EMBEDDED HANDLE THEORY,
CONCORDANCE AND ISOTOPY

C. P. Rourke

The purpose of this paper is to announce a new method for dealing with
concordances of one manifold in another and some results obtained by
using it. The basic idea is to regard the concordance as consisting of a series
of “‘steps,”” each of which has the form of an attached handle (see Section 2
for precise definitions). Then one proceeds to operate on these embedded
handles exactly as in Smale’s proof of his A-Cobordism theorem. The opera-
tions are realized by an ambient isotopy of the whole concordance. If one
can succeed in realizing all the moves then one can ‘“‘cancel off” all the
handles and so replace the concordance by an isotopy. The method works
equally well in the PL and Diff categories; however, for simplicity we will
work from now on in the PL category only.

Roughly speaking, there are no obstructions to realizing all handle moves
in codims > 2 except for “canceling complementary handles” and no
obstruction to canceling handles in codims > 3. Thus we immediately
recover Hudson’s results [3]. In codim 2 we can measure the obstruction to
canceling a pair of complementary handles as an element of the integral
group ring of the fundamental group of the complement of the concordance
at that level. However since a Whitney-type process is involved, we need to
assume that the ambient dimension is at least five. We thus obtain a new
theorem of concordance implies 1sotopy for codimension 2 embeddings with
simply connected complements. Applying our results to codim 0 concord-
ances, using a handle induction argument, we recover (a version of) Cerf’s
theorem [2].

Precise statements of the results on concordance and isotopy are given in
Scction 1. Definitions of embedded handles and statements of results on
realizing handle moves are given in Section 2 together with sketches of
proofs. In Section 3 we sketch the derivation of the results of Section 1 from
those of Section 2.
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432 EMBEDDING AND UNKNOTTING PROBLEMS

Full details will be given elsewhere and I also hope to be able to give a
better description of the obstruction in codim 2.

1. Concordance and Isotopy

Let Q7 be a PL manifold (of dim g) with boundary 0Q (neither assumed to
be compact) and X a compact polyhedron. A concordance of X in Q is an
embedding F:X x I > Q x I such that F"YQ x {i}) = X x {i} for
i =0, 1. An isotopy is a level-preserving concordance; ie., F~4Q x {t}) =
X x {t} for all t e I. An ambient isotopy is the restriction of an isotopy of Q
(cf. [4] and [12]).

A concordance F respects the boundary if there is a subpolyhedron Xy, < X
such that F~}(0Q x I) = Xy x I (ie, F restricts to a concordance of X,
in ¢Q.)

F 1s locally unknotted (in the sense of Akin [1]) if the ambient intrinsic
dimension of F(X x I) is constant on “flowlines.” More precisely, extend
FtoF,:X x R—> Q x Rbydefining F ,|X x (—o0,0]and F_|X x [1, o0)
to be products and then we require that the ambient intrinsic dimension of
F (X x R)at(x, t) is independent of ¢.

Notice that F might be locally knotted in the sense of Lickorish [6] and
that in codims > 3 all embeddings are locally unknotted by Lickorish’s
main theorem [6].

We arc interested in whether F can be moved to an isotopy, that is, whether
there 1s an ambient isotopy of @ x I carrying I to F, x 1d, where F;: X — Q,
i =0, 1, is the embedding determined by F|X x {i}.'If it can be so moved,
then F, and F, are isotopic embeddings and we have “concordance implies
isotopy.” It 1s clear that we will have to assume F is locally unknotted and
respects the boundary. This we always do from now on.

Theorem 1. Suppose F: X x I - Q x I is a concordance which is trivial
on the boundary (ie., F| Xy x I = (Fy|Xo) x id) and that X collapses to
X > X, with Xy — X, of dimension < q — 3. Then there is an ambient
isotopy of Q@ x I carrying F to Fy x id and keeping Q x {0} L Q x [ fixed.

Theorem 2. Same hypothesis and conclusions as Theorem 1, except that

(a) X, — X, has dimension < q — 2;

(b) g >5;

(©) m1(Q — Fo(X)) = n(Q — Fi(X)) = n(@ x ] — F(X x I)) = 0.

Theorem 1 is a slightly improved version of Hudson’s main result [3],
while Theorem 2 is basically new. There are well-known examples to show
that condition (c) is neccssary (slice knots, etc.) but I have no idea whether
condition (b) is necessary.
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Corollary (Improved Cerf). Let F: M x I - M x I be a concordance of
the closed manifold M in itself and assume that dim M > 5, (M) = 0. Then
F is ambient isotopic to F, x 1d.

Proof. Apply Theorem 2 with X = M-{disk}. This moves F to F' with
F'|X trivial. Finally straighten F’ on the disk by the Alexander trick.

A similar dodge gives a theorem for bounded manifolds. There are
theorems for polyhedra in polyhedra deduced by induction over intrinsic
strata using Stone’s results [10] to straighten neighborhoods.

Notice that our proof of the Cerf theorem uses a PL device (the Alexander
trick); in the Diff case our methods only prove the result modulo the theorem
for a disk.

2. Embedded Handles

In this section X will be a manifold M" and X, = ¢M (in fact in Section 3
all we will need is the case M is a disk). A point (x, t)e Q x I is a regular
point of F : M x I —» @ x I if either (1) (x, t) ¢ im F or (2) there i1s a neigh-
borhood J of ¢t in I, a manifold M’ and a level-preserving embedding
G: M x J— Q x J onto a neighborhood of (x,t) in F(M x I). In other
words, near (x, t), F(M x I) is (setwise) the track of an isotopy.

A value t eI 1s a regular value of F if (x, t) 1s a regular point for all x e Q.
One easily proves

Lemma 1. Ift is a regular value of F, then there is a manifold M(t), a neigh-
borhood J of t in I and an isotopy G : M(t) x J — Q x J such that im G =
im F n Q x J. That 1s, in a neighborhood of t, F is (setwise) the track of an
isotopy.

We say t is a critical value if it is not a regular value. We next define a
standard critical value of index p, 0 < p < n + 1 (the analoguc of a p-saddle):
Suppose there are manifolds M _(t) and M . (t), neighborhoods J., J, of t
in [0, ], [t 1], respectively (it is implicit that teint J) and isotopies
G, .M, xJ,-»-QxJ, ¢=+, —. Suppose further that im(F)n Q x
s uJ)=imG, uimG_ U h?, where h* = Q x {t} and that as triples
we have a PL isomorphism,

(", A im G. ,MP A im G,) = (" x I",0I” x I', I x oI),

where J? = [—1, +1]? < R? is the standard p-disk and p+r =n + L.
Suppose finally that in the level t, imG,. nim G = cl(im G, — h) for
¢ = +, — (this last condition can actually be deduced from the fact that
tm F is a manifold).
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We think of h” as a p-handle attached to M_ in Q@ x {t} and defining a
surgery to M .. See Figure 1 for a picture of a standard critical level.

A regular or standard critical level is locally unknotted if the isotopies are
locally unknotted in the sense of Hudson-Zeeman [4] and the embedding
of h? in Q x {t} is locally flat. From now on all such levels are assumed to
be locally unknotted.

N

Figure 1. Standard critical level.

Lemma 2. Suppose F : M x I —» Q x I is a locally flat concordance which
is trivial on the boundary. Then there is an ¢-isotopy of Q x I mod Q x
{0} U 0Q x I carrying F to a concordance with only a finite number of critical
levels each of standard type.

Lemma 2 follows from the methods of Kosinski [5]; see [7] for a direct
proof. We call the result of Lemma 2 a “handle decomposition’ of the
concordance F. Qur aim is to echo the proof of the h-cobordism theorem
through handle decompositions of I. We first observe that by an ambient
isotopy of F we can straighten all the 1sotopies in the handle decomposition
so that F has the form of vertical “walls” with a finite number of “bridges”
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Figure 2. Handle decomposition of a concordance.

(see Figure 2). Observe also that the handle decomposition of F gives a
relative decomposition of M x I'mod M x {0} by projecting handles
vertically downwards (sce [8, 9, and 11] for trcatments of PL handle theory).
Finally, noticc that the handles have a preferred ordering given by the
values of their levels.

Lemma 3 (Reordering Handles). Suppose g — n > 2 and suppose given a
handle decomposition of F with handles h°, h* consecutive with p’ < p. Then
we can find another decomposition with the same number of handles of each
index, the same ordering except that h*" precedes h®.

Sketch of Proof. The idea is to isotope the embedding of 47" in its level
keeping M _(h?) setwise fixed. This can be realized by an ambient isotopy of
Q x I which affects im F setwise only above the level of #?". First, by general
position we can assume that the core of h* misses the fiber of ¥ on projection
into Q. Then, by trimming h* down to its core, that #*" misses the fiber of
h?, finally slide h*" away from the fiber of h” and obtain h? and h*" disjoint on
projection on Q. Now there is no obstruction to sliding #*" down past A,
1e., to reordering.

Lemma 4 (Adding Handles). The isotopy which *““swings” one p-handle over
another can be realized. (Therc are no codimension requirements.)

" Lemma 4 is easy—one simply applies the covering isotopy theorem
(Hudson—Zeeman [4)).

Lemma 5 (Canceling Complementary Handles). Suppose h” and h** ! are
complementary handles in a decomposition of F. Then there is a decomposition
of F with the same number of handles of each index in the same order, except
that h° and h** ' are missing. Provided either

(@) g —n>=30r

b)g—n=24g=>5, p=>1, and an obstruction 0 e Z(n) vanishes where
7= my(Q — M (W) = my(Q — M_(hP"Y)).

Sketch of Proof. Case (a). The idea is to make the projections of #** ! and
h* maximally disjoint. Then slide the two handles into the same level. This
level now consists of a trivial step (a disk glued onto M _ by a face) and the
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critical level can be removed by isotoping the face across to the comple-
mentary one (Figure 3).

Slide pu

across

“Stcp”

Figure 3. Removing a step.

Since we have one extra dimension to spare, by general position as in
Lemma 2, we may assume that the core of h**! projects disjoint as far as
possible from the fiber of 4? (i.e., they intersect in the one point p on their
boundaries which occurs in the definition of complementary handles;
cf. [8]). Then by a little care we get them disjoint near p. Then the argument
is as in Lemma 2.

Case (b). The same ideas as case (a) apply. The general position however
only yields the fiber of #? and the core of h?*! intersecting in a finite number
of points. Use a Whitney-type process and the extra hypotheses to remove
them and then the argument of case (a) applies.

3. Sketches of Proofs of Theorems 1 and 2

The proofs of Theorems | and 2 are similar and we proceed simultaneously
until further notice.

Let N be a regular neighborhood of F(X x I) in Q x I which meets the
subsets Q x {i}, i = 0,1, and dQ x I regularly. By Akin’s product neigh-
borhood theorem [1], the product structure on X x I extends to N. This
remark enables us to assume that X = g-manifold M and X, = M, is a
(g — 1)-dimensional submanifold of dM. Moreover, the hypotheses imply
that M has a handle decomposition mod M, with handles of indices < g — 3
only in the case of Theorem 1, or g — 2 in Theorem 2. That is, M = M, x
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Iuhyo---Uh, say. We now straighten F by induction. First on M, x [
by a similar argument to Lcmma 7 below. Then straighten F on each k; by
Lemmas 6 and 7.

Lemma 6. Theorems | und 2 are true for X = I°, X, = CIP.

Lemma 7. Suppose X =1° x I', p+r=gq, Xo=7I" x I' and
FolXow I? x {0} is trivial. Then I can be straightened keeping Q x {0} U
dQ x Iu F(I? x {0}) fixed.

Proof of Lemma 6. We apply thc embedded handle theory of Section 2 to
straightcn I setwise, finally use the Alexander trick to straighten F pointwise.
Following the proof of the A-cobordism thcorem gives the result if p > 5.
For p < 5 we push all the handles into two adjacent indices (use Wall’s new
resultt [11] for p = 3) and then push them all into the same level by a similar
argument to the proof of Lemma 5. Now F has only one critical level which
can be removed by a similar argument to Lemma 5 (Figurc 3).

In thccase of ¢ — p = 2 we have omitted (o show how to cancel O-handlcs
[we assumed p > 1 in casc (b) of Lemma 5]. For this one uscs the obvious
presentation of 7,(Q x I — F(I” x I)) given by thc handle decomposition.
Since this group is trivial we can trivializc this presentation by Tietze movcs.
One then shows how to realize the Tietze moves by embedded handlc
moves.

Cone point

7/

/1
J

F(IP x {0} x 1) FIX x 1)

['igurc 4

T There appears to be a gap in Wall’s prool. However, we do not need the [ull strength
ol his asserted result since we know the /i-cobordism is trivial. we can therclore use a
I-parameter PL approximation theorem, proved in a similar way to [51 to know that
the handle decomposition can be irivialized by handle moves.
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Proof of Lemma 7.1 We can assume that F preserves X setwise by the
relative regular neighborhood theorem G: Q x I - Q x [tobe Fo(F, ' x
id)on X x Iand theidentity outside a collarneighborhood of F(X x I). This
1s easy since F is concordant to the identity. Now G is the identity outside
a disk and can be isotoped to the identity by the Alexander trick with the
cone point chosen in F;(/? x {0}). This carries F (o the trivial concordance
(see Figure 4).
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