists

h′ : BRT OP → B(G, k3)

over BSG. Let F ′ be the composition of h′ with the projection B(G, k3) →
B(G, k2). After Z[2]-localization we have the following diagram, where F :=
F ′[2], h := h′[2], and g := qF :

BRT OP [2] h−−−−→ B(G, k3)[2]
∥

∥

∥
q′
⏐

⏐




BRT OP [2] F−−−−→ B(G, k2)[2]
∥

∥

∥

q

⏐

⏐




BRT OP [2]
g−−−−→ BRG[2]

∥

∥

∥

⏐

⏐




BRT OP [2] −−−−→ BSG[2] .

In particular, g is a map over BSG[2], i.e., g can be regarded as gT OP de-
scribed in 3.11.

The Postnikov–Moore tower for g yields the diagram

BRT OP [2] F−−−−→ B(G, k2)[2]
∥

∥

∥

⏐

⏐




q

BRT OP [2]
g−−−−→ BRG[2]

p

⏐

⏐




∥

∥

∥

B
f−−−−→ BRG[2]

where p and f are as in 3.24. Thus, F has the lifting h : BRT OP [2] →
B(G, k3)[2]. But this contradicts 3.25. �

3.27. Theorem. All the classes κr, r ≥ 1, as well as the classes κ̂r, r ≥ 1,
can be realized by spherical fibrations.

Proof. By 3.9, κ̂
G
2 
= 0. Furthermore, by V.4.9 and 2.6(ii), κ̂

G
r 
= 0 for

every r ≥ 3. Hence, by V.5.6, all the classes κ̂n can be realized by spherical
fibrations. Finally, the realizability of κ̂2 implies easily the realizability of κ2

(by exactly the same fibration). �



372 Chapter VI. K- and KO -Orientability

Recall that we have considered above the Z[2]-local case. What about
Z[p]-localization with odd prime p?

In the beginning of the section (see the text before 3.4) we discussed
k[1/2]- and hence k[p]-orientability of ST OP-objects. Thus, it makes sense
to consider the realizability problem for spherical fibrations only.

The following well-known fact was proved by Adams [6], see also IX.4.16
below.

3.28. Theorem. For every odd prime p there exists a ring spectrum L such
that

K[p] � ∨p−2
i=0 Σ2iL.

Furthermore, the inclusion L → K[p] of the direct summand is a ring mor-
phism. �

3.29. Corollary. For every odd prime p there exists a ring spectrum � such
that

k [p] � ∨p−2
i=0 Σ2i�.

Furthermore, the inclusion � → k [p] of the direct summand is a ring
morphism. Finally, k [p]-orientability of any object is equivalent to its l-
orientability.

Proof. Set � = L|0. The existence of the required splitting follows directly
from 3.28 and naturality of connective coverings. Furthermore, since �→ k [p]
is a ring morphism, �-orientability implies k [p]-orientability. Conversely, if
S → k [p] is the unit of k [p], then

S → k [p]
proj−−→ �

is the unit of �. Hence, k [p]-orientability implies �-orientability. �
The Postnikov tower of � looks similar to that of k. Clearly,

π∗(�) = Z[p][x], deg x = 2(p− 1).

Let �r be the cone of
xr+1

# : Σ2(r+1)(p−1)�→ �,

and compare this with kr. Similarly to 2.3, there is a cofiber sequence

�r
pr−→ �r−1 σr−→ Σ2r(p−1)+1HZ[p].

Moreover, (Σ−2(p−1)�r)|0 = �r−1.
Let ρp : HZ[p]→ HZ/p and δp : HZ/p→ HZ[p] be the reduction mod p

and the Bockstein morphism, respectively.
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3.30. Theorem. The diagram

� HZ
⏐

⏐




τ2r(p−1)

∥

∥

∥

· · · −−−−→ �r
pr−−−−→ �r−1 −−−−→ · · · −−−−→ �0

σr

⏐

⏐




⏐

⏐




σ1

Σ2r(p−1)+1HZ Σ2p−1HZ

is the Postnikov tower of �, and for the Postnikov invariants σr we have:
(i) (Ω∞σn)|(2p− 2) 
= 0 for every n > 2.
(ii) σ1 
= 0, i.e., σ1 = λδpP

1ρp ∈ H2p−1(HZ[p]; Z[p]) = Z/p, where
λ ∈ Z/p, λ 
= 0.

(iii) δpP1ρpσn = 0 for every n ≥ 1, and the higher operation σn+1 is
associated with this relation.

Proof. (i) Set Y = Ω∞�, and let X be any connected component of Y .
Then π2n(p−2)(X) = Z[p] for n > 0 and πi(X) = 0 otherwise. Furthermore,

Ω2p−2X = Ω2p−2Y � Y.

Now, X is a factor of BU [p], and so H∗(X ; Z[p]) is torsion free. Consider the
Postnikov invariant κ ∈ H4p−3(K(Z[p], 2p− 2); Z[p]) of X . If κ = 0, then

H4p−3(X) = H4p−3(K(Z[p], 2p− 2)×K(Z[p], 4p− 4))

has a non-zero torsion subgroup. This is a contradiction, and so κ 
= 0.
Clearly, κ in fact coincides with Ω∞σ2, and so Ω∞σ2 
= 0. This implies that
(Ω∞σn)|(2n(p− 1)) 
= 0, because

(Ω2n(p−1)(Ω∞�))|(2n(p− 1)) � Ω∞�.

Hence, (Ω∞σn)|(2p− 2) 
= 0 for n > 2. Thus, we have proved (i).
The remaining part of the proof can be done in just the same way as in

2.6. �
As above, we introduce higher characteristic classes κr(ξ) = ϕ−1σruξ

related to �.

3.31. Theorem. All the characteristic classes κr can be realized by spherical
fibrations.

Proof. Let u ∈ H0(MSG; Z[p]) be the universal Thom class. By IV.6.10,
δpP

1ρp(u) 
= 0. Now the theorem follows from V.5.6. and 3.30(ii). �

3.32. Remark. Let v ∈ H0(k; Z/p) = Z/p be a generator. It follows
from 3.30(ii) that Q1(v) = 0. Since every SPL-bundle is k [p]-orientable,
see the text before 3.4, Q1(uPL) = 0 for the universal Thom class uPL ∈
H0(MSPL; Z/p), cf. IV.6.12.
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Résumé on k-orientability

The conditions w1(ξ) = 0, δw2(ξ) = 0 are necessary for k-orientability of any
V-object ξ. In particular, it makes sense to consider only V-objects ξ with
w1(ξ) = 0. We have κ1 = δw2.

Theorem. (i) The class κ1 can be realized by vector bundles (namely, by the
universal oriented vector bundle). If for some HZ-oriented vector bundle ξ
we have κ1(ξ) = 0, then 0 ∈ κr(ξ) for all r, i.e., ξ is k-orientable. In other
words, none of the classes κr, r > 1, can be realized by vector bundles.

(ii) If for some SPL-bundle ξ we have κ1(ξ) = 0, then 0 ∈ κ2(ξ) and
0 ∈ κ3(ξ). Thus, the classes κ2 and κ3 cannot be realized by PL-bundles.
However, all the classes κr, r ≥ 4, (and κ1, of course) can be realized by
PL-bundles.

(iii) If for some ST OP-bundle ξ we have κ1(ξ) = 0, then 0 ∈ κ2(ξ),
and hence κ2 cannot be realized by T OP-bundles. However, all the classes
κr, r ≥ 3, (and κ1, of course) can be realized by T OP-bundles.

(iv) For every n ≥ 1 we have 0 /∈ κn(γG2n−1). In other words, all the
classes κr, r ≥ 1, can be realized by spherical fibrations.

Thus, we have a remarkable contrast among all the four classes above.
Also, the following observation looks interesting. Every vector bundle over

a 3-connected space is k-orientable, but there is no universal n such that every
PL bundle over an n-connected space is k-orientable. Another interpretation:
a vector bundle ξ over a (finitely dimensional) CW -complex X is k-orientable
iff ξ|X(3) is. However, there is no universal n such that, for every PL bundle
ξ, k-orientability of ξ|X(n) guarantees k-orientability of ξ.

§4. kO -Orientability

Here we consider the kO -orientability (which is equivalent to the KO -
orientability) problem. In particular, we show that it has mutually different
solutions for all the four classes of V-objects, as the k-orientability problem
does. Since most of the arguments are similar to the arguments of the previous
section, we will not be very detailed in the exposition.

Note that the homotopy groups of kO are well known in view of Bott
periodicity Ω8BO = BO × Z, see IV.4.27(ii) (recall that Ω∞kO � BO × Z,
and so πi(kO) = πi(BO)).

Let kOn denote the Postnikov n-stage of kO.

4.1. Theorem (cf. Adams–Priddy [1], Stong [1]). (i) The Postnikov tower
of kO has the form
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...
⏐

⏐




Σ8HZ
j4−−−−→ kO8

σ5−−−−→ Σ10HZ/2

p4

⏐

⏐




Σ4HZ
j3−−−−→ kO4

σ4−−−−→ Σ9HZ

p3

⏐

⏐




Σ2HZ/2
j2−−−−→ kO2

σ3−−−−→ Σ5HZ

p2

⏐

⏐




ΣHZ/2
j1−−−−→ kO1

σ2−−−−→ Σ3HZ/2

p1

⏐

⏐




HZ kO0
σ1−−−−→ Σ2HZ/2.

Here σr are the Postnikov invariants and

• jr−→ • pr−→ • σr−→ •

are long cofiber sequences.
(ii) σ1 = Sq2ρ, σ2j1 = Sq2, and so Ω∞σ1 = 0 = Ω∞σ2.
(iii) ((Ω∞σn)|2)[2] 
= 0 for n > 2.

Proof. (i) This follows from IV.4.27(ii).
(ii) By Bott periodicity, (Σ−8kO)|0 � kO. Thus, it suffices to prove that

σ5j4 = Sq2ρ, σ6j5 = Sq2, i.e., that σ5j4 and σ6j5 are essential morphisms.
To prove this, it suffices to prove that Ω4(Ω∞(σ5j4)) : K(Z, 4)→ K(Z/2, 6)
and Ω4(Ω∞(σ6j5)) : K(Z/2, 5) → K(Z/2, 7) are essential maps. Let BSp
be the classifying space for the infinite dimensional symplectic group Sp =
limSp(n). (Alternatively, BSp is the homotopy direct limit of the sequence
· · · → BSpn → BSpn+1 → · · · .) We have Ω4BO � BSp, see e.g. Milnor [6].
Hence, the Postnikov tower for BSp has the form

...
⏐

⏐




BSp(6)
a2−−−−→ K(Z/2, 7)

⏐

⏐




K(Z, 4) a1−−−−→ K(Z/2, 6),
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where ai = Ω4(Ω∞σ4−i). Now, H∗(BSp) is torsion free, see e.g. Switzer [1],
16.17. This implies easily that a1 and a2 are essential maps.

(iii) We have (Ω∞kO)|2 = BSO. Hence, by 2.12,

((Ω∞σ3)|2)[2] = δSq2ι2 
= 0, ((Ω∞σ4)|2)[2] = ψ 
= 0.

Furthermore, by Bott periodicity, kO|8 = Σ8kO, and hence

(Ω∞σ5)|8 = Sq2ρ : K(Z, 8)→ K(Z/2, 10),
(Ω∞σ6)|9 = Sq2 : K(Z/2, 9)→ K(Z/2, 11).

So ((Ω∞σr)|2)[2] 
= 0 for r = 5, 6. Finally, the inequality ((Ω∞σn)|2)[2] 
= 0
for n > 6 follows from the above and Bott periodicity. �

Following our program, now we consider the kO-characteristic classes κr.
Firstly, we set κ0(ξ) := w1(ξ). Furthermore, for every stable HZ-oriented
V-object (ξ, uξ) we set κr(ξ) := ϕ−1σruξ. Finally, it will be convenient to
introduce the classes κ̂r := ϕ−1σ̂ruξ corresponding to kO[2], i.e., σ̂r is the
Z[2]-localization of σr. By 4.1(ii), we have

(4.2) κ1 = w2.

Hence, B(V , kO1) = BV|3.

Atiyah–Bott–Shapiro [1] proved that a stable vector bundle ξ is kO -
orientable iff it admits a Spin-structure, i.e., iff w1(ξ) = 0 = w2(ξ). Thus, we
have the following fact:

4.3. Theorem. If for some vector bundle ξ we have κ0(ξ) = 0,κ1(ξ) = 0,
then 0 ∈ κr(ξ) for all r ≥ 1. Thus, none of the classes κr , r > 1, can be
realized by vector bundles. �

Because of kO[1/2]-orientability of ST OP-bundles (see the text before
3.4), the following analog of 3.4 holds.

4.4. Theorem. Given r, 0 ≤ r ≤ ∞, an ST OP-bundle (as well as an SPL-
bundle) is kOr-orientable iff it is (kOr)[2]-orientable. In particular, the class
κr can be realized by PL- or T OP-bundles iff κ̂r can. �

As usual, we set κ
G
2 = ϕ−1σ2u ∈ H3(B(G, kO1); Z/2) where u ∈

kO1(M(G, kO1)) is the universal kO1-orientation.

4.5. Lemma. H3(B(G, kO1); Z/2) = Z/2, and the class κ
G
2 generates this

group.

Proof. Considering the Z/2-cohomology spectral sequence of the fibration

K(Z/2, 2)→ B(G, kO1)→ BSG,
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one obtains that H3(B(G, kO1); Z/2) = Z/2. Let ξ be the spherical fibration
in 1.9. By 4.1(ii), the secondary operation σ2 is just Φ(2, 2). Hence, κ2 can
be realized (by ξ). Thus, κ

G
2 
= 0. �

4.6. Remark. By 4.5, the set κ2(γG1 ) contains just one element κ
G
2 , which

in fact coincides with p∗e3, where e3 ∈ H3(BG; Z/2) is the Gitler–Stasheff
class and p : B(G, kO1)→ BG.

Set BMV := B(V , kO1) = BV|3, i.e., BMV is the homotopy fiber of
w2 : BSV → K(Z/2, 2). (Note that BMO = B Spin.) The map BMPL →
BSPL → BSG turns BMPL into a bundle over BSG.

4.7. Lemma. (i) If V ≤ T OP, then BMV is 3-connected. Furthermore,
π3(BMG) = Z/2.

(ii) The homotopy fiber of any map BMPL → BMG over BSG is G/PL.
The homotopy fiber of any map BMT OP → BMG over BSG is G/T OP.

Proof. (i) By IV.4.27(ii), π3(BSO) = 0. So, by IV.4.27(iv), π3(BSPL) =
0, and so, by IV.4.27(v), π3(BST OP) = 0. Hence, π3(BSV) = 0 for
V ≤ T OP , and so π3(BMV) = 0. Furthermore, π3(BG) = Z/2, and so
π3(BMG) = Z/2.

(ii) This is similar to the proof of 3.11. �

4.8. Theorem. If κ1(ξ) = 0 for some SPL-bundle ξ, then 0 ∈ κ2(ξ) and
0 ∈ κ3(ξ). Furthermore, 0 /∈ κ4(γPL

3 ) ⊂ H9(BMPL; Z). Thus, all the classes
κr, r ≥ 4, as well as κ̂r, r ≥ 4, can be realized by PL-bundles.

Proof. The triviality of κ2(ξ),κ3(ξ) follows from 4.3 and IV.4.27(iv), cf.
3.13. As in 3.14, if 0 ∈ κ4(γPL

3 ) then we have the diagram

BMPL [2]
f−−−−→ B(G, kO8)[2]

∥

∥

∥

⏐

⏐




p

BMPL [2]
g−−−−→ BMG[2]

⏐

⏐




⏐

⏐




BSPL [2] −−−−→ BSG[2].

Passing to the homotopy fibers of g and p, we have, by 4.7(ii), a map

f̄ : G/PL [2]→ BSO[2](8).

Since in the Z/2-cohomology spectral sequences of the fibrations g and p
the class κ

G
2 ∈ H3(BMG[2]; Z/2) does not survive (for g this holds because

H3(BMPL; Z/2) = 0), the map

f̄ : G/PL [2]→ BSO[2](8)
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is a 4-equivalence. (In greater detail, it induces an isomorphism of π2’s, and
hence, by V.4.5, it induces an isomorphism of π4’s.) Hence, the map

BSO[2](4) = Y
a−→ G/PL [2]

f̄−→ BSO[2](8)

is a 4-equivalence (here a is the inclusion of the factor, see (2.14)). In other
words, the projection

BSO[2](8) → BSO[2](4)

in the Postnikov tower of BSO[2] has a section. But this contradicts 2.12.
Thus, 0 /∈ κ4(γPL

3 ). The realizability of all the classes κr and κ̂r, r ≥ 4, now
follows from V.5.1 and 4.1(iii), cf. 3.14. �

4.9. Theorem. If κ1(ξ) = 0 for some ST OP-bundle ξ, then κ2(ξ) = 0.
Furthermore, 0 /∈ κ3(γT OP

2 ), and hence all the classes κr, r ≥ 3, as well as
κ̂r, r ≥ 3, can be realized by T OP-bundles.

Proof. By 4.7(i), we have H3(BMT OP ; Z/2) = 0, and hence κ2 cannot
be realized by T OP-bundles. Furthermore, if γT OP

2 is kO2-orientable, then
we have the following commutative diagram over BG:

BMT OP −−−−→ B(G, kO2)
⏐

⏐




⏐

⏐




BMG BMG.
Let us localize this diagram and pass to the homotopy fibers of the vertical
arrows. Then, by 4.7(ii), we get a map G/T OP [2]→ BSO[2](4) of the homo-
topy fibers, and this map is a 2-equivalence. In view of (2.15), this contradicts
the non-triviality of the Postnikov invariant δSq2ι of BSO[2], see 2.12. Thus,
0 /∈ κ3(γT OP

2 ). Again, the realizability of all the classes κr and κ̂r, r ≥ 3,
follows from V.5.1 and 4.1(iii). �

4.10. Theorem. All the classes κr, r ≥ 1, as well as κ̂r , r ≥ 1, can be
realized by spherical fibrations.

Proof. This follows from (4.2) for r = 1, from 4.5 for r = 2, and from 4.9
for r ≥ 3. �

4.11. Remark. In fact, Adams [4, IV, Theorem 1.2] proved that all the
classes κr of dimensions 8n+2, 8n+3 can be realized by spherical fibrations
over spheres.

Again, one can ask about kO [p]-orientability with odd prime p. We just
remark that complexification induces a ring morphism kO [p]→ k [p] onto a
direct summand in view of 3.3 and IV.4.27(iii). Thus, kO [p]-orientability is
equivalent to k [p]-orientability.
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Résumé on kO -orientability

The conditions w1(ξ) = 0, w2(ξ) = 0 are necessary for kO -orientability of
any V-object ξ. As in §3, we consider V-objects with trivial w1. We have
κ1 = w2.

Theorem. (i) The class κ1 can be realized by vector bundles (namely, by
the universal oriented vector bundle). If for some vector bundle ξ we have
κ0(ξ) = 0 and κ1(ξ) = 0, then 0 ∈ κr(ξ) for all r ≥ 1. Thus, none of the
classes κr, r > 1, can be realized by vector bundles.

(ii) If for some SPL-bundle ξ we have κ1(ξ) = 0, then 0 ∈ κ2(ξ) and
0 ∈ κ3(ξ). On the other hand, all the classes κr, r ≥ 4, can be realized by
PL-bundles.

(iii) If for some ST OP-bundle ξ we have κ1(ξ) = 0, then κ2(ξ) = 0. On
the other hand, all the classes κr, r ≥ 3, can be realized by T OP-bundles.

(iv) All the classes κr, r ≥ 1, can be realized by spherical fibrations.

§5. A Few Geometric Observations

Here we give some results connected with k- and kO -orientability, but not
situated on the main line of this chapter.

5.1. Theorem. For every n ≥ 23 there exists a simply connected topological
manifold V n with the following properties:

(i) δw2(V ) = 0;
(ii) No odd multiple of a generator [V ]H ∈ Hn(V ) = Z can be realized

by a PL manifold with δw2(M) = 0. In particular, V does not admit any
PL-structure.

Proof. Treating BRT OP as a CW -complex, take its 7-skeleton A and
embed it in R

m,m ≥ 15. Consider a regular neighborhood X of A, and let
p : X → A be the standard deformation retraction. Consider an (R7, T OP7)-
bundle ξ such that ξ⊕ (γT OP

3 )|A is stably trivial, and set ζ := p∗ξ. Note that
ζ ⊕ θ1 admits a 8-disk subbundle. (Indeed, one can take the cylinder of the
projection of ζ•.) Let Y be the total space of this disk bundle; clearly, it is a
topological manifold with boundary. Consider the embedding j : A→ X → Y
(the last map is given by the zero section). One has j∗ν � γT OP

3 |A, where ν
is the stable normal bundle of Y . Let V be the double of Y , V := Y ∪∂Y Y .
Then κ1(ν) = 0, 0 ∈ κ2(ν), 0 /∈ κ3(ν), where κi are the characteristic classes
with respect to k-theory. We prove that V has properties (i) and (ii).

(i) Since V is simply connected, w1(V ) = 0. Thus, w2(V ) = w2(ν), and
so δw2(V ) = 0 because δw2(ν) = κ2(ν) = 0.
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(ii) Suppose that there is a map f : M → V of odd degree and such that
M is an HZ-oriented PL manifold with δw2(M) = 0. Then δw2(νM ) = 0,
and so, by 3.2, M is k3-orientable. Let [M ] be a k3-orientation of M . Then,
by V.2.12, f∗([M ]) ∈ k3

∗(V ) gives us a k3[2]-orientation of V . Thus, V is
k3[2]-orientable, and so it is k3-orientable by 3.4 (and V.2.4). But κ3(ν) 
= 0.
This is a contradiction. �

An analogous theorem holds for kO. We just formulate it; the proof is
similar.

5.2. Theorem. For every n ≥ 17 there exists a simply connected topological
manifold V n with the following properties:

(i) w2(V ) = 0;
(ii) No odd multiple of a generator [V ]H ∈ Hn(V ) = Z can be realized

by a PL manifold M with w2(M) = 0. In particular, V does not admit any
PL-structure. �

5.3. Remark. For every homology class z there exists an odd number N such
that Nz can be realized by a smooth manifold, see IV.36. That contrasts with
5.1 and 5.2 (recall that every smooth manifold is a PL manifold in a canonical
way).

Let BSPL(8) be the classifying space for PL8-bundles. Let BRPL(8) be
the homotopy fiber of δw2 : BSPL(8)→ K(Z/2, 3), and let j : BRSPL(8)→
BSPL(8) be the inclusion of the homotopy fiber. Set X := BRPL(8)(8),
and set η := j∗(γ8

PL)|X . By setting Y := (B SpinC(8))(8), we have the map
f : Y → X , which is induced by the forgetful map B SpinC(8)→ BRPL(8).
It is clear that f∗(η) is the restriction of the canonical SpinC(8)-bundle. Let
u ∈ ˜K8(T (f∗η)) be the K-orientation of the SpinC-bundle f∗η constructed
by Atiyah–Bott–Shapiro [1].

5.4. Theorem. The bundle η is K-orientable, but the orientation u cannot
be extended to X, i.e., u /∈ Im f∗.

Proof. We have κ1(η) = 0 by the construction of η. So, by 3.13, 0 ∈ κ2(η),
0 ∈ κ3(η). Finally, 0 ∈ κn(η), n > 3, because dimX = 8. Thus, η is k-
orientable and so K-orientable.

Suppose now that u = f∗v for some v ∈ K8(Tη). Since f∗ : H∗(X ; Q)→
H∗(Y ; Q) is an isomorphism, we have ϕ−1 ch v = ez/2Â(η) for some z ∈
H2(X), (see V.3.4 (b), V.3.6). This implies easily that Â(M) is an integer
for every PL manifold M with w1(M) = 0 = w2(M) and dimM ≤ 8.

Let M , dimM = 8, be a closed almost parallelizable PL manifold of
signature 8. Such manifolds were constructed by Milnor, see e.g. Kervaire–
Milnor [1] or Browder [3]. The theorem will be proved if we prove that Â(M)
is not an integer. Now,
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Â(M) = (7p2
1 − 4p2)/(27 · 45),

where pi is the i-th Pontrjagin class of M , see e.g. Hirzebruch [1]. Here
p1(M) = 0 because M is almost parallelizable. We have 8 = σ(M) =
(7p2 − p2

1)/45, where σ is the signature, see e.g. Hirzebruch [1], and so
7p2 = 8 · 45. Thus, Â(M) = −1/28. �

5.5. Remarks. (a) Theorem 5.4 means that in the diagram

Y
f−−−−→ X −−−−→ BRPL

u

⏐

⏐




...

⏐

⏐




v

∥

∥

∥

B(O,K) −−−−→ B(PL,K) −−−−→ BRPL

there exists a map v such that the right square commutes, but there is no
map v such that the left square commutes.

(b) Milnor constructed certain closed almost parallelizable PL manifolds
M4k of signature 8, see e.g. Kervaire–Milnor [1] or Browder [3]. Every such
manifold M4k is K-orientable because H2i+1(M) = 0 for each i. Hence, one
can try to find aK-orientation of SpinC-bundles with the corresponding genus
ϕ such that ϕ(M) is integral for every Milnor manifold M .

(c) We leave it to the reader to formulate and prove a KO-analog of 5.4.



Chapter VII. Complex (Co)bordism

In order to work with complex (co)bordism with singularities we need some
preliminaries on complex (co)bordism. Therefore we collect here some facts
which will be used below. A standard reference on complex (co)bordism is
the book of Ravenel [1], see also Stong [3], Ch. VI.

In this chapter “cohomology theory” means “additive cohomology the-
ory”.

§1. Homotopy and Homology Properties of the
Spectrum MU

LetMU = T (BU , R) be the ring spectrum defined in IV.7.31(b). The complex
(co)bordism theory is the (co)homology theory given by MU .

Since BU is simply connected, the F -object

BU R−→ BO aOF−−→ BF

is HZ-orientable, and hence, by IV.5.23, H0(T (BU , R)) = Z. Therefore,
H0(MU) = Z. Consider a Thom class u ∈ H0(MU) (i.e., either of two
generators ofH0(MU) = Z) and the corresponding morphism u : MU → HZ.
By IV.5.26, the induced homomorphism

u∗ : Z = π0(MU)→ π0(HZ) = Z

is an isomorphism. We choose the Thom class u ∈ H0(MU) such that u∗
maps 1 to 1.

We do not care about any concrete form of the universal bundles γn
C
. They

can be canonical bundles, as in Milnor–Stasheff [1], or conjugated to these
ones, etc. Fixing γn’s, we fix certain maps (homotopy classes) BUn → BUn+1

and BUm × BUn → BUm+n, but in any case MU turns out to be a ring
spectrum. Furthermore, the ring equivalence class of the spectrum MU does
not depend on the choice of γn

C
’s. However, if you want, we can agree that

γn
C

is a canonical complex vector bundle.
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According to the Pontrjagin–Thom Theorem IV.7.27, MU∗(−) can be
interpreted as the (BU , R)-bordism theory, i.e., the bordism theory based on
stably almost complex manifold. By the way, every complex analytic manifold
is a stably almost complex manifold.

Throughout this chapter the word “bordant” means “(BU , R)-bordant”.
As usual, given a closed stably almost complex manifold M , the bordism
class of a singular manifold f : M → X will be denoted by [M, f ], and the
bordism class of M will be denoted by [M ]. Furthermore, [M ]MU denotes the
bordism class [M, 1M ] ∈MU∗(M).

It is easy to see that the universal HZ-orientation u yields a certain HZ-

orientation on every complex vector bundle, cf. 2.8 below. (In fact, this orientaion

coincides with the one described in Milnor–Stasheff [1].) Therefore, by V.2.4 and

V.2.14, every stably almost complex manifold Mn gets a certain HZ-orientation

[M ]H ∈ Hn(M,∂M). Now one can define the Steenrod–Thom homomorphism

MU∗(X)→ H∗(X), [M, f ] �→ f∗([M ]H) and prove an analog of IV.7.32.

1.1. Proposition. u : MU → HZ is a ring morphism.

Proof. Let H denote HZ. We must prove that the diagram

MU ∧MU μ−−−−→ MU

u∧u
⏐

⏐




⏐

⏐




u

H ∧H μH−−−−→ H

commutes (up to homotopy). Let ι : S → MU be the unit of MU . The
morphism

S = S ∧ S ι∧ι−−→MU ∧MU μ−→MU u−→ H

is homotopic to uι, while the morphism

S = S ∧ S ι∧ι−−→MU ∧MU u∧u−−→ H ∧H μH−−→ H

coincides with the unit ιH of H . Furthermore, ιH � uι because ι∗(u) = 1 ∈
H0(S) and u∗ : π0(MU)→ π0(H) maps 1 to 1. Hence,

u◦μ◦(ι ∧ ι) � uι � ιH � μH◦(u ∧ u)◦(ι ∧ ι).

Since (ι ∧ ι)∗ : H0(MU ∧ MU) → H0(S ∧ S) is an isomorphism, u◦μ �
μH◦(u ∧ u). �

The group U1 = {z ∈ C
∣

∣ |z| = 1} acts on C
n+1 (via the map a �→

za, a ∈ C
n+1, z ∈ U1) and hence on its unit sphere S2n+1. The quotient

space S2n+1/U1 is just the complex projective space CPn. Considering the
homotopy exact sequence of the locally trivial principal U1-bundle

U1 → S2n+1 → CPn,

we conclude that π1(CPn) = 0, π2(CPn) = Z and πi(CPn) = 0 for i ≤ 2n.
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The inclusion C
n → C

n+1 of the hyperspace zn+1 = 0 induces an inclusion
ln : CPn → CPn+1. Set CP∞ := ∪CPn. By the above, π2(CP∞) = Z and
πi(CP∞) = 0 for i 
= 2. Thus, CP∞ = K(Z, 2).

1.2. Lemma. BU1 � CP∞.

Proof. By IV.3.2(ii), BU1 is the base of a principal U1-bundle with a
contractible total space, and so πi(BU1) = πi−1(U1) = πi−1(S1). Hence,
BU1 = K(Z, 2) = CP∞. �

1.3. Notation. (a) We denote by lmn : CPm ⊂ CPn,m < n ≤ ∞, the
inclusion ln−1◦ · · · ◦lm : CPm ⊂ CPn. So, lnn+1 = ln. We also use the specific
notation jn := ln∞ : CPn → CP∞.

(b) We denote by rmn : BUm → BUn,m < n < ∞, the composition
rm◦ · · · ◦rn−1 : BUm → BUn where rn : BUn → BUn+1 classifies γn

C
⊕θ1

C
as in

IV.4.25. So, rnn+1 = rn. Also, we recall the map jUn : BUn → BU , see IV.4.25.
(c) Given a complex vector bundle ξ, dim ξ denotes its complex dimension.
(d) Given a complex vector bundle ξ, we denote by ξ̄ the conjugated

complex vector bundle.
(e) In this chapter we denote γn

C
by γn, γC by γ and θn

C
by θn.

(f) Let λ be the canonical complex line bundle over CP∞. (It is well-
known that λ is a universal complex line bundle, but, as I said before, I do
not insist that γ1 = λ.) We set η := λ̄. 16

(g) Let en : (CP∞)n → BUn classify η × · · · × η, and let pi : (CP∞)n →
CP∞ be the projection onto the i-th factor.

Let ci(ξ) denote the i-th Chern class of a complex vector bundle ξ. Recall
that ci(ξ × η) =

∑

j+k=i cj(ξ)ck(η) for every pair of complex vector bundles
ξ, η (where c0(ξ) = 1 = c0(η)) and ci(ξ) = 0 for i > dim ξ.

1.4. Theorem. (i) H∗(CP∞) = Z[t] where t = c1(η), dim t = 2.
(ii) H∗((CP∞)n) = Z[t1, . . . , tn], where ti = p∗i t.
(iii) H∗(BUn) = Z[c1,n, . . . , cn,n], dim ci,n = 2i, where ci,n is the i-th

Chern class of γn, ci,n = ci(γn). Furthermore, r∗n(ci,n+1) = ci,n for i ≤ n,
and r∗n(cn+1,n+1) = 0. Finally, e∗n(ci,n) is the i-th elementary symmetric
polynomial σi(t1, . . . , tn).

Proof. See Milnor–Stasheff [1], §14. �
Let Vectn(X) denote the set of all equivalence classes of n-dimensional

complex vector bundles over a space X . Note that ξ⊗ θ1 = ξ and ξ⊗ ξ̄ = θ1.
Hence, Vect1(X) is an abelian group with respect to the tensor product.

16Note that this notation differs from that in Milnor–Stasheff [1]. They denoted the

canonical line bundle over CP∞ by η.
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1.5. Lemma. (i) For every CW -space X, the function c1 : Vect1(X) →
H2(X), ξ �→ c1(ξ), is a homomorphism of groups.

(ii) The homomorphism c1 : Vect1(X) → H2(X) is an isomorphism for
every CW -space X.

Proof. (i) See e.g. Karoubi [1], V.3.10.
(ii) Since t = c1(η) generates the group H2(CP∞) = H2(K(Z, 2)) = Z,

we conclude that t is a fundamental class of the Eilenberg-Mac Lane space
K(Z, 2).

We prove that c1 is epic. Given x ∈ H2(X), consider f : X → CP∞ with
f∗t = x. Now, c1(f∗η) = f∗(c1(η)) = x.

We prove that c1 is monic. Consider the map e1 : CP∞ → BU1. We
have t = c1(η) = c1(e∗1γ

1) = e∗1(c1(γ
1)). Hence, c1(γ1) generates the group

H2(BU1) = Z, i.e., c1(γ1) is a fundamental class of BU1 = K(Z, 2). Let a
complex line bundle ξ be classified by a map f : X → CP∞.

We have

ξ � θ1 ⇐⇒ f is inessential⇐⇒ f∗c1(γ1) = 0
⇐⇒ c1(f∗γ1) = 0⇐⇒ c1(ξ) = 0. �

1.6. Corollary. Let m : CP∞ × CP∞ → CP∞ be the multiplication in the
H-space CP∞ = K(Z, 2), and let pi : CP∞ ×CP∞ → CP∞, i = 1, 2, be the
projection onto the i-th factor. Then

m∗(ξ) = p∗1ξ ⊗ p∗2ξ
for every complex line bundle ξ over CP∞.

Proof. Note that m∗x = p∗1x+ p∗2x for every x ∈ H2(CP∞). Now,

c1(m∗ξ) = m∗c1(ξ) = p∗1c1(ξ) + p∗2c1(ξ) = c1(p∗1ξ) + c1(p∗2ξ) = c1(p∗1ξ ⊗ p∗2ξ)
�

Given a partition ω = (i1, . . . , ik) (see Milnor–Stasheff [1], §16), set |ω| =
∑

ir, l(ω) = k. We define the universal Chern classes

cω ∈ H2|ω|(BU) = H2|ω|(BUN ), |ω| << N,

via the formula e∗N (cω) = tω ∈ Z[t1, . . . , tN ] = H∗((CP∞)n) where tω is the
smallest symmetric polynomial which contains ti11 · · · t

ik
k . (Here “smallest”

means “with minimal number of summands”.) Finally, c(0) := 1.
Given a complex vector bundle ξ, dim ξ = n, we define cω(ξ) by setting

cω(ξ) := g∗cω, where g is the composition bs ξ
f−→ BUn

jUn−→ BU and f
classifies ξ. We have cω(ξ) = 0 for l(ω) > dim ξ and

cω(ξ × η) =
∑

(ω1,ω2)=ω

cω1(ξ)cω2(η),

see Milnor–Stasheff [1].
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For every x ∈ π2|ω|(MU) we define its characteristic numbers sω(x) as

(1.7) sω(x) := f∗ϕ(cω) ∈ H2|ω|
(

S2|ω|
)

= Z,

where f : S2|ω| → MU represents x and ϕ : H∗(BU) → H∗(MU) is the
Thom isomorphism. Moreover, if x is represented by a stably almost complex
manifold M , then

sω(x) = 〈cω(νM ), [M ]H〉,
see e.g. Stong [3] or 2.22 below.

We set

(1.8) λn :=
{

p if n = pk − 1 for a prime p,
1 otherwise.

1.9. Theorem. (i) π∗(MU) = Z[x1, . . . , xn, . . . ], dimxn = 2n.
(ii) H∗(MU) = Z[y1, . . . , yn, . . . ], dim yn = 2n. In particular, H∗(MU)

and H∗(MU) are torsion free.
(iii) The Hurewicz homomorphism h : π∗(MU) → H∗(MU) is monic.

In particular, the bordism class of every stably almost complex manifold is
completely determined by its Chern numbers.

(iv) A family {xn}, n = 1, 2, . . . , of elements of π∗(MU) is a system of
free polynomial generators of it iff s(n)(xn) = ±λn for every n.

(v) There exists a system {xn} of free polynomial generators of π∗(MU)
such that for every prime number p and natural number k all Chern numbers
of xpk−1 are divisible by p. In particular, h(xpk−1) ∈ pH∗(MU).

(vi) H∗(MU ; Z/p) is a free Ap/(Q0)-module.
(vii) The AHSS for MU∗(MU) and MU∗(MU) are trivial.
(viii) The Hurewicz homomorphism π∗(MU)→ K∗(MU) is a monomor-

phism on a direct summand.

Here in (vi) (Q0) is the two-sided ideal generated by Q0. It coincides with
the left ideal Ap(Q0, . . . , Qn, . . . ).

Proof. A proof of (i), (iii)-(vi), (viii) can be found in Stong [3], see also
Ravenel [2]. A proof of (ii) can be found in Switzer [1]. The assertion (vii)
follows from (i), (ii) and II.7.12(ii). �

1.10. Remark. The assertions (i)–(iv), (vi) were proved by Milnor [4] and
Novikov [1]. The assertion (v) was remarked by Conner and Floyd, see Con-
ner [1]; they proved the existence of generators with all characteristic num-
bers divisible by p (and called them Milnor’s generators); you can see such
a system in 6.14 below. The assertion (viii) is the well-known Stong–Hattory
Theorem, see Stong [2], Hattory [1].
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For every spectrum X the morphism u : MU∗(X) → H∗(X) induces a
homomorphism

u : MU∗(X)⊗ε Z→ H∗(X), u(x⊗ a) = au(x),

where ε = uS : MU∗(S)→ H∗(S) = Z. Note that ε(x) = 0 if dimx > 0.

1.11. Proposition. The homomorphism

u⊗ 1 : MU∗(X)⊗ε Q→ H∗(X)⊗Q = H∗(X ; Q)

is an isomorphism of homology theories on S .

Proof. By II.7.13, there is a natural ring (and hence MU∗(S)-module)
isomorphism

MU∗(X)⊗Q ∼= H∗(X)⊗MU∗(S)⊗Q.

Hence, MU∗(X) ⊗ε Q ∼= H∗(X ; Q). So, u ⊗ 1 is a morphism of homology
theories. It is an isomorphism for X = S and thus, by II.3.19(iii), for every
X . �

1.12. Definition. A module M over a commutative ring is called coherent
if it is finitely generated and every finitely generated submodule of M is
finitely presented. A commutative ring R is called coherent if the R-module
R is coherent.

1.13. Proposition. (i) The ring k[x1, . . . , xn, . . . ] is coherent for every com-
mutative Noetherian ring k. In particular, π∗(MU) is a coherent ring.

(ii) If in an exact triangle

M1 −→ M2

↖ ↙
M3

any two of three modules Mi, i = 1, 2, 3, are coherent, then so is the third.

Proof. Do this as an exercise; or see Bourbaki [3], L. Smith [1]. �

1.14. Theorem (L. Smith [1], cf. also Novikov [4]). Let E be a ring spectrum
such that π∗(E) is a coherent ring. Then E∗(X) is a coherent (and so finitely
generated ) E∗(S)-module for every finite spectrum X. In particular, MU∗(X)
is a coherent MU∗(S)-module for every finite spectrum X.

Similarly, E∗(X) is a coherent E∗(S)-module.

Proof. We consider only the homological case, the cohomological case
can be proved similarly. Since π∗(E) is coherent, E∗(S) is a coherent E∗(S)-
module. Now the proposition follows from 1.13(ii) by induction on the number
of cells of X . �
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1.15. Theorem (cf. Conner–Smith [1]). For every spectrum X bounded below
the following conditions are equivalent:

(i) H∗(X) is a free abelian group;
(ii) MU∗(X) is a free MU∗(S)-module.
Furthermore, u : MU∗(X)⊗ε Z→ H∗(X) is an isomorphism under these

conditions.

Proof. (i) =⇒ (ii). Since H∗(X) is torsion free, the E2-term of the AHSS

Er∗∗(X)⇒MU∗(X), E2
∗∗(X) = H∗(X)⊗MU∗(S)

is torsion free. So, by II.7.12(ii), all its differentials are trivial. Hence, a free
abelian basis of H∗(X) yields a free MU∗(S)-basis of E∞

∗∗(X). Hence, E∞
∗∗(X)

is a free graded MU∗(S)-module. Thus, MU∗(X) is a free MU∗(S)-module.
(ii) =⇒ (i). Firstly, we prove that H∗(X) is torsion free. Let x ∈ H∗(X)

be a torsion element of minimal dimension. Then the element

x⊗ 1 ∈ E2
|x|,0(X) = H|x|(X)⊗ π0(MU)

is a permanent cycle, and so x ∈ Imu. On the other hand, MU∗(X) is a free
MU∗(S)-module, and hence MU∗(X)⊗ε Z is a free abelian group. Hence, by
1.11, u : MU∗(X)⊗ε Z→ H∗(X) is monic, and so Imu is torsion free. Thus,
x /∈ Imu. This is a contradiction. Hence, H∗(X) is torsion free. In particular,
all differentials in the AHSS for MU∗(X) are trivial.

We have already proved that u is monic. On the other hand, u is epic
because all differentials in the AHSS are trivial. So, H∗(X) ∼= MU∗(X)⊗ε Z,
i.e., H∗(X) is a free abelian group.

The last claim has already been proved. �

1.16. Corollary. For every finite spectrum X the following conditions are
equivalent:

(i) H∗(X) is a free abelian group;
(ii) MU∗(X) is a free MU∗(S)-module.

Proof. Let Y be a spectrum dual to X , i.e., Y = X⊥. Then H∗(X) =
H∗(Y ), MU∗(X) = MU∗(Y ). Now apply 1.15. �

1.17. Theorem (Conner–Smith [1], Landweber [2], Yosimura [1]). Given
a k-connected spectrum X, there exists a morphism f : W → X such that
W is a k-connected spectrum, MU∗(W ) is a free π∗(MU)-module and f∗ :
MU∗(W )→MU∗(X) is an epimorphism.

Furthermore, if every group Hi(X) is finitely generated then there exists
W as above such that every group Hi(W ) is finitely generated.

Proof. Without loss of generality we assume that k = −1, i.e., that X is
connected. Choose an element x ∈ MUd(X). Then x can be represented by
a morphism
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Sd
h−→MU (N) ∧X ⊂MU ∧X

forN large enough. Without loss of generality we can assume thatH∗(MU (N))
is a free abelian group. Let Y be a dual spectrum to MU (N), and let
u : S → MU (N) ∧ Y be a duality morphism. Then there is the duality
isomorphism

uX : [Y,X ]→ [S,MU (N) ∧X ], uX(ϕ) = (1MU(N) ∧ ϕ)u,

and hence the isomorphism ΣduX : [ΣdY,X ] → [Sd,MU (N) ∧ X ]. Let
g : ΣdY → X be a morphism such that ΣduX [g] = [h]. Consider the ho-
momorphism g∗ : MUd(ΣdY ) → MUd(X). We have g∗[Σdu] = x since the
morphism

(1.18) Sd
Σdu−−→MU (N) ∧ΣdY

1∧g−−→MU (N) ∧X

is homotopic to h. In particular, x ∈ Im{g∗ : MU∗(ΣdY ) → MU∗(X)}.
Furthermore, H∗(Y ) is a free abelian group, and hence, by 1.15, MU∗(ΣdY )
is a free π∗(MU)-module.

Now, let {xα} be a family of π∗(MU)-generators of MU∗(X). We use the
above arguments and construct maps gα : Σ|xα|Yα → X such that

xα ∈ Im{(gα)∗ : MU∗(Σ|xα|Yα)→MU∗(X)}.

We set W :=
∨

α

Σ|xα|Yα and define f : W → X by requiring f |Σ|xα|Yα � gα.

Clearly, the spectrum W is connected, the homomorphism f∗ : MU∗(W ) →
MU∗(X) is epic, andMU∗(W ) = ⊕αMU∗(Σ|xα|Yα) is a free π∗(MU)-module.

Furthermore, suppose every group Hi(X) is finitely generated. Given n,
consider the AHSS

Er∗∗ ⇒MU∗(X(n)), E2
∗∗(X) = H∗(X ;π∗(MU)).

Without loss of generality we can assume that every groupHi(X(n)) is finitely
generated. Then E2

∗∗ turns out to be a coherent π∗(MU)-module. Hence, by
1.13(ii), E∞

∗∗ is a coherent π∗(MU)-module, and thus MU∗(X(n)) is.
Now, MU∗(X) = lim−→nMU∗(X(n)). Hence, MU∗(X) admits a family {xα}

of π∗(MU)-generators such that, for every n, the set {xα
∣

∣ dimxα ≤ n} is
finite. Thus, constructing W as above, we conclude that the group Hi(W ) is
finite for every i. �

1.19. Lemma. Let E be any MU-module spectrum with the pairing m :
MU ∧ E → E. Let A be a finite spectrum such that H∗(A) is torsion free.
Then the homomorphism mA,B : MU∗(A) ⊗MU∗(S) E

∗(B) → E∗(A ∧ B) is
an isomorphism for every finite spectrum B.

Proof. Because of 1.16, MU∗(A) is a free MU∗(S)-module. So, fixing A,
we can consider mA,B as a morphism of cohomology theories on Sf . Since
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it is an isomorphism for B = S, it is an isomorphism for every B ∈ Sf , see
II.3.19(iii). �

1.20. Theorem. Let E be as 1.19, and suppose that πi(E) is a finite group
for every i. Let X be a spectrum of finite type such that H∗(X) is torsion
free. Then the homomorphism mX,Y : MU∗(X)̂⊗MU∗(S)E

∗(Y )→ E∗(X∧Y )
is an isomorphism for every spectrum Y . (Here ̂⊗MU∗(S) is the profinitely
completed tensor product defined in III.1.23.)

Proof. Let {Xλ} (resp. {Yλ′}) be the direct system of all finite subspectra
of X (resp. Y ). By III.4.17, E∗(X ∧ Y ) = lim←−{E

∗(Xλ ∧ Yλ′)}. Furthermore,
the system {Xλ} of all finite subspectra of X has a cofinal subsystem {Xα}
with Xα finite and such that H∗(Xα) is torsion free for every α. Note that,
by III.5.7(iii), MU∗(X) = lim←−{MU

∗(Xα)}. Thus,

E∗(X ∧ Y ) = lim←−{E
∗(Xα ∧ Yλ′)} = lim←−{MU

∗(Xα)⊗MU∗(S) E
∗(Yλ′ )}

= MU∗(X)̂⊗MU∗(S)E
∗(Y ). �

1.21. Corollary. Let E be as in 1.20. Then the homomorphism

m : MU∗(MU)̂⊗MU∗(S)E
∗(X)→ E∗(MU ∧X)

is an isomorphism for every spectrum X. �

1.22. Remark. Lemma 1.19 enables us to construct a spectral sequence

TorMU∗(S)
p,q (MU∗(X), E∗(Y ))⇒ E∗(X ∧ Y )

for every pair of finite spectra X,Y , see Novikov [4], Conner–Smith [1].

In order to proceed, we need more information about complex vector
bundles over CPn. Note that e1 : CP∞ → BU1 classifies η.

1.23. Proposition. The map e1 : CP∞ → BU1 is a homotopy equivalence.
So, η is a universal complex line bundle.

Proof. Because of 1.2 and 1.4(i), it suffices to prove that e∗1(c1(γ
1)) gen-

erates the group H2(CP∞) = Z. But

e∗1(c1(γ
1)) = c1(η) = t. �

We denote the bundle η|CPn = j∗nη by ηn.

1.24. Lemma. Let τ(CPn) be the tangent bundle of CPn. Then there is an
equivalence τ(CPn)⊕ θ1 � (n+ 1)ηn of complex vector bundles.

Proof. See Milnor–Stasheff [1]. �
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Let ξn be a normal bundle of the inclusion ln : CPn → CPn+1. By
IV.7.11, τ(CPn)⊕ ξn ∼= l∗nτ(CPn+1). Since both τ(CPn) and τ(CPn+1) are
complex vector bundles, we conclude that ξn gets a canonical structure of a
complex vector bundle.

1.25. Lemma. The complex normal bundle ξn of the inclusion ln is isomor-
phic to ηn.

Proof. By 1.5(ii), it suffices to prove that c1(ξn) = c1(ηn). Notice that
l∗nηn+1 = ηn. We have l∗nτ(CPn+1) = τ(CPn) ⊕ ξn, and hence, by 1.24,
(n + 2)ηn ⊕ θ1 = (n + 1)ηn ⊕ ξn ⊕ θ1. Since c1(ξ ⊕ ζ) = c1(ξ) + c1(ζ), we
conclude that c1(ξn) = c1(ηn). �

1.26. Proposition. The zero section z : BU1 → MU1 as in IV.5.4 is a
homotopy equivalence.

Proof. Let D(γ1) (resp. S(γ1)) be the unit disk (resp. unit sphere) bundle
associated with γ1. Then S(γ1) is just the locally trivial principal U1-bundle
associated with γ1, i.e., S(γ1) is the universal principal U1-bundle. Hence, by
IV.3.2(ii), tsS(γ1) is a contractible space. Now, z has the form

z : BU1
s−→ tsD(γ1)

p−→ (tsD(γ1))/ tsS(γ1) = MU1

where the section s and the projection p are homotopy equivalences. �
We define a map

(1.27) h : CP∞ e1−→ BU1
z−→MU1.

By 1.23 and 1.26, h is a homotopy equivalence. Since ηn is a normal bundle
of the inclusion CPn ⊂ CPn+1, there is a collapsing map c : CPn+1 → Tηn;
it collapses the complement of a tubular neighborhood of CPn. (In fact,
CPn+1 � Tηn, but we do not use it here.) Let g := e1jn : CPn → BU1.

We define a map f : CPn+1 →MU1 to be the composition

CPn+1 c−→ Tηn
Tg−−→MU1

where Tg := TIg,γ1 . Let h be as in (1.27), and let h : MU1 → BU1 be a
homotopy equivalence inverse to z.

1.28. Lemma. The map CPn+1 f−→ MU1
h−→ BU1 classifies ηn+1. In other

words, f is homotopic to CPn+1 jn+1−−−→ CP∞ h−→MU1.

Proof. By 1.5(ii), it suffices to prove that f∗h∗t = c1(ηn+1), i.e., that
l∗nf

∗h∗t = c1(ηn). But this follows immediately from the commutativity of
the diagram
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CPn
e1jn−−−−→ BU1 BU1

ln

⏐

⏐




⏐

⏐




z

∥

∥

∥

CPn+1 f−−−−→ MU1
h−−−−→ BU1.

�

1.29. Proposition. The zero section z : CP∞ → Tη is a homotopy equiva-
lence.

Proof. This follows from 1.26 and 1.23. �

§2. C -oriented Spectra

Recall the inclusion j1 : S2 = CP 1 ⊂ CP∞.

2.1. Definition (Adams [8]). Let E = (E, μ, ι) be a commutative ring spec-
trum. An element t = tE ∈ ˜E2(CP∞) is called a C -orientation of E if
j∗1 t = s2(1) ∈ ˜E2(S2). (Here s2 : ˜E0(S0) ∼= ˜E2(S2) is the twofold sus-
pension.) A C -oriented spectrum is a spectrum with a fixed C -orientation,
i.e., a pair (E, t) (or, if you want, a quadruple (E, μ, ι, t)). A morphism
f : (E, t)→ (E′, t′) of C -oriented spectra is a ring morphism E → E′ which
maps t to t′.

The image of t under the inclusion ˜E∗(CP∞) ⊂ E∗(CP∞) we also denote
by t.

2.2. Theorem. Let (E, t) be any C -oriented spectrum. Then
(i) E∗(CPn) = E∗(pt)[t]/(tn+1).
(ii) E∗(CP∞) = E∗(pt)[[t]].
(iii) E∗((CP∞)n) = E∗(pt)[[t1, . . . , tn]], where ti = p∗i (t).
(iv) E∗(BUn) = E∗(pt)[[c1,n, . . . , cn,n]], dim ci,n = 2i. Furthermore,

e∗n(ck,n) is the elementary symmetric polynomial σk(t1, . . . , tn). So, e∗n is a
monomorphism, and its image just consists of the invariants of the Σn-action.
(Here Σn is the symmetric group of degree n and the action is given by per-
mutation of ti’s.) Finally, r∗n(ci,n+1) = ci,n for i ≤ n and r∗n(cn+1,n+1) = 0.

(v) E∗(BU) = E∗(pt)[[c1, . . . , cn, . . . ]] where (jUn )∗ci = ci,n for i ≤ n and
(jUn )∗ck = 0 for k > n.

Proof. See Adams [8], Ch. II, Dold [4], Switzer [1]. �

2.3. Construction-Definition. (a) The classes cn = cE,tn as in 2.2(v) are
called the universal Chern–Conner–Floyd classes.

(b) We introduce universal characteristic classes cω = cE,tω ∈ E2|ω|(BU),
as we did for the ordinary cohomology. Given ω = {i1, . . . , ik}, k ≤ N , let
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tω ∈ π∗(E)[[t1, . . . , tN ]] = E∗((CP∞)N ) be the smallest symmetric polyno-
mial which contains ti11 · · · t

ik
k . Let cω,N ∈ E2|ω|(BUN ) be the unique element

such that e∗N(cω,N ) = tω. Since r∗ncω,n+1 = cω,n for |ω| < n + 1, there is a
unique element cω ∈ E∗(BU) such that (jUn )∗cω = cω,n for every n ≥ |ω|.
Finally, we set c(0) := 1. Clearly, cn = c(1,... ,1).

Given a complex vector bundle ξ classified by f : X → BUn, we define its
characterictic class cω(ξ) as cω(ξ) := (jUn f)∗cω ∈ E2|ω|(X). It is clear that

cω(ξ × ζ) =
∑

(ω1,ω2)=ω

cω1(ξ)cω2(ζ).

In other words, (μU )∗(cω) = cω1cω2 where μU is as in IV.(4.26).
Note that ci,n = ci(γn) and c1(η) = t.

Let

(2.4) i2n : Σ−2nΣ∞MUn →MU

be the morphism as in II.(1.4). Define T ∈ ˜MU2(CP∞) via the composition

Σ−2Σ∞(CP∞)
Σ−2Σ∞h−−−−−−→ Σ−2Σ∞MU1

i2−→MU

with h as in (1.27). Clearly, T is a C -orientation of MU . So, by V.1.18, every
ring morphism τ : MU → E yields a C -orientation τ∗(T ) of E. Hence, we
have a correspondence

{ring morphisms MU → E} −−→ {C -orientations of E}.

2.5. Theorem. This correspondence is bijective. Thus, (MU , T ) is the uni-
versal C -oriented spectrum.

Proof. See Adams [8], II.4.6, or Stong [3], Ch. V. �

2.6. Corollary. Let E be a C -orientable spectrum. Then ring morphisms
MU → E are in a bijective correspondence with formal power series ϕ(t) =
t+
∑

i>0

ait
i+1, ai ∈ π2i−2(E).

Proof. By 2.2(ii), every C -orientation of E has the form

t+
∑

i>0

ait
i+1, ai ∈ π2i−2(E). �

By 2.5, every C -orientation t of E yields a ring morphism

(2.7) u = uE,t : MU → E
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with u∗(T ) = t, and this morphism is unique up to homotopy. We denote
uMU ,T by U , and it is clear that U = 1MU .

2.8. Proposition-Definition. Let i2n : Σ−2nΣ∞MUn →MU be as in (2.4).
Let (E, t) be a C -oriented spectrum, and let ξ be a complex vector bundle
classified by f : bs ξ → BUn. We set g = TIf,γn and define uξ ∈ ˜E2n(Tξ) to
be the composition

(2.9) Σ−2nΣ∞Tξ
Σ−2nΣ∞g−−−−−−→ Σ−2nΣ∞MUn

i2n−−→MU u−→ E.

Then uξ is an E-orientation of ξ. We call uξ the (E, t)-orientation of ξ.

Proof. Since u = uE,t : MU → E is a ring morphism, u ∈ ˜E0(MU) is an
E-orientation of the universal stable complex vector bundle γ. Considering
the isomorphism e : T (ξst) → Σ−2nΣ∞Tξ as in IV.5.16, we conclude that
i2n◦Σ−2nΣ∞g◦e preserves roots, and so u◦i2n◦Σ−2nΣ∞g◦e is an E-orientation
of ξst. Hence, by V.1.13, uξ is an E-orientation of ξ. �

2.10. Corollary. Let E be a commutative ring spectrum. The following three
conditions are equivalent:

(i) The vector bundle η is E-orientable;
(ii) E is a C -orientable spectrum;
(iii) Every complex vector bundle is E-orientable.

Proof. We prove that (i) ⇒ (ii) ⇒ (iii). By 1.29, the zero section z :

CP∞ → Tη is a homotopy equivalence. Since S2 j1−→ CP∞ z−→ Tη yields a
generator of π2(Tη) = Z, we conclude that zj1 can be considered as a root of
Tη. Hence, j∗1 z∗v = ±s2(1) ∈ ˜E2(S2) for every E-orientation v of η, and so
z∗v or −z∗v is a C -orientation of E. Thus, (i) ⇒ (ii). Finally, by 2.8, (ii) ⇒
(iii). �

We denote the (MU , T )-orientation of ξ by Uξ, and we set

(2.11) un := uγn ∈ ˜E2n(MUn), Un := Uγn ∈ ˜MU2n(MUn).

Let am,n : BUm ×BUn → BUm+n classify γm × γn. We have the map

Tam,n := TIam,n,γm+n : MUm ∧MUn →MUm+n

and the morphism

τm,n : Σ−2mΣ∞MUm ∧ Σ−2nΣ∞MUn � Σ−2m−2nΣ∞(MUm ∧MUn)
Σ−2m−2nΣ∞Tam,n−−−−−−−−−−−−→ Σ−2(m+n)Σ∞MUm+n

such that the diagram
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Σ−2mΣ∞MUm ∧Σ−2nΣ∞MUn
τm,n−−−−→ Σ−2(m+n)Σ∞MUm+n

i2m∧i2n
⏐

⏐




⏐

⏐




i2(m+n)

MU ∧MU μMU−−−−→ MU
commutes. Since u : MU → E as in (2.7) is a ring morphism, we conclude
that

(2.12) (Tam,n)(um ⊗ un) = um+n.

2.13. Corollary. Let ξ, ζ be two complex vector bundles. Then the (E, t)-
orientation of ξ × ζ coincides with the product E-orientation (i.e., the one
defined in the proof of V.1.10(ii)) of the (E, t)-orientations of ξ and ζ. �

2.14. Proposition. Let t be a C -orientation of E. Let ξ be an n-dimensional
(E, t)-oriented complex vector bundle. Then χE(ξ) = cE,tn (ξ), where χ is the
Euler class.

Proof. Firstly, we prove that χ(η) = c1(η). Because of the equality
E∗(CP∞) = lim←−{E

∗(CPn)}, it suffices to prove that χ(ηn) = c1(ηn) for
every n. We define

g : CPn
jn−→ CP∞ e1−→ BU1

and set Tg := TIg,γ1 . Because of 1.28 and since jn+1ln = jn, there is the
commutative diagram

CPn
jn−−−−→ CP∞ e1−−−−→ BU1

ln

⏐

⏐




⏐

⏐




z

CPn+1 c−−−−→ Tηn
Tg−−−−→ MU1

where c is the collapsing map. Since T ∈ ˜MU2(CP∞) is given by the mor-
phism

Σ−2Σ∞(CP∞) Σ−2Σ∞e1−−−−−−→ Σ−2Σ∞BU1
Σ−2Σ∞z−−−−−→ Σ−2Σ∞MU1

i2−→MU ,

we conclude that T = e∗1z
∗U1. Hence, t = e∗1z

∗u1 ∈ ˜E2(CP∞). Now

j∗nt = j∗ne
∗
1z

∗u1 = l∗nc
∗(Tg)∗u1 = (cln)∗(Tg)∗u1 = (cln)∗uηn .

But cln : CPn → Tηn is the zero section of Tηn, and so χ(ηn) = ε∗(cln)∗uηn
where ε : (CPn)+ → CPn is as in V.1.24. On the other hand, c1(ηn) =
ε∗j∗nt ∈ E2(CP∞). So, χ(ηn) = c1(ηn) for every n, and thus χ(η) = c1(η).

Now, by 2.13 and V.1.26(ii),

cn(η × . . .× η) = t1 · · · tn = χ(η × . . .× η) ∈ E∗((CP∞)n).
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By 2.2(iv), e∗n : E∗(BUn) → E∗((CP∞)n) is monic. Hence, the proposition
holds for γn. Hence, it holds for every ξ. �

2.15. Examples. (a) Since j∗1 : H2(CP∞) → H2(CP 1) is an isomorphism,
there is a unique element t ∈ H2(CP∞) such that j∗1 (t) = s2(1). So, (HZ, t) is
a C -oriented spectrum. Moreover, the classes cH,ti coincide with the classical
Chern classes, and the element uH,t coincides with the Thom class u defined
in §1.

(b) Let (E, t) be a C -oriented spectrum, and let τ : E → F be a ring
morphism of commutative ring spectra. Then (F, τ(t)) is a C -oriented spec-
trum.

(c) Let R be a graded commutative ring. Then HR is a C -orientable
spectrum since there is a ring morphism HZ→ HR.

(d) Consider complex K-theory. We have K∗(pt) = Z[s, s−1], deg s = 2.
(We wrote K∗(pt) = Z[t, t−1] in Ch. VI, but here the letter t is reserved for
C -orientations.) Let 1 ∈ K0(CP∞) represent θ1. Then s(η− 1) ∈ ˜K2(CP∞)
is a C -orientation of K.

(e) The spectrum KO is not C -orientable. Indeed, w2(η) 
= 0, and hence
η is not KO-orientable.

(f) The sphere spectrum S is not C -orientable because otherwise every
commutative ring spectrum would be C -orientable.

(g) There is the universal C -oriented spectrum (MU , T ).

Let Tη(i), i = 1, . . . , n be a copy of Tη, and let di ∈ ˜E2(Tη(i)) be a copy
of uη. Similarly, Di is a copy of Uη. The map en induces a map

Ten := TIen,γn : (Tη)∧n := Tη(1)∧· · ·∧Tη(n) = T (η(1)×· · ·×η(n))→MUn

of Thom spaces. Let d1 · · · dn ∈ ˜E2n((Tη)∧n) be the image of d1 ⊗ · · · ⊗ dn
under the homomorphism ˜E∗(Tη) ⊗ · · · ⊗ ˜E∗(Tη) → ˜E∗((Tη)∧n)). Clearly,
it is an E-orientation of η × · · · × η.

2.16. Proposition. We have (Ten)∗(un) = d1 · · · dn. Furthermore, the map
(Ten)∗ : ˜E∗(MUn) → ˜E∗((Tη)∧n) is monic, and its image just consists of
the invariants of the Σn-action.

Proof. The first assertion follows from (2.12) inductively. To prove the
second one, consider the commutative diagram

˜E∗(MUn)
(Ten)∗−−−−→ ˜E∗((Tη)∧n)

ϕ

�

⏐

⏐

�

⏐

⏐
ϕ

E∗(BUn)
(en)∗−−−−→ E∗((CP∞)n),
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where ϕ and ϕ are the Thom–Dold isomorphisms given by un and d1 · · ·dn.
Since d1 · · ·dn is Σn-invariant, the isomorphism ϕ is Σn-equivariant. Thus,
by 2.2(iv), Im(Ten)∗ just consists of the invariants of the Σn-action. �

The element u ∈ E0(MU) in (2.7) yields a Thom–Dold isomorphism
ϕ : E∗(BU) ∼= E∗(MU). We set

sω = sE,tω := ϕ(cω) ∈ E2|ω|(MU).

So, we have a morphism sω : MU → Σ2|ω|E of spectra, which yields a
morphism sω : MU∗(−)→ E∗(−) of cohomology theories.

Let Un ∈ ˜MU2n(MU2n) be the Thom–Dold classes as in (2.11). We have
(in Notation V.1.19(d)) sω(U) = cωu, and so sω(Un) = cω(γn)un. This
implies that sω(Uξ) = cω(ξ)uξ for every complex vector bundle ξ, where
Uξ ∈MU∗(Tξ) (resp. uξ ∈ E∗(Tξ)) is the (MU , T )-orientation (resp. (E, t)-
orientation) of ξ.

2.17. Lemma. Let ξ be a complex line bundle over X, and let uξ be the
(E, t)-orientation of ξ. Then the following hold:

(i) cω(ξ) =
{

(c1(ξ))n if ω = (n)
0 otherwise.

(ii) Let ϕ be the Thom–Dold isomorphism given by the orientation uξ.
Then

ϕ(c1(ξ)k) = uk+1
ξ

for every k. In other words, uξc1(ξ)k = uk+1
ξ .

(iii) sω(Uξ) =
{

un+1
ξ if ω = (n)

0 otherwise.

In particular,

sω(T ) =
{

tn+1 if ω = (n)
0 otherwise.

Proof. (i) Clearly, this holds for ξ = η. Furthermore, this holds for γ1

since, by 1.23, e1 : CP∞ → BU is a homotopy equivalence. Thus, this holds
for every ξ.

(ii) It suffices to consider ξ = η (cf. (i)). Let z : CP∞ → Tη be the zero
section as in IV.5.4. By 2.14 and V.1.27,

ε∗z∗uk+1
η = (ε∗z∗uη)k+1 = c1(η)k+1 = χ(η)c1(η)k = ε∗z∗(ϕ(c1(η)k)).

But, by 1.29, ε∗z∗ is a monomorphism.
(iii) Since sω(Uξ) = cω(ξ)uξ, the result follows from (i). �
Let μMU (resp. μE) be the multiplication on MU (resp. on E).
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2.18. Proposition. Set

μ := μMU ,MU
MU : MU∗(MU)⊗MU∗(MU)→MU∗(MU ∧MU)

and μ′ := μMU ,MU
E : E∗(MU)⊗E∗(MU)→ E∗(MU ∧MU) and consider the

the diagram

E∗(MU)⊗ E∗(MU)
μ′

−→ E∗(MU ∧MU)
μ∗
MU←−−− E∗(MU).

Then μ∗
MU (sω) =

∑

(ω1,ω2)=ω

μ′(sω1 ⊗ sω2).

Proof. Let μU : BU ×BU → BU be as in IV.(4.26). It is easy to see that
there is a commutative diagram (a stable analog of V.1.2)

E∗(MU)
μ∗
MU−−−−→ E∗(MU ∧MU)

ϕ

�

⏐

⏐

�

⏐

⏐
ϕ′

E∗(BU)
(μU )∗−−−−→ E∗(BU ×BU)

where ϕ is the Thom isomorphism given by u and ϕ′ is the one given by
μ′(u ⊗ u). Now,

μ∗
MU (sω) = μ∗

MU (ϕ(cω)) = ϕ′((μU )∗(cω)) = ϕ′

⎛

⎝

∑

(ω1,ω2)=ω

cω1cω2

⎞

⎠

=
∑

(ω1,ω2)=ω

cω1cω2μ
′(u ⊗ u) =

∑

(ω1,ω2)=ω

μ′(cω1u⊗ cω2u)

=
∑

(ω1,ω2)=ω

μ′(sω1(U)⊗ sω2(U)) =
∑

(ω1,ω2)=ω

μ′(sω1 ⊗ sω2). �

Because of the universality of the class U , we have the following corollary.

2.19. Corollary. (i) For every space X and every x, y ∈MU∗(X) we have

sω(xy) =
∑

(ω1,ω2)=ω

sω1(x)sω2 (y).

(ii) For every space X and every x ∈MU∗(X), y ∈MU∗(X) we have

sω(x ∩ y) =
∑

(ω1,ω2)=ω

sω1(x) ∩ sω2(y),

sω〈x, y〉 =
∑

(ω1,ω2)=ω

〈sω1(x), sω2(y)〉.



400 Chapter VII. Complex (Co)bordism

Here sω2 = (sω2)∗ : MU∗(X)→ E∗(X).
(iii) For every a, b ∈ E∗(MU) and every sω ∈ E∗(MU) we have

〈sω, ab〉 =
∑

(ω1,ω2)=ω

〈sω1 , a〉 〈sω2 , b〉. �

2.20. Lemma. Let E be a C -oriented spectrum, and let h : π∗(MU) →
E∗(MU) be the Hurewicz homomorphism (with respect to ι : S → E). Then
sω(x) = 〈sω, h(x)〉 for every x ∈ π∗(MU).

Proof. Given x : Sk →MU , consider sω(x) : Sk x−→MU sω−→ Σ2|ω|E. Now
the commutativity of the diagram

Sk ∧ S x∧ι−−−−→ MU ∧ E
∥

∥

∥
sω∧1

⏐

⏐




Sk ∧ S sω(x)∧ι−−−−−→ Σ2|ω|E ∧ E μE−−−−→ E

implies that

〈sω , h(x)〉 = μE(sω ∧ 1)(x ∧ ι) = μE(sω(x) ∧ ι) = sω(x). �

By 1.9(i,ii), π∗(MU) = Z[xi| dimxi = 2i], H∗(MU) = Z[yi| dim yi = 2i].

2.21. Corollary. Let h : π∗(MU) → H∗(MU) be the Hurewicz homomor-
phism. Then h(xi) ≡ ±λiyi mod Dec (H∗(MU)) where λi is the number de-
fined in (1.8).

Proof. Here sω denotes sHZ

ω . Let h(xi) = aiyi + d, where d ∈ Dec . Since
{sω} is a free basis of the abelian groupH∗(MU), we conclude that 〈s(i), yi〉 =
±1 or 〈s(i), yi〉 = 0. Furthermore, by 2.19(ii), 〈s(i), d〉 = 0. Now, by 1.9(iv),

λi = s(i)(xi) = 〈s(i), h(xi)〉 = 〈s(i), aiyi〉+ 〈s(i), d〉 = ai〈s(i), yi〉.

Hence, 〈s(i), yi〉 
= 0, and so 〈s(i), yi〉 = ±1, and thus λi = ±ai. �

2.22. Lemma. Let V be a stably almost complex closed manifold of dimension
n. Let (E, t) be a C -oriented spectrum, and let [V ]E be the image of [V ]MU
under the homomorphism uE,t∗ : MU∗(V )→ E∗(V ). Then

sE,tω [V ]MU = cE,tω (ν) ∩ [V ]E ∈ E∗(V ),

where ν is a normal complex bundle of V . Furthermore,

sE,tω [V ] =
〈

cE,tω (ν), [V ]E
〉

∈ E∗(pt).
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Proof. Let N = dim ν, let Uν ∈ ˜MU2N (Tν) be the (MU , T )-orientation
of ν, and let [Tν] = [Tν]MU be as in V.2.8. If ω 
= (0), then sω(1) = 0
for 1 ∈ π0(MU) and so sω[S2N+2n]MU = 0. So, sω[Tν] = 0 for ω 
= (0),
s(0)[Tν] = [Tν]E . Considering the pairing

� : ˜E∗(Tν)⊗ ˜E∗(Tν)
∩−→ ˜E∗(Tν)

ϕE−−→ E∗(V ),

we conclude that

sω[V ]MU =
∑

(ω1,ω2)=ω

sω1(Uν) � sω2(Tν)

= sω(Uν) � [Tν]E = cω(ν) ∩ (uEν � [Tν]E) = cω(ν) ∩ [V ]E .

The last assertion holds since 〈x, [V ]〉 is the image of x∩ [V ]E under the map
V → pt. �

The elements (morphisms) sω can be considered as the universal charac-
teristic numbers. Namely, the homomorphism sω : MU∗(S)→ E∗(S) assigns
an element of the coefficient ring to a stably almost complex manifold. In par-
ticular, for E = HZ this element (some integer) coincides with the classical
characteristic number described in (1.7).

What happens if one changes the C -orientation of E? Given a C -
orientation t of E, let z = t+

∑

i>0

ait
i+1 be another C -orientation of E, and let

uE,z be as in (2.7). Then uE,z(T ) = z = t+
∑

ait
i+1. Let z : CP∞ → Tη be

the zero section as in 1.29, and let h : Tη→ CP∞ be a homotopy equivalence
inverse to z. Then z∗Uη = T (e.g., by 2.14), and so h∗T = Uη. Now,

(2.23) uE,z(Uη) = uE,z(h∗T ) = h∗

(

t+
∑

i>0

ait
i+1

)

= uη +
∑

i>0

aiu
i+1
η .

Considering the element D1 · · ·DN ∈ ˜MU 2((Tη)N ) defined before 2.16, and
using 2.17(iii), we conclude that

sE,tω (D1 · · ·DN ) =
∑

(α1,... ,αk)

sE,ti1
(Dα1) · · · s

E,t
ik

(Dαk)

=
∑

(α1,... ,αk)

di1+1
α1
· · · dik+1

αk

where ω = (i1, . . . , ik). By (2.23), uE,z(Dj) =
∑

i>0

(dj + aid
i+1
j ), and so

uE,z(D1 · · ·DN ) =
N
∏

j=1

(

∑

i>0

(dj + aid
i+1
j )

)

= d1 · · · dN

+
∑

|ω|>0

aωs
E,t
ω (D1 · · ·DN ) =

∑

ω

aωs
E,t
ω (D1 · · ·DN ),
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where aω = ai1 · · · aik , a(0) = 1. Hence, because of 2.16,

(2.24) uE,z(UN ) =
∑

ω

aωs
E,t
ω (UN ).

By 1.9(vii) and III.5.7(iii), we have lim←−
1{MU ∗(MU)(n)} = 0. This implies

easily that lim←−
1{MU ∗(MUn)} = 0. Hence, by III.4.18, the homomorphism

ρ : MU∗(MU)→ lim←−{˜MU
∗(MUn)}

is an isomorphism. Furthermore, ρ maps the element U to the string {Un}.
So, we can pass to lim←− in (2.24) and replace UN by U . Hence,

uE,z(U) =
∑

ω

aωs
E,t
ω (U), aω = ai1 · · · aik , a(0) = 1.

Thus, because of the universality of U ,

(2.25) uE,z(x) =
∑

ω

aωs
E,t
ω (x), aω = ai1 · · ·aik , a(0) = 1

for every spectrum X and every x ∈MU∗(X), cf. Buhštaber [3].

We finish this section with the remark that cE,tω and sE,tω are natural with
respect to morphisms of C -oriented spectra.

§3. Operations on MU . Idempotents.
The Brown–Peterson Spectrum

From here to the end of the chapter, Sω means sMU ,T
ω and sω means sHZ,t

ω .
Similarly, Cω means cMU ,T

ω and cω means cHZ,t
ω .

Let MU∗(MU) be the ring of MU-operations, see II.3.47. It is easy to see
that the MU∗(S)-module structure on MU∗(MU) turns MU∗(MU) into an
MU∗(S)-algebra.

Now we describe this algebra. Firstly, every scalar a ∈ MU∗(S) is an
operation. Furthermore, Sω ∈ MU2|ω|(MU) can also be considered as an
operation. Similarly, every finite homogeneous sum

∑

aωSω can be considered
as an operation, where aωSω is the composition of operations aω and Sω.

3.1. Theorem (Novikov [4], cf. also Landweber [1]). Let S⊂MU∗(MU) be
the subalgebra generated by {Sω}.

(i) S(n)(T ) = T n+1, and Sω(T ) = 0 if l(ω) > 1.
(ii) For every space X and every x, y ∈MU∗(X) we have
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Sω(xy) =
∑

(ω1,ω2)=ω

Sω1(x)Sω2 (y).

Thus, the diagonal Δ: S→ S ⊗ S turns S into a Hopf algebra over Z, and
this Hopf algebra structure is compatible with the ring strucure on MU .

(iii) For every pair of partitions ω′, ω′′, the composition Sω′◦Sω′′ is an
integral linear combination of elements Sω. Thus, {Sω} is an additive basis
of S.

(iv) For every a ∈MU∗(S) ⊂MU∗(MU) we have

Sω◦a =
∑

(ω1,ω2)=ω

Sω1(a)Sω2 .

(v) MU∗(MU) = MU∗(S)⊗gradS. (Here ⊗grad is a completed graded ten-
sor product, defined in III.1.23.)

Proof. (i) This is proved in 2.17(iii).
(ii) See 2.19(i).
(iii) Similarly to 2.19(i), we have

(Sω′◦Sω′′)(U) = Sω′(Cω′′U)

=
∑

(ω1,ω2)=ω′

Sω1(Cω′′)Sω2(U) =
∑

Sω1(Cω′′)Cω2U.

So, it remains to prove that Sω1(Cω′′) is an integral linear combination of
classes Cω. Because of 2.2(iv) and 2.3, it suffices to prove that Sω1(Tω′′) is
an integral linear combination of elements Tω. But this follows from (i) and
(ii).

(iv) We have (Sω◦a)(x) = Sω(ax) =
∑

(ω1,ω2)=ω
Sω1(a)Sω2(x).

(v) By 1.9(vii), the AHSS for MU∗(MU) collapses. Hence, by II.3.45,

MU∗(MU) = Homπ∗(MU)(MU∗(MU), π∗(MU)).

This implies that one can also consider homogeneous infinite sums (series)
ΣaωSω. In particular, MU∗(S)⊗gradS ⊂MU∗(MU).

By 1.2, the AHSS for MU∗(MU) collapses. The morphism u : MU → HZ

maps Sω to sω. Since the elements sω generate the abelian group H∗(MU),
the elements Sω generate the MU∗(S)-module E∞

∗∗ of this spectral sequence.
By III.5.7(iii), MU∗(MU) does not contain phantoms. Thus, every element
of MU∗(MU) can be represented as a series

∑

aωSω. �

3.2. Lemma. Let Λ be a subring of Q, and let E, F be two spectra of finite
Λ-type. Suppose that H∗(E) and π∗(F ) are torsion free abelian groups. Then
the homomorphism

(3.3) F ∗(E)→ Hom∗(π∗(E), π∗(F ))
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is monic. In particular, the homomorphism MU∗
Λ(MUΛ)→ Endπ∗(MUΛ) is

monic.

Proof. Let jX : X → X [0] be the Q -localization. By II.7.12(ii), the AHSS
for F ∗(E) is trivial, and so F ∗(E) is a torsion free abelian group. So, (jF )∗ :
F ∗(E) → F [0]∗(E) is monic. Furthermore, by II.5.8(ii), j∗E : F [0]∗(E[0]) →
F [0]∗(E) is an isomorphism. Thus, the homomorphism

h := j∗E(jF )∗ : F ∗(E)→ F [0]∗(E[0])

is monic. Now, the diagram

F ∗(E) −−−−→ Hom∗(π∗(E), π∗(F ))

h

⏐

⏐




q

⏐

⏐




F [0]∗(E[0]) −−−−→ Hom∗(π∗(E)⊗Q, π∗(F )⊗Q),

where q(f) = f ⊗ 1Q, commutes since h(f) = f ∧ 1M(Q). Furthermore, by
II.7.11(ii,iii), the bottom map is an isomorphism. Since h is monic, the top
homomorphism is monic as well. �

3.4. Lemma. Let E,F be two spectra as in 3.2.
(i) Let f : E → F be a morphism such that the homomorphism f∗ :

πi(E)→ πi(F ) is zero for every i ≤ n. Then for every CW -space (connected
spectrum) X the homomorphism f∗ : Ei(X)→ Fi(X) is zero for every i ≤ n.

(ii) Let f, g : E → F be two morphisms such that f∗ = g∗ : πi(E)→ πi(F )
for i ≤ n. Then f∗ = g∗ : Ei(X) → Fi(X) for every CW -space (connected
spectrum) X and for every i ≤ n.

In particular, this holds if E = F = MUΛ for some subring Λ of Q.

Proof. (i) Let G = F(n) be the Postnikov n-stage of F , and let τ =
τn : F → G be the canonical morphism as in II.4.12. By 3.2, the morphism
E

f−→ F
τ−→ G is trivial. Thus, the composition Ei(X) → Fi(X) → Gi(X) is

trivial for every i. But, by II.4.5(ii), τ∗ : Fi(X)→ Gi(X) is an isomorphism
for every i ≤ n.

(ii) This follows from (i), if we consider a morphism ϕ : E → F with
ϕ∗ = f∗ − g∗. �

Now we want to describe the action of MU∗(MU) on the coefficient ring
π∗(MU). We have c(n)(CPn) = −(n+ 1), see e.g. Stong [3], and therefore

π∗(MU)⊗Q = Q[[CP 1], . . . , [CPn], . . . ].

Since π∗(MU) is torsion free, it suffices to compute Sω[CPn], |ω| ≤ n. By
the way, Sω(a) = sω(a) ∈ Z for every a ∈ π2|ω|(MU).
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3.5. Lemma. Cω(−η) = bωT
|ω| for some bω ∈ Z.

Proof. We prove this by induction on l(ω). If l(ω) = 1, i.e., ω = (k), then
0 = C(k)(η) +C(k)(−η), i.e., C(k)(−η) = −T k. Assume that the lemma holds
for every ω with l(ω) < n. Given any ω with l(ω) = n, by 2.17(i) we have

Cω(−η) +
∑

(ωk,ik)=ω

Cωk(−η)C(ik)(η) = Cω(−η ⊕ η) = 0.

Since Cωk(−η) = bωkT
|ωk| and C(ik)(η) = T ik , the lemma is proved. �

Let {CP d} ∈MU2d(CP∞) be the bordism class of jd : CP d ⊂ CP∞.

3.6. Lemma. T ∩ {CPn} = {CPn−1}.

Proof. Remark 1. Consider the map

a′ : (CPn)+ ε−→ CPn
jn−→ CP∞ h−→MU1

where ε(x) = x for every x ∈ CPn. Then a′ is homotopic to a map a :
(CPn)+ →MU1 such that a is transverse to γ1 and a−1(BU1) is the subspace
CPn−1 of (CPn)+. This follows from 1.28.

Remark 2. Let ν = νN be a complex normal bundle of an embedding
i : CPn → R

2N+2n ⊂ S2N+2n. Note that, by 1.25, ν ⊕ ηn−1 is a normal
bundle of the embedding CPn−1 ⊂ CPn

i−→ S2N+2n. Let c : S2N+2n → Tν
be the Browder–Novikov map. We leave it to the reader to check that c is
transverse to ν ⊕ η and c−1(CPn−1) = CPn−1, where CPn−1 at the left is
ciln−1(CPn−1) and CPn−1 at the right is iln−1(CPn−1).

Let [CPn]MU be the bordism class of (CPn, 1CPn), and let [[CPn−1]] ∈
MU2n−2(CPn) be the bordism class of (CPn−1, ln−1). It suffices to prove
that (j∗nT ) ∩ [CPn]MU = [[CPn−1]]. Indeed, then

{CPn−1} = (jn−1)∗[[CPn−1]] = (jn−1)∗((j∗nT ) ∩ [CPn]MU )
= T ∩ (jn)∗[CPn]MU = T ∩ {CPn}.

According to the Pontrjagin–Thom Theorem IV.7.27, [CPn]MU is given
by the composition

f : S2N+2n c−→ Tν
Δ2N

−−−→ Tν ∧ (CPn)+ Tk∧1−−−→MUN ∧ (CPn)+

where c is the Browder–Novikov map in Remark 2, k : ν → γN is the clas-
sifying morphism for ν, and Δ2N is a map as in IV.5.36. Furthermore, the
diagonal d : CPn → CPn × CPn yields the map

d+ : (CPn)+ → (CPn)+ ∧ (CPn)+,

and the map μU
N,1 : BUN×BU1 → BUN+1 (described before IV.(4.26)) yields

a map
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v := TIμN,1,γN+1 : MUN ∧MU1 →MUN+1.

Now, the element (j∗nT ) ∩ [CPn]MU is given by the map

h′ : S2N+2n f−→MUN ∧ (CPn)+ 1∧d+−−−→MUN ∧ (CPn)+ ∧ (CPn)+

1∧a′∧1−−−−→MUN ∧MU1 ∧ (CPn)+ v∧1−−→MUN+1 ∧ (CPn)+,

where the map a′ is described in Remark 1. So, it suffices to prove that h′ is
homotopic to a map

h : S2N+2n →MUN+1 ∧ (CPn)+ = T (γN+1 × θ0)

transverse to γN+1× θ0 and such that h−1(BUN+1×CPn) = iln−1(CPn−1),
where i : CPn → S2N+2n is the embedding from Remark 2.

Step 1. v ∧ 1 is transverse to γN+1 × θ0,

(v ∧ 1)−1(BUN+1 × CPn) = BUN ×BU1 × CPn,

and (v ∧ 1)∗(γN+1 × θ0) = γN × γ1 × θ0.
Step 2. By Remark 1, the map 1 ∧ a′ ∧ 1 is homotopic to a map

1 ∧ a ∧ 1 : MUN ∧ (CPn)+ ∧ (CPn)+ →MUN ∧MU1 ∧ (CPn)+

such that 1 ∧ a ∧ 1 is transverse to γN × γ1 × θ0,

(1 ∧ a ∧ 1)−1(BUN ×BU1 × CPn) = BUN × CPn−1 × CPn,

and (1 ∧ a ∧ 1)∗(γN × γ1 × θ0) = γN × ηn−1 × θ0.
Step 3. We have d−1(CPn−1 × CPn) = CPn−1, and d is transverse to

the normal bundle of the inclusion CPn−1×CPn ⊂ CPn×CPn. Hence, the
map 1 ∧ d+ is transverse to γN × ηn−1 × θ0,

(1 ∧ d+)−1(BUN × CPn−1 × CPn) = BUN × CPn−1,

and, obviously, (1 ∧ d+)∗(γN × ηn−1 × θ0) = γN × ηn−1.
Step 4. Clearly, f is transverse to γN × ηn−1, and, by Remark 2,

f−1(BUN × CPn−1) = iln−1CP
n−1.

Now, set h := (v ∧ 1)(1 ∧ a ∧ 1)(1 ∧ d+)f .
�

3.7. Lemma. T k ∩ {CPn} = {CPn−k} and 〈T k, {CPn}〉 = [CPn−k].

Proof. The first equality follows from 3.6 inductively. The second equality
holds because 〈T k, {CPn}〉 is the image of the element T k ∩ {CPn} under
the map CPn → pt. �

3.8. Theorem. For every ω and n, we have Sω[CPn] = λω[CPn−|ω|] for
some λω ∈ Z.
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Proof. By 1.24, τ(CPn)⊕θ1 = (n+1)ηn. Let ν be a normal bundle (stable
or not) of CPn. By 2.22,

Sω[CPn] = 〈Cω(ν), [CPn]MU 〉 = 〈Cω(−ηn − · · · − ηn), [CPn]MU 〉.

By 3.5, Cω(−ηn − · · · − ηn) = λωT
|ω| for some λω ∈ Z. Now the theorem

follows from 3.7. �
We need some lemmas about binomial coefficients. Given an integer a and

a prime p, let νp(a) be the exponent of p in the primary decomposition of a,
i.e., a = pνp(a)b with (b, p) = 1. The invariant νp makes sense for a ∈ Q also:
we can write a as m/n with m,n ∈ Z and set νp(a) := νp(m)− νp(n).

3.9. Lemma. If m > n, then νp

(

pm

pn

)

= m− n.

Proof. This follows from the formula

νp(n!) =
∑

k>0

[

n

pk

]

,

where [m] means the “integer part” of m (i.e., [−] is the entire function). �

3.10. Lemma. If r < pn ≤ pm, then νp

(

pm

r

)

> m− n.

Proof. We have
(

pm

r

)

=
pm

r

(

pm − 1
r − 1

)

.

But νp

(

pm

r

)

> m− n, while
(

pm − 1
r − 1

)

∈ Z. �

3.11. Notation. Fix a prime p. Given natural numbers m,n with m > n,
let ω(m,n) be the partition (pm−n − 1, . . . , pm−n − 1) with l(ω) = pn. So,
|ω| = pm − pn.

3.12. Proposition. Let ω = (pk1 − 1, . . . , pkr − 1) with ki ≥ m − n and
|ω| = pm − pn. Then Sω[CP p

m−1] = αpm−n[CP p
n−1], where α 
≡ 0 mod p

for ω = ω(m,n) and α ≡ 0 mod p for all other ω.

Proof. Let τ (resp. ν) denote the tangent (resp. the normal) bundle of
CP p

m−1. Firstly, let ω = ω(m,n). Set

ωr(m,n) = (pm−n − 1, . . . , pm−n − 1), l(ωr(m,n)) = r,
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and set Cr = Cωr(m,n). Consider the characteristic class C := 1 +C1 + · · ·+
Cr + · · · . Then for every pair of complex vector bundles ξ, ξ′ over the same
base we have Ck(ξ ⊕ ξ′) =

∑

i

Ci(ξ)Ck−i(ξ′), i.e., C(ξ ⊕ ξ′) = C(ξ)C(ξ′).

By 2.17(i), C(η) = 1 + T p
m−n−1. Hence, C(τ) = (1 + T p

m−n−1)p
m

, and
therefore

Ci(τ) =
(

pm

i

)

T i(p
m−n−1).

Moreover, Ck(ν) +
k−1
∑

i=1

Ci(ν)Ck−i(τ) + Ck(τ) = 0. Hence, by induction, we

conclude that Ck(ν) = akT
k(pm−n−1) for some ak ∈ Z. In particular, for

k = pn we have

Cp
n

(ν) +
pn−1
∑

i=1

ai

(

pm

i

)

T p
m−pn +

(

pm

pn

)

T p
m−pn = 0.

By 3.9 and 3.10, νp
(

pm

i

)

> m−n for 1 ≤ i ≤ pn− 1 and νp
(

pm

pn

)

= m−n. So,
νp(apn) = m− n. Thus, by 2.22 and 3.7,

Sω(m,n)[CP p
m−1] = 〈Cpn(ν), {CP pm−1}〉 = 〈apnT p

m−pn , {CP pm−1}〉
= apn [CP p

n−1],

where νp(apn) = m− n.
Now, let ω 
= ω(m,n). Since l(ω) < pn, νp

(

pm

s

)

> m− n for s ≤ l(ω). By
3.5,

Cω(ν) = Cω(−η − · · · − η) =
l(ω)
∑

s=1

bs

(

pm

s

)

T p
m−pn

for some bs ∈ Z, i.e., Cω(ν) = xpm−n+1T p
m−pn for some x ∈ Z. Thus,

Sω[CP p
m−1] = xpm−n+1[CP p

n−1], as asserted. �
Let {xn} be a family of free polynomial generators of π∗(MU), cf. 1.9(i).

By 1.9(iv), we can assume that s(pn−1)(xpn−1) = p. Since s(pn−1)[CP p
n−1] =

pn, we conclude that

[CP p
n−1] ≡ pn−1xpn−1 mod Dec (π∗(MU)).

Based on 3.12, this implies the following fact.

3.13. Corollary. Let ω be as in 3.12. Then

Sω(xpm−1) ≡ αxpn−1 mod Dec (π∗(MU)),

where α 
≡ 0 mod p for ω = ω(m,n) and α ≡ 0 mod p for ω 
= ω(m,n). �
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Now, let Z = ϕ(T ) = T +
∑

ϕiT
i+1 be any C -orientation of MU . By 2.5,

it yields a multiplicative operation v = uMU ,Z : MU →MU . By (2.25),

(3.14) v(x) =
∑

|ω|≥0

ϕωSω(x) = x+
∑

|ω|>0

ϕωSω(x)

for every Y and every x ∈MU∗(Y ).

3.15 Theorem. Choose a system {xi} of polynomial generators of π∗(MU) =
Z[xi] = MU∗(S). Fix any n and set x = xn, λ = λn (see (1.8)). There exists
an operation Φ : MU [λ−1]→MU [λ−1] with the following properties:

(i) For every spectrum X and every a ∈MU∗(X)[λ−1], Φ(a) = a+xb for
some b ∈MU∗(X)[λ−1];

(ii) Φ(x) = 0;
(iii) Φ2 = Φ, i.e., Φ is an idempotent;
(iv) Φ(xi) = xi for i < n, and Φ(xi) ≡ xi mod Dec for i > n;
(v) Im(Φ : MU∗(X)[λ−1] → MU∗(X)[λ−1]) is a cohomology theory with

the coefficient ring Z[λ−1][xj |j 
= n, dimxj = 2j], and this theory is a direct
summand of MU∗(X)[λ−1].

Proof. Consider a formal power series ϕ(z) = z + x
∑

k≥n
dkz

k+1 over the

ring π∗(MU)[λ−1] with dn = −λ−1 and dk ∈ π2k−2(MU)[λ−1]. Take the C -
orientation ϕ(T ) of MU [λ−1]. It yields a ring morphism μ : MU →MU [λ−1]
and hence a ring operation Φ = μ[λ−1] : MU [λ−1]→MU [λ−1]. By (3.14),

Φ(a) = a+
∑

|ω|>0

xl(ω)dωSω(a)

for every a ∈MU∗(X)[λ−1], and so (i) is proved.
Observe that dω = 0 for ω = (i1, . . . , ik) with i1 ≤ · · · ≤ ik < n. Further-

more, Sω(x) = 0 for |ω| > n. Thus,

Φ(x) = x+
∑

xl(ω)dωSω(x) = x− λ−1xS(n)(x) = 0.

Now,

Φ(Φ(a)) = Φ(a+
∑

|ω|>0

xl(ω)dωSω(a))

= Φ(a) +
∑

Φ(xl(ω))Φ(dω)Φ(Sω(a)) = Φ(a),

i.e., Φ2 = Φ. Thus, we have proved that Φ satisfies (ii) and (iii). Furthermore,
by (i), Φ(xi) ≡ xi mod Dec . Moreover, if i < n then b in (i) must be 0, and
so Φ(xi) = xi for i < n. Thus, (iv) is proved.
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Now we prove (v). Since Φ : MU∗(X)[λ−1] → MU∗(X)[λ−1] is an idem-
potent, Im Φ is a direct summand of MU∗(X)[λ−1]. So, Im Φ is a cohomology
theory. The claim about its coefficient ring follows from (iii) and (iv). �

3.16. Corollary. If n 
= pk − 1 for any p (i.e., λn = 1), then there exists
a multiplicative idempotent Φ : MU → MU with Φ(xn) = 0, Φ(xi) = xi for
i < n and Φ(xi) ≡ xi mod Dec for i > n. Moreover, for every a ∈MU∗(X)
we have Φ(a) = a+ bxn, b ∈MU∗(X). �

3.17. Corollary. Given a prime p, let n 
= pk − 1. Then there exists a
multiplicative idempotent Φ : MU [p] → MU [p] with Φ(xn) = 0, Φ(xi) = xi
for i < n and Φ(xi) ≡ xi mod Dec for i > n. Moreover, for every a ∈
MU∗(X)[p] we have Φ(a) = a+ bxn, b ∈MU∗(X)[p]. �

3.18. Theorem. Given a prime p, there exists a multiplicative idempotent
Φ : MU [p] → MU [p] such that Φ(xi) ≡ xi mod Dec for i = pk − 1, k =
1, 2, . . . , and Φ(xi) = 0 otherwise.

Proof. Consider the generators xi of π∗(MU) with i 
= pk−1, k = 1, 2, . . . ,
and order them with increasing indices: {xi1 , . . . , xik , . . . }. Let

Φk : MU [p]→MU [p]

be an idempotent as in 3.17 related to xik . Given k, define
Φkk := Φk, Φki := Φki+1ΦiΦ

k
i+1 for 1 ≤ i ≤ k − 1, and set Φ[k] := Φk1 . It is

easy to see that Φ[k](xir ) = 0 for r ≤ k. Furthermore, since Φk(xn) = xn+bxik
with b ∈MU∗(S)[p], we conclude that

Φ[k](xn) = xn +
∑

r≤k
brxir , br ∈MU∗(S)[p] for every n.

Clearly, Φ[k] is a multiplicative operation. We prove that Φ[k]Φ[k] = Φ[k]. By
3.2, it suffices to prove that Φ[k]Φ[k](xn) = Φ[k](xn) for every n. But

Φ[k]Φ[k](xn) = Φ[k](xn) + Φ[k]

⎛

⎝

∑

r≤k
brxir

⎞

⎠ = Φ[k](xn),

since Φ[k](xir ) = 0. So, Φ[k] is a multiplicative idempotent, and it is clear
that

Φ[k](xi) =
{

x̃i if i = ps − 1 for some s,
0 if i 
= ps − 1 and i ≤ ik,

where x̃i ≡ xi mod Dec . Moreover, Φ[k](xi) does not depend on k for k > i.
By 3.4, for every a ∈ MU∗(X)[p] there exists k such that Φ[k](a) =

Φ[k+r](a) for every r ≥ 0. Hence, one can define

Φ := lim
k→∞

(Φ[k]) : MU∗(X)[p]→MU∗(X)[p].
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By III.3.23(ii), this morphism of homology theories is induced by a morphism
Φ : MU [p]→MU [p] of spectra. Clearly,

Φ(xi) =
{

x̃i if i = ps − 1 for some s,
0 otherwise.

This morphism Φ is uniquely determined because of 3.2, and Φ2 = Φ, also by
3.2. Furthermore, Φ is a ring morphism (multiplicative operation). Indeed,
one needs to check commutativity (up to homotopy) of the diagram

MU [p] ∧MU [p] Φ∧Φ−−−−→ MU [p] ∧MU [p]
⏐

⏐




⏐

⏐




MU [p] Φ−−−−→ MU [p] .

By 3.2, it suffices to prove that the diagram of the homotopy groups com-
mutes. But this holds because it holds for Φ[k]. �

3.19. Theorem. For every prime p there exists a spectrum BP = BP (p)
with the following properties:

(i) BP is a commutative ring spectrum, and there are morphisms κ :
BP → MU [p] and ρ : MU [p] → BP with ρκ = 1BP . In particular, BP is a
direct summand of MU [p].

(ii) π∗(BP ) = Z[p][v1, . . . , vn, . . . ], dim vn = 2(pn − 1).
(iii) H∗(BP ) = Z[p][m1, . . . ,mn, . . . ], dimmn = 2(pn − 1).
(iv) H∗(BP ; Z/p) = Ap/(Q0).
(v) Let h : π∗(BP ) → H∗(BP ) be the Hurewicz homomorphism. Then

p|h(x) whenever dimx > 0.

Proof. Let Φ : MU [p]∗(X) → MU [p]∗(X) be an idempotent as in 3.18.
Since Φ2 = Φ, Im Φ is a direct summand of MU [p]∗(X). So, Im Φ is a co-
homology theory, which we denote by BP ∗(X). Let BP be the spectrum of
this cohomology theory. Now we prove that it has properties (i)–(v).

(i) Since the cohomology theory BP ∗(X) is a direct summand of the
cohomology theory MU∗[p](X), BP is a direct summand of MU [p]. Hence,
we have morphisms κ : BP → MU [p] and ρ : MU [p] → BP with ρκ = 1BP
and κρ = Φ.

Let μ : MU [p] ∧MU [p] → MU [p] be the multiplication in MU [p]. We
define

μ′ : BP ∧BP κ∧κ−−−→MU [p] ∧MU [p]
μ−→MU [p]

ρ−→ BP.

We prove that ρ is a multiplicative morphism, i.e., that the diagram

MU [p] ∧MU [p]
ρ∧ρ−−−−→ BP ∧BP

μ

⏐

⏐




⏐

⏐



μ′

MU [p]
ρ−−−−→ BP
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commutes (up to homotopy). Decoding the definition of μ′, we see that it
suffices to prove that the diagram

MU [p] ∧MU [p]
ρ∧ρ−−−−→ BP ∧BP κ∧κ−−−−→ MU [p] ∧MU [p]

μ−−−−→ MU [p]

μ

⏐

⏐




⏐

⏐




ρ

MU [p] MU [p] MU [p]
ρ−−−−→ BP

commutes. Since ρΦ = ρ(κρ) = (ρκ)ρ = ρ, the commutativity of the above
diagram follows from the commutativity of the diagram

MU [p] ∧MU [p]
ρ∧ρ−−−−→ BP ∧BP κ∧κ−−−−→ MU [p] ∧MU [p]

μ−−−−→ MU [p]

μ

⏐

⏐




⏐

⏐




μ

⏐

⏐




ρ

MU [p] Φ−−−−→ MU [p] MU [p]
ρ−−−−→ BP

But this holds because Φ is a ring morphism.
Similarly, one can prove that κ is a multiplicative morphism, i.e., that

μ(κ ∧ κ) = κμ′.
Now we prove that μ′ is associative. Since BP is a direct summand of

MU [p], we conclude that the groups π∗(BP ) and H∗(BP ; Z[p]) are torsion
free. So, by 3.2, it suffices to prove that the diagram

π∗(BP ∧BP ∧BP )
(μ′∧1)∗−−−−−→ π∗(BP ∧BP )

(1∧μ′)∗

⏐

⏐



μ′
∗

⏐

⏐




π∗(BP ∧BP )
μ′
∗−−−−→ π∗(BP )

commutes. Consider the following diagram:

Here the inner rectangle is just the diagram above, the outer rectangle
is the similar diagram for MU [p] instead of BP , and the skew arrows are
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induced by the morphism ρ. The outer rectangle is commutative because
MU [p] is a ring spectrum, and all trapezoids are commutative since ρ is a
multiplicative morphism. Hence, the inner rectangle is commutative because
all the skew arrows are epimorphisms. Thus, we have proved the associativity
of μ′.

The commutativity of μ′ can be proved similarly.
We define ι′ : S ι−→ MU [p]

ρ−→ BP where ι is the unit of MU [p]. Then
(BP, μ′, ι′) is a commutative ring spectrum, and both ρ,κ are ring mor-
phisms.

(ii) Set vi := ρ∗(xpi−1), where ρ∗ : π∗(MU [p]) → π∗(BP ) is the induced
homomorphism. Then π∗(BP ) = Z[p][v1, . . . , vn, . . . ], dim vn = 2(pn − 1).
Indeed, the elements vi generate the ring π∗(BP ) because ρ∗ is epic, and
they are algebraically independent because κ(vi) ≡ xpi−1 mod Dec .

(iii) Let {yi} be a family of free polynomial generators of H∗(MU) as in
1.9(ii). Define a ring homomorphism

a : Z[p][m1, . . . ,mn, . . . ]→ H∗(BP ), dimmi = 2(pi − 1)

by setting a(mi) = ρH(ypi−1), where ρH = H∗(ρ) : H∗(MU [p]) → H∗(BP ).
We prove that a is an isomorphism.

Firstly, we prove that a is epic. Since the family {ρH(yi)} generates
H∗(BP ), it suffices to prove that ρH(yj) ∈ Dec (H∗(BP )) for j 
= ps − 1.
By 2.21, h(xi) ≡ ±λiyi mod Dec (H∗(MU)). If j 
= ps − 1 then

Φ(xj) ≡ 0 mod Dec (π∗(MU [p])).

Note that ρ = ρκρ = ρΦ. Hence, ρ∗(xj) ∈ Dec (π∗(BP )), and hence λjρHyj ∈
Dec (H∗(BP )), and so ρH(yj) ∈ Dec (H∗(BP )) because (λj , p) = 1.

We prove that a is monic. The elements Φ(xpk−1) are algebraically in-
dependent in π∗(MU) ⊗ Q. By II.7.11(i), the Hurewicz homomorphism h :
π∗(MU)⊗Q→ H∗(MU)⊗Q is an isomorphism. Since h(xi) ≡ λiyi mod Dec ,
the elements Φ(ypk−1) are algebraically independent in H∗(MU)⊗Q. Hence,
these elements are algebraically independent in H∗(MU [p]). Since Φ = κρ,
the elements mi are algebraically independent in H∗(BP ). Thus, a is a
monomorphism.

(iv) Choose u ∈ H0(BP ; Z/p) = Z/p, u 
= 0. Since H∗(BP ; Z/p)
is a direct summand of the free Ap/(Q0)-module H∗(MU ; Z/p), we have
an isomorphism Apu ∼= Ap/(Q0). Computing the dimensions of the Z/p-
vector spaces Ap/(Q0) and H∗(BP ; Z/p), we conclude that the inclusion
Ap/(Q0) ∼= Apu ⊂ H∗(BP ; Z/p) is an isomorphism.

(v) Choose a system {xk} as in 1.9(v) and construct BP with re-
spect to this system. Then p|h(vk) for every k = 1, 2, . . . . But every
x ∈ π∗(BP ), dim x > 0, is a polynomial in the vi. �

Below (in 3.22) we prove that the conditions from 3.19 determine BP
uniquely up to equivalence.
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3.20. Definition. The spectrum BP is called the Brown–Peterson spectrum
(with respect to a given p).

3.21. Theorem (Boardman [2]). Let F be a p-local spectrum of finite Z[p]-
type and such that π∗(F ) and H∗(F ) are torsion free groups. Then F is
homotopy equivalent to a wedge of suspensions of BP , F � ∨a∈AΣaBP .

Proof. We can assume that F is connected and that π0(F ) 
= 0. Let
w ∈ H0(F ;π0(F )) be the fundamental class, i.e., the homotopy class of
the morphism τ0 : F → F(0) = H(π0(F )). Consider any projection ε :
π0(F ) = Z[p] ⊕ · · · ⊕ Z[p] → Z[p] and put x = ε−1(1) ∈ π0(F ). Let
u ∈ H0(BP ; Z[p]) = Z[p] be an invertible element of Z[p]. Consider the
AHSS E∗∗

r ⇒ F ∗(BP ), E∗∗
2 = H∗(BP ;π∗(F )). Note that E∗∗

2 is torsion free,
and so, by II.7.12(ii), all its differentials are trivial. Furthermore, by III.5.6,
this spectral sequence converges. Thus, there exists a morphism α : BP → F
such that α∗(w) = u⊗ x ∈ E0,0

∞ = E0,0
2 , where

α∗ : H∗(F ;π∗(F ))→ H∗(BP ;π∗(F )) = H∗(BP ; Z[p])⊗ π∗(F ).

In the commutative diagram

H0(F ;π0(F )) α∗
−−−−→ H0(BP ;π0(F ))

ε∗

⏐

⏐




⏐

⏐




ε∗

H0(F ; Z[p]) α∗
−−−−→ H0(BP ; Z[p])

we have ε∗(u⊗ x) = u, and so u = α∗v for some v ∈ H0(F ; Z[p]) (in fact, for
v = ε∗w).

Similarly, there is the AHSS E∗∗
r ⇒ BP ∗(F ), E∗∗

2 = H∗(F ;π∗(BP )). It
collapses also, and so we have a morphism β : F → BP with β∗x = v for
some x ∈ H0(BP ; Z[p]), where β∗ : H∗(BP ; Z[p])→ H∗(F ; Z[p]).

We have the composition BP α−→ F
β−→ BP , where

(βα)∗(x) = u ∈ H0(BP ; Z[p]).

Let u ∈ H0(BP ; Z/p) = Z/p be the reduction of u. Since (βα)∗ 
= 0, we con-
clude that (βα)∗(u) = λu, λ 
= 0 ∈ Z/p, and so (βα)∗(au) = a(βα)∗(u) = λau
for every a ∈ Ap. Hence, (βα)∗ : H∗(BP ; Z/p) → H∗(BP ; Z/p) is an iso-
morphism since H∗(BP ; Z/p) = Apu. So, by II.5.18(ii), βα is an equivalence.
Thus, BP splits off F , i.e., F � BP ∨E, and E satisfies the conditions for F
in the theorem. Iterating the above arguments, and using that F has finite
Z[p]-type, one can prove that F � ∨a∈AΣaBP , cf. the proof of II.7.16. �

3.22. Corollary. Let F be a spectrum such that π∗(F ) = Z[p][v1, . . . , vn, . . . ],
dim vn = 2(pn − 2), and H∗(F ) is torsion free. Then F � BP . �
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By 3.21, MU [p] splits in a wedge of suspensions of BP . This claim can
be refined as follows. Set

A = Z[p][xi| dimxi = 2i],

where i runs over all natural numbers different from pk − 1, k = 1, 2, . . . .

3.23. Proposition. There is an isomorphism of homology theories on S

f : A⊗BP∗(X)→MU∗(X)⊗Z[p], f(a⊗ x) = aκ(x), a ∈ A, x ∈ BP∗(X).

Proof. Clearly, f is natural with respect to X . Furthermore, A⊗BP∗(X)
is a homology theory because A is a free abelian group. Finally, f is an
isomorphism for X = S and therefore, by II.3.19(iii), for every X . �

The homomorphism π∗(MU) → π∗(MU [p])
ρ∗−→ π∗(BP ) turns π∗(BP )

into a π∗(MU)-module.

3.24. Corollary. There is an isomorphism MU∗(X) ⊗π∗(MU) π∗(BP ) ∼=
BP∗(X) of homology theories.

Proof. We have

MU∗(X)⊗π∗(MU) π∗(BP ) ∼= (A⊗BP∗(X))⊗π∗(MU) π∗(BP )
∼= (A⊗BP∗(X))⊗A⊗π∗(BP ) π∗(BP )
∼= BP∗(X)⊗π∗(BP ) π∗(BP ) ∼= BP∗(X). �

The unit ι : S → BP yields the morphisms

ιL = 1∧ι : BP = BP∧S → BP∧BP, ιR = ι∧1 : BP = S∧BP → BP∧BP .

Let u ∈ H0(BP ; Z[p]) be such that u∗(ι) = 1 ∈ H0(S; Z[p]) = Z[p].

3.25. Proposition. Let hH : π∗(BP ) → H∗(BP ) and hBP : π∗(BP ) →
BP∗(BP ) be the Hurewicz homomorphisms.

(i) There is an isomorphism of π∗(BP )-modules

BP∗(BP ) ∼= π∗(BP )[y1, . . . , yn, . . . ], dim yn = 2(pn − 1).

Furthermore, {yi} can be chosen so that the elements u∗(yi) generate the ring
H∗(BP ; Z[p]).

(ii) The homomorphism (ιR)∗ : π∗(BP ) → BP∗(BP ) coincides with the
Hurewicz homomorphism hBP .

(iii) The homomorphism u∗(ιL)∗ : πn(BP ) → BPn(BP ) → Hn(BP ) is
zero for n > 0 and an isomorphism for n = 0.
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(iv) The homomorphism u∗(ιR)∗ : π∗(BP ) → BP∗(BP ) → H∗(BP ) co-
incides with the Hurewicz homomorphism hH .

(v) hBP (vn) ≡ vn mod (p, v1, . . . , vn−1) in BP∗(BP ).

Proof. (i) The AHSS for BP∗(BP ) is trivial for dimensional reasons, and
the result follows.

(ii) This is obvious.
(iii) The morphism BP ∧ S ιL−→ BP ∧BP u∧1−−→ HZ ∧BP coincides with

the morphism BP ∧ S u∧1−−→ HZ ∧ S 1∧ι−−→ BP ∧HZ. But πi(HZ ∧ S) = 0 for
i > 0.

(iv) This is obvious.
(v) By (i), we have hBP (vn) = ayn + bvn + c, where a, b ∈ Z[p], c ∈

(v1, . . . , vn−1) ⊂ BP∗(BP ). By (ii)–(iv), hH(vn) = au∗(yn), and so, by
3.19(v), p|a. So, hBP (vn) = bvn + c′ with c′ ∈ (p, v1, . . . , vn−1) ⊂ BP∗(BP ).
Let μ : BP ∧ BP → BP be the multiplication on BP , and let μ∗ :
BP∗(BP ) → π∗(BP ) be the induced homomorphism. Since μιR = 1, we
have

vn = μ∗hBP (vn) = μ∗(bvn + c′) = bvn + μ∗c
′,

where μ∗(c′) ∈ (p, v1, . . . , vn−1) ⊂ π∗(BP ). Thus, b = 1. �
For future references, we consider the AHSS Er∗∗ for BP∗(HZ/p), i.e.,

(3.26) Er∗∗ ⇒ BP∗(HZ/p), E2
∗∗ = H∗(HZ/p;π∗(BP )).

Firstly, let p > 2. By II.6.25,

H∗(HZ/p; Z/p) = A ∗
p = Z/p [ξ1, . . . , ξn, . . . ]⊗ Λ(τ0, . . . , τm, . . . ),

dim ξi = 2pi − 2, dim τi = 2pi − 1,

and so

H∗(HZ/p; Z[p]) = H∗(HZ[p]; Z/p)
= Z/p [ξ1, . . . , ξn, . . . ]⊗ Λ(τ1, . . . , τm, . . . ).

Thus,

E2
∗∗ = Z/p [ξ1, . . . , ξn, . . . ]⊗ Λ(τ1, . . . , τm, . . . )⊗ Z[p][v1, . . . , vl, . . . ],

bideg ξi = (2pi − 2, 0), bideg τi = (2pi − 1, 0), bideg vi = (0, 2pi − 2).

3.27. Theorem (cf. J. Cohen [1]). There are elements ̂ξi and τ̂i with the
following properties:

(i) τ̂i ≡ τi mod Dec (E2
∗,0), ̂ξi ≡ ξi mod Dec (E2

∗,0);
(ii) Every element ̂ξa := ̂ξa1

1 · · · ̂ξann , ai ≥ 0, is a permanent cycle in the
spectral sequence (3.26);

(iii) d2pi−1τ̂i = λivi, 0 
= λi ∈ Z/p.
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Proof. Throughout the proof ≡ means ≡ mod Dec (E2
∗,0).

It is easy to see that we can assume that βτi ≡ ξi where

β : H∗(HZ; Z/p)→ H∗−1(HZ; Z/p)

is the Bockstein homomorphism.
We have an isomorphism of Z/p -vector spaces

E∞
∗∗ = BP∗(HZ/p) = H∗(BP ; Z/p) = Z/p [m1, . . . ,mn, . . . ], |mn| = 2pn−2.

The elements τi are odd-dimensional, and so they cannot survive. Hence,
d2p−1τ1 = λ1v1, 0 
= λ1 ∈ Z/p.

Let d2p−1τ2 = λv1ξ
a
1 , λ ∈ Z/p. Then d2p−1(τ2 − λτ1ξa1 ) = 0,

and we set τ2 := τ2 − λτ1ξa1 , ξ2 = βτ2. Then d2p−1τ2 = 0 = d2p−1ξ2, and
τ2 ≡ τ2, ξ2 ≡ ξ2. Suppose inductively that we find τ i ≡ τi and ξi ≡ ξi with
d2p−1τ i = 0 = d2p−1ξi and βτ i ≡ ξi for i = 1, . . . , k. Let d2p−1τk+1 = v1x
for some x ∈ Z/p [ξ1, . . . , ξk] ⊗ Λ(τ1, . . . , τk). Then we set τk+1 := τ1x
and ξk+1 := βτ k+1. Clearly, d2p−1τk+1 = 0 = d2p−1ξk+1. The induction is
confirmed.

Furthermore, d2p−1(τ1x) = λ1v1x for every x ∈ E2
∗∗. In particular, E2p

r,q =
0 whenever r < 2p2 − 2 and q > 0.

Now, τ2 does not survive, and so d2p2−1τ2 = λv2, 0 
= λ ∈ Z/p. Asserting
as above, we find τ i, ξi such that τ i ≡ τi, ξi ≡ ξi and d2p2−1τ i = 0 = d2p2−1ξi
for i ≥ 2. Moreover E2p2

r,q = 0 if r < 2p3 − 2 and q > 0.
Now, we can proceed by induction and find the required τ̂i and ̂ξi. �
By the way, we get another proof of 3.19(v) here. Indeed, E∞

∗,q = 0 for
q > 0, and so the Hurewicz homomorphism h : πk(BP ) → Hk(BP ) is zero
for k > 0.

The case p = 2 can be considered similarly. Here

E2
∗∗ =Z/2 [ζ2

1 , ζ2, . . . , ζn, . . . ]⊗ Z[2][v1, . . . , vn, . . . ],
dim ζn = 2n − 1, dim vn = 2n+1 − 2.

Moreover, ζ2
i plays the role of ξi, and ζi plays the role of τi−1. Similarly to

3.27, we have the following theorem.

3.28. Theorem. There are elements ̂ζi ∈ E2
0,∗ such that d2i+1−1

̂ζi+1 = vi

and ̂ζi ≡ ζi mod Dec . Furthermore, all elements ̂ζ2
i and their products are

permanent cycles. �

3.29. Theorem. (i) If X is a finite spectrum, then BP∗(X) is a coherent
and hence finitely generated π∗(BP )-module.

(ii) Let X be a spectrum bounded below. Then H∗(X ; Z[p]) is a free
Z[p]-module iff BP∗(X) is a free π∗(BP )-module. Furthermore, given u ∈
H0(BP ; Z[p]) as in 3.25, the homomorphism u∗ : BP∗(X)→ H∗(X ; Z[p]) is
epic if H∗(X ; Z[p]) is a free Z[p]-module.



418 Chapter VII. Complex (Co)bordism

(iii) Given a spectrum X bounded below, there exists a morphism f :W→X
such that W is a spectrum bounded below, BP∗(W ) is a free π∗(BP )-module,
and f∗ : BP∗(W ) → BP∗(X) is epic. Furthermore, if every Z[p]-module
Hi(X ; Z[p]) is finitely generated then there exists W as above such that every
Z[p]-module Hi(W ; Z[p]) is finitely generated.

(iv) Let E be a BP -module spectrum. Let X be a finite spectrum such
that H∗(X ; Z[p]) is a free Z[p]-module. Then for every finite spectrum Y the
pairing BP ∧E → E induces an isomorphism

E∗(X ∧ Y ) ∼= BP ∗(X)̂⊗BP∗(S)E
∗(Y ).

(v) Let E be a BP -module spectrum such that every group πi(E) is finite.
Let X be a spectrum of finite Z[p]-type such that H∗(X ; Z[p]) is a free Z[p]-
module. Then for every spectrum Y the pairing BP ∧ E → E induces an
isomorphism

E∗(X ∧ Y ) ∼= BP ∗(X)̂⊗BP∗(S)E
∗(Y ).

Proof. Since BP is a direct summand of MU [p], this can be deduced from
1.14, 1.15, 1.17, 1.19 and 1.20. �

3.30. Remarks. (a) The algebra MU∗(MU) was described by Novikov [4]
and Landweber [1].

(b) Theorem 1.9(vi) stimulated a search of spectra having Z/p-cohomology
Ap/(Q0). Brown–Peterson [1] constructed such a spectrum using Postnikov
towers. Novikov [4] proved Theorem 3.15 and its Corollaries 3.16–3.19. This
gave a new proof of the Brown–Peterson result. Quillen [1] gave another proof
of 3.18. In the proof of 3.15 we followed Buhštaber [3].

(c) There is an integral version of 3.23. Let

I = {n ∈ N
∣

∣ n = pk for some prime p and integer k}.

Basing on 3.15 and following the proof of 3.19, one can construct a spectrum
V with the following properties:

π∗(V ) = Z[xi, i ∈ I, dimxi = 2i], H∗(V ) = Z[yi, i ∈ I, dim yi = 2i].

Furthermore, V is a direct summand of MU , and

MU∗(X) = V∗(X)⊗ Z[xi|i /∈ I].

It is remarkable that V does not split multiplicatively but splits additively,
Boardman [2].
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§4. Invariant Prime Ideals. The Filtration Theorem

In this section we fix a prime p and denote the ring

π∗(BP ) = Z[p][v1, . . . , vn, . . . ], dim vi = 2(pi − 1),

by Ω. We set v0 := p and consider the ideals In := (v0, v1, . . . , vn−1) of Ω.
In particular, I0 = (0), I1 = (p). Finally, we set I∞ := (v0, v1, . . . , vn, . . . ).
Clearly, In does not depend on the choice of the system {vn}.

Every operation θ ∈MUd(MU) yields an operation BP → ΣdBP of the
form

(4.1) BP
κ−→MU [p]

θ[p]−−→ ΣdMU [p]
Σdρ−−→ ΣdBP.

On the other hand, every operation ϕ ∈ BP d(BP ) yields an operation

MU [p]
ρ−→ BP

ϕ−→ ΣdBP Σdκ−−−→ ΣdMU [p].

Furthermore, by II.5.8 and II.5.3, (MU [p])∗(MU [p]) = MU∗(MU)⊗Z[p].
Finally, similarly to 3.1(v) one can prove that

(4.2) BP ∗(BP ) = BP ∗(S)⊗grad H∗(BP ; Z[p])

as abelian groups.
Now, ρ(κϕρ)κ = ϕ, i.e., every operation on BP is induced (as in (4.1))

by some (non-unique) operation on MU [p]. Below we write just θ instead of
ρθκ. In particular, every operation on BP can be expanded (non-uniquely)
as a series

∑

aωSω, aω ∈ π∗(MU [p]).

This information about BP ∗(BP ) is sufficient for us. Additional informa-
tion about BP ∗(BP ) can be found in Adams [8] or Ravenel [1].

4.3. Definition. We say that a graded ideal I ⊂ Ω, I 
= Ω is BP ∗(BP )-
invariant, or simply invariant, if θ(I) ⊂ I for every operation θ ∈ BP ∗(BP ).

4.4. Proposition. The ideal In, 0 ≤ n ≤ ∞, is invariant.

Proof. Since every operation on BP has the form
∑

aωSω, it suffices
to prove that Sω(vk) ∈ In for every k < n. The only non-trivial case is
|ω| = pk − 1, i.e., Sω(vk) ∈ π0(BP ). Consider the commutative diagram

π2|ω|(BP ) Sω−−−−→ π0(BP )

h

⏐

⏐




∼=
⏐

⏐



h

H2|ω|(BP ) Sω−−−−→ H0(BP ).
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By 3.19(v), p|h(vk). Hence, p|hSω(vk), and so p|Sω(vk), i.e., Sω(vk) ∈ In.
�

Fix integers m,n with m > n ≥ 0. Let ω(m,n) be as in 3.11.

4.5. Lemma. Let ω = (pk1−1, . . . , pkr−1) with ki ≥ m−n and |ω| = pm−pn.
Then

Sω(vm) ≡
{

αvn mod In, α 
≡ 0 mod p if ω = ω(m,n),
0 mod In otherwise.

Proof. This follows from 3.13 because vm = ρ(xpm−1). �

4.6. Lemma. If |ω| > pm − pn, then Sω(vm) ≡ 0 mod In.

Proof. This holds because Sω(vm) ∈ Im and dimSω(vm) < dim vn. �
Consider a sequence E = (e1, . . . , ek, . . . ) of non-negative integers, where

all but finitely many ei’s are 0. We order the set of these sequences lexico-
graphically, by setting E < F if there is some k ≥ 1 with ei = fi for i < k
and ek < fk. Set vE = ve1n+1 · · · vekn+k · · · . Let kω be the partition (ω, . . . , ω)
(k times); set

ω(E) := (e1ω(n+ 1, n), . . . , ekω(n+ k, n), . . . ).

4.7. Lemma. Let E = (e1, . . . , ek, . . . ) and F = (f1, . . . , fk, . . . ) be such
that dim vE = dim vF and E ≤ F . Set t = e1 + · · ·+ ek + · · · . Then

Sω(E)(vF ) ≡
{

αvtn mod In, α 
≡ 0 mod p if E = F ,

0 mod In if E < F.

Proof. We have
(4.8)
Sω(E)(vF ) =

∑

Sω1(vn+1) · · ·Sωf1 (vn+1)Sωf1+1(vn+2) · · ·Sω?(vn+k) · · · .

where the summation index runs all the sequences

{ω1, . . . , ωf1 , ωf1+1, . . . , ω?, . . . }

with (ω1, . . . , ωf1 , ωf1+1, . . . , ω?, . . . ) = ω.
Firstly, let E = F . Consider any summand. If the operation on every vn+k

is Sω(n+k,k) in this summand, then, by 4.5, this summand is αvtn mod In, α 
≡
0 mod p. We prove that every other summand belongs to In. Indeed, consider
any summand which is not in In. Then, by 4.6, for every k every factor
Sω(vn+k) must be such that |ω| ≤ pn+k − pn. Moreover, |ω| = pn+k − pn
(because if |ω| < pn+k − pn somewhere, then |ω′| > pn+l − pn for some
Sω′(vn+l)). Hence, by 4.5, ω1 = ω(n + 1, n) and in this way we exhaust all
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e1 partitions ω(n+1, n). Now, considering the factor Sω(vn+2), we have ω =
(pk1−1, . . . , pkr−1) with ks ≥ 2, s = 1, . . . , r. Hence, by 4.5, ω = ω(n+2, n),
etc. Thus, Sω(E)(vE) ≡ αvtn mod In, α 
≡ 0 mod p.

Now, let E < F . Firstly, suppose that e1 < f1. Consider in (4.8) any
summand which is not in In. Reasoning as above, we conclude that ω =
ω(n+1, n) for every factor Sω(vn+1). But this is impossible because e1 < f1.
Thus, Sω(E)(vF ) ∈ In. If e1 = f1, but e2 < f2, then all factors vn+1 of vF

find their partners (i.e., partitions ω(n+ 1, n)), but it is impossible to serve
all factors vn+2 of vF , etc. �

4.9. Lemma. For every y /∈ In there exists an operation θ ∈ BP ∗(BP ) such
that θ(y) ≡ αvtn mod In with α 
≡ 0 mod p.

Proof. Let y =
∑

F∈{F}
aF v

F , aF ∈ Z[p], aF 
≡ 0 mod p for every F ∈

{F}. Choose the minimal sequence E in {F}. Then, by 4.7, Sω(E)(y) =
∑

aESω(E)(vE) ≡ αvtn mod In. �

4.10. Corollary. Let J be an invariant ideal such that In ⊂ J . If In 
= J ,
then vtn ∈ J for some t. �

4.11. Theorem. If I is an invariant prime ideal, then I = In, 0 ≤ n ≤ ∞.

Proof. If I 
= I∞ then there is n ≥ 0 such that In ⊂ I and In+1 
⊂ I.
Suppose I 
= In. Then, by 4.10, vtn ∈ I for some t, and t > 0 because I 
= Ω.
Hence, vn ∈ I because I is prime. Thus, In+1 ⊂ I. This is a contradiction.

�
Let M be the following category. Its objects are coherent graded Ω-

modules M equipped with a BP ∗(BP )-action BP ∗(BP ) ⊗ M → M such
that:

1. dim θ(m) = dimm− dim θ for every θ ∈ BP ∗(BP ),m ∈M .
2. Sω(λm) =

∑

(ω1,ω2)=ω

Sω1(λ)Sω2 (m), λ ∈ Ω,m ∈M .

Morphisms of M are BP ∗(BP )-equivariant Ω-module homomorphisms.
Note that BP∗(X) is an object of M for every finite spectrum X . In-

deed, BP∗(X) is a coherent Ω-module by 3.29(i), and BP ∗(BP ) operates on
BP∗(X) for general reasons. Now, given λ ∈ Ω and x ∈ BP∗(X), we have

Sω(λx) = ρSωκ(λx) = ρSω((κλ)(κx)) = ρ
(

∑

Sω1(κλ)Sω2 (κx)
)

=
∑

ρ(Sω1(κλ))ρ(Sω2 (κx)) =
∑

Sω1(λ)Sω2 (x),

where the third equality follows from 2.18 or 2.19(i). We also used that ρ and
κ are the ring morphisms.
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4.12. Definition and Notation. (a) Let R be a graded ring (e.g., R = Ω).
If two graded R-modules M,N are isomorphic up to dimension shift, we say
that M and N are stably isomorphic and write M ≈ N . Clearly, we are also
able to say that two objects M,N of M are stably isomorphic in M .

(b) Given an R-module M and an ideal J ⊂ R, we set

M(0 : J) := {x ∈M
∣

∣ Jx = 0}.

Furthermore, given x ∈M , the annihilator of x is the subset (ideal) Ann x :=
{a ∈ R|ax = 0}.

(c) Given M ∈ M and an Ω-submodule N of M , we say that N is
invariant if the inclusion N ⊂ M is an inclusion in M . In other words,
sω(x) ∈ N for every x ∈ N and all ω. So, N appears to be an object of M .

(d) Similarly to II.6.12(b), we say that an element x ∈M ∈M is simple
if sω(x) = 0 for every ω 
= (0). Clearly, every non-zero element of least
dimension is simple.

4.13. Lemma. Let M ∈M .
(i) Let N ⊂M be an inclusion in M , and let N ⊂ P ⊂M be inclusions of

Ω-modules. If P/N is an invariant submodule of M/N then P is an invariant
submodule of M .

(ii) Let J be an invariant ideal of Ω. Then M(0 : J) is an invariant
submodule of M .

Proof. (i) This is obvious.
(ii) We must prove that sω(x) ∈ M(0 : J) for every x ∈ M(0 : J) and

all ω. We do this by induction on l(ω). So, let ω = (k) where k > 0. Given
a ∈ J , we have

0 = s(k)(ax) = s(k)(a)x+ as(k)(x) = as(k)(x),

i.e., s(k)(x) ∈ M(0 : J). Suppose that sω(x) ∈ M(0 : J) for every ω with
l(ω) < n. Given a ∈ J and any ω with l(ω) = n, we have

0 = sω(ax) = sω(a)x+ asω(x) +
∑

(ω1,ω2)=ω,ωi �=ω
sω1(a)sω2(x).

In particular, l(ω2) < n. So, sω2(x) ∈M(0 : J), and so
∑

(ω1,ω2)=ω,ωi �=ω
sω1(a)sω2(x) = 0,

and hence asω(x) = 0, and thus sω(x) ∈M(0 : J). �

4.14. Lemma. Let x be a simple element of M ∈M . Then:
(i) Annx is an invariant ideal;
(ii) If Ir ⊂ Annx then vkrx is simple for every k;
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(iii) Ωx is an invariant submodule of M , and Ωx is stably isomorphic in
M to Ω/Annx.

Proof. (i) If a ∈ Annx then 0 = sω(ax) = sω(a)x.
(ii) We have sω(vkr ) ∈ Ann x if ω 
= (0). So, sω(vkrx) = vkr sω(x) = 0 if

ω 
= (0).
(iii) The invariance of Ωx follows since sω(ax) = sω(a)x for every a ∈ Ω.

Furthermore, the homomorphism f : Ω/Annx→ Ωx, f(a) = ax, establishes
the desired stable isomorphism. �

Let Ω〈n〉 be the subring Z[p] [v1, . . . , vn] of Ω. So, Ω is an Ω〈n〉-module.
Conversely, there is a ring homomorphism h : Ω→ Ω〈n〉, h(vi) = vi for i ≤ n
and h(vi) = 0 for i > n, which turns Ω〈n〉 into an Ω-module.

Given an Ω-module M , we define an Ω〈n〉-module M〈n〉 := M ⊗Ω Ω〈n〉.
On the other hand, given an Ω〈n〉-module N , we considerN⊗Ω〈n〉Ω and equip
it with an Ω-module structure by setting a(n⊗ b) = n⊗ ab, a, b ∈ Ω, n ∈ N .

Note that we have (V ⊗Ω〈n〉 Ω)〈n〉 = V for every Ω〈n〉-module V .

Let {fα} be a family of free generators of a free Ω-module F . We define
a homomorphism

ϕn : F 〈n〉 ⊗Ω〈n〉 Ω→ F, ϕn(fα ⊗ ω) = ωfα.

Clearly, ϕn is a homomorphism of Ω-modules.

4.15. Lemma. Let M ∈M .
(i) There are a finitely generated free Ω-module F , an Ω-epimorphism f :

F →M , a natural number n and an Ω-isomorphism ψn : M〈n〉⊗Ω〈n〉Ω→M
such that the following diagram commutes:

F 〈n〉 ⊗Ω〈n〉 Ω
ϕn−−−−→ F

f⊗1

⏐

⏐




⏐

⏐



f

M〈n〉 ⊗Ω〈n〉 Ω
ψn−−−−→ M.

(ii) Let n be as in (i). Then the homomorphism vr : M → M, x �→ vrx,
is monic for every r > n.

(iii) There is m such that Im = Annx for some x ∈M but Im+1 
⊂ Ann y
for every y ∈M, y 
= 0.

Proof. (i) Since M is coherent and so finitely presented, there is an exact
sequence of Ω-modules

R
a−→ F

f−→M → 0

where R and F are free finitely generated Ω-modules. Let {rβ} be a family
of free generators of R. We define in : F 〈n〉 → F, in(x) = ϕn(x ⊗ 1). Since
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the set {rβ} is finite, we can choose n such that a(rβ) ∈ in(F 〈n〉) for every
β. Clearly, there exists a unique homomorphism ψn : M〈n〉 ⊗Ω〈n〉 Ω → M
such that the above diagram commutes, and this ψn is an isomorphism.

(ii) Consider the exact sequence

0→ Ω vr−→ Ω→ Ω/(vr)→ 0.

If r > n then TorΩ〈n〉
1 (M〈n〉,Ω/(vr)) = 0 because Ω/(vr) is a free Ω〈n〉-

module. Hence, we get an exact sequence

0→M〈n〉 ⊗Ω〈n〉 Ω vr−→M〈n〉 ⊗Ω〈n〉 Ω→M〈n〉 ⊗Ω〈n〉 Ω/(vr)→ 0 ,

i.e, vr : M →M is a monomorphism.
(iii) By (ii), there is a maximal m such that Im = Annx for some x ∈M .

Suppose that there is y such that Im+1 ⊂ Ann y. Now we shall find some
r > 0 such that Im+r is an annihilator of an element of M , and this will be
a contradiction, and the claim will be proved.

Note that M(0 : Im+1) 
= 0 since y ∈ M(0 : Im+1). Let w be an element
of least dimension in M(0 : Im+1). Then w is simple, and so J1 := Annw
is invariant. Clearly, J1 ⊃ Im+1. If J1 = Im+1 then we have the desired
contradiction. If not, then, by 4.10, there is t such that vtm+1 ∈ J1, and so
J2 := Ann(vt−1

m+1w) ⊃ Im+2. If J2 = Im+2 then we are done. If not, then,
by 4.14(ii) and 4.14(i), J2 is invariant, and so vsm+2 ∈ J2, and so J3 :=
Ann(vs−1

m+2v
t−1
m+1w) ⊃ Im+3. Iterating this process, we get a sequence J1 ⊂

J2 ⊂ J3 ⊂ · · · , where Jr ⊃ Im+r and Jr is an annihilator of some element.
By (ii), this process must stop, and so Jk = Im+k for some k. This is the
desired contradiction. �

4.16. Lemma. Let M ∈M . Fix an isomorphism ψn : M〈n〉 ⊗Ω〈n〉 Ω→ M
as in 4.15.

(i) Let N be an Ω-submodule of M such that the obvious homomorphism

j : N〈n〉 ⊗Ω〈n〉 Ω→M〈n〉 ⊗Ω〈n〉 Ω
ψn−−→M

is an monomorphism with Im j = N . Then there is a unique morphism
(M/N)〈n〉 ⊗Ω〈n〉 Ω→M/N such that the diagram

N〈n〉 ⊗Ω〈n〉 Ω −−−−→ M〈n〉 ⊗Ω〈n〉 Ω −−−−→ ((M/N)〈n〉) ⊗Ω〈n〉 Ω
⏐

⏐




∼=
⏐

⏐




∼=
⏐

⏐




N −−−−→ M −−−−→ M/N

commutes, and this morphism is an isomorphism.
(ii) For every x ∈M〈n〉, AnnΩ〈n〉 x = Ik〈n〉 iff AnnΩ(x⊗Ω〈n〉 1) = Ik.
(iii) M(0 : Ik) 
= 0 in M iff M〈n〉(0 : Ik〈n〉) 
= 0 in M〈n〉.
(iv) If x is an element of least dimension in M〈n〉(0 : Ik〈n〉) then

ψn(x⊗Ω〈n〉 1) is an element of least dimension in M(0 : Ik).
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Proof. (i) This follows since the rows of the diagram are exact.
(ii) This is obvious.
(iii) We treat ψn : M〈n〉 ⊗Ω〈n〉 Ω → M as the identity map 1M . Clearly,

if x ∈ M〈n〉(0 : Ik〈n〉) then x⊗Ω〈n〉 1 ∈ M(0 : Ik). Conversely, suppose that
M(0 : Ik) 
= 0 and take y ∈ M(0 : Ik), y 
= 0. Then y =

∑

α yα ⊗Ω〈n〉 ωα,
where yα ∈ M〈n〉 and each ωα is a polynomial in vn+1, . . . , vn+k, . . . . We
have vry = 0 for every r ≤ k, and so

∑

α vryα ⊗Ω〈n〉 ωα = 0 for every r ≤ k.
Now, using the isomorphism

M〈n〉 ⊗Ω〈n〉 Ω ∼= M〈n〉 ⊗Z Z[p] [vn+1, . . . , vn+k, . . . ],

we conclude that vryα = 0 for every α, i.e., yα ∈M〈n〉(0 : Ik〈n〉).
(iv) Suppose that there is y ∈M(0 : Ik) such that dim y < dim(x⊗Ω〈n〉1).

We have y =
∑

α yα ⊗Ω〈n〉 ωα = 0 where yα ∈ M〈n〉 and each ωα is a
polynomial in vn+1, . . . , vn+k, . . . . Reasoning as in (iii), we conclude that
yα ∈M〈n〉(0 : Ik〈n〉) for every α, i.e., x is not an element of least dimension
in M〈n〉(0 : Ik〈n〉). This is a contradiction. �

4.17. Lemma. Let M ∈M , and let m be as in 4.15(iii). Then every element
x of least dimension of M(0 : Im) is simple, and Annx = Im.

Proof. By 4.4 and 4.13(ii), M(0 : Im) is an invariant submodule, and so
x is simple, and so, by 4.14(i), Ann x is an invariant ideal. We prove that
Annx = Im. Indeed, if not, then, by 4.10, vtm ∈ Ann x for some t, and so
Ann(vt−1

m x) ⊃ Im+1. But this contradicts our choice of m. �

4.18. Theorem. Every object M of M admits a filtration in M

0 = M0 ⊂M1 ⊂ · · · ⊂Mk = M,

such that Mi/Mi−1 is stably isomorphic in M to Ω/Iri for every i = 1, . . . , k.
In particular, this holds for M = BP∗(X), where X is a finite spectrum.

Proof. Choose n as in 4.15(i) and take m as in 4.15(iii). We treat ψn :
M〈n〉 ⊗Ω〈n〉 Ω→M as the identity map 1M . Let x ∈M〈n〉 be an element of
least dimension in M〈n〉(0 : Im〈n〉). Then, by 4.16(iv), x̂ := x ⊗Ω〈n〉 1 is an
element of least dimension in M(0 : Im), and so, by 4.17, Ann x̂ = Im, and
so, by 4.16(ii), Ann x = Im〈n〉. Set M1 := Ω〈n〉x ∈M〈n〉 and note that

M1 = Ω〈n〉x ≈ Ω〈n〉/Im〈n〉.

We set M1 := M1⊗Ω〈n〉Ω. Since Ω is a flat Ω〈n〉-module, the inclusion M1 ⊂
M〈n〉 induces an inclusion M1 ⊂ M〈n〉 ⊗Ω〈n〉 Ω = M . (More pedantically:
this inclusion is the composition

M1
a−→M〈n〉 ⊗Ω〈n〉 Ω

ψn−−→M

where a is a monomorphism induced by the inclusion M1 ⊂M〈n〉.)
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Note that M1 = Ωx̂. By 4.16(iv) and 4.17, x̂ is simple, and so, by 4.14(iii),
M1 is an invariant submodule of M . Now, by 4.16(i), we can apply the same
process toM/M1 with the same n and to find a submodule V of (M/M1)〈n〉 =
M〈n〉/M1〈n〉 such that V ≈ Ω〈n〉/Ir2〈n〉. We define M2 to be an inverse
image of V under the canonical projection M〈n〉 →M〈n〉/M1〈n〉. So, we get
an Ω〈n〉-module M2 where M2/M1 ≈ Ω〈n〉/Ir2〈n〉. By induction, we get a
filtration

0 = M0 ⊂M1 ⊂ · · ·M r ⊂ · · ·
of M〈n〉 such that M i/M i−1 ≈ Ω〈n〉/Iri〈n〉 where r1 = m. Since M〈n〉
is a finitely generated module over a Noetherian ring Ω〈n〉, this filtration
stabilizes, i.e., Mk = M〈n〉 for some k. So, we get a finite filtration

0 = M0 ⊂M1 ⊂ · · ·Mr ⊂Mk = M

where Mi = M i ⊗Ω〈n〉 Ω.
We have already proved that M1 is an invariant submodule in M . Now,

by 4.13(i) and an obvious induction, every Mi is an invariant submodule of
M , i.e., this filtration is a filtration in M . Finally, by 4.16(i),

Mi/Mi−1 = (M i/M i−1)⊗Ω〈n〉 Ω ≈ Ω〈n〉/Iri〈n〉 ⊗Ω〈n〉 Ω = Ω/Iri . �

Now we give an integral version of the results above. We say that a graded
ideal I ⊂ π∗(MU), I 
= π∗(MU), is MU∗(MU)-invariant if θ(I) ⊂ I for every
θ ∈ MU∗(MU). Let {xi}, dimxi = 2i, be a system of polynomial generators
of π∗(MU) as in 1.9(v).

Given a prime p and a natural number n, we set

(4.19) I(p, n) := (p, xp−1, . . . , xpn−1−1) ⊂ π∗(MU).

Furthermore, I(p,∞) := (p, xp−1, . . . , xpn−1−1, . . . ) ⊂ π∗(MU). Let I(p) ⊂
π∗(MU) be the ideal such that all Chern numbers of every element of I(p) are
divisible by p. Let An denote the subset of π∗(MU) consisting of all elements
of dimension ≤ 2n.

4.20. Proposition. I(p,∞) = I(p). Furthermore, I(p, n) coincides with
the ideal generated by I(p) ∩ Apn−1−1, i.e., I(p, n) = (I(p) ∩ Apn−1−1). In
particular, I(p, n) depends only on p, n.

Proof. It is clear that I(p,∞) ⊂ I(p). Conversely, given x ∈ I(p), we prove
that x ∈ I(p,∞).

Represent the set of natural numbers N as the disjoint union N = A 	
B, where A = {p − 1, . . . , pk − 1, . . . }. Then x can be expanded as x =
x′ + f(xi|i ∈ B), where x′ ∈ I(p,∞) and f is a polynomial. Then p|sω(x)
and p|sω(x′) for every ω. We prove that f = 0. Let us order monomials
xi1 · · ·xik , ik ≤ ik+1 by setting xi1 · · ·xik < xj1 · · ·xjl iff there exists s such
that ir = jr for r < s and is < js. Let xi1 · · ·xik be the maximal monomial
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in f . Then sω(f) = sω(xi1 · · ·xik) for ω = (i1, . . . , ik). But sω(xi1 · · ·xik) =
si1(xi1 ) · · · sik(xik ) is not divisible by p in view of 1.9(iv). Thus, f = 0, i.e.,
x ∈ I(p,∞).

Finally, I(p, n) = (I(p) ∩ Apn−1−1) since I(p, n) = (I(p,∞) ∩ Apn−1−1).
�

4.21. Proposition. I(p, n) is an MU∗(MU)-invariant ideal for every (p, n).

Proof. Firstly, we prove that I(p) is MU∗(MU)-invariant. In other words,
we must prove that p|sω′(Sω(x)) for every ω′ such that 2(|ω|+ |ω′|) = dimx.
But in this case sω′(Sω(x)) = Sω′(Sω(x)) ∈ Z is a Chern number of x, and
thus p|sω′(Sω(x)).

Now we prove that I(p, n) is MU∗(MU)-invariant. Because of 2.19(i), it
suffices to prove that Sω(xpk−1) ∈ I(p, n) for every k < n. Since I(p, n) ⊂ I(p)
and I(p) is invariant, Sω(xpk−1) ∈ I(p), i.e., by 4.20, Sω(xpk−1) ∈ I(p,∞).
But dimSω(xpk−1) ≤ 2pk − 2, and so Sω(xpk−1) = py +

∑k
i=1 xpi−1yi for

some y, yi ∈ π∗(MU). Thus, Sω(xpk−1) ∈ I(p, n). �
We leave it to the reader to prove the following results, similar to 4.11

and 4.18 above.

4.22. Theorem. If I is an MU∗(MU)-invariant prime ideal of π∗(MU),
then I = I(p, n), where p is a prime and 0 ≤ n ≤ ∞. �

Let N be the following category. Its objects are coherent graded π∗(MU)-
modules N equipped with an MU∗(MU)-action MU∗(MU) ⊗ N → N such
that:

1. dim θ(n) = dimn− dim θ for every θ ∈MU∗(MU), n ∈ N .
2. Sω(λn) =

∑

(ω1,ω2)=ω

Sω1(λ)Sω2 (n), λ ∈ π∗(MU), n ∈ N , where Sω1(λ) is

the result of the MU∗(MU)-action on π∗(MU).
Morphisms of N are MU∗(MU)-equivariant π∗(MU)-module homomor-

phisms.
Note that MU∗(X) is an object of N for every finite spectrum X .

4.23. Theorem. Every object N of N admits a filtration in N

N = N0 ⊃ N1 ⊃ · · · ⊃ Nk = 0,

where Ni/Ni+1 is stably isomorphic in N to π∗(MU)/I(pi, ri), i = 1, . . . , k.
In particular, this holds for N = MU∗(X), where X is a finite spectrum. �

4.24. Remark. Theorems 4.11, 4.22 were proved by Landweber [3], see also
Morava [2]. In the proof of 4.11 we followed mainly Johnson–Wilson [1].
Landweber [4] proved the Filtration Theorems 4.18, 4.23.
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§5. Formal Groups

Given a formal power series f(x) over a commutative ring R, let f−1(x)
denote a formal power series such that f(f−1(x)) = x = f−1(f(x)). It is easy
to see that f−1(x) exists iff f(x) =

∑

i≥1

aix
i with a1 ∈ R∗, and f−1(x) is

unique. As usual, we write f(x) = g(x) + o(xn), if f(x) = g(x) + xn+1ϕ(x)
for some ϕ(x) ∈ R[[x]].

5.1. Definition (a) A formal group (more precisely, a one dimensional com-
mutative formal group law) over a commutative ring R is a formal power
series x+ y +

∑

i,j≥1

aijx
iyj ∈ R[[x, y]] with the following properties:

(1) (commutativity) F (x, y) = F (y, x);
(2) (unitarity) F (x, 0) = x;
(3) (associativity) F (F (x, y), z) = F (x, F (y, z)).

(b) Given two formal groups F,G over R, a homomorphism f : F → G is
a formal power series f(x) =

∑

i≥1

aix
i such that f(F (x, y)) = G(f(x), f(y)).

A homomorphism is called an isomorphism if a1 ∈ R∗, and it is called an
equivalence if a1 = 1. We use the notation F � G for equivalent formal
groups.

Notice that G(f(x), g(x)) is a homomorphism F → G if f and g are. In
particular, the set Hom(F,G) of all homomorphisms F → G is closed under
the operation +G where (f+Gg)(x) := G(f(x), g(x). Moreover, the operation
+G converts Hom(F,G) into an abelian group: the inversion is established
by Proposition 5.9 below.

If f : F → G is an isomorphism, then f−1 exists, and it is an isomorphism
G→ F .

It is clear that in this way we have a category F (R) of formal groups
over R and their homomorphisms. Furthermore, if ϕ : R → S is a ring
homomorphism and F (x, y) = x + y +

∑

i,j≥1

aijx
iyj is a formal group over

R, then the formal power series (ϕ∗F )(x, y) := x + y +
∑

i,j≥1

ϕ(aij)xiyj is a

formal group over S. So, ϕ yields a functor ϕ∗ : F (R)→ F (S).

5.2. Definition. A formal group F(x, y) over a commutative ring L is called
universal if for every formal group F over every ring R there exists a homo-
morphism ϕ : L→ R with ϕ∗(F) = F and this homomorphism is unique. In
this case we say that ϕ classifies F .

5.3. Proposition. There exists a universal formal group.
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Proof (Adams [8]). Let Λ = Z[aij ] be the polynomial ring generated by
symbols aij , i, j ≥ 1. Consider the formal power series h(x, y) = x + y +
∑

i,j≥1

aijx
iyj over Λ and set h(h(x, y), z)−h(x, h(y, z)) =

∑

bijkx
iyjzk. Let I

be the ideal in Λ generated by the elements bijk and aij − aji. Set L = Λ/I,
and let āij be the image of aij in L. It is clear that the formal power series
x+ y +

∑

i,j≥1

āijx
iyj over L := Λ/I is a universal formal group. �

Clearly, the universal formal group is unique in the following sense: if
(F , L) and (F ′, L′) are two universal formal groups, then there exists a ring
isomorphism ϕ : L→ L′ with ϕ∗F = F ′.

The following fact is more complicated. It was proved by Lazard [1].

5.4. Theorem. The underlying ring L of the universal formal group is a
polynomial ring on a countable set of variables, L = Z[x1, . . . , xn, . . . ].

Proof. See Adams [8], Buhštaber [1,2], Fröhlich [1], Ravenel [1]. �
The universal formal group can be also described as follows. Consider the

polynomial ring A = Z[b1, . . . , bn, . . . ] and the formal power series g(x) =
x +

∑

bix
i+1. Set f(x, y) = g−1(g(x) + g(y)). It is clear that f is a formal

group. Let L ⊂ A be the subring generated by the coefficients of f . Then (L, f) is

the universal formal group (see Buhštaber [1,2], cf. also 6.17(a) below).

5.5. Examples. (a) The so-called additive formal group A(x, y) = x+ y.
(b) The so-called multiplicative formal groupM(x, y) = x+y+axy, a ∈ R.
(c) The universal formal group.
(d) Let f(x) be a functionally invertible formal power series, i.e., such

that f−1 exists. Then F (x, y) = f−1(f(x) + f(y)) is a formal group.

5.6. Definition. Given a formal group F (x, y) over R, a formal power series
g(x) = x+ o(x) ∈ R[[x]] is called a logarithm of F if

F (x, y) = g−1(g(x) + g(y)).

In other words, g is an equivalence between F and the additive formal group.

5.7. Proposition. Every formal group F (x, y) over a Q-algebra R has a
logarithm, and it is unique. In particular, every two formal groups over a
Q-algebra are equivalent.

Proof (Honda [1]). Consider the formal power series ω(x) = ∂2F (x, 0).
Because of 5.1(a), we have

ω(F (x, y)) = ∂2F (F (x, y), 0) = ∂1F (F (x, 0), y) · ∂2F (x, 0) = ∂1F (x, y)ω(x).
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Hence,
dx

ω(x)
=

dF (x, y)
ω(F (x, y))

. Set g(x) :=
∫ x

0

dt

ω(t)
. Then dg(x) = dg(F (x, y))

and hence
g(F (x, y)) = g(x) + C.

Since F (0, y) = y and g(0) = 0, C = g(y). Thus, g(F (x, y)) = g(x) + g(y).
We prove the uniqueness of the logarithm. Let

g−1(g(x) + g(y)) = h−1(h(x) + h(y)), h(x) = x+ o(x).

Set f(x) = g(h−1(x)). Then f(x+y) = f(x)+f(y). Since R is a Q-algebra
and f(x) = x+ o(x), we conclude that f(x) = x. �

5.8. Examples. (a) The multiplicative formal group m(x, y) = x + y − xy
over Z has no logarithm. Indeed, let i : Z→ Q be the inclusion. The logarithm
of i∗m is x+x2/2+ · · ·+xn/n+ · · · = − ln(1−x). If m(x, y) has a logarithm
f(x), then f(x) is a logarithm of i∗m also, and so f(x) = − ln(1 − x). But
ln(1− x) /∈ Z[[x]].

(b) It is clear that g(x) = x is a logarithm of the additive formal group
A(x, y) over any R. We prove that f(x) = x + xp is a logarithm of a(x, y)
over Z/p. Indeed, we have x+ xp + y+ yp = x+ y+ (x+ y)p, i.e., f(x+ y) =
f(x) + f(y), i.e., a(x, y) = f−1(f(x) + f(y)). (In fact, both f and f−1 are
automorphisms of a(x, y).) Thus, the uniqueness of the logarithm is false in
general.

5.9. Proposition. Given a formal power series F (x, y) = x+y+
∑

i,j≥1

aijx
iyj,

there exists a formal power series θ(x) such that F (x, θ(x)) = 0, and it is
unique.

Proof. Firstly, we construct a family θn(x) such that F (x, θn(x)) = o(xn)
and θn+1(x) = θn(x)+o(xn+1). Set θ0(x) = −x. Then F (x, θ0(x)) = o(x). As-
sume that θn is constructed. Let bn+1 be the coefficient of xn+1 in F (x, θn(x)).
Set θn+1(x) = θn(x) − bn+1x

n+1. Then

F (x, θn+1(x)) = F (x, θn(x)) − bn+1x
n+1 + o(xn+1) = o(xn+1).

Now, set θ(x) = −x−
∞
∑

i=2

bix
i, where bi is the coefficient of xi in θi(x)−

θi−1(x). Then θ(x) = θn(x)+ o(xn) for every n. Thus, F (x, θ(x)) = o(xn) for
every n, i.e., F (x, θ(x)) = 0.

We leave it to the reader to prove that θ is unique. �

5.10. Definition. Given a formal group F over R and n ∈ Z, define induc-
tively a formal power series [n]F (x) ∈ R[[x]] as follows. Let θ(x) be as in 5.9.
Set [−1]F (x) = θ(x). Furthermore, if n ≥ 0, then [n]F (x) := F (x, [n−1]F (x)).
If n < 0, then [n]F (x) := F ([−1]F (x), [n + 1]F (x)).
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Clearly, [0]F (x) = 0, [1]F (x) = x, and F ([m]F (x), [n]F (x)) = [m+n]F (x).
Furthermore, if F admits a logarithm g, then [n]F (x) = g−1(ng(x)). Finally,
[n]F is an endomorphism of F (i.e., a homomorphism F → F ) for every n ∈ Z

(prove this!).
The formal power series [n]F can also be described as follows. Let EndF

be the set of all endomorphisms of F . Set

f(x) +F g(x) := F (f(x), g(x)), (g · f)(x) = g(f(x))

for every f, g ∈ EndF . Then (EndF,+F , ·) is a ring. Consider the unique
ring homomorphism Z→ EndF . Then [n]F is just the image of n ∈ Z.

Let R be a commutative torsion free ring, and let F be a formal group
over R. Define i : R→ R⊗Q by setting i(r) = r⊗ 1. Then i(R) is a subring
of R ⊗ Q. For simplicity, we say that the logarithm of i∗F is a logarithm of
F over R⊗Q.

5.11. Proposition. (i) If F is equivalent to the additive formal group, then
for every n > 0 all coefficients of [n]F (x) are divisible by n. In particular, if
nR = 0 then [n]F (x) = 0.

(ii) Let p be a prime, and let R be a torsion free Z[p]-algebra. Let F be
a formal group over R such that all coefficients of [p]F (x) are divisible by p.
Let g(x) ∈ R[[x]]⊗Q be the logarithm of F over R⊗Q. Then g(x) ∈ R[[x]],
i.e., g(x) is a logarithm of F . In particular, F is equivalent over R to the
additive formal group.

Proof. (i) Let h : F → A be an equivalence, F (x, y) = h−1(h(x) + h(y)).
Let h−1(x) = x +

∑

aix
i+1. Then [n]F (x) = h−1(nh(x)) = nh(x) +

∑

ni+1ai(h(x))i+1.
(ii) Let g(x) = x+

∑

gix
i+1, gi ∈ R⊗Q. Let g−1(x) = x+

∑

aix
i+1, ai ∈

R⊗Q. Since x = g(x) +
∑

ai(g(x))i+1, we conclude (equating coefficients of
equal powers of x) that g1 + a1 = 0 and

gn + fn(a1, . . . , an−1, g1, . . . , gn−1) + an = 0

for n > 1. Here fn is a polynomial over Z such that every monomial in fn
contains some ai. This implies (by induction) that if gi ∈ R for every i < n,
then ai ∈ R for every i < n and an = rn − gn with rn ∈ R.

We prove by induction that gi ∈ R. Since [p]F (x) = g−1(pg(x)) then, by
the hypothesis, all coefficients of g−1(pg(x)) belong to pR. The coefficient of
x2 in g−1(pg(x)) is pg1 + p2a1 = pg1 − p2g1 = pg1(1− p). Since it is divisible
by p in R, g1 ∈ R because 1− p is invertible in R.

We suppose that gi ∈ R for every i < n and prove that gn ∈ R. The
coefficient of xn+1 in g−1(pg(x)) is pgn+fn(p2a1, . . . , p

nan−1, g1, . . . , gn−1)+
pn+1an. Since gi ∈ R for i < n, we have ai ∈ R for i < n (as we said
above). Furthermore, every monomial in fn contains some ai, and hence
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fn(p2a1, . . . , p
nan−1, g1, . . . , gn−1) is divisible by p2 in R, i.e., it is p2r for

some r ∈ R. Hence, the coefficient of xn+1 in g−1(pg(x)) is

pgn+p2r+pn+1an = pgn+p2r+pn+1(rn−gn) = pgn(1−pn)+p2r+pn+1rn,

where rn, r ∈ R. But this coefficient belongs to pR. Thus, gn ∈ R because
1− pn is invertible in R. �

For future reference note the following obvious fact.

5.12. Proposition. Let r : R→ S be a ring homomorphism, and let F be a
formal group over R.

(i) If [n]F (x) =
∑

aix
i, then [n]r∗F (x) =

∑

r(ai)xi.
(ii) If R and S are torsion free and g(x) = x+

∑

gix
i+1 is a logarithm of

F over R⊗Q, then x+
∑

r(gi)xi+1 is a logarithm of r∗(F ) over S⊗Q. �

5.13. Proposition. Let p be a prime, and let R be a commutative ring
with pR = 0. Let f : F → G be a homomorphism of formal groups over
R. If f(x) 
= 0, then f(x) = ϕ(xp

h

) for some ϕ(x) ∈ R[[x]] with ϕ(x) =
ax+ o(x), a 
= 0.

Proof (Fröhlich [1]). Recall that f(x) =
∞
∑

i=1

aix
i, and so f(0) = 0. We have

f(F (x, y)) = G(f(x), f(y)). By differentiating this equation with respect to
y and putting y = 0, we have

f ′(x)∂2F (x, 0) = ∂2G(f(x), 0)f ′(0).

Note that f ′(0) = a1. If a1 
= 0, then we can put ϕ(x) = f(x). If a1 = 0 then
f ′(x) = 0, because ∂2F (x, 0) = 1+

∑

i>0 bix
i. So f(x) = g(xp). Now we want

to proceed by induction, but we must first show that g(x) is a homomorphism
of formal groups overR. If F (x, y) =

∑

aijx
iyj , set F (p)(x, y) :=

∑

apijx
iyj .

Since a �→ ap is an endomorphism of R, F (p) is a formal group over R. We
prove that g is a homomorphism F (p) → G. Indeed

g(F (p)(xp, yp)) = g((F (x, y)p)) = f(F (x, y))
= G(f(x), f(y)) = G(g(xp), g(yp)).

Thus, g(F (p)(x, y)) = G(g(x), g(y)). �

5.14. Definition. (a) The number h in 5.13 is called height of the homomor-
phism f and denoted by ht(f). If f = 0, then ht(f) =∞.

(b) Given a formal group F over a commutative ring R with pR = 0 for
a prime p, define the height of F as the height of [p]F , ht(F ) := ht([p]F ).
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Since [p]F (x) = px + o(x) for every formal group F , we have ht(F ) > 0.
It is easy to see that isomorphic formal groups have equal heights. For every
natural number n there exists a formal group of height n, see 6.15(iii) below.

5.15. Theorem (Lazard [2]). Let F,G be two formal groups over an alge-
braically closed field of characteristic p > 0. If ht(F ) = ht(G), then F and G
are isomorphic.

Proof. See e.g. Fröhlich [1]. �
5.16. Example. Consider the formal groups U(x, y) = x+ y+xy, V (x, y) =
tan(arctan(x) + arctan(y)) = x+y

1−xy = (x+ y)(1 + xy+ . . .+ xnyn + . . . ) over
Z/3. We have [3]U (x) = x3, [3]V (x) = −x3. We want to show that U and V
are not isomorphic, while ht(U) = ht(V ) = 1.

It suffices to prove that [p]F = [p]G whenever F and G are isomorphic over
Z/p, p prime. Firstly, [p]G(x) = ϕ(xp

h

) with h > 0. Furthermore, (u+v)p
h

=
up

h

+ vp
h

for every u, v ∈ Z/p [[x, y]], and ap
h

= a for every a ∈ Z/p. Hence,
[p]G(f(x)) = f([p]G(x)) for every formal power series f . Now, let f : F → G
be an isomorphism. It is easy to see that f−1([p]G(f(x))) = [p]F (x), and thus
[p]F (x) = [p]G(x) by the above.

Now we consider the graded version of the notions discussed above. Let
R be a graded commutative ring. We treat R[[x, y, . . . , z]] as a graded ring
with deg x = deg y = · · · = deg z = 2.

5.17. Definition. A graded formal group over a graded commutative ring R
is a formal group F (x, y) = x + y +

∑

aijx
iyj which at the same time is a

homogeneous element of degree 2, i.e., deg aij = 2−2i−2j. A homomorphism
of graded formal groups is a homomorphism f(x) ∈ R[[x]] of formal groups
such that f(x) is a homogeneous element of degree 2.

The concept of the universal formal group makes sense in the graded case
also, and the following analog of 5.4 holds. The proof is similar to any proof
of 5.4.

5.18. Theorem. There is a universal graded formal group over a graded
commutative ring L where L = Z[x1, . . . , xn, . . . ], deg xn = −2n. �

The obvious analog of 5.15 holds in the graded case also.
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Passing to topology, consider any C -oriented spectrum (E, t). By 2.2(ii,iii),

E∗(CP∞) = E∗(pt)[[t]], E∗(CP∞ × CP∞) = E∗(pt)[[x, y]]
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where we introduce the notation x = t1, y = t2. Let

(6.1) m : CP∞ × CP∞ → CP∞

be the multiplication in the H-space CP∞ = K(Z, 2). Considering the in-
duced homomorphism m∗ : E∗(CP∞)→ E∗(CP∞ × CP∞), we have

m∗(t) = F (x, y) ∈ E∗(pt)[[x, y]].

6.2. Proposition. F (x, y) is a graded formal group.

Proof. Since CP∞ = CP∞ × pt 1×incl−−−−→ CP∞ ×CP∞ m−→ CP∞ is homo-
topic to 1CP∞ , we have F (x, 0) = x. The properties (1) and (3) from 5.1(a)
hold because m is commutative and associative up to homotopy. �

Thus, we have associated a graded formal group to any C -oriented spec-
trum.

We can also do it in the following way. Let CP∞
i , i = 1, 2, be a copy of

CP∞, and let η(i), i = 1, 2 be a copy of η over CP∞
i . Let

pi : CP∞
1 × CP∞

2 → CP∞
i , i = 1, 2

be the projection. By 1.6, m∗(η) = p∗1(η) ⊗ p∗2(η). Since cE,t1 (η) = t, we
conclude that

(6.3) F (x, y) = cE,t1 (p∗1(η) ⊗ p∗2(η)).

Because of the universality of η, for every pair of complex line bundles
ξ, ζ over X , we have

(6.4) cE,t1 (ξ ⊗ ζ) = F (cE,t1 (ξ), cE,t1 (ζ)).

6.5. Lemma. Let ϕ : (E, t)→ (E′, t′) be a morphism of C -oriented spectra,
and let ϕ∗ : E∗(pt) → (E′)∗(pt) be the induced homomorphism of coeffi-
cients. Let F (resp. F ′) denote the formal group of (E, t) (resp. (E′, t′)).
Then (ϕ∗)∗(F ) = F ′. �

6.6. Lemma. Let F be the formal group of a C -oriented spectrum (E, t).
Let z = f(t) = t+

∑

ait
i+1 be another C -orientation of E, and let G be the

formal group of (E, z). Then f(F (x, y)) = G(f(x), f(y)). In particular, F
and G are equivalent formal groups. Furthermore, if H is any graded formal
group equivalent to F , then there exists a C -orientation v of E such that H
is the formal group of (E, v).

Proof. We have

m∗(z) = m∗
(

t+
∑

ait
i+1
)

= m∗(t) +
∑

ai(m∗(t))i+1 = f(F (x, y)).
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On the other hand, if zi = p∗i (z) for pi : CP∞ × CP∞ → CP∞, then

m∗(z) = G(z1, z2) = G(f(t1), f(t2)) = G(f(x), f(y)).

Furthermore, let g : F → H be an equivalence, g(x) = x +
∑

bix
i+1. Set

v = t +
∑

bit
i+1. As above, one can prove that H is the formal group of

(E, v). �
Thus, we have correspondences

{C -oriented spectra} −−→ {graded formal groups},
{C -orientable spectra} −−→ {equivalence classes of graded formal groups}.

6.7. Examples (cf. 2.15). (a) Let R = {Ri} be a graded commutative ring
such that Ri = 0 for i > 0. Then the formal group of HR is the additive
formal group over R (because HRi(pt) = 0 for i < 0).

(b) Let R be a graded commutative ring, and let E = HR. The inclusion
HR0 → HR yields a ring morphism HR0 → HR. Hence, by (a) and 6.5,
HR admits a C -orientation t such that (E, t) has the additive formal group.
Thus, a formal group of any C -oriented spectrum (HR, s) is equivalent to
the additive formal group.

(c) Let (E, t) be a C -oriented spectrum such that π∗(E) is a Q-algebra.
Then, by II.7.11(ii), E � H(π∗(E)). Hence, by (b), the formal group of (E, t)
is equivalent to the additive formal group. On the other hand, this follows
from 5.7.

(d) Let E be complex K-theory. We have E∗(pt) = Z[s, s−1], deg s = 2.
Consider the C -orientation t = s(η−1) ∈ ˜K2(CP∞), i.e., cK,t1 (η) = s(η−1).
Here 1 ∈ K0(CP∞) represents θ1. Let F (x, y) be the formal group of (K, t).
Then, by (6.3),

F (x, y) =cK,t1 (η(1) ⊗ η(2)−1) = s(η(1) ⊗ η(2))
=s(η(1) − 1) + s(η(2) − 1) + s(η(1) − 1)(η(2) − 1) = x+ y + s−1xy,

where we write η(i) instead of p∗i (η). Thus, F is a multiplicative formal group.
(e) Let (E, t) = (MU , T ). Observe that MU∗(pt) ∼= L, where L is the

underlying ring of the universal graded formal group from 5.18. On the other
hand, by 2.5, (MU , T ) is the universal C -oriented spectrum. This hints that
the formal group of (MU , T ) coincides with the universal formal group. This
is really true and will be proved below.

Let vij ∈ MU2i+2j(CP∞ × CP∞) be the bordism class of the inclusion
ji × jj : Vij := CP i × CP j ⊂ CP∞ × CP∞.

Letm : CP∞×CP∞ → CP∞ be as in (6.1). Considerm∗ : MU2(CP∞)→
MU2(CP∞ × CP∞) and set

hij := 〈m∗T, vij〉 ∈ π2i+2j−2(MU) = MU2−2i−2j(pt).
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The elements hij admit the following geometrical description. Let

f : CP i × CP j → CPN

be the restriction of m. By 1.25, ηN−1 is a normal bundle of lN−1 : CPN−1 ⊂
CPN . Assuming f to be transverse to ηN−1, set Hij := f−1(CPN−1). Then

hij = [Hij ].

6.8. Lemma. (i) s(i+j−1)(hij) =
(

i+j
i

)

for i, j > 1, s(j)(h1,j) = 0 for j > 1.
(ii) h0,n = [CPn−1], h1,n = [CP 1]× [CPn−1].
(iii) The elements hij generate the ring π∗(MU).

Proof. (i) Fix i, j and set V = Vij , v = vij . Let t ∈ H2(CP∞) be a C -
orientation of HZ, and let u = uHZ,t : MU → HZ be the Thom class as in
(2.7). We have u∗T = t and m∗(t) = t1 + t2. Set

v := u∗(v) ∈ H2i+2j(CP∞ × CP∞).

By 2.19(ii) and 2.17(iii),

s(i+j−1)(hij) = s(i+j−1)〈m∗T, v〉 = 〈m∗s(i+j−1)(T ), v〉+ 〈m∗t, s(i+j−1)(v)〉
= 〈(t1 + t2)i+j , v〉+ 〈t1 + t2, s(i+j−1)(v)〉.

Here the left hand summand is

〈(t1 + t2)i+j , v〉 =
∑

〈(

i+ j

k

)

tk1t
i+j−k
2 , v

〉

=
〈(

i+ j

i

)

ti1t
j
2, v

〉

=
(

i+ j

i

)

.

We compute the right hand summand. We can compute s(i+j−1)(v) in CP i×
CP j . Let η(1) (resp. η(2)) be the canonical complex line bundle over CP i

(resp. CP j). By 1.24, τ(CP i)⊕ θ1 = (i+ 1)ηi, τ(CP j)⊕ θ1 = (j + 1)ηj . Set
ξ1 := p∗1ηi, ξ2 := p∗2ηj where p1 : CP i×CP j → CP i, p2 : CP i×CP j → CP j

are the projections. Then τ(V )⊕ θ2 = (i+1)ξ1⊕ (j+1)ξ2. We have c1(ξi) =
ti, i = 1, 2, and so c(k)(ξi) = tki . By 2.22, s(i+j−1)(v) = c(i+j−1)(νV ) ∩ v. But

c(i+j−1)(νV ) = −c(i+j−1)(τV ) = −c(i+j−1)((i+ 1)ξ1 ⊕ (j + 1)ξ2)

= −(i+ 1)ti+j−1
1 − (j + 1)ti+j−1

2 .

If i, j > 1, then ti+j−1
1 = 0 = ti+j−1

2 , and hence s(i+j−1)(v) = 0. Thus,

s(i+j−1)(hij) =
(

i+ j

i

)

.

If i = 1, j > 1, then ti+j−1
1 = tj1 = 0, but ti+j−1

2 
= 0, Hence,

〈t1 + t2, s(i+j−1)(v)〉 = −〈t1 + t2, (j + 1)tj2 ∩ v〉
= −〈t1 + t2, (j + 1)u∗{CP 1}〉 = −(j + 1).
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Thus, s(j)(h1,j) = j + 1− (j + 1) = 0.
(ii) The equality h0,n = [CPn−1] follows from 3.7. By 1.9(iii), in order to

prove that h1,n = [CP 1×CPn−1] = [CP 1]× [CPn−1] it suffices to prove that
sω(h1,n) = sω([CP 1 × CPn]) for every ω with |ω| = n, i.e, that Sω(h1,n) =
Sω([CP 1 × CPn]) for every ω = (i1, . . . , im) with

∑

ik = n.
Firstly, if m = 1, i.e., ω = (n), then, by (i), Sω(h1,n) = 0. Furthermore,

Sω[CP 1 × CPn] = 0. Hence, we can and shall assume that k > 1.
Now suppose that m > 1 and that ik > 1 for every k. It is clear that

Sω[CP 1 × CPn] = 0. Now, by 2.19(ii),

Sω(h1,n) =
∑

〈Sω1(m
∗T ), Sω2 [CP

1 × CPn]〉.

If ω2 
= (0), then Sω2 [CP 1 × CPn] = 0 since ik > 1 for every k. If ω2 =
(0), then ω1 = ω. By 2.17(iii), Sω(T ) = 0 for k > 1, and so Sωm

∗T =
m∗(Sω(T )) = 0 .

Finally, let ω = (1, ω). Then we have Sω(v1,n) = 2Sω{CPn−1} and
Sω[CP 1 × CPn−1] = 2Sω[CPn−1]. Now,

Sω(h1,n) =
∑

〈Sω1(m
∗T ), Sω2(v1,n)〉 =

∑

(ω1,ω2)=ω

〈Sω1(m
∗T ), 2Sω2{CPn}〉

= 2Sω〈m∗T, {CPn}〉 = 2Sω[CPn−1] = Sω[CP 1 × CPn].

(iii) The GCD of the numbers
(

n

i

)

, i = 1, . . . , n− 1, is just λn (defined

in (1.8)). Using (i) and the equality
(

i+ j

1

)

= i+ j = −s(i+j−1)[CP i+j−1] = −s(i+j−1)(h0,i+j),

we conclude that the GCD of {s(n)(hi,n+1−i)}ni=0 is λn. Hence,

s(n)

(

n
∑

i=0

aihi,n+1−i

)

= λn

for suitable ai ∈ Z. Thus, by 1.9(iv), hij generate π∗(MU). �

6.9. Theorem. The formal group f(x, y) of (MU , T ) is

f(x, y) =

∑

i,j≥0;(i,j) �=(0,0)

hijx
iyj

CP (x)CP (y)
,

where CP (u) = 1 +
∞
∑

n=1

[CPn]un.
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Proof (cf. Adams [8], Buhštaber [2]). Let f(x, y) = m∗T = x + y +
∑

aklx
kyl where x = T1, y = T2. Then in CP i × CP j we have

hij = 〈m∗T, vij〉 = 〈x + y +
∑

aklx
kyl, vij〉

= [CP i−1][CP j ] + [CP i][CP j−1] +
∑

akl[CP i−k][CP j−l].

Hence,

hijx
iyj =

(

x[CP i−1]xi−1[CP j ] yj
)

+ (y[CP i]xi[CP j−1] yj−1)

+
∑

aklx
kyl([CP i−k]xi−k[CP j−l] yj−l) .

Thus,

∑

i,j

hijx
iyj = x

⎛

⎝

∑

i,j

[CP i−1]xi−1[CP j ] yj

⎞

⎠+ y

⎛

⎝

∑

i,j

[CP i]xi[CP j−1] yj−1

⎞

⎠

+
∑

k,l

aklx
kyl

⎛

⎝

∑

i,j

[CP i−k]xi−k[CP j−l] yj−l

⎞

⎠

=

⎛

⎝x+ y +
∑

k,l

aklx
kyl

⎞

⎠CP (x)CP (y). �

6.10. Corollary. The coefficients aij of the formal group f(x, y) of (MU , T )
generate the ring MU∗(pt).

Proof. By 6.9, aij ≡ hij mod Dec (π∗(MU)) for i, j > 1. If n > 1 then
a1,n + [CPn−1] = h1,n = [CP 1][CPn−1]. Moreover, a11 = −[CP 1]. Hence,
a1,n ≡ −[CPn−1] mod Dec . Now apply 6.8(iii) (and use that πi(MU) =
MU−i(pt))). �

6.11. Corollary (Quillen [1]). The formal group f(x, y) of (MU , T ) coincides
with the universal formal group.

Proof. Let ϕ : L→MU∗(pt) classify the formal group f(x, y). By 6.10, ϕ
is epic. Thus, ϕ is an isomorphism because Ln and MU−n(pt) are isomorphic
finitely generated free abelian groups. �

6.12. Corollary (Mǐsčenko, an Addendum to Novikov [4]). The logarithm
g(x) of the formal group f(x, y) over MU∗(pt)⊗Q is

g(x) = x+
∑

n≥1

[CPn]
n+ 1

xn+1.
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Proof. By 5.7, g(x) =
∫ x

0

dt

ω(t)
, where ω(x) = ∂2f(x, 0). Now, because of

6.9 and 6.8(ii),

ω(x) =

∑

i≥0

hi,1x
i −
∑

i≥1

hi,0x
i[CP 1]

CP (x)
=

1 +
∑

i≥1

(hi,1 − [CP 1]hi,0)xi

CP (x)

=
1

CP (x)
.

Thus,

g(x) =
∫ x

0

CP (t)dt = x+
∑ [CPn]

n+ 1
xn+1 . �

Let π = πn : CP∞ → CP∞ be a map such that π∗(t) = nt for t ∈
H2(CP∞). So, π∗(T ) = [n]f (T ). Set βk(n) := 〈π∗T, {CP k}〉 ∈ π2k−2(MU).
Note that β1(n) = n.

6.13. Theorem. [n]f (x) =

∑

k≥0

βk(n)xk

CP (x)
.

Proof. Let [n]f (x) =
∑

aix
i. By 3.7, we have

βk(n) = 〈π∗T, {CP k}〉 =
〈

∑

aiT
i, {CP k}

〉

=
∑

ai[CP k−i].

Hence,

βk(n)xk =
∑

ai[CP k−i]xk =
∑

aix
i([CP k−i]xk−i).

Thus,
∑

βk(n)xk =
∑

k,i

aix
i(CP k−i xk−i) =

(

∑

aix
i
)

CP (x). �

6.14. Lemma. For every prime p, the following hold:
(i) p|sω(βk(p)) for every k and every ω.;
(ii) s(pk−1)(βpk(p)) = pp

k − pk+1 − p;
(iii) Let f(x, y) be the formal group in 6.9. Define ai ∈ π∗(MU) via the

equality [p]f (x) =
∑

aix
i. Then p|sω(ai) for every i and every ω.

Proof. For simplicity, we denote βk(p) by βk.
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(i) We have

sω(βk) = sω〈π∗T, {CP k}〉 =
∑

(ω1,ω2)=ω

〈sω1π
∗T, sω2{CP k}〉

=
∑

(ω1,ω2)=ω

〈π∗sω1(T ), sω2{CP k}〉.

If ω1 = (r) for some r ≥ 0, then sω1(T ) = tr+1. Hence,

〈π∗sω1(T ), sω2{CP k}〉 = 〈π∗(tr+1), sω{CP k}〉 = 〈(pt)r+1, sω{CP k}〉.

If l(ω1) > 1 then sω1(T ) = 0, and so 〈π∗sω1(T ), sω2{CP k}〉 = 0.
Thus, p divides each summand 〈π∗sω1(T ), sω2{CP k}〉 of sω(βk).
(ii) Let [CP i]H ∈ H2i(CP p

k

) be the homology class given by the inclusion
lipk : CP i ⊂ CP p

k

, i.e., [CP i]H = (lipk)∗
(

u∗[CP i]MU
)

where u = uHZ,t :

MU → HZ is as in (2.7). Let ν be a complex normal bundle of CP p
k

. Then

s(pk−1){CP p
k

} 2.22==== cpk−1(ν) ∩ [CP p
k

]H = −(pk + 1)tp
k−1 ∩ [CP p

k

]

= −(pk + 1)[CP 1]H .

Now,

s(pk−1)(βpk) = s(pk−1)〈π∗T, {CP pk}〉

= 〈π∗s(pk−1)(T ), {CP pk}〉+ 〈pt, s(pk−1){CP p
k}〉

= 〈(pt)p
k

, {CP p
k

}〉+ 〈pt,−(pk + 1)[CP 1]H〉 = pp
k

− pk+1 − p.

(iii) We prove this by induction on k. We have

βk =
〈

∑

aiT
i, {CP k}

〉

=
k
∑

i=1

ai[CP k−i] = ak +
k−1
∑

i=1

ai[CP k−i].

Hence, sω(ak) = sω(βk) −
∑

sω1(ai)sω2 [CP k−i]. Note that p|sω(a1) since
a1 = p. Assume that p|sω(ai) for every ω and every i < k. Then, by (i),
p|sω(ak). The induction is confirmed. �

6.15. Corollary. Let p be a prime. Let I(p, n) be the ideal defined in (4.19).
(i) I(p, n) = (p, βp(p), . . . , βpn−1(p)).
(ii) Let αn = αn,p ∈ MU2−pn(pt) be the coefficient of xp

n

in the for-
mal power series [p]f (x). Then s(pn−1)(αn) = pp

n − p. Moreover, I(p, n) =
(p, α1, . . . , αn−1).

(iii) For every h > 0 there exists a graded formal group of height h over
the ring Z/p [t], dim t = 2(1− ph).
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Proof. (i) This holds because s(pk−1)(βpk(p)) ≡ p mod p2 and p|sω(βpk(p))
for every ω. In detail, let xpk−1 ∈ π2pk−2(MU) be such that s(pk−1)(xpk−1) =
p and p|sω(xpk−1) for every ω. Then I(p, n) = (p, xp−1, . . . , xpn−1−1). Set

ypk−1 = (pp
k−1 − pk)xpk−1 − βpk(p).

By 6.14(iii), s(pk−1)(ypk−1) = −p and p|sω(y) for every ω. So, I(p, n) =
(p, yp−1, . . . , ypn−1−1). But −βpk(p) ≡ ypk−1 mod p. Thus,

I(p, n) = (p, βp(p), . . . , βpn−1(p)).

(ii) We have α0 = p. Furthermore, by 6.13,

αn ≡ βpn(p)− p[CP pn−1] mod Dec (π∗(MU)).

So, s(pn−1)(αn) = pp
n − p. Finally, by 6.14(iii), p|sω(αn) for every ω.

Now the equality I(p, n) = (p, α1, . . . , αn−1) can be proved as the equality
I(p, n) = (p, βp(p), . . . , βpn−1(p)) from (i) was.

(iii) Choose a system {xn} of polynomial generators of MU∗(pt) as in
1.9(v). Consider a homomorphism ρ : MU∗(pt) → Z/p [t] such that ρ(xi) =
0 for i < ph − 1 and ρ(xph−1) 
= 0. Then ρ(αh) 
= 0 because otherwise
ρ(I(p, h+ 1)) = 0. So, ht ρ∗f = h. �

Since there is a commutative diagram

π∗(MU) ⊂−−−−→ π∗(MU)⊗Q

h

⏐

⏐



h

⏐

⏐




=

H∗(MU) ⊂−−−−→ H∗(MU)⊗Q,

we are able to consider the inclusions π∗(MU) ⊂ H∗(MU) ⊂ π∗(MU) ⊗ Q.
Moreover, the ungraded formal group f(x, y) over MU∗(pt) can be regarded
as a formal group over π∗(MU).

6.16. Proposition. The formal group h∗f(x, y) is equivalent to the additive
formal group over H∗(MU). In other words, the logarithm of f(x, y) over
π∗(MU)⊗Q is a formal power series over H∗(MU), i.e.,

[CPn]
n+ 1

∈ H∗(MU),

i.e., (n+1)|h([CPn]) in H∗(MU). Furthermore, the elements
[CPn]
n+ 1

generate

the ring H∗(MU).

Proof. Let ιH : S → HZ be the unit. Consider the morphism

ιH ∧ 1 : MU = S ∧MU → HZ ∧MU .



442 Chapter VII. Complex (Co)bordism

Then (ιH ∧ 1)∗ : π∗(MU) → π∗(HZ ∧MU) = H∗(MU) coincides with the
Hurewicz homomorphism h. Furthermore, HZ ∧MU is a commutative ring
spectrum (as the smash product of commutative ring spectra), and so it can
be C -oriented via ιH ∧ 1. The formal group of this C -oriented spectrum is
h∗f(x, y). On the other hand, there is a ring morphism

1 ∧ ιMU : HZ ∧ S → HZ ∧MU .

So, HZ∧MU admits a C -orientation such that the associated formal group is
the additive formal group. Now, by 6.6, h∗f(x, y) is equivalent to the additive
formal group over H∗(MU).

The characteristic numbers Sω(U) ∈ H2|ω|(MU) form a basis of the group
H∗(MU). Now,

Sω

(

[CP i1 ]
i1 + 1

× · · · × [CP ik ]
ik + 1

)

=
{

1 for ω = (i1, . . . , ik)
0 for other ω with |ω| =

∑

ik.

Hence, the products [CP i1 ]
i1+1 × · · · ×

[CP ik ]
ik+1 form a basis of H∗(MU). �

6.17. Remarks. (a) By 6.16, we have

H∗(MU) = Z[b1, . . . , bn, . . . ], bn =
[CPn]
n+ 1

,

and g(x) = x+
∑

bix
i+1. This gives us the description of the universal formal

group mentioned after 5.4.
(b) We have [p]f (x) = g−1(pg(x)). Since every coefficient of g(x) belongs

to H∗(MU), every coefficient of [p]f (x) belongs to pH∗(MU). This yields
another proof (and an explanation) of 6.14(iii).

Let (E, t) be a C -oriented spectrum, let (E[0], t) be its Q -localization,
and let g(x) be the logarithm of the formal group of (E[0], t). Let

ch = chE : E∗(X)⊗Q→ H∗(X ;E∗(pt)⊗Q)

be the Chern–Dold character, see II.7.13. Let tH ∈ H2(CP∞) be a C -
orientation of HZ. The ring homomorphism Z → E0(pt) → E0(pt) ⊗ Q

yields a morphism a : H2(CP∞)→ H2(CP∞;E∗(pt)⊗Q), and s := a(tH) is
a C -orientation of H(E∗(pt)⊗Q). Thus, ch(t) is a formal power series ϕ(s)
over E∗(pt)⊗Q.

6.18. Theorem (Buhštaber [3]). We have ϕ(s) = g−1(s). In other words,
ch(g(t)) = s.

Proof. Firstly, we prove that ϕ(s) = s+o(s). Let ϕ(s) =
∑

ϕis
i. Consider

the inclusion j1 : S2 = CP 1 ⊂ CP∞ and the suspension isomorphisms
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s2 : ˜H0(S0;E∗(pt)⊗ Q)→ ˜H2(S2;E∗(pt)⊗Q),

s2 : ˜E0(S)⊗Q→ ˜E2(S2)⊗Q.

Then j∗1 (s) = s2(1) where 1 ∈ ˜H0(S0;E∗(pt) ⊗ Q), and j∗1 (t) = s2(1) where
1 ∈ ˜E0(S) ⊗ Q. Since ch preserves the units and is compatible with sus-
pensions, we have ch(j∗1 t) = j∗1 (s). It is clear that j∗1ϕ(s) = ϕ1j

∗
1 (s). Hence,

ϕ1 = 1 because

j∗1 (s) = ch(j∗1 (t)) = j∗1 (ch(t)) = j∗1 (ϕ(s)) = ϕ1j
∗
1 (s).

Let pi : CP∞ × CP∞ → CP∞, i = 1, 2, be the projections. Set si =
p∗i (s), i = 1, 2. Consider the commutative diagram

E∗(CP∞)⊗Q
m∗
−−−−→ E∗(CP∞ × CP∞)⊗Q

ch

⏐

⏐




⏐

⏐



ch

H∗(CP∞;E∗(pt)⊗Q) m∗
−−−−→ H∗(CP∞ × CP∞;E∗(pt)⊗Q).

We have m∗(t) = F (x, y) = x+ y +
∑

aijx
iyj , m∗(s) = s1 + s2. Hence,

ch(m∗(t)) = ch(x) + ch(y) +
∑

aij(ch(x))i(ch(y))j

= ϕ(s1) + ϕ(s2) +
∑

aij(ϕ(s1))i(ϕ(s2))j = F (ϕ(s1), ϕ(s2))

(we use that ch is a homomorphism of E∗(pt) ⊗ Q -algebras). On the other
hand,

m∗ ch(t) = m∗ϕ(s) = m∗
(

∑

ϕis
i
)

=
∑

ϕi(m∗(s)i) = ϕ(s1 + s2)

Thus, ϕ(s1 + s2) = F (ϕ(s1), ϕ(s2)), i.e., ϕ−1(s) = g(s).
In order to prove that ch(g(t)) = s, set g(t) =

∑

git
i. Then

ch(g(t)) = ch
(

∑

git
i
)

=
∑

gi(ch(t))i =
∑

gi(ϕ(s))i = g(ϕ(s)) = s. �

It is interesting to ask whether the correspondence before 6.7 is surjective
(or injective), i.e., whether every formal group can be realized as the formal
group of a C -oriented spectrum. The answer is negative. Consider the formal
group ρ∗f over MU∗(pt) ⊗ Z/2, where ρ : MU∗(pt) → MU∗(pt) ⊗ Z/2 is
the modulo 2 reduction. We claim that ρ∗f cannot be realized. Indeed, let
E be a C -oriented spectrum whose formal group is ρ∗f . According to 2.1,
E is a commutative ring spectrum, and 2π∗(E) = 0. But then E is a graded
Eilenberg–Mac Lane spectrum, see IX.5.5 below. Hence, ρ∗f is equivalent
to the additive formal group. But this is wrong because ht f = 1. This is a
contradiction.
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On the other hand, consider the spectrum MU ∧ M(Z/2). It yields a
cohomology theory

MU∗(X ; Z/2) := (MU ∧M(Z/2))∗(X).

Let a : S → M(Z/2) represent the generator of π0(M(Z/2)) = Z/2. The
morphism 1 ∧ a : MU →MU ∧M(Z/2) induces the homomorphism

(6.19) (1 ∧ a)∗ : MU∗(pt)→MU∗(pt)⊗ Z/2,

and (1 ∧ a)∗ = ρ. So, we can agree that MU∗(X ; Z/2) realizes ρ∗f . This
hints that it makes sense to extend the class of C -oriented spectra in order
to realize formal groups. We suggest such a class below.

6.20. Definition. (a) Let E be an MU-module spectrum, and suppose that
E∗(pt) is a commutative ring. An MU-module morphism u : MU → E is
called a C -marking of E if u∗ : MU∗(pt)→ E∗(pt) is a ring homomorphism.
A C -marked spectrum is a pair (E, u) where u is a C -marking of E.

(b) A C -marked ring spectrum is a pair (E, u) where E is a ring spectrum
and u : MU → E is a ring morphism. In this case u is called a ring C -
marking. Clearly, every C -marked ring spectrum is a C -marked spectrum
since u turns E into an MU-module spectrum.

By 2.5, every C -oriented spectrum is a C -marked spectrum. Moreover, a
commutative C -marked ring spectrum is just a C -oriented spectrum.

It is clear that MU∗(X ; Z/2) = MU∗(X) ⊗ Z/2 for every X ∈ CT . So,
the map

a ∧ 1 : MU = MU ∧ S →MU ∧M(Z/2)

as above turns MU ∧M(Z/2) into a C -marked spectrum. (In fact, the spec-
trum MU ∧M(Z/2) admits a non-commutative multiplication, but this fact
is non-trivial, see Araki–Toda [1] and/or VIII.2.4 below.)

By 1.19, E∗(X) ∼= MU∗(X)⊗u∗E
∗(pt) for every finite CW -space X with

torsion free cohomology and every C -marked spectrum (E, u). In particu-
lar, E∗(CPn) = E∗(pt)[t]/(tn+1) where t := u∗(T ). Moreover, the following
analog of 2.2 holds and can be proved as 2.2 (i.e., following Adams [8]).

6.21. Proposition. Let (E, u) be a C -marked spectrum and t := u∗(T ).
Then the spectrum E satisfies conclusions (i)–(v) of 2.2. �

We define the formal group of a C -marked spectrum (E, u) to be the
formal group u∗f(T1, T2) ∈ E∗(CP∞×CP∞) = E∗(pt)[[x, y]]. It easy to see
that this formal group coincides with m∗(t) where m : CP∞×CP∞ → CP∞

is the multiplication 6.1.

6.22. Proposition. Let (E, u) be a C -marked spectrum with a formal group
F . Let v : MU → E be another C -marking of E, and let G be the formal group
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of (E, v). Then F � G. Furthermore, if H is any formal group equivalent to
F , then there exists a C -marking w of E such that the formal group of (E,w)
is H.

Proof. Set t = u∗(T ) ∈ E2(CP∞). Then v∗(T ) = t +
∑

ait
i+1 = f(t).

Now we have fF (x, y) = G(f(x), f(y)), cf. the proof of 6.6.
Let H � F , i.e., fF (x, y) = H(f(x), f(y)) for some formal power series

f(x) = x +
∑

aix
i+1. By setting ti = u∗(Ti) ∈ E2(CP∞ × · · · × CP∞), we

can define the characteristic classes cui and the characteristic numbers suω ∈
E2|ω|(MU). Following (2.25), we define w :=

∑

ω

aωsω(U). Then w∗(T ) =

f(u∗(T )), and thus the formal group of (E,w) is H . �

6.23. Remark. It is still unknown whether every formal group can be real-
ized by a C -marked spectrum. There are several approaches to attack this
problem. For example, if a graded formal group F is classified by a homo-
morphism ρ : MU∗(S)→ R then one can consider the functor MU∗(−)⊗ρR.
Generally speaking, it is not a homology theory (the exactness axiom fails).
However, sometimes (see Ch. IX,§4) it is a cohomology theory (at least, on
Cf) which, therefore, realizes F .

Another way is to use (co)bordism with singularities, see Ch. VIII, espe-
sially VIII.4.14.

Also, probably, the following program can partially help to attack the
realizabilty problem. For simplicity, we denote MU∗(S) by L. Consider a
graded commutative ring R and define a spectrum M(R) := ∨ΣiM(Ri); so,
π∗(M(R)) = R. Set E := MU ∧M(R); then

E∗(S) = L⊗R = R[x1 ⊗ 1, . . . , xn ⊗ 1, . . . ]

where L = Z[x1, . . . , xn, . . . ]. Now, let F be a graded formal group over R,
and let ϕ : L → R classify F . We set yi := xi ⊗ 1 − 1 ⊗ ϕ(xi). Clearly,
L ⊗ R = R[y1, . . . , yn, . . . ]. Furthermore, we define a homomorphism ψ :
L⊗R→ R,ψ(a⊗ b) = ϕ(a)b. Note that Kerψ = (y1, . . . , yn, . . . ).

The obvious morphism S → M(R) (given by the unit 1 of R) induces
a morphism MU → E which turns E in a C-marked spectrum. Clearly,
F = ψ∗(G) where G is the formal group of E.

Now, suppose that E is a ring spectrum. We define E(1) to be the cone
of the morphism y1 : Σ2E → E. Clearly, E(1) is a C-marked spectrum,
and E(1)∗(S) = R[y2, . . . , yn, . . . ]. Furthermore, if(!) E(1) is an E-module
spectrum then we define a spectrum E(2) to be the cone of the morphism
y2 : Σ4E(1)→ E(1). So, we get a C-marked spectrum E(2) with E(2)∗(S) =
R[y3, . . . , yn, . . . ]. Now, if E(2) is an E-module spectrum we can define E(3).
So, if we are able to proceed we get a tower

E → E(1)→ · · · → E(n)→ · · ·
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of C-marked spectra with E(n)∗(S) = R[yn+1, . . . , yn, . . . ]. Thus, passing to
the direct limit, we get a C-marked spectrum E(∞) whose formal group is
F .

So, the problem is whether the spectra E(n) are (turn out to be) E-
module spectra. It seems that it holds if E is an E∞ ring spectrum, see
Elmendorf–Kriz–Mandell–May [1]. On the other hand, I do not know any
counterexample where the above program does not work.

6.24. Remark. It was Novikov who discovered the connection between com-
plex cobordism and formal groups. Namely, in Novikov [4], §5, he said ex-
plicitly that f(u, v) is a formal group over MU∗(pt). Also, Mǐsčenko com-
puted the logarithm of this formal group, see Addendum 1 to Novikov [4].
Two years later Quillen [1] found that this formal group coincides with the
universal formal group constructed by Lazard. Moreover, he gave some im-
portant applications of this fact. For example, he constructed the idempotent
Φ : MU [p]→MU [p] such that

Φ[CPn] =
{

[CPn] if n = pk − 1 ,
0 otherwise.

After this paper the intensive expansion of formal groups in algebraic
topology started. Furthermore, the excellent surveys of Adams [8], Ch. II
and Buhštaber–Mǐsčenko–Novikov [1] contributed to this development.

§7. The Steenrod–tom Dieck Operations

Recall that Sω (resp. Cω) means sMU ,T
ω (resp. cMU ,T

ω ).

T. tom Dieck [1] constructed certain operations in cobordism theory. He
called them Steenrod operations. Therefore we use the term Steenrod–tom
Dieck operation. We expose them for the particular case of complex cobor-
dism and p = 2. Here we follow mainly Buhštaber [2], cf. also Quillen [2]. At
the end of the section (starting from 7.17) we discuss results of Mironov [2]
describing Steenrod–tom Dieck operations on π∗(MU). We need some pre-
liminaries.

Given a space X , consider the involution a : Sn × X × X , a(s, x, y) =
(−s, y, x), where −s is the antipode of s. Hence, we have a Z/2-action on
Sn ×X ×X . Set

(7.1) Γn(X) := Sn ×Z/2 X ×X := (Sn ×X ×X)/(Z/2).

Similarly, given a pointed space X , set

(7.2) Γ+
n (X) := (Sn)+ ∧Z/2 X ∧X := ((Sn)+ ∧X ∧X)/(Z/2),
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where the Z/2-action interchanges antipodes in (Sn)+ and switches factors
in X ∧X .

Given a complex vector bundle ξ overX , we have a complex vector bundle
p∗(ξ× ξ) over Sn×X×X , where p : Sn×X×X → X×X is the projection.
The free involution a on Sn × X × X yields a free fiberwise involution on
the total space of p∗(ξ × ξ). Passing to quotient spaces, we have the map
ts(p∗(ξ × ξ)/(Z/2)) → Γn(X). This map is a complex vector bundle, which
we denote by ξ(2), dim ξ(2) = 2 dim ξ. It is easy to see that

(7.3) T (ξ(2)) = Γ+
n (Tξ).

7.4. Definition. Define the external Steenrod–tom Dieck operation

EP 2r
n : ˜MU2r(X)→ ˜MU4r(Γ+

n (X))

as follows. Let a ∈ ˜MU2r(X) be represented by a map f : S2lX → MUl+r.
There is the Thom–Dold class Uγ(2) ∈ ˜MU4l+4r(Γ+

n (MUl+r)) where γ = γl+r.
Consider the homomorphism

h : ˜MU4l+4r(Γ+
n (MUl+r))

f∗

−→ ˜MU4l+4rΓ+
n (S2lX) ∼= ˜MU4r(Γ+

n (X))

and define EP 2r
n (a) := h(Uγ(2)). It is easy to see that EP 2r

n is well-defined
for every r ∈ Z and n ≥ 0.

7.5. Theorem. The operations EP 2r
n have the following properties:

(i) They are natural with respect to X.
(ii) Let i : Sn−1 → Sn be the equatorial inclusion. Then i∗EP 2r

n (a) =
EP 2r

n−1(a) for every a ∈ ˜MU2r(X).
(iii) Define j : X ∧ X → (Sn)+ ∧ X ∧ X by setting j(x, y) := (e0, x, y),

where e0 = (1, 0, . . . , 0) ∈ Sn ⊂ R
n+1. Then j∗EP 2r

n (a) = a⊗ a ∈ ˜MU4r(X)
for every a ∈ ˜MU2r(X).

(iv) Define Δ : Γ+
n (X ∧ Y )→ Γ+

n (X) ∧ Γ+
n (Y ) by setting

Δ(s, x1, y1, x2, y2) = (s, x1, x2, s, y1, y2)

where s ∈ (Sn)+, xi ∈ X, yi ∈ Y . Then the diagram

˜MU2k(X)⊗˜MU2l(Y )
μ∗−−−−→ ˜MU2k+2l(X ∧ Y )

EP 2k
n ⊗EP 2l

n

⏐

⏐




⏐

⏐



EP 2k+2l

n

˜MU4k(Γ+
n (X))⊗˜MU4l(Γ+

n (Y )) ˜MU4k+4l(Γ+
n (X ∧ Y ))

μ∗

⏐

⏐




∥

∥

∥

˜MU4k+4l(Γ+
n (X) ∧ Γ+

n (Y )) Δ∗
−−−−→ ˜MU4k+4l(Γ+

n (X ∧ Y ))

commutes. (Here μ is the multiplication in MU .)
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(v) EP 2r
n (Uγr) = Uγr(2).

Proof. Decode the definitions. �
The reduced diagonal d : X → X ∧ X yields a Z/2-equivariant map

1 ∧ d : (Sn)+ ∧X → (Sn)+ ∧X ∧X , which induces, in turn, the embedding
of quotients

(7.6) λ : (RPn)+ ∧X → Γ+
n (X).

7.7. Definition. Define the Steenrod–tom Dieck operation

P 2r
n : ˜MU2r(X)→ ˜MU4r((RPn)+ ∧X)

as P 2r
n (x) := λ∗EP 2r

n (x).

7.8. Theorem. The Steenrod–tom Dieck operations P 2r
n have the following

properties:
(i) They are natural with respect to X.
(ii) Let in : RPn−1 → RPn be the canonical inclusion. Then i∗nP

2r
n (a) =

P 2r
n−1(a) for every a ∈ ˜MU2r(X).

(iii) P 2r+2s
n (xy) = P 2r

n (x)P 2s
n (y) for every x ∈ ˜MU2r(X), y ∈ ˜MU2s(X).

(iv) Let f : pt → RPn be any map. Consider the composition j : X =

S0 ∧X f+∧1−−−→ (RPn)+ ∧X. Then j∗P 2r
n (x) = x2.

Proof. This follows from 7.5. �
We have [RPn, BU1] = [RPn, CP∞] = H2(RPn) = Z/2, 2 ≤ n ≤ ∞.

Hence, there is only one non-trivial complex line bundle over RPn. We denote
it by ζn. We have c1(ζn) 
= 0, and so C1(ζn) 
= 0. Set zn := C1(ζn) ∈
MU2(RPn).

7.9. Theorem. Set z = z∞. Let f be the (universal ) formal group of
(MU , T ).

Then MU∗(RP∞) = MU∗(pt)[[z]]/([2]f (z)). (Here [2]f (z) means that we
substitute z in the formal power series [2]f .)

Proof. Consider the complex line bundle ξ := η2 over CP∞, and let
λ := {h : E → CP∞} be the principal U1-bundle associated with ξ. Recall
that U1 = S1, and so λ is a fibration S1 → E → CP∞. Considering the
homotopy exact sequence of this fibration, we conclude that πi(E) = 0 for
i 
= 1. Since χHZ,t(ξ) = c1(ξ) = 2t, we conclude (e.g., considering the Leray–
Serre spectral sequence of λ and using V.1.26(iv)) that π1(E) = Z/2. Hence,
E � RP∞. Now, 0 
= h∗(T ) ∈ H2(RP∞) = Z/2, and hence h classifies ζ∞,
and so h∗T = z.
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By 2.14 and (6.4),

χMU ,T (ξ) = C1(ξ) = C1(η2) = [2]f (C1η) = [2]f (T ).

Recall that MU∗(CP∞) = MU∗(pt)[[T ]]. So, the multiplication by [2]f (T )
is a monic endomorphism of MU∗(CP∞). Considering the Gysin sequence
V.1.25 of λ and using the equality h∗T = z, we complete the proof. �

This theorem can be generalized. Consider any C -oriented spectrum (E, t)
with a formal group F . If [2]F (z) is not a zero divisor in E∗(pt)[[z]], then

E∗(RP∞) = E∗(pt)[[z]]/([2]F (z)), where z = zE := h∗t ∈ E2(RP∞).
Similarly, we can replace RP∞ = K(Z/2, 1) by K(Z/p, 1) and prove that

E∗(K(Z/p, 1)) = E∗(pt)[[z]]/([p]F (z)) for suitable z ∈ E2(K(Z/p, 1)) provided

that [p]F (z) is not a zero divisor in E∗(pt)[[z]].

It is easy to see that ζn is given by the projection

Sn ×Z/2 C→ Sn ×Z/2 pt = RPn,

where Z/2 acts antipodally on Sn and via multiplication by −1 on C.
Choose a basis (ē1, ē2) of C

2. Let Z/2 = {a} act on C
2 as a linear map

such that a(ē1, ē2) = (ē2, ē1). Consider the complex vector bundle α given by
the projection Sn ×Z/2 C

2 → Sn ×Z/2 pt = RPn. Since a(f̄1, f̄2) = (f̄1,−f̄2)
for f̄1 = ē1 + ē2, f̄2 = ē1 − ē2, we conclude that α = θ ⊕ ζ.

The diagonal d : X → X × X induces a Z/2-equivariant map 1 × d :
Sn ×X → Sn ×X ×X . Passing to quotients, we get a map

� : RPn ×X → Sn ×Z/2 X ×X = Γn(X).

Let π1 : RPn ×X → RPn, π2 : RPn ×X → X be the projections. Let ξ be
a complex vector bundle over X .

7.10. Lemma. �∗ξ(2) = π∗
2ξ⊗π∗

1(α) = π∗
2ξ⊗π∗

1(θ⊕ ζ) = π∗
2ξ⊕ (π∗

1ζ⊗π∗
2ξ).

Proof. Let p : Sn×X×X → X×X, p2 : Sn×X → X be the projections.
We have (1×d)∗p∗(ξ×ξ) = p∗2ξ⊗θ2. Passing to quotients, we get the desired
formula. �

Consider the composition

RPn ×X k−→ RPn ×X �−→ Γn(X),

where k(a, x) = (∗, x). Passing to Thom spaces, we get the diagram

T (k∗�∗ξ(2)) k̄−−−−→ T (�∗ξ(2)) �̄−−−−→ Tξ(2)
∥

∥

∥

∥

∥

∥

∥

∥

∥

(RPn)+ ∧ Tξ k̄−−−−→ T (�∗ξ(2)) �̄−−−−→ Γ+
n (Tξ).
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It is easy to see that the bottom map �̄ k̄ is just the map λ in (7.6) forX = Tξ.

7.11. Lemma. We have C2(�∗ξ(2)) = C1(ξ)(zn+C1(ξ)+
∑

aijz
i
nC1(ξ)j) in

MU4(RPn ×X).

Here aij are the coefficients of the universal formal group f(x, y), and we
consider the elements zn ∈MU2(RPn) and C1(ξ) ∈MU2(X) as elements of
MU2(RPn ×X).

Proof. We have (omitting π∗
1 and π∗

2)

C2(�∗ξ(2)) = C2(ξ ⊕ (ζ ⊗ ξ)) = C2(ξ) + C2(ζ ⊗ ξ) + C1(ξ)C1(ζ ⊗ ξ)
= C1(ξ)f(C1(ζ), C1(ξ))

= C1(ξ)(zn + C1(ξ) +
∑

aijz
i
n(C1(ξ))j). �

7.12. Theorem. P 2
n(T ) = T (zn + T +

∑

aijz
i
nT

j) ∈ ˜MU4((RPn)+ ∧ Tη)
where T ∈ ˜MU 2(CP∞) is the universal C -orientation.

Proof. Consider a map ε : (RPn × CP∞)+ → RPn × CP∞, ε(x) = x for
every x ∈ RPn × CP∞. Let

z1 : CP∞ → Tη

z2 : RPn × CP∞ → (RPn)+ ∧ Tη = T (π∗
2η)

z3 : RPn × CP∞ → T (�∗η(2))

be the zero sections as in IV.5.4. Note that k̄z2 = z3. We have C1(η) = ε∗T
and z∗1Uη = T . Furthermore, P 2

n(Uη) = (�̄ k̄)∗EP 2
n(Uη) = k̄∗U�∗η(2). So,

ε∗P 2
n(T ) = ε∗P 2

n(z∗1Uη) = ε∗z∗2P
2
n(Uη) = ε∗z∗2k̄

∗U�∗η(2) = ε∗z∗3U�∗η(2)

= C2(�∗η(2)) = C1(η)(zn + C1(η) +
∑

aijz
i
n(C1(η))j)

= ε∗(T (zn + T +
∑

aijz
i
nT

j)).

Since ε∗ is monic, the theorem is proved. �

7.13. Corollary. Let UN ∈ ˜MU2N (MUN ) be the universal Thom–Dold class.
Then

P 2N
n (UN ) =

∑

ω

zN−l(ω)
n aω(zn)Sω(UN ) ∈ ˜MU2N ((RPn)+ ∧MUN)

for some aω(zn) ∈MU∗(pt)[zn], a(0) = 1.

Proof. By 1.29, z : CP∞ → Tη is a homotopy equivalence. Furthermore,
z∗Uη = T , and so, by 7.12,
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P 2
n(Uη) = Uη(zn + Uη +

∑

aijz
i
n(Uη)

j) =
∑

l(ω)≤1

z1−l(ω)
n aω(zn)Sω(Uη).

Let D1 · · ·DN ∈ ˜MU2N (Tη ∧ · · · ∧ Tη) be as in 2.16. By 7.8(iii),

P 2N
n (D1 · · ·DN ) =

∑

zN−l(ω)
n aω(zn)Sω(D1 · · ·DN )

in ˜MU2N ((RPn)+ ∧ Tη ∧ · · · ∧ Tη). Furthermore, by 2.16 and 1.21, the ho-
momorphism

(1(RPn)+ ∧TeN)∗ : ˜MU∗((RPn)+ ∧MUN)→ ˜MU∗((RPn)+ ∧Tη∧ · · · ∧Tη)

is monic, and (TeN)∗(UN ) = D1 · · ·DN . Thus, the result follows because of
the naturality of the operations. �

7.14. Corollary. Suppose that an element x ∈ ˜MU2q(X) is represented by
a map f : Σ2mX →MUq+m. Then

zmn P
2q
n (x) =

∑

zq+m−l(ω)
n aωSω(x) ∈ ˜MU4q+2m((RPn)+ ∧X).

Proof. Let σ2m ∈ ˜MU2m(S2m) be the image of the unit 1 ∈ ˜MU0(S0)
under the suspension isomorphism. Then f∗Uq+m = σ2mx. Hence, by 7.13,

P 2(q+m)
n (σ2mx) =

∑

zq+m−l(ω)
n aωσ

2mSω(x)

because Sω(σ2m) = 0 for l(ω) > 0. On the other hand, by 7.13, P 2m
n σ2m =

zmn σ
2m because σ2m can be represented by the root S2m →MUm. Hence, by

7.8(iii),

P 2(q+m)
n (σ2mx) = P 2m

n (σ2m)P 2q
n (x) = zmn σ

2mP 2q
n (x).

Equating the right hand sides of these equalities, we conclude that

zmn σ
2mP 2q

n (x) =
∑

zq+m−l(ω)
n aωσ

2mSω(x).

But multiplication by σ2m is the (suspension) isomorphism

˜MU∗((RPn)+ ∧X)→ ˜MU∗+2m(S2m ∧ (RPn)+ ∧X). �

In order to apply 7.14, we need the following technical lemma based on
7.9. Consider the formal power series

φ(x) :=
[2]f(x)
x

∈MU∗(pt)[[x]].
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7.15. Lemma. Let b ∈ ˜MUq((RP 2n)+∧X) be such that z2nb = 0. Then there
exists λ ∈ ˜MUq(X) such that k∗nb = λφ(z2n−2), where kn : (RP 2n−2)+∧X →
(RP 2n)+ ∧X is induced by the canonical inclusion RP 2n−2 → RP 2n.

Proof. Firstly, Tζ2n−2 = RP 2n/RP 1 = RP 2n/S1, cf. Stong [3], Ch. VIII,
Lemma 1. Hence, we have a Thom–Dold isomorphism

ϕ : MU i(RP 2n−2)→ ˜MU
i+2

(RP 2n/S1).

Let q : RP 2n → RP 2n/S1 be the quotient map. It is easy to see that

q∗ϕ : MU i(RP 2n−2)→ ˜MU i+2(RP 2n)

maps 1 ∈MU0(RP 2n−2) to z2n ∈ ˜MU2(RP 2n).
Consider the commutative diagram

˜MU1(S1) δ−−−−→ ˜MU2(RP 2n, S1)
q∗MU−−−−→ ˜MU2(RP 2n)

⏐

⏐




u

⏐

⏐




u

⏐

⏐




u

H1(S1) δH−−−−→ H2(RP 2n, S1)
q∗H−−−−→ H2(RP 2n)

∥

∥

∥

∥

∥

∥

∥

∥

∥

Z −−−−→ Z −−−−→ Z/2 .

Here the rows are the exact sequences of the pair (RP 2n, S1) and u is
given by a Thom class u ∈ H0(MU).

Let ι ∈ ˜MU1(S1) = Z be a generator. Since q∗H is epic, δH(uι) = 2α for
some α with q∗H(α) = uz2n. Let ̂ζ2n be a complex line bundle over RP 2n/S1

with c1(̂ζ2n) = α. Since q∗H(α) = uz2n, q∗̂ζ2n = ζ2n. Since ζ2
2n is trivial,

C1(ζ2
2n) = 0 = q∗MU (C1(̂ζ2

2n)), and so C1(̂ζ2
2n) = δ(mι) for some m ∈ Z. Now,

2mα = δH(muι) = uC1(̂ζ2
2n) = uδ(mι) = mδH(uι).

So, m = 1, and hence δι = C1(̂ζ2
2n).

We have C1(̂ζ2
2n) = ϕ(xn) for some xn ∈ MU0(RP 2n−2). Since the map

i = qkn : RP 2n−2 → RP 2n → RP 2n/S1 coincides with the zero section
of Tζ2n−2, we conclude, by V.1.26(i), that i∗ϕ(y) = z2n−2y for every y ∈
MU∗(RP 2n−2). Hence,

z2n−2xn = i∗ϕ(x) = i∗C1(̂ζ2
2n) = C1(i∗(̂ζ2n)2) = C1(ζ2

2n−2) = 0.

In particular, for n = ∞ we have z∞x∞ = 0. Consider the epimorphism
π : MU∗(pt)[[z]] → MU∗(RP∞), π(z) = z∞, as in 7.9. By 7.9, there is
x ∈MU∗(pt)[[z]] such that π(x) = x∞, and
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xz = [2]f (z)

( ∞
∑

i=0

aix
i+1

)

, ai ∈MU−2i(pt)

in MU∗(pt)[[z]]. Hence,

x∞ = φ(z∞)
(

a0 +
∑

aiz
i+1
∞

)

= a0φ(z∞).

Let bn : RP 2n → RP∞ be the inclusion. Considering the commutative
diagram

˜MU1(S1) δ−−−−→ ˜MU2(RP∞/S1)
ϕ←−−−− MU0(RP∞)

∥

∥

∥

⏐

⏐



e∗n

⏐

⏐




b∗n−1

˜MU1(S1) δ−−−−→ ˜MU2(RP 2n/S1)
ϕ←−−−− MU0(RP 2n−2)

and using that b∗n−1x∞ = xn, we conclude that xn = aφ(z2n−2), a ∈MU0(pt)
for every n, i.e.,

(7.16) ϕ−1δι = aφ(z2n−2)

for every n and some a ∈MU0(pt).
Let ε : (RP 2n)+ → S0 collapse RP 2n. The composition

˜MU i−1((RP 2n)+ ∧X) z2n−−→ ˜MU i+1((RP 2n)+ ∧X) ε∗−→ ˜MU i+1(X)

is trivial, i.e., z2nx ∈ ˜MU i+1(RP 2n ∧ X) ⊂ ˜MU i+1((RP 2n)+ ∧ X). So, we
can consider the homomorphism

z2n : ˜MU i−1((RP 2n)+ ∧X)→ ˜MU i+1(RP 2n ∧X).

Now we prove the lemma when X = Y + for some Y . The projection
p : RP 2n−2× Y → RP 2n−2 induces a bundle p∗ζ2n−2 over RP 2n−2× Y , and
T (p∗ζ2n−2) = RP 2n/S1 ∧ Y +. So, we have a Thom–Dold isomorphism

ψ : MU i−1(RP 2n−2 × Y ) −→ ˜MU i+1((RP 2n/S1) ∧ Y +)|
= ˜MU i+1(RP 2n ∧ Y +, S1 ∧ Y +).

Consider the diagram

˜MU i−1(Y +)
s,∼=−−−−→ ˜MUi(S1 ∧ Y +)

δ̃

⏐

⏐



δ

⏐

⏐




˜MU i−1((RP 2n−2)+ ∧ Y +)
ψ,∼=−−−−→ ˜MU i+1(RP 2n ∧ Y +, S1 ∧ Y +)

k∗n

�

⏐

⏐

γ

⏐

⏐




˜MU i−1((RP 2n)+ ∧ Y +) z2n−−−−→ ˜MU i+1(RP 2n ∧ Y +)
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Here the right line is the exact sequence of the pair (RP 2n ∧Y +, S1 ∧Y +), s
is the suspension isomorphism, and δ̃ := ψ−1δs. This diagram commutes. In-
deed, it is a diagram of ˜MU∗(Y )-modules and homomorphisms, so, it suffices
to check its commutativity for Y = pt. We leave this to the reader. (In fact,
this follows from the equality q∗ϕ(1) = z2n, see the very beginning of the
proof.) Furthermore, since this diagram is a diagram of ˜MU∗(Y )-modules,
δ̃(x) = xaφ(z2n−2) for every x ∈ ˜MU i−1(Y +) by (7.16). Now,

z2nb = 0 =⇒ γψk∗n(b) = 0 =⇒ ψk∗nb = δ(μ)

=⇒ k∗n(b) = δ̃(s−1μ) = s−1μaφ(z2n−2) = λφ(z2n−2)

for some λ ∈ ˜MU i−1(Y +).
Finally, for an arbitrary CW -space X consider the diagram X

i−→ X+ r−→
X with ri = 1X . Given b ∈ ˜MU∗((RP 2n)+ ∧ X) with z2nb = 0, we have
z2nr

∗b = 0. Hence, k∗nr
∗b = λφ(z2n−2) for some λ ∈ ˜MU∗(X+). Thus,

k∗nb = k∗ni
∗r∗b = i∗k∗nr

∗b = i∗(λφ(z2n−2)) = (i∗λ)φ(z2n−2). �

7.17. Proposition. Let X be a finite CW -space. If ˜MU∗(X) has no 2-
torsion, then

P 2r
2n(x+ y) = P 2r

2n(x) + P 2r
2n(y) + xyφ(z2n)

for every x, y ∈ ˜MU2r(X).

Proof. Note that Sω(x + y) = Sω(x) + Sω(y). Hence, by 7.14,

zm2k(P
2r
2k (x+ y)− P 2r

2k (x)− P 2r
2k (y)) = 0

for every k and suitable m (here we use that X is finite). We set k = m+ n.
Therefore, by 7.15,

zm−1
2k−2(P

2r
2k−2(x + y)− P 2r

2k−2(x) − P 2r
2k−2(y)) = λφ(z2k−2).

Let j : X → (RP k−1)+ ∧X be as in 7.8(iv). Since j∗z2k−2 = 0, we conclude
that j∗(λφ(z2k−2)) = 0, i.e., j∗(λ)j∗(φ(z2k−2)) = 0. But j∗λ = λ, while
j∗(φ(z2k−2)) = 2. So, 2λ = 0, and so λ = 0. Therefore,

zm−1
2k−2(P

2r
2k−2(x+ y)− P 2r

2k−2(x)− P 2r
2k−2(y)) = 0.

After iteration, we get z2k−2m(P 2r
2k−2m(x+y)−P 2r

2k−2m(x)−P 2r
2k−2m(y)) = 0.

Hence, by 7.15,

P 2r
2k−2m(x+ y)− P 2r

2k−2m(x) − P 2r
2k−2m(y) = λ′φ(z2k−2m−2),

i.e.,
P 2r

2n(x+ y)− P 2r
2n(x) − P 2r

2n(y) = λ′φ(z2n).
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By 7.8(iv), j∗P 2r
2n(a) = a2 for every a ∈ ˜MU2r(X). Hence,

2xy = (x+ y)2 − x2 − y2 = j∗(P 2r
2n(x + y)− P 2r

2n(x)− P 2r
2n(y))

= j∗(λ′φ(z2n)) = 2λ′.

Thus, λ′ = xy. �
Let I denote the ideal (2,Dec MU∗(pt)) of MU∗(pt).

7.18. Theorem. Set [2]f (x) = 2x+
∑

akx
k, deg ak = 2− 2k. Then

P 2−2k
2 (ak) ≡ z2a2k mod I.

Proof. Let h : CP∞ → CP∞ be the composition

CP∞ d−→ CP∞ × CP∞ m−→ CP∞,

i.e., h∗(T ) = [2]f (T ). Hence, by 7.12, P 2
2 (T ) = T (zn+T +

∑

aijz
i
nT

j). Now,
by 7.17, (≡ means ≡mod I)

P 2
2 (h∗(T )) = P 2

2

(

2T +
∑

akT
k
)

≡
∑

P 2−2k
2 (ak)(P 2

2 (T ))k

=
∑

P 2−2k
2 (ak)

(

Tz2 + T 2 +
∑

aijz
i
2T

j+1
)k

≡
∑

P 2−2k
2 (ak)(T 2k + kzT 2k−1).

(To be rigorous, we remark that we applied 7.17 to the space CP∞ and
considered infinite sums; but one can do the same calculations in CPN with
N large enough.)

On the other hand,

h∗(P 2
2 (T )) = h∗

(

T (z + T +
∑

aijz
iT j)

)

= h∗(T )
(

z + h∗(T ) +
∑

aijz
i(h∗(T ))j

)

≡ zh∗(T ) = z
∑

akT
k.

So, P 2−2k
2 (ak) ≡ z2a2k mod I.

z2 = 0.
�

7.19. Corollary. Let {2, x1, . . . , xk, . . . }, xi ∈ MU2−2i+1
(pt) be a se-

quence such that I(2, n) = (2, . . . , xn−1) for every n. Then P 2−2k

2 (xk−1) ≡
z2xk mod I.

Proof. By 6.15(ii), I(2, n) = (2, a1, . . . a2n−1−1). Hence, xk ≡ a2k−1 mod I,
and the corollary follows. �

7.20. Remark. Using Steenrod–tom Dieck operations (for all primes p),
Quillen [2] proved 6.11. The only necessary information about π∗(MU) is
that they are finitely generated! So, in view of 5.4, this yields an alternative
way (without the Adams spectral sequence) of calculating π∗(MU). Lemma
7.15 plays a key role in this calculation.



Chapter VIII. (Co)bordism with Singularities

(Co)bordism with singularities have many applications. However, in this book
we mainly consider only a few aspects of this theory: namely, we want to
demonstrate that (co)bordism with singularities establishes a big source of
interesting (co)homology theories and, in particular, enables us to construct
cohomology theories with prescribed properties (e.g., realizing certain formal
groups, etc.)

§1. Definitions and Basic Properties

Let ϕ : B → BV be a multiplicative structure map, where V is O or PL,
see IV.4.22. Let K be the class of all compact (B,ϕ)-manifolds (smooth
for V = O and PL for V = PL). For simplicity of notation, we say “K -
manifold” instead of “compact (B,ϕ)-manifold”. Because of the multiplica-
tivity of (B,ϕ), the product of two K -manifolds is a K -manifold in a canoni-
cal way. We also require thatM×N and (−1)dimM dimNN×M are isomorphic
(B,ϕ)-manifolds for every M,N ∈K .

Let L = LK be the (co)bordism theory based on K , i.e., L is the (B,ϕ)-
(co)bordism theory.

Fix a closed manifold P ∈ K , dimP = d. Consider a manifold M ∈ K
with ∂M = P × Z where Z is a closed K -manifold, and form a polyhedron

(1.1) K := Z × C(P ) ∪ϕM.

Here C(P ) is the cone over P and ϕ : Z×P → ∂M is a K -isomorphism (e.g.
an oriented diffeomorphism if K is the class of oriented smooth manifolds);
also, the inclusion Z×P ⊂ Z×C(P ) is given by the inclusion of the bottom
P ⊂ C(P ). Clearly, every closed manifold N ∈ K has this form if we put
Z = ∅ and N = M . On the other hand, K turns out to be a manifold if we
delete the set Z × {∗} from it.

1.2. Examples. (a) The wedge S1 ∨ S1 has the form (1.1) with P =
{4 points} and Z = pt since a neighborhood of the singular point is the cone
over 4 points. More generally, the wedge Mn

1 ∨ . . .∨Mn
k of closed n-manifolds

has the form (1.1) with P = Sn−1 	 . . . 	 Sn−1 (k times).
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(b) Consider the union of two intersecting circles in R
2. It has the form

(1.1) with P = {4 points} and Z = {2 points}. More generally, we can con-
sider the union of two intersected n-spheres in R

n+1 which has the form (1.1)
with P = {4 points} and Z = Sn−1.

(c) If P = {m points} and dimK = n then Hn(K; Z/m) = Z/m (pro-
vided that K is connected). So, such polyhedra give us good models for
homology classes mod m, as closed manifolds give us models for integral
homology classes. Novikov and Rochlin (1965, unpublished, mentioned in
Novikov [5]) used such objects when they considered topological invariance
of Pontrjagin classes mod m.

(d) Let Wn+1 be a smooth manifold such that its boundary ∂W is a non-
standard homotopy sphere, i.e., ∂W is PL isomorphic but not diffeomorphic
to the standard sphere Sn, see Kervaire–Milnor [1]. Then W ∪ C(∂W ) is a
PL manifold, but it turns out to be a smooth manifold with a singularity; it
has the form (1.1) with P = Sn and Z = pt.

Sullivan [1] suggested considering bordism theories based on polyhedra of
the form (1.1) as “closed manifolds”. (The corresponding concept of a “man-
ifold with boundary” can be introduced as well.) Furthermore, this construc-
tion can be iterated: we can consider a family {P1, . . . , Pm} of K -manifolds,
not only single P .

Baas [1] formalized these ideas successfully. Now we expose his approach.
Related material is also contained in Botvinnik [1], Vershinin [1].

1.3. Definition. (a) A k-dimensional K -manifold with Sullivan–Baas P -
singularity is a quintuple (V, ∂0V, ∂1V, δV, ϕ), where

(1) V is a K -manifold, dim V = k, with ∂V = ∂0V ∪ ∂1V where
∂iV, i = 1, 2 is a K -manifold.

(2) ∂∂0V = ∂0V ∩ ∂1V = ∂∂1V .
(3) δV is a certain K -manifold and ϕ : δV × P → ∂1V is a K -

isomorphism.
For simplicity, below we say just “K P -manifold” or “Sullivan–Baas K P -

manifold” instead of “manifold with Sullivan–Baas P -singularity” and “K P -
manifold V ” instead of “K P -manifold (V, ∂0V, ∂1V, δV, ϕ)”.

(b) Define the K P -boundary ∂P of a K P -manifold (V, ∂0V, ∂1V, δV, ϕ)
to be the K P -manifold

∂P (V, ∂0V, ∂1V, δV, ϕ) := (∂0V, ∅, ∂0V ∩ ∂1V, ∂δV, ϕ|∂δV ).

Note that ∂P∂PV = 0 for every V .
A closed K P -manifold is a K P -manifold M such that ∂PM = ∅, i.e.,

there is a fixed K -isomorphism ϕ : δM × P → ∂M , where δM is a closed
K -manifold.

Denoting by K P the class of K P -manifolds, we have in fact a cobordism
category (K P , ∂P ), see Stong [3].
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It is clear that every K -manifold V can be considered as a K P -manifold
V with δV = ∅. Furthermore, a closed K pt-manifold is just a K -manifold
with boundary.

1.4. Definition. A k-dimensional singular K P -manifold in a pair (X,A) is
a map f : (V, ∂PV )→ (X,A) of a k-dimensional K P -manifold V such that
there exists a commutative diagram

V
f−−−−→ X

�

⏐

⏐

�

⏐

⏐
f0

δV × P p1−−−−→ δV ,

where the left map δV ×P → V is the embedding δV ×P ϕ−→ ∂1V ⊂ ∂V ⊂ V .
In other words, f |∂1V passes through p1 : δV × P → δV , i.e., fϕ(b, p) =

f0(b) for every b ∈ δV, p ∈ P . The commutativity of the diagram above
formalizes the gluing of the cone in the Sullivan construction (1.1). Note that
f0 is unique if it exists.

Of course, ∂0V = ∅ if A = ∅. As usual, a singular manifold in (X, ∅) is
called a singular manifold in X .

We say that a singular closed K P -manifold f : M → X bounds if there
exists a singular K P -manifold g : V → X with ∂PV = M and g|M = f . In
this case we also write ∂P (V, g) = (M, f). Now, we can define a K P -bordism
relation on the class of closed singular K P -manifolds: two closed singular
K P -manifolds (M, f) and (N, g) are bordant if (M, f)	(−N,−g) = ∂P (V, h)
for some (V, h). Here (−g) : (−N)→ X coincides with g as a map of spaces,
but N is equipped with the opposite (B,ϕ)-structure (cf. IV.7.25). In this
case we say that (V, h) is a K P -membrane (or K P -bordism) between (M, f)
and (N, g).

The K P -bordism class of a closed singular manifold f : M → X is
denoted by [M, f ], as usual. Similarly to IV.7.26, for every n ∈ Z we have
the n-dimensional K P -bordism group of X : its elements are K P -bordism
classes of n-dimensional K P -manifolds, and the operation is induced by the
disjoint union of K P -manifolds. We denote this group by LPn (X) since we
denote by Ln the n-dimensional K -bordism group. For example, MUCP 1

is
the complex bordism theory with CP 1-singularity.

1.5. Remark. Consider the cobordism category K (X) generated by singular
K -manifolds in X , see Stong [3], Ch. IV, Example 6. There is a functor
P : K (X) → K (X), which transforms a map f : M → X to the map

M × P p1−→ M
f−→ X . It is easy to see that LP∗ (X) is the relative bordism

group constructed by P , as defined in Stong [3], Ch. I.
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We have the following homomorphisms (natural with respect to X):

P :Li(X)→ Li+d(X), {f : M → X} �→ {M × P p1−→M
f−→ X},

r = rX :Li(X)→ LPi (X), a manifold M ∈K is considered as
the K P -manifold M with δM = ∅ = ∂1M,

δ = δX :LPi (X)→ Li−d−1(X), δ[M, f ] := [δM, f0] with f0 as in 1.4.

1.6. Theorem–Definition. For every space X the sequence

(1.7) · · · −→ Ln(X) P−→ Ln+d(X) r−→ LPn+d(X) δ−→ Ln−1(X) −→ · · ·

is exact. This sequence is called the Bockstein–Sullivan–Baas exact sequence.

Proof. We prove that rP = 0. Consider a singular manifold

A× P p1−→ A
f−→ X.

Set V := A×P × I, ∂iV := A×P ×{i}, i = 0, 1. Set F : V → X,F (a, p, t) =
f(a). Then ∂P (V, F ) = (A × P, fp1). The equalities δr = 0 and Pδ = 0 can
be proved similarly.

We prove that the kernels are contained in the images.
1. Ker r ⊂ ImP . If r[M, f ] = 0 then (M, f) = ∂P (V, g). According to 1.4,

we have g|(δV × P ) = g0p1. Furthermore, ∂δV = δM = ∅, ∂0V = M, ∂1V =
δV ×P . Since ∂0V ∩ ∂1V = ∅, V gives a membrane between M and δV ×P .
Now it is clear that (V, g) is a membrane between (M, f) and (δV ×P, g0p1).
However, [δV × P, g0p1] ∈ ImP .

2. Ker δ ⊂ Im r. Let δ[M, f ] = 0. Then (δM, f |δM) = ∂P (B, g) for some
g : B → X , and there is an isomorphism ϕ : δB × P → ∂M . It is clear that
U := B×P ∪ϕM is a K -manifold. Set (U, h) := (B×P, gp1)∪ϕ (M, f). We
prove that r[U, h] = [M, f ]. Consider a manifold V := B×P∪ϕM×I, where ϕ
glues B×P andM×{0} ⊂M×I. By setting ∂0V = M×{0, 1}, ∂1V = B×P ,
we get that V is a K P -membrane between M and U . Define F : V → X as
follows: F (m, t) = f(m) for m ∈ M, t ∈ I, and F |U = h. Then (V, F ) is a
K P -membrane between r(U, h) and (M, f).

3. KerP ⊂ Im δ. Let P [M, f ] = 0, i.e., (M × P, fp1) = ∂(V, g) for some
singular K -manifold g : V → X . Since ∂V = M × P , we can consider V as
a closed K P -manifold. Now we have δ[V, g] = [M, f ]. �

1.8. Definition. Define the Bockstein homomorphism

βP : LPi (X)→ LPi−d−1(X)

as βP := rδ.

1.9. Remark. The Bockstein exact sequence

· · · −→ Hi(X) m−→ Hi(X) −→ Hi(X ; Z/m) −→ Hi−1(X) −→ · · ·
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looks like (1.7). We shall see below that (1.7) is not only an analog but a
generalization of the Bockstein exact sequence. Because of this, we call (1.7)
the Bockstein–Sullivan–Baas exact sequence. Furthermore, βP is an analog
(and a generalization) of the classical Bockstein homomorphism β. Moreover,
based on (1.7), one can construct an analog of the Bockstein exact couple
and spectral sequence (about the latter see Mosher–Tangora [1]).

Now we want to treat LP∗ as a homology theory. To achieve this goal
we have to introduce relative groups LP∗ (X,A) and check axioms II.3.1. The
groups LP∗ (X,A) can be defined in the usual way, cf. Ch. IV, § 7. Namely,
a singular K P -manifold f : (M,∂PM) → (X,A) in (X,A) bounds if there
exists a singular K P -manifold g : (V, ∂PV )→ (X,A) such that ∂0V = ∂′0V ∪
∂′′0V with ∂′0V = M, g|∂′0V = f and g(∂′′0V ) ⊂ A. Now, the corresponding
bordism classes form the bordism group LP∗ (X,A). Moreover, there is an
analog of 1.6 with (X,A) instead of X (prove it). Define homomorphisms
∂n : LPn (X,A)→ LPn−1(A), ∂n[M, f ] := [∂PM, f |∂PM ].

1.10. Theorem. The family {LP∗ (X,A), ∂∗} is an additive homology theory.

Proof. The exactness and homotopy axioms (see II.3.1) can be confirmed
in a routine way, see e.g. Conner [1]. We prove the collapse axiom. The
collapse p : (X,A) → (X/A, ∗) induces the following commutative diagram,
where the rows are the exact sequences (1.7):

· · · P−→ Ln+d(X,A) r−−−−→ LPn+d(X,A) δ−−−−→ Ln−1(X,A) −→ · · ·
∼=
⏐

⏐




p∗

⏐

⏐




p∗ ∼=
⏐

⏐




p∗

· · · P−→Ln+d(X/A, ∗)
r−−−−→ LPn+d(X/A, ∗)

δ−−−−→ Ln−1(X/A, ∗)−→ · · · .

Now the Five Lemma implies that p∗ : LP∗ (X,A) → LP∗ (X/A, ∗) is an iso-
morphism.

We leave it to the reader to prove additivity. �
Thus, by III.3.23(i), LP∗ can be represented by a spectrum LP , and this

spectrum is unique up to equivalence.
The spectrum LP yields a cohomology theory (LP )∗. Moreover, if X and

Y are n-dual then ˜LiP (X) ∼= ˜LPn−i(Y ). In particular, for every finite CW -
space X we have the exact sequence (dual to (1.7))

(1.11) · · · −→ Ln(X) P−→ Ln−d(X) r−→ Ln−dP (X) δ−→ Ln+1(X) −→ · · ·

and the Bockstein homomorphism (dual to 1.8)

βP = rδ : LnP (X)→ Ln+d+1
P (X).
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By III.3.23(ii), the morphisms P : Li(X)→ Li+d(X), r : Li(X)→ LPi (X)
and δ : LPi (X) → Li−d−1(X) of the homology theories are induced by mor-
phisms P : ΣdL → L, r : L → LP and δ : LP → Σd+1L of spectra. So, we
have the sequence of spectra

(1.12) · · · −→ ΣdL P−→ L
r−→ LP

δ−→ Σd+1L −→ · · · .

Given a space X , we can apply the functor π∗(−∧X) to this sequence. This
yields the sequence (1.7).

On the other hand, we can apply the functor π∗(−∧X) to the long cofiber
sequence

· · · −→ ΣdL P−→ L −→ C(P ) k−→ Σd+1L −→ · · · .
This yields an exact sequence

· · · −→ Ln(X) P−→ Ln+d(X) −→ C(P )n+d(X) k∗−→ Ln−1(X) −→ · · · ,

which looks like (1.7). Thus, it makes sense to compare LP and C(P ).

1.13. Theorem. Let L be a spectrum of finite Z-type. Suppose that the
homomorphism P : π∗(L)→ π∗(L) is monic. Then the following hold:

(i) The spectra LP and C(P ) are almost equivalent;
(ii) If the group (LP )0(L) has no phantoms (i.e., lim←−

1(LP )0(L(n)) = 0),
then L and C(P ) are equivalent.

Proof. Since L has finite Z-type, this follows from 1.6 and III.6.7. �

1.14. Proposition. If P and Q are bordant K -manifolds then the homology
theories LP∗ and LQ∗ are isomorphic.

Proof. Let A be a membrane between K -manifolds P and Q. Given
a K P -manifold V = (V, ∂0V, ∂1V, δV, ϕ), define a K Q-manifold V ′ =
(V ′, ∂0V

′, ∂1V
′, δV ′, ϕ′) as follows:

1. V ′ := δV ×A ∪ϕ V , where δV × A ⊃ δV × P ϕ−→ ∂1V ⊂ V ,
2. ∂0V

′ := (∂δV )×A ∪ϕ ∂0V ,
3. δV ′ := δV ,
4. ∂1V

′ := δV ×Q ⊂ δV ×A ⊂ V ′,
5. ϕ′ := 1δV×Q.
The correspondence V �→ V ′ yields a morphism h : LP∗ (X) → LQ∗ (X)

of homology theories. Considering the ladder of the corresponding sequences
(1.7), and using the Five Lemma, we conclude that h is an isomorphism. �

Because of 1.14, sometimes we write L[P ] instead of LP . For example,
we can consider a spectrum MUxi , where xi is a polynomial generator of
π∗(MU) = Z[x1, . . . , xn, . . . ]. By 1.6, π∗(MUxi) = π∗(MU)/(xi).
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As we remarked above, one can iterate singularities. Namely, if P ′ is a
closed manifold of K and V = (V, ∂0V, ∂1V, δV, ϕ) is a K P -manifold, then

(1.15) P ′ × V := (P ′ × V, P ′ × ∂0V, P
′ × ∂1V, P

′ × δV, 1P ′ × ϕ)

is a K P -manifold also. Hence, we can consider (K P )P
′
-manifolds and form

a class K P,P ′
, etc. This sequential approach is good in order to guess certain

facts about cobordism with singularities. However, from a technical point of
view, it is better to consider all the singularities simultaneously. The defini-
tion below follows Baas [1], with some small modifications; I am grateful to
Haynes Miller for a useful discussion about it.

1.16. Definition. (a) Let Σ = {Pi}i∈S be a finite set of closed manifolds of
K , and let dimPi = di. A closed k-dimensional K -manifold with Sullivan–
Baas Σ-singularity, or briefly a closed K Σ-manifold, is a tuple (M, δIM,ϕI,i),
where I runs over all subsets of S and i ∈ I, and, moreover, the following
hold:

(1) M is a K -manifold, dim M = k.
(2) δIM is a K -manifold, and ϕI,i : δIM × Pi → ∂(δI\{i}M) is a

K -embedding. Furthermore, dim δIM+di+1 = dim δI\{i}M , and

∂(δJM) =
⋃

i/∈J
ϕJ∪{i},i(δJ∪{i}M × Pi).

Also, δ∅M = M , and so ∂M =
⋃

i ϕ{i},i(δ{i}M × Pi).
(3) For every I and every i, j ∈ I, i 
= j the diagram

δIM × Pi × Pj
ϕI,i×1−−−−→ ∂(δI\{i}M)× Pj

⊂−−−−→ δI\{i}M × Pj
(ϕI,j×1)(1×T )

⏐

⏐




⏐

⏐




ϕI\{i},j

∂(δI\{j}M)× Pi ⊂−−−−→ δI\{j}M × Pi
ϕI\{j},i−−−−−→ δI\{i,j}M

is commutative, and

ImϕI\{i},j ∩ ImϕI\{j},i = Im((ϕI\{i},j)◦(ϕI,i × 1)).

Similarly to the above, we say “K Σ-manifold M” instead of “K Σ-
manifold (M, δIM,ϕI,i)”.

(b) Choose i0 ∈ S, put P = Pi0 and set ˜Σ = Σ \ {P}. Given a
K Σ-manifold M = (M, δIM,ϕMI,i), define a K Σ̃-manifold N = δPM :=
(N, δJN,ϕNJ,j) by setting δJN = δJ∪{i0}M and

ϕNJ,j : δJN × Pj = δJ∪{i0}M × Pj
ϕMJ∪{i0},j−−−−−−→ ∂(δJ∪{i0}\{j}M) = ∂(δJ\{j}N).
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Note that N = δ{i0}M : this fact justifies the notation δP . Furthermore,
dimM = dimN + dimP + 1.

In particular, given a family Σ = {Pi} and a closed K -manifold P , set
Σ′ = Σ ∪ P . Then we can assign a K Σ-manifold δPM to a K Σ′

-manifold
M .

(c) Given Σ = {Pi}, set Σ′ = Σ∪pt and define a K Σ-manifold with bound-
ary to be a closed K Σ′

-manifold. Given a K Σ-manifold V with boundary,
set ∂ΣV := δptV . We call ∂ΣV the K Σ-boundary of V . It is clear that the
K Σ-boundary of a K Σ-manifold with boundary is a closed K Σ-manifold.

(d) Given a closed K Σ′
-manifold M and a closed K -manifold P , define

a closed K Σ′
-manifold M ×P , where δI(M ×P ) = δI(M)×P and ϕM×P

I,i =
ϕMI,i × 1P .

(e) Again, let Σ = {Pi}i∈S . Given a subset T ⊂ S, consider the family
˜Σ = {Pi|i ∈ T }. Now, every closed K Σ̃-manifold M can be considered as a
closed K Σ-manifold if we put δIM = ∅ for every I with I 
⊂ T .

It is clear that ∂Σ∂ΣV = ∅. (This equality makes sense because of 1.16(e).)
So, we have a new cobordism category (K Σ, ∂Σ) where K Σ is the class of
all K Σ-manifolds.

Iterations of the inclusions δIM × Pi ⊂ ∂(δI\{i}M) ⊂ δI\{i}M yield an
inclusion δIM ×

∏

i∈I\J Pi → δJM for every J ⊂ I. In particular, there is an
inclusion δIM ×

∏

i∈I Pi ⊂ δ∅M = M .

1.17. Definition. A singular K Σ-manifold in a pair (X,A) is a map f :
(V, ∂ΣV )→ (X,A) where V is a K Σ-manifold with boundary and f is such
that for every I there exists a commutative diagram

V
f−−−−→ X

�

⏐

⏐

�

⏐

⏐
fI

δIV ×
∏

i∈I Pi
p1−−−−→ δIV ,

where the left map is the inclusion as above and the bottom map is the
projection.

As above, one can define a bordism theory LΣ
∗ (X,A). Furthermore, if

Σ′ = Σ ∪ {P}, dim P = d, then there is an exact sequence

(1.18) · · · −→ LΣ
i (X,A) P−→ LΣ

i+d(X,A) r−→ LΣ′

i+d(X,A) δ−→ LΣ
i−1(X,A) −→ · · ·

(an analog of (1.7)). It is not unexpected, because, informally speaking, LΣ′
=

(LΣ)P , cf. (1.15). Here P is described in 1.16(d), r is described in 1.16(e),
and δ[V, f ] = [δP (V ), f |δP (V )]. We leave the formal proof to the reader.

As above, one can prove that LΣ
∗ (X,A) is a homology theory. So, it can be

represented by a spectrum LΣ, and this spectrum is unique up to equivalence.
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1.19. Definition. The homology (resp. cohomology) theory LΣ
∗ (−) (resp.

(LΣ)∗(−)) is called a bordism (resp. cobordism) theory with Σ-singularities.
For brevity, we just say (co)bordism with Σ-singularities.

Observe that LΣ is not determined by the ideal generated by {Pi}. For
example, if [P ] = 0 ∈ π∗(L), then the spectra LP and L{P,P} have different
coefficients.

Again, let Σ′ = Σ ∪ {P}, dim P = d. By III.3.23(ii), the morphism
P : LΣ

i (X,A)→ LΣ
i+d(X,A) of homology theories is induced by a morphism

P : ΣdLΣ → LΣ of spectra. Let C(P ) be the cone of the morphism P . The
following generalization of 1.13 holds.

1.20. Theorem. Let L be a spectrum of finite Z-type. Suppose that the
homomorphism P∗ : π∗(LΣ)→ π∗(LΣ) is monic. Then the following hold:

(i) The spectra LΣ′
and C(P ) are almost equivalent;

(ii) If the group (LΣ′
)0(LΣ) has no phantoms then LΣ′

and C(P ) are
equivalent. �

Now, let Σ = {P1, . . . , Pn, . . . } be a countable set. Set Σn = {P1, . . . , Pn}
and define LΣ

∗ (X,A) := lim−→LΣn
∗ (X,A). Since lim−→ preserves exactness, LΣ

∗ is
a homology theory. Moreover, one can see that LΣ

∗ is a bordism theory based
on manifolds of the class K Σ := ∪nK Σn .

As above, there is a forgetful morphism r : L∗(X,A) → LΣ
∗ (X,A) of

homology theories. By III.3.23(ii), it is induced by a morphism of spectra

(1.21) r = rΣ : L→ LΣ.

1.22. Definition. Let R be a commutative ring, and let M be an R-module.
A sequence {x1, . . . , xn, . . . , }, xi ∈ R (finite or infinite) is called proper with
respect to M , or just M -proper, if multiplication by x1 : M →M is monic and
multiplication by xi : M/(x1, . . . , xi−1)M → M/(x1, . . . , xi−1)M is monic
for every i. An R-proper sequence is called just proper.

1.23. Remark. There is a closely related concept of regular sequence, see
e.g. Lang [1]; namely, a proper sequence is called regular if (x1, . . . , xk) 
= R
for every k. For example, the sequence {1, 0} is proper but not regular in
Z. Note that if a finite sequence is regular then it remains regular after any
permutation, while this is not true for a proper sequence. So, we preferred to
introduce a new term (proper) and not to talk about “weak regularity”, etc.

1.24. Proposition. Let Σ = {x1, . . . , xn, . . . } be a proper sequence (finite
or not) in π∗(L). Then there is a π∗(L)-module isomorphism π∗(LΣ) =
π∗(L)/(x1, . . . , xn, . . . ).
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Proof. Put Σn = {x1, . . . , xn}. By 1.6, π∗(LΣ1) = π∗(L)/(x1). Now, con-
sidering the exact sequence (1.18) and using an obvious induction, we con-
clude that π∗(LΣn) = π∗(L)/(x1, . . . , xn) for every n. So, the proposition
holds for every finite proper Σ. Thus, it is valid for infinite Σ also since
π∗(L)/(x1, . . . , xn, . . . ) = lim−→π∗(L)/(x1, . . . , xn). �

1.25. Examples. (a) Let K be the class of stably almost complex com-
pact manifolds, i.e., LK = MU . By VII.1.9(i), π∗(MU) = Z[x1, . . . , xn, . . . ].
Hence, by 1.24, if Σ = {x1, . . . , xn, . . . } then π∗(MUΣ) = Z. So, by the
Eilenberg–Steenrod Theorem,

MUΣ = HZ,

i.e., classical homology can be interpreted as bordism with singularities! Fur-
thermore, the morphism r : MU → MUΣ = HZ as in (1.21) coincides with
the Thom class, i.e., with the Steenrod–Thom morphism. In particular, every
homology class can be realized by a K Σ-manifold with this Σ.

(b) Let m be a natural number, let m be the manifold {m points}, and
let Σ′ = Σ ∪ {m} with Σ as in (a). Then MUΣ′

= HZ/m, and in this case
sequence (1.18) is just the Bockstein exact sequence.

(c) The sphere spectrum S yields framed bordism theory. Considering
m as in (b), one can prove that Sm is a Moore spectrum M(Z/m). In-
deed, the sequence (1.7) is exact for every spectrum X (because, by III.4.22,
Ei(X) = lim−→Ei+n(Xn) for all spectra E,X). Hence, Sm

i (HZ) = 0 for i 
= 0
and Sm

0 (HZ) = Z/m. Therefore,

H∗(Sm) = Sm
∗ (HZ) = H∗(M(Z/m)).

Thus, by II.4.32, Sm = M(Z/m).

§2. Multiplicative Structures

Here we assume that the above spectrum L is a commutative ring spectrum.
We discuss multiplicative structures in LΣ

∗ with Σ = {P1, . . . , Pn}. From here
to the end of the Chapter we assume that every Pi is an even-dimensional
manifold.

The main results of this section were proved by Mironov [1], [2]. This
material is also exposed in Botvinnik [1]. In order to have neater notation, we
shall consider pairings (quasi-multiplications) LΣ

∗ (X)⊗LΣ
∗ (Y )→ LΣ

∗ (X×Y )
rather than LΣ

∗ (X,A)⊗ LΣ
∗ (Y,B)→ LΣ

∗ (X × Y,A× Y ∪X ×B).

If M is a K -manifold and N is a K Σ-manifold, then M × N is a K Σ-
manifold in the canonical way. Namely, we set ∂i(M ×N) := M × ∂iN , etc.
(cf. (1.15)). Thus, we have pairings
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mL : L∗(X)⊗ LΣ
∗ (Y )→ LΣ

∗ (X × Y ),mL(f ⊗ g) = f × g : M ×N → X × Y,
mR : LΣ

∗ (Y )⊗ L∗(X)→ LΣ
∗ (Y ×X),mR(g ⊗ f) = g × f : N ×M → Y ×X,

where f : M → X is a singular K -manifold and g : N → Y is a singular
K Σ-manifold. These pairings turn LΣ into a (left and right) quasi-module
spectrum over L.

2.1. Definition. A quasi-multiplication μ in LΣ
∗ is called admissible if it is

compatible with the pairings mL,mR above, i.e., if the diagram

L∗(X)⊗ LΣ
∗ (Y ) mL−−−−→ LΣ

∗ (X × Y )

r⊗1

⏐

⏐




∥

∥

∥

LΣ
∗ (X)⊗ LΣ

∗ (Y )
μ−−−−→ LΣ

∗ (X × Y ),

and the similar diagram for mR commute.
In this case the forgetful morphism r : L∗(−) → LΣ

∗ (−) is a quasi-ring
morphism of homology theories.

It is difficult to introduce a quasi-multiplication in LP∗ (X) because the
product of two K P -manifolds is not a K P -manifold in general. So, one
must find some bypasses. Firstly, we consider a geometric situation which
makes this difficulty clear.

Fix any closed manifold P ∈ K , dimP = d. Clearly, r[P ] = 0, where
r : L∗(pt) → LP∗ (pt) is the forgetful homomorphism. Hence, if L∗ admits a
quasi-multiplication μ then μ([M ] ⊗ [P ]) = 0 for every closed K P -manifold
M . So, if this quasi-multiplication is admissible then [M × P ] = 0 ∈ LP∗ (pt).

Consider a K P -manifold Mm with ∂M = δM ×P and try to prove that
[M ×P ] is K P -bordant to zero. We have ∂(M ×P ) = δM ×P ′×P ′′, where
P ′, P ′′ are copies of P , and δ(M × P ) = δM × P ′′. Try to find a membrane
for M × P . The most natural way is (see the proof of 1.6): take M × P × I
and set ∂0(M × P × I) = M × P × {0}. Then we must put

∂1(M × P × I) = ∂(M × P )× I ∪ (−1)mM × P × {1}
= δM × P ′ × P ′′ × I ∪ (−1)mM × P × {1}.

In order to get M × P × I as a K P -manifold, we must put

δ(M × P × I) = δM × P ′ × I ∪ (−1)mM × {1}.

But this contradicts the equality δ(M × P × {0}) = δM × P ′′. This contra-
diction, i.e., the difference between P ′ and P ′′, is the main obstruction to
the existence of a quasi-multiplication. In order to avoid this obstruction we
need to fit δM × P ′ with δM × P ′′ canonically.

Look at this from another point of view. Consider two closed K P -
manifolds Mm, Nn and try to treat M ×N as a K P -manifold. We have
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∂(M ×N) = ∂M ×N ∪γ (−1)mM × ∂N
= δM × P ×N ∪γ (−1)mM × δN × P.

(2.2)

It would be good to write this as (δM ×N ∪γ (−1)mM × δN)× P . But we
cannot do this because γ is in fact the identity map of δM × P ′ × δN × P ′′,
while in the last term of (2.2) the first P is P ′ but the second P is P ′′. So,
again, we need to fit P ′ with P ′′.

Consider a manifold P := P ′ × P ′′ × I, where P ′, P ′′ are copies of P .
Recal that dimP is even. Turn P into a closed K P -manifold by setting
∂0P = ∅, ∂1P = ∂P = δP × P , where δP = P ′′ × {1} ∪ (−P ′ × {0}) and
ϕ : δP × P → ∂P has the form

ϕ : δP × P ∼= P ′′ × {1} × P ) ∪ (−P ′ × {0} × P ) =−→ ∂P .

Let a(P ) ∈ LP∗ (pt) be the K P -bordism class of P .

2.3. Proposition. Let M be an arbitrary closed K P -manifold.
(i) The K P -manifolds M × P and δM × P are K P -bordant.
(ii) If LP∗ has an admissible quasi-multiplication μ, then

μpt,pt([δM ]⊗ a(P )) = 0 ∈ LP∗ (pt),

Proof. (i) We have ∂M = δM × P . Hence (omitting signs),

∂(M × P × I) = δM × P × P × I ∪M × P × ∂I
= δM × P ∪M × P × {1} ∪M × P × {0}.

By setting ∂0(M ×P × I) = δM ×P ∪M ×P ×{0}, we obtain the proof. (It
makes sense to remark that the equality ∂0(M × P × I) = δM × P × P × I
forces us to regard P × P × I as the K P -manifold P .)

(ii) Notice that [P ] = 0 ∈ LP∗ (pt). Now

μpt,pt([δM ]⊗ a(P )) = [δM × P ] = [M × P ] = μpt,pt([M ]⊗ [P ])
= μpt,pt([M ]⊗ 0) = 0;

the first and third equalities hold since μ is admissible, the second equality
holds by (i). �

This hints that it is impossible to find an admissible quasi-multiplication
if a(P ) 
= 0.

2.4. Theorem. If a(P ) = 0 ∈ LP∗ (pt), then there exists an admissible quasi-
multiplication in LP∗ . Thus, a(P ) plays the role of an obstruction to the exis-
tence of an admissible quasi-multiplication.
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Proof. Let P = ∂PQ, dimQ = 2d + 2. The idea of the proof is that Q
enables us to cohere P ′ and P ′′ and so to avoid the difficulty discussed above.

Given two closed K P -manifolds M,N , we have (omitting signs)

∂(M ×N) = ∂M ×N ∪M × ∂N.

We put

∂0(M ×N) = ∂0M ×N ∪M × ∂0N, ∂1(M ×N) = ∂1M ×N ∪M × ∂1N.

Consider the manifold ̂N = N ∪ ∂N × I, i.e., we attach a collar to N .
Clearly, ̂N ∼= N . Hence,

∂(M ×N) ∼= ∂(M × ̂N) = ∂M ×N ∪ ∂M × ∂N × I ∪M × ∂N × {1}.

So,

∂1(M ×N) = δM ×P ′×N ∪ δM ×P ′× δN ×P ′′× I ∪M × δN ×P ′′×{1}.

But

δM×P ′×δN×P ′′×I ∼= δM×δN×P ⊂ δM×δN×∂Q ⊂ ∂(δM×δN×Q).

We set

(2.5) M ∗N = M ×N ∪ψ δM × δN ×Q,

where ψ identifies δM × P ′ × δN × P ′′ × I ⊂M ×N with δM × δN × P ⊂
∂(δM × δN ×Q). Then

∂(M ∗N) = δM × P ′ ×N ∪ δM × δN × ∂1Q ∪M × δN × P ′′.

We turn M ∗N into a K P -manifold by setting

δ(M ∗N) = δM ×N ∪ δM × δN × δQ ∪M × δN.

Given two singular K P -manifolds f : M → X, g : N → Y , we have a
map f × g : M ×N → X × Y . Let ∂N × I be a collar of ∂N in N . We can
assume that g|(∂N × I) = gp, where p : ∂N × I → ∂N is the projection.
Define

h : δM × δN ×Q proj−−→ δM × δN f×g−−→ X × Y.
According to Definition 1.4, h|(δM×δN×∂PQ) = h|(δM×δN×P ) coincides
with f × g|(δM × δN × P ) = f × g|(δM × P ′ × δN × P ′′ × I).

Define f ∗ g : M ∗N → X × Y by setting

f ∗ g|M ×N = f × g, f ∗ g|δM × δN ×Q = h.

Clearly, (f ∗ g)(∂P (M ∗N)) ⊂ X ×B ∪A× Y . We leave it to the reader to
prove that in this way we have a well-defined pairing



470 Chapter VIII. (Co)bordism with Singularities

(2.6)
μ = μQX,Y :LP∗ (X)⊗ LP∗ (Y )→ LP∗ (X × Y ),

μ([M, f ]⊗ [N, g]) := [M ∗N, f ∗ g]

and that the family {μQX,Y } is a quasi-multiplication in LP∗ .
Finally, this quasi-multiplication is admissible. Indeed, if M and/or N is

a K -manifold, then M ∗N = M ×N . �

2.7. Corollary. Suppose that a(P ) = 0 ∈ L∗(pt) and that every group LPi (pt)
is finite. Then the spectrum LP admits a ring structure such that r : L→ LP

is a ring morphism.

Proof. This follows from 2.4 and III.7.3, III.7.5. �
The quasi-multiplication (2.6) depends on Q. We clarify this dependence.

Let Q1, Q2 be two K P -manifolds with ∂PQ1 = P = ∂PQ2, and let μ1, μ2

be the corresponding quasi-multiplications in LP∗ (−). We set V := Q1 ∪f Q2

where

f : ∂0Q1 = P → −P = ∂0(−Q1), f(p) = p for every p ∈ P .

Following IV.7.24, one can prove that V is a (B,ϕ)-manifold. Furthermore,
∂V = ∂1Q1 ∪f (−∂1Q2), and we regard V as a closed K -manifold by setting
∂1V = ∂V . Let β = βP : LP∗ (−)→ LP∗ (−) be the Bockstein homomorphism
from 1.8.

2.8. Theorem. Let b = b(Q1, Q2) be the K P -bordism class of V . Then

μ1(x ⊗ y)− μ2(x ⊗ y) = ±mL(β(x) ⊗mL(β(y)⊗ b))

for every x ∈ LP∗ (X), y ∈ LP∗ (Y ). (Here ± means that we do not care about
the sign.)

Proof. Given two closed K P -manifolds M,N , we have (see the proof of
2.4)

∂(M ×N) ∼= ∂(M × ̂N) = ∂M ×N ∪ ∂M × ∂N × I ∪M × ∂N × {1}.

We set Δ := δM × P ′ × N ∪ (−1)mM × δN × P ′′. So, ∂(M ×N) = Δ ∪ A
where A ∼= δM × δN × P = δM × δN × ∂PQ. We define

W := I ×M ×N ∪ψ1 (δM × δN ×Q1) ∪ψ2 (δM × δN × (−Q2))

where ψ1 : {1} × A→ δM × δN × P and ψ2 : {0} × A→ δM × δN × P are
the isomorphisms described before (2.5). We have

∂(I ×M ×N) = M ×N × {1} ∪ (−(M ×N × {0})) ∪ (±(I × ∂(M ×N))).

Hence,
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∂W = M ∗1 N ∪ (−(M ∗2 N)) ∪ (±(I ×Δ))∪
(±(I ×A ∪ψ1 (δM × δN ×Q1) ∪ I × A ∪ψ2 (δM × δN × (−Q2))))

We set ∂1W := I ×Δ. Thus

∂PW =M ∗1 N ∪ (−(M ∗2 N)) ∪ (±(δM × δN × (Q1 ∪ (−Q2)))). �

2.9. Remarks. (a) Consider a K -manifold P̂ := P × P × I/ ∼, where
(x, y, 0) ∼ (y, x, 1), i.e P̂ = Γ1(P ). It is easy to see that P̂ and P are K P -
bordant. In particular, a(P ) ∈ Im(r : L∗(pt)→ LP∗ (pt)).

(b) As usual, we shall write ab instead of μ(a⊗ b), where a ∈ LP∗ (X), b ∈
LP∗ (Y ), ab ∈ LP∗ (X × Y ).

(c) We know that LP1
∗ and LP2

∗ are isomorphic if P1 and P2 are bordant.
Moreover, if a(P1) = 0 ∈ LP1

∗ (pt), then LP1
∗ and LP2

∗ are isomorphic quasi-
ring homology theories (by choosing suitable quasi-multiplications). We do
not need this fact and leave the proof to the reader.

We discuss commutativity and associativity of the quasi-multiplication
μ in LP∗ . Fix a K P -manifold Q with ∂PQ = P and consider the quasi-
multiplication μ = μQ as in (2.6). Set D = D(P ) = Q ∪χ Q, where χ :
∂PQ → ∂PQ, χ(p1, p2, t) = (p2, p1, 1 − t) for (p1, p2, t) ∈ P × P × I. Notice
that χ inverts the (B,ϕ)-structure on P , and so D is a (B,ϕ)-manifold. It
is clear that ∂D = ∂1Q ∪χ ∂1Q. We turn D into a closed K P -manifold by
setting ∂0D = ∅. Let b(P ) = bQ(P ) be the K P -bordism class of D.

2.10. Theorem. For every x ∈ LP∗ (X), y ∈ LP∗ (Y ) we have

xy − (−1)|x||y|τ∗(yx) = ±b(P )β(x)β(y) ∈ LP∗ (X × Y ),

where τ : X × Y → Y ×X switches factors. In particular, μ is commutative
if b(P ) = 0.

Proof. Consider two closed K P -manifolds Mm, Nn. Following the proof
of 2.8, we have ∂(M × N) = Δ1 ∪ A1, ∂(N ×M) = Δ2 ∪ A2. Furthermore,
M ∗N = M ×N ∪ψ1 δM × δN ×Q and N ∗M = N ×M ∪ψ2 δN × δM ×Q,
where ψ1 : A1 → δM×δN×P and ψ2 : A2 → δN×δN×Q are identifications
as in (2.5). We set

W := I ×M ×N ∪ψ1 (δM × δN ×Q) ∪ψ2 (δN × δM ×Q)

where ψ1 : {1} × A1 → δM × δN × P and ψ2 : {0} × A2 → δN × δM × P .
Now, arguing as in 2.8, we set ∂1W = I ×Δ, and so

∂PW = M ∗N ∪ (−(−1)mnN ∗M) ∪ (±(δM × δN ×D)). �

Now consider another manifold Q′ with ∂PQ′ = P and form a closed
manifold N = Q ∪P (−Q′). Then bQ(P ) = bQ′(P ) + 2[N ] ∈ LP∗ (pt). In
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particular, the mod 2 reduction κ(P ) ∈ LP∗ (pt) ⊗ Z/2 of bQ(P ) does not
depend on Q.

2.11. Corollary. If κ(P ) = 0, then LP∗ can be equipped with an admissible
commutative quasi-multiplication. In particular, if LP∗ (pt) contains 1/2, then
LP∗ can be equipped with an admissible commutative quasi-multiplication.

Proof. We have bQ(P ) = 2[N ] for some Q with ∂PQ = P and some closed
K P -manifold N . Set Q′ = Q∪ (−N). Then ∂PQ′ = P and bQ′(P ) = 0. �

This corollary shows that κ can be considered as an obstruction to com-
mutativity.

Passing to associativity, take Q with ∂PQ = P and construct a manifold
C(P ) = CQ(P ) as follows. Consider the arcs

Ak =
{

z ∈ S1
∣

∣

2k − 2
3

π ≤ arg z ≤ 2k − 1
3

π
}

, k = 1, 2, 3,

where S1 =
{

z ∈ C
∣

∣ |z| = 1
}

. We turn the manifold P × P × P ×D2 into
a K P -manifold by setting ∂P (P × P × P ×D2) = P × P × P × (∪Ak). Let
P ′, P ′′, P ′′′ be copies of P . We write P ×P ×P as P ′×P ′′×P ′′′ in order to
distinguish the factors in P × P × P . There are inclusions

j′ : ∂P (P ′ ×Q) = P ′ × P × P × I
= P ′ × P ′′ × P ′′′ ×A1 ⊂ ∂(P × P × P ×D2);

j′′ : ∂P (P ′′ ×Q) = P ′′ × P × P × I
= P ′′ × P ′′′ × P ′ ×A2 ⊂ ∂(P × P × P ×D2);

j′′′ : ∂P (P ′′′ ×Q) = P ′′′ × P × P × I
= P ′′′ × P ′ × P ′′ ×A3 ⊂ ∂(P × P × P ×D2).

Set Δ := P ×P×P×D2∪j′∪j′′∪j′′′ ((P ′×Q)∪(P ′′×Q)∪(P ′′′×Q)). Note
that Δ is a K P -manifold, since it is the result of gluing two K P -manifolds.

Consider the isomorphisms (identity maps)

P ′ ×Q i1−→ P ′′ ×Q i2−→ P ′′′ ×Q i3−→ P ′ ×Q,

and set

i = i1 	 i2 	 i3 : P ′ ×Q 	 P ′′ ×Q 	 P ′′′ ×Q→ P ′′ ×Q 	 P ′′′ ×Q 	 P ′ ×Q.

Define ψ : Δ→ Δ as follows:

ψ(p′, p′′, p′′′, ρ, ϕ) =
(

p′′, p′′′, p′, ρ, ϕ+
2π
3

)

,

where (ρ, ϕ) are polar coordinates on D2 and (p′, p′′, p′′′, ρ, ϕ) ∈ P ′ × P ′′ ×
P ′′′ ×D2, and
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ψ
∣

∣(P ′ ×Q 	 P ′′ ×Q 	 P ′′′ ×Q) = i
∣

∣(P ′ ×Q 	 P ′′ ×Q 	 P ′′′ ×Q).

Set

(2.12) CQ(P ) = (Δ× I)
/

∼ where (ψ(x), 0) ∼ (x, 1).

Let c(P ) = cQ(P ) be the K P -bordism class of CQ(P ).

2.13. Theorem. Suppose that P = ∂Q for some Q. Let LP∗ (−) be equipped
with the admissible quasi-multiplication (2.6). Then

(xy)z − x(yz) = ±(c(Q)− [δ(Q)]bQ(P ))β(x)β(y)β(z) ∈ LP∗ (X × Y × Z)

for every x ∈ LP∗ (X), y ∈ LP∗ (Y ), z ∈ LP∗ (Z).

Proof. This is similar to proofs above, but tedious, see Mironov [1], [2].
�

2.14. Corollary. The Moore spectrum M(Z/p), p > 3, p prime, admits the
structure of a commutative ring spectrum.

Proof. For simplicity, denote M(Z/p) by M . By 1.25(c), the homology
theory M∗ is framed bordism theory with the singularity {p points}. Since
πi(S) ⊗ Z/p = 0 for 0 < i < 5, we conclude that π2(M) = 0 = π3(M). So,
by 2.4, 2.10 and 2.13, M can be equipped with a commutative and associa-
tive quasi-multiplication. By III.7.3, this quasi-multiplication is induced by
a multiplication. Finally, the admissibility means that the map r : S → M
can be treated as the unit. �

2.15. Remark. The spectrum M(Z/3) admits a non-associative commuta-
tive pairing M(Z/3) ∧M(Z/3) → M(Z/3) by 2.4 and 2.10. In particular,
M(Z/3)∗(X) is a Z/3-module. The spectrum M(Z/2) does not admit any
pairing because π3(M(Z/2)) = Z/4, see Araki–Toda [1]. This means that the
obstruction a(P ) ∈ π1(M(Z/2)) for P = {2 points} is non-trivial.

Let {P1, . . . , Pn, . . . }, dimPn = dn, be a sequence of K -manifolds. Recall
that every dn is even. We set Σn = {P1, . . . , Pn}. Hence, there is a tower

(2.16) L→ LΣ1 → · · · → LΣn rn−→ LΣn+1 → · · · ,

We have also the Bockstein morphisms βn : LΣn → Σ−1−dnLΣn .

2.17. Theorem. Let a(Pi) = 0 ∈ LPi∗ (pt). Assume that there are chosen Qi
with ∂PiQi = P i for every i = 1, . . . , n, . . . . Then the following hold:

(i) Every homology theory LΣn
∗ admits a quasi-multiplication μn such

that every morphism in (2.16) is a quasi-ring morphism. Furthermore, if the
groups LΣn

i (pt) are finite for some n and every i, then the quasi-multiplication
μn can be induced by a multiplication (which is unique up to homotopy)
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LΣn∧LΣn → LΣn , i.e., LΣn becomes a ring spectrum. Moreover, if the groups
LΣn
i (pt) and LΣn+1

i (pt) are finite for some n and every i, then the morphism
rn : LΣn → LΣn+1 is a ring morphism.

(ii) Suppose that ri(bqi(Pi)) = 0 ∈ LΣi+1
∗ (pt) for every i < n. Then for

every x ∈ LΣn
∗ (X), y ∈ LΣn

∗ (Y ) we have

xy − (−1)|x||y|τ∗(yx) = ±bQn(Pn)βn(x)βn(y).

(iii) Suppose that [δQi] = 0 ∈ LPi∗ (pt) and c(Qi) = 0 ∈ LPi∗ (pt) for every
i ≤ n. Then for every x ∈ LΣn

∗ (X), y ∈ LΣn
∗ (Y ), z ∈ LΣn

∗ (Z) we have

(xy)z − x(yz) = 0,

i.e., the quasi-multiplication μn is associative.

Proof. This can be proved by induction based on 2.4, 2.10 and 2.13. See
Botvinnik [1], Mironov [1], [2]. �

2.18. Remark. The obstructions a, b, c are natural in the following sense.
Consider two classes K1,K2, where K2 is an underlying class for K1, e.g.,
K1 consists of stably almost complex manifolds and K2 consists of PL man-
ifolds. Consider the corresponding morphism r : (L1)P∗ → (L2)P∗ of bordism
theories. Given a K1-manifold P , we have the obstruction a1(P ) ∈ (L1)P∗ (pt).
Regarding P as a K2-manifold, we have the obstruction a2(P ) ∈ (L2)P∗ (pt).
By construction, r(a1) = a2, i.e., the obstruction a is natural with respect to
morphisms of bordism theories. Similarly for b, c.

§3. Obstructions and Steenrod–tom Dieck Operations

Mironov [2] found that the obstructions a(P ) and b(P ) can be expressed
in terms of Steenrod–tom Dieck operations. Below we explain this for the
obstruction b(P ), see 3.9. (If L = MU , then a(P ) = 0 for dimensional reasons,
while we did not define Steenrod–tom Dieck operations for other L.)

In this section γn denotes γn
C
.

Firstly, we give a geometric description of Steenrod–tom Dieck operations
for X = S0, i.e., we describe the homomorphism

P 2r
n : MU2r(pt) = ˜MU2r(S0)→ ˜MU4r((RPn)+) = MU4r(RPn)

in terms of manifolds. Here we follow Quillen [1].

3.1. Definition. Let Xn be a smooth manifold without boundary and let
V k be a smooth manifold (possibly with a boundary). (We do not assume X
and V to be compact.) Roughly speaking, a stable almost complex structure
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on a map f : V → X is a complex structure on a stable normal bundle of a
smooth embedding g : V k → X ×R

2N+k+n with p1g = f . We give a detailed
definition.

(a) A strict almost complex structure on f is a tuple g := (g, U, q, ν2n, ω)
where g : V k → X × R

2N+k+n is a smooth embedding with p1g = f ,
(U, q, ν2N ) is a smooth tubular neighborhood of g, and ω : ν2N → γN is
a morphism of vector bundles.

(b) Given a strict almost complex structure g := (g, U, q, ν2N , ω), we
define the suspension σg = (g′, U ′, q′, ν2N ⊕ θ2, ω′) of g, where g′ is the
embedding

V
g−→ X × R

2N+k+n × R
2 = X × R

2N+k+n+2, g′(v) = (v, 0),

U ′ := U × R
2, q′ = q × 1 : U × R

2 → ts(ν2N ⊕ θ2) = ts(ν2N ) × R
2, and

ω′ : ν2N ⊕ θ2 → γN+1 looks like ω̂ in IV.4.14(b).
(c) We say that two strict structures

g0 = (g0, U0, q0, ν
2N
0 , ω0), g1 = (g1, U1, q1, ν

2N
1 , ω1)

are equivalent if there is a family Jt : X × R
2N+k+n → X × R

2N+k+n, t ∈ I
with the following properties:

(1) p1Jt = f for every t ∈ I;
(2) The map J : X × R

2N+k+n × I → X × R
2N+k+n × I, J(a, t) =

(Jt(a), t) for every a ∈ X × R
2N+k+n, t ∈ I, is a diffeomorphism;

(3) J1(U0) = U1, J1(g0(v)) = g1(v) for every v ∈ V ;
(4) There is an isomorphism h : ν0 → ν1 of vector bundles such that

ω0 = ω1h : ν2N
0 → γN .

(d) We say that two strict almost complex structures g0 and g1 are stably
equivalent if there are non-negative integers k, l such that the strict almost
complex structures σkg0 and σlg1 are equivalent.

(e) A stable equivalence class of strict stably almost complex structures on
f : V → X is called a stable almost complex structure on f . A stably almost
complex map f : V → X is a map f with a fixed stable almost complex
structure.

Clearly, this definition can be generalized. Namely, given a structure map ϕ :
B → BVT , you can define a (B,ϕ)-structure on a T map f : V → X, ∂X = ∅,
of T manifolds. Moreover, every (B,ϕ)-structure on a manifold V can be regarded

as a (B,ϕ)-structure on the map V → pt.

Consider a stably almost complex map f : V k → Xn of a closed manifold
V . Let g be as in 3.1(a). Since ts ν2N ⊂ ts θ2N+k+n

X = X × R
2N+k+n, there

is a collapsing map

c : S2N+k+n(X+) = T (θ2N+k+n)→ Tν2N = T (θ2N+k+n)/U,
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where U is a tubular neighborhood of g(V ) in R
2N+k+n. So, we have a map

Tω : Tν → MUN+n. The map Tω◦c : Σ2N+k+n(X+) → MUN+n yields an
element m ∈ ˜MUn−k(X+), and we set

qX(V, f) := m ∈ ˜MUn−k(X+).

It is easy to see that the element qX(V, f) is well-defined, i.e., it does not
depend on g,N for N large. Besides, every x ∈ MU∗(X) has the form
qX(V, f) for some f : V → X . Indeed, let x ∈ MUk(X) be represented
by a map a : Σ2N−kX+ → MUN such that a is transverse to γN . If we
set V := a−1(BUN ), we get a stably almost complex map f : V → X with
qX(V, f) = x.

3.2. Lemma. Let fi : Vi → X, i = 0, 1, be two singular closed smooth
manifolds. Let F : W → X × R be a stably almost complex map with ∂W =
V0 	 V1 and such that each F |Vi, i = 0, 1 has the form Vi

fi−→ X = X × {i} ⊂
X ×R. Let us equip each fi with the stable almost complex structure induced
from F . Then qX(V0, f0) = qX(V1, f1). (Roughly speaking, qX is invariant
with respect to bordism of stably almost complex maps.) �

For simplicity, we denote qRPn by qn.

3.3. Proposition. Let x ∈ MU−2r(pt) = π2r(MU) be represented by a
manifold M2r. Consider a singular manifold f : V n+2r → RPn of the form

V = Sn ×Z/2 M ×M
f−→ Sn ×Z/2 pt× pt = RPn, f(s,m,m) = (s, ∗, ∗).

In other words, f = Γ2(ε), where ε : M → pt. Then f : V → RPn turns out
to be a stably almost complex map such that

qn(V, f) = P−2r
n (x) ∈ ˜MU−4r((RPn)+).

Proof. Routine arguments, based on the Pontrjagin–Thom construction
and the definition of Steenrod–tom Dieck operations. �

3.4. Construction. Let X be a stably almost complex manifold, and let
f : V k → Xn be a stably almost complex map. Consider the composition

V
g−→ R

2N+k+n ×X 1×i−−→ R
2N+k+n × R

2M+n

where g is as in 3.1 and i : X → R
2M+n be a smooth embedding. Clearly,

the complex structures on νg and ν1×i yield a complex structure on ν(1×i)g.
Thus, V gets a canonical stable almost complex structure.

Now, put X = pt in 3.4. Then, by 3.4, every stable almost complex
structure on a map ε : V → pt yields a stable almost complex structure
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on the manifold V (as described in IV.7.13(b)). We leave it to the reader
to check that in this way we get a bijective correspondence between stable
almost complex structures on ε and stable almost complex structures on V .

3.5. Proposition–Definition. Let h : Xk → Y l be a stably almost complex
map such that ∂X = ∅. We define h! : MU i(X) → MU i+l−k(Y ) by setting
h!qX(V, f) = qY (V, hf) for every stably almost complex map f : V → X.
This homomorphism is well-defined and called the Gysin homomorphism.17

Proof. Routine, based on the Pontrjagin–Thom Theorem. �

3.6. Lemma. (i) If V k is a closed stably almost complex manifold then
q(V, ε) = [V ] ∈MU−k(pt) where ε : V → pt collapses V .

(ii) If X is a stably almost complex manifold and f : V k → Xn is a
stably almost complex map then ε!qpt(V, f) = [V ] ∈ MU−k(pt), where [V ]
is equipped with the stable almost complex structure in 3.4 and ε : X → pt
collapses X.

(iii) Let X be a stably almost complex manifold. If q(V, f) = q(V ′, f ′) for
some f : V → X and f ′ : V ′ → X then [V ] = [V ′] where V and V ′ are
equipped with the stable almost complex structures in 3.4.

Proof. (i) This is obvious.
(ii) This follows from (i).
(iii) This follows from (ii). �
Given a pointed CW -space Y , consider the pointed inclusion eY : Y ⊂ Y +

and the homomorphism e∗Y : MU∗(Y ) = ˜MU∗(Y +) → ˜MU∗(Y ). Let σn ∈
˜MUn(Sn) be the image of 1 ∈ ˜MU0(S0) under the suspension isomorphism
˜MU∗(S0) → ˜MU∗+n(Sn). Since this isomorphism is multiplication by σn,
we denote it (as usual) by σn : ˜MU∗(S0)→ ˜MU∗+n(Sn).

3.7. Lemma. Let f : V k → Sn be a stably almost complex map. Then
e∗qSn(V, f) = σn[V ] ∈ ˜MUn−k(Sn) where V is equipped with the stable al-
most complex structure as 3.4.

Proof. Let q denote qSn . Let q(V, f) be represented by a map h :
S2N−n+k((Sn)+) = S2N+k ∨ S2N−n+k →MUN . Note that

S2N−n+k((Sn)+) \ ∗ ∼= Sn × R
2N−n+k.

We can assume that h is transverse to γN and that

h−1(BUn) ⊂ S2N−n+k((Sn)+) \ ∗.

Then q(V, f) = q(V ′, f ′), where V ′ = h−1(BUN ) and

17Cf. V.2.11.
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f ′ : V ′ ⊂ S2N−n+k((Sn)+) \ ∗ ∼= Sn × R
2N−n+k p1−→ Sn

is the map equipped with an obvious stable almost complex structure. Fur-
thermore, e∗q(V ′, f ′) is represented by h|S2N+k : S2N+k → MUN , and so
e∗q(V ′, f ′) = σn[V ′]. But, by 3.6(iii), [V ] = [V ′] since q(V, f) = q(V ′, f ′).

�
Let z2 ∈MU2(RP 2) be as defined before VII.7.9, and let z̃2 = e∗RP 2z2.

3.8. Lemma. Let c : RP 2 → S2 be an essential map (unique up to
homotopy). Then c∗σ2 = z̃2.

Proof. This is valid since σ2 = e∗S2C1(η1) (in the notation of Ch. VII).
�

Given x ∈ MU2r(pt), set ˜P 2r
n (x) := e∗RPnP

2r
n (x) ∈ ˜MU4r(RPn), where

P 2r
n is the Steenrod–tom Dieck operation.

3.9. Theorem. Let P = P d, d even, be a closed stably almost complex
manifold. Let r : MU →MUP be the forgetful morphism as in (1.12). Then

r ˜P−d
2 ([P ]) = z̃2bQ(P ) ∈ ( ˜MUP )−2d(RP 2)

for some Q. In particular,

ρr ˜P−d
2 ([P ]) = z̃2κ(P ) ∈ (( ˜MUP )−2d(RP 2))/(2),

where ρ is the modulo 2 reduction.

Proof. We construct a stably almost complex map f : M2d+2 → S2 such
that r[M ] = bQ(P ) and c∗q

S2 (M, f) = P−d
2 [P ] with c as in 3.8. Then the

theorem will be proved. Indeed, by 3.3, 3.7 and 3.8 we have (where e∗ =
e∗S2 , q = q

S2 )

˜P−d
2 ([P ]) = e∗RP 2c∗q(M, f) = c∗e∗q(M, f) = c∗(σ2[M ])

= c∗(σ2)[M ] = z̃2[M ].

We interpret S2 as the Riemannian sphere C = C ∪ {∞}. Consider the
following subsets of S2:

D1 := {z
∣

∣ |z| ≤ 1/2}, D2 = {z
∣

∣ |z| ≥ 2},
K1 := {z

∣

∣ 1/2 ≤ |z| ≤ 2, 0 ≤ | arg z| ≤ π/2},
K2 := {z

∣

∣ 1/2 ≤ |z| ≤ 2, π/2 ≤ | arg z| ≤ π},
S1 := {z

∣

∣ |z| = 1},
J := (1/2, 2) ⊂ R ⊂ C,

A := {z
∣

∣ 1/2 < |z| < 2} = S1 × J.
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For simplicity, denote Γ1(P ) (i.e., S1 ×Z/2 (P × P )) by Γ.
Let g = Γ1(ε) : Γ → Γ1(pt) = S1 be the map induced by ε : P → pt.

Consider the map
g × 1 : Γ× J → S1 × J = A

and set y = qA(Γ×J, g×1) ∈MU−2d(A). Let i : A→ A∪D1 be the inclusion.
Since [Γ] ∈ MU−2d−1(pt) = 0, y = i∗(x) for some x ∈ MU−2d(A ∪D1). We
have x = qA∪D1(V, f1), where f1 : V → A ∪D1 is such that

f−1
1 (A) = Γ× J and f1|Γ× J = g × 1.

(In fact, V is the result of attaching a membrane to the bottom of Γ×J , and
f1 maps this membrane to D1.)

We define an involution ω on Γ× J by setting

ω(z, p1, p2, s) = (z̄, p2, p1, 1/s), z ∈ S1, (p1, p2) ∈ P × P, s ∈ J.

We have (g × 1)(ω(v)) = 1/(g × 1)(v), v ∈ Γ × J . Define f2 : V → S2 by
setting f2(v) = 1/f1(v) for every v ∈ V . Gluing f1 and f2, we get a map

f = f1 ∪ f2 : M := V ∪ω V → S2.

We prove that r[M ] = bQ(P ) for some Q. Firstly, Γ can be represented
as P × P × I/ ∼, where (x, y, 0) ∼ (y, x, 1). We define

ϕ : P ′×P ′′×{0, 1} → P×P×{0, 1}, ϕ(x, y, 0) = (y, x, 1), ϕ(x, y, 1) = (y, x, 0).

Consider a K P -manifold W = P × I ∪ϕ Γ, where ϕ glues P × {1} and Γ. It
is clear that W is a K P -membrane between Γ and P .

Set N := f−1
1 (D1), ∂N = Γ. Set Q := P ∪ϕ N . Then

DQ(P ) = N ∪ϕ P × [−1, 0] ∪χ P × [0, 1] ∪ϕ N,

where χ : P × {0} → P × {0} is the involution defined before 2.10. This
manifold DQ(P ) is K P -bordant to the K P -manifold

N ∪ Γ× [−1, 0] ∪ω Γ× [0, 1] ∪N

which, in turn, is K P -bordant to M . Thus, r[M ] = bQ(P ).
We prove that c∗q

S2 (M, f) = P−d
2 (P ). Consider the principal Z/2-bundle

(two-sheeted covering) S1 × P × P → S1 ×Z/2 P × P = Γ. Let Z/2 act on
I = [0, 1] as the linear map t �→ 1 − t, and let X → Γ be the associated
(I,Z/2)-bundle. So, X is a manifold with ∂X = S1×P ×P . It is easy to see
that

(3.10) Γ2(P ) = S2 ×Z/2 P × P = D2 × P × P ∪S1×P×P X,

where D2 is a disk.
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Considering the inclusion R
2 ⊂ RP 2, we have RP 2 = R2, where bar

means the closure. Consider RP 1 = R1 ⊂ R2 = RP 2 and set

T = R1 × [−1, 1] ⊂ RP 2.

So, T is a Möbius band. Let π : T → RP 1 be the projection in the normal
bundle of RP 1 in RP 2. We have RP 2 = T ∪D2.

We choose c : (RP 2, RP 1)→ (S2, 1) such that:
1. c is smooth, c|(RP 2 \ RP 1) : RP 2 \ RP 1 → S2 \ {1} ⊂ C \ {1} is

bijective.
2. c(D2) ⊂ K2, c(−t) = 1/c(t) for every t ∈ T ⊂ RP 2 \RP 1.
3. The set π−1(a) ∩ c−1(D1) is connected for every a ∈ RP 1.
Consider the pull-back diagram

Z
f̂−−−−→ RP 2

⏐

⏐




⏐

⏐




c

M
f−−−−→ S2.

(In fact, Z = (M \ (D×Γ))∪S1×ΓX , where D is a small open disk.) Clearly,

q2(Z, f̂) = c∗q
S2 (M, f).

Set h = cf̂ : Z → S2. Switching the two copies of V in M , we get a dif-
feomorphism θ : h−1(D1) → h−1(D2) such that f̂(θ(m)) = −f̂(m) for every
m ∈ h−1(D1) (recall that f̂(m) ∈ T ).

Given s ∈ T \RP 1, s ∈ R1 × (0, 1], let Fs be the unique fiber of π : T →
RP 1 such that s ∈ Fs, and let Is be a unique segment which joins s and −s
in Fs. Let ls : I → Is be the linear homeomorphism, l(0) = s.

We have h−1(D1) = f−1(D1) = N . Define a map

ψ : N × {0} ∪ h−1(D1 ∩K1) ∪N × {1} → Z

of the subset of ∂(N × I) as follows:

ψ|N × {0} = 1N×{0}, ψ|N × {1} = θ|(N × {0}), and

ψ|(h−1(a)× I) = 1P × 1P × lc−1(a) : P × P × I → P × P × Ic−1(a)

where a ∈ D1 ∩K1.

Define Φ : N × I → RP 2 by setting Φ|(n × I) = lc(n) for every n ∈ N . The
stably almost complex map f̂ extends to a stably almost complex map

Φ̂ = f̂◦proj∪ Φ : Ẑ = Z × I ∪ψ N × I → RP 2.

Now, ∂Ẑ = Z 	X ∪D2 × P × P . Thus, by 3.2, and 3.3,
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q2(Ẑ, f̂) = q2(X ∪S1×P×P D
2 × P × P, Φ̂|X ∪S1×P×P D

2 × P × P )

= q2(Γ2(P ), Φ̂|Γ2(P )) = q2(Γ2(P ),Γ2(ε)) = P−d
2 (P ). �

Let {V0, . . . , Vn, . . . }, dimVn = 2n+1 − 2, be a family of stably almost
complex manifolds such that ([V0], . . . , [Vn−1]) = I(2, n) for every n. Set
Σn = {V0, . . . , Vn}. Let rn : MU → MUΣn be the forgetful morphism.
Since πodd(MU) = 0, the obstructions b(Vn) ∈ π∗(MUΣn) are defined. (We
use the same symbol for the obstruction b(Vn) ∈ π∗(MUVn) and its image
in π∗(MUΣn).) Furthermore, b(Vn) = κ(Vn) because 2π∗(MUΣn) = 0. Let
I = (2,Dec ) ⊂ π∗(MU) be the ideal as in VII.7.18.

3.11. Corollary. b(Vn) ≡ rn[Vn+1] mod I.

Proof. By 3.9 and VII.7.19,

z̃2b(Vn) = rn(P 2−2n+1

2 [Vn]) ≡ z̃2rn[Vn+1] mod I

in (MUΣn)∗(RP 2). Hence, it suffices to prove that ˜(MUΣn) ∗(RP 2) is a free
(MUΣn)∗(pt)-module. Now, E∗(S1) is a free E∗(pt)-module with one gener-
ator of dimension 1 for every ring spectrum E. If, in addition, 2π∗(E) = 0
then, considering the cofiber sequence S1 2−→ S1 → RP 2, we conclude that
E∗(RP 2) is a free E∗(pt)-module with generators x1, x2, dimxi = i. �

3.12. Remarks. (a) This corollary leads to the following description of
I(2, n). Set V0 = {2 points}. Since a(V0) = 0, we can construct a V0-manifold
D(V0) (described before 2.10). Since π∗(MU) → π∗(MUV0) is epic, there is
a stably almost complex manifold V1 which is V0-bordant to D(V0). Now,
a(V1) = 0, and we can construct D(V1) and V2 as above, and so on. Because
of 3.11, I(2, n) = ([V0], . . . , [Vn−1]).

(b) The following picture looks interesting. Consider MUV0 . It contains
[V1] := D(V0) as the obstruction to commutativity. Killing V1, i.e., construct-
ing MUΣ2 , we get [V2] := D(V1) as the obstruction to commutativity. And
so on. So, every killing of the obstruction produces a new obstruction, i.e.,
we have a Hydra here. And we can relax after killing all Vn’s only, obtaining
a commutative spectrum. By the way, in this way we obtain an ordinary
(co)homology theory, see IX.5.5 below.

§4. A Universality Theorem for MU with Singularities

This section is an extract from the paper Würgler [1].

Let (E, u) be a C -marked spectrum such that every group πi(E) is finite.
Set sω := u∗sω ∈ E2|ω|(MU). By VII.1.20, we have
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E∗(MU) = MU∗(MU)̂⊗MU∗(S)E
∗(S).

Thus, every element of E∗(MU) can be represented as a formal series
∑

aωsω, aω ∈ E∗(S).

Define E∗(S)-homomorphisms

ΔE : E∗(MU)→ E∗(MU)̂⊗E∗(S)E
∗(MU), ΔE(sω) =

∑

(ω1,ω2)=ω

sω1
̂⊗sω2

(see III.1.22–1.23 concerning the notation sω1
̂⊗sω2) and

ε : E∗(MU)→ E∗(S), ε(sω) = 0 for ω 
= 0.

We say that (E∗(MU),ΔE , ε) is an E∗(S)-coalgebra, because it satisfies
II.6.7(a) if we replace ⊗ there by ̂⊗.

4.1. Definition. (a) A profinite E∗(S)-module is any E∗(S)-moduleM of the
form M = lim←−{Mλ}, where {Mλ} is any inverse system of finitely generated
E∗(S)-modules. The category of profinite E∗(S)-modules is denoted by Mod.

(b) Given two profinite E∗(S)-modules M,N , we set

M �N := lim←−{Mλ ⊗E∗(S) Nλ′}.

(c) An E∗(MU)-comodule is a profinite E∗(S)-module M equipped with
a coaction ψ = ψM : M → E∗(MU) �M such that the diagrams like II.6.7
commute. A homomorphism of E∗(MU)-comodules is a homomorphism f :
M → N of E∗(S)-modules which commutes with the coactions, i.e., ψNf =
(f � 1)ψM . The category of E∗(MU)-comodules is denoted by Com.

Note that, by III.4.17, E∗(X) is a profinite E∗(S)-module for every spec-
trumX . Moreover,E∗(X)̂⊗E∗(S)E

∗(Y ) = E∗(X)�E∗(Y ) for every two spec-
tra X,Y . Furthermore, E∗(F ) is an E∗(MU)-comodule for every E-module
spectrum F . Indeed, the module structure m : MU → F induces the action

m∗ : E∗(F )→ E∗(MU ∧ F ) ∼= MU∗(MU)̂⊗MU∗(S)E
∗(F )

= E∗(MU)̂⊗E∗(S)E
∗(F ) = E∗(MU) � E∗(F ).

Let S : Com → Mod be the forgetful functor, and let F : Mod → Com
assign to each M ∈ Mod the extended comodule F (M) := E∗(MU) � M
with the coaction

ψF (M) := ΔE � 1 : E∗(MU) �M → E∗(MU)̂⊗E∗(S)E
∗(MU) �M

= E∗(MU) � E∗(MU) �M.

4.2. Lemma. There is a natural isomorphism

e : Com(A,F (B))→Mod(S(A), B)
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for every A ∈ Com,B ∈Mod. In other words, F and S are adjoint functors.

Proof. Given f : A→ F (B), define e(f) as the composition

A
f−→ E∗(MU) �B

ε�1−−→ E∗(S) �B = B.

We leave it to the reader to prove that e is an isomorphism. �
The following lemma is a standard result of relative homological algebra.

4.3. Lemma. Let M ∈Mod.
(i) (The relative injectivity of F (M).) Consider a diagram

A
κ−−−−→ B

⏐

⏐



f

F (M)

in Com. If κ is a split monomorphism in Mod, then there exists a morphism
g : B → F (M) of E∗(MU)-comodules with gκ = f .

(ii) Let 0 → F (M) → B → C → 0 be an exact sequence in Com. If it
splits in Mod then it splits in Com.

Proof. (i). Let a : B → A split κ in Mod. By 4.2, we have a commutative
diagram, where t is adjoint to f and b = tS(a):

S(A)
S(a)←−−−− S(B)

t

⏐

⏐




⏐

⏐



b

M M .

Hence bS(κ) = t. By 4.2, b is adjoint to some g : B → F (M), and gκ = f
because gκ is adjoint to t.

(ii) This follows from (i) if we put f = 1F (M) in (i). �
Every profinite module lim←−Mλ has a topology inherited from

∏

Mλ. This
topology does not depend on the system {Mλ} (prove it). LetMod be the cat-
egory of profinite topological modules (topologized as above) and continuous
homomorphisms.

4.4. Proposition. Let f : X → Y be a morphism of spectra. Then f∗ :
E∗(Y )→ E∗(X) is a morphism of the category Mod. �

4.5. Lemma. E∗(MU) is a projective object of Mod.



484 Chapter VIII. (Co)bordism with Singularities

Proof. Consider the left diagram of (4.6), where σ is epic:

(4.6)

B R
h−−−−→ B

⏐

⏐




σ ∩
⏐

⏐




⏐

⏐




σ

E∗(MU)
f−−−−→ C E∗(MU)

f−−−−→ C.

Assuming that this is a diagram in Mod, we must find a continuous homo-
morphism g : E∗(MU)→ B with σg = f .

It is easy to see that the topology on every M ∈ Mod is such that (ev-
ery homogeneous component of) M is compact. Hence M admits a unique
uniform structure compatible with this topology, see e.g. Bourbaki [2] or Kel-
ley [1]. Furthermore, M is a complete uniform space because M is compact.

Let R be the (discrete) E∗(S)-submodule of E∗(MU) generated by finite
sums

∑

aωsω. Then R is dense in E∗(MU). Since R is a free E∗(S)-module,
there exists h : R → B such that the right diagram of (4.6) commutes.
Since R is dense in the complete space E∗(MU) and B is complete, there
exists a continuous homomorphism g : E∗(MU)→ B which extends h. Since
f |R = (σg)|R and R is dense in E∗(S), we conclude that f = σg. �

4.7. Definition. A sequence (finite or infinite) Σ = {x0, x1, . . . , xn, . . . },
xi ∈ πdi(MU), is called invariant if sω(xi) ∈ (x0, . . . , xi−1) for every i and
every ω 
= (0). Clearly, the invariance implies that ϕ(xi) ∈ (x0, . . . , xi) for
every i and every operation ϕ ∈MU∗(MU).

Recall that MUΣk is a (left) MU-quasi-module spectrum.

4.8. Proposition. Let Σ = {x0, . . . , xn}, dimx0 = 0, be a proper sequence
in π∗(MU). Then the MU-quasi-module structure on MUΣi can be extended
to an MU-module structure on MUΣi , and this extension is unique. Further-
more, MUΣi is the cone of multiplication by xi : ΣdiMUΣi−1 →MUΣi−1 .

Proof. By 1.24, π∗(MUΣk) = π∗(MU)/(x0, . . . , xk). Hence, the groups
πi(MUΣk) are finite for all i, k. Thus, MUΣk is an MU-module spectrum by
III.7.8. Since multiplication by xi : π∗(MUΣi−1) → π∗(MUΣi−1) is monic,
MUΣk is the cone of xi by 1.20. �

4.9. Lemma. Let Σ = {x0, . . . , xn}, dimx0 = 0, be a proper invariant
sequence in π∗(MU). If multiplication by xi : ΣdiE → E is trivial for every
i, then there is an isomorphism of E∗(MU)-comodules

E∗(MUΣn) ∼= E∗(MU)⊗ Λ(q0, . . . , qn), dim qi = 1 + di.

Here the coaction

ψ : E∗(MU)⊗ Λ(q0, . . . , qn)→ E∗(MU)̂⊗E∗(S)E
∗(MU)⊗ Λ(q0, . . . , qn)

has the form ψ(a⊗ b) = ΔE(a)⊗ b.
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Proof. Firstly, we prove that multiplication by

xi+1 : Σdi+1MUΣi →MUΣi

induces the zero homomorphism E∗(MUΣi) → E∗(MUΣi). Consider the
commutative diagram

E∗(MUΣi) m∗
−→ E∗(MU ∧MUΣi)

(xi+1∧1)∗−−−−−−→ E∗(S ∧MUΣi)

a

�

⏐

⏐

∼= b

�

⏐

⏐

∼=

MU∗(MU)̂⊗E∗(MUΣi)
x∗
i+1⊗̂1
−−−−→ MU∗(S)̂⊗E∗(MUΣi)

where m∗ is induced by the module structure and ̂⊗ means ̂⊗E∗(S). Now,
given ϕ ∈ E∗(MUΣi) with m∗(ϕ) = a

(
∑

k ϕ
′
k
̂⊗ϕ′′

k

)

, we have

b ((xi+1 ∧ 1)∗(m∗ϕ)) = b
(

(x∗i+1 ⊗ 1)
(

∑

ϕ′
k
̂⊗ϕ′′

k

))

= b
(

∑

ϕ′
k(xi+1)̂⊗ϕ′′

k

)

.

However, ϕ′
k(xi+1) ∈ (x0, . . . , xi+1) because Σ is an invariant sequence.

Hence, b ((xi+1 ∧ 1)∗(m∗ϕ)) = 0. Now, since b is an isomorphism, we conclude
that (xi+1∧1)∗(m∗ϕ) = 0. But the homomorphism E∗(MUΣi)→ E∗(MUΣi)
in question coincides with (xi+1 ∧ 1)∗m∗.

Now we prove the lemma by induction on n. By 4.8, we have a cofiber
sequence ΣdiMUΣi xi−→ MUΣi r−→ MUΣi+1 . By the above, it yields an exact
sequence of E∗(MU)-comodules

(4.10) 0→ E∗(Σ1+diMUΣi)→ E∗(MUΣi+1)→ E∗(MUΣi)→ 0.

By 4.4, this is also a sequence in Mod. Suppose that we have an isomorphism
of E∗(MU)-comodules

E∗(MUΣi) ∼= E∗(MU)⊗ Λ(q0, . . . , qi) for i < n.

Then, by 4.5, E∗(MUΣi) is a projective object of Mod. So, by 4.4, the se-
quence (4.10) splits inMod, and, therefore, it splits in Mod. Hence, by 4.3(ii),
it splits in Com. Thus, we have an isomorphism of E∗(MU)-comodules

E∗(MUΣn) ∼= E∗(MUΣn−1)⊗ Λ(qn) ∼= E∗(MU)⊗ Λ(q0, . . . , qn).

The induction is confirmed. �

4.11. Definition. Let (M,ψ) ∈ Com. Similarly to II.6.12, we call an element
m ∈M simple if ψ(m) = u�m, and the submodule of simple elements of M
is denoted by Si(M).

Note that Si(E∗(MU)) = E∗(S).

4.12. Proposition. Let (F,m) be an MU-module spectrum. Let E∗(F ) be
the E∗(MU)-comodule with the coaction m∗ : E∗(F ) → E∗(MU)̂⊗E∗(F )



486 Chapter VIII. (Co)bordism with Singularities

described after 4.1. A morphism h : F → E is an MU-module morphism iff
the element h ∈ E∗(F ) is simple.

Proof. Define mE : MU ∧E u∧1E−−−→ E∧E −→ E, where u is the C -marking
on E. Because of VII.1.20, the left diagram below induces the right diagram:

MU ∧ F mF−−−−→ F E∗(MU)̂⊗E∗(S)E
∗(F )

m∗
F←−−−− E∗(F )

1MU∧h
⏐

⏐




⏐

⏐



h 1E∗(MU)⊗̂h∗

�

⏐

⏐

�

⏐

⏐h∗

MU ∧E mE−−−−→ E E∗(MU)̂⊗E∗(S)E
∗(E)

m∗
E←−−−− E∗(E).

We prove that the left diagram commutes iff m∗
F (h) = û⊗h. It is clear that

m∗
F (h) = m∗

Fh
∗(1E). Hence, the left diagram commutes iff

m∗
F (h) = (1E∗(MU)̂⊗h∗)m∗

E(1E),

i.e., iff

m∗
F (h) = (1MU ∧ h)∗m∗

E(1E) = (1MU ∧ h)∗(û⊗1E) = û⊗h. �

4.13. Theorem. Let Σ = {x0, . . . , xn, . . . }, dimx0 = 0, be a proper invariant
sequence (finite or not) in π∗(MU). If multiplication by xi : ΣdiE → E is
trivial for every i, then there is an MU-module morphism MUΣ → E such
that hr � u where r : MU →MUΣ is the forgetful morphism.

Proof. Put Σn = {x0, . . . , xn}, and let rn : MU →MUΣn be the forgetful
morphism. By 4.9,

Si(E∗(MUΣn)) = Si(E∗(MU)⊗Λ(q0, . . . , qn)) = Si(E∗(MU))⊗Λ(q0, . . . , qn).

Now, by 4.12, u ⊗ 1 ∈ Si(E∗(MU)) ⊗ Λ(q0, . . . , qn) yields an MU-module
morphism hn : MUΣn → E.

We prove that hnrn � u. Following the proof of 4.9, we conclude that
there is a commutative diagram

E∗(MUΣn)
∼=−−−−→ E∗(MU)⊗ Λ(q0, . . . , qn)

r∗n

⏐

⏐




⏐

⏐


r

E∗(MU) E∗(MU)

where r is a morphism of E∗(MU)-comodules such that r(qi) = 0 and r(a⊗
1) = a for every a ∈ E∗(MU). Thus, r∗n(hn) = u, i.e., hnrn � u.

If the sequence Σ is finite then Σ = Σn and r = rn for some n, and we
can put h = hn. Now, suppose that Σ is infinite. By the definition of hn, we
have hn � rnhn+1. So, we have the commutative diagram
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· · · −−−−→ MUΣn
∗ (−) rn−−−−→ MUΣn+1

∗ (−) −−−−→ · · ·

hn

⏐

⏐




⏐

⏐




hn+1

· · · E∗(−) E∗(−) · · ·

of morphisms of homology theories. Passing to the direct limit of the top row,
we get, by I.2.5, the morphism h : MUΣ(−) = lim−→{MU

Σn(−)} → E∗(−).
Now, by III.3.23(ii), h is induced by a morphism h : MUΣ → E of spectra.
The homotopy hr � u can be proved just as the homotopy hnrn � u was.

�

4.14. Corollary. Let F be a graded formal group classified by a homo-
morphism ρ : MU∗(S) → R. Suppose that ρ is an epimorphism such that
Ker ρ = (x0, . . . , xn, . . . ), where Σ := {x0, . . . , xn, . . . } is a proper sequence.
Then the formal group F can be realized by a C -marked spectrum. Moreover if
dimx0 = 0 and Σ is invariant then this spectrum is unique up to equivalence.

Proof. Let CT be the category described before VII.6.19. It is clear that
(

MUΣ
)∗

(S) ∼= R,

and so, by VII.1.20,
(

MUΣ
)∗ (X) ∼= MU∗(X)̂⊗ρR for every X ∈ CT . So,

MUΣ turns out to be a semiring spectrum. Furthermore, the forgetful mor-
phism r : MU →MUΣ turns MUΣ into a C -marked spectrum, and it is clear
that the formal group of (MUΣ, r) is F . To prove the uniqueness, consider a
C -marked ring spectrum (E, u) having the formal group F . Then, by 4.13,
the C -marking u can be decomposed as

u : MU r−→MUΣ h−→ E,

and it is clear that h is an equivalence. �

§5. Realization of Homology Classes by PL Manifolds
with Singularities

We have seen in 1.25(a) that every homology class can be realized by a
smooth manifold with Sullivan–Baas singularities. But this requires smooth
manifolds with a large (in fact, arbitrarily large) number of singularities. It
turns out that the situation looks simpler if one uses not smooth but PL
manifolds. Namely, in this case it suffices to use manifolds with only one
Sullivan–Baas singularity, see 5.11 below. This fact is compatible with the
following result of Brumfiel [1]: there are many PL manifolds such that their
fundamental classes cannot be realized by smooth manifolds, cf. IV.7.38(i).

The results of this section are proved by Rudyak [5,7].
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In this section K is the class of all compact HZ-oriented PL manifolds.
Fix an odd prime p. Below H∗(X) denotes H∗(X ; Z/p).

Let M(p) denote the Moore spectrum M(Z/p), T denote the spectrum
MSPLCP

p−1
, E denote the spectrum T ∧M(p), and D denote the spectrum

MU ∧M(p).

5.1. Lemma. (i) Each of the spectra T,E,D is connected and has finite
Z-type. Furthermore, each of the groups πi(E), πi(D) is finite.

(ii) π0(T ) = Z, π0(E) = Z/p = π0(D), H0(E) = Z/p = H0(D).

Proof. (i) The spectrum MSPL is connected by IV.5.23(i), and it has
finite type by IV.6.4. Now, 1.6 implies that T is connected and has finite
Z-type. Furthermore, since M(p) is the cone of a map S → S of degree p, we
have the exact sequence

· · · −→ πk(T )
p−→ πk(T ) −→ πk(E) −→ πk−1(T )

p−→ · · ·

where p denotes multiplication by p. Hence, E is connected, and πi(E) is a
finite p-group. Similarly for D.

(ii) Since π0(MSPL) = Z, the equality π0(T ) = Z follows from 1.6. Using
the exact sequence from (i), we conclude that π0(E) = Z/p. Now, the equality
H0(E) = Z/p follows from II.7.20. Similarly for D. �

5.2. Lemma. (i) The spectrum T is a quasi-ring spectrum, and the spectrum
T [p] is a commutative quasi-ring spectrum.

(ii) If p > 3, then E is a commutative ring spectrum. If p = 3, then E
admits a commutative pairing E ∧ E → E.

Proof. (i) Note that CP p−1 is a complex manifold. Hence, in view of 2.18,
the obstructions a(CP p−1) and c(CP p−1) belong to

Im(π∗(MUCP
p−1

)→ π∗(T )).

Since π4p−3(MUCP
p−1

) = 0 = π6p−3(MUCP
p−1

), these obstructions are triv-
ial. Hence T is a quasi-ring spectrum. The obstruction b(CP p−1) to commuta-
tivity of its pairing belongs to the group Im(π4p−2(MSOCP

p−1
)→ π4p−2(T ))

of exponent 4 (because 2πi(MSO) = 0 for i 
= 4k, see IV.6.5 and IV.6.9),
and so, by 2.10, 4(xy − (−1)|x||y|)τ∗(yx) = 0 for every x, y ∈ T∗(X). Thus,
T [p] is a commutative quasi-ring spectrum.

(ii) By 2.14, M(p) is a commutative ring spectrum for p > 3. Hence, by
(i), the spectrum E admits a quasi-multiplication. By III.7.3(i), this quasi-
multiplication can be induced by a multiplication E∧E → E. The case p = 3
can be considered similarly. �

5.3. Lemma. Let a ∈ H0(D) = Z/p be a generator. Then Q0(a) 
= 0 
=
Q1(a).
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Proof. By 5.1(ii) and II.7.20, Q0(a) 
= 0. The localization j : MUCPp−1 →
MUCPp−1

[p] induces an equivalence

j′ = j ∧ 1 : D = MUCPp−1 ∧M(p)→MUCPp−1
[p] ∧M(p).

Define a morphism

f : MU [p]
r[p]−−→MUCP

p−1
[p] = MUCP

p−1
[p] ∧ S

1∧ι−−→MUCP
p−1

[p] ∧M(p) � D,

where r : MU →MUCPp−1
is the forgetful morphism and the last equivalence

is an inverse morphism to j′. Let κ : BP → MU [p], ρ : MU [p] → BP and
{vi} be as in VII.3.19. Let κ∗ : π∗(BP )→ π∗(MU [p]) and ρ∗ : π∗(MU [p])→
π∗(BP ) be the induced homomorphisms. We have

κ∗(vn) ∈ I(p, n+ 1) ⊂ π∗(MU [p]).

Indeed, vn = ρ∗xpn−1, where I(p, n + 1) = (p, xp−1, . . . , xpn−1). Hence
κ∗(vn) = κ∗ρ∗(xpn−1) = Φ(xpn−1); but Φ(xpn−1) ∈ I(p, n + 1) because
I(p, n + 1) is an invariant ideal. Since I(p, 2) = (p, [CP p−1]), we conclude
that f∗κ∗(v1) = 0 ∈ π∗(D). Hence there exists a morphism h : C(v1) → D
such that the diagram

Σ2p−2BP
v1−−−−→ BP −−−−→ C(v1)

fκ

⏐

⏐




⏐

⏐



h

D D

commutes. Here the first row is a cofiber sequence. We have

πi(C(v1)) =

⎧

⎪

⎨

⎪

⎩

0 if i < 0,
Z/p if i = 0,
0 if 0 < i < 2p2 − 2.

Hence the coskeleton (C(v1))(2p2−2) is HZ[p]. Hence Q1(x) 
= 0 for a genera-
tor x ∈ H0(C(v1)) = Z/p. Since h∗ : H0(D)→ H0(C(v1)) is an isomorphism,
Q1(a) 
= 0. �

5.4. Lemma. Let u = uC ∈ H0(MU) be the universal Thom class. Then
PΔj(u) 
= 0 for every j = 1, 2, . . . .

Proof. Because of the universality of u, it suffices to find a complex vector
bundle ξ such that PΔj (uξ) 
= 0, j = 1, 2, . . . , where uξ ∈ H∗(Tξ) is the
Thom class of ξ. Let η be as in VII.1.3(f). Then, by VII.1.29, we can identify
Tη with CP∞, and x := uη ∈ H2(CP∞) generates H2(CP∞) = Z. We
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prove by induction on j that PΔj(x) = xp
j

for every j = 1, 2, . . . . Indeed,
PΔ1(x) = P 1(x) = xp. Suppose that PΔj (x) = xp

j

. Then

PΔj+1(x) = [P p
j

,PΔj ](x) = P p
j

PΔj (x) = P p
j

(xp
j

) = xp
j+1
. �

5.5. Theorem. E is a graded Eilenberg–Mac Lane spectrum.

Proof. By 5.1(ii), 5.2(ii) and II.7.21, H∗(E) is a connected Ap-coalgebra
(it is, probably, non-associative for p = 3). Let v ∈ H0(E) be the counit of
this coalgebra. Define ν : Ap → H∗(E) by setting ν(a) = a(v). By IV.6.4,
E has finite Z[p]-type. Thus, by II.7.24(ii) and II.7.25, is sufficient to prove
that ν(Qi) 
= 0 for i = 0, 1, ... , ν(PΔj ) 
= 0 for j = 1, 2, . . . .

Let r : MSPL → T be the forgetful morphism. The other forgetful mor-
phism s : MU → MSPL induces a forgetful morphism s̄ : MUCPp−1 → T .
Consider the morphisms

α : D = MUCPp−1 ∧M(p) s̄∧1−−→ T ∧M(p) = E,

β : MSPL = MSPL ∧ S r∧1−−→ T ∧ S 1∧ι−−→ T ∧M(p) = E,

γ : MU s−→MSPL β−→ E.

By 5.3, α∗ν(Qi) 
= 0 for i = 0, 1. Hence, ν(Qi) 
= 0 for i = 0, 1. By IV.6.13,
β∗ν(Qi) 
= 0 for i > 1. So, ν(Qi) 
= 0 for i > 1. By 5.4, γ∗ν(PΔj) 
= 0, j =
1, 2, . . . , because γ∗v = uC. Thus, ν(PΔj) 
= 0, j = 1, 2, . . . . �

5.6. Corollary (the main theorem). T [p] is a graded Eilenberg–Mac Lane
spectrum.

Proof. This follows from 5.5 and II.7.14 because, in view of II.5.6(ii),
T [p] ∧M(p) = E. �

Let v : T → HZ be a morphism given by a generator v ∈ H0(T ; Z) = Z. It
induces certain (Steenrod–Thom) homomorphisms vX : T∗(X) → H∗(X ; Z)
and v[p]X : T [p]∗(X)→ H∗(X ; Z[p]).

5.7. Corollary. The homomorphism

v[p]X : T [p]∗(X)→ H∗(X ; Z[p])

is an epimorphism for every space X.

Proof. HZ[p] is a direct summand of the graded Eilenberg–Mac Lane
spectrum T [p], because π0(T [p]) = Z[p]. It is clear that v[p] : T [p] → HZ[p]
gives a generator of the groupH0(T [p]; Z[p]) = Z/p, and so v[p] is a projection
onto a direct summand. �
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5.8. Remark. It follows from IV.6.5 and/or IV.7.36 that the Steenrod–Thom
homomorphism MSO[2]∗(X)→ H∗(X ; Z[2]) is epic for every X .

The Steenrod–Thom homomorphism v : T∗(X) → H∗(X ; Z) can be
described as follows. Let M be a closed n-dimensional (n > 0) K CPp−1

-
manifold. Consider a polyhedron K of the form

(5.9) K = δM × C(CP p−1) ∪ϕM

where the inclusion δM×CP p−1 ⊂ δM×C(CP p−1) is given by the inclusion
of the bottom CP p−1 ⊂ C(CP p−1), cf. (1.1). We denote δM ×C(CP p−1) by
A. It is clear that the collapse map p : K → K/A induces the isomorphism
p∗ : Hn(K; Z)→ Hn(K/A; Z). Consider the isomorphism

h : Hn(M,∂M ; Z)
∼=−→ Hn(M/∂M ; Z) = Hn(K/A; Z)

p∗←− Hn(K; Z)

and set [K] := h[M,∂M ].
Given a space X , let f : M → X be a closed n-dimensional (n > 0)

singular K CPp−1
-manifold in X . Define g : K → X by setting g|M = f |M

and g({a} × C(CP p−1)) = f({a} × CP p−1) for every a ∈ δM . According
to 1.4, g is well-defined. Finally, define tX : T∗(X) → H∗(X ; Z) by setting
t[M, f ] = g∗[K].

5.10. Lemma. Fix a generator (one of two) v ∈ H0(T ; Z) = Z such that

vpt : Z = T∗(pt)→ H∗(pt; Z) = Z

maps 1 to 1. Then vX = tX : T∗(X)→ H∗(X ; Z) for every space X.

Proof. This can be proved as IV.7.32 was; we leave it to the reader. �

As we remarked in the beginning of this chapter, the homology theory T∗(X)
can be considered as a bordism theory based on polyhedra (5.9) as “closed mani-

folds”. Here we have used this implicitly.

5.11. Corollary. Every homology class z ∈ Hn(X) can be represented as
a sum

∑

i(gi)∗([Ki]), where Ki is as in (5.9) with an arbitrary prime p
(depending on i) and gi : Ki → X is a map.

Proof. It follows from 5.7, 5.8 and 5.10 that for every prime p there exists
mp ∈ Z such that (p,mp) = 1 and mpz can be realized as

∑

(gi)∗([Ki])
with the given p. Choose a finite set {p1, . . . , pn} of primes such that
(mp1 , . . . ,mpn) = 1. (For example, let m2 = qα1

1 · · · qαss with different primes
qi. Then we can set {p1, . . . , ps+1} = {2, q1, . . . , qs}.) Then

∑

aimpi = 1 for
certain ai ∈ Z, i.e.,

∑

aimpiz = z. Now the result follows from the realizabil-
ity of mpiz. �
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Now we deduce from the above certain algebraic relations for PL manifolds
with one CP p−1-singularity.

5.12. Lemma. E � MSPL{p,CP
p−1}. Furthermore, E admits a structure

of a commutative ring spectrum (even for p = 3) such that the forgetful
morphism MSPL → E is a ring morphism.

Proof. Set B := MSPL{p,CP
p−1} = T {p}. By IV.4.27(iv), πi(MSPL) =

πi(MSO) for i < 7. Hence π2(B) = 0 = π3(B). So, by 2.17 and 5.1(i),
B admits a commutative and associative quasi-multiplication, compatible
with the multiplication in MSPL. (Alternatively, one can see that all the
obstructions come from MU , and so they belong to trivial groups.) Moreover,
by III.7.3, B admits a ring structure because πi(B) are finite. Furthermore,
by II.7.7, B is a graded Eilenberg–Mac Lane spectrum because there exists
an S-module morphism HZ[p] → T [p] → B. (Alternatively, one can copy
the proof of 5.5.) Now, because of 1.6 and since πi(B) are finite Z/p-vector
spaces,

πi(B) ∼= Ker(πi+1(T )
p−→ πi+1(T ))⊕ Coker(πi(T )

p−→ πi(T )) ∼= πi(E),

and so B � E because B and E are graded Eilenberg–Mac Lane spectra.
Thus, E admits the desired structure of a commutative ring spectrum

because B admits it. �

5.13. Proposition. Let E be equipped with the ring structure in 5.12. Then
E admits a C -orientation z such that the formal group of (E, z) is additive.

Proof. By II.7.30 and 5.5, there is a ring isomorphism E � H(π∗(E)). In
particular, there is a ring morphism j : HZ/p → E. The formal group of
(HZ/p, w) is additive for any C -orientation w ∈ H2(CP∞; Z/p) of HZ/p.
Thus, the formal group of (E, j∗w) is additive. �

Let f(x, y) be the universal formal group, i.e., the formal group of the
C -oriented spectrum (MU , T ), see VII.6.7(e). Set

[p]f (x) = x+
∑

k>0

akx
k+1, ak ∈MU−2k(pt) = π2k(MU).

Let τ : MU → T [p] be the forgetful morphism, τ = r[p]s in the notation of
5.5.

5.14. Proposition. p|τ∗(ak) for every k.

Proof. Let ρ : T [p] → E be the reduction mod p. Since ρτ is a ring
morphism, t = (ρτ)∗(T ) ∈ ˜E2(CP∞) is a C -orientation of E. Let F be the
formal group of (E, t). By VII.6.6, F is equivalent to a formal group of (E, z)
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with z as in 5.13. In other words, F is equivalent to the additive formal
group. Now, by VII.5.12(i), [p]F (x) =

∑

(ρτ)∗(ak)xk+1, and, by VII.5.11(i),
[p]F (x) = 0. Thus, (ρτ)∗(ak) = 0. Since the sequence

π∗(T [p])
p−→ π∗(T [p])

ρ−→ π∗(E).

is exact, p|τ∗(ak). �
We set R := π∗(T [p])/ tors, define the homomorphism

τ : π∗(MU) τ∗−→ π∗(T [p])
quotient−−−−−→ R

and denote τ [CPn] by [[CPn]].

5.15. Corollary. For every n the element [[CPn]] ∈ R is divisible by n+ 1.

Proof. We regard R as a subring of R ⊗ Q. Consider the formal group
F = τ∗(f) over R. By 5.14, all coefficients of [p]F (x) =

∑

τ∗(ak)xk+1 are
divisible by p. Hence, by VII.5.11(ii), all coefficients of the logarithm of F
belong to R. By VII.5.12(ii) and VII.6.12, this logarithm has the form

x+
∑ [[CPn]]

n+ 1
xn.

Therefore, the element rn := [[CPn]]
n+1 of R⊗Q belongs to R. Finally, [[CPn]] =

(n+ 1)rn because R is torsion free. �



Chapter IX. Complex (Co)bordism with
Singularities

§1. Brown-Peterson (Co)homology with Singularities

We fix a prime p. Let BP be the corresponding Brown–Peterson spectrum,
and let κ : BP → MU [p], ρ : MU [p] → BP be the pair of morphisms
described in VII.3.19(i).

We consider the ring π∗(MU) = Z[x1, . . . , xn, . . . ], dimxn = 2n, and fix
a family {xn} of generators. Consider the ordered set {i1 < i2 < · · · <
in < · · · } of all natural numbers different from pk − 1, k = 1, 2, . . . , and set
Σ = {xi1 , . . . , xin , . . . }. Let r : MU →MUΣ be the forgetful morphism as in
VIII.(1.21)

1.1. Theorem. (i) The spectrumMUΣ admits a commutative and associative
quasi-multiplication such that r is a quasi-ring morphism.

(ii) The spectrum MUΣ[p] admits a ring structure such that the localiza-
tion MUΣ →MUΣ[p] is a quasi-ring morphism and the morphism

BP
κ−→MU [p]

r[p]−−→MUΣ[p]

is a ring equivalence. In particular, MUΣ[p] � BP as ring spectra.

Proof. (i) This follows from VIII.2.17.
(ii) The homomorphism r∗ : π∗(MU) → π∗(MUΣ) is just the quo-

tient map π∗(MU) → π∗(MU)/(xi1 , . . . , xin , . . .), and so the morphism
r[p]κ : BP → MUΣ[p] induces an isomorphism of homotopy groups. We
equip MUΣ[p] with a ring structure via the equivalence r[p]κ. On the other
hand, by (i), localization gives us a quasi-ring structure in MUΣ[p]. Now,
the ring structure in MUΣ[p] is compatible with this quasi-ring structure,
because r, and hence r[p]κ, is a quasi-ring morphism. �

Thus, the morphism MU localization−−−−−−−→MU [p]
ρ−→ BP can be interpreted as

an iterated introduction of singularities with subsequent localization.
We have π∗(BP ) = Z[p][v1, . . . , vn, . . . ], where vi := ρ∗(xpn−1), dim vn =

2(pn − 1). We also recall the notation v0 = p. Given a subset J of N ∪ {0},
we consider the set V :=

{

vj
∣

∣ j ∈ J
}

, and define

BPV := MUΛ[p],where Λ =
{

xpj−1

∣

∣ j ∈ J
}

∪ Σ, Λ ⊂ {p, x1, . . . , xn, . . .}.
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1.2. Lemma. H0(BPV ; Z/p) = Z/p.

Proof. Clearly, BPV is connected and π0(BPV ) = Z or Z/p. Hence, by
II.4.7(i), H0(BPV ) = Z or Z/p. Thus, by II.4.9, H0(BPV ; Z/p) = Z/p. �

Let u ∈ H0(BPV ; Z/p) be a generator.

1.3. Theorem (Baas–Madsen [1]). The homomorphism

ν : Ap → H∗(BPV ; Z/p), ν(a) = au

is epic, and Ker ν = Ap(Qj |j /∈ J). So, H∗(BPV ; Z/p) ∼= Ap/Ap(Qj|j /∈ J).

Proof. Firstly, we consider the case p > 2. Let H denote HZ/p and H∗(−)
denote H∗(−; Z/p). We have the AHSS

Er∗∗ = Er∗∗(J) =⇒ BPV∗ (H), E2
∗∗ = H∗(H ;π∗(BPV )).

If 0 ∈ J , then (cf. VII.3.27)

E2
∗∗ = H∗(H)⊗ π∗(BPV ) = Z/p [ξi|i > 0]⊗ Λ{τi|i ≥ 0} ⊗ Z/p [vi|i /∈ J ],

where bideg ξi = (2pi − 2, 0), bideg τi = (2pi − 1, 0), bideg vi = (0, 2pi − 2),.
If 0 /∈ J , then

E2
∗∗ = H∗(H ; Z)⊗ π∗(BPV ) = Z/p [ξi|i > 0]⊗ Λ(τi|i ≥ 1)⊗ Z/p [vi|i /∈ J ].

By VII.3.27, in the case J = ∅ (i.e., BPV = BP ) without loss of generality
we can assume that the elements ξi are permanent cycles and d2pi−1(τi) = vi.
For arbitrary J , considering the morphism BP → BPV and the induced
morphism Er∗∗(∅)→ Er∗∗(J) of spectral sequences, we conclude that

E∞
∗∗ = Z/p [ξi|i > 0]⊗ Λ{τj|j ∈ J}

for every J . Hence, u∗ : BPV∗ (H)→ H∗(H) is a ring monomorphism, u∗(ξi) =
ξi, u∗(τj) = τj for j ∈ J .

Consider the first commutative diagram below, where the horizontal ar-
rows are the switching morphisms. Passing to π∗, we get the second commu-
tative diagram below.

H ∧BPV −−−−→ BPV ∧H BPV∗ (H) −−−−→ H∗(BPV )

1∧u
⏐

⏐




⏐

⏐



u∧1 u∗

⏐

⏐




⏐

⏐



H∗(u)

H ∧H −−−−→ H ∧H H∗(H)
χ−−−−→ H∗(H) .

Here χ is the canonical antiautomorphism of the Hopf algebra A ∗
p = H∗(H),

see II.6.35. We have χ(ξi) ≡ ξi mod Dec , χ(τi) ≡ τi mod Dec . Therefore,

ImH∗(u) = Z/p [ξ′i|i > 0]⊗Λ(τ ′j |j ∈ J), ξ′i ≡ ξi mod Dec , τ ′j ≡ τj mod Dec .
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The elements τi of A ∗
p are dual to Qi ∈ Ap, and ν is dual to the monomor-

phism H∗(u). Hence, ν is an epimorphism with Ap(Qj |j /∈ J) ⊂ Ker ν. Thus,
for dimensional reasons, Ap(Qj |j /∈ J) = Ker ν .

The case p = 2 can be considered similarly. If 0 ∈ J , then

E2
∗∗ = Z/2 [ζi|i ≥ 0]⊗ Z/2 [vj|j /∈ J ].

Here ζ2
i plays the role of ξi+1 and ζi plays the role of τi: ζ2

i is a permanent
cycle, and d2i−1ζi = vi for every i ≥ 1. If 0 /∈ J , then

E2
∗∗ = Z/2 [ζ2

0 ]⊗ Z/2 [ζi|i > 0]⊗ Z/2 [vj |j /∈ J ],

etc. In both cases we have

E∞
∗∗ = Z/2 [ζ2

i |i /∈ J ]⊗ Z/2 [ζj|j ∈ J ].

The further arguments are just the same as for p > 2. �

1.4. Corollary. Let 0 ∈ J 
= {0}, and let n be the minimal positive number
in J . Then Qn is the first non-trivial Postnikov invariant of BPV .

Proof. For simplicity, denote BPV by X and put m = 2pn − 2. We have
X(0) = HZ/p = X(i) for i < m. Consider the Postnikov invariant κ ∈
Hm+1(HZ/p; Z/p) of X . There is a diagram

X(m)
p−−−−→ HZ/p

κ−−−−→ Σm+1HZ/p
∥

∥

∥

∥

∥

∥

⏐

⏐



f

X(m)
p−−−−→ HZ/p

Qn−−−−→ Σm+1HZ/p

where
p = pm : X(m) → X(m−1) = X(0) = HZ/p

and the top row is a cofiber sequence. We must find an equivalence f :
Σm+1HZ/p→ Σm+1HZ/p such that Qn � fκ.

Let τ = τm : X → X(m) be the morphism as in II.4.12. Then τ∗ :
Hi(X(m); Z/p)→ Hi(X ; Z/p) is an isomorphism for i ≤ m and a monomor-
phism for i = m + 1. Since τ∗p = u and Qnu = 0, the morphism Qnp is
inessential. Hence, there is a morphism f : Σm+1HZ/p → Σm+1HZ/p such
that Qn = fκ.

We prove that f is an equivalence. Indeed, otherwise f is inessential, and
hence so is Qn. This is a contradiction. �



498 Chapter IX. Complex (Co)bordism with Singularities

§2. The Spectra P (n)

As in §1, fix any prime p and a system {xi}, dimxi = 2i, of polynomial
generators of π∗(MU). As in Ch. VII, we denote

π∗(BP ) = Z[p][v1, . . . , vi, . . .], vi = ρ∗(xpi−1)

by Ω and (v0, . . . , vn−1) by In. Define a spectrum

P (n) := BP {v0,... ,vn−1}.

Furthermore, P (0) := BP, P (∞) := HZ/p.

By VIII.1.6 and/or VIII.(1.18), for every CW -space X we have an exact
sequence

· · · −→ P (n)∗(X) vn−→ P (n)∗(X) rn−→ P (n+ 1)∗(X)
δn−→ P (n)∗(X) −→ · · · .

(2.1)

For general reasons, P (n) is a quasi-module spectrum over MU [p]. Hence,
it is a quasi-module spectrum over BP via the ring morphism κ : BP →
MU [p]. In particular, π∗(P (n)) is an Ω-module.

2.2. Proposition. (i) There is an Ω-module isomorphism π∗(P (n)) ∼= Ω/In.
(ii) There is an Ap-isomorphism H∗(P (n); Z/p) ∼= Ap/Ap(Qi|i ≥ n).

Proof. (i) This follows from VIII.1.24.
(ii) This follows from 1.3. �

2.3. Remarks. (a) The spectra P (n) were introduced by Morava [1] and
considered in detail by Johnson–Wilson [2].

(b) We shall see below (in 2.12) that the spectrum P (n) does not depend
(up to equivalence) on the choice of the system {xi}.

(c) The finiteness of the groups πi(P (n)), n > 0, implies that P (n) has
finite Z-type. So, we can and shall assume that P (n), n > 0 has finite type.

By VIII.(1.12), the sequence (2.1) is induced by a sequence

(2.4) · · · −→ Σ2pn−2P (n) vn−→ P (n) rn−→ P (n+ 1) δn−→ Σ2pn−1P (n) vn−→ · · ·

of spectra. There is also the Bockstein morphism

(2.5) βn := βvn = rnδn : P (n+ 1)→ Σ2pn−1P (n+ 1)

which induces the Bockstein homomorphisms

βn : P (n+ 1)i(X)→ P (n+ 1)i−2pn+1(X),

βn : P (n+ 1)i(X)→ P (n+ 1)i+2pn−1(X)

as in VIII.(1.8) and VIII.(1.11).
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2.6. Proposition. The morphisms vn, rn, δn, βn are determined uniquely up
to homotopy, and the composition of every two adjacent morphisms in (2.4)
is inessential.

Proof. By III.5.7, the group P (k)0(P (l)) does not contain phantoms. Fur-
thermore, the spectra P (n), n > 1, have finite type, and hence, by III.3.20(iii),
the morphisms rn, vn, n > 0 and δn, βn, n ≥ 0, are determined uniquely up
to homotopy. Moreover, the homotopy uniqueness of v0 follows from VII.3.2.
while the homotopy uniqueness of r0 follows from III.4.18. Finally, the com-
position, say,

δnrn : P (n)i(X)→ P (n)i+2pn−1(X)

is trivial for every finite spectrum X . So, if n > 0 then it is trivial for
X = P (n) because P (n) has finite type and P (n)∗(P (n)) does not contain
phantoms. Thus, δnrn : P (n)→ Σ2pn−1P (n), n > 0 is inessential. Moreover,
the composition δ0r0 : BP → ΣBP is inessential by VII.3.2. The composi-
tions vnδn and rnvn can be considered similarly. �

2.7. Theorem. The tower

BP = P (0) r0−→ P (1)→ · · · → P (n) rn−→ P (n+ 1)→ · · · → HZ/p.

admits a ring structure, i.e., every spectrum P (n) admits a multiplication
mn : P (n) ∧ P (n)→ P (n) such that every morphism rn is a ring morphism
with respect to these multiplications. Moreover, the multiplication in P (0)
coincides with the multiplication in BP . Furthermore, for p > 2 the multipli-
cation mn can be chosen to be commutative for every n, and for p = 2 these
multiplications can be chosen such that

xy + yx = vnβn−1(x)βn−1(y).

for every x, y ∈ P (n)∗(X).

Proof. Let Σ = {xi|i 
= ps − 1} be the sequence defined at the beginning
of §1. By 1.1(i), the spectrum V := MUΣ admits a commutative and associa-
tive quasi-multiplication. So, by VIII.2.4, the spectrum P (1) = V {p} admits
a quasi-multiplication, which is associative because π3(P (1)) = 0. Moreover,
the forgetful morphism a : V → P (1) is a quasi-ring morphism. Furthermore,
every group πi(P (1)) is finite, and so, by III.7.3, the quasi-multiplication in
P (1) is induced by a multiplication in P (1). Let BP � V [p] be the ring equiv-
alence as in 1.1(ii). Then r0 : BP � V [p] a−→ P (1) is a quasi-ring morphism
of ring spectra, and so, by III.7.5, it is a ring morphism.

Now we construct a ring structure in the tower by induction on n. Sup-
pose that P (i), i ≤ n, is a ring spectrum and that ri : P (i) → P (i + 1) is
a ring morphism for every i < n. Then, by VIII.2.13, P (n + 1) admits a
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quasi-multiplication, which is associative because πodd(P (n+ 1)) = 0. Using
arguments as above, one can prove that this quasi-multiplication is induced
by a multiplication in P (n + 1) and that rn : P (n) → P (n + 1) is a ring
morphism with respect to this multiplication. The induction is confirmed.

If p > 2, then the multiplication in P (n) can be chosen to be commutative
in view of VIII.2.11, VIII 2.17(ii) and III.7.3(v).

For p = 2, the formula xy + yx = vnβn−1(x)βn−1(y) follows from
VIII.2.17(ii) and VIII.3.11 for a finite CW -space X . Let {Xλ} be the fam-
ily of all finite CW -subcomplexes of a CW -complex X . Now, by III.4.17,
P (n)∗(X) = lim←−{P (n)∗(Xλ)} because πi(P (n)) is a finite group for n > 0
and every i, and the result follows. �

In future we always assume that all the spectra P (n) are equipped with
the multiplications above.

Given m ≤ n, set rmn = rn−1◦ · · · ◦rm : P (m) → P (n) and ρn = r0n :
BP → P (n). The pairing

P (m) ∧ P (n)
rmn ∧1−−−→ P (n) ∧ P (n) mn−−→ P (n)

turns P (n) into a P (m)-module spectrum. In particular, there is a pairing
μn : BP ∧ P (n)→ P (n).

Consider the morphism

(vi)# : Σ2pi−2P (n) = S2pi−2 ∧ P (n) vi∧1−−−→ BP ∧ P (n)
μn−→ P (n),

where vi : S2pi−2 → BP represents the element vi ∈ π∗(BP ).

2.8. Theorem. (i) For every CW -space X, the homomorphism

(vn)X# : P (n)∗(X)→ P (n)∗(X)

is multiplication by vn on the π∗(P (n))-module P (n)∗(X).
(ii) P (n+ 1) is a cone of (vn)#, and the sequence

· · · −→ Σ2pn−2P (n)
(vn)#−−−−→ P (n) rn−→ P (n+ 1)
δ−→ Σ2pn−1P (n)

(Σvn)#−−−−−→ · · · ,
(2.9)

as well as (2.4), is a long cofiber sequence.

Proof. (i) It is clear that (vn)X# is multiplication by vn on the π∗(BP )-
module P (n)∗(X). Since BP → P (n) is a ring morphism, (i) is proved.

(ii) By (i), (vn)# can play the role of the morphism

vn : Σ2pn−2P (n)→ P (n)
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in (2.4), i.e., vn � (vn)#. Now, by III.6.7(ii), P (n + 1) � C(vn) � C((vn)#)
because every group πi(P (n)) is finite for n > 0 and every i.

We must prove that there exists a homotopy commutative diagram

Σ2pn−2P (n) Σ2pn−2P (n)

vn

⏐

⏐




⏐

⏐




vn

P (n) P (n)

ϕ

⏐

⏐




⏐

⏐




rn

P (n+ 1) a1−−−−→ P (n+ 1)

ψ

⏐

⏐




⏐

⏐



δ

Σ2pn−1P (n) a2−−−−→ Σ2pn−1P (n)

vn

⏐

⏐




⏐

⏐




vn

ΣP (n) a3−−−−→ ΣP (n)

ϕ

⏐

⏐




⏐

⏐




rn

ΣP (n+ 1) a4−−−−→ ΣP (n+ 1)
⏐

⏐




⏐

⏐




...
... ,

where ai are equivalences and the left sequence is a long cofiber sequence.
By 2.6, the composition of every two adjacent morphisms in right sequence is
inessential. Let H(−) denote H(−; Z/p). Take u ∈ H0(P (n)) = Z/p, u 
= 0.
By 2.2(ii) and II.5.18(ii), a morphism f : P (n) → P (n) is an equivalence iff
f∗(u) 
= 0.

An equivalence a1 was constructed in the proof of III.6.7(ii). Since the
morphism δa1ϕ is inessential, there exists a2 such that a2ψ � δa1. We prove
that a∗2(u) 
= 0. Indeed, if a∗2(u) = 0 then a∗2 : H∗(P (n))→ H∗(P (n)) is zero,
and hence δ∗ : H∗(P (n))→ H∗(P (n+ 1)) is zero. But, by 2.2(ii),

Qn+1 ∈ Ker(r∗n : H∗(P (n+ 1))→ H∗(P (n))) = Im δ∗.

This is a contradiction. Thus, a2 is an equivalence.
Furthermore, there exists a3 such that a3vn � vna2. Since a2 is an equiv-

alence,

(a3)∗ : π2pn−2(P (n)) = π2pn−1(ΣP (n))→ π2pn−1(ΣP (n)) = π2pn−2(P (n))

is an isomorphism. Since π∗(P (n)) is a π0(P (n))-module, we conclude that
(a3)∗ : π0(P (n)) → π0(P (n)) is an isomorphism. Hence, a∗3 : H0(P (n)) →
H0(P (n)) is an isomorphism. Thus, a3 is an equivalence.
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Furthermore, there exists a4 such that a4ϕ � rna3. Since both homomor-
phisms

(rn)∗, ϕ∗ : π∗(P (n))→ π∗(P (n))

are epic, (a4)∗ : π∗(P (n + 1)) → π∗(P (n + 1)) is an isomorphism, and thus
a4 is an equivalence.

And so on, because of periodicity. �
Let (E, u) be a C -marked ring Z[p]-local spectrum of finite Z[p]-type.

Define a ring morphism

(2.10) σ = σ(E,u) : BP κ−→MU [p]
u[p]−−→ E[p] = E.

This morphism σ turns E into a BP -module spectrum.
Let σ∗ : π∗(BP )→ π∗(E) be the induced coefficient homomorphism.

2.11. Theorem. If σ∗(vi) = 0 for every i < m, then there exists a BP -
module morphism σm : P (m)→ E such that σ = σmρm.

Proof. This is a BP -analog of VIII.4.13. The case m = 0 is trivial. So,
we assume that m > 0. Since σ(v0) = 0, we conclude that pπ0(E) = 0, and
hence every group πi(E) is finite.

The multiplication BP ∧BP → BP induces a homomorphism

Δ : E∗(BP )→ E∗(BP ∧BP ) = BP ∗(BP )̂⊗BP∗(S)E
∗(BP )

= E∗(BP )̂⊗E∗(S)E
∗(BP ),

where the first equality follows from VII.3.29(v). Now the theorem can be
proved just as was VIII.4.13, since (v0, . . . , vm−1) is a proper invariant se-
quence in π∗(BP ). �

2.12. Corollary. The spectrum P (n) does not depend (up to equivalence)
on the choice of polynomial generators of π∗(MU).

Proof. If a spectrum P (n) is based on some other system of generators,
then there is a morphism σn : P (n) → P (n) which induces an isomorphism
of the coefficients. �

2.13. Corollary. Let σ : BP → E be as in (2.10). If σ∗(vi) = 0 for every i
then E is a graded Eilenberg–Mac Lane spectrum.

Proof. Since σ∗(vi) = 0, there exists a morphism HZ/p → E which pre-
serves the units. Now apply II.7.7. �

2.14. Corollary. Let (E, u) be as in 2.11. Suppose that the formal group of
(E, u) is equivalent to the additive one. Then E is a graded Eilenberg–Mac
Lane spectrum.
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Proof. By VII.6.5 and VII.6.22, we can change the orientation of E so
that the new C -oriented spectrum has the additive formal group. This new
orientation yields a morphism ϕ : MU → E such that ϕ∗ : π∗(MU) →
π∗(E) classifies the additive formal group. This means that ϕ∗ annihilates all
elements of positive dimension in π∗(MU). So, σ∗(vi) = 0 for every i, where
σ := ϕ[p]κ. �

It would be nice to prove that σm from 2.11 can be chosen to be a ring
morphism. I can prove this for a commutative spectrum E, see 2.17 below.
Notice that there is an additional gain: E does not have to have finite Z[p]
type. We will see that the cases p = 2 and p > 2 are very different: the
spectrum P (n) is commutative for p > 2, while every commutative ring
spectrum E with 2π∗(E) = 0 is a graded Eilenberg–Mac Lane spectrum, see
5.5 below.

2.15. Lemma. For every n ≥ 0 there are the following ring isomorphisms:
H∗(P (n);π0(P (n))) ∼= π0(P (n))[ξ1, . . . , ξk, . . . ]⊗Λ(τ0, . . . τn−1) for p > 2,
H∗(P (n);π0(P (n))) ∼= π0(P (n))[ζ0, . . . , ζn−1, ζ

2
n, . . . , ζ

2
n+k, . . . ] for p = 2.

Here dim ξi = 2pi − 2, dim τj = 2pj − 1 = dim ζj.

Proof. We consider only the case p > 2 and n > 0; all the remaining cases
can be proved similarly. Set u = rn∞ : P (n)→ HZ/p. We proved in 1.3 that

H∗(u) : H∗(P (n))→ H∗(HZ/p; Z/p)

is a monomorphism and that ImH∗(u) = Z/p [ξ′i|i > 0]⊗ Λ(τ ′0, . . . , τ
′
n). But

u is a ring morphism. �

2.16. Lemma. Let E be a ring spectrum, and let σ : BP → E be a ring
morphism. If σ∗(vi) = 0 for i < n, then the AHSS

Er∗∗(X) =⇒ E∗(X), E2
∗∗(X) = H∗(X ;π∗(E))

collapses for X = P (n) and X = P (n) ∧ P (n).

Proof. We consider only the case X = P (n), p > 2; all the remaining cases
can be considered similarly. By 2.15,

E2
∗∗ = H∗(P (n);π∗(E)) = Z[ξ1, . . . , ξk, . . . ]⊗ Λ(τ0, . . . , τm−1)⊗ π∗(E),

bideg ξi = (2pi − 2, 0), bideg τj = (2pj − 1, 0).

Since Er∗∗ is a spectral sequence of π∗(E)-algebras, it suffices to prove that
drξi = 0 = drτj for every r, i, j.

Note that σ turns E into a BP -module spectrum.
Firstly, let n = 0, i.e., P (n) = BP . If E = BP then the AHSS is trivial

for dimensional reasons. Thus, the AHSS is trivial for every E and n = 0
because E is a BP -module, cf. Adams [8], Lemma 4.2.
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Now, let n > 0. Consider ρn = r0n : BP → P (n). Since rn∞ρn = r0∞, we
can assume that ρn maps the elements ξ for BP to those for P (n). Since ρn
induces a monomorphism of the E2-terms, drξi = 0 for every r, i. The mor-
phism σn : P (n) → E in 2.11 induces a morphism P (n)(2pn−3) → E(2pn−3)

of coskeletons. But P (n)(2pm−3) = HZ/p, and hence, by II.7.7, E(2pn−3) is a
graded Eilenberg–Mac Lane spectrum. Thus, non-trivial differentials dr exist
only for r > 2(pn−3). But in this case dr(τj) = 0 because r > dim τj = 2pj−1
if j < n. �

2.17. Theorem. Let E be a commutative ring spectrum, let p > 2, and let
σ : BP → E be a ring morphism such that σ(vi) = 0 for i < n. Then there
exists a ring morphism σn : P (n)→ E with σ = σnρn.

Proof. The triviality of the AHSS from 2.16 yields an isomorphism

E∞
∗∗(P (n)) ∼= π∗(E)[ξ1, . . . , ξk, . . . ]⊗ Λ(τ0, . . . , τn−1)

of π∗(E)-algebras, i.e., E∞
∗∗(P (n)) is a free commutative π∗(E)-algebra. Since

E∗(P (n)) is a commutative algebra (the condition p > 2 is used here),

E∗(P (n)) ∼= π∗(E)[ξ1, . . . , ξk, . . . ]⊗ Λ(τ0, . . . , τn−1)

as π∗(E)-algebras. By II.3.45 and 2.16, the evaluation

evn = evP (n) : E∗(P (n))→ Homπ∗(E)(E∗(P (n)), π∗(E))

is an isomorphism. By II.3.46, this evaluation gives us a bijective correspon-
dence between ring morphisms P (n)→ E and homomorphisms E∗(P (n))→
π∗((E)) of π∗(E)-algebras. Now we can get the desired ring morphism σn if
we put evn(σn)(ξi) := ev0(σ)(ξi), evn(σn)(τj) := 0. �

2.18. Remarks. (a) Theorem 2.17 holds for p = 2 because then E is a
graded Eilenberg–Mac Lane spectrum, see 5.5 below. Unfortunately, I cannot
prove this immediately, without 5.5. Furthermore, Theorem 2.17 is not valid
for p = 2 and non-commutative E. Namely, by 5.5 and 2.2(ii), P (1) does not
admit a commutative multiplication. Let E be the spectrum P (1) with the
exotic multiplication ∗ such that x ∗ y = yx. Then σ : P (1) → E as in 2.17
must be a ring morphism and induce the identity map of the coefficient rings
at the same time. But this is impossible (prove it).

(b) By (a) and 2.17, we can get rid of the finiteness conditions (i.e., E
does not have to have finite Z[p]-type) in 2.13 and 2.14 if we require E to be
commutative.

(c) The product structures in P (n) were also considered by Johnson–
Wilson [2], Shimada–Yagita [1] and Würgler [2]. Theorem 2.17 was proved
by Würgler [3].

The following proposition clarifies the Bockstein homomorphism βn :
P (n+ 1)→ Σ2pn−1P (n+ 1).
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2.19. Proposition. There exists λ ∈ Z/p, λ 
= 0, such that rn+1
∞ βn =

λQnr
n+1
∞ .

Proof. We set d := 2pn − 1. It suffices to construct a homotopy commu-
tative diagram

P (n+ 1) δ−−−−→ ΣdP (n)

r

⏐

⏐




⏐

⏐


r′

H
λQn−−−−→ ΣdH

where H = HZ/p and r = rn+1
∞ , r′ = Σdrn∞. Consider the diagram

P (n) rn−−−−→ P (n+ 1) δ−−−−→ ΣdP (n)

r

⏐

⏐




⏐

⏐




u

H
Qn−−−−→ ΣdH.

By 2.2(ii), Qnrrn = Qnr
n
∞ = 0. Hence, there exists u with uδ = Qnr. Since

H∗(P (n+ 1); Z/p) = Ap/Ap(Qi|i > n),

we have uδ 
= 0, and so u 
= 0. Hence, u = μr′ with 0 
= μ ∈ Z/p. Thus,
r′δ = λQnr with λ = μ−1. �

§3. Homological Properties of the Spectra P (n)

Recall that Ω denotes π∗(BP ) and that π∗(P (m)) = Ω/Im.

3.1. Lemma. If i < n then the morphism (vi)# : Σ2pi−2P (n) → P (n) is
inessential.

Proof. Since the morphism S2pi−2 vi−→ BP
ρn−→ P (n) is inessential, the

result follows from II.2.15. �
Recall that vi : P (m)∗(P (n)) → P (m)∗(P (n)) denotes multiplication by

vi ∈ π∗(P (m)) on the π∗(P (m))-module P (m)∗(P (n)).

3.2. Lemma. If i < n then vi : P (m)∗(P (n)) → P (m)∗(P (n)) is zero for
every m. Thus, the Ω/Im-module P (m)∗(P (n)) is an Ω/In-module even for
m < n.

Proof. We prove this by induction on i. The assertion is clear for i = 0.
So, fix some i > 0, i < n, and suppose that the homomorphism vj is zero for
every j < i. Let h : π∗(BP ) → BP∗(BP ) be the Hurewicz homomorphism.
By 3.1 and II.3.44, the homomorphism h(vi) : P (m)∗(P (n))→ P (m)∗(P (n))
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(the multiplication by h(vi) on the BP∗(BP )-module P (m)∗(P (n))) is zero.
By VII.3.25(ii), h(vi) ≡ vi mod IiBP∗(BP ), and so, because of the inductive
assumption, the homomorphism vi is zero. The induction is confirmed. �

3.3. Lemma. There is an isomorphism of Ω-modules

BP∗(P (n)) ∼= Ω/In[y1, . . . , yk, . . . ], dim yk = 2pk − 2.

Proof. We prove this by induction on n. By VII.3.25(i), this isomorphism
holds for n = 0. Suppose that the lemma holds for some n ≥ 0 and prove it
for n+ 1.

Consider the morphism (vn)# : Σ2pn−2P (n)→ P (n). By II.3.44,

BP∗((vn)#) = h(vn) : BP∗(P (n))→ BP∗(P (n)).

Since P (n+ 1) is the cone of (vn)#, we have the exact sequence

· · · → BP∗(P (n))
h(vn)−−−→ BP∗(P (n))

(rn)∗−−−→ BP∗(P (n+ 1))→ · · · .

Because of the inductive assumption, In acts trivially on BP∗(P (n)). Hence,
since h(vn) ≡ vn mod InBP∗(BP ), this exact sequence has the form

· · · → BP∗(P (n)) vn−→ BP∗(P (n))
(rn)∗−−−→ BP∗(P (n+ 1))→ · · · .

By the inductive assumption, BP∗(P (n)) ∼= Ω/In[y1, . . . , yk, . . . ]. Hence, vn
is monic. Thus, (rn)∗ is epic, and

BP∗(P (n+ 1)) ∼= Ω/In+1[y1, . . . , yk, . . . ]. �

3.4. Theorem. If m ≤ n, then there is an isomorphism of Ω/In-modules

P (m)∗(P (n)) ∼= Ω/In[y1, . . . , yk, . . . ]⊗ Λ(q1, . . . , qm), dim qk = 2pk − 1,

(where Λ(q1, . . . , qm) := Z for m = 0). In particular, P (m)∗(P (n)) is a free
Ω/In-module.

Proof. We fix n > 0 and perform induction on m. If m = 0 then we have
just 3.3. Suppose that the assertion holds for some m < n. Consider the
following exact sequence of Ω/Im-modules:

· · · → P (m)∗(P (n)) vm−−→ P (m)∗(P (n)) −→ P (m+ 1)∗(P (n))→ · · · .

By 3.2, the homomorphism vm is zero, and so we have the following exact
sequence of Ω/Im-modules:

0→ P (m)∗(P (n)) −→ P (m+ 1)∗(P (n)) −→ P (m)∗(P (n))→ 0.
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By 3.2, its terms are Ω/In-modules. Since its homomorphisms are homomor-
phisms of Ω-modules, this sequence is a sequence of Ω/In-modules. By the
inductive assumption, P (m)∗(P (n)) is a free Ω/In-module. Hence, this exact
sequence splits. Thus,

P (m+ 1)∗(P (n)) ∼= P (m)∗(P (n))⊗ Λ(qm),

i.e.,

P (m+ 1)∗(P (n)) ∼= Ω/In[y1, . . . , yk, . . . ]⊗ Λ(q1, . . . , qm+1). �

3.5. Proposition (cf. Johnson–Wilson [2], Würgler [1]). If m > n then there
is an isomorphism

P (m)∗(P (n)) ∼= P (m)∗(BP )⊗ Λ(q0, . . . , qn−1), dim qi = 2pi − 1,

of P (m)∗(S)-modules. Moreover, this isomorphism can be chosen so that

ρ∗m : P (m)∗(P (n))→ P (m)∗(BP )

has the form ρ∗m(x⊗ qi) = 0 and ρ∗m(x⊗ 1) = x for every x ∈ P (m)∗(BP ).

Proof. This can be proved as VIII.4.9 was; we leave it to the reader. �

3.6. Corollary. Let vm = vm,n : P (m)∗(P (n))→ P (m)∗(P (n)) be multipli-
cation by vm on the P (m)∗(S)-module (P (m))∗(P (n)). If m ≥ n, then the
homomorphism vm,n is monic and the homomorphism

(rm)∗ : P (m)∗(P (n))→ P (m+ 1)∗(P (n))

is epic. In particular, (rm∞)∗ : P (m)∗(P (n))→ H∗(P (n); Z/p) is epic.

Proof. Firstly, we prove that vm,n is monic. By 3.5 and VII.3.29(iv),

(3.7)
P (m)∗(P (n)) ∼= P (m)∗(BP )⊗ Λ(q0, . . . , qn−1)

∼= BP ∗(BP )̂⊗BP∗(S)P (m)∗(S)⊗ Λ(q0, . . . , qn−1)
∼= BP ∗(BP )⊗BP∗(S) P (m)∗(S)⊗ Λ(q0, . . . , qn−1)

as P (m)∗(S)-modules, and hence vm,n is monic.
Now, the long cofiber sequence (2.9) (for m) induces the exact sequence

· · · vm,n−−−→ P (m)∗(P (n))
(rm)∗−−−→ P (m+ 1)∗(P (n))→ P (m)∗(P (n))

vm,n−−−→ · · · ,

where vm,n is monic and so (rm)∗ is epic. �

3.8. Corollary. If m ≥ n, then

P (m)∗(P (n)) ∼= P (m)∗(S)⊗grad H∗(BP ; Z[p])⊗ Λ(q0, . . . , qn−1)
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as P (m)∗(S)-modules. So, there exists a countable family {rα}, dim rα > 0,
in P (m)∗(P (n)) such that every r ∈ P (m)∗(P (n)) can be expanded as a
countable sum (i.e., a series) r = λ0 +

∑

λαrα with λ0, λα ∈ P (m)∗(S).

Proof. By VII.(4.2), BP ∗(BP ) ∼= BP ∗(S)⊗grad H∗(BP ; Z[p]) as abelian
groups. So, the required isomorphism follows from (3.7). Now, we choose a
Z[p]-basis {bα} of the Z[p]-module

(⊕i>0H
i(BP ; Z[p]))⊗ Λ(q0, . . . , qn−1)

and define {rα} to be the family which corresponds to {1⊗grad bα} under the
isomorphism. �

Following II.3.47, we see that the P (m)∗(S)-algebra P (m)∗(P (m)) acts
on every group P (m)∗(X). We define

ν : P (m)∗(P (m))→ P (m)∗(S), ν(ϕ) = ϕ(1),

where 1 ∈ P (m)∗(S), and set R := Ker ν. Clearly, P (m)∗(P (m)) =
P (m)∗(S)⊕R.

3.9. Proposition. Choose {rα} as in 3.8 with m = n. Then every r ∈ R has
the form r =

∑

λαrα.

Proof. Indeed, if r = λ0 +
∑

λαrα then r(1) = λ0. Thus, λ0 = 0. �
An additional information about the algebra P (m)∗(P (m)) can be found in

Johnson–Wilson [1], Würgler [1], Yagita [2].

3.10. Proposition. If X is a finite CW -space (or a finite spectrum), then
P (n)∗(X) and P (n)∗(X) are coherent, and hence finitely generated, modules
over the coefficient ring.

Proof. Because of the duality arguments, it suffices to consider P (n)∗(X)
only. For n = 0 this is proved in VII.3.29(i). If n > 0 then π∗(P (n)) is a
polynomial ring over a field. Hence, by VII.1.13(i), it is coherent. Now the
proposition follows from VII.1.14. �

3.11. Proposition. Let X be a spectrum bounded below. Suppose that every
group Hi(X ; Z[p]) is a finitely generated Z[p]-module. Then P (n)∗(X) is a free
module over the coefficient ring iff the homomorphism (rn∞)X : P (n)∗(X)→
H∗(X ; Z/p) is epic.

Proof. Firstly, let n = 0. If BP∗(X) is a free π∗(BP )-module then,
by VII.3.29(ii), the homomorphism BP∗(X) → H∗(X ; Z[p]) is epic and
H∗(X ; Z[p]) is a free Z[p]-module. Hence the mod p reduction H∗(X ; Z[p])→
H∗(X ; Z/p) is epic. Hence, (rn∞)X is epic.
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Conversely, if (rn∞)X is epic, then the mod p reduction H∗(X ; Z[p]) →
H∗(X ; Z/p) is epic. Hence, the Z[p]-module H∗(X ; Z[p]) is free since it is
finitely generated. Thus, by VII.3.29(ii), BP∗(X) is a free π∗(BP )-module.

Now we consider n > 0. Throughout the proofH∗(X) denotesH∗(X ; Z/p).
Suppose P (n)∗(X) is a free π∗(P (n))-module. Then vn : P (n)∗(X) →

P (n)∗(X) is monic. Hence, the exact sequence (2.1) converts into an exact
sequence

0 −→ P (n)∗(X) vn−→ P (n)∗(X)
rXn−−→ P (n+ 1)∗(X) −→ 0,

and, therefore,

P (n+ 1)∗(X) ∼= P (n)∗(X)⊗π∗(P (n)) π∗(P (n+ 1)).

Thus, P (n+ 1)∗(X) is a free π∗(P (n+ 1))-module and

rXn : P (n)∗(X)→ P (n+ 1)∗(X)

is epic. An iteration of these arguments gives us a sequence of epimorphisms

P (n)∗(X)→ P (n+ 1)∗(X)→ · · · → P (n+ k)∗(X)
rXn+k−−−→ · · · .

Thus, (rn∞)X : P (n)∗(X)→ H∗(X) is epic, because H∗(X) = lim−→
N

P (N)∗(X).

Conversely, suppose that (rn∞)X is epic. Consider the AHSS

Esp,q =⇒ P (n)∗(X), E2
p,q = Hp(X ;πq(P (n))).

Since (rn∞)∗ is epic, all differentials ds : Esm,0 → Esm−s,s−1 are trivial. Thus,
all differentials ds : Esm,r → Esm−s,r+s−1 are trivial because this spectral
sequence is a spectral sequence of π∗(P (n))-modules. Hence, E2 = E∞, and
we can identify E∞

∗∗ with P (n)∗(X). Let {xj} be a basis of the Z/p-vector
space H∗(X), let {ai} be a basis of the Z/p-vector space π∗(P (n)), and let
yj be the image of xj in E∞

∗,0. Then {aiyj} is a basis of the Z/p-vector space
P (n)∗(X). Define additive homomorphisms

ϕ : H∗(X)→ P (n)∗(X), ϕ(xj) = yj

and
ψ : π∗(P (n))⊗H∗(X)→ P (n)∗(X), ψ(a⊗ x) = aϕ(x).

It is easy to see that ψ is a π∗(P (n))-module homomorphism. Moreover, ψ is
epic because

∑

aiyj = ψ(
∑

ai⊗xj). Hence, ψ is an isomorphism because the
isomorphic groups P (n)i(X) and

∑

k

πk(P (n)) ⊗ Hi−k(X) are finite. Thus,

P (n)∗(X) is isomorphic to a free π∗(P (n))-module π∗(P (n))⊗H∗(X). �

3.12. Proposition. Let X be an arbitrary spectrum, and let n > 0. Then
the following conditions (i) and (ii) are equivalent:
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(i) The homomorphism (rn∞)X : P (n)∗(X)→ H∗(X ; Z/p) is epic;
(ii) For every s, the homomorphism

(rn∞)X
(s)

: P (n)∗(X(s))→ H∗(X(s); Z/p)

is epic.
Furthermore, if X has finite type then the following conditions (iii) and

(iv) are equivalent:
(iii) The homomorphism (rn∞)X : P (n)∗(X)→ H∗(X ; Z/p) is epic;
(iv) For every s, the homomorphism

(rn∞)X(s) : P (n)∗(X(s))→ H∗(X(s); Z/p)

is epic.

Proof. For simplicity, denote P (n)∗(X) by P∗(X) and H∗(X ; Z/p) by
H∗(X).

We prove that (i) ⇒ (ii). The cofiber sequence X(k) ⊂ X(k+1) → ∨Sk+1

yields the following commutative diagram with exact rows:

Pd+1(∨Sk+1) −−−−→ Pd(X(k)) −−−−→ Pd(X(k+1)) −−−−→ Pd(∨Sk+1)

a1

⏐

⏐




a

⏐

⏐




⏐

⏐



b

⏐

⏐




a2

Hd+1(∨Sk+1) −−−−→ Hd(X(k)) −−−−→ Hd(X(k+1)) −−−−→ Hd(∨Sk+1),

where the vertical homomorphisms are induced by rn∞. Here ai, i = 1, 2, is
epic. Clearly, a is epic if b is. (Indeed, if a2 is monic then this follows from the
Five Lemma. If a2 is not monic then Pd(Sk+1) 
= 0, and so d ≥ k + 1. Hence
Hd(X(k)) = 0.) Thus, if Pd(X(s)) → Hd(X(s)) is not epic for some s then
Pd(X(r))→ Hd(X(r)) is not epic for every r ≥ s, and so Pd(X)→ Hd(X) is
not epic because Pd(X(r)) = Pd(X), Hd(X(r)) = Hd(X) for r > d+ 1.

We prove that (ii) ⇒ (i). Consider the commutative diagram

· · · −−−−→ P∗(X(s)) −−−−→ P∗(X(s+1)) −−−−→ · · ·
⏐

⏐


(rn∞)X
(s)

⏐

⏐




· · · −−−−→ H∗(X(s)) −−−−→ H∗(X(s+1)) −−−−→ · · ·.

If all the homomorphisms (rn∞)X
(s)

: P∗(X(s))→ H∗(X(s)) are epic, then so
is the homomorphism

P∗(X) = lim−→P∗(X(s))→ lim−→H∗(X(s)) = H∗(X).

We prove that (iii) ⇒ (iv). Fix any d ∈ Z. If P d(X) → Hd(X) is epic
then the homomorphism

P d(X)→ P d(X(k))→ Hd(X(k))
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is epic for every k ≥ d + 1. So, it remains to prove that rn∞ : P d(X(k)) →
Hd(X(k)) is epic for k ≤ d.

If r < d then P d(Sr+1) = 0 = P d+1(Sr+1), Hd(Sr+1) = 0 = Hd+1(Sr+1).
Hence, if r ≤ d− 1 then the cofiber sequence X(r) ⊂ X(r+1) → ∨Sr+1 yields
the following commutative diagram with exact rows:

0 ←−−−− P d(X(r)) ←−−−− P d(X(r+1)) ←−−−− 0

a

⏐

⏐




⏐

⏐



b

0 ←−−−− Hd(X(r)) ←−−−− Hd(X(r+1)) ←−−−− 0.

Hence, b is epic provided that a is epic and r ≤ d − 1. Since X is bounded
below, there is an integer number N such that Hd(X(r)) = 0 for every r ≤ N ,
and so a is epic for every r ≤ N . Now, we perform an obvious induction and
prove that P d(X(k))→ Hd(X(k)) is epic for k ≤ d (do it).

We prove that (iv) ⇒ (iii). Consider the commutative diagram

· · · ←−−−− P ∗(X(s)) ←−−−− P ∗(X(s+1)) ←−−−− · · ·
⏐

⏐




⏐

⏐




· · · ←−−−− H∗(X(s)) ←−−−− H∗(X(s+1)) ←−−−− · · · .

Because of III.4.18 and finiteness of P i(X(s)), the homomorphism P ∗(X)→
lim←−P

∗(X(s)) is an isomorphism. Furthermore, by III.2.17,

lim←−{(r
∞
n )X(s)} : lim←−P

∗(X(s))→ lim←−H
∗(X(s))

is an epimorphism because the groups P i(X(s)) andHi(X(s)) are finite. Thus,

(r∞n )X : P ∗(X)→ lim←−P
∗(X(s))→ lim←−H

∗(X(s)) = H∗(X)

is an epimorphism. �

3.13. Corollary. The homomorphism

rn∞ : P (n)∗(P (n)(s))→ H∗(P (n)(s); Z/p)

is epic for every n > 0 and every s.

Proof. This follows from 3.6 and 3.12. �

3.14. Theorem (cf. Yosimura [1]). For every n ≥ 0 and every k-connected
spectrum E, there exists a morphism f : W → E such that W is a k-connected
spectrum, P (n)∗(W ) is a free π∗(P (n))-module and

f∗ : P (n)∗(W )→ P (n)∗(E)

is an epimorphism.
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Proof. The case n = 0 was done in VII.3.29(iii), so we assume that n > 0.
Fix s, and let Y be a spectrum dual to to P (n)(s). By 3.12, the homomorphism
rn∞ : P (n)∗(P (n)(s))→ H∗(P (n)(s); Z/p) is epic. Hence, the homomorphism
P (n)∗(Y )→ H∗(Y ; Z/p) is epic. Thus, by 3.11, P (n)∗(Y ) is a free π∗(P (n))-
module. Now we can complete the proof following that of VII.1.17. �

Now we give an analog of the Filtration Theorem VII.4.18 for the spectra
P (m). Consider the diagram

BP ∗(BP )
(ρm)∗−−−−→ P (m)∗(BP )

ρ∗m←−− P (m)∗(P (m)).

By 3.6, (ρm)∗ is epic, and ρ∗m is epic because of 3.5.
The pairing μ : BP ∧ P (m)→ P (m) gives us a homomorphism

Δ : P (m)∗(P (m))
μ∗

−→ P (m)∗(BP ∧ P (m))
∼=−→ BP ∗(BP )̂⊗ΩP (m)∗(P (m)).

Clearly,
Δ(ϕ) = θ̂⊗1 + 1̂⊗ϕ+

∑

θî⊗ϕi,

where (ρm)∗(θ) = ρ∗m(ϕ). Furthermore, we can and shall assume that ϕi ∈ R.
Consider the following category L (m). Objects of this category are co-

herent graded Ω/Im-modules (and hence Ω-modules) L equipped with a
P (m)∗(P (m))-action such that:

1. dimϕ(x) = dimx− dimϕ for every ϕ ∈ P (m)∗(P (m)), x ∈ L.
2. If Δ(ϕ) = θ̂⊗1 + 1̂⊗ϕ+

∑

θî⊗ϕi, then

ϕ(ax) = θ(a)x+ aϕ(x) +
∑

θi(a)ϕi(x)

for every a ∈ Ω, x ∈ L.
Note that the term

∑

θi(a)ϕi(x) is well-defined since θi(a)ϕi(x) 
= 0 for
all but finitely many i’s. Also, P (m)∗(X) ∈ L (m) for every finite spectrum
X

Morphisms of L (m) are P (m)∗(P (m))-equivariant Ω-module morphisms.

3.15. Theorem (Yagita [1], Yosimura [1]). Every object L of L (m) admits
a finite filtration in L (m)

0 = L0 ⊂ L1 ⊂ · · · ⊂ Lr = L,

such that Li/Li−1 is stably isomorphic in L to Ω/Ini . In particular, this
holds for L = P (m)∗(X) where X is a finite spectrum.

Proof. Firstly, note the following. Given a ∈ Ω, let a denote the image of a
under the epimorphism Ω→ Ω/Im. If θ ∈ BP ∗(BP ) and ϕ ∈ P (m)∗(P (m))
are such that (ρm)∗(θ) = ρ∗m(ϕ) then θ(a) = ϕ(a) for every a ∈ Ω. In particu-
lar, if I is a BP ∗(BP )-invariant ideal of Ω then I/(I∩Im) is a P (m)∗(P (m))-
invariant ideal of Ω/Im.
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We prove the theorem by induction on the number of Ω-generators of L.
If L has just one generator x, then L is stably isomorphic in L to Ω/J where
J = Annx. Indeed, it is clear that the homomorphism f : Ω→ L, f(a) = ax,
yields a stable isomorphism L ≈ Ω/J of Ω-modules, and it remains to prove
that f yields a stable isomorphism in L . So, we must prove that ϕ(ax) =
θ(a)x for every ϕ ∈ P (m)∗(P (m)) where

Δ(ϕ) = θ̂⊗1 + 1̂⊗ϕ+
∑

θî⊗ϕi, (ρm)∗(θ) = ρ∗m(ϕ).

Note that, by 3.9, r(x) = 0 for every r ∈ R since dim rα > 0 and x is an
element of least dimension in L. Hence,

ϕ(ax) = θ(a)x+ aϕ(x) +
∑

θi(a)ϕi(x) = θ(a)x

since ϕi ∈ R. Hence, L and Ω/J are stably isomorphic in L . So, it suffices
to prove that Ω/J admits a desired filtration.

Clearly, Im ⊂ J , and J is a coherent ideal of Ω. We prove that J is
BP ∗(BP )-invariant. Consider the operations sω ∈ BP ∗(BP ) (in fact, ρsωκ)
defined in VII.(4.1). We must prove that sω(a) ∈ J for every a ∈ J and every
ω 
= (0). Choose any ϕ ∈ P (m)∗(P (m)) such that (ρm)∗(sω) = ρ∗m(ϕ). (Such
ϕ exists since both homomorphisms (ρm)∗ and ρ∗m are epic.) So,

Δ(ϕ) = sω ̂⊗1 + 1̂⊗ϕ+
∑

θî⊗ϕi.

Furthermore, ϕ ∈ R since ω 
= (0). Now,

0 = ϕ(ax) = sω(a)x + aϕ(x) +
∑

θi(a)ϕi(x) = sω(a)x

since ϕ,ϕi ∈ R. So, sω(a) ∈ J , i.e., J = Annx is a BP ∗(BP )-invariant ideal
of Ω.

Hence, by VII.4.18, there is a filtration

J = J0 ⊂ J1 ⊂ · · · ⊂ Jn = Ω

such that Jk/Jk−1 ≈ Ω/Iki in L and each Jk, k < n, is a BP ∗(BP )-invariant
ideal of Ω. So, by the above, Jk/Im is a P (m)∗(P (m))-invariant ideal of Ω/Im.
Thus, the above filtration yields the filtration

J/Im = J0/Im ⊂ J1/Im ⊂ · · · ⊂ Jn/Im = Ω/Im

in L . Thus, {Jk/J} is a desired filtration {Jk/Im} of Ω/J .
Assume that the theorem holds for every N ∈ L such that the Ω-module

N can be generated by n elements. Consider any L ∈ L which admits a
family {x1, . . . , xn+1} of Ω-generators. We suppose that dim x1 ≤ dimxi for
every i = 2, . . . , n+1. Consider the submodule Ωx1 of L. Since L is coherent,
Ωx1 is coherent by definition. Since x1 is an element of least dimension, we
conclude that Ωx1 ∈ L (i.e., Ωx1 is a P (m)∗(P (m))-invariant submodule of
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L). So, by the above, Ωx1 admits a desired filtration. On the other hand,
by inductive assumption, L/Ωx1 admits a desired filtration. Thus, L itself
admits a desired filtration. �

§4. The Exactness Theorem

The results of this section are stimulated by the following Conner–Floyd The-
orem. The spectrumK of complexK-theory admits a canonical C -orientation
(see, e.g., Stong [3], Ch. 9), and so there is a ring morphism (Thom–Dold
class) u : MU → K. Furthermore,

u∗ : π∗(MU)→ π∗(K) = Z[t, t−1], dim t = 2,

coincides with Td : π∗(MU) → Z[t, t−1], T d[M ] = T (M)t(dimM)/2, where
[M ] is the bordism class and T (M) is the Todd genus of a stably almost
complex manifold M (i.e., T (M) = 〈T (τM), [M ]H〉, where τM is the tangent
bundle of M). The homomorphism Td turns Z[t, t−1] into a π∗(MU)-module
TdZ[t, t−1], and so for every X we have a homomorphism

u : MU∗(X)⊗Td Z[t, t−1]→ K∗(X).

Conner–Floyd [1] proved that u is an isomorphism for every spectrum
X . (In fact, they proved that the corresponding cohomological map is
an isomorphism for every finite CW -space X . Furthermore, to be pre-
cise, they considered another orientation, which gives the genus T (M) =
(−1)(dimM)/2Td(M), cf. V.3.5.) Note that the proof would be simpler if
we knew a priori that MU∗(−) ⊗Td Z[t, t−1] is a homology theory (on S ):
clearly, u is an isomorphism for X = S, and one can apply II.3.19(iii). So,
it makes sense to describe all homomorphisms ρ : π∗(MU) → Z[t, t−1] such
that MU∗(−)⊗ρZ[t, t−1] is a homology theory. This question was considered
in Rudyak [1], §3. (There are some gaps in that paper, but the answer to this
question is correct.)

More generally, it makes sense to describe all π∗(MU)-modules M such
that the functor MU∗(−)⊗π∗(MU)M is a homology theory. In order to solve
this problem it suffices to solve the corresponding local problem, i.e., to de-
scribe all π∗(BP )-modules M such that BP∗(−) ⊗π∗(BP ) M is a homology
theory. Furthermore, one can settle a similar problem for P (m) instead of
BP .

Recall that Ω denotes π∗(BP ) and that π∗(P (m)) = Ω/Im.
The following theorem solves this problem.

4.1. Theorem. Let M be an Ω/Im-module. The following conditions are
equivalent:
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(i) The functor P (m)∗(−) ⊗Ω/Im M is a homology theory on S (i.e., it
satisfies the exactness axiom);

(ii) For every n ≥ m, TorΩ/Im1 (Ω/In,M) = 0;
(iii) For every n ≥ m, the homomorphism

vn : M/InM →M/InM

is monic (i.e., {vm, . . . , vm+k, . . . } is an M -proper sequence).

Thus, each of the conditions (ii), (iii) is necessary and sufficient for the
exactness of the functor P (m)∗(X,A) ⊗Ω/Im M . The sufficiency of the con-
ditions (ii), (iii) for the exactness is a purely algebraic fact, while in order to
prove necessity we use certain topological information. For these reasons we
shall prove necessity and sufficiency separately, see 4.3–4.7 below. But first
we prove the equivalence of (ii) and (iii).

4.2. Proposition. The conditions (ii) and (iii) of 4.1 are equivalent.

Proof. Applying the functor ⊗Ω/ImM to the exact sequence

0→ Ω/In
vn−→ Ω/In −→ Ω/In+1 → 0,

we obtain an exact sequence

TorΩ/Im1 (Ω/In,M)→ TorΩ/Im1 (Ω/In+1,M)→M/InM
vn−→M/InM.

Thus, (ii) implies (iii). Conversely, suppose (iii) holds; we prove (ii) by induc-
tion. Clearly, TorΩ/Im1 (Ω/Im,M) = 0. Assuming that TorΩ/Im1 (Ω/In,M) = 0
for some n ≥ m, we conclude that TorΩ/Im1 (Ω/In+1,M) = 0 because of the
exactness of the sequence above. The induction is confirmed. �

Let L (m) be the category described in §3.

4.3. Lemma. Let M be an Ω/Im-module such that TorΩ/Im1 (Ω/In,M) = 0
for every n ≥ m. Then for every exact sequence L′ → L→ L′′ in L (m) the
induced sequence

L′ ⊗Ω/Im M → L⊗Ω/Im M → L′′ ⊗Ω/Im M

is exact.

Proof. Because of 3.15, every object V ∈ L (m) admits a filtration

0 = V0 ⊂ · · · ⊂ Vr = V

such that Vi/Vi−1 ≈ Ω/Ini . Thus, the condition TorΩ/Im1 (Ω/In,M) = 0
implies that TorΩ/Im1 (V,M) = 0 for every V ∈ L (m). Since the kernel
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and cokernel of every morphism of L (m) belong to L (m), the equality
TorΩ/Im1 (V,M) = 0 for all V ∈ L (m) implies the exactness of ⊗Ω/ImM
on L (m), see e.g. Bourbaki [3]. �

4.4. Corollary (the sufficiency). Let M be an Ω/Im-module such that
TorΩ/Im1 (Ω/In,M) = 0 for every n ≥ m. Then P (m)∗(−) ⊗Ω/Im M is a
homology theory on S .

Proof. One must check the exactness axiom for P (m)∗(−) ⊗Ω/Im M . By
4.3, it holds for finite spectra, since P (m)∗(X) ∈ L (m) for every finite spec-
trum X . Given an arbitrary spectrum X , let {Xλ} be the family of all finite
subspectra of X . Recall that lim−→ commutes with the tensor product, see e.g.
Bourbaki [1]. Now,

P (m)∗(X)⊗Ω/Im M = (lim−→{P (m)∗(Xλ)})⊗Ω/Im M

= lim−→{P (m)∗(Xλ)⊗Ω/Im M},

and the result follows because, by I.2.7, lim−→ preserves exactness. �

4.5. Proposition. If the functor P (m)∗(−) ⊗Ω/Im M is a homology theory
on S , then TorΩ/Im1 (P (m)∗(E),M) = 0 for every spectrum E bounded below.

Proof. Let f : W → E be as in 3.14. Then the cofiber sequence

W
f−→ E → Cf

yields an exact sequence

(4.6) 0→ P (m)∗(Cf)→ P (m)∗(W )→ P (m)∗(E)→ 0.

Applying the functor ⊗Ω/ImM to this sequence, and using that the functor
P (m)∗(−)⊗Ω/Im M is a homology theory, we obtain an exact sequence

0→ P (m)∗(Cf)⊗Ω/Im M → P (m)∗(W )⊗Ω/Im M

→ P (m)∗(E) ⊗Ω/Im M → 0.

On the other hand, there is an exact sequence

0 = TorΩ/Im1 (P (m)∗(W ),M)→ TorΩ/Im1 (P (m)∗(E),M)→
→ P (m)∗(Cf)⊗Ω/Im M

→ P (m)∗(W )⊗Ω/Im M → P (m)∗(E)⊗Ω/Im M → 0.

Thus, TorΩ/Im1 (P (m)∗(E),M) = 0. �

4.7. Corollary (the necessity). If the functor P (m)∗(−) ⊗Ω/Im M is a ho-
mology theory on S , then TorΩ/Im1 (Ω/In,M) = 0 for every n ≥ m.
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Proof. Choose n > m. Then, by 4.5,

(4.8) TorΩ/Im1 (P (m)∗(P (n)),M) = 0.

But, by 3.4, P (m)∗(P (n)) is a free Ω/In-module. Thus,

TorΩ/Im1 (Ω/In,M) = 0. �

Thus, we have proved 4.1.

Now we prove the exactness theorem for MU . Let {xn}, dim xn = 2n,
be a system of free polynomial generators of π∗(MU) such as in VII.1.9(v).
In other words, for every prime p all the characteristic numbers of xpn−1

are divisible by p, i.e., I(p, n) = (p, xp−1, . . . , xpn−1). (For instance, one can
choose xpn−1 to be the coefficient of tp

n

in the formal power series [p]f (t),
where f is the (universal) formal group of complex cobordism, see VII.6.11.)

4.9. Theorem. Let M be a π∗(MU)-module. The following conditions are
equivalent:

(i) The functor MU∗(−)⊗π∗(MU) M is a homology theory on S ;
(ii) For every prime p and every natural number n the homomorphisms

p : M →M and xpn−1 : M/I(p, n)M →M/I(p, n)M are monic;
(iii) For every prime p and every natural number n,

Torπ∗(MU)
1 (π∗(MU)/I(p, n),M) = 0.

Proof. This can be proved just as was 4.1. The equivalence of (ii) and
(iii) can be proved as was 4.2. In order to prove the sufficiency one must use
the Filtration Theorem VII.4.23. In order to prove the necessity one needs to
prove that MU∗(P (n)) is a free π∗(MU)/I(p, n)-module, n > 0. But

MU∗(P (n)) = BP∗(P (n))⊗π∗(BP ) π∗(MU [p])

for every n > 0, and Ω/In ⊗Ω π∗(MU [p]) ∼= π∗(MU)/I(p, n). �
Now we prove the Conner–Floyd Theorem mentioned above.

4.10. Theorem. For every spectrum X the homomorphism

u : MU∗(X)⊗Td Z[t, t−1]→ K∗(X)

is an isomorphism.

Proof. Since u is an isomorphism for X = S, it suffices to prove that

MU∗(−)⊗Td Z[t, t−1]

is a homology theory. One can take xp−1 = [CP p−1] in 4.9(ii). Clearly,



518 Chapter IX. Complex (Co)bordism with Singularities

p : Z[t, t−1]→ Z[t, t−1]

is monic. Furthermore, Td(CP p−1) = tp−1, and so

xp−1 : Z/p [t, t−1]→ Z/p [t, t−1]

coincides with multiplication by tp−1, and so it is monic. Finally,

TdZ[t, t−1]/(p, CP p−1) = 0,

and therefore multiplication by xpn−1, n > 1, is trivially monic. Thus,
MU∗(−)⊗Td Z[t, t−1] is a homology theory. �

Dualizing 4.1, we get the following result.

4.11. Theorem. Let M be an Ω/Im-module. The following conditions are
equivalent:

(i) The functor P (m)∗(−) ⊗Ω/Im M is a cohomology theory on Sf (i.e.,
it satisfies the exactness axiom);

(ii) For every n ≥ m, TorΩ/Im1 (Ω/In,M) = 0;
(iii) For every n ≥ m, the homomorphism

vn : M/InM →M/InM

is monic, (i.e., the sequence {vm, . . . , vm+k, . . . , } is M -proper).

Proof. Clearly, P (m)∗(−) ⊗Ω/Im M is a cohomology theory on Sf iff
P (m)∗(−)⊗Ω/ImM is a homology theory on Sf , i.e., iff P (m)∗(−)⊗Ω/ImM
is a homology theory on S , cf. II.3.20(iii). �

4.12. Lemma. Let R be a commutative ring. Then for every exact sequence
A→ B → C of R-modules the sequence

A⊗R R[x−1]→ B ⊗R R[x−1]→ C ⊗R R[x−1]

is exact. In other words, R[x−1] is a flat R-module.

Proof. This is a special case of the well-known theorem stating that local-
ization preserves the exactness, see Bourbaki [3], Ch II, §2, n◦ 4, Th. 1. �

Let k denote connective k-theory.

4.13. Proposition. Let (E, u) be a C -marked spectrum with

π∗(E) ∼= Z[t], dim t = 2,

and let u∗ : π∗(MU) → π∗(E) be the coefficient homomorphism induced by
u. If u∗(x) = Td(x) for every x ∈ π∗(MU), then E � k.
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Proof. By 4.12, F ∗(−) := E∗(−)⊗Z[t] Z[t, t−1] is a cohomology theory on
Sf . (In fact, it is a non-additive cohomology theory on S .) By III.3.20(iii),
the morphism

q : E∗(X)→ F ∗(X), x �→ x⊗ 1

of cohomology theories on Sf is induced by a morphism q : E → F of spectra,
and it is clear that q is a connective covering. We set f := qu : MU → F .
Then f∗ = Td : π∗(MU)→ π∗(F ), and so f induces a natural transformation

{vX : MU∗(X)⊗Td Z[s, s−1]→ F ∗(X), X ∈ Sf}.

By 4.10, the family {vX} turns out to be a morphism v : K∗(−) → F ∗(−)
of cohomology theories on Sf . Since this morphism is an isomorphism for
X = S, it is for every X ∈ Sf . In other words, we get an isomorphism
v : K∗(−) → F ∗(−) of cohomology theories on Sf . By III.3.20(iii), this
isomorphism v is induced by an equivalence K → F of spectra. Passing to
connective coverings, we get an equivalence k → E. �

Again, consider the homomorphism

Td : π∗(MU) = Z[x1, . . . , xn, . . . ]→ Z[t], T d(xi) = T (xi)ti.

We set yi := xi − T (xi)[CP 1]i. Since T (CP 1) = 1, T d(yi) = 0. It is easy to
see that KerTd = (y1, . . . , yi, . . . , ). Set Σ = {y1, . . . , yi, . . . , }.

4.14. Corollary. MUΣ � k.

Proof. By VIII.2.17, MUΣ is a commutative ring spectrum. It is clear
that the forgetful morphism r : MU →MUΣ gives a C -orientation of MUΣ.
Finally, π∗(MUΣ) = Z[t], and r induces Td on the coefficient rings. �

4.15. Remark. For an arbitrary system {xi} the spectrum MU{xi|i>1} can
be different from k. For example, it is not the spectrum k if xp−1 = [CP p−1]−
[CP 1]p−1 for some prime p, cf. Rudyak [2].

Given a prime p, set � := BP {vi|i>1}, �∗(pt) = Z[p][v1].

4.16. Proposition (cf. Adams [6]). k[p] � ∨p−1
i=0 Σ2i�.

Proof. Let κ : BP → MU [p] be the inclusion of the direct summand.
Define a homomorphism σ : BP ∗(pt) → Z[p][v, v−1], dim v = 2 − 2p by
setting

σ(vi) := T (κ∗vi)v
pi−1
p−1 ,

where T : MU [p]∗(pt)→ Z[p] is the Todd genus. Without loss of generality we
can assume (i.e. choose κ and ρ such) that σ(v1) = v. Indeed, it follows from
3.12 that for n 
= p−1 and Φ as 3.15 we have Φ[CPp− 1] ≡ [CPp− 1] mod p,
and so for Φ as in 3.18 we also have Φ(CPp− 1) ≡ CPp− 1 mod p. So, for
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v1 = ρ∗[CPp− 1 we have T (κ∗v) = T (Φ[CPp− 1]) ≡ T [CPp− 1] mod p ≡
1 mod p.

Consider the ring homomorphism

a : Z[p][v, v−1]→ Z[p][s, s−1], a(v) = sp−1, dim s = −2.

Define

h : BP ∗(X)⊗σ Z[p][v, v−1]→MU [p]∗(X)⊗Td Z[p][s, s−1],
h(x⊗ y) = κ(x) ⊗ a(y).

Set L∗(X) := �∗(X)⊗�∗(pt) �
∗(pt)[v−1

1 ]. The forgetful morphism

BP ∗(−)→ �∗(−)

induces a morphism

ϕ : BP ∗(−)⊗σ Z[p][v, v−1]→ L∗(−)

of cohomology theories on Sf . Here BP ∗(−)⊗σ Z[p][v, v−1] is a cohomology
theory by 4.11, while L∗(−) is a cohomology theory by 4.12. Since

ϕS : BP ∗(S)⊗σ Z[p][v, v−1]→ L∗(S)

is an isomorphism, we conclude that ϕ is an isomorphism of cohomology
theories on Sf . Thus, h can be treated a morphism h : L∗(−) → K[p]∗(−)
of cohomology theories on Sf . By III.3.20(iii), h is induced by a morphism
h : L→ K[p] of spectra. We define a morphism

hn : Σ2nL
Σ2nh−−−→ Σ2nK[p] sn−→ K[p]

and consider a morphism

f :
p−1
∨

i=0

Σ2iL→ K[p]

which gives us the element h0 ⊕ · · · ⊕ hp−1 ∈ K[p]0(
∨p−1
i=0 Σ2iL). Clearly, f

is an equivalence. Passing to connective coverings, we obtain an equivalence
∨p−1
i=0 Σ2i�→ k[p]. �

4.17. Corollary. BU [p] � X1 × · · · × Xp−1, where πk(Xi) = Z[p] for k ≡
2i mod (p− 1) and πk(Xi) = 0 otherwise. Furthermore, if p is an odd prime

then BSO[p] �
p−1
2
∏

i=1

X2i

Proof. The splitting in 4.16 gives us a splitting
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Ω∞k[p] �
p−1
∏

i=0

Ω∞(Σ2il).

Now put Xi := Ω∞(Σ2il). To prove the last assertion, consider the realifi-
cation R : BU → BO. By IV.4.27(iii), R∗ : π4i(BU [p]) → π4i(BO[p]) is an
isomorphism, and the result follows. �

4.18. Remarks. Corollary 4.4 (together with 4.2) was published by Landwe-
ber [5] for m = 0, cf. also Rudyak [2]. Yagita [1] and Yosimura [1] proved it
for m > 0. Corollary 4.7 was proved by Rudyak [4].

§5. Commutative Ring Spectra of Characteristic 2

The main result of this section is Theorem 5.5 below. Here we assume that
p = 2, the spectra P (n) are considered under this assumption, H denotes
HZ/2, and A denotes A2. We also denote rn∞ : P (n) → H just by r. In
other words, r is the canonical projection in the Postnikov tower of P (n),
i.e., r = τ0 in the notation of II.4.12.

5.1. Lemma. Let F be a commutative ring spectrum with 2π0(F ) = 0. If
πi(F ) = 0 for i > 2n+1− 2, and if F(2n+1−3) is a graded Eilenberg–Mac Lane
spectrum, then there exists a ring morphism ϕ : P (n)→ F .

Furthermore, if ϕ∗(vn) = 0 ∈ π∗(F ) then F is a graded Eilenberg–Mac
Lane spectrum.

Proof. Consider the AHSS for F∗(P (n)). By 2.15, we have a ring isomor-
phism

E2
∗∗ = H∗(P (n);π∗(F )) ∼= H∗(P (n))⊗ π∗(F )
∼= π∗(F )⊗ Z/2 [ζ0, . . . , ζn−1, ζ

2
n, . . . , ζ

2
n+k, . . . ].

By 2.16, this spectral sequence is trivial. Thus, E∞
∗∗ is a free π∗(F )-module

with the basis {ζi00 · · · ζ
in−1
n−1 ζ

2j0
n · · · ζ2jk

n+k}, k ≥ 0.
Consider the homomorphism

π∗(F )[x1, . . . , xn, . . . ] = F∗(BP )
(ρn)∗−−−→ F∗(P (n))

and set αi = (ρn)∗(xi) for i ≥ n. Clearly, αi corresponds to ζ2
i ∈ E∞

∗∗ , i ≥ n.
Since F := F(2n+1−3) is a graded Eilenberg–Mac Lane spectrum,

F ∗(P (n)) = π∗(F )[y0, . . . , yn−1, y
2
n, . . . ], dim yi = 2i − 1,

see 2.15. Let τ = τ2n+1−3 : F → F be the projection onto the Postnikov stage
as in II.4.12. Then the induced homomorphism τ∗ : F∗(P (n))→ F ∗(P (n)) is
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an isomorphism up to dimension 2n+1− 4. Set βi = τ−1
∗ (yi), i = 0, . . . , n− 1.

Clearly, βiβj = βjβi because yiyj = yjyi. Furthermore, βi corresponds to
ζi ∈ E∞

∗∗ , 0 ≤ i < n.
Since αiαj = αjαi and βiβj = βjβi, F∗(P (n)) is a free π∗(F )-module

with the basis {βIαJ := βi00 · · ·β
in−1
n−1 α

j0
n · · ·α

jk
n+k · · · }, where each is is a non-

negative integer and j0, . . . , jk, . . . is a sequence of non-negative integers such
that jk = 0 for all but finitely many k. Consider the π∗(F )-submodule M of
F∗(P (n)) generated by βIαJ with βIαJ 
= 1. We prove that M is an ideal in
the ring F∗(P (n)). Since π∗(F ) commutes with all elements of F∗(P (n)), it
suffices to prove that βIαJβI

′
αJ

′
belongs to M provided βIαJβI

′
αJ

′ 
= 1. If
J = 0, this is valid because βiβj = βjβi. If J 
= 0, then dimαJ > 2n+1−1, and
so βIαJβI

′
αJ

′
belongs to M for dimensional reasons (i.e., because πi(F ) = 0

for i > 2n+1 − 2).
Now we can construct a ring morphism ϕ : P (n)→ F using II.3.46. (By

2.16, we are able to apply II.3.46). Namely, set ev(ϕ)(M) = 0, ev(ϕ)(x) = x
for every x ∈ π∗(F ), where

ev : F ∗(P (n))→ Homπ∗(F )(F∗(P (n)), π∗(F ))

is the evaluation.
Now, suppose that ϕ∗(vn) = 0. Then, by II.2.15, the morphism

Σ2pn−2P (n) vn−→ P (n)
ϕ−→ F

is inessential. Hence, there is a morphism ψ : P (n + 1) → F such that
ϕ � ψrn. Consider a cofiber sequence

X → P (n+ 1)
rn+1
∞−−−→ H.

Since πi(X) = 0 for i < 2n+ 1−2, we conclude, by II.4.1(iv), that [X,F ] = 0.
So, there is a morphism f : H → F with frn+1

∞ = ψ, and thus, by II.7.7, F
is a graded Eilenberg–Mac Lane spectrum. �

5.2. Lemma. Let X be a finite CW -space, and let F be a connected com-
mutative ring spectrum. Suppose that the AHSS

(5.3) E∗∗
r (X) =⇒ F ∗(X), E∗∗

2 (X) = H∗(X ;F 0(pt))

is trivial. Let τ = τ0 : F → H(F 0(pt)) be as in II.4.12, let z ∈ F ∗(X) be such
that τ∗(z) 
= 0, and let a ∈ F 0(pt) be such that

a⊗ τ∗(z) 
= 0 ∈ E∗∗
2 (X).

Then az 
= 0.

Proof. Recall that there is a canonical ring homomorphism h : F k(X)→
⊕Ei,k−i∞ (X). Since a⊗ τ(z) 
= 0 ∈ E∗∗

2 = E∗∗
∞ , we conclude that
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h(az) = h(a)h(z) = a⊗ τ(z) 
= 0,

and thus az 
= 0. �

5.4. Lemma. Let F be a connected spectrum with 2π0(F ) = 0. If πi(F ) = 0
for i > 2k− 2, and if F(2k−3) is a graded Eilenberg–Mac Lane spectrum, then
the AHSS (5.3) for X = RP k ×RP k is trivial.

Proof. Since F(2k−3) is a graded Eilenberg–Mac Lane spectrum, only the
triviality of d0,0

2k−1 and d0,1
2k−1 needs to be proved. Firstly, consider

d0,1
2k−1 : H1(RP k ×RP k;F 0(pt))→ H2k(RP k ×RP k;F 2−2k(pt)).

Note that
d0,1
2k−1 : H1(−;F 0(pt))→ H2k(−;F 2−2k(pt))

is a natural transformation, and so it can be treated as a cohomology op-
eration. Furthermore, F 0(pt) is a Z/2-vector space, F 0(pt) = ⊕Z/2, and
so H1(Y ;F 0(pt)) = ⊕H1(Y ) for every finite CW -space Y , see II.1.16(ii).
Hence, we have a natural in Y splitting

Hom(H1(Y ;F 0(pt)), H2k(Y ;F i(pt))) = Hom(⊕H1(Y ), H2k(Y ;F i(pt)))

=
∏

Hom(H1(Y ), H2k(Y ;F i(pt))).

So, it suffices to prove that

θ : H1(RP k ×RP k)→ H2k(RP k ×RP k;F 2−2k(pt))

is zero for every cohomology operation θ : H1(−)→ H2k(−;F 2−2k(pt)). Let
a ∈ H1(RP k) = Z/2 be the generator. We set ai := p∗i a where

pi : RP k ×RP k → RP k

is the projection on the i-th factor, i = 1, 2. Since the group

H1(RP k ×RP k) = Z/2⊕ Z/2

is generated by a1 and a2, it suffices to prove that θ : H1(RP k) →
H2k(RP k;F 2−2k(pt)) is zero. But H2k(RP k;F 2−2k(pt)) = 0. Hence, θ = 0,
and thus d0,1

2k−1 = 0
Finally, d0,0

2k−1 = 0 because θ(y) = 0 for every θ ∈ A , dim θ > 0, and
every y ∈ H0(Y ). �

5.5. Theorem. Let E be a commutative ring spectrum with 2π∗(E) = 0.
Then E is a graded Eilenberg–Mac Lane spectrum. Furthermore, there is a
ring equivalence E � H(π∗(E)).
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Proof. Firstly, we assume that E is connected. By II.7.3(iii), it suffices
to prove that every coskeleton E(i) of E is a graded Eilenberg–Mac Lane
spectrum. We prove this by induction. Clearly, this holds for i = 0. Suppose
that E(i) is a graded Eilenberg–Mac Lane spectrum and consider n such that
2n − 2 ≤ i < 2n+1 − 2. We set F = E(i+1) and prove that F is a graded
Eilenberg–Mac Lane spectrum. Consider a ring morphism ϕ : P (n) → F as
in 5.1. By 5.1, it suffices to prove that ϕ∗(vn) = 0 ∈ π∗(F ).

If i ≤ 2n+1 − 3 then π2n+1−2(F ) = 0, and hence ϕ∗(vn) = 0. So, assume
that i = 2n+1 − 3. Let a ∈ H1(RP 2n) = Z/2 be the generator. In the AHSS

E∗∗
r =⇒ P (n)∗(RP 2n), E∗∗

2 = H∗(RP 2n)⊗ P (n)∗(pt)

the element a⊗1 ∈ E1,0
2 survives for dimensional reasons. Hence, there exists

t ∈ P (n)1(RP 2n) with r∗(t) = a.
By 2.19, r∗(βn−1(t)) = Qn−1r∗(t) = Qn−1(a) = a2n .
Let pk : RP 2n ×RP 2n → RP 2n be the projection on the k-th factor. We

set tk := p∗kt, ak := p∗ka, k = 1, 2.
Let τ : F → H(F 0(pt)) be as in 5.2. By II.7.1, there is a morphism

f : H → H(F 0(pt)) such that f∗ : Z/2 = π0(H)→ π0(H(F 0(pt))) = F 0(pt)
is the unit of the Z/2-algebra F 0(pt). We have the homotopy commutative
diagram

P (n)
ϕ−−−−→ F

r

⏐

⏐




⏐

⏐




τ

H
f−−−−→ H(F 0(pt)).

Since f is the inclusion of a direct summand, we conclude that

f∗ : H∗(RP 2n ×RP 2n)→ H∗(RP 2n ×RP 2n ;F 0(pt))

is monic. Hence, f∗(a2n

1 a2n

2 ) 
= 0, and so

τ∗ϕ∗(βn−1(t1)βn−1(t2)) = f∗(r∗(βn−1(t1)βn−1(t2))) = f∗(a2n

1 a2n

2 ) 
= 0.

Now, if ϕ∗(vn) 
= 0 then ϕ∗(vn)⊗ τ∗ϕ∗(βn−1(t1)βn−1(t2)) 
= 0 ∈ E∗∗
2 , and so,

by 5.2,
ϕ∗(vn)ϕ∗(βn−1(t1)βn−1(t2)) 
= 0.

On the other hand, ϕ∗(t1t2 + t2t1) = ϕ∗(t1)ϕ∗(t2) + ϕ∗(t2)ϕ∗(t1) = 0
because F is commutative. By 2.7,

t1t2 + t2t1 = vnβn−1(t1)βn−1(t2).

Hence,
0 = ϕ∗(t1t2 + t2t1) = ϕ∗(vn)ϕ∗(βn−1(t1)βn−1(t2)).

This is a contradiction. The induction is confirmed. Thus, E is a graded
Eilenberg–Mac Lane spectrum.
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If E is not connected, consider a connective covering p : ˜E → E. Then
˜E is a graded Eilenberg–Mac Lane spectrum by the above and II.4.28(i,iv).
Thus, by II.7.8, E is a graded Eilenberg–Mac Lane spectrum.

Finally, a ring equivalence E � H(π∗(E)) follows from II.7.30. �

5.6. Remarks. (a) Theorem 5.5 was proved by Pazhitnov–Rudyak [2],
Würgler [5], and Hopkins–Mahowald (unpublished).

(b) It follows from 1.3 that MU ∧M(Z/2), as well as K ∧M(Z/2), is not
a graded Eilenberg–Mac Lane spectrum, cf. also Stong [4]. Thus, because of
5.5, none of these spectra admits a commutative multiplication.

(c) See Remark VIII.3.12(b).

Now we give some applications of 5.5.

5.7. Corollary (cf. IV.6.2). The spectrum MV is a graded Eilenberg–Mac
Lane spectrum, MV � ∨ΣdH. �

Let f : S9 → BO be a generator of π9(BO) = Z/2, and let g : S3 →
Ω6BO be the adjoint map. We regard the map

h : Ω2S3 Ω2g−−→ Ω8BO � BO × Z
proj−−→ BO

as a stable vector bundle ξ.

5.8. Theorem (Mahowald [1]). Tξ � H. In particular, H is a Thom spec-
trum.

Proof. Since h is a double loop map, Tξ is a commutative ring spectrum.
Since

h∗ : π1(Ω2S3)→ π1(BO)

is epic, ξ is non-orientable, and so π0(Tξ) = Z/2. Hence, Tξ is a spectrum of
characteristic 2. Hence, by 5.5, Tξ � H ∨ E for some E, and hence

dimHk(Tξ) ≥ dimAk,

where dim is the dimension of Z/2-vector spaces and Ak = Hk(H). The
theorem will be proved once we have proved that the inequality above is an
equality.

Using Kudo–Araki–Dyer–Lashof operations, one can prove the ring iso-
morphism

H∗(Ω2S3) ∼= Z/2 [xi|, dimxi = 2i − 1],

see e.g. Cohen–Lada–May [1]. Hence, dimHk(Ω2S3) = dim A ∗
k = dimAk,

see II.6.25. Now,

dimHk(Tξ) = dimHk(Tξ) = dimHk(Ω2S3) = dimAk. �
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5.9. Example (cf. Bullett [1]). Let Σn be the symmetric group of degree n,
and let (k1, . . . , kn) be a typical permutation. We define the monomorphisms

in : Σn → Σn+1, in(k1, . . . , kn) = (k1, . . . , kn, n+ 1)

and let Σ be the direct limit of the sequence

{· · · → Σn
in−→ Σn+1 −→ · · · }.

In other words, Σ is the group of “infinite permutations” (k1, . . . , kn, . . . )
where kn = n for all but a finite number of n’s. We define a homomorphism
m : Σ× Σ→ Σ by setting

m((j1, . . . , jn, . . . ), (k1, . . . , kn, . . . )) = (j1, k1, . . . , jn, kn, . . . ).

Then m induces a map

μ : BΣ×BΣ = B(Σ× Σ) Bm−−→ BΣ,

and one can prove that μ is homotopy commutative and associative.18

Finally, we define homomorphisms tn : Σn → On by setting tn(σ)(ei) =
eσ(i) where σ ∈ Σn and {e1, . . . , en} is the standard basis of R

n.
Clearly, BΣ is (homotopy equivalent to) the telescope of the sequence

{· · · → BΣn
Bin−−→ BΣn+1 −→ · · · }.

Hence, the family {Btn : BΣn → BOn} yields a map

ϕ := lim−→{Btn} : BΣ→ BO.

Moreover, one can prove that the diagram

BΣ×BΣ
ϕ×ϕ−−−−→ BO × BO

μ

⏐

⏐




⏐

⏐



μO

BΣ
ϕ−−−−→ BO

commutes up to homotopy.
The map ϕ : BΣ→ BO yields a Thom spectrum MΣ := T (BΣ, ϕ).

5.10. Theorem. MΣ is a commutative ring spectrum of characteristic 2,
and so MΣ � H(π∗(MΣ)) � ∨ΣdH.

Proof. Following IV.5.22, one can prove MΣ is a commutative ring spec-
trum (the unit is given by the root). Furthermore, the stable vector bundle

18Notice that BΣ is not an H-space (there is no unit) since π1(BΣ) is not an

abelian group.
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ϕ : BΣ → BO is not orientable since ϕ∗ : π1(BΣ) → π1(BO) is an epimor-
phism. Hence, by IV.5.23(i), π0(MΣ) = Z/2, and thus MΣ is a spectrum of
characteristic 2. �

5.11. Example. Let βn be the Artin braid group, see e.g. Birman [1]. The
presentation of βn is

〈σ1, . . . , σn−1

∣

∣ σiσj = σjσi if |i− j| > 1 and σiσi+1σi = σi+1σiσi+1〉.

We define the monomorphism in : βn → βn+1, i(σk) = σk, and let β be the
direct limit of the sequence

{· · · → βn
in−→ βn+1 −→ · · · }.

Furthermore, we define a homomorphism m : β × β → β by setting

m((σ1, . . . , σk, . . . ), (σ′
1, . . . , σ

′
k, . . . )) = (σ1, σ

′
1, . . . , σk, σ

′
k, . . . ).

Finally, we define a homomorphism un : βn → Σn where the permutation
un(σi) interchanges i and i + 1 and does not move other symbols. Then
the family {un} yields a homomorphism u : β → Σ and hence the map
Bu : Bβ → BΣ. So, we get a stable vector bundle

Bβ
Bu−−→ BΣ Bϕ−−→ BO

with ϕ as in 5.9, and we set Mβ := T (Bβ,ϕ◦Bu).

5.12. Theorem (F. Cohen [1]). Mβ � H. In particular, H is a Thom
spectrum.

Proof. As in 5.10, we can prove that Mβ � ΣdH , i.e., Mβ � H ∨ E.
So, as in 5.8, it suffices to prove the existence of an additive isomorphism
H∗(Mβ) ∼= A . This has been done in Fuks [1]. �

5.13. Remark. Comparing 5.8 and 5.12, we see that it makes sense to com-
pare the spaces Ω2S3 and Bβ. In fact, there is a map f : Bβ → Ω2S3 which
induces an isomorphism in integral homology, see F. Cohen [1]. So, f is a
Quillenization (a plus-construction in terms of Adams [9]). Hence, Tf in-
duces an isomorphism in Z/2-homology, and one can prove that Tf is an
equivalence.

Astey [1] used Theorem 5.5 in order to prove the following more general
result. Let η : ΣS → S represent the nontrivial element of π1(S) = Z/2.
Note that Cη = Σ−2Σ∞CP 2. There is a map c : Cη → Σ2S that collapses
S ⊂ Cη. Furthermore, π2(Cη) = Z, and there is a generator v : Σ2S → Cη
such that the composition cv : Σ2S → Σ2S is the multiplication by 2. Not
that S is a subspectrum of the spectrum C(v).
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5.14. Theorem (Astey [1]). Let E be a commutative 2-local ring spectrum.
Then E is a graded Eilenberg–Mac Lane spectrum iff the unit ι : S → E
extends to C(v). �

In particular, the spectrumMSO[2] is a graded Eilenberg–Mac Lane spec-
trum, because πi(MSO) = 0 for i = 1, 2, cf IV.6.5.

The idea of the proof (“if” part) is the following. First, since the unit of
E extends to C(v), we conclude the spectrum E satisfies the conditions of
Corollary 9.10 from Araki–Toda [1]. Hence, E ∧M(Z/2) is a commutative
ring spectrum.

So, E∧M(Z/2 is a graded Eilenberg–Mac Lane spectrum by Theorem 5.5.

Now, using the same arguments as in the end of the proof of Theorem 5.5,
we can assume that E is connected. Assuming by induction that the Postnikov
stage E(s) is a graded Eilenberg–Mac Lane spectrum, and using that E ∧
M(Z/2) (as well as each of its Postnikov stages) is a graded Eilenberg–Mac
Lane spectrum, Astey proves that all Postnikov invariants of E are trivial.
This completes the proof.

§6. The Spectra BP 〈n〉 and Homological Dimension

Let Ω〈n〉 denote the subring Z[p][v1, . . . , vn] of Ω = Z[p][v1, . . . , vn, . . . ].
Clearly, the inclusion Ω〈n〉 ⊂ Ω turns Ω into an Ω〈n〉-module. On the other
hand, there is the quotient ring homomorphism

Ω −→ Ω〈n〉, vk �→
{

vk if k ≤ n,
0 if k > n.

This homomorphism turns Ω〈n〉 into an Ω-module.

Given an Ω〈n〉-module M , consider the homomorphism

l : M →M [v−1
k ] := M ⊗Ω〈n〉 Ω〈n〉[v−1

k ], a �→ a⊗ 1.

6.1. Lemma. The Ω〈n〉-module Ω〈n〉[v−1
k ] is flat. In particular, the functor

M �→M [v−1
k ] is exact on the category of Ω〈n〉-modules.

Proof. This follows from 4.12. �

6.2. Definition. We say that an Ω〈n〉-module M is vk torsion free if the
homomorphism vk : M → M (multiplication by vk) is monic. Clearly, it
holds iff the homomorphism l : M →M [v−1

k ] is monic.

6.3. Lemma. Let R be a commutative ring such that every projective R-
module is free. Let A be a graded commutative connected R-algebra. Then
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every graded projective A-module is free provided that it is bounded below.
In particular, every graded projective Ω〈n〉-module is free provided that it is
bounded below.

Proof. Let ε : A → R be the augmentation. As in II.6.5, set GM =
M/ĀM = M ⊗ε R.

Consider a projective A-module P . Then there exists P ′ such that P ⊕P ′

is a free A-module. It is easy to see that G(P ⊕P ′) = GP ⊕GP ′ is a free R-
module. Hence, GP is a projective R-module, and hence it is a free R-module
by our assumption.

Set F := A ⊗R GP and equip F with an A-module structure by setting
a(x ⊗ y) := (ax) ⊗ y, a, x ∈ A, y ∈ GP . Let {ei|i ∈ I} be a free R-basis of
GP . Then {fi := 1⊗ ei} is a free A-basis of F . Choose elements pi ∈ P such
that the canonical epimorphism P → GP maps pi to ei.

Now suppose that P is bounded below. Define a homomorphism of A-
modules ϕ : F → P by setting ϕ(fi) = pi. It is clear that Gϕ : GF → GP
is an epimorphism, and so, by II.6.6(i), ϕ : F → P is an epimorphism. Since
P is a projective A-module, ϕ splits by some monomorphism ψ : P → F ,
ϕψ = 1P . Since Gψ is an isomorphism, ψ is an epimorphism. Hence, ψ is an
isomorphism. Thus, P is a free A-module. �

6.4. Definition. Let M be a module over a commutative ring R. We say
that M has homological dimension ≤ n if it admits a projective resolution of
length n, i.e., if there is an exact sequence of R-modules

0→ Pn → · · · → P1 → P0 →M → 0

where every Pi is projective. In this case we write hom. dimRM ≤ n. We
say that M has homological dimension n, and write hom. dimRM = n, if
hom. dimRM ≤ n while it is false that hom. dimRM ≤ n− 1.

6.5. Proposition. Let R be a commutative ring.
(i) hom. dimRM ≤ n iff Extn+1

R (B,M) = 0 for every R-module B.
(ii) Let 0 → N → P → M → 0 be a short exact sequence of R-modules

such that P is projective. Then

Exti+1
R (M,B) ∼= ExtiR(N,B) and TorRi+1(M,B) ∼= TorRi (N,B)

for every i > 0 and every R-module B.
(iii) Let 0 → N → P → M → 0 be a short exact sequence of R-

modules such that P is projective. If hom. dimRM > 0 then hom. dimRM =
hom. dimRN + 1.

Proof. (i) See Mac Lane [1], Theorem VII.1.1.
(ii) See Mac Lane [1], Theorems III.3.1 and V.8.4.
(iii) This follows from (i) and (ii). �
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6.6. Proposition. Let F be a free Ω-module. Let N be a finitely generated
submodule of F . Then hom. dim ΩN <∞.

Proof. Let S = {si} be a free Ω-basis of F . Define F 〈n〉 to be the free
Ω〈n〉-module generated by S. We regard F 〈n〉 as the subgroup of F consisting
of linear combinations

∑

aisi, ai ∈ Ω〈n〉 ⊂ Ω. Define a homomorphism of
Ω〈n〉-modules

ψn : F 〈n〉 ⊗Ω〈n〉 Ω→ F, ψ
((

∑

aisi

)

⊗ b
)

:=
∑

baisi, b ∈ Ω.

It is clear that ψn is an isomorphism.
Let T be a finite set of generators of N . Choose n so large that T ⊂ F 〈n〉.

Set N〈n〉 := N ∩ F 〈n〉, and let in : N〈n〉 → F 〈n〉 be the inclusion. Since Ω
is a free Ω〈n〉-module, the homomorphism i′n := in ⊗ 1 : N〈n〉 ⊗Ω〈n〉 Ω →
F 〈n〉 ⊗Ω〈n〉 Ω is monic. Let ϕn be the unique homomorphism such that the
following diagram commutes:

N〈n〉 ⊗Ω〈n〉 Ω
ϕn−−−−→ N

i′n

⏐

⏐




⏐

⏐




F 〈n〉 ⊗Ω〈n〉 Ω
ψn−−−−→ F .

Then ϕn becomes a homomorphism of Ω-modules if we equip N〈n〉 ⊗Ω〈n〉 Ω
with the following Ω-module structure:

a(x⊗ b) := x⊗ (ab), a ∈ Ω, x ∈ N, b ∈ Ω〈n〉 ⊂ Ω, .

Now, ϕn is epic since T ⊂ F 〈n〉, and ϕn is monic since ψni′n is monic. Hence,
ϕn is an isomorphism.

By the Hilbert Syzygy Theorem (see Mac Lane [1], VII.6.4), there exists
an exact sequence of Ω〈n〉-modules

0→ Fn+1 → Fn → · · · → F1 → F0 → N〈n〉 → 0

where every Fi is a free Ω〈n〉-module. Since Ω is a free Ω〈n〉-module, the
sequence

0→ Fn+1 ⊗Ω〈n〉 Ω→ Fn ⊗Ω〈n〉 Ω→ · · · → F1 ⊗Ω〈n〉 Ω
→ F0 ⊗Ω〈n〉 Ω→ N ⊗Ω〈n〉 Ω→ 0

is exact. Equipping each term with the Ω-module structure as above, we
conclude that every Ω-module Fi⊗Ω〈n〉 Ω is free, and hence projective. Since
N ∼= N〈n〉 ⊗Ω〈n〉 Ω, we conclude that hom. dim ΩN ≤ n <∞. �

6.7. Corollary. If M is a coherent Ω-module then hom. dim ΩM < ∞. In
particular, hom. dim ΩBP∗(X) <∞ for every finite spectrum X.
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Proof. Since M is finitely generated, there is an exact sequence

0→ N → F →M → 0

where F is a free finitely generated Ω-module. Note that, by VII.1.13(i), Ω is
a coherent ring. Hence, by VII.1.13(ii), F is a coherent Ω-module. So, again
by VII.1.13(ii), the Ω-module N is coherent, and hence finitely generated.
Hence, by 6.6, hom. dim ΩN <∞, and thus, by 6.5(iii), hom. dim ΩM <∞.

�
Consider the spectrum

BP 〈n〉 := BP {vn+1,...,vn+m,...}.

Because of VIII.1.24, π∗(BP 〈n〉) ∼= Ω〈n〉. Notice that BP 〈0〉 = HZ[p] and
BP 〈−1〉 = HZ/p. By VIII.1.6, for every X ∈ C there is an exact sequence

(6.8) · · · → BP 〈n〉∗(X) vn−→ BP 〈n〉∗(X) rn−→ BP 〈n− 1〉∗(X) δn−→ · · · .

Furthermore, we have the obvious forgetful morphism ρn : BP∗(X) →
BP 〈n〉∗(X) of homology theories.

The morphisms rn of homology theories form a tower

(6.9) · · · → BP 〈n+ 1〉∗(−)
rn+1−−−→ BP 〈n〉∗(−) rn−→ · · · .

6.10. Theorem. The tower (6.9) admits a quasi-ring structure, i.e., every
homology theory BP 〈n〉∗(X) admits a commutative and associative quasi-
multiplication such that every morphism rn is a quasi-ring morphism with
respect to these quasi-multiplications. Moreover, all the morphisms ρn are
quasi-ring morphisms.

Proof. This follows from VIII.2.17. �

6.11. Remark. In view of III.4.22, we can and shall assume that the ho-
momorphisms rn : BP 〈n〉∗(X) → BP 〈n − 1〉∗(X) and ρn : BP∗(X) →
BP 〈n〉∗(X) are defined when X is a spectrum.

6.12. Lemma. If 0 ≤ k ≤ n, then the following holds for every spectrum X:
(i) The homomorphism ρn[v−1

k ] : BP∗(X)[v−1
k ] → BP 〈n〉∗(X)[v−1

k ] is
epic;

(ii) The homomorphism vn : BP 〈n〉∗(X)[v−1
k ] → BP 〈n〉∗(X)[v−1

k ] is
monic.

Proof. (i) For every spectrum X , consider the homomorphism

τ : BP∗(X)⊗Ω Ω〈n〉 [v−1
k ]→ BP 〈n〉∗(X)[v−1

k ], τ(a ⊗ b) = ρn(a)b.
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By 4.1,BP∗(−)⊗ΩΩ〈n〉 [v−1
k ] is a homology theory. By 6.1,BP 〈n〉∗(−)[v−1

k ] is
a homology theory. Hence, τ is a morphism of homology theories. Since it is an
isomorphism for X = S, it is for every spectrum X . But the homomorphism

BP∗(X)[v−1
k ] = BP∗(X)⊗Ω Ω[v−1

k ]→ BP∗(X)⊗Ω Ω〈n〉[v−1
k ]

is evidently epic, and the result follows.
(ii) This is clear if k = n. So, assume that k < n. Because of the exactness

of (6.8), it suffices to prove that

rn[v−1
k ] : BP 〈n〉∗(X)[v−1

k ]→ BP 〈n− 1〉∗(X)[v−1
k ]

is epic. But this follows from (i). �

6.13. Corollary. Let X be a spectrum, and let k < n. If BP 〈n〉∗(X) is vk
torsion free, then BP 〈n〉∗(X) is vk+1 torsion free.

Proof. Consider the commutative diagram

BP 〈n〉∗(X)
vk+1−−−−→ BP 〈n〉∗(X)

l

⏐

⏐




⏐

⏐



l

BP 〈n〉∗(X)[v−1
k ]

vk+1−−−−→ BP 〈n〉∗(X)[v−1
k ].

Since BP 〈n〉∗(X) is vk torsion free, l is monic. By 6.12(ii), the bottom arrow
is monic. Hence, the top arrow is monic. �

6.14. Lemma. Let X be a spectrum bounded below, and let k ≤ n where
n ≥ 0. Suppose that BP 〈n〉∗(X) is vk torsion free. Then :

(i) BP 〈n+ 1〉∗(X) is vk torsion free.
(ii) ρn : BP∗(X)→ BP 〈n〉∗(X) is epic.

Proof. (i) Consider the following diagram with exact columns. Here the
left column is (6.8), and the right column is exact by 6.1 and 6.12(ii).

BP 〈n〉i+2pn+1−1(X) l1−−−−→ 0
⏐

⏐




⏐

⏐




BP 〈n+ 1〉i(X) l2−−−−→ BP 〈n+ 1〉i(X)[v−1
k ]

vn+1

⏐

⏐




⏐

⏐




vn+1

BP 〈n+ 1〉i+2pn+1−2(X) l3−−−−→ BP 〈n+ 1〉i+2pn+1−2(X)[v−1
k ]

⏐

⏐




⏐

⏐




BP 〈n〉i+2pn+1−2(X) l4−−−−→ BP 〈n〉i+2pn+1−2(X)[v−1
k ].
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We prove that l2 and l3 are monic by induction on i. Note that l4 is monic
because BP 〈n〉∗(X) is vk torsion free. Since X is bounded below, there exists
m such that BP 〈n+1〉i(X) = 0 for i < m. Hence, l2 is monic for every i < m.
Hence, by the Five Lemma I.2.1, l3 is monic for every i < m + 2pn+1 − 2.
Hence, l2 is monic for every i < m+ 2pn+1 − 2. Hence, l3 is monic for every
i < m+ 2(2pn+1 − 2), and so on.

(ii) By (i), BP 〈n + 1〉∗(X) is vk torsion free. Hence, by 6.13, it is vn+1

torsion free. Therefore,

rn+1 = rXn+1 : BP 〈n+ 1〉∗(X) −→ BP 〈n〉∗(X)

is epic. Similarly, rn+2 : BP 〈n + 2〉∗(X) → BP 〈n + 1〉∗(X) is epic. And so
on. Finally, X is bounded below, and so, by II.4.5(ii), for every i there exists
m = m(i) such that ρm : BPi(X)→ BP 〈m〉i(X) is epic. �

6.15. Corollary. For every n ≥ −1 and every spectrum X bounded below, the
homomorphism ρn = ρXn : BP∗(X)→ BP 〈n〉∗(X) is epic iff BP 〈n+ 1〉∗(X)
is vn+1 torsion free.

Proof. If ρn is epic then rn+1 : BP 〈n + 1〉∗(X) → BP 〈n〉∗(X) is epic.
Hence, because of the exactness of (6.8), BP 〈n+1〉∗(X) is vn+1 torsion free.
Conversely, suppose thatBP 〈n+1〉∗(X) is vn+1 torsion free. Then, by 6.14(i),
BP 〈n+ 2〉∗(X) is vn+1 torsion free. Hence, by 6.13, BP 〈n+ 2〉∗(X) is vn+2

torsion free. And so on. Now we can prove that ρn is epic just as in 6.14(ii).
�

We define ρ̃n : BP∗(X)⊗Ω Ω〈n〉 → BP 〈n〉∗(X), ρ̃n(a⊗ b) = ρn(a)b.

6.16. Corollary. Let W be a spectrum bounded below. Suppose that the group
Hi(W ; Z[p]) is a free Z[p]-module for every i. Then, for every n ≥ −1,

ρn : BP∗(W )→ BP 〈n〉∗(W )

is an epimorphism and ρ̃n : BP∗(W ) ⊗Ω Ω〈n〉 → BP 〈n〉∗(W ) is an isomor-
phism.

Proof. Firstly, consider n ≥ 0. By 6.14(i), BP 〈n〉∗(W ) is v0 torsion free
because BP 〈0〉∗(W ) = H∗(W ) is v0 torsion free. Hence, by 6.14(ii), ρn is
epic. So ρ̃n is epic for every n ≥ −1. By II.7.13,

ρ̃n ⊗ 1 : BP∗(Y )⊗Ω Ω〈n〉 ⊗Q→ BP 〈n〉∗(Y )⊗Q

is an isomorphism for every Y . So, we will have proved that

ρ̃n : BP∗(W )⊗Ω Ω〈n〉 → BP 〈n〉∗(W )

is monic if we prove that BP∗(W ) ⊗Ω Ω〈n〉 is torsion free. But this follows
since, by VII.3.29(ii),BP∗(W ) is a free Ω-module. Thus, ρ̃n is an isomorphism
for every n ≥ 0.
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Finally, if n = −1 then

BP 〈−1〉∗(W ) = H∗(W ; Z/p) ∼= H∗(W,Z[p])⊗ Z/p = BP 〈0〉∗(W )⊗ Z/p
∼= BP∗(W )⊗Ω Z/p,

and it is clear that this isomorphism is given by ρ̃−1. �

6.17. Lemma. Let M be a graded Ω-module bounded below. If k > −1 and
TorΩ1 (M,Ω〈k〉) = 0 then TorΩ1 (M,Ω〈k + 1〉) = 0.

Proof. Consider the exact sequence

0→ Ω〈k + 1〉 vk+1−−−→ Ω〈k + 1〉 → Ω〈k〉 → 0.

It yields the exact sequence of graded Ω-modules

· · · → TorΩ1 (M,Ω〈k + 1〉) vk+1−−−→ TorΩ1 (M,Ω〈k + 1〉)→ TorΩ1 (M,Ω〈k〉) = 0.

But vk+1 increases the degree while TorΩ1 (M,Ω〈k + 1〉) is bounded below.
�

6.18. Lemma. Let X be a spectrum bounded below, and let f : W → X be
as in VII.3.29(iii). Consider a cofiber sequence

A
g−→ W

f−→ X.

Then TorΩi+1(BP∗(X),K) = TorΩi (BP∗(A),K) for every i > 1 and every
Ω-module K. Furthermore,

hom. dim ΩBP∗(X) = hom. dim ΩBP∗(A) + 1

provided hom. dim ΩBP∗(X) > 0.

Proof. The cofiber sequence A
g−→W

f−→ X induces an exact sequence

0→ BP∗(A)
g∗−→ BP∗(W )

f∗−→ BP∗(X)→ 0

where g∗ and f∗ are the induced homomorphisms and BP∗(W ) is a free Ω-
module. Now the result follows from 6.5(ii,iii). �

6.19. Notation. Given a prime p, we denote by P = P(p) the class of
spectra X such that X is bounded below and every group Hi(X ; Z[p]) is a
finitely generated Z[p]-module. For example, P contains all Z[p]-local spectra
of finite Z[p]-type and all spectra of finite Z-type.

6.20. Remark. If X ∈P then there exists a cofiber sequence

A
g−→W

f−→ X

as in 6.18 with A,W ∈P. This follows immediately from VII.3.29(iii).



The Spectra BP
〈

n
〉

and Homological Dimension 535

6.21. Theorem (Johnson–Wilson [1]). Fix any n ≥ −1. For every spectrum
X ∈P the following conditions are equivalent:

(i) hom. dim ΩBP∗(X) ≤ n+ 1;
(ii) The homomorphism ρn : BP∗(X)→ BP 〈n〉∗(X) is epic;
(iii) The homomorphism ρ̃n : BP∗(X)⊗Ω Ω〈n〉 → BP 〈n〉∗(X) is an iso-

morphism;
(iv) TorΩ1 (BP∗(X),Ω〈n〉) = 0;
(v) TorΩi (BP∗(X),Ω〈n〉) = 0 for every i > 0.

Proof. We prove that (i) ⇐⇒ (ii) ⇐⇒ (iii) ⇒ (iv) ⇒ (i) ⇒ (v) ⇒ (iii).
We prove that (i) ⇐⇒ (ii) by induction on n. By 3.11, ρ−1 : BP∗(X) →

H∗(X ; Z/p) is epic iff BP∗(X) is a free Ω-module. By 6.3, this holds, in turn,
iff BP∗(X) is a projective Ω-module, i.e., iff hom. dim ΩBP∗(X) = 0. Assume

that (i)⇐⇒ (ii) for n−1. The cofiber sequence A
g−→ W

f−→ X as in 6.18 yields
the following commutative diagram with exact rows:

0 −−−−→ BP∗(A)
g∗−−−−→ BP∗(W )

f∗−−−−→ BP∗(X) −→ 0
⏐

⏐



ρWn

⏐

⏐




⏐

⏐




ρn

· · · −−−−→ BP 〈n〉∗(A)
g•−−−−→ BP 〈n〉∗(W )

f•−−−−→ BP 〈n〉∗(X)−→ · · · .

Recall that BP∗(W ) is a free π∗(BP )-module. Hence, in view of VII.3.29(ii),
H∗(W ; Z[p]) is a free Z[p]-module, and so, by 6.16, ρWn is an epimor-
phism. Furthermore, again by 6.16, BP∗(W ) ⊗Ω Ω〈n〉 ∼= BP 〈n〉∗(W ), and
so BP 〈n〉∗(W ) is vk torsion free for every k ≤ n. By 6.20, we can assume
that A ∈P. Now:
ρn is epic ⇐⇒ f• is epic ⇐⇒ g• is monic ⇐⇒ BP 〈n〉∗(A) is vn torsion free

⇐⇒ ρn−1 : BP∗(A)→ BP 〈n− 1〉∗(A) is epic (by 6.15)
⇐⇒ hom. dim ΩBP∗(A) ≤ n
⇐⇒ hom. dim ΩBP∗(X) ≤ n+ 1 (by 6.5(iii)).

It is clear that (iii)⇒ (ii). We prove that (ii) ⇒ (iii). If ρ−1 is epic, then,
by 3.11, BP∗(X) is a free Ω-module. Hence, by VII.3.29(ii) and 6.16, ρ̃−1 is
an isomorphism. Thus, assume that n ≥ 0.

Consider any X such that ρn : BP∗(X) → BP 〈n〉∗(X) is epic. The dia-
gram above yields the following diagram with exact rows, where ρ′′ = ρ̃Wn is
an isomorphism and ρ̃n is an epimorphism:

(6.22)

BP∗(A) ⊗Ω Ω〈n〉 g̃∗−−−−→ BP∗(W )⊗Ω Ω〈n〉 ˜f∗−−−−→ BP∗(X)⊗Ω Ω〈n〉−→ 0

ρ′
⏐

⏐



ρ′′
⏐

⏐




∼=
⏐

⏐


ρ̃n

BP 〈n〉∗(A)
g•−−−−→ BP 〈n〉∗(W )

f•−−−−→ BP 〈n〉∗(X).
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If (ii) holds then f• is epic and g• is monic. Since (i) ⇐⇒ (ii), we conclude
that

hom. dim ΩBP∗(A) ≤ hom. dim ΩBP∗(X)− 1 ≤ n.
Again, since (i) ⇐⇒ (ii), ρ′ is epic. Now diagram chasing (the Five Lemma)
shows that ρ̃n is monic.

We prove that (iii) ⇒ (iv). If (iii) holds then g• in (6.22) is monic, and
hence ρ′ is an isomorphism. So, TorΩ1 (BP∗(X),Ω〈n〉) = Ker g̃∗ = Ker g• = 0.

We prove that (iv) ⇒ (i). We have TorΩ1 (BP∗(X),Ω〈n〉) = 0. Suppose

hom. dim ΩBP∗(X) = m+ 2 > n+ 1.

Consider the diagram (6.22) with m instead of n. By 6.18,

hom. dim ΩBP∗(A) ≤ m+ 1,

and so ρ′ is an isomorphism since (i) ⇒ (iii). Furthermore, by 6.17,

TorΩ1 (BP∗(X),Ω〈m〉) = 0,

and so g̃∗ is monic, and so g• is monic, and so f• is epic. Hence, ρ̃m is an
epimorphism, and therefore hom. dim ΩBP∗(X) ≤ m + 1. This is a contra-
diction.

We prove that (i) ⇒ (v). Consider the following claim Am:
Let Y ∈P. Suppose that hom. dim ΩBP∗(Y ) ≤ m. Then

TorΩi (BP∗(Y ),Ω〈n〉) = 0

for every i > 0.
It suffices to prove An+1. We prove by induction that Am,m ≤ n + 1, is

valid. It is clear that A0 is valid. We assume that Ak−1, 1 ≤ k ≤ n+1, is valid
and prove Ak. Consider any spectrum X ∈P with hom. dim ΩBP∗(X) ≤ k.
Then TorΩ1 (BP∗(X),Ω〈n〉) = 0 (because (i) ⇒(iv)). Consider a cofiber se-

quence A
g−→ W

f−→ X as in 6.18. By 6.20, we can assume that A ∈
P. By 6.18, hom. dim ΩBP∗(A) ≤ k − 1, and so, by the inductive as-
sumption, TorΩi (BP∗(A),Ω〈n〉) = 0 for every i > 0. Hence, by 6.18,
TorΩi (BP∗(X),Ω〈n〉) = 0 for every i > 1, and thus TorΩi (BP∗(X),Ω〈n〉) = 0
for every i > 0.

Finally, we prove that (v) ⇒ (iii). Consider the following claim Bm:
Let Y ∈P. Suppose that hom. dim ΩBP∗(Y ) ≤ m. If

TorΩi (BP∗(Y ),Ω〈n〉) = 0

for every i > 0, then ρ̃n : BP∗(Y )⊗Ω Ω〈n〉 → BP 〈n〉∗(Y ) is epic.
We prove Bm by induction. By 6.16, B0 is valid. We assume that

Bk−1, 1 ≤ k, is valid and prove Bk. Let X ∈P. Suppose that

hom. dim ΩBP∗(X) ≤ k
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and that TorΩi (BP∗(X),Ω〈n〉) = 0 for every i > 0. By 6.18,

TorΩi (BP∗(A),Ω〈n〉) = 0 for every i > 0,

where A is as in 6.18. By 6.20, we can assume that A ∈P. Since

hom. dim ΩBP∗(A) ≤ k − 1,

the homomorphism ρ′ in (6.22) is an isomorphism by the inductive assump-
tion. Finally, TorΩ1 (BP∗(X),Ω〈n〉) = 0, and so g̃∗ is a monomorphism. Thus,
ρ̃n : BP∗(X)⊗Ω Ω〈n〉 → BP 〈n〉∗(X) is an isomorphism. �

6.23. Theorem. (i) Given a spectrum X ∈ P, suppose that vnx = 0 for
some x ∈ BP∗(X), x 
= 0. Then hom. dim ΩBP∗(X) > n.

(ii) For every prime p and every natural number n, there exists a finite
spectrum X with hom. dim ΩBP∗(X) = n.

Proof. (i) Since BP∗(X) is not vn torsion free, BP 〈N〉∗(X) is not vn
torsion free for N large enough, see II.4.5(i). Hence, by 6.14(i), BP 〈n〉∗(X)
is not vn torsion free. Hence, by 6.15, ρn−1 : BP∗(X) → BP 〈n〉∗(X) is not
epic. Thus, by 6.21, hom. dim ΩBP∗(X) > n.

(ii) If hom. dim ΩBP∗(X) > 0 then

hom. dim ΩBP∗(A) = hom. dim ΩBP∗(X)− 1

for A as in 6.18. Hence, it suffices to prove that for every n there exists a
finite spectrum X with hom. dim ΩBP∗(X) > n. Fix a natural number n.
By 3.3, vna = 0 for every a ∈ BP0(P (n)) = Z/p. Hence, vna = 0 for every
a ∈ BP0(X), where X = P (n)(2p

n−1). Thus, by (i), hom. dim ΩBP∗(X) > n.
�

6.24. Remarks. Conner–Smith [1] demonstrated that homological algebra
over π∗(MU) has a geometrical meaning. In particular, hom. dim π∗(MU)(X)
turns out to be a useful geometric invariant of X . The proofs of 6.3 and 6.6
are taken from this paper. We remark that 6.6 was proved by Adams [6], Lect.
5, Th. 2, p. 114. Besides, Conner–Smith [1] remarked that Adams suggested
the idea of the proof of 6.3. Conner–Smith [1] proved the MU-analog of 6.21
for n = 0 and, partially, for n = 1 (considering k instead of MU〈1〉). All
other results of this section were proved by Johnson–Wilson [1]. Our proof of
6.12 is taken from Landweber [5].

(b) Following Baas [1], fix a system {xi} of free polynomial generators of
π∗(MU) and let

MU〈n〉 := MU{xn+1,...xn+k... }.

Conner–Smith [1] proved that uH : MU∗(X)→ H∗(X) is epic iff

hom. dim π∗(MU)(X) ≤ 1,



538 Chapter IX. Complex (Co)bordism with Singularities

and Conner–Smith [1], Johnson–Smith [1] proved that uk : MU∗(X)→ k∗(X)
is epic iff hom. dim π∗(MU)(X) ≤ 2. Since H = MU〈0〉 and k = MU〈1〉 (the
last one for a suitable system {xi}), one can conjecture that the forgetful
homomorphism MU∗(X) → MU〈n〉∗(X) is epic iff hom. dim π∗(MU)(X) ≤
n+1. This conjecture is wrong, see Johnson–Wilson [1], Rudyak [2]. However,
Theorem 6.21 demonstrates that a local version of this conjecture is valid.

(c) I think (conjecture) that there is a spectral sequence

Er∗∗(X) =⇒ BP∗(X), E2
∗∗(X) = BP 〈n〉 ⊗Ω〈n〉 Ω.

For n = 0 it is just the AHSS, for n = 1 such a spectral is constructed by
Johnson [1]

Yosimura [1] generalized Theorem 6.21 as follows. Consider the spectrum
BP [m,n] := BPΣ, where Σ = {v0, . . . , vm−1, vn+1, . . . , vn+k, . . .}, m−1 ≤ n.
So, BP [m,∞] = P (m) and BP [0, n] = BP 〈n〉. Furthermore, BP [n, n− 1] =
HZ/p. The forgetful morphism ρm : P (m)→ BP [m,n] can be defined in an
obvious way. Set Ω[m,n] := π∗(BP [m,n]).

6.25. Theorem. Fix any m,n with 0 ≤ m ≤ n. For every spectrum X ∈P
the following conditions are equivalent:

(i) hom. dim Ω/Im P (m)∗(X) ≤ n−m+ 1;
(ii) The homomorphism ρn : P (m)∗(X)→ BP [m,n]∗(X) is epic;
(iii) The homomorphism ρ̃n : P (m)∗(X)⊗Ω/Im Ω[m,n]→ BP [m,n]∗(X)

is an isomorphism;
(iv) TorΩ/Im1 (P (m)∗(X),Ω[m,n]) = 0;
(v) TorΩ/Imi (P (m)∗(X),Ω[m,n]) = 0 for every i > 0. �

This theorem generalizes 6.21 (namely, 6.21 is its special case withm = 0),
and it can be proved similarly to 6.21.

§7. Morava K-Theories

Fix a prime p.

7.1. Definition. Given a natural number n, consider the ring Z/p [x], dimx =
2(1− pn). A connected Morava k-theory k(n) is any ring C -marked cohomo-
logy theory on S (i.e., a cohomology theory represented by a ring C -marked
spectrum) with the following properties:

1. k(n)∗(S) = Z/p [x];
2. The formal group of k(n) has height n.
We require the ring spectrum k(n) to be commutative (i.e., C -oriented)

if p > 2. Furthermore, we set k(0) := HZ[p], k(∞) := HZ/p.
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7.2. Definition. Given a natural number n, consider the ring Z/p [x, x−1]
where dim x = 2(1 − pn). A periodic Morava K-theory K(n) is any ring
C -marked cohomology theory on S with the following properties:

1. K(n)∗(S) = Z/p [x, x−1];
2. The formal group of K(n) has height n.
We require the ring spectrum K(n) to be commutative (i.e., C -oriented)

if p > 2. Furthermore, we set K(0) := HQ, K(∞) := HZ/p.

We now give examples (i.e., prove the existence) of Morava theories. Con-
sider any family

R = {v1, . . . , vn, . . .}, dim vi = 2(pi − 1),

of free polynomial generators of π∗(BP ). Set kR(n) := BPV , where V =
{p, v1, . . . , vn−1, vn+1, . . .}.

7.3. Proposition. kR(n) can be equipped with a C -marking which turns it
into a Morava k-theory k(n).

Proof. By VIII.2.17, kR(n) admits an admissible associative multiplication
which can be chosen to be commutative for p > 2. Therefore, the morphism
MU ρ−→ BP

r−→ kR(n) is a ring C -marking. Let

ρS : MU [p]∗(S)→ BP ∗(S), rS : BP ∗(S)→ kR(n)∗(S)

be the coefficient homomorphisms, and let αn be the coefficient of xp
n

in
[p]f (x). We have In = (p, v1, . . . , vn−1), and so, by VII.6.15(ii), ρ(αn) ≡
bnvn mod In, bn ∈ Z/p, bn 
= 0. Hence, rSρS(αi) = 0 for i < n and
rSρS(αn) 
= 0. Thus, ht((rS)∗(ρS)∗f) = n. �

As usual, we denote by {Xλ} the family of all finite subspectra of a
spectrum X .

7.4. Proposition. Let k(n) be a connected Morava k-theory, k(n)∗(S) =
Z/p [x], dimx = 2(1− pn), n ∈ N. Then

E∗(X) := lim←−{k(n)∗(Xλ)⊗Z/p[x] Z/p[x, x−1]}, X ∈ S ,

is an additive cohomology theory on S which is a periodic Morava K-theory
K(n)∗(X).

Proof. By 6.1, k(n)∗(X)⊗Z/p[x] Z/p[x, x−1] is a cohomology theory on Sf .
Hence, by III.4.17, the functor

E∗(X) := lim←−{k(n)∗(Xλ)⊗Z/p[x] Z/p[x, x−1]}

is a cohomology theory on S . The additivity follows from III.1.21. �
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7.5. Proposition. If n > 0, then a connective covering of any periodic
Morava K-theory K(n) is a connected Morava k-theory.

Proof. This follows from II.4.28 becauseMU is a connected ring spectrum.
�

Consider the diagram BP
κ−→ MU [p]

ρ−→ BP with ρκ = 1BP . Set
fp := l∗(f), where l : MU∗(S) → MU∗(S)[p] = MU [p]∗(S) is the Z[p]-
localization and f is the universal formal group over MU∗(S). Let κS :
BP ∗(S) → MU [p]∗(S) and ρS : MU [p]∗(S) → BP ∗(S) be the coefficient
homomorphisms. Set fBP := (ρS)∗fp.

7.6. Lemma. (i) The formal groups (κS)∗fBP and fp are equivalent.
(ii) Let F be a graded formal group over a graded Z[p]-algebra R. Then

there exists a graded formal group G over R such that F � G and G = ϕ∗f
BP

for some ϕ : BP ∗(S)→ R.

Proof. (i) Note that (κS)∗fBP is the formal group of the C -oriented
spectrum (MU [p], ((κρ)CP∞)∗(T )), where

(κρ)CP∞ : MU [p]∗(CP∞)→MU [p]∗(CP∞)

is the induced homomorphism. Now the assertion follows from VII.6.5.
(ii) We have F = h∗fp for some h : MU [p]∗(S) → R. Set ϕ := hκS :

BP ∗(S)→ R and G := ϕ∗f
BP . Now

G = ϕ∗f
BP = h∗(κS)∗fBP � h∗fp = F. �

7.7. Lemma. Let ϕ : BP → R be a ring homomorphism such that
ht(ϕ∗f

BP ) = n. Then ϕ(vk) = 0 for k < n and ϕ(vn) 
= 0.

Proof. Let αk be the coefficient of xp
k

in [p]fBP (x). Since ht(ϕ∗f
BP ) = n,

we conclude that ϕ(αk) = 0 for k < n and ϕ(αn) 
= 0. It follows from
VII.6.15(ii) that αk ≡ bkvk mod Ik, bk ∈ Z/p, bk 
= 0. Thus, ϕ(vk) = 0 for
k < n and ϕ(vn) 
= 0. �

7.8. Theorem. Let F be a field of characteristic p > 0, and let x be an
indeterminate, deg x = 2(1 − pn). Let R be one of the rings F [x],F [x, x−1].
Let F be a graded formal group over R with ht(F ) = n. Then there exists a
ring C -marked spectrum (E, u) whose formal group is F . Moreover, E can
be chosen to be commutative if p > 2.

Proof. We consider the cases R = F [x, x−1] and R = F [x] separately.
1. R = F [x, x−1]. Let G be any formal group equivalent to F . If we con-

struct a C -marked ring spectrum whose formal group is G, then, by VII.6.22,
the same spectrum with another C -marking realizes the formal group F . So,
it suffices to construct a spectrum whose formal group G is equivalent to F .
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By 7.6(ii), there is a formal group G such that G � F and G = ϕ∗f
BP

for some ϕ : BP ∗(S) → F [x, x−1]. Since ht(F ) = n = ht(G), ϕ(vi) = 0 for
i < n and ϕ(vn) = ax, a ∈ F, a 
= 0. Hence, there exists a ring homomorphism
ψ : P (n)∗(S)→ F [x, x−1] such that the following diagram commutes:

BP ∗(S)
ϕ−−−−→ F [x, x−1]

r∗

⏐

⏐




∥

∥

∥

P (n)∗(S)
ψ−−−−→ F [x, x−1].

This homomorphism ψ turns F [x, x−1] into a P (n)∗(S)-module ψF [x, x−1].
Moreover, P (n)∗(−)⊗ψ F [x, x−1] is a cohomology theory on Sf . Indeed, we
prove that F [x, x−1] satisfies the condition 4.11(iii). Multiplication by vn is
an isomorphism because ψ(vn) = ax, a 
= 0. Furthermore, F [x, x−1]/(x) = 0,
and hence multiplication by vm, m > n is monic for trivial reasons.

By III.3.20(i), the cohomology theory P (n)∗(−) ⊗ψ F [x, x−1] is repre-
sented by a spectrum E. Furthermore, by III.4.17,

E∗(X) := lim←−{P (n)∗(Xλ)⊗ψ F [x, x−1]}

for every X ∈ S . So, E turns out to be a ring spectrum, and

τ : MU [p]
ρ−→ BP

r−→ P (n) −→ E

is a ring C -marking of E. Clearly, G is the formal group of (E, τ), i.e., G is
realized.

2. R = F [x]. Let i : F [x] ⊂ F [x, x−1] be the inclusion, and let F be a
formal group over R with ht(F ) = n. By the above, there is a ring C -marked
spectrum (E , τ) whose formal group is i∗F . Let q : E → E be a connective
covering. Then, by II.4.16, there is a morphism t : MU → E with qt = τ .
Clearly, F is the formal group of (E, t). �

7.9. Corollary. (i) Let F be a graded formal group over

Z/p [x, x−1], dimx = 2(1− pn),

with ht(F ) = n. Then there exists a periodic Morava K-theory K(n) = KF (n)
whose formal group is F .

(ii) Let F be a graded formal group over Z/p [x], dimx = 2(1 − pn), with
ht(F ) = n. Then there exists a connected Morava k-theory k(n) = kF (n)
whose formal group is F . �

7.10. Exercise. Prove 7.8 by constructing kF (n) as kR(n) for suitable R,
see 7.3, and KF (n) as in 7.4.
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7.11. Theorem. Let F be a field of characteristic p > 2, and let x be an
indeterminate, deg x = 2(1 − pn). Let R be one of the rings F [x],F [x, x−1],
and let F be a formal group over R with ht(F ) = n. Let (E, t) and (E′, t′) be
two C -oriented spectra such that F is the formal group of (E, t) as well as of
(E′, t′). Then E and E′ are equivalent ring spectra.

Proof. 1. Let R = F [x, x−1]. Let u : MU → E be a ring morphism which
gives and is given by the formal group F , see VII.(2.7). Consider the ring
morphism

σ : BP κ−→MU [p]
u[p]−−→ E.

By 7.6(i), (κS)∗fBP � fp. Hence, (σS)∗fBP � F , where σS : BP ∗(S) →
E∗(S) = R is the coefficient homomorphism. Since ht((σS)∗fBP ) = ht(F ) =
n, σS(vi) = 0 for i < n. By 2.17, there is a ring morphism σn : P (n) → E
with σ = σnρn. Note that ψ := (σn)S : P (n)∗(S)→ E∗(S) = R depends only
on the formal group F . Furthermore, by 4.11, P (n)∗(−)⊗ψR is a cohomology
theory on Sf .

We define

αY : P (n)∗(Y )⊗ψ R→ E∗(Y ), αY (a⊗ b) := ψ(a)b.

It is clear that the family {αY } gives a ring morphism of cohomology theories
on Sf . By III.4.16(ii), E∗(X) = lim←−E

∗(Xλ) for every X ∈ S . We define

βX : lim←−{P (n)∗(Xλ)⊗ψ R}
lim←−αXλ−−−−−→ lim←−E

∗(Xλ) = E∗(X).

By III.2.17 and III.1.21, lim←−{P (n)∗(Xλ) ⊗ψ R} is an additive cohomology
theory on S . Hence, the family {βX} gives us a morphism of cohomology
theories on S , and, by II.3.19(iii), it is an isomorphism. Since the cohomology
theory on the left hand side depends only on ψ, E and E′ are equivalent ring
spectra.

2. Let R = F [x]. We have E and E′ with π∗(E) = F [x] = π∗(E′). Set
E ∗(X) := lim←−{E

∗(Xλ)⊗F [x] F [x, x−1]}. Then E ∗(X) is an additive cohomo-
logy theory on S , and E is a connective covering of E . Since E � E ′ as ring
spectra, we conclude that E � E′ as ring spectra. �

7.12. Corollary. Two Morava theories with p odd prime are ring equivalent
iff their formal groups are equivalent.

Proof. Let k(n), k′(n) have equivalent formal groups F,G respectively.
Then, by VII.6.22, k′(n) admits a C-orientation t such that F is the formal
group of (k′(n), t). Hence, by 7.11, k(n) and k′(n) are equivalent ring spectra.
Similarly for K(n). �

What about p = 2 and 7.11? Consider any spectrum l = kF (n). There is
a multiplication μ : l∧ l → l. Consider the multiplication μ′ : l∧ l τ−→ l∧ l → l,
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where τ switches the factors. By 5.5, the multiplication μ is not commutative,
and hence μ 
= μ′. Moreover, there is no morphism f : l → l which induces
a ring isomorphism (l, μ)→ (l, μ′). Thus, there are at least two ring spectra
with the same formal group F . (There is a reason that there are just two
C -marked spectra with the same F , but I do not have any rigorous proof.)
However, the following uniqueness result holds.

7.13. Theorem. Let F be a finite field of characteristic p > 0, and let x be an
indeterminate, deg x = 2(1 − pn). Let R be one of the rings F [x],F [x, x−1],
and let F be a formal group over R with ht(F ) = n. Let (E, u) and (E′, u′)
be two C -marked ring spectra such that F is the formal group of (E, u) as
well as of (E′, u′). Then E and E′ are equivalent BP -module spectra.

Proof. The proof is similar to that of 7.11. Consider the ring morphism

σ : BP κ−→MU [p]
u[p]−−→ E. By 2.11, there is a BP -module (but, possibly, not

ring) morphism

(7.14) σn : P (n)→ E

with σ = σnρn. As in 7.11, it induces a BP -module morphism

lim←−{P (n)∗(Xλ)⊗(σn)∗ R} → E∗(X)

of cohomology theories on S . Now the proof can be completed similarly to
the proof of 7.11. �

7.15. Theorem. The homotopy type of a spectrum k(n), as well as K(n),
is uniquely determined by the number n (and prime p, of course).

Proof. We prove this only for k(n); the proof for K(n) is similar. Consider
any Morava k-theories k = kF (n), l = kG(n) with some formal groups F,G
over Z/p [x] where deg x = 2(1 − pn) and ht(F ) = n = ht(G). Let F be the
algebraic closure of Z/p. We set

K∗(X) := lim←−{k
∗(Xλ)⊗Z/p F}, L∗(X) := lim←−{l

∗(Xλ)⊗Z/p F},

where {Xλ} is the family of all finite subspectra of X . Then K∗(−), L∗(−)
are additive cohomology theories on S , and hence they are represented by
spectra K,L respectively. Let i : Z/p → F be the inclusion homomorphism,
i(1) = 1, and let ε : F→ Z/p be a Z/p-linear map of Z/p-vector spaces such
that εi = 1Z/p. By VII.5.15, i∗F and i∗G are isomorphic formal groups.

Firstly, let p > 2. Then, by VII.6.6 and 7.11, there is an equivalence h :
K � L. Now, for every finite spectrum Y we have a natural homomorphism

k∗(Y ) i∗−→ K∗(Y ) hY−−→ L∗(Y ) ε∗−→ l∗(Y ),

where i∗ has the form
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(7.16) k∗(Y ) = k∗(Y )⊗Z/p Z/p
1⊗i−−→ k∗(Y )⊗Z/p F = K∗(Y )

and ε∗ has the form

L∗(Y ) = l∗(Y )⊗Z/p F
1⊗ε−−→ l∗(Y )⊗Z/p Z/p = l∗(Y ).

By III.4.16(ii), E∗(X) = lim←−{E
∗(Xλ)} for E = k,K,L, l. Hence, passing to

lim←−, we get a morphism

k∗(X) i∗−→ K∗(X) hY−−→ L∗(X) ε∗−→ l∗(X)

of cohomology theories on S . This morphism is an isomorphism because it
induces an isomorphism for X = S.

For p = 2 the proof needs a modification. We want to apply 7.13 instead
of 7.11, but the field F is not finite. However, why do we need F to be finite?
The only reason is that we are able to use 2.11 in the proof of 7.13. So, the
theorem will be proved once we have constructed a morphism

σn = σEn : P (n)→ E

as in (7.14) for E = K,L.
The morphism i∗ : k∗(−) → K∗(−) of cohomology theories in (7.16) is

represented by a morphism i∗ : k → K of spectra. By 2.11, there is a BP -
module morphism σkn : P (n)→ k as in 7.14. We define the required morphism
σKn to be the composition

σKn : P (n)
σkn−→ k

i∗−→ K.

Similarly for L. �

7.17. Corollary. H∗(k(n); Z/p) = Ap/ApQn. Thus, the first non-trivial
Postnikov invariant of k(n) is Qn.

Proof. By 1.3, H∗(kS(n); Z/p) = Ap/ApQn where kS(n) is as in 7.3. But,
by 7.15, k(n) � kS(n). The last assertion follows from 1.4. �

7.18. Corollary. Let p be a prime.
(i) Let (E, u) be a C -marked ring spectrum such that

E∗(S) = Z/p [y, y−1], dim y = 2s < 0.

Suppose the formal group of (E, u) has height n ≤ ∞. Then E splits into a
wedge of suspensions of periodic Morava K-theories K(n), i.e.,

E � ∨iΣdiK(n).

(ii) Let (E, u) be a C -marked ring spectrum such that
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E∗(S) = Z/p [y], dim y = 2s < 0.

Suppose the formal group of E has height n ≤ ∞. Then E splits into a wedge
of suspensions of connected Morava k-theories k(n), i.e.,

E � ∨iΣdik(n).

Proof. (i) Let F be the formal group of (E, u). If ht(F ) = n = ∞, then,
by VII.5.11(i), F is additive. Hence, by 2.14, E is a graded Eilenberg–Mac
Lane spectrum, and the result holds. So, we assume that n <∞.

We have K(n)∗(S) = Z/p [x, x−1] where dim x = 2(1−pn). Since ht(F ) =
n, we conclude that s|(pn − 1). We set l := (pn − 1)/s and define the ring
homomorphism

h : Z/p [x, x−1]→ Z/p [y, y−1]

by setting h(x) := yl.
Consider the ring morphism

σ : BP κ−→MU [p]
u[p]−−→ E.

By 2.11, we can construct a BP -module morphism σn : P (n)→ E such that
σ = σnρn. It is clear that the homomorphism

(σn)S : P (n)∗(S)→ E∗(S)

can be decomposed as

P (n)∗(S)
ψ−→ Z/p [x, x−1] h−→ Z/p [y, y−1] = E∗(S).

Given Y ∈ Sf , we have an isomorphism

αY : P (n)∗(Y )⊗ψ Z/p [x, x−1] ∼= K(n)∗(Y ),

cf. the proof of 7.11. Now, we define a homomorphism

ρY : K(n)∗(Y ) ∼= P (n)∗(Y )⊗ψ Z/p [x, x−1]→ E∗(Y ), ρ(a⊗ b) = σn(a)h(b).

It is clear that the family {ρY } gives us a morphism of BP -module cohomo-
logy theories on Sf . Given X ∈ S , define

τX : K(n)∗(X) = lim←−{K(n)∗(Xλ)}
lim←− ρXλ−−−−−→ lim←−{E

∗(Xλ)} = E∗(X).

Here the equalities hold because of III.4.17. Clearly, the family {τX} yields a
morphism of additive BP -module cohomology theories on S .

The homomorphism h turns Z/p [y, y−1] into the Z/p [x, x−1]-module
hZ/p [y, y−1], and hence E∗(X) becomes a natural Z/p [x, x−1]-module for
every X ∈ S . Since τX is a homomorphism of Z/p [x, x−1]-modules, we have
a well-defined homomorphism
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ϕX : K(n)∗(X)⊗h Z/p [y, y−1]→ E∗(X), ϕX(a⊗ b) := τX(a)b.

Now, the family {ϕX} is an isomorphism of cohomology theories on S , and
thus

E �
l−1
∨

i=0

ΣisK(n).

(ii) This follows from (i), because (ΣrK(n))|0 = Σrk(n) for 0 ≤ r <
2(pn − 1). �

7.19. Corollary. Let p > 2.
(i) Let E be a commutative ring spectrum with

E∗(S) = Z/p [y, y−1], dim y = 2s < 0.

Then there is n ≤ ∞ such that E � ∨iΣdiK(n).
(ii) Let E be a commutative ring spectrum with

E∗(S) = Z/p [y], dim y = 2s < 0.

Then there is n ≤ ∞ such that E � ∨iΣdik(n).

Proof. Considering the AHSS for E∗(CP∞), we conclude that E is a C -
orientable spectrum. �

Corollary 7.19 describes the homotopy type ofE, but the number n in 7.19
is described in terms of some extra structure on E (namely, C -orientation).
So, it makes sense to describe this n as an explicit homotopy invariant of E.
This is done in the following corollary.

7.20. Corollary. Let E be as in 7.19(ii). Suppose that E is not a graded
Eilenberg–Mac Lane spectrum. Then the first nontrivial Postnikov invariant
of E has dimension 2pn − 1 for some n such that s|(pn − 1), and

E �
pn−1
s −1
∨

i=0

Σisk(n).

Proof. By 7.19(ii), we have the splitting as above with some n. Hence, by
7.17, the first nontrivial Postnikov invariant of E has dimension 2pn−1. �

7.21. Corollary. Let � be the direct summand of k[p] described before 4.16.
Then � ∧M(Z/p) � k(1).

Proof. By VIII.2.17, � = BP {vi|i>1} can be equipped with a multiplication
such that there is a ring morphism h : BP → �. So, � ∧M(Z/p) becomes a
ring C -marked spectrum via the C -marking
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MU l−→MU [p]
ρ−→ BP

h−→ � = � ∧ S → � ∧M(Z/p).

It is clear that π∗(� ∧ M(Z/p)) = Z/p [v1] and that the formal group of
� ∧M(Z/p) has height 1, and hence, by 7.18(ii), � ∧M(Z/p) � k(1). �

The Postnikov tower of k(n) can be constructed as that of k was, see
VI.2.6. It is easy to see that

(7.22) (Σ2−2pnk(n))|0 = k(n).

We set
kr(n) := the cone of {xr+1 : Σ2r(pn−1)k(n)→ k(n)}.

There is the cofiber sequence (cf. VI.2.3)

kr(n)
pr−→ kr−1(n) σr−→ Σ2r(pn−1)+1HZ/p.

7.23. Theorem. The tower

...
⏐

⏐




kr+1(n)
⏐

⏐




k(n)
τ2r(pn−1)−−−−−−→ kr(n)

⏐

⏐




pr

kr−1(n) σr−−−−→ Σ2r(pn−1)+1HZ/p
⏐

⏐




...
⏐

⏐




HZ/p k0(n) σ1−−−−→ Σ2pn−1HZ/p

is the Postnikov tower of k(n). Here
(i) σ1 = Qn.
(ii) (Ω∞σr)|2(pn − 1) 
= 0 for all r > 1.
(iii) Qnσn−1 = 0, and σn is associated with this relation.

Proof. (i) This follows from 7.17.
(ii) By (7.22) and (i), we have

Ω∞(σ2)|2(pn − 1) = Qn : K(Z/p, 2pn − 2)→ K(Z/p, 4pn − 1).
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This map is essential, and the assertion about σr, r > 2, follows from (7.22).
(iii) This can be proved similarly to VI.2.6(iii). �
Now we consider the k(n)-orientability problem. (By V.1.16 and 7.5, it is

equivalent to the K(n)-orientabilty problem.) Namely, following Ch. V, §5,
for every k(n) we introduce the corresponding characteristic classes κr and
consider the realizability problem for these classes.

7.24. Theorem (cf. Rudyak–Khokhlov [1]). Let p = 2, and let n be an
arbitrary natural number. Then every characteristic class κr, r ≥ 1, can be
realized by vector bundles, i.e., there exists a vector bundle ξ which is kr−1(n)-
orientable and is not kr(n)-orientable.

Proof. By V.5.1 or V.5.6, in view of 7.23(ii) it suffices to prove that
κ1(γ0) 
= 0. But here γ0 is the universal bundle γO over BO, and

κ1(γ0) = ϕ−1Qn(u) ∈ H2n+1−1(BO; Z/2)

where u ∈ H0(MO; Z/2) is the Thom class and ϕ : H0(BO) → H0(MO)
is the Thom isomorphism. By IV.6.2, H∗(MO; Z/2) is a free A2-module.
Hence, κ1(γ0) 
= 0. (In fact, it is easy to see that κ1(γ0) is just the universal
class s2n+1−1 ∈ H∗(BO; Z/2), i.e., the primitive class which is represented as
∑

t2
n+1−1
i in terms of Wu generators ti.) �
If p > 2 then, by V.4.9, k(n)-orientability implies HZ-orientability, i.e.,

B(V , k0(n)) = BSV and γV0 = γSV . So, only SV-objects are able to realize
the classes κn.

7.25. Proposition. If p > 2 then every SO-bundle is k(n)-orientable for
every n. In other words, no k(n)-characteristic class κr with p > 2 can be
realized by vector bundles.

Proof. Firstly, the C -marking u : MU → k(n) gives a k(n)-orientation
of the universal stable complex vector bundle. By IV.6.9 and IV.4.29(ii) (to-
gether with IV.5.23(ii)) πi(MSO[p]) and Hi(MSO[p]) are free finitely gen-
erated Z[p]-modules for every i. Hence, by VII.3.21, there is a projection
MSO[p]→ BP which preserves the units. Thus, the morphism

MSO l−→MSO[p]→ BP
κ−→MU [p]

u[p]−−→ k(n)

gives a k(n)-orientation of SO-bundles. �

7.26. Theorem. (i) For p > 2 every ST OP-bundle is k(1)-orientable. Thus,
in this case no class κr can be realized by T OP-bundles.

(ii) If p > 2 and n > 1 then every k(n)-characteristic class κr, r ≥ 1, can
be realized by PL-bundles.



§7. Morava K-Theories 549

(iii) For every prime p and natural number n all the k(n)-characteristic
classes κr, r ≥ 1, can be realized by spherical fibrations.

Proof. (i) As we remarked above, every T OP-bundle is k [1/2]-orientable,
see the text before VI.3.4. Therefore, it is k[p]-orientable. Hence, every
ST OP-bundle is �-orientable, where � is the direct summand of k [p] in 4.16.
Thus, by 7.21, every ST OP-bundle is k(1)-orientable.

(ii) Let u ∈ H0(MSPL; Z/p) denote the Thom class. Because of 7.23(i),
κ1(γPL

0 ) = ϕ−1Qnu where ϕ : H0(BSPL) → H0(MSPL) is the Thom
isomorphism. Furthermore, by IV.6.13, Qnu 
= 0 since n > 1. Hence,
κ1(γPL

0 ) 
= 0. Thus, by V.5.1 (or V.5.6) and 7.23(ii), all the classes κr, r ≥ 1,
can be realized by PL-bundles.

(iii) By 7.24, it suffices to consider the case p > 2 only. By IV.6.10,
Qn(u) 
= 0, and so κ1(γG0 ). Now, the theorem follows from V.5.1 (or V.5.6)
and 7.23(ii). �

Résumé on k(n)-orientability

Recall the hierarchy BO → BPL → BT OP → BG.

Theorem. (i) For p = 2 and arbitrary n all the k(n)-characteristic classes
κr, r ≥ 1, can be realized by vector bundles.

(ii) For p > 2 and arbitrary n every SO-bundle is k(n)-orientable.
(iii) For p > 2 every ST OP-bundle (and hence SPL-bundle) is k(1)-

orientable.
(iv) For p > 2 and n > 1 all the k(n)-characteristic classes κr , r ≥ 1, can

be realized by SPL-bundles.
(v) For every p and every n all the k(n)-characteristic classes κr, r ≥ 1,

can be realized by spherical fibrations.

We interpret A ∗
p as H∗(HZ/p; Z/p). Let (Qn)∗ : A ∗

p → A ∗
p be the homo-

morphism defined before II.6.36. We used the following proposition in II.4.8
and II.4.31.

7.27. Proposition. (i) H∗(K(n); Z/p) = 0 = H∗(K(n)).
(ii) H∗(K(n)(0); Z/p) � A ∗

p /A
∗
p (Qn)∗.

Proof. (i) Consider the AHSS

Er∗∗ ⇒ K(n)∗(HZ/p), E2
∗∗ = H∗(HZ/p;π∗(K(n))).

By 7.17, d2pn−1 = (Qn)∗ and di = 0 for i < 2pn − 1. It is well known
(and easy to see) that KerQn = ImQn in Ap. Hence, E2pn

∗∗ = 0, and so
H∗(K(n); Z/p) = 0.
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Now, H∗(K(n); Z/p) = H∗(K(n) ∧ M(Z/p)). Hence, we have an exact
sequence

H∗(K(n))
p−→ H∗(K(n)) −→ H∗(K(n); Z/p)),

and pH∗(K(n)) = 0 since p1K(n) � 0. Thus, H∗(K(n)) ⊂ H∗(K(n); Z/p) =
0.

(ii) Consider the AHSS

Er∗∗ ⇒ (K(n)(0))∗(HZ/p), E2
∗∗ = H∗(HZ/p;π∗(K(n)(0))).

Again, di = 0 for i < 2pn − 1, d2pn−1 = (Qn)∗. Hence, E2pn

m,∗ = 0 for m 
= 0,
E2pn

0,∗ = A ∗/A ∗(Qn)∗. �

7.28. Remarks. (a) It was Morava [1] who introduced periodicK(n)-theories
in the form of Z/2-graded cohomology theories. He called them extraordinary
K-theories, and 7.21 clarifies this term. Morava introduced K(n) in a very
sophisticated (interesting, but still mysterious) way. Namely, he considered
the spectrum (in the sense of algebraic geometry) of the ring π∗(MU) and
an action on it of a certain group scheme Γ, and theories K(n) arise as
some invariants (orbit types) of this action. In fact, Γ = Spec S, and the
action above is induced by the S-action on π∗(MU). The purely topological
description of Morava K-theories was done in Johnson–Wilson [2].

(b) Classification Theorems 7.8–7.11 were proved by Pazhitnov–Rudyak
(see Khokhlov–Pazhitnov–Rudyak [1]), Würgler [4], and Hopkins (unpub-
lished). Würgler [4] proved 7.13. Theorem 7.15 was proved by Würgler [4],
Pazhitnov [1] (for the connective case with p > 2) and, partially, Hopkins
(unpublished). The Postnikov tower of k(n) was constructed by Madsen–
Margolis (unpublished) and Pazhitnov–Rudyak [1].

The usefulness of Morava K- and k-theories is based on the following. On
the one hand, they are rather close to classical (co)homology: they have a
simple coefficient ring and simple Postnikov tower. So, they are quite man-
ageable. On the other hand, considering all Morava K- or k-theories (for all
p, n) of a certain space, we can get a lot of information on the stable ho-
motopy types of this space. In fact, Morava K-theories give a good global
picture of stable homotopy type of finite CW -spaces. I am not able to discuss
it here and refer the reader to the monograph of Ravenel [3], but I want to
formulate here the remarkable result of Devinatz–Hopkins–Smith [1]. Recall
that an endomorphism h : A → A of an abelian group is called nilpotent if
some iteration hn of it is zero. Similarly, given a spectrum X and a morphism
f : ΣdX → X , we say that f is nilpotent if some finite iteration

ΣdX
f−→ X

Σ−df−−−→ Σ−dX
Σ−2df−−−−→ · · ·

is inessential.
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7.29. Theorem. Let X be a finite spectrum, and let f : ΣdX → X be a
morphism. Then the following three conditions are equivalent:

(i) The morphism f is nilpotent;
(ii) The homomorphism f∗ : MU∗(ΣdX)→MU∗(X) is nilpotent;
(iii) The homomorphism f∗ : K(n)∗(ΣdX) → K(n)∗(X) is nilpotent for

every prime p and every n, 0 ≤ n ≤ ∞. �

Let us see that this theorem implies the following well-known result of
Nishida [1]: Every morphism f : Sn → S0, n > 0, of sphere spectra is nilpo-
tent. Indeed, the element [f ] ∈ πn(S0) has finite order, while MU∗(S) is
torsion free. Therefore f∗ : MU∗(Sn)→MU∗(S0) is the zero (and so a nilpo-
tent) homomorphism.
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1. Topologie algébrique et theorie des faisceaux. Paris, Hermann 1958.

Gottlieb, D.H.

1. The total space of universal fibration. Pacific J. Math. 46 (2), 415–417 (1973)

Gray, B.

1. Homotopy theory. Academic Press, New York London San Francisco 1975

19The title of the English translation is “Cohomology of the group COS mod 2”.

The Russian word kos was just transliterated, and so the words “gruppa kos”
turned into “group COS” instead of “braid group”.



560 References

Gromov, M., Lawson, H.B.

1. The classification of simply connected manifolds of positive scalar curvature.

Ann. of Math. 111, 423–434 (1980)

Hatcher, A.

1.Algebraic topology. Cambridge University Press, Cambridge, 2002.

Hattory, A.

1. Integral characteristic numbers for weakly almost complex manifolds. Topology

5, 259-280 (1966)

Hazewinkel, M.

1. Formal groups and applications. Academic Press, New York London San Fran-

cisco 1978

Hegenbarth, F.

1. Secondary cohomology operations applied to Thom class. Lecture Notes in Math-

ematics 778, Springer, Berlin Heidelberg New York 1980, pp. 442–455

Heller, A.

1. On the representability of homotopy functors. J. London Math. Soc. 23 (2),

551-562 (1981)

Hilton, P., Mislin, G., Roitberg, J.

1. Localization of Nilpotent Groups and Spaces. North Holland Publishing Com-

pany, Amsterdam 1975

Hilton, P., Wiley, S.

1. Homology theory. Cambridge Univ. Press, Cambridge 1965

Hirsch, M.

1. Immersions of manifolds. Trans. Amer. Math. Soc., 93, 242–276 (1959)

Hirsch, M., Mazur, B.

1. Smoothing of piecewise linear manifolds. Ann. Math. Studies 80, Princeton Univ.

Press, Princeton, New Jersey 1974

Hirzebruch, F.

1. Topological methods in algebraic geometry (third edition, translated). Springer,

Berlin Heidelberg New York 1966

Hopf, H.

1. Uber die Topologie der Gruppen-Mannigfaltigkeiten und ihrer Verallgemein-

nerungen. Ann. of Math. 42, 22–52 (1941)

Honda, T.

1. Formal groups and zeta-function. Osaka J. Math. 5, 199–219 (1968)



References 561

Hopkins, M.J.

1. Global methods in homotopy theory. Homotopy theory. Proceedings Symp.

Durham/England 1985. London Mathematical Society, Lecture Note Series 117,

Cambridge Univ. Press, Cambridge 1987, pp. 73–96

Hopkins, M.J., Smith, J.H.

1. Nilpotence and stable homotopy theory II. (to appear in Ann. of Math.)

Hu, S.T.

1. Homotopy theory. Pure and Applied Mathematics VIII. Academic Press, New

York 1959

Husemoller, D.

1. Fibre bundles (second edition). Springer, Berlin Heidelberg New York 1972 1975

James, I.M., Whitehead, J.H.K.

1. Homology with zero coefficients. Quart. J. Math. 9, 317–320 (1958)

Jensen, C.U.
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List of Notations

This symbol list contains only non-standard notations; so, such symbols as
N,Z,Q,R,C, Hom, ⊗, Ext, O, PL, T OP , G, U , T OP/PL, CPn, CP∞, etc,
are not included in the list. Recall that we use the uniform symbol V for
O, PL, T OP , G. So, when we write that MVn is the Thom space of the
universal Vn-object this means, say, that MOn is the Thom space of the
universal n-dimensional vector bundle and MGn is the Thom space of the
universal Sn−1-fibration. Here we keep the convention used for the Subject
Index.

Categories, Classes, Special Sets and Groups

Usually we mention only objects of categories when morphisms are clear (or can be

found in the correponding subsection).

Ap the Steenrod algebra II.6.25

A G the category of abelian groups and homomorphisms I,§2
C a Serre class of abelian groups II.4.21

C the category of CW -spaces I.3.40.

C • the category of pointed CW -spaces I.3.40.

Ccon the category of connected CW -spaces I.3.40.

C •
con the category of pointed connected CW -spaces I.3.40.

Cf the category of finite CW -spaces I.3.40.

C •
f the category of pointed finite CW -spaces I.3.40.

Cfd the category of finite dimensional CW -spaces I.3.40.

C •
fd the category of pointed finite dimensional CW -spaces I.3.40 ff.

C 2 the category of CW -pairs II,§3
C 2

f the category of finite CW -pairs II,§3
C 2

fd the category of finite dimensional CW -pairs II,§3
E ns the category of sets I,§1
E ns• the category of pointed sets I,§1
H C the homotopy category of the category C I.3.40.

H C • the homotopy category of C • I.3.40.



574 List of Notations

H (F ) the monoid of self-equivalences of a space F IV.1.68 ff.

H S the homotopy category of S II.1.9 ff.

L (m) the category of coherent π∗(P (m))-modules

equipped with a P (m)∗(P (m))-action IX.3.14 ff.

M the category of coherent π∗(BP )-modules

equipped with a BP ∗(BP )-action VII.4.11 ff.

Ω the ring

π∗(BP ) = Z[p] [v0, . . . , vn, . . . ], dim vi = 2pi − 2 VII,§4
P the class of spectra bounded below and whose

Z[p]-homology are finitely generated over Z[p] IX.6.19

S the subalgebra of MU∗(MU) generated by sω VII.3.1

S the category of spectra II.3.9 ff.

Sf the category of finite spectra II.3.9 ff.

Sfd the category of finite dimensional spectra II.3.9 ff.

Ss the category of suspension spectra II.3.9 ff.

Ssfd the category of spectra of the form

ΣnΣ∞X , n ∈ Z, X ∈ C •
fd II.3.9 ff.

W the category of

weak Hausdorff compactly generated spaces I.3.2 ff.

W • the category of pointed

weak Hausdorff compactly generated spaces I.3.2 ff.

Z/m the cyclic group of order m I,§2
Z[p] the subring of Q consisting of

fractions m/n with (m,n) = 1 = (n, p), p prime II,§5
Z[1/p] the subring of Q consisting of fractions m/pk, p prime II.5.15 ff.

Some Special Spaces, Spectra and Bundles

BF the classifying space for stable F -objects IV.4.15 ff.

BFn the classifying space for Fn-objects IV.4.15 ff.

BMV the homotopy fiber of w2 : BSV → K(Z/2, 2) VI.4.6 ff.

BP the Brown–Peterson spectrum VII.3.20

BP 〈n〉 the spectrum BP with singularities vi, i > n IX.6.7 ff.

BRV the homotopy fiber of δw2 : BSV → K(Z, 3) VI.3.4 ff.

BU the classifying space for

stable complex vector bundles IV.4.25

BUn the classifying space for

n-dimensional complex vector bundles IV.4.25

BV the classifying space for stable V-objects IV.4.6 ff.

B(V , E) the classifying space for E-oriented stable V-objects V.1.17

BVn the classifying space for Vn-objects IV.4.2

B(Vn, E) the classifying space for E-oriented Vn-objects V.1.11

γC the universal stable complex vector bundle IV.4.25
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γn
C

the universal n-dimensional complex vector bundle IV.4.25

Dn the n-dimensional disk I.3.11 ff.

γV the universal stable V-object IV.4.8

γnV the universal Vn-object IV.4.2

η the complex line bundle over CP∞ VII.1.3

Fn the monoid of pointed self-equivalences Sn → Sn IV.4.15 ff.

H(G) the graded Eilenberg–Mac Lane spectrum

for a graded group G II.3.32(d)

H(π) the Eilenberg–Mac Lane spectrum for a group π II.3.24

k the spectrum of the connected complex k-theory II.3.32(f)

K the spectrum of the complex K-theory II.3.32(e)

kr the 2r-coskeleton of k VI.2.1 ff.

kO the spectrum of the connected real k-theory II.3.32(g)

KO the spectrum of the real k-theory II.3.32(g)

k(n) the spectrum of the connected Morava k-theory IX.7.1

K(n) the spectrum of the periodic Morava K-theory IX.7.2

K(π, n) the Eilenberg–Mac Lane space II.3.24

M(A) the Moore spectrum for an abelian group A II.4.32

MU the Thom spectrum of the universal

stable complex vector bundle IV.7.31

MUn the Thom space of the universal

n-dimensional complex vector bundle IV.7.31

MV the Thom spectrum of the universal stable V-object IV.5.12

MVn the Thom space of the universal Vn-object IV.5.2

M(V , E) the Thom spectrum of the

universal E-oriented stable V-object V.1.17 ff.

P (n) the spectrum BP with singularities vi, i < n IX,§2
pt the one-point space I.3.1 ff.

R
n
+ the Euclidean half-space IV.7.8 ff.

S the sphere spectrum II.1.1 ff.

Sn the n-dimensional sphere I.3.11 ff.

θFB the standard trivial F -bundle over B IV.1.11

θnB the standard trivial Vn-object over B IV.1.11
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Some Constructions For a Space (Spectrum) A

AΛ the Λ-localization of A II.5.2, II.5.12

A(n) the n-skeleton of A I.3.40

A(n) the n-coskeleton of A II.4.12

A|n the (n− 1)-killing space (spectrum) for A II.4.14,

IV.1.39

A⊥ the dual to A spectrum II.2.3

A[0] the Q-localization of A II.5.15 ff.

A[p] the Z[p]-localization of A II.5.15 ff.

A[1/p] the Z[1/p]-localization of A II.5.15 ff.

ΩA the loop space of a space A I.3.9

Ω∞A the infinite delooping of a spectrum A II.3.27

ΩnkS
n the component of all maps of degree k of ΩnSn IV.4.22 ff.

πk(A) the i-th homotopy group of a spectrum (space) A II.1.9 ff.,

II.3.32(a)

Πk(A) the i-th stable homotopy group of a space A II.1.9 ff.,

II.3.32(a)

SA the suspension over a space A I.3.18, I.3.23

SnA the iterated suspension over a space A I.3.18, I.3.23

ΣA the suspension over a spectrum A II.1.1

Σ∞A the suspension spectrum over a space A I.1.1, II.1.2

τA the telescope of the spectrum A II.1.23

Some Constructions for a Bundle (Fibration) ζ

bs ζ the base of ζ IV.1.1

χ(ζ) the Euler class of ζ V.1.24

Fϕ a morphism ζ → (bsϕ)∗η, where ϕ : ζ → η IV.1.9(ii)

If,ζ a morphism f∗ζ → ζ IV.1.8

pζ the projection in ζ IV.1.1

p̂ζ the morphism ζ → 1bs ζ IV.1.1

Prin ζ the principal bundle for ζ IV.1.68 ff.

Prin• ζ the principal bundle for sectioned ζ IV.1.74 ff.

projζ the projection in ζ IV.1.1

sζ the section of the sectioned bundle ζ IV.1.1

ŝζ the morphism 1bs ζ → ζ IV.1.1

Sec ζ the set of all sections of a bundle ζ IV.1.2

[Sec ζ] the set of homotopy classes of all sections of a bundle ζ IV.1.2

ts ζ the total space of ζ IV.1.1

Tζ the Thom space of ζ IV.5.1, IV.5.2

z the zero section of a Thom space of ζ IV.5.4

ζst the stabilization of ζ IV.4.8(c)
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Miscellaneous Symbols

a(P ) the obstruction to the

existence of a quasi-multiplication VIII.2.2 ff.

BF the classifying space for F -fibrations IV.1.56

B(F,∗) the classifying space for (F, ∗)-fibrations IV.1.74 ff.

b(P ) the obstruction to the

commutativity of a quasi-multiplication VIII.2.9 ff.

B•(Y,M,X) something IV, (1.63)

Cf the cone of a map (morphism) f I.3.16, II.1.7

cN the Browder–Novikov map IV.7.15(a)

c(P ) the obstruction to the

associativity of a quasi-multiplication VIII.2.12 ff.

Cyl the mapping cylinder over a space IV.1.4

DCyl the double mapping cylinder over a space IV.1.4

Dec the ideal of decomposable elements II.6.5

γF the universal F -fibration IV.1.56

en a map (CP∞)n → BUn VII.1.3(g)

ht height of the formal group VII.5.14

hom. dim homological dimension IX.6.4

jΛ the Λ-localization II.5.2, II.5.12

jn usually, a map (morphism) ?n →?∞, for example:

jVn : BVn → BV IV.(4.7)

jUn : BUn → BU IV.4.25

jn := ln∞ : CPn → CP∞ VII.1.3(a)

κn the Postnikov invariant II.4.19

lmn the inclusion CPm ⊂ CPn VII.1.3(a)

Liftp f the set of p-liftings of f IV.1.2

[Liftp f ] the set of homotopy classes of p-liftings of f IV.1.2

Mf the mapping cylinder of f I.3.16

∇ the coaddition of a spectrum II.1.16 ff.

ν the normal bundle of a manifold IV.7.12

P 2r
n the Steenrod–tom Dieck operation VII.7.7

PrC primitive elements of a coalgebra C II.6.12

QA indecomposable elements of an algebra A II.6.5

Qi a primitive element of the Steenrod algebra II.(6.26) ff.

Qi the Kudo–Araki–Dyer–Lashof operation VI,§1
R the Roos construction III 2.8 ff.

rn usually, a map (morphism) ?n →?n+1, for example:

rn : BVn → BVn+1 IV.4.5 ff.

rUn : BUn → BUn+1 IV.4.25

rn : LΣn → LΣn+1 VIII.2.16

rn : P (n)→ P (n+ 1) IX.2.7

rmn usually, a map (morphism) ?m →?n, for example:
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rmn : BUm → BUn VII.1.3(b)

rmn : P (m)→ P (n) IX.2.7 ff..

SiV simple elements of a comodule V II.6.12

s the suspension isomorphism II.3.4

ŝ the suspension isomorphism II.3.10
̂⊗ the profinitely completed tensor product III.1.23

⊗grad the completed graded tensor product III.1.23

T the uniform symbol for DIFF, PL, TOP IV,§7
TX the telescope of a filtration X I.3.19, I.3.23

V the uniform symbol for O, PL, T OP , G IV.4.2

VT a uniform symbol IV,§7
[X,Y ] the set of homotopy classes of maps X → Y I.3.12

[X,Y ]• the set of

pointed homotopy classes of pointed maps X → Y I.3.22

×B the total space of the induced bundle IV.1.10

⊕ the Whitney sum IV.4.5 ff.

∗ the join I.3.18, IV.1.4

∨ the wedge I.3.20

∨h the homotopy wedge I.3.31, IV.1.4

∧ the smash product I.3.20, II.2.1

∧h the homotopy smash product I.3.35, IV.1.4

∩ the cap-multiplication II.3.44 ff.

∪ the cup-multiplication II.3.44 ff.

	 the disjoint union I,§1
∼= homeomorphism, isomorphism I,§1
� homotopy, homotopy equivalence I.3.12

� equivalence of formal groups VII.5.1

�B homotopy over a space B,

homotopy equivalence over B IV.1.5

�bun the bundle homotopy IV.1.5

�CW CW -equivalence I.3.42

〈ϕλ| lim−→〉 the universal map from the direct limit I.2.5 ff.

{fλ| lim←−} the universal map to the inverse limit III.1.11 ff.



Subject Index

The notation, say, spectrum II.1.1 means that a notion of a spectrum is
defined in II.1.1. The notation, say, wedge of spectra II.1.16 ff. means that
a notion of a wedge of spectra is defined not in II.1.16 but just after II.1.16
(and before II.1.17). Finally, the notation, say, manifold IV, §7 means that
the notion of manifold is discussed in the very beginning of §7 of Chapter
IV, before IV.7.1. We arrange that all letters go after the space (blank) while
the signs - and – go after all letters: e.g. Thom–Dold isomorphism goes
after Thom space, F -fibration goes after formal group and profinitely
completed... goes after profinite module.

acyclic inverse system III.2.13 ff.

additive (co)homology theory II.3.16

Adem relations II,(6.26)

admissible inclusion IV.3.1

AHSS (Atiyah–Hirzebruch spectral

sequence) II.3.45 footnote

(A,E)-marking IV.5.25

(A,K)-marking IV.5.10

algebra II.6.1

augmented — II.6.4

commutative — II.6.1

comodule — over a Hopf algebra

II.6.24

connected — II.6.4

Hopf — II.6.22

module — over a Hopf algebra

II.6.24

Steenrod — II.6.25

almost equivalent spectra (spaces)

III.6.1

algebraically compact inverse system

III.2.16

— — cohomology theory III.4.1

annihilator VII.4.12

antipode II.6.35

apt sequence VI.1.10 ff.

augmentation II.6.4; II.6.7

a-compact inverse system III.2.16

— cohomology theory III.4.1

— group III.2.16

— resolution III.2.16

— spectrum III.4.1

a-compactification III.2.21, III.4.7

base (of a bundle) IV.1.1

base point I.3.1 ff.

Bockstein homomorphism VIII.1.8

Bockstein–Sullivan–Baas exact

sequence VIII,(1.7)

bordism IV.7.25

— group IV.7.25

— relation IV.7.25

— set IV.7.25

— theory IV.7.30

bounded below graded object I, §2
— — spectrum II.4.4
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Browder–Novikov map IV.7.15

Browder–Novikov morphism IV.7.15

Brown–Peterson spectrum VII.3.20

Brown Representabilty Theorem

III.3.25

bundle IV.1.1

induced — IV.1.8

locally trivial — IV.1.11

normal — IV.7.12

sectioned — IV.1.2

— morphism IV.1.3

— over a space IV.1.3

tangent — IV.7.10

trivial — IV.1.11

— homotopy IV.1.5

— — equivalence IV.1.5

— isomorphism IV.1.3

— h-smash product IV.1.4

— h-wedge IV.1.4

— join IV.1.4

— morphism IV.1.3

(B,ϕ)-bordism theory IV.7.30

(B,ϕ)-cobordism theory IV.7.30

(B,ϕ)-isomorphism IV.7.23

(B,ϕ)-manifold IV.7.19

singular — IV.7.25

closed — — IV.7.25

bordant —s IV.7.25

(B,ϕ)-structure IV.2.1, IV.3.6, IV.4.9,

VIII.3.1 ff.

— on a manifold IV.7.19

opposite — — — IV.4.15, IV.7.21

strict — — — IV.7.19

canonical antiautomorphism of a Hopf

algebra II.6.35

canonical a-compactification III.2.21

— a-compact resolution III.2.22

— inclusion into a cone I.3.17; II.1.7

— morphism (of the induced bundle)

IV.1.8

cap-multiplication II.3.44 ff.

cell of a spectrum II.1.2

cellular map I.3.40

chain (in a poset) I.1.2

characteristic class V.4.1

classifying object I.1.4

— map IV.1.56

— morphism IV.1.56

— space IV.1.56; IV.1.62

coaddition II.1.16 ff.

coalgebra II.6.7

cocommutative — II.6.7

cofree extension of a — II.6.18

comodule — over a Hopf algebra

II.6.15

connected — II.6.9

module — over a Hopf algebra

II.6.24

cobordism theory IV.7.30

codegree V.4.23

coefficient group of a homology theory

II.3.6 ff.

cofiber I.3.16; II.1.7

— sequence I.3.38, II.1.12

strict — — I.3.38, II.1.12

cofibered pair I.3.24

cofinal subset I.1.1

— subspectrum II.1.2

cofibration I.3.24

— over a space IV.1.5

coherent module VII.1.12

— ring VII.1.12

cohomology theory II.3.8

additive — — II.3.16

algebraically compact — — III.4.1

a-compact — — III.4.1

compact — — III.4.1

reduced — — II.3.8

unreduced — — II.3.1, II.3.8

— — on spectra II.3.10

collapse I.3.1

comodule over a coalgebra II.6.7

cofree — — — — II.6.18

— (co)algebra over a Hopf algebra

II.6.24

compact cohomology theory III.4.1

— inverse system III.2.16
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— space I.3.1

compactly generated direct product

I.3.6

— open subset I.3.2

— space I.3.2

compact-open topology I.3.8 ff.

completed tensor product III.1.23

— graded tensor product III.1.23

complexification IV, (4.26) ff.

cone of a map of spaces I.3.16

— — — — — spectra II.1.7

— — — morphism of spectra II.1.7

connected algebra II.6.4

— coalgebra II.6.9

— morphism II.4.4

— spectrum II.4.4

connective covering II.4.14

coskeleton II.4.12

counit II.6.9

— homomorphism II.6.7

covering I.3.1

numerable — IV.1.23

cup-multiplication II.3.44 ff.

CW -complex I.3.40

CW -homotopy I.3.42

CW -equivalence I.3.42

CW -space I.3.40

CW -substitute I.3.44

C-epimorphism II.4.21

C-isomorphism II.4.21

C-marked spectrum VII.6.20

C-marking VII.6.20

ring — VII.6.20

C-monomorphism II.4.21

C-orientation VII.2.1

C-oriented spectrum VII.2.1

decomposable element II.6.5

deformation I.3.12

derived functors of the inverse limit

functor III.2.12

direct limit I.2.4

— system I.2.3

morphism of — —s I.2.3

discrete quasi-ordered set I.1.1

disk I.3.11 ff.

Dold fibration IV.1.12

— F -fibration IV.1.42

dual spectra II.2.3

duality II.2.3

— between homology and cohomology

II.3.21

— morphism II.2.3

double mappping cylinder I.3.18

— — — over a space IV.1.4

Eilenberg–Mac Lane space II.3.24

Eilenberg–Mac Lane spectrum II.3.32

graded — — II.3.32

embedding IV.7.2

bordered — IV.7.2

equivalence of formal groups VII.5.1

— — spectra II.1.9 ff.

— over a space IV.1.10

equivalent structured fibrations IV.2.5

— — (F,Π)-bundles IV.3.1

essential map I.3.13

— morphism of spectra II.1.9

exact sequence of a pair II.3.2 ff.

— — — — triple II.3.2 ff.

— — — direct systems I.2.6

— — — inverse systems III.2.1

Euler class V.1.24

E-operation II.3.47

E-orientation (= orientation with

respect to a spectrum E) V.1.1

— of a stable object V.1.12

— — — manifold V.2.1.

universal — V.1.17 ff.

E-oriented universal stable V-object

V.1.17 ff.

E∗(MU)-comodule VIII.4.1

fiber IV.1.1

— of a morphism of spectra II.1.15ff

homotopy — IV.1.33; IV.1.37

fiberwise homotopy trivial bundle

IV.1.11
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— map IV.1.3

fibration IV.1.12

F - — IV.1.42

(F, ∗)- — IV.1.42

Dold — IV.1.12

Hurewicz — IV.1.12

sectioned — IV.1.12

simple — V.4.1

fibrational substitute IV.1.35

filtration of a space I.3.1 ff.

— of a spectrum II.1.1

finite spectrum II.1.2

Five Lemma I.2.1

flabby inverse system III.2.5

folding map I.3.21

formal group VII.5.1

graded — — VII.5.17

equivalence of — —s VII.5.1

height of a — — VII.5.14

homomorphism of — — s VII.5.1

isomorphism of — —s VII.5.1

logarithm of a — — VII.5.6

universal — — VII.5.2

framed manifold IV.7.31

function IV.1.43

functional spectrum III.3.28.

fundamental class V.4.1

F -fibration IV.1.42

F -morphism IV.1.42

F -object IV.4.15 ff, IV.4.16

Fn-object IV.4.15 ff.

(F, ∗)-fibration IV.1.42

(F, ∗)-morphism IV.1.42

graded Eilenberg–Mac Lane spectrum

II.3.32

— formal group VII.5.17

homomorphism of — — —s VII.5.17

greatest element I.1.2

Gysin homomorphism V.1.11, VIII.3.5,

Gn-object IV.4.1

half-exact functor III.3.24

height of a formal group VII.5.14

— — — homomorphism of formal

groups VII.5.14

homological dimension IX.6.4

homology theory II.3.1

additive — — II.3.16

reduced — — II.3.4

unreduced — — II.3.1

— — on spectra II.3.10

homomorphism of algebras II.6.2

— — coalgebras II.6.7

— — comodules over a coalgebra II.6.7

— — (co)module (co)algebras over a

Hopf algebra II.6.24

— — modules over an algebra II.6.2

— — formal groups VII.5.1

homotopic maps of spaces I.3.12

— — — spectra II.1.9

— morphisms of spectra II.1.9

homotopy I.3.12; II.1.9

bundle — IV.1.5

bundle — equivalence IV.1.5

— equivalence I.3.12

— equivalent maps I.3.15

— — sequences I.3.15

— — spaces I.3.12

— exact sequence IV.1.12

— extension property I.3.24

— fiber IV.1.33; IV.1.37

— groups of a space I.3.22

— — — — spectrum II.1.9

— inverse I.3.12

— over a space IV.1.5

— type I.3.12

— smash product I.3.35

— wedge I.3.31

Hopf algebra II.6.22

Hurewicz fibration IV.1.12

Hurewicz homomorphism II.3.33

Hydra VIII.3.12

h-smash product I.3.35

bundle — — IV.1.4

h-wedge I.3.31

bundle — IV.1.4
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indecomposable elements II.6.5

induced bundle IV.1.8

inductive set I.1.2

inessential map I.3.13

— morphism of spectra II.1.9

infinite delooping II.3.27

— loop space II.3.28

invariant ideal VII.4.3

inverse limit III.1.9

derived functors of — — III.2.12

inverse system — — III.1.8

acyclic — — III.2.13 ff.

a-compact — — III.2.16

algebraically compact — — III.2.16

compact — — III.2.16

exact — — III.2.1

flabby — — III.2.5

morphism of — —s III.1.8

totally surjective — — III.3.7

isomorphism I, §1

join I.3.18

bundle — IV.1.4

Kronecker pairing II.3.39

Kudo–Araki–Dyer–Lashof operations

VI, §1
Künneth Theorem II.4.11

K P -bordism VIII.1.4 ff.

K P -manifold VIII.1.3 ff.

singular — VIII.1.4

K Σ-manifold VIII.1.16

singular — VIII.1.17

lifting IV.1.2

localization of abelian groups II.5.1

— of spectra II.5.2

local abelian group II.5.1

— space 5.12 ff.

— spectrum II.5.2

locally trivial bundle IV.1.11

— — principal bundle IV.3.1

long cofiber sequence I.3.38; II.1.12

loop space I.3.9

manifold IV, §7
(B,ϕ)- — IV.7.19

framed — IV.7.31

oriented — IV.7.31

singular — IV.7.25

stably almost complex — IV.7.31

— with Sullivan–Baas singularity

VIII.1.3; VIII.1.16

see also K Σ-manifold, K P -

manifold

map I.3.1

cone of a — I.3.16

folding — I.3.21

— of spectra II.1.3

cone of a — — — II.1.7

restriction of a — — — II.1.3

fiberwise — IV.1.3

transverse — IV.7.17

— over a space IV.1.3

mapping cone I.3.16

reduced — — I.3.23

— cylinder I.3.16

— — over a space IV.1.4

double — — I.3.31

— — — over a space IV.1.4

reduced — — I.3.23

marking IV.5.10; IV.5.25; VII.6.20

maximal element I.1.2

May’s model for the classifying space

IV.1.66 ff.

Mayer–Vietoris axiom III.3.24

— — exact sequence II.3.2 ff.

membrane IV.7.25

microbundle IV.7.6

equivalence of —s IV.7.6

Milnor–Moore Theorem II.6.30

Mittag-Leffler condition III.5.2

module II.6.1

coherent — VII.1.12

— morphism of spectra II.2.13

profinite — VIII.4.1

— (co)algebra over a Hopf algebra

II.6.24

— over an algebra II.6.1
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— spectrum II.2.13

monoid IV.1.59

grouplike — IV.1.59

well-pointed — IV.1.59

Moore spectrum II.4.32

Morava k-theory (connected) IX.7.1

Morava K-theory (periodic) IX.7.2

morphism of cohomology theories

II.3.8; II.3.10

— — F -fibrations IV.1.42

— — direct systems I.2.3

— — (F, ∗)-fibrations IV.1.42

— — homology theories II.3.1; II.3.10

— — inverse systems III.1.8

morphism of spectra II.1.3

cone of a — — — II.1.7

module — — — II.2.13

quasi-ring — — — III.7.1

ring — — — II.2.12

morphism of stable F -objects IV.4.16

morphism of stable V-objects IV.4.8

morphism over a space IV.1.3

multiplication II.2.12; II.2.14, II.6.1

Nishida relations IV, §1
normal bundle of an embedding IV.7.5

— — — a manifold IV.7.12

stable — — — — — IV.7.12

numerable covering IV.1.23

n-coskeleton II.4.12

n-connected morphism II.4.4

— spectrum II.4.4

n-connective covering II.4.14; IV.1.39

n-dimensional disk I.3.11 ff.

n-dimensional sphere I.3.11 ff.

n-dual spaces II.2.7

— spectra II.2.7

n-equivalence II.4.4

n-killing space IV.1.39

— spectrum II.4.14

n-skeleton I.3.40, II.1.2

Ω-prespectrum II.1.20

Ω-spectrum II.1.20

operation II.3.47

opposite structure on a V-object

IV.4.15

— — — — manifold IV.7.21

ordered pair IV.1.43 ff.

orientable F -object IV.5.6

— stable F -object IV.5.22 ff.

— V-object IV.5.6

oriented manifold IV.7.31

see also E-orientation.

pair (of spaces) I.3.1 ff.

cofibered — I.3.24

ordered — IV.1.43 ff.

pointed — I.3.1 ff.

partially ordered set I.1.2

phantom III.1.2

weak — III.1.2

PL-bundle IV.4.1

PLn-object IV.4.1

Poincaré duality V.2.8 ff.

pointed map I.3.1 ff.

— direct product I.3.20

— homotopic maps I.3.22

— pair I.3.1 ff

— space I.3.1 ff.

— triad I.3.1 ff.

Pontrjagin–Thom Theorem IV.7.27

poset I.1.2

Postnikov invariant II.4.19

— n-stage of a spectrum II.4.12

— tower of a spectrum II.4.12

prespectrum II.1.18

prestructure IV.2.1; IV.3.6; IV.4.4

primitive element II.6.12

principal locally trivial bundle IV.3.1

— M -bundle IV.1.60

— M -fibration IV.1.60

— M -quasi-fibration IV.1.60

product bundle IV.1.11

product of bundles IV.1.4

— — spectra III.3.26

profinite module VIII.4.1

profinitely completed tensor product
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III.1.23

projection (in a bundle) IV.1.1

projective limit III.1.9

projective resolution IX.6.4

proper sequence VIII.1.21

Puppe sequence I.3.39 ff.

quasi-fibration IV.1.12

quasi-module spectrum III.7.7

quasi-multiplication III.7.1

admissble — VIII.2.1

associative — III.7.1

commutative — III.7.1

quasi-ordered sequence III.3.8

— set I.1.1

quasi-ordering I.1.1

directed — — I.1.1

quasi-ring morphism III.7.1

— spectrum III.7.1

realification IV.4.26 ff.

reduced cohomology theory II.3.8 ff.

— mapping cone I.3.23

— — cylinder I.3.23

— homology theory II.3.4

— suspension I.3.23

— telescope I.3.23

regular map IV.5.17

— sequence VIII.1.23

representable functor I.1.4

representing object I.1.4

— set IV.1.49 ff.

restriction of a function I,§1
ring I, §2
— morphism II.2.12

— spectrum II.2.12

commutative — — II.2.12

— structure II.2.12

Roos resolution III.2.10

root of a fibration IV.1.44 ff.

— — — Thom space IV.5.3

— — — — spectrum IV.5.12

rooted Dold fibration IV.1.44 ff.

— equivalence IV.1.44 ff.

section IV.1.2

sectioned bundle IV.1.2

— — homotopy IV.1.5

— — — equivalence IV.1.5

— fibration IV.1.12

— homotopy over a space IV.1.5

sectioned bundle morphism IV.1.3

— morphism over a space IV.1.3

Serre class II.4.21

stable — — II.4.21

set IV.1.43 ff.

directed — I.1.1

discrete quasi-ordered — I.1.1 ff.

inductive — I.1.2

partially ordered — I.1.2

quasi-ordered — I.1.1

representing — IV.1.49 ff.

simple element II.6.12; VIII.4.11

— fibration V.4.1

— space II.5.11 ff.

singleton IV.1.43 ff.

skeleton of a CW -space I.3.40

— — — spectrum II.1.2

smash product of spaces I.3.20

homotopy — — — — I.3.35

— — — spectra II.2.1

spectral substitute II.1.19 ff.

spectrum II.1.1

a-compact — III.4.1

bounded below — II.4.4

connected — II.4.4

C -marked — VII.6.20

C -oriented — VII.2.1

finite — II.1.2

finite dimensional — II.1.2

functional — III.3.28

graded Eilenberg–Mac Lane —

II.3.32

module — II.2.13

Moore — II.4.32

quasi-module — III.7.7

quasi-ring — III.7.1

ring — II.2.12

— of finite type II.1.2
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— — — Λ-type II.5.16

sphere I.3.11 ff.

stabilization IV.4.8; IV.4.16

stable almost complex structure on a

map VIII.3.1

— F -object IV.4.16

stable homotopy group II.1.9 ff.

— isomorphism VII.4.12

— Serre class II.4.21

— V-object IV.4.8

stably almost complex manifold IV.7.31

— — — map VIII.3.1

— n-dual spaces (spectra) II.2.7

standard trivial bundle IV.1.11

Steenrod—Thom homomorphism

IV.7.31 ff.

Steenrod—tom Dieck operation VII.7.7

external — —- VII.7.4

string III.1.9

strict cofiber sequence I.3.38, II.1.12

structure map IV.4.9 ff.

multiplicative — — IV.4.22

structure on a fibration IV.2.1; IV.2.4;

IV.2.5

equivalence of —s — — — IV.2.5

structure on a manifold IV.7.19

— — an (F,Π)-bundle IV.3.6

— — a stable V-object IV.4.9

subbundle IV.1.1 ff.

subspectrum II.1.1

cofinal — II.1.2

suspension I.3.18

— over a strict (B,ϕ)-structure IV.7.19

reduced — I.3.23

— spectrum I.1.2

tangent bundle IV.7.10

telescope I.3.19; II.1.23

— reduced I.3.23

Thom class IV.5.8 ff.

stable — — IV.5.23 ff.

— isomorphism IV.5.7

stable — — IV.5.23 ff

— space IV.5.1 ; IV.5.2

zero section of a — — IV.5.4

— spectrum IV.5.12

Thom–Dold isomorphism V.1.3

stable — — — V.1.14.

Todd class V.3.4 ff.

T OP-bundle IV.4.1

T OPn-object IV.4.1

total space (of a bundle) IV.1.1

totally surjective inverse system III.3.7

transfer V.2.11

transversality IV.7.17

transverse map IV.7.17

triad I.3.1

pointed — I.3.1

trivial bundle IV.1.11

— morphism of spectra II.1.9

tubular neighborhood IV.7.3

T embedding IV.7.2

bordered — — IV.7.2

T manifold IV, §7
T microbundle IV.7.6

unit I, §2; II.2.12

— homomorphism II.6.1

— morphism II.2.12

— of a quasi-ring spectrum III.7.1

— — — ring I, §2
— — — — spectrum II.2.12

universal Chern classes VII.1.6 ff.

universal Chern–Conner–Floyd classes

VII.2.3

— E-orientation V.1.17 ff.

— formal group VII.5.2

— F -fibration IV.1.56

unreduced cohomology theory II.3.8

— homology theory II.3.1

upper bound I.1.2

vector bundle IV.4.1

vertical homotopy IV.1.2

vertically homotopic liftings IV.1.2

vk-torsion free module IX.6.2

Vn-object IV.4.2

V-object IV.4.2
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weak homotopy III.3.3

— Hausdorff space I.3.2

— phantom III.1.2

wedge of spaces I.3.20

homotopy — — — I.3.31

— of spectra II.1.13 ff.

well-pointed space I.3.28

Whitehead equivalence I.3.42

Whitney sum IV.4.5 ff.; IV.4.19 ff.;

IV.4.21

X -phantom III.1.1

Yoneda Lemma I.1.5

zero section IV.5.4

Zorn’s Lemma I.1.3
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