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FOREWORD TO THE ENGLISH EDITION

The reader might well ask why a translation is desirable 50
years after the original book was published. The answer is that
Reidemeister's classic book has continued to be a useful introduc-

tion to a surprisingly large number of concepts.

We have (as much as possible) tried to retain the style
of the original while trying to render the text into what we hope

is readable English.

In a few places where modexn terminology differs from
Reidemeister we have changed to the current terminology. In a
few places where errotrs in the original text were noted, we have

added footnotes. An index has also been added,

We think that the reader will be amazed at the sheer wealth

of material that is packed in this iittle book.

Our thanks go out to Springer-Verlag for licensing us to

print this.

L.F.B.

B.A.S.
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Publisher's foreword to the original edition

The reporting of scientific literature is faced with a twofold prob-
lem: on the one hand, it must strive for completeness and timeliness with
regard to the currently appearing journal literature, and on the other hand
it must be concerned occasionally with the exposition of what has evolved
over a period of time.

Whereas in all sciences it has been clear for a long time how in
principle to master the first problem, fundamentally different attempts
have been made to solve the second problem.

After almost thirty vear's experience it is well established that the
form of an éncyclopedia which encompasses the collected field of mathematics
and its impinging areas is not satisfactery. It is not likely that the
undertaking begun here will do justice to all demands that one asks of a
comprehensive reportage, but here nonetheless an attempt will be made to
proceed with a fundamentally different method.

The series ""Ergebnisse der Mathematik" will be as flexible as possible
in order to follow the development of our science. It's goal is to intro-

duce as individual independent monographs the problems, literature and the
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principal directions of development in particular modern areas. We desire

also to take note of the actual state of things so that it will give each

researcher the opportunity to acquire the reports which directly iwpinge on

his area of interest, without forcing him to burden himself at the same time

with all the particulars that are inherent in the somewhat excessive devel-

opment of a comprehensive handbook of the entire science.

Accordingly, henceforth there will appear a series of reports cover-
ing 2ll of the developing areas of mathematics and its closest applications.

These will cover, initially, the approximately & or 7 shifts of direction

in the research of the last decades. The frequency of later continuations

will depend on the speed of progress. Taking a broad view, it is clear

that no strongly formal unity of these reports can be aspired te; it will

depend on the status of the available literature whether or not a purely

literature report or a stronger textbool pregentation is apprepriate. The

overall plan of the "Ergebnisse" series is to make available within a

reasonable space of time, reports cn almost all modern areas (at least of

pure mathematics)., Hence it will be possible to obtain the most compre-

hensive possible overview of the new developments of mathematics. 1In the

combining of five reports into each volume, we will forego any objective

oSS



grouping — after all, experience shows that all previous attempts at

systematizing were a burden rather than a relief for the user,

The rules for citing literature which have recently been recognized

internationally have been made use of,
The Editorial Staff of

Zentralbatt fur Mathematik

und ihre Grenzgebiete
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Introduction

Knot theory starts with the intuitive problem of deciding if two

closed strings made of flexible, but impenetrable material can be trans-—
formed by means of continuous modifications into strings having congruent
form. For example, if one ties a knot in an open string in the se?se of
ordinary language and then splices the two ends of the string, the result
cannot be continuously deformed into a circle.

To formulate the given problem mathematically, mathematical represen-
tatives must be given for the strings. Then we must define deformations

of the strings. This is naturally possible in various ways. For example,

it is obvious to take for the strings double point free closed continuous
curves in three-~dimensional Euclidean space and to understand a deformation

to be a continuous modification of this curve without self-piercings. More
precisely: If xl,xz,x3 are Cartesian coordinates and if

(L) 500 = (% () 4%y, (£) %4, (£)) (1=1,2;0 <t <2m)

are two disjoint curves piven by parametric representation, which can be mapped
by t in & 1-1 and continuous fashion onto the circle

(2) %X, = cost, X, = gint.

1 2

Then S](t) is said to be deformable into iz(t) if there is a family of curves




(3) E(t, 1) 02t Z2m, 051 1)
with

£(t,0) = £ (£), &(t,1) = £,(1),
which are each mapped 1-1 and continuously onto the circle (2) by t and
which sweep out a double point free surface £(t,r). Instead of this em-
bedding in families of curves, one can also use mappings of the entire
space onto itself as a classification principle: The two curves (1) are
called equivalent if there exists a 1-1 continuous mapping

XI'( = fk(xl’XZ’x?;) (k = 1,2,3
of FEuclidean space onto itself for which

xkz(t) = fk(glft),XZI(t),xgl(t)) (k = 1,2,3).

But both fo§mulations are too general since arbitrary continuous
curves do not have intuitively obvious properties while special continuous
curves, for instance, polygons suffice for the study of the intuitive
curves. Accordingly, we will henceforth consider only polygons consisting
of finitely many Fuclidean line segments, and require that the family of
curves (3) likewise consist only of polygons. The allowable transformation

of the polygons can be composed of special deformations under which actually

only one or two adjacent segments of the polygon are involved, Thus the
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conceptualization dn 84, Ch. %, turns oul Lo be a natural consequence of
the dntuitive point of wview.

Tietze, in Monatsheft Math.-Phys.,Bd 19, p. 34, gave an example that
shows that there are continuous curves that cannot be deformed inte poly-
gons and that the classification problem formulated in (1) and (3) is
more inclusive than that formulated in 81, Ch. I. Tietze's example is of a
curve with infinite knotting. It arises from an infinitely often Iterated
tying together of polygon knots. The curves that are deformable into
polygons can be embedded in three-dimensioconal tubes, which are made up of
3~spheres whoge midpoints wander along the curves. They are thus in fact
also suilted as the representatives of intuitive strings, if of course they
do not exceed a certain thickness.

One can investigate knot theory more deeply by seeking those
properties of Euclidean space that are pertinent for the c¢lassification of
knots. These are certain topolegical properties of the space; the knot
problem is nothing other than the so-called isctopy problem for simple
curves in the three-dimensional sphere. A treatment of knot theory as a
part of isotopy theory, however, in extenso (at full length) has not yet

been fully developed. The methods of combinatorial topology, for instance,




are applied only in an attempt by Dehn to characterize the circle, and

this work directly displays the particular difficulties with which one
battles when using the combinatorial method. Thus the current definition
i3l a knot with the aid of Buclidean polygons can be justified by the status
ol scientific development.

What is the present situation of knot theory? Elementary considera-
Lions starting with the most noticeable forms of the knot projections have
not led to any proven results., Tt is easy to give necessary conditions for
two cutrves to be topologically equivalent, but there is no success in
applying these properties to a given curve. This difficulty first became
apparent when Poincaré’assigned certain groups to manifolds and thereby to
the knots (the group of a knot is the fundamental group of the space which
arises from the Euclidean space if the points of the knot are removed).
Wirtinger and Dehn, to be sure, gave methodsby which the genmerators and de-
fining relations of this group can be read from the knot projection. That
method led, for instance, to a proof that the trefoil knot is not a circle
and that the trefoil knots cannot be deformed into their mirror image., But
the answering of general questions was frustrated by the difficulty of eval-

R . . 4 . ,
uating the group-theoretic tools that Poincaré's discovery had placed in




the hand of the geometer.

Thus it appears that the further development of knot theory is closely

connected with the progress of group theory. 1In fact, one can obtain from

the group of the knot most of the known knot properties by means of a purely

group~theoretic algorithm. MNamely, they can be obtained by the algorithm

for determining generators and defining relations of subgroups. While one

can obtain the torsion numbers and the Alexander L-polvnomial of the knot

without the direct utilization of this procedure, the derivation of their

relationship to covering spaces leads in a completely natural way to the

general censiderations that yield a proof of the group-theoretic algorithm.

Besides the group there is the quadratic form assigned to the knot:

from it comes theé fact that the generatorsg and defining relations of the

knot group read from the knot projection are of a special nature not deter-

mined by the group structure.

It is not ¢ifficult to write a development of knot theory in which

the group of the knot and the algorithm for determining the subgroups is

placed in the forefront. TFor example, one can start directly with the

geometrically meaningful definition of the knot group in Ch. III, §§8 and

9 and the determination of tcrslon numbers and L-pelynomials in Ch. III,
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58 6 and 7. This development even offers noticeable advantages since

it reduces the invariance proof to the invariance proof for the group
and to the problem of the invariant geometric interpretation of the
torsion numbers and the L-polynomials. But I have preferred to work out
the formal elementary character of the properties of a knot that are
obtainable from matrices and to establish these interconnections for
their own sake in Chapter II. This is in order to do betrer justice to
the works of Alexander on the one hand and to the remarkable quadratic

form of the knot on the other hand.
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CHAPTER I

KNOTS AND THEIR PROJECTIONS

§1. Definition of a knot

, : #
In order to define the concept of a knot ([5]3[28]),{ we make use of

gimple closed polygons in Euclidean 3-space which consist of finitely
many fine segments. We understand a deformation of a polygon to be the
generation of a new polygon from the original one by means of the

following two operations:

A, Let Pppl be an edge of the polygon with endpoints Pp

and P be two line segments not

l’

holonging to the pelygon, with the endpoints Pp’Pp+l and Pp+l’Pl

and let PpPp+l and Pp+lpl

respectively. Assume that the surface of the triangle PpPp+lPl has

no points in common with the polygon except for the edge PPP Then

1
veplace PpPl by PpPP+l and Pp+lPl'

A" is the operation inverse to A: Suppose that the surface

ol the triangle P P formed from three consecutive vertices

P p+lPl

Pp’Pp+l’Pl of the polygon has no point in common with the polygon

except for the segments PpPp+l and Pp+lPl' Then Pppp+1 and

¥ &
}p+lPl are replaced by PpPl'

“These numbers refer to the bibliography found at the end
of this volume.




2 KNOTS AND THEIR PROJECTIONS Ch, I, 81

Polygons that arise from one another by a finite sequence of
deformations are called isotopic, and a class of isotopic polygons is
called a knot. Furthermore, we call a polygon itself a knot, although
it would be more precise to call it a representative of a knot.

A property of a polygen that is preserved under the operation

A or A' is called a knot property of the polygon. The task of knot

theory is to obtain a survey of all properties of a knot, i.e., to find
all deformation invariants of a simple closed polygon.

A knot that is isoteopic to a triangle is called a circle. A
polygon that is not isotopic to a triangle is said to be knotted.

A knot can be oriented by choosing a sense of direction for
going around the knot. The classification problem can be extended to
oriented knots. The knot that is oriented opposite to a given oriented
knot is called the inverse knot; a knot is called symmetric if the two
knots arising from it by orientation are isotopic. A knot is called

amphicheiral if it is isotopic to its mirror image.

Tnstead of individual polygons, one can consider systems of
finitely many closed, simple, and mutually disjoint polygons and apply
the operations & and A' to the system. For these deformations it
is reasonable to require that the surface of the triangle PpPp+lPl has
no point in commen with any of the polygons of the system except for the
segments which are replaced under the deformation. Two such systems are
called isotopic, and each represents the same link, if one can be trans-
formed into the other by a finite sequence of the deformations A and
A'". The simplest invariant of a link is the number of the polygons

belonging to it; this number is called the order of the link.




Ch., I, 852 REGULAR PROJECTTONS 3

§2. Regular projections
A regular projection of a polygon offers a convenient way to
represent an individual knot.

By a parallel projection we understand the usual projection

of Euclidean 3-space onto a 2-dimensional subspace. We say that the
image of a polygon under a parallel projection is regular if each pro-
jecting ray meets at most two segments of the polygon. Hence the only
singular points of the projection are double points, and no double point
of the projection corresponds to a vertex of the polygon. One concludes
from this that a regular projection can possess only finitely many
double points. 1In order for a projection to have infinitely many double
points, the projection of two segments of the polygon project into a
segment s of double points, and the boundary of s which corresponds
to vertices of the polygon, must also consist of double points. Accord-
ingly, there are two cases for how a projection direction can be sin-
gular;

a) There are no double points that correspond to vertices of
the polygon, Iﬁ this case, there are higher order singular points.
Then the projection ray through this higher order singular point meets
at least three lines on which segments of the polygon lie. These lines
must be skew since ctherwise a singular point would occur that corres-
ponds to a vertex of the polygon; and the projection ray therefore
belongs to the one-sheeted hyperboloid determined by the three lines.
For each triple of skew lines on which segments of the polygon lié, we

consider the hyperboloid determined by them. Then we form the quadric

cones with vertex at the erigin whose generating Tines are parallel to




4 KNOTS AND THEIR PROJECTIONS Ch. I, §2

the generating lines of these hyperboloids. All singular directions of
this type are contained amcong the directions cobtained.

b) The projection of a vertex falls upon the projection of a
segment or upon the projection of another vertex., In this case the
projection ray is parallel to a plane which passes through a segment and
a vertex of the polygon which is not an endpoint of that segment.

The regular preojection directions thus decompose intc finitely
many regions whose boundaries lie on the cones and the planes of the
singular projection directions. A closer investigation of the singular
projection directions can be of interest. This is shown, for example,
by the following theorem about chords which meet a polygon in four
distinct points ({26]). If ¢ is the knotting number of the polygon
(cf. &1, Ch. II), and if ¢ 1is even, then the number of chords that
meet the polygon in four distinct points is at least 02. A similar
theorem holds for a link consisting of twe polygons kl and k.. If

2

is the linking number of k relative to k and if ¢ is the

C12 1 2 21

Linking number of k2 relative to k1 (cf. §1, Ch. II), then the

number of chords that meet the link in four distinect points is at least

€12%21°
A regularly projected curve is decomposed by its double points

and

Dl’D2""’Dn inte 2n  singularity free edge paths ZysZosee ooy

these arcs decompese the prejection plane into finitely many polygons
Fl,lz,... 0"

formula, g =n + 1. The boundary relations between Di’zk’rﬁ’ i.e.,

’Pg and one unbounded region T By the Euler-Poincaré

the designation of which two double points bound 21 and of which two

regions have =z in their boundary, we call the schema of the projection.

k




Ch. I, 52 REGULAR PROJECTIONS 5

In order to obtain the knot from the projection, it is neces-
sary to know which of the arcs at the double points correspond to over-
crossings and which correspond to undercrossings. We fix for each pro-
jection direction a sense of above and a sense of bhelow and designate
the points on the knot corresponding to the double point Di of the
projection by Ui and Ui. In this, Ui lies under Ui and Ui is

. . . i ]
called an undercrossing point, while U is called an overcrossing

point. We normalize the projection by specifying for each Di which of

the edge paths 2y emanating from Di are projections of edge paths

emanating from Ui and U" respectively (Figs. 1 and 2). We can thus

pele

Fig‘ 1. Fig, 2,;

normalize the schema of the projection.

If two polygons have the same normalized proijection, then they
are isotopic. TIf two polygons kl and k2 hoth project to the same
curve, but if the normalization of thelr projections is reversed at each
of the double points, then k1 is disotopic to the mirror image of kz.

We say that a knot projection is alterrating if each edge path
joins an overcrossing to an undercrossing at an adjacent double point,
therefore upon transversing the knot the overcrossing and undercrossing

points alternate (Fig. 2). We also speak of alternating portions of a

ywradection, A regular projection can always be normalized to be
1 ] 2 . A




6 KNOTS AND THEIR PROJECTIONS Ch, T, &3

alternating, and indeed in precisely two ways. The corresponding knots

are then mirror images (Fig. 2). Accordingly, in the table of knots

with up to nine double points given on pages 126-128, the unnormalized pro-

jections always signify alternating projections. Knots for which there

exist alternating projections are called alternating knots.

§3, The operations §.1,2,3

We will now investigate how the normalized projection is
altered by deformations of the polygon and by changing the direction
of the projection ([5],[28]).

We first list several types of modifications which are
effected by knot deformations,

A.m.1l. This is the alteration of the projected curve by the
operation A or A'. The projected curve is of course also a polygon--
which might even have double points~-to which these transformations can
be applied.

A.m.2. This is the application of A or A' in the follow-
ing setting. Let the triangle PpPp+ P appearing in the deformations

11

A or  A' project to a triangle PéPé+lPi whose boundary is met by

the remaining segments of the projected curve in precisely two points
' YRl T T 1 2 .
D and D' on the segments IpPl and Pppp+l respectively and which

contains no double points in its interior (Fig. 3).

A.m.1,2 are called deformations of the projected curve. They

do not change the schema of the projection. Furthermore, one observes
that projected curves with the same schema can be carried into one

another by means of a sequence of deformations A.7.1,2. From this it



Ch. I, 83 THE OPERATIONS §,1,2,3 7

follows that polygons whose projections possess the same normalized
schema are isotopic.

Furthermore, the following three operations which change the
schema of the projection may arise from the operations A,

2.1. An edge path whose projection was double point
free is transformed into a loop. In this a new double point is intro-

duced. The corresponding undercressing point and the overcrossing point

on the polygon are adjacent (Fig. 4).

Fig. 4.  §.1.

2.2. If we have two edge paths of the knot whose projections
have no points in common, then one edge path is slid over the other so
that there appear two adjacent overcrossing points in one edge path and

two adiacent underecrossing points in the other edpe path (Fig. 5).




8 KNOTS AND THEIR PROJECTIONS

D
B

Fig. 5. 2.2,

§2.3. Indtial configuration: Three edge paths of the knot
158955, which yield three double points in the projection. Each
double point is adjacent to the other two. Assume 8, crosses over s,
as well as S g and 8, Crosses over si. Operation: S1 is pushed

over the undercrossing point and the overcrossing point determined by

s and {Fig. 6).

2 53

I

- .__’_.;,:;___
'
)

1

Fig. 6. £.3.

We denote the inverse operations by &'.i (i = 1,2,3). It
can now be shown that each change of the projection which is induced by
the knot deformations A and A' can also be generated by repeated
application of the deformations A.w.1,2 and the operations
Q.1 (i o= 1,2,3) together with their inverses.

We sketch a proof of that assertion. Suppose that the knot is

deformed by replacing the segment ]?p]".1 hy the two segments Pppp+l



Ch. I, §3 THE OPERATIONS £2,1,2,3 9

and P + P Agsume that the projections P;,P' P! of PP,P

ptl 1’ p+1°1 pr10t

do not lie on a line. The projection direction is chosen so that the
original as well as the deformed knot are projected regularly. The
triangle PéP§+lPi clearly contains only finitely many double points
in its interior and on its boundary. The triangle can therefore be sub-
divided by segments which are parallel to PpPl and PpPp+1 into tri-
angles and parallelograms, so that the corresponding triangles and
parallelograms of the projection each contains at most one double point
in its interior. If a triangle or parallelogram contains a double point
in its interior, then it is intersected by exactly four edge paths Zy s
otherwise it is intersected by at most one edge path z; ({1l,121>.
Now, by means of finitely many applications of the operations

Aow.i, 2.1, and Q'.i one can replace PPP by P P and

1 p p+l’Pp+lpl
conversely, by "step by step" use of the triangles and quadrangles of
the subdivision.

The changes of the projection induced by shifting the direc-
tion of the p%ojection can also be given in terms of the operations
A.v. and . If the projection direction is varied continuously so
that it always remains regular, then the changes of the projection can
be generated by the A.mw, In order to pass over a particular singular
projection direction, we deform the knot so that this direction is no
longer singular, we then pass over the direction, and then deform the
knot back to its original form,

Thus we have shown: The knot properties coincide with those

properties of the normalized schema which are preserved under the

operations i, Q'.i (i = 1,2,3). Therefore, the knot problem is




10 ENOTS AND THEIR PROJECTIONS Ch. I, &4

equivalent to determining when a normalized regular projection cannot
be changed into another by a finite sequence of applications of the

operations {I. The analogous situation holds for links.

54, The subdivision of the projection plane into regions

The regions I of the projection plane can be decomposed into
two classes, for instance, by colering them black or white, so that re-
glons that are adjacent along an arc have different colors. Then
regions lying on opposite sides of a double point have the same color.

This decomposition does exist. For, if a simple closed poly-
gonal curve in the projection plane intersects the knot's projection
finitely often, say c¢ times, and if it does not pass through a double
point, then ¢ must be an even integer.

Let the non-compact region always be colored black. The col-
lection of white regions can then be conceived of as the projection of
a compact surface, whose boundary is the knot. The surface obtained
this way can be either crientable or non-orientable. However, it can

be shown that every knot is the boundary of some orientable surface

(118h).

%,______
K|

Fig, 7.




Ch. I, 84 SUBDIVISION OF THE PLANE INTO REGIONS 11

Consistent with later usage, we will call a subset of a

knot projection a braid with two strings if the subset bounds a sequence

of black or a sequence of white regions, each of which has at most two
double polnts in its boundary. Furthermore, we require that at each
double point two of these regions are adjacent (Fig. 7). Using Q'.2
one can show that a braid with two strings can either be eliminated or
be made alternating.

The simplest knots in the sense of black-white coloring are
those "alternating torus knots" whose projections have exactly two black
regions. They can be placed on a polyhedron that is topologically
equivalent to the torus, and they bound on the torus a multiply twisted
band that is topologically equivalent to a Mobius band (Fig. 7). An

alternating torus knot with three double points is called a trefoil knot

(or a "cloverleaf knot"). Alternating torus links of two polygons are
8 I

defined analogously.

We define as pretzel knots that class of knots whose projec-

tions centain ewxactly three black regions. The overcrossings can in

that case be divided into three two-stringed braids (Fig. 8).

Ly ey
a5

Fig. 8. Fig. 9,
Suppose that there is a white region Fl that borders a
black region Fz along two distinct edge paths which are separated from

one another by double points (Fig. 9). In this case let w = W, be a
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simple polygonal clesed curve which intersects one of these segments
once at P and the other once at (. Furthermore, assume that W is
situated entirely in Pi (L = 1,2). Let ki be the part of the projec—

tien lying in the exterior of w, and let ké be the part iying in the

interior of w. If we now adjoin to each of the ki the path w

l’

then there arise two knots ki (i = 1,2) which are designated as

compoglte parts of the original knot, if kl as well as k2 are
knotted., It is not difficult to reduce the properties of a knot to
those of its component parts ([3],[14]). In general, however, a knot
does not possess composite parts;.?‘c In the table of knots having at
most nine overcrossings given on pp. 126-128, the knots with two or more
composite parts are omitted,

If 2 double peint D is dncident twice with the same region
' then the two corners belonging to [' must lie crosswise at D since
they are colored the same. Such a double point can be eliminated by a

deformation of the knot (Fig. 10). Namely, there is a closed path w

which is situated entirely in T and which intersects the knot projec-—

tion exactly once, at D. If one
rotates the part of the knot projec-
tion bounded by this path in a suit-
able way through 180°, then one
obtains a prejection which ne longer

contains the double point D, This

*
A knot with no compoesite parts is called prime.
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operation-~call it §lL4.--can be induced by a sequence of knot deforma-
tions, as one easily sees from considering the corresponding trans-—
formations of the knot in 3-space.

By means of repeated application of R.4. one may assume
that the knot projection has no double points which are incident twice
with the same region. Note that: An alternating projection remains
alternating under .4. To wit, in the part of the projection enclosed
by the path w the overcrossings are turned intc undercrossings and
conversely; at D one overcrossing point and one undercrossing point

are eliminated.

85, MNormal knot projections

A knot projection is called normal with respect to the two

black (white) regions Fi’Fk if any of the following hold:

1) Ti and Fk do not have a common double point,
2) Fi and Fk are incident at exactly one common double point, or
3) all double points at which Fi and Fk are both incident lie
on one alternating two-stringed hraid.
The projection is called normal if it is normalwith respect to each pair of
regions that are colored the same, and no region is adjacent to itself.
Each regular normalized knot projection with n double points

can be transformed into a normal projection with at most the same number

of double points.

iL. Goeritz, Bemerkungen zur Knotentheorie, Abh. Math, Sem.
Hamburg 10 (1934) 201-210.
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nuppose that a projection is not normal and, for example, that
two double points Dl and Dz are incident to different two-stringed
braids of the projection, both of which lie between the two black

regions Fi and Fk. Then one can obtain a path WoW in the projec~

tion plane which intersects the projection only at D] and at D2.

Assume that wi rung from Dl to D in T and that w runs from

2 i K
D2 to Dl in Fk' Now by means of A.w, the projection as well as
w.w, may be deformed so that W, W becomes a circle which is bisecred

i’k

by Dl and D2. Then rotate the part of the knot lying inside the

Ik

circle w,w  through 180° using the line through DD, as axis

(Fig. 11). 1In this the direction of rotation is arrvanged so that at D?

an overcrossing is removed and at D1 an undercrossing is added. Call

this operation §.5.

One can see from the corresponding isotopy in 3~space that
§$2.5 can be induced by a sequence of knot deformations. The choice of
which two-stringed braid will contain the two overcrossings after
application of .3 is arbitrary and will corraespond to a selaection

of the direction of rotation.
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We see that by a repeated application of .5, every pro-
jection can be transformed into a normal projection relative to the
black regions as follows: The double points of the part of the projec—
tion enclosed by the path that are incident with Ti and FR g0 OVer
into double points that are incident with Fk and FE and those
incident with ?k and FQ g0 over into those incident with ?i and
Fg. Therefore, if the projection is normal with respect to Fi and
FQ, then the changed projection is normal with respect to Fk and FR'
A1l othexr incidences relative to the black regions are retained. In
particular, all double points that are incident with Fi and Pk are
changed into double points that are incident with Fi and Tk. There-
fore one can first make the knot projection normal with respect to Ti
and Fk and then repeat the construction for all remaining pairs of
black regions. Then £'.2 can be used to change each braid into an
alternating one. In the abeove, two normal white regions with two ot
more common double points remain normal, and there arise no new non-
normal white region pairs. Therefore to obtain a normal projection,
one applies the above process successively for all pairs of black
regions and for all pairs of white regions.

The proof that alternating knots are transformed into

alternating knots by (.5 1s analogous to the preoof of this assertion

for 8.4.

86, Braids
We understand an open braid ([7]) with q strings to be the
following structure: Let two congruent equidistant sequences of points

Al’A2""’Aq and B_,B

1 Bq respectively be marked on a pair of

pyvee
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opposite sides 8y and gy of a rectangle P. Assign to each of the
polnts Ai a unique point Bk and connect Ai with Bk by a simple
i i
edpge path directed from Ai to Bk i each pair of these edge paths are
i

disjoint. The projections of the edge paths on the plane determined by
g1 and gy should furthermore be situated entirely in the interior of
the rectangle formed by gl and 89 and be met in at most one point
by each line parallel to 8- Further, suppose at most one double point
of the braid projection (Fig. 12) lies on each line parallel to gy

We call the q edge paths the strings of the braid. If g
is a line parallel to 85 if g @goes through the double point D of

the projection, and if g meets say

k-1 strings toc the left of D

:>\\\\\ (hence there are exactly gq-k-1
N

strings of the projection to the

right of D), then we call D a
Fig, 12« crossing of the k~th and (k +1)-st
strings. The mumbering of the
strings changes at each double point. We say that a braid is twisted

uniformly (gleichsinnig verdrillt) if the k-th string always crosses

over (or under) the (k+l)-st string.
Cylindrical braids are examples of braids that are twisted

uniformly. By a cylindrical braid with twisting 41 (-1) we understand

a braid with ¢-1 overcrossings in which consecutively the i-th
string crosses over (crosses under) the (i + I)-st string (i = 1,2,...,
q-1). If a braid can be decomposed by |r| - 1 parallels to the

rectangle sides 8, into fr| cylindriecal braids each with twisting
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+1 (-1), then the braid is called a cylindrical braid with twisting
r > 0 (r < 0). Such braids can clearly be embedded on the surface
of a cylindrical polyhedron.

The two-stringed braid introduced in 84, Ch., I, can be
changed by the operations A.7. into an open two-stringed cylindrical

braild.

e—

Fig. 13, Fig, 14,

)
=7

By a closed braid with the line a as axis we understand a

simple closed, oriented pelygon, oxr a system of such polygons, whose
orthogonal projection is regular in a plane that is perpendicular to a,
and which bhas the following further properties: If P and Q are

two consecutive pplygon vertices in the sense of the orientation, and

if A is the point of intersection of the axis a and the projection
plane, then APQ must be the positiveorientation of the triangle APQ. The
polygons wind around the axis in a definite direction in toto a finite
number, say q times; g is called the order of the braid (Fig. 13).

A closed braild can be assigned to an open braid in the follow-
ing way (Fig. 14): We choose the plane containing the rectangle P as
the preojection plane and choose as axis a line a which is perpendic-
ular to the projection plane and pierces it in a point A that is out-

side the rectangle P. We then join each Ai and Bi with a simple
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sdpiz path in the projection plane that is situated as follows: each

of these edge paths is outside of P, each pair of edge paths are
disjoint, and if the line segment AiBi is added to the i~-th edge
path one obtains a convex polygon that contains A in its interior.
One then erases the sides of the rectangle. An open two-stringed braid
that is twisted uniformly thus becomes an alternating torus knot ér an
alternating torus link. In general, a closed braid that corresponds to
a cylindrical brald can be embedded on a polyhedren that is topologi-
cally equivalent to the torus (Fig. 14), and is accerdingly called a

torus braid, a torus knot, or a torus link.

VTS D
S % .
G D /

LR

Fig. 15. Fig. 16 . Fig., 17.

By operations A.w., one sees that any closed braid is

equivalent to a closed braid that is assigned to some open braid,

One may also obtain knots or links from an open braid in
other ways. For example, suppose a four-stringed open braid is%given.
We connect the two first and two last points on the top and respectively
on the bottom of the rectangle P and erase the remaining perimeter of
the rectangle. The system arising in this way which consists of one or

two polygons is called a plait with four strings (Viergeflecht).

Figure 15 depicts the knots 814 and 98 of the knot table on pp, 126-128
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as plalts with four strings; Filg. 16 is a link that is repregsented as
a plait with four strings.

We can always deform a plait with four strings so that the
uppermost a. crossings lie on the two middle strings, followed by b

1

crossings on the two left strings and then b

1A

crossings on the twe

1p
right strings, this is followed by a, crossings in the middle, bZA
and b crossings on the left and right, respectively, and so forth,

20

ending finally with a, crossings on the two middle strings. There-
fore, the double points of a plait with four strings can be subdivided
into 3n-2 two-stringed braids, which by 84, Ch. I, we may assume are
alternating. Thus the schema of a plait with four strings is character-
ized by the numbers a;, biA’ bip together with specification of the
sense of twisting for each two-stringed braid part. An analogous
assertion holds for plaits consisting of 2a strings. Those pretzel

knots that have only one crossing on the middle two-stringed braid part

can easily be deformed into a plait with four strings (Figs. 8 and 17).

87, Xnots and braids
An arbitrary knot can be deformed into a braid ([2]). To
prove this, consider any regular knot projection with vertices
Pi(i = 1,2,...,D}. The knot projection is formed by the line segments

8; = PiPi+l (1 = 1,2,...,p), where Pp+1 = Pl' Let A be any

point., We will display the projection in a braid-like manner about A,

Assume that none of the triangles

AP.P ., (1 =1,2,...,p)
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is degenerate. We split the segments into two classes, "positive' and

"negative," depending on whether AP P is the positive or negative

1

orientation for the triangle APiPi+l (as a subset of the oriented

plane). We claim that we can use an operation to remove a 'megative"
segment s, without introducing new segments of this type,
This is clear when Sy contains at most one double point.

Namely, if APi?i+ is the negatively oriented triangle corresponding

1

to s, and if A'PiPi+1 is a slightly altered triangle that contains

A in its interior, then we can replace the segment s; by the edge
path PiA‘Pi+l. In doing this we normalize the double points lying on

PiP'P, so that PiA’Pi+ crosses over {(under) all segments that it

i+1 1

meets, depending on whether 8, contains an overcrossing point (under—
crossing point). If Sy contains no crossing points then either
possibility will do. Now, if 84 contains %k double points (k > 1),
then we introduce new vertices Pil’PiQ""’Pi,kml in order to de-

- each of which contains

compose s, 1nto the segments
i i ik

®11°%12°
only one double point. Now we proceed with 8,0 as we did previously
with 8, Since no new double points are introduced on Si¢ when we
eliminate Sij (3 # %) we can eliminate s, in k steps. An
analogous theorem holds for links.

That one knot can be related to different braids is shown
for example by Figs. 14 and 7 which both represent the trefoll knot,

We emphasize this by stating the following theoreml: If a braid that

is twisted uniformly has exactly two overcrossings of the k-th and

lC. Bankwitz, Uber Knoten und Zopfe in glelchsinniger
Verdrillung, Math. Zeit. 40 (1935) 588-591,
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{(k + 1)~st strings and fewer than four overcrossings of the (k + 1}-st
and (k + 2)~nd strings, then it can be deformed into a braid of fewer
strings which is twisted uniformly,

We make two additional observations about plaits with four
strings.1 Every plalt with four strings v can be deformed into normal
plaits with four strings v', respectively v", which have the follow-
ing property:

v'(v'") possesses only overcrossings on the two middie strings

" b!!

, ‘ £ : : . eal Lt [, ¥
and the two left (right) strings If ai’biA’bip’ai’bih’bip’ai’bik’ ip

(i =1,2,...,n) are the numbers corresponding to the plaits v, v',

t

and V', then we have bip = 0, and b;A = 0.

Furthermore,

= " T = 1 £ =

ay and bik bip (4 1,2,...,n).
If v 1is alternating, then v' and v" are also alternating, and the
corresponding two-stringed braid parts are all twisted uniformly., In

addition, we have that

T,o= + b, = bl i = . .

% bih blp blp (i 1,2, ,1)
If v is not alternating, then the relations between the twisting of
the corresponding two-string braid parts and the numbers are somewhat

more complicated.

lC. Bankwitz, Uber Knoten und Zopfe in gleichsinniger

Verdrillung, Math. Zeit, 40 (1935) 588-591,
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v and v" arise from one another by a rotation through

1807 and possibly deformations A.7. From this it can be deduced that
the knots that are representable by a plait with four strings v are

symmetric,

§8, Parallel knots, Cable knots

Let %y (i = 1,2,3) be cartesian coordinates, z a closed
braid with the X3Haxis of the coordinate system as the braid axis, and
let Xqy = ¢ be the equation of the projection plane; then for d

sufficiently close to one, the transformation

-

dx,, %! = dx,, %

1T e %y 27 *3 7 ¥z
] . . 1 . . ]
sends Z to an isotopic braid z( ), which has no point in common
. , 1 . )
with 2. One sees that the projection of z( ) i8 an outer or inner

parallel of the projection of =z, according as d > 1 or d < 1,

,(1)

itself is a parallel of =z. One can iterate this process say
9
g times, thus obtaining ¢ braids Z(l), z(“),...,Z(Q), which

collectively form a link consisting of ¢ isotopic curves.

In order to visualize this link in another way, we consider
a tube S which is the envelope of all balls with constant radius o
whose midpoints lie on z. If p ds small enough, then S is a
singularity free surface, which can be mapped homeomorphically onto a
torus. We shall call z the core of S, We can now deform the z(i)
(i = 1,2,...,9) into a system of simple curvilinear curves on the

tube 5.

R Y
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We now apply the following transformation to the link so

obtained. Let 85 be an edge of 2z and let sik) (k = 1,2,...,Q)
(i)

Let these edges intersect

() 00

be the corresponding parallel edges of =z

the opposite sides 81> 89 of a rectangle in A and let the

A(k)B(k) be replaced by a cylindrical braid of order g

q segments
and twisting v. If q and r are relatively prime, then there
arises a single polygon which is called a knot parallel to 2 (or,
briefly, a parallel kunot) (TFig. 18). If one forms a parallel knot by
cutting at a different place and
adjoining a cylindrical braid with
twisting r, then there arises a

parallel knot that is disotopic to

the first one. Hence, the isotopy

Fig., 18, class of a knot parallel to 2Z is
determined by the numbers ¢ and
r. Note that we have not claimed that distinct pairs of numbers yield
distinct isotop? classes.
Similarly, one can define parallel knots qu for an
arbitrary knot k. Moreover, let it be noted that: I one deforms k

t 1

' and forms the parallel knots, qu, of k', then each knot

into k
qu can be deformed into at least one knot kér'; in this, underx
certain conditions, parallel knots with different r,r' may correspond
toc one another. All the simple closed curves on the tube S can be

deformed into knots that are parallel to the core of the tube, or into

a triangle.
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We define cable knots ([11],[21],[34]) of the s-th degree to
be those knots which arise by the s-fold formation of parallel knots

from the circle,

A cable knot of the first degree is therefore determined by

giving two relatively prime numbers and r The ql strings

1

wind around the circle lrll times. These knots are called torus knots

ql

since they can be drawn as a simple closed curve on the surface of an
unknotted torus.

A cable knot of the second degree lies on the tube whose core
is a torus knot; it is determined by giving the four numbers

.
.

qlsrlsqzsrz
ql,rl to determine the torus knot,
94,7, to determine their parallel knots

(Fig., 18).
In general, a cable knot of the s-th order is determined by

giving s number pairs

ql!rl;qzsrz;"';qssrsﬁ
wherein 9 > 1 and q;,T; must be relatively prime, The cable knots
have an important and close relationship with the singularities of

plane algebraic curves ({11],[21],[34]).




CHAPTER TII

KNOTS AND MATRICES

§1. Elementary invariants

It is very easy to define a number of knot invariants so long as
one is not concerned with giving algorithms for their computation. For
instance, among all regular projections of a knot, there are those in which
+he number of double points, regions, or black regions of the projection is
the smallest and, hence, by their definition, the corresponding minimal
numbers are knot variants.

One can change each knot projection into the projection of a circle
by reversing the overcrossings and undercrossings at, say, Lk double
points of the projection. The minimum number m{k) of these operations,
that is, the minimal number of self-piercings, by which a knot is trans-
formed into a cirele, is a natural measure of knottedness? Furthermore,
by 84, Ch. I, we can span any polygon by at least one double point free
polyhedron. To each double point free polyhedron we can assign the
Fuler~Poincaré characteristic k; the minimum m(k) of the Euler-Poincaré
characteristics over all surfaces that span the knot is an invariant. A
circle is clearly characterized by the fact that spanning polyhedra of
minimal characteristic are disks.

Finally, for each polygon one can consider the poiyhedra with
self-intersection that are bounded by the polygon. In combinatorial

topology these are disks with singularities. Let r be the number of

b3
Wendt, H., Die gordische Auflosung ven Knoten, Math., 2., 42 (1937),
680+-696.

25
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points that the polypon has in comuen with a spanning singular disk; we
alsoe call »  the number of boundary singularities. Now, let the krnotting
number ¢ be the minimum m(r) = ¢, The assertion that the circie is

characterized by m(r) = 0 1is the content of the so~called Dehn Lemma,
whose proof is not yet valid (f157,1227).% 1t ig conjectured that ¢ is
always an even number; it follows from ¢ < 2 that ¢ =0 ([261).
However simple and geometrically significant rhe definition of
these various knot properties may be, there is no method for computing
them in general. VYor instance, there is no way to obtain them from a
knot projection.
Some similar questions concerning links are somewhat more accegs—
ible. If a regular pProjection is given of a link of two oeriented polygons

k, and k let D, (i = 1,2,...,h) be the double points in which %

1 2? i 1

crosses over the polygon k2, and let ei be the characteristics assigned

to these double points in (1), 82, Ch. II. If we ser (f[r2]y

n

and define analogously, then Vg = Vo = V. The number v is

Vo1

called the intertwining number** of the link., The invariance of v undaer

deformations is easy to verify; furthermore, v 1s invariant with respect

to deformations by which the polygons ki pass through themselves, but

KProven by €. D, ?apakyriakopoulos, On Dehn's lemma and the
asphericity of knots, Ann. of Math.‘gg (1957), 1-26.

B
Rolfsen calls this the linking number. See D. Rolfsen, Knots

and Links, Publish or Perish, Tnc., Berkeley, 1976.
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not each other. Using such deformations one can transform a link with the inter-
twining number v into an alternating torus link with 2v overcrossings.
Gauss ([17]) gave an integral for calculating wv; in order to calculate v

by means of the edge path group of the knot k1 or of the knot kz, see

§9, Ch. III.

Two polygons kl’k? of a link are called unlinked if they can be

transformed by deformations A and A' into polygons whose projections
are disjoint.

If we apply to kl an arbitrary deformation in which we allow

kl to intersect both itself and kz, then kl can be transformed inte

a curve that is unlinked with k2' By the linking number ) of kl

relative to kz we understand the minimal number of intersections with

Ik that are required to transform k into a curve that is not linked

i 1

with kz.

In general, Cqg is different from Chq ({26]); on the other hand,

for unknotted curves we have ¢, = ¢ We will show in §9, Ch. III,

12 217

Il

that there exist polngns with v ¢ and 1o # 0. There are plaits
with four strings ([6]) which show that two polygons with Cip = Cyp = 0
may still be linked; it is shown in §14, Ch. III, that the edge path
groups of such links are different from the edge path groups of two

linked circles, There is no known algorithm for calculating the linking

number directly.

§2. The matrices (CE

5)

We will now seek methods for obtaining knot invariants that can

be computed. We proceed by giving first the purely formal calculation
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i pir the definition of the invariants, second we formally prove their
igvariance, and finally we pive their geometric interpretation in §8,
Ghe 101, and 210, Ch. T11.

Inltionlly, we define matrices which can be read off directly from

a given normal regular knot projection. The elementary divisors of these
matrices that are different from ome will turn out to be knot invariants.
Suppose the knet projection has n double points Di (i =
1,2,...,n). The corresponding wdercrossing points Ui decompose the
knot into n edge paths 81’82""’Sn' After designating a positive

direction for traversing the knot, we can number the Di and s, S0 thar

s, goes from D, to D,. The line segment s,s5,,. will be crossed

i i-1 i i7i+1
over by SA(i) at Di (i =1,2,...,n). In this, DO = Dn’ Dn%l = Dl’
and sn+l = 8.

After designating an orientation in the projection plane, we

assign to the point Di the characteristic

(1) ' £ = tI,

where € = +1 or g = -1 depending on whether or not the directed
overcrossing arc can be carried into the direction of Sii1 (Fig. 19)
by a positive retation ahout Di through an angle smaller than a

straight angle (Fig. 19).* 7The characteristic does not depend on the

orientation of the knet.

*
Note that throughout one assumes Lhal o clockwise rotation in
the plane is positive,
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8

Now for each integer h > I we form a matrix u(ch ) with hen

al
rows and columns by use of the following rules ([8]):

To each arc S; (L = 1,2,...,n) we assign h columms (i,%k)
(k = 0,1,...,h-1) and to each point Di (i =1,2,...,n) we assign h
rows (i,k) (k = 0,1,...,h-1) of our matrix.

If A(di) # i, i+l and Ei = +1, then we set in the row (i,k),

-1 in the column (i + 1,k -~ 1)* //2/ \N\\
+1 in the column {i,k) ////’ \\\\\

+1 in the column (A{i), k-1)

Fig. 19,
-1 ir the column (A(i), k).
If M(i)y #4i, i + 1 and £, = -1, then we set in the row (i,k),
-1 in the column (i+1, k-1) -1 in the column (A{i), k - 2)
+1 in the columm (i, k - 2) +1 in thé columm (A(i), k - 1)

and in both cases a zero in the other places of this row.
If A{i) = i, then for both £, = +1 and €, = ~1, we place
-1 in the colum (i + 1,k - 1)
+1 in the column (i,k ~ 1)

and zero in the remaining places.

If A(i) =i 4+ 1, then.we write for £, = +1, respectively

+1 in column (i,k), respectively (i,k - 2)
-1 in column (i + 1,k), respectively (i + 1,k - 2)

and zerc in the remaining places.

7:(i,ml) and (i,-2) signify the column (i,h-1) and (i,h-2)
respectively if h > 2 and the columm (i,0) 4if h = 1.
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) - b - , .
The matyices  {c¢ ) can be read off from the normalized bounding

o

refations (i.e., the schema of the projection) between the double points
Dj and the edge paths £y of the projection. But also, conversely, this

normalized schema of the projection can be determined from each matrix

h
ol

i - . .
(C;B), The elementary divisors of (c¢”.) that are different from one

are called the h-th torsgion numbers,

. . h . .
One obtains from the matrix (CUB} a matrix with the same

elementary divisors if for arbitrary iO one removes the h colunns
(io,k)(k = 0,1,...,b~1); this holds since 1f one adds together the n
columns (i,k} with fixed k, one obtains a colum consisting of zeros
only.
The elementary divisors of the matrix (cig) are all equal te 1.
From the same incidence relations one can obtain another matrix
with invariant elementary divisors by the following rule: Let the i-th
column and the i-th row of a matrix correspond to the are 8. and to the
double point Di respectively, If A(L) 4 1 and A1) # $+l, din
the row 1  we place
+1 in the columns 1 and  d+1
~2 in the columm A1)
and zero for all other elements of the row.
£ A(3) = di+l, dn the vow i we place
+1 in the column i
-1 in the column i+1
and zero in the remaining places of the row,
£ A0 = 4, we place
41 in the column 141

-1 in the colvmn 4.
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This matrix has the same elementary divisors that are different from one

. 2
as the matrix (CaB)'

83, The matrix (a

ik)

We now form matrices whose columns correspond to the bounded

regions of the knot projection. We only consider two examples of this

sort: Again, the i-th row corresponds to the double point Di (i =

1,2,...,n), and the k-th column corresponds to the region Fk(k =

1,2,...,0t1}. The elements of the matrix will be denoted by bik where

i is the row index and %k is the column index. We set bik =0 if

Di and Tk are not incident. In the case that four regions (one of
which may be FO) come together at Di’ let bik = +1 or -1 depending
on whether Fk lies to the right or to the left of the overcrossing arc
Sk(i)' If the regions that come together at Di are not all mutually

distinct then this means that: a region T, meets itself at Di whereas

k
the two other regions T and T which meet at D, are distinct.
kl k2 i
Let then b,, = 0 and b, =+l or -1 depending on whether
ik ik ,Q,
Fk (£ = 1,2) 1lies to the right or to the left of the overcrossing arc.
£

A matrix (b;k) is obtained analogously if in the above rule the

overcrossing arc is replaced by the undercrossing arc 8.8..1

. , h
Furthermore, cne can form certain matrices (b& whose elements

g’

correspond to the regions and the double points. These are formed

analogously to the marrices (ch

afd

Finally, we will use the black regions to define a matrix.

) din (5), &2, Ch. IIL.

To a double point which is a boundary point of the black regions

", and Tk, we assign an incidence number
i
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By '?,,0,

Wi el e e 4L L after the ordientation of the projection plane the
overcrossing arce can be rotated in a positive sense over a black region
into the undercrossing are (Fig. 20). If this rotation in the positive

P e

, sense can only be carried out over

a white region, then we set 1 = -1.

If a single black region meets itself

n = -1 at a double point, then the point

receives the incidence number 0, One
Fig. 20.
sees that a double point that is

incident with Fi and Tk receives the same incidence numher for bhoth

regions. Thus to each double point of the projection plane there is
assigned uniquely, one of the numbers +1, -1, 0.
Now, let Fi (L = 1,2,...,m) be the finite black regions and

let FO be the infinite (black) region. Then the following square matrix

(aik) with m rows and columns is formed ([10]):
Let aii be the sum of the incidence numbers of the double

points of the region I, and let a for (i 4 k) (i,k = 1,2,...,m) be the

i ik
negative of the sum of the incidence numbers of the double points that
belong simultaneocusly to Fi and Fk’ It follows immediately from this

definition that

and
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where a.

i0 is the sum of the incidence numbers that belong simultaneously

to Fi and to the infinite region FO. ’

The matrix (a/ with the elements

kﬂ)

a' =2 b,, b!

kg = F PykPiy (et = 1.2, 0
1

has a simple relationship to the matrix (aik). By striking out in the
matrix (aik) the rows and columns belonging to the white regions we

obtain the matrix (aik);“ aik is equal to zerc if Pi and I, are

k
colored differently.
Those elementary divisors that differ from 1 in the matrices
t .
<bik)’ (bik) and (aik) are equal to the second torsion numbers. But

the matrices are also of interest independently of their elementary

divisors.

84, The determinant of a knot

Among the matrices defined in the preceding section, the matrix
(aik) deserves special attention. We first show that the determinant

of the matrix (aik)’ the determinant of a knot, is always odd and

hence nonzero.
For, if at a double point that corresponds to Fi and Fk
(i # k) one changes the overcrossing edge path inte an undercrossing

one, then, when k = 0, a,. changes to a,,*2 and, when k # O,
ii ii

*
This is an error. Consider \\\“j) . But the result is
not used subsequently.
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ag sa, . changes o oa,, 2, i.e., the determinant of the new knot marrix
ik’ ki ' ik

is aven oi wld, depending on whether the original one is., By means of

siltabie changes of this sort, one can transform each projection into the

projection of a circle. We shall assume for now that the absolute value

of the determinant is an invariant,
and calculate its value for the pPro=-
B jection of the circle given in
IMig. 2L, Fig., 21--it is equal to l--thus the
assertion follows,

We shall now describe and calculate the determinant in several
special cases,

For alternating kacts, all double points have the same incidence
number with respect to black regions, since clearly the double points
that are adjacent in the boundary of a black region possess the same
incidence number. The incidence numbers of the points can all be taken

to be, for example, equal to +1 or Q. Accordingly, the value of the

determinant of the knot in this case can be written in the following form:

m f
Yood -d. . . -d
vl v 12 1m
)
A = j-d ) d . -d .
21 Vel 2 Zm
P e r it e e RATERE
_dml "dmZ e X my
V=1

Here, dii signifies the number of double points in which Fi and T

0

are contiguous, and dik (1 # k) signifies the number of double points

in which Pi and Fk are contiguous (i = 1,2,...,m;k = 1,2,...,m). The

d are thus all greater than or equal to zero.

ik
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For knots whose projections are normal, 1dii| is the number of
double points which are incident with Ti and FO’ and the sign of dii
equals the sign of the incidence numbers of these double points; !dikl
15 the number of double points incident with Fi and Fk’ and the sign
of dik coincides with the sign of the incidence numbers of these double
points.

For the alternating torus knots (Fig. 7) with n overcrossings,
the determinant equals n (up to sign).

For the pretzel knots, depicted in Fig. 8, with al,az,a3 over-

crossings on the first, second, and third two-stringed braid parts, the

determinant is equal to

= ala2 + a1a3 + aza3.

§5. The invariance of the torsion numbers

We shall now show that the elementary divisors which are different
from 1 of the matrices (cgﬁ) are knot invariants. We do this by
investigating the changes produced in the matrices by the three basic
operations §.1,2,3. Later we shall show other ways to prove the invari-
ance which while more natural are less elementary. These other methods
make use of the group concept oxr of the concept of covering spaces and

homology (cf. §% and §10, Ch. IITY,
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G 1) From a double point free arc, which with a suitable

pumbering we may call we form a loop. Of the various possibilities

Sy
ol normalization and orientation it suffices here {and also in the con-
sideration of the other two Q transformations), to consider only one,
since then it will be clear how to proceed in the other cases,
Denote the double point of the loo D d tt ; .
t b P P 1 @n the new arc Sn+l

Agssume s so that, say, =« = +1, The new

crosgses over at D
n i1l

nt+l +1

matrix has h more rows respectively columns than the original matrix.

These h rows and h columns correspond to D . and s

n+l n+l?

respectively. The rows corresponding to the other double points are
unchanged except in the columns corresponding to 15 and those columns
are at most changed so that their elements corresponding to a point Di
are moved to the corresponding place in the same row of the column corres-—
ponding to S 11° Therefore if one adds the columns of index (n+1,k)
to those of index (1,k), then cne obtains a matrix which coincides with
the original one up to the columns (n+l,k) and the rows {(nt+l,k)
(k= 0,1,...,h~1}, In the row (n+l,k) there now appears a +1 in
the column (n+l,k-1) so that one can reduce to zero all the elements in
the other rows of this column by means of successive addition or subtrac-
tion of these rows. But the matrix changed in this manner clearly has
the same elementary divisors that are different from 1 as the original
matrix.

(£.2.)  As a second possibility we must consider the case where

two different arcs are pushed by one another, whereby two new double

points arise.
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Let the overcrossing segment be numbered by g and let the new

double points be denoted Dn+ and D and analogously number the

1 n+2’

new segments by Sn+1 and S 4o the ordering corresponding to the

orientation of the knot. If, say, €p1 = -1, then € 4y = +1. The
+ \

new rows (n+l,k) and (nt2,k) corresponding to Dn+1 and Dn+2 have

the following property: In the columns (n+2,k), all the elements are
zero except for the elements in the rows (n+l,k) and (n+2,k), since

= lies between the two new double points. One would obtain (except

nti

for the 2h new rows) the original columns corresponding to 51 if the
columns (n+1l,k) were added to the columns (1,k}.

In order to see that the elementary divisors different from 1 of
both matrices coincide, one adds the columns (nt+2,k) to the columns
(£,k}, and then one subtracts the columns (nt+2,%) from the columns
(2,k-1). By this the elements of the rows (n+l,k) and (n+2,k) in the
columns (£,k) are reduced to zero. By addition of the rows (n+2,k-1)
to the rows (n+l,k) one obtains a matrix where the elements of the
colums (n+2,k) are 0 in all rows except for elements equal to 1
at the intersection of rows (n+2,k) with columns (n+2,k). All other
elements in the rows {(n+2,k) can be removed by the addition of columns.
If one then adds the columns (n+l,k) to the columns (1,k), then there
appear in the rows (n+l,k) only zeros except for elements equal to 1
at the intersection of columns (nt+l,k} with the rows (n+l,k-1).

By addition and subtraction ¢f the rows (n+l,k) one can then,
without changing the other columns, reduce all eclements in the columns
(n+l,k) to O except for those in the rows (n+l,k-1). The new matrix

clearly has the same elementary divisors that are different from 1 as

the original.
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(340 Finally, it remains to consider the operation §.3. For

this we single out the case shown by Fig. 22.
One gets from the matrix associated with Fig. 22(a) to the matrix
associated with Fig. 22(b) by first adding the rows (&,k~1) to the rows

J {(n-2,k) and subtracting the rows

~81 (£,k-1) from the rows (n-1,k).

Then add the columns (n-1,k) to

the columns (£,k) and subtract the

column (n-1,k} from the columms

(b)
(2+1,k), In the cases where

Sn—Z’Sn’SQ’s£+1’bj are not all
different, the considerations are

naturally simplified. One thus recognizes that the elementary divisors

\ h , .
of the matrix (CGB) are knot invariants,

§6. ' The torsion numbers of particular knots

For mirror iméges and oppositely oriented knots, the torsion
numbers are identical. One can show this directly; but it also follows
from the group-theoretical interpretation of the torsion numbers (§7,

Ch. III), and the relationships of the groups for mirror images and
oppositely oriented kanots (55, Ch. III).

For alternating torus knots with n overcrossings, the matrix
(CiB) has only one elementary divisor different from 1, which is equal
te n. Among pretzel knots, there are some that do not have second

torsion numbers (cf. 511, Ch. II).
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One can classify all knots of eight or fewer crossings by using
the elementary divisors of the above matrices, with h equal to 2 and
3. Among the knots with nine overcrossings on the other hand there

appear knots that have the same second and third torsion numbers but can

be recognized as different by other means (cf. 515, Ch. III): namely

74 and 92, 814 and 98, and also 928 and 929. Actually, the

torsion numbers coincide for each pair of these knots. For them the

L-polynomial matrices, defined in §14, Ch. II, are L-equivalent
(815, Ch. II, and 814, Ch. III), and the torsion numbers are determined
by this equivalence class (87, Ch. III). The following is a table of the

second and third torsion numbers for the knots given in the table on pp. 126128,

Type | =2 i k=3 {Type | d=2 I =3 {Type | hw2 J hes3 *
3. 3 2,2 B | 33 16,16 9ma | 43 | 14,14
4y, 5 4.4 8184 35 11,11 Doz g 45 i 22,22
Sia 5 -— 811a 37 13,13 Feia 45 16,16
52a 7 5;5 8[80 3:15 2)218-8 9gsq 47 26126
6)q o 77 LT 3 4,4 Diou 47 . 17,17
(oW 11 5.5 Ban 9 4,4 9ra 49 10,19
624 13 7 Baix 15 8,8 “Qe50 51 20,20
Tia 7 e 9a 9 — *Oopa 51 20,20
Tsa 11 3.8 “Qas 15 11,11 [ 53 22,22
750 13 4,4 Osa 12 — Vi1 55 23,23
*Tia 15 11,11 O%n 21 7.7 Oseq 59 23,23
7ea A7 7.7 Fsa 23 17,17 Q324 61 25,25
7sa i9 11,11 9%a 27 4,4 Ya4n 69 3,31
714 24 13,13 G 29 13,13 Dssa 3,9 20,20
B1a 13 10,10 | X9y, k3 17,17 DQagu 37 10,10
Bia 17 — Qg 3 5.5 Yyra 3,151 28,28
83a 17 13,13 S04 33 13,13 Yaua 57 28,28
8ia 9 8,8 9“.1 33 7.7 939:: 55 32332
8sa 21 4,4 [+ P 35 20,20 Qo 5,15 | 4,4,8,8
86a 23 11,114 Qaa 37 16,16 Disa 7.7 28,28
81a 23 5,5 ia 37 22,22 Girn 7 2,2
854 25 13,13 91ta 39 23,23 Fean 13 2,2
804 25 7.7 Qea 39 8,8 Dt n 17 10,10
8104 27 8.8 Ora 39 11,11 Qisn 23 14,14
8116 27 14,14 Diga 41 19,19 Yo 3,3 i
8i2a 29 19,19 1ou 41 25,25 i 3,9 5,3
B3 29 16,16 D00 41 13,13 Gien 3,9 17,47

*Biia 31 17,17 Dera 43 26,26 Oitn 5,5 10,10

KThis table of torsion numbers differs from that given by
Alexander and Brigge ([5]) for the knots 812 and 936' The indices

a, n mean alternating, non-alternating, respectively.
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57. The quadratic form of a knot

We have seen that the transformations of the matrices (CEB)
that are produced by the knot deformations leave unchanged those elemen-
tary divisors that are different from 1; but we have certainly not said
that these elementary divisors are the only properties of those matrices
that are preserved under the knot deformations. The other invariants do
seem to be more difficult to comprehend, but in any case the contents
differ for the various matrices given in §82, 3, Ch, IT. One result holds
only for the matrices (bik)’<bik)’ and (aik)° We will work with the
last matrix only,

In order to examine the changes that the knot deformations make
on the matrix (aik)’ we divide the three operations §.1,2,3 into two
classes o and B, according to the number of white or of the black
regions which are changed by them ([19]).

(. 1a.) Form a lcop on an arc, thereby creating a new white
region. Then a black region is contiguous with itself at the new double
point. Hence the matrix does not change under either this operation or
its inverse.

{2.20.,) Two arcs are pushed past one another so that two new
white regions arise. Of the two new double points, cone has incidence
number +1 and the other -1, so that the matrix also does nof change
under this operatiocn or its inverse.

(3.1B.) The new loop of the projection encloses a black region

P . The new matrix (al,) has one more row and one more column than
w1 ik

(ag ).
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In the case where ?m+1 lies opposite the region FO at the

new double point, then

depending on whether the double point has incidence number +1 or -1. |

Furthermore, |

' _ ' N _
amlek - ak,ITH',]_ 0 (k ]-32,--.,m),

and for all remaining indices,

In the case where Tm+] lies opposite a region Fk (k # 0) at

the new double point, then we can assume without loss of generality that

' =1, For the corresponding matrix (aV we have
k m : Ak
a = & 1
m+l, mtl
er the same conditions as with ! and
und am+l,m+l n
L] 3] 1" T
= a 1 = = A
A nm mm * am+1,m am,m+l L,

1 - " - _ _
am+l,k ak,m+1 0 (k L,2,...,m-1),

and otherwise
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The nature of these changes will be clearer if we consider the

guadratic form

f(xl,xz,...,xm) = .) a3 K X
i,k

which we temporarily assign to the matrix (aij). We see that the
guatratic form

' = f”(xi,xé,...,x&+l)

assigned to the matrix (a;k) is transformed inte the quadratic form

' = f'(xl,x ceaX )

2% m+1

assigned to (a;k) by the unimodular substitution

®x! = x, (i = 1,2,..,.,m)

and that

2
-1 —
f (Xl’x2""’xm+1) = f(Xl’XZ""’Xm) * Xy

(Q.2B.) Two new black regions arise by shoving two arcs past

one another. In the case where the divided region is not PO’ we can

make 1t Fm by row and column interchanges. Therefore, Fm is divided
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into Let T%+2 be the new region that has both of the two new

T t
I1m’ I1m+l'
double points on its boundary. The new knot matrix (aik) is related

with (aik) by the following equations:

aik = a. (k,i = 1,2,...,m-1)
- ' ' - -
aq = a + am+1,k (k = 1,2,...,m-1)
= ot 1 1
2 m & + am+1,m+l + 2am+l,m

1 = t - - ..
mb2,k T fk,mt2 0 (k=1,2,...,m-L;mt2).

By choice of orientation we may assume that

= 1, -1,

' ' =
am+2,m am+2,m+l

If

is the quadratic form assigned to (aik) and if we set

f(xl’XZ’ .‘“’XITH"Z) = f<Xl"X2’.."Xm) + g(xm+19xm+2)’

where

2
- 1 ' 1 . -
g(xm+l’xm+2) (am+1,m+lam+l,m+l + 2am+l,m)hm+l 2Xm+lxm+2’

then ' is transformed by the substitution
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X, = x (i =1,2,...,m)

mt1

L

T g T + 1] 1 Tt
*mt2 qm+l,lxl am+1,2x2 am+l,m-—lxm—l * (am+l,m + am+l,m+l)xm

1
+
am+l,mxm+l w2

into f(xl,xz,...,xm+2).

If, on the other hand, the region TO is subdivided when 2,28,

is applied, then the knot matrix (a£k> is related to the matrix (aik

as follows:

4 T Ak (i,k = 1,2,...,m~1)

" — =
am+2,k =0 (k= 1,2,...,m+2)

" = -+
St w1 T ¢ e

The values of the other a;+l K play no role; it is easy to see
3

that the form assigned to (axk) is also equivalent to the form £ 4 z.

{§2.3.) Finally, .3 remains to be considered. Here, a black
region is changed into a white region, or conversely (Fig. 23). Suppose
first that FO does not have any part of the triangle in its boundary.
Suppose further that the interior of the triangle is white; we label the

neighboring black regions with T r

=2’ m—l’Im’ and we again denote the




Ch,

krot matrix by (aik>' Suppose the region T

IT, § THE QUADRATIC FORM OF A KNOT

w1

tion, and that the new matrix is (a' ). Then

ik

and furthermore

{a'

ik

)

arises by the deforma-

T = ] = -~ =
A T ik (L =2,2,...,m-33k = 1,2,...,m)
a&+l,k =0 (k=1,2,...,m3)

! - ot -
am+l,m»~2 am+l,m—l 1

1

=+
a mtl,m 7 1

=

! +
At yitL -

' =
am—Z,mw2

— T
Sl k

t
.am—2,k am—Z,k

t =

= — f
am~1,k amwl,k am+1,k

a', = a. +

al
mk mk mt+l,k

)

. < 1 1 l
The quadratic form f f (xl’XZ""’Xm+l

is changed by the unimodular substitution

+ 1
am—2,m—2 a mtl,m-2

T B

Fig. 23.

voAk #Fom+ 1),

that corresponds to
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xhowox,
i i
t = + T
Xm%l me2 Xm~l +
into the form
PR, B penr,x ) & x2
1°72° *m w1’

where  1s the form assigned to the matrix (aik).
For the case when one of the regions that is contiguous to the
triangle is FO’ it suffices to observe that only the (m~1)-st and

the m-th column will be changed by the deformation. The corresponding

2

form 1s in a similar way equivalent to the form f % LS

§8, Minkowski's units

A summary of the preceding section is the following.
Suppose that f(xl,xz,...,xm) is the quadratic form assigned to

the knot by means of the matrix (aik)' The changes of

f(xl,xz,...,xm)

induced by knot deformations are compositions of the following three types

of changes and their inverses:

5.1, The variables of the form are unimodularly transformed:
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X. = ZOL, X' ere the O, e 3 ¢ . Ee .
i ix¥ (where the ik areintegers and the determinant

faikl =+ 1).

i
|
|
|
i
i
i
|
|

.2, The form f(xl,x .,xm) is replaced by

g3t

2

' _ +
f (Xlsxzs'--’xnﬁ__l) - f(xl’XZ""’Xm) * Xn"l_!_l'

4.3, The form f(xl,x .,xm) is replaced by

gre

2 |
pree s ¥ Byo) = EGxuxps ) hax - 2% %o,

f'(xl,x

where a 1is an arbitrary natural number.

Since the determinant of the matrix (aik) is not equal to zero,
the form Zaikxixk is indecomposable.

We emphasize that the invariance property of the quadratic
form is not related to the group of the knot, since by 89, Ch. II, the
quadratic forms for certain mirror image knots are different, while by
§5, Ch. III, their groups are isomorphic. It is the only known calculable
knot property that is independent from the group of the knot.

From the quadratic form cne can construct knot invariants by means
of the Minkowski units of gquadratic forms ([24]). This is done as follows.
We first define the units of a quadratic form in the following way: If

X, X

ig i z
p is an odd prime number and 2% %%

K is a quadratic form with integer

coefficients, whose determinant is not divisible by p, let the unit

c =1, If p 1is an odd prime number and f(xl,x

= L
. ,xm) a,, X, %

AS ik™ik
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P4 guadisiie fovm in which all coefficients with 1 # k  are divisible
iy ;);: ;  Lhen
- 2 2 2
i v = oo
(1) (xl’XZ’ ,xm) a)xq + d,%, + + aquxmuq
2

+ pla

2 2
m—q+lxm~q+l + ...+ amxm)(mod P,

In the case that no a, is divisible by p, then define

(3]
(2) c -1) am—q+l"'am
P P )

L]

Here,

denotes the Legendre symbol and [a] denotes the greatest integer which
is smaller than or equal to a, Finally, if f'(xl,xz,...,xm) iz an
arbitrary form, then we may transform £' into the normal form (1) by
the introduction of new variables using substitutions with rational co-
efficients. Then we set Cp equal to the unit (2) of {(1). Minkowski
showed that every form can be changed into a normal form and that the
unit is well defined. From the preceding it follows that any two
quadratic forms with integer coefficients wﬁich can be transformed into
one another by a change of variables with rational coefficients, will
have the same unit Cp. It is easy to calculate the units by using the
definition given here.

Pinally, we will also use the following property of Cp. Sunpose

that the quadratic form
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h = h<xl’x2""’Xk’xk+1""’xm)

can be decomposed into a sum of two quadratic forms which have no variables

in common,

h = hl(x ..,xk) + hz(x %),

1% k+1°° "

d
Let p L denote the highest power of an odd prime p that divides the
d

determinant of the form h1 and let p 2 denote the highest power of the

odd prime p that divides the determinant of the form h2' Let Clp and

CZp be the units corresponding to the forms hl and h2 respectively.

Then, following Minkowski ([24]), one finds that the unit Cp that

corresponds to h is

c. C., .
D 1p 2p

It follows from the results of the preceding section that those
properties of quadratic forms which simultanecusly belong to the forms
', f£', and £ and which are preserved under unimodular substitutions
of the variables are knot invariants. From this it follows directly that

the units of the forms f' and f" are equal to the units of the form f

2
. . + N
since the adjcined forwms = Xl and ax .4 2xm+lxm+2 possess a
determinant equal to *1, and hence for them C2p ig always 1 and
d2 = 0, We thus obtain:

The Minkowski units Cp of the quadratic form associated with a

knot matrix (aik) are knot invariants for odd primes p.
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Minkowski also defined units relative to the prime 2. These
are not, however, knot invariants, since they depend on the number of

variables, and the number of variables is changed by knot deformations.

£§9, Minkowski's units for particular knots

We will evaluate some of the Minkowski units for knots in the
knot tabie {(pp. 126-128},

Suppose that in the oriented plane, we are given the projection of
the two trefoils (Fig. 2), which are mirror images of each other. The

associated forms are

£ = 3x2 and ' = —3X2,
both of which are normal forms for p = 3, We have that
Sy - VoS -
C3 = (3) 1 and 63 = ( 3) 1.

This is a simple proof of the topological difference of the two trefoils.
In general, the following holds:
A knot is not isotopic to its mirror image if the highest power of

some prime number of the form &4%+3 that divides the determinant of

the knot matrix is odd.

1f the gquadratic form h is a normal form associated with a knot
matrix for some prime number, then -h 1s a normal form assoclated with
the mirror image. The number gq in (1), 88, Ch, II, is odd for a prime
number that divides the determinant to an odd maximal power, and thus the

unit Cé associated with the mirror image is
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-1
¢ = (e
p (p) p’

if p d1s of the form 4L+ 3.

The necessary property of amphicheiral knots just found, that no

prime number of the form 4243 to an odd maximal power must divide the
determinant is not sufficient; for, by §12, Ch. III, none of the torus knots
are amphicheiral,

Below, we compile the Cp for the knots in the table on pp. 126-128.

Cp = *1 means that a knot and its mirror image yield the same Cp but

with opposite sign. The knots 74 and 92 that have the same second

and third torsion numbers can be differentiated by means of the Gp.

Type i Type Cr Type Ca )

3ia |G = 1 Bisa |Cy = 1;Cy == £1] Usp, {Cyg =11

e 1C; = —1 Biga | Cp = —1;Cy = +1] 943, |Cs s 1,0, = 48

514 [C5 =+t Bira | Copm=—1t 9p40 [Cy =+ 1,0 = —1

590 |Cp = A1 ' Biss |Cy =—1;C5 = 1] e [Crr=ck1

010 |Gy = 1 Bian | Cq =it Qa6a Cyo =1

brs [Cp= £t - Baow |Cy =+1 Gazq |Cq =41

Gya |Crg= —1 Boum |Cy =41;C, = +1] 9y, [Ca =410 —1

Tie |Gy = 41 9a |Gy =+1 G9pe [Ca =:1; Gy -1

71e 1Cpy =t 9e |Ca =41;Cs=+1] Opa Cra=—1

Tsa |Cra=+! 93¢ |Cry=:E1 910 |Cs =+1;Cn= H1

Taw |Ca = k1 Cp== ~1] 9, |Gy =414,C; = F1| 9500 | Cop=1

750 |Crz=—1 95 | Cog=ft 930 | Cop = 1

7pa | Crp= A1 9pe |Cp =2t 9ata | Ty =21, Cog== 1

Tra [Cy = 41, Co=dt| 9y, [Cop=-+1 950 {Ca = -1

Bia [Cpp=—1 9ga | Cn=ck1 936 | Cog =11

Bia |Cpy== 1 990 | Cay =111 70 |Gy =+ 1;,C; = —1

81a |Cpp=+1 910a (Cs =1;Cn=+1| 9aas |Ca =:1:1;Crp= £
f 8.0 |Cpy= it 9110 1Cy =4 Cpm 1] g9 16 =10 =111

8sa |Cp = c1:Com= F1| G190 1G5 =41;C; =F1]| Yyoa [Cp =k 1:C; = -}

8ue [Cop= %1 9114 ics'r:“i" Ggra [Cy =1

81’- Cg;= if ‘)u, !Ca-,-#""i ()go_,‘ C7 -"-“-:i:i

844 |Cy = +1 9180 1Ca = £ 1iC5= 41| Gza |Cra=-t

Bya |Gy = +1 Gi6a 1 Cy =k 5;Cpp= — 1| qqu | Cpp=-+1

Bioe |Cy = 41 %74 IC;\ =41, 0= F 1 Oygp | Cog =1

Blia C:J == i’ 913;1 Cu e e 945,‘ C:] =1

Biaa | Copm 1 os [ Cap =1 Qi | Cg =:b-t

Bu3a | Cpp= -1 920a [Car=—1 Qupn (Ca =d:1

Braa [ Cyy = A1 9214 [ Cyg=t-1 Gypm 1 Cp =1

*) Y. Shinohara: Note on the Minkowski unit of knots. Kwansei Gakuin Univ,

C =3

Annual Stud. 27 (1978), 169-171, asserts that for the knot type 9 3

I — _— PO I B . . -

10a?
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§10. A determinant inequality

The matrix (a can be used for a fairly extensive classification

ik)
of knots. To do this we shall first establish some determinant inequalities
([10], [20], [25}, [31]). We consider square matrices (aik) that

satisfy the condition

m
(1) a,, 2 la,. | (i=1,2,...,m).
id Kt i ik
The principal minors of the determinant A :{]aik” are those

subdeterminants of A which arise by striking out £ pairs, each pair
consisting of a row and a column that intersect on the principal diagonal
(< m). The principal minors clearly still satisfy condition (1), The
determinant A 1is defined to be irreducible if it does not decompose into
a preduct of principal minors,

Suppose that A is irreducible and satisfies condition (1); then
the following holds:

The determinant A =l[aik” is zero if and only if there exist
units

g, = * 7 (k = 1,2,...,m)

k

such that the a, satisfy the conditions

ik

m
{(2) Loa, e =0 (i
k=1

il

1,2,...,m).

The principal minors of A with less than m rows are always positive

and if A £ 0 then A > 0 also.
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From this we obtain an estimate for A:

Let
m

(3) 8, = a -z Ia l
1o, P

and let Al be the determinant of the matrix complementary to allg then
we have for A, (expanding by the first row,)
A= s A+ A,
— m _
where A arises from A by replacing =a by z |a . A  satisfies
11 k=2 1k
conditions (1) and is irreducible since A is., Therefore, A =20 and

indeed if (2) does not hold for A then A > 0. Accordingly,

W
@
e

(4) A 14y
" where the equality holds if and only if condition (2) is satisfied for A.
A version of the inequality (4) holds for reducible determinants.

Suppose that

A = A(l)A(z)... A(r)’
where the
AD a2,
are irreducible (call them the irreducible components of A), It

(1

follows from the application of (4) to A that

(5) A > s A (A1 is complementary to all),
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where the greater than sign holds if the greater than sign holds in the

(1)

cstimate for A and if conditions (2) are satisfied for no A(l}g
We now apply this determinant inequality to determinants with
integer entries.

Let A be a determinant wirh integer entries, which satisfies

condition (1), and let
m
(6) s, > 2,
Suppose further that the same conditions are satisfied for each principal

minor, i.e., we must have for the si formed from the elements of a row

according to equation (3) that

(7) Lsi > 2,
then ([10])
. m urv
(8) A>T s 4+ % Ja ol
v=1 v U,V e

In order to prove this, we reorder the rows and columns so that
sq # 0 and furthermore that for each of the principal minors Ak’ that

arises from A by striking out the first k rows and columns, the 51k

formed by formula {(3) is # 0. If Ak is a reducible determinant with

S = 1, then in the largest irreducible principal minor, which contains

1k

the row associated with 81 @s the first row, there is an Six # 0

with 1 # 1, Therefore, by (5)
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and

and, hence, in case A, > 1, then

Analogously,

2!

when A2 > 1, Therefore,

W

A 8. -+ s

1 5 + !a2l| + A2, etc.

$ince, by (7), Aﬁ—l > 1, the inequality (8) holds.

§11. Classification of alternating knots

The ineguality just obtained can be applied directly to the
determinant of a knot, For alternating knots, 8, = dll in the deter-

minant IlAik” = A, and Slk is the number of overcrossings that Fk

has in common with the regions Fi (i = 1,2,...,k-1).

Let w be an arbitrary ciosed path that lies entirely in the white

regions except for double points. Suppose that if w goes through one

overcrossing, then It goes through at least one other overcrossing. It

follows that conditions (6) and (7) of §10, Ch. I1I, are satisfied for the

d and hence

ik’
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(1) Az L d

rood,,,
i K

l.e., under the given hypotheses, the determinant of the knot is greater
than or equal to the numbher of overcrossings of the knot projection.

On the other hand, if there is a path w that contains only one
double point, then we can remove the double point by means of .4 (see
§4, Ch. I). As we previously established, the resulting projection will
still be alternating. Thus one can use .4 to eliminate as many double
points as necessary from the alternating knot projection until either we
arrive at the previous case or a circle is obtained. We therefore obtain

the Theorem of Bankwitz:

The minimal number of double points over all regular proiections

of an alternating knot is at most equal to the magnitude of the determinant

of the knot ([10]).

Thus if we restrict our attention to alternating knots, then the
determinant A of a knot distinguishes the knot from all except a finite
number of other alternating knot types.

Since the value of the determinant is 1 for the circle, the
following holds in particular:

If a given alternating projection is the projection of a circle,
then all the overcrossings can be removed with the aid of R.4,

We will now show that there exist knots that do not have a regular
alternating projection. Consider the pretzel knot, on whose first rwo-
stringed braid part there lie three double points with positive incidence
number, on whose second two-stringed braid part there lie two double

points with negative incidence number, and on whose third two-stringed
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braid part therc lie seven double points with positive incidence number.
For this knot, 44, Ch. 1I, A = +1.

If the knot could be situated as an alternating knot then all over-
arossings could be twisted out in a finite number of steps, and the knot
would be isotopic to a circle. That this is not the case is shown by

another invariant given in 814, Ch., II; the L-polynomial of this knot is

L{x) =1 - x «+ x3 - xé + x5 - x6 + x7 - xg + xlo'

§12. Almost alternating knots

A projection is said to be almost alternating® if it satisfies

the following two conditions:

*L. Goeritz, Bemerkungen zur Knotentheorie, Abh. Math. Sem. Hamburg
10 (1934), 201-210, observes that this definition should be changed in
order for the construction in 3, below, to again yield an almost alternating
knot. He suggests the following for a definition:

A projection is almost alternating if and only if:

a) Two double points that are both incident with the black regions

Ti and Pk (i # 0, k # 0) have the same incidence number.

Let d designate the number of double points that are incident to Fi

ik

and Tk'

b) If Fi has no double peint in common with TO’ then all
double points on Pi have the same incidence number.

¢) If the region Fi shares with FO

a; double points with incidence number +1
a, double points with incidence number -1
then a, - a, = d,.. If d,, # 0 so that there are double points other
1 2 ii ii

than the above that are incident with Fi with incidence number different

from the sign of dii’ then let |dii] be at least twice as large as the
number of double points whose incidence number is different from the sign
of dii' If dii = (), all other double points that are incident with Pi

must have equal incidence numbers.
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1. For each 1 and k any twoe double points which are incident
with both the black region Fi and the black region Fk possass the
same incidence number,.

Z. Condition (1), 810, Ch, II, holds for elements of the
determinant of the knot,

In order to justify the terminology, we assume that the first
condition holds and investigate the geometric significance of the second
condition. Let dik be as introduced in §4, Ch, II, and let Eik be
the incidence number of the double points that are common to Fi and Tk.
Note that (1) of 8§10, Ch. II, asserts

il
(1) | 2 e,.d (1 =1,2,...,m).

[yl
This inequaiity is satisfied for a region which has no double
point in common with FO if and only if all double points around this
region have the same incidence numbers. If this happens we shall say the
knot projection lies alternatingly around this region. For a "neighboring
region" of FO’ that is, a region that has double points in common with

1 (1) is clearly satisfied if the projection is alternating around the

WO,
region. Suppose, on the other hand, that this projection is not alter—
nating around the region. Then (1) holds only if there are at most half
as many double points of the region, which have an incidence number dif-
ferent than those points of this region incident with TO’ as there are
double points which are incident with FO'

The following reduction criterion holds for almost alternating

knots:
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If the elements of the 1i-th row of the knot determinant satisfies

(2) J
k

HIR =

e d.. | =1,
1 ik ik

then the knot can be deformed so that the region corresponding to this row
vanishes and the resulting knot is almost alternating.

Suppose that (2) holds for i = then by (1), at most one

iy

di Kk (k # io) is different from zero and it equals *1. Hence there
0

are only three possibilities for the di K

0
1. Suppose Eei kdi x = 1 and all di

0 0 0
Then e, ., d, . = *1, and T, has only one double point in common with
indl. 1.1 i
070 7070 0
FO. This double point can be removed by means of '.1. The modified

projection is again almost alternating.

K (k # iO) are zero.

2. Suppose g, ,d. = *1 and some g, d, = *1
10k 1Ok lOkO 1Ok0
(k. # i.}. Then -d, , = 0, and therefore the only region with which
0 0 igig
Ti shares a double point, D, is T , Furthermore, D can be removed

0 kg

by an application of §'.1. The new projection is again almost alter-

nating. If ?k is not a neighboring region of FO’ then (1) dis still
0

satisfied since the original and hence also the new knot projection are

situatéd alternatingly about Fk . If Fk is a neighboring region
0 0
of FO’ then D can either have the same, or different incidence number
as the double points that are inecident with Fk and TO. If the
0
incidence number is the same, then inequality (1)} is preserved since the
double point of FO and Fk as well as the double points of Fk that

0 0
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have inecidenci jmbers different from the double point common to FO and

F], ave pirescevied.  For unequal incidence aumber, inequality (1) is
X !

cluartiy valid after twisting out D,

v 4 ~ e o "
3.% BSuppose g, kdi K 1  and one ©5 5 di K

=7l (k. # i),
|
To¢ to 0*0 “0%p 0 0

Then ¢, ., d, . = %2 and T, is a neighboring region of T ., and indeed

1.4 1.3 i 0

070 TG0 0
there are between Pi and FO exactly two double points with the same

0
incidence number. Furthermore, Ti has one double point D in common
0

with Tk that has an incidence number with the opposite sign.

0
We can eliminate the double point D by rotating the loop corres-

ponding to it by 180° (Fig. 24). Then the double points that are incident

with PO interchange their incidence
¢
numbers. From this it follows that
e the knot remains almost alternating
Fig. 24, if Tk is not a neighboring region
0
of PO' But this also holds when
Fk is a neighboring region of FO and when the double points incident
0
with Fk and FO have the same incidence numbers as D, and conse-
0

quently also have the same incidence number as the newly adjoined double

points of Fk and FO' On the other hand, if they possess incidence
0

numbers with sign opposite that of D, then by previous remarks the

original region FD has at least twe points in common with FO' Hence

the new region Fk has in common with PO four double points with

%
L. Goeritz, Bemerkungen zur Knotentheorie, Abh. Math. Sem.

Hamburg 10 (1934), 201-210, observes that this construction does not
vieid an almest alternating knot if one uses Reidemeister's definition.
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Incidence numbers that are pairwise of opposite sign. But one can remove
these four double points by applying 2.5, twice. Then the resulting
knot projection is still almest alternating since the new region Fk has
two double points fewer in common with FO and one double point fewgr
with incidence number of opposite sign in common with a region different
from FO than the old region Tko had.

Thus, one can eliminate from an almost alternating knot prejection

either all the double points or one arrives at a projection for which

) |2 e did > (G =1.2,..0,m,

§13. Almost alternating circles

All double points can be eliminated from an almost alternating
circle projection by means of the three reduction processes given in the
preceding section.*

This is proved by showing that if (3), §12, Ch, II, is satisfied
then the determinant A is not 1. We show this for an irreducible

A(l). We claim that in the inequality (1) from 8§12,
(L

component,
Ch, II, the greater than sign must hold for some row of A For,
if the equality sign were to always hold, then, by adding all the columns

of the matrix corresponding to A(l) to the first column, one would

obtain a determinant whose first column is divisible by 2. The

*
L. Goeritz, Bemerkungen zur Knotentheorie, Abh. Math. Sem.

Hamburg 10 (1934), 201-210.
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determinant of the knot would therefore be even, contrary to the result

at the beginning of §4, Ch. II. Hence, suppose the greater than sign

holds for the first row of A(l}; then by (4),810, Ch. II, ]A(l)| =

(1)
)

(1
Al

IA£1}|, where the determinant

(1

is formed by striking out the first

row and column of A Since is irreducible, the greater than
sign certainly holds in (1), 512, Ch. II, for some row of A(l>. Con-
tinuing, we can successively apply the estimate (5) of §10, Ch. IT, and
finally obtain that IA(1)| is greater than or equal to the magnitude
of one of the elements in the principal diagonal. Therefore IA(l)l

is greater than or equal to one:

I

ke

d
1

> 1.

=

i

One can extend the classification of almost alternating knots by
means of the given estimates. Namely, if one considers those almost
alternating knots in which each region neighboring on PO has at least
two overcrossings in common with each of the regions that are different
from FO and, if one agrees further that there is no path inside the
white regions that meets only one double point, then the following holds:

The minimal number of overcrossings of such knots is less than

five times the knot determinant.
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§14. The L—polynomiald of a knot

In concluding these elementary conslderations, we wlill assign to
each knot a matrix (zik(x)) whose elements are polynomials, and show
that the elementary diviscrs of this matrix are invariants of the knot
([31, [29D).

Again, denote the n double points of the knot projection by Di
and denote the arcs bhetween undercrossing points by 8y Suppose that

the edge path 5,8, is crossed over by

141 at D.; let

53 (1) i

£, = +] be the characteristic to Di that was defined in (1) of §2,

Ch. IIL.

We now form a matrix of n rows corresponding to the Di and n
columns corresponding to the &, The row corresponding to Di is as
follows:

Case 1. When £, = +1 and X (i) #1i or i+ 1, write x in
the column corresponding to Sy -1 in the column corresponding to

Si410 and 1 -~ x 1in the column corresponding to Sl(i) and zero in the

remaining places.
Case 2. When £ = +1 and A(i) =i, write 1 in

the column corresponding to 8. -1 in the column correspond-

ing to Si410 and zero in the remaining places.

Case 3. When £, = +1 and A{(d) =1 -+ 1, write =x in the

column corresponding to s,, -x% in the column corresponding to

i Si+1?

and zero in the remaining places.

%
Commonly called the normalized Alexander polynomial.
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Case 4. When £, = -1 and A(d) # i, i+ 1, write 1 din the
colunn corresponding to S;s X in the column corresponding to
Sip10 X T 1 in the column corresponding to SA(i)’ and zero in the
remaining places.

Case 5. When £, = -1 and A{i) = i, write x in the column
corresponding to si, ~x in the column corresponding to Si4qe and
zero in the remaining places.

Case 6. When €, = -1 and A(i) =i+ 1, write 1 din the
column corresponding to S -1 in the column corresponding to STIRE
and zero in all the remaining places.

We now consider the elements of this matrix as "L-polynomials"

with integer coefficients. The totality of these polynomials
fx) = L a,x

(n,m,ai are integers and m 2 0; note that n can also be negative)
form an integral domain whose "units" are the polynomials +x". Here,
an element f(x) 1is called a unit if the multiplicative inverse,
(f(x))—l, also belongs to the integral domain.

It can be shown that the elementary divisors of the matrix
(iik(x)) are knot invariants up to unit multiples. To prove this, we
again consider how the matrix is modified by the three operations
£.1,2,3. We will thus consider the same transformations as in §5,

Ch, II, and retain the notation given there.
(52.1.0) The row corresponding to the new Dn+1 containsg in the

columns corresponding to Sn+1 and s1 the elements =x and -x

respectively, while the remaining elements are equal to zero. Therefore,
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if we add the cclumn corresponding to s to the column corresponding

n+l

to 815 then in the row assigned to D the only nonzero element is

ntl
¥ 1in the column corresponding to s

) . .
ix (& = 0,+1,-1) times this row, one can make all the other elements

atl” By successive addition of

zero in the column corresponding to I

(§2.2.) The new rows have the form:

SprereeSa10Se S Syo108y okl S0
Doy | 0heens0,x-1, 0,...,0,0, 1, -x
Dn+2 -1y.0.,0,1-x%, 0,...,0,0, 0, pd

Otherwise, there are only zeros in the column corresponding to Sn+2'

The original column corresponding to ) arises by addition of the new

column corresponding to s to the new column corresponding to s

n+l 1°
In order to see that the elementary divisors change at most by a

unit multiple, one first adds the row corresponding to Dn+2 to the row

corresponding to D . Now one adds the column corresponding to s

n+1 n+1

to the column corresponding to s Then by multiplying the column

1
corresponding to s

02 by the appropriate units and adding to the column

corresponding to s and

1 Sg, Ve obtain a matrix whose row corresponding

to Dn+2 has all zeros except for an x on the diagomal. Similarly, by

adding unit multiples of the row corresponding to Dn+] to the other

rows we get the matrix
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(Q. 3-)

that are affected have the form (keep in mind the immediately following

KNOTS AND MATRICES

0 1 0
...... . X

Ch,

IT,

814

The submatrices which correspond to the points and arcs

figures):
%5 2 S2+1 ®n-2 ®n-1 *n
D£ x- 1, i, -X, 0, 0, 0
- Dn-Z *x~1, o, 0, X, -1, 0
anl o, 1-x, o, 0, X, -1
®5 ) 041 ®n-2 ®n-1 ®n
D, x-1, 1, ~x, 0, 0, 0
) an2 o, g, 1-x, X, -1, 0
1~x, 0, 0, O, X, -1
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The remaining elements of the corresponding rows and of the column
corresponding to 5,.1 are equal to zero. In order to proceed from (1)
to (2), one adds the row corresponding to DQ in (1) to the row corres-
ponding to Dn—Z and subtracts the row corresponding to D2 from the
row corresponding to Dn—l' Then one adds the column corresponding to
S.1 to the column corresponding to Sy and subtracts the column corres-
ponding to S, 1 from the column corresponding to Sot1°

We can sharpen this result still further as follows: The
modifications of the matrix (Qik(x)) induced by the operations §§ and
2" are consequences of the following elementary matrix transformations:

5.E8.1. Interchange rows (columns.)

£.5.2. Multiply all of the elements of a row (column) by #x,

Y.E.3, Add a row (column) to another.

L.E.4. Adjoin or delete a row all of whose elements are zero.

L.E.5. Adjoin or delete simultaneocusly a row and a colum where
the element that_belongs to both this row and to this column equals one,
and all other elements of the row and column are equal to zero.

Matrices that arise from one another by means of the transforma-

tions X.E. are said to be L-equivalent. L-equivalent matrices clearly

have elementary divisors that differ by at most a factor of ixn (the
converse however does not hold). Hence the L-equivalence class of the
matyix (Rik(x)) is another knot invariant,

If one deletes an arbitrary column of (Rik(x)), one obtains a
matrix with the same elementary divisors; for, the sum of the elements of
each row equals zero. Further, an arbitrary row can also be removed with-

out changing the elementary divisors. This will be shown in 86, Ch. III.
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All of the possible new matrices that arise by these deletions
have determinants different from zero since the determinants arising
when x = 1 are eqgual to *1; these determinants are only determined up to a
factor of *x Bymultiplying the determinant by a suitable factor, ixn,

we get the uniquely determined form

- _ &
(3) L{x) = 20 + Rlx + .. 4 ng

with QO >0, g0, (3) is called the L-polynomial of the knot.*

One can also define analogous matrices of polynomials, having
the same elementary divisors, by taking as starting point the bounding
relaticns between points and regions. This will follow directly from the
group—-theoretical interpretation of our matrix ([3]). We will show in
§7, Ch. III, that all the torsion numbers are determined by the L~

equivalence class.of the matrix (Qik(x)).

§15. L-polynomilals of particular knots

The elementary divisors e(x) of the matrix (Qik(x)) of a knot
do not change when we replace the knot by its mirror image, or cppositely
direct the knet. One can see this directly, by deriving it using the group-
theoretic interpretation of the matrix (Qik(x)), or by noting the behavior
of the groups with regard to mirror images and change of the sense of

traversal of the knot (cf.§6 and §5, Ch. III). Changing from the knot to

B3
This is frequently called the Alexander polynomial of the knot.
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the oppositelydirected knot corresponds to the interchange of =x and

xml. From this one obtains the following symmetry property for

L-polynomials:

(Here, [a] is the greatest integer that is less than or equal to a.)

The analogous situation holds for the elementary divisors, Since

Eﬁi = *t1, g must be even and ¢ . must be odd.
(5]
2 .}

For the calculation of the L-polynomials for parallel knots and
cable knots, and for the classification of similarly twisted cable knots

using L-polynomials, see 813, Ch. TIL.

In the following table of L-polynomials for all the knots given
in the knot table on pp. 126-128 we use the following abbreviation ([3]).
The symbol 5-14 4+ 19 signifies the L-polynomial

L(x) = 5 - Lbx + 195> - ldx + 5x°.

In the table* there are five pairs of knots with the same
L-polynomial. FEach of the two starred pairs have, by §6, Ch. II,
different second and third torsion numbers, and their matrices

(Qik(x)) are not [-equivalent, On the other hand, for the three

* L
The table differs from the one given by Alexander ([31)

for the knot 936'
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remaining non-isotopic (by §9, Ch. IT; 8§14, 15, Ch. IIT) pairs, the

matrices

(ﬂik(x))

are L-equivalent (ef. §14, Ch. IIT).

Type:L-Polynomial| Type | L-Polynomial | Type | 1-Polynomial
R S0 2- 64 9 8, T A
44 1— 3 Biia 2 7+E 91 8,, 134 5— 7
514 2— 3 8iia 2-- 7t 1 810 13 f 6 71_
G * Biia : Oisn 144 6§
Dian J2~ e D SRR Bi4a {—44 8§— 9
Tea 1 33 D24 2= 9413 | 8, f—d44 8—11
$1a 3~ 7 Iieu 2= 915 |9, =S+ 7— 7
7ia }4~,7 Ve 2—10415 | 9,,. 1 —54+ %— 9
Yia ] i 2—10 17 ra 1—54+ ¢— 9
856 44— 9 Dt 2— 11417 | 9,, § —54+ 9.— 11
Douw | 6—11 K14 2— 11419 O30 1 — 854+ 10— 11
Hyia 0 T —13 Da 3— 5411 LT .
51a t— 14 1 9an 3— 64 7 9sen } 1—54+10—-13
Vizw 1= 24 1] 9, 3— 724 9 9. [ —54t1—13
S20n t-- 24+ 31 8., 3— 8- t1 Ot tom§4 11— 15
().‘a t— 3+ 3 923a 3—12";‘17 9333

Oya t— 3+ 5 Y14 3—124-19 Diva } t—=5+ 1215
8uim 1= 44 51 O, 3 14 421 9304 t e §4 12— 17
Diin =44 71 944 4— 84 9| 95, {5413 17
Tha | 11— 57 Qi34 4 9411 Vit e f—6-414—17
Tra | 1= 5S4 9| 94, 410413 | 9,, { — 641419
usn | A= 64 9 | 9y, 411415 | 9, t— 6416 —23
9w 1= 74117] o, S—144-19 | 9. ey 4 18— 23
812a 1— 7413 8an | 1—14+ 04 1 9, 2—34+ 3~ 3
734 02— 343 714 1—14 1 1 Dya 2—4+4 S5— %
Tsa | 2= 44 S| 94 | 1—34 2 4 9. 2—44 6— 7
845 i 2— 5+ S 8!« 1””'3+ 3-- 3 9‘5. 2"—5+ 8 — 9
Ses | 2— 6+ 7 8.4 1--34+ 4- 5 9 | t—tb1— 14+ 1

*See note on preceding page,

iThe polynomial for 94a should be 3-5+5. In addition, the pelynomials for

947n and 948n have been interchanged.

should read 1-7+11.

Ch. I,

9

47n should read 1-4+6-5 and 9

815

48n




CHAPTER IiT
KNOTS AND GROUPS

§1. Equivalence of bralds

The problem of deciding whetﬁer two knot projections correspond
to the same knot is similar to the word ﬁroblem or the transformation
problem for a group with generators and defining relations, TFor braids
this similarity can be made precise by using a particular kind of projec-
tion and a particular type of deformation,

A deformation of an open braid is understood to be a finite
sequence of operations in 3-space of the following type:

A.r. Let PQ be the segment of the braid that goes from P to
Q and let PR and RQ be two segments which go from P to R and
from R to (, respectively. Suppose that the triangular area PQR
does not intersect the braid except along the segment PQ. The segment
PQ is replaced by PR and RQ if the figure obtained in this way is
again an open braid.

) A'.r. 1s the operation inverse to A.Z.

Two braids which arise from one another by a deformation are
called equivalent.

After normalizing the braid projection one can again translate
the 3-space operations A.r and A'.r, into operations of the projection.

In addition to the projection of this operation A.Z.w., whose applica-

tion yields a projected braid (Fig. 25), some of the operations {.2,3

71
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can be applied to a braid projection. These will be denoted by f.2.2.
(Fig. 26) and Q.7.3. (Fig. 27). Thus we are retaining those operations

§2.2.3 which when applied to a braid projection yield a braid projection.

Fig. 25. A.m.G. Fig. 26. §.%.2. Fig. 27. §.0.3.

The proof that every braid deformation A.Z. can be decomposed
into a finite sequence of the operations .5.2,3 and their inverses is
similar to the proof of the analogous assertion for knots which was
given in §3, Ch. I,

Given two g-stringed braids z and Z,, one can form a new

1
braid 23 = 2,2 by means of hanging 2, onto z;, i.e.,to zq there
corresponds a rectangle with the opposite sides gll’gZJ and the
point series A,, and B ,: and to Z, there corresponds a rectangle

with the opposite sides 8193899 and the point series AiZ’BiZ
(i = 1,2,...,9). The rectangles are now juxtaposed so that an affine
transformation of the second rectangle will make Bil coincide with

A finally the segment 8y1 = 812 ig erased. The new figure is again

12°

a gq-stringed braid. Let 8y denote the braid with only one double point,
at which the i-th string of the braid crosses over the (i+1)-st
{i=1,2,...,q9-1), and let s;l denote the braid in which the i~th

string crosses under the (i+l)-st; then one may observe that each braid
£ € £q

with d double points can be uniquely represented as z = Sy Set 8,
172 “d

(si = +1).
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are equivalent, and 2 and < are

Clearly, if =z and 9 5

1 &)
7

equivalent, then z.z and z are also equivalent.

172 172

§2. The braid group

We now form the group, Zq, of the g-stringed braids ([7]).

As group elements we take the classes of equivalent braids, [z]. The

product of two classes {zl} and [22] is defined by

(2]« [2,] = [z,2,].

The product is well defined and is associative. The braid without cross-

ings represents the unit element. Furthermore, if

7z =8 L SEZ s8
- . ,
Ol,l @2 G.d
"‘-Ed —52 —Cl
then [s ve. 8 s 7} is the element inverse to [ z].
o T o
d 2 1
€ € [
Since [z] = [s ] 1 [s ] 2. [s ] d, the elements
o o o
1 2 d
(1) 5, = [Silﬂ (i =1,2,...,q-1)

form a system of generators of the braid group Zq'

One finds the defining relations of the braid group Z by
€1 € Edq
investigating the changes in the word W(S,) =8 ° § .e. S that
1 a Q o
1 2 d
are induced by the braid operations.

The operation .%£.2 (Fig., 26) and its inverse induce the

: ; : - OB
insertion or deletion, respectively, of a factor Si bi (g = £1),

which can be considered as a relation in the free group of the Si
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The operation A.m.Zz. (Fig. 25) effects at most a redistribution
of the double points. The simplest redistribution gives a permutation of

£, £

two consecutive elements, S 1, 3 1+1, in a word W(S,). In this,
o, o i
i i+1
& . ; o
clearly oy # Oy ¥ 1. This yields the relations
(2) Sisk = Sksi (k # i-1, i+1).
2.2.3. (Fig. 27) involves three neighboring strings, for

instance, the strings 1, 3i+l, d4+2; then we obtain the relations

£ ,c 1 #l L& L€
i+1 i Si41 Si i+l (

For all possible choices of exponents, these can be rewritten as

(3) S.8 (i=1,2,...,q~2).

514151 T 8441555

Therefore (2) and (3) are the defining relations of Zq in terms of
the generators (1).

The question of whether two -open bralds are equivalent is thus

reduced to the so-called word problem for the group Zq with respect

to the generators (1), i.e., to the problem of deciding whether two words
W(S) and W'(S) determine the same group element in the group with the
generators (1) and the defining relatioms (2) and (3). The question of
deciding when two closed braids are equivalent can be reduced to the

transformation problem in the braid group. Namely, one sees that the closed
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braids that are assigned to the open brailds siz s;E and Z are
equivalent, and conversely, that two open braids 2 and z' are
related by [z] = [Zl][z'][zl}_l if they correspond to the same closed
braid.

The word problem is solved for all Zq; .in contrast, the trans-—
formation problem is not. 22 is an infinite cyclic group. 23 is
isomorphic to the group of the trefoil knot ([7]). The transformation
problem can be solved in 23 (8§12, Ch, ITI).

Those braids in which Ai is always connected with Bi give
rise to a noteworthy subgroup Tq of Zq' Numerous new braid properties
can be recognized by displaying the generators and defining relations of
Iq' Using these properties one can completely classify the braids corres-—
ponding to the cable knots ([13]).

§3. Definition of the group of a knot
Now we again focus on the problem formulated in §2, Ch. II: to
produce computable knot invariants, and to describe how one can obtain
a group with generators and defining relations from the knot projection
([28]).
The regular normalized projection of a knot with n double points

D.,D ,...,D will be subdivided into n arcs «+,8_, each of
1*72 n n

8138550
which leads from an undercrossing place to another. Assume that a
positive sense for running around the knot and a positive sense of
rotation in the projection plane have been established. We also assume

that the indexing is as described in §2, Ch, IZI, To the n segments

s, we formally assign n generators
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(L) :-;].7,:32,...,Sn
and Lo each double point Di’ at which Sk(i) crosses over the segment
BB g We assign the relation
-1 5 Tt
(2) Ri(S) = Si+lsk(i) Sisk(i) (1 =1,2,...,n)

where, as before, 2 equals +1 or -1, depending on whether or not
the direction of Sk(i) can be rotated into the direction of s, by a

positive angle &, where « < 180°. In (2), Sn+l is defined to be

Sl' The group W determined by the generators (1) and the defining

relations (2) is called the group of the knot. Similarly, one can also

define the group of a link.

It follows from the defining relations (2) that the quotient group

of the knot group with respect to its commutator subgroup is an infinite

cyelic group. That is, if the generators are permitted to commute, then

the relations {(2) state that

The group of a circle is the free group with one generator., That
follows from the proof of invariance in §4, Ch. ITI, and the caleculation
of the group using a suitable projection.

If one takes the group of a link of r polygons, and forms the
quotient group with the commutator group, then one obtains a free Abelian group

with r generators. The group of twe unlinked polygons is the free
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product of their groups; in particular, the group of two unlinked circles

is the free group with two free generators.

(1 (2)

The group W of the link formed by two polygons k and %
can be used to compute the intertwining number of those polygons, defined

in &1, Ch. IL. The second commutator subgroup of a group G 1s the sub-

group generated by the elements .

where § 1is an arbitrary element of G and Kl is an arbitrary element

of the commutator subgroup of G, Now, if K2 is the second commutator

group of # and F = W/K2 is the quotient group of (! modulo K2’
S(l) (2)

and S
(1)

are two generators of W,

k(Z)

and furthermore, if

which correspond to arcs of k and , respectively, then the

order of the commutator
(D (2) (D121

(1) and k(z).

in F is equal to the intertwining number of k
There are many natural ways to obtain generators and relations.

For example, consider a projection of a closed braid that corresponds to

an open braid consisting of q strings, which connect the points

Al’AZ""’Aq respectively with the points Bk ’Bk ,...,Bk . If
: 1 2 q
SA . SA ""’SA are generators which correspond to the g arcs that
1 2 q
contain the Aj and Hk ,  then we can express successively all remalning
‘ i
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panerators in terms of the SA by means of the relations. Then there
i :
remain exactly q relations which are of the form

(3) s“lL.s Lfl 1 =1,2,...,q9),

e e B R S

i
:

where the Li are particular powers of products of the generators which

satisfy the identity

.

‘ q
(4) I .8, L. = 1 8

in the free group of the SA.' Relations (3) and (4) can be used for
"an algebraic characterizatio; of link groups (which include knot Broups).
Since every link can be deformed into a braid, every link group can be
rewritten in the form characterized by (3) and (4). Conversely, corres-
ponding to any relation system (3) which satisfies relation (4}, one

can construct a closed braid to which there is assigned a group by means

of the algorithm described at the beginning of this section. The group

g0 obtained is isomorphic ([7]) to the group with the generators SA
i

(1 = 1,2,...,9) and the relations (3).
Another algorithm for the formation of a knot group can be given

in the following way. To each bounded region Tk (k = 1,2,...,n+1) of

the projection plane assign a generator

(5) T (k=1,2,...,n+1),
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and let T, (which is associated with the unbounded region T

0 0)

represent the unit element. Let a relation Ri(T) (1L = 1,2,.0.,0)

be assigned to each double point Di as follows. 1If, for instance,

FU (1) (£ = 1,2,3,4) are the four regions arranged clockwise around Di
I .

(wQ permit T to be TO) and if Tul(i)’ruz(i) as well as

up (1)
T oyl , are adiacent along the two undercrossing arcs at the decuble
Hq (1) 7w, (1)

point Di {(therefore as well as are

RINCOISIIRER SIRCORRTNER

adjacent along the overcrossing arcs at the double point Di), then let

-1 -1

©) R R CPRNEPRTIED

(i =1,2,...,n).
As we shall see in 59, Ch. III, the group defined by (5} and (6) is
isomorphic to the group defined by (1) and (2}, This can also he

verified directly by changing the generators and relations.

§4. Invariance of the knot group
The group defined in &3, Ch. III, by means of the generators (1)
and relations (2) is a knot property of the regular normalized ﬁrojection.
As in ([28]), we prove this by investigating how the generators
and relations change upon application of the operations §2.1,2,3. The

generators which arise from the altered projection are designated by a

1

prime :
(§2.1.) Suppose that a leoop is formed in the edge path s The
relation
£ —£ £ -g
-1 nt+l n+l -1 n+l. n+1
' 21 1 gt - 1 ! t -
Sn+1 8n Sn Sn Loor Sn+l Sn+1 Sé Sn+1 1
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ol 1o Che new double point. In both cases it follows that
£8 P T t ) 1

0 50 If we replace Sn+1 by Sn everywhere, then the same
relations hold among the Si as among the Si'

2.2.) Assume the new double points arise by shoving s, over

£

s, It follows from the two relations corresponding to the new double

points, namely,

-£

1 o n+l T 2

Sn+1 SR Sn SR = 1
e (€n+1 - -€ﬁ+2 =€)
-1 n+2 n+2

T 1] T 1 —

Sn+2 S2 Sn+1 SR o= 1
that S£+2 = SA. If we now set

"o P = Qt "o oat

sy =8, (i=1,2,...,n), 7T Sie1s Sp =S,

then there hold among the SE the same relations as among the Si’ and
further between Sg and T the following two relations hold:

T hsnEgsn=E L st sy E gt - g,

£ "n"8 £ £
the second relation is a consequence of the first,

(9.3 ) For thls operatlon we have different cases to consider,
each dependlng on the'orlentatlon Which the edges of the triangle

inherit from therqrienta;ionrof‘the knot., We focus on the case repre-

sented in the fj
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(b)

j
;
|
i
]

The relations of the initial projection relative to the double points of

the triangle are:

The relations after the transformation are:

£l —£
[ - L ] i ' t £
R, = 82+1 S Sg Sj .
‘1 Fne 2
' - ' 1 - 1 ! -
Rn—2 Snwl SR+1 Sn~2 S£+l ’
et et
-1 n-1 n-1
R' = ct t 1 1 .
n-1 " Sp S Sn-1 %
) . -t = | = o : g
In this, ¢ 7 CQ, Ln—Z bnul’ Ln_l Ln_2 and furthermore
-V = Eo— A o eliminate 9 B g r ar S
€y €1 € g We eliminate bn—l from Rn»i using Rnw2 ind thoen
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M . 1 ‘ o O 3 1 ] . R‘ . 3 T H
eliminate Snml From hnml using n-2" Now replace SQ%l in the
e !
last relation obtained by Sj Sé Sj ? using Ré . Then the relations

Rk and Ri (k # n-2) among the Si and the Si (i # n-1) respec-

tively are the same, and Sn—l’Séwl still occur only in the one relation

R o, or Rﬁ—2 respectively.
Summarizing, the new relations arise from the initial ones by
the addition and removal of redundant relations or by the addition and
removal of generators each of which is expressible as a word in the
remaining generators, via the relations. Consequently the groups defined
by means of the relations are isomorphic to one another.
Besides the group itself which is invariant under £,Q2', there
are other invariants that may be defined from the Sk of (1), §3, Ch,

111, and the Ri of (2), §3, Ch. IIT. By wvarying the projections, for

instance, one merely introduces new generators by means of the equations
(1) S = SbS S, .

Therefore, each property that is retained after the reductions and
extensions of the defining relations and after the reductions and exten-
sions of the generators of the form (1) is a knot property.

Purther, we see that each generator Si can be represented as

a conjugate of any of the others. For example,

-1 Ci-1 Fi-2 “1
(2) Si = LiS Li where Li = SA(i—l)SA(i—Z) - SA(l) (i=2,3,...,n).

1
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Therefore, a new invariant of the knot group is obtained if S? =1 is
adjoined to the relations Rk(S).
From the same considerations it can be concluded that for each

element WS Wml (W arbitrary) there is a class of elements associated

1
with it,
£ L.~1
(3) WL, STV (2 =0, £1,%2,...38 = %1),
where . L is determined by (2) for i = n+ 1., Hence by (2],
n+l ‘
S, =L -1

1= ParaSitnen

That these classes are knot invariants can easily be verified.

§5. The group of the inverse knot and of the mirror image knot

The group-of a knot is isomorphic to the group of the inverse
knot and to theAgroup of the mirror image knot ({9]); these knots can
therefore not be distinguished by means of the structure of their groups.
Starting with the description of the group given by (1) and (2) of
§3, Ch. III, we reverse the sense of direction of the knot proiection and
now assign a generator Si to the arc which corresponded to Si' Among
the Si the following relations hold:

[

- £
—1 H i t v 1
(1) 5141 Saeny Si Sy o

1

We introduce Sz = Si— as new generators; then the relations (1) can

be written as

%
|
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£, -€,
T nw L o=l o i
St Sy 51 Sh )
en A oy 3l f
i xS Saegy
It follows Lrom a comparison with the relations (2) in §3, Ch. ITL, that

the group of the inverse knot is isomorphic to the group of the original
kot

" of the mirror image of a knot k

We obtain a knot projection k
by changing the undercrossings of the projection inte overcrossings, and
vice wversa.

If we now rotate the projection plane of k' through 180° about
a line g lying in it, then we obtain a projection k" of the mirror
image knot, which we recognize as the mirror image of the original pro-
jection with respect to the line g.

We assign the generators S; (i =1,2,...,n) to the projection

k" so that SY and S. are corresponding mirror image arcs. Then the
: i P g g

relations among the Sg read as follows:
(2) simd gn

If we take the §! = S; 1 as generators, then we obtain for the relations

(2),

e, had SN

. | ' v 4
5141 Sa) Si Sy

It follows from a comparison with the relations (2) in §3, ch, ITI, that

the group of the mirror image knot is isomorphic to the group of the knot.
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Nevertheless, it can be established with the aid of the groups, for

instance, that the torus knots are not amphicheiral (ef. 8§12, Ch. III).

86. The matrix (Qik(x)) and the group
We can now easily establish the group-theoretic significance of
the matrices that were defined in chapter two ([3],[29]). Recall from
§3, Ch, IIZ, the quotient of a knot group by its commutator subgroup
K is infinite cyclic. We can thus choose as representatives cof the
residue classes of ! modulo K the powers SR(Q = 0,41,...) of some

generator, say 8§ = § We will produce the generators and defining

1
relations of K by using the method for determining the generators and

defining relations of subgroups given in ([27],[33]). We first introduce

in place of the generators Sk of the knot group new generators Ek by

means of

n
t

e = ES (k = 2,3,...,0);

clearly the Ei belong to the commutator group. Furthermore, we pick
El to be the unit element E, Relations (2) of §3, Ch. IIT, written in

terms of the new generators have the form

€ —£

= o1l . i
Ri(E,S) = 5."E l(EA(i)Sl)

i
1 Bi41 (BygySp) EgS

Using the algorithm cited above, the generators of the commutator group

have the form

stg g% o

155 Ekﬂ (e = 2,3,...,n38 = 0,%1,...)
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R P, i ) , - L -
{(here, LkO = Lk) and the relations are expressions of Sle(Ek’Sl)Sl

in terms of the E g For €, = +1,

~l
(1) RiR(E) = B

Ch, III, §6

2

one obtains

-1

141 2150 00), -1 B Bacaye

and for €, = -1 one obtains
(1 = 1,2,...,n;
-1 -1
= 5 " +
(2) Rig )= B pamn Buny,om2 Bayeen Bay, e 2= 0oLl )
The assignment SKS—1 = K' gives an automorphism of the commutator

group. We now make

setting

sks”t = K%,

and introduce formal exponents

n+1

. _ ..n
f(x) a x + a 1% 4+,
(ai,m,n are integers, m > Q) by setting
a n a n+l
O o e mE x|

K commutative and introduce the operator x, by

n+m
X
+ an+m

a n-+m
ntm, %

(K }

We thus obtain from the commutator group a commutative group ((x)

L
1 ¥ 4 = ?X
with operators. Then Ekﬂ Lk

-3 -1 %
X Tex

—-X
Rig ™ ELL B

and the relations (1) and (2) become

I3
X

(si = +1),
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-1 A2, 81 A2

?X - —
1 B £y ey = -1).

—X
R Ey ~ B
o (B ™~ By
All of the relations with equal 1 can be omitted except one ; we keep
the one with £ = 1 and £, = +1 and the one with £ = 2 and e, = -1.
This is true since in the operator group, all relations with equal 1
are consequences of the relation with ¢ = 1 or with £ = 2 vrespectively.

The exponent matrix of the defining relations of K(x),

" = ?-l 41_x 1X =
Ry B) = By Bygy By (g =D,
(3) <
R, (®) = B.X BN w (c. = -1)
i,xF i1 ey M1 ;i
\.

is identical with the matrix that arises purely formally from (Rik(x)),
by striking out the first column. Thus we obtain: The L-equivalence
classes of the matgix (Rik(x)) defined in §14, Ch. 11, characterize
the abelian group K(x) with the operator =x.

Each of the rélations RiO is according to 89, Ch. III, a
consequence of the remaining Ri (i # io). One can alsc omit one of
the relations (3) and strike out an arbitrary row in the exponent matrix
of relations (3), without changing the elementary divisors. We thus can
recognize the L-polynomial of a knot defined in §14, Ch, II, as a knot
property.

At the same time, we see how one can form other matrices with the
same L-equivalence classes: e.g., if one starts with a different set of

defining relations for the knot group, one obtains different defining

relations for the group K{x). One thus obtains, for example, the
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matrices given by J. W. Alexander (cf. 8§14, Ch. IT) by starting with the
generators (5) from §3, Ch, III, and the defining relations (6) from

§3, Ch. IIT.

§7. The knot group and the matrices (CEB)

It follows from the decomposition of the knot group with respect
to its commutator group that the collection of all elements contained in
the cosets KSEh (2 = 0,%#1,...) form a normal subgroup Wh.

A complete system of representatives of the cosets th is

given by

2 h-1
E,S1587,. 00,8

Consequently, using the method cited in §6, Ch. ITT, we obtain as the

k -k

generators of (i SlEisl = Eik (1 =2,3,...,n3k = 0,1,...,h-1) and

h)

H= S?. One obtains a complete system of relations if we express

in terms of the E, and S?. When Ei = +1 this vields

-1 -1 _ ) .
Fi41,k-1 Ba(a) k-1 By By, =t k=12, 01

and for k = 0

“h -1 , h ~1 _
51 B o1 By ner Sy B0 Pay o =

-
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When €, 7 -1 this yields

-1 ~1

41, k=1 (i), k-2 E

£ k-2 Baci) k-1

and for k = 0,1

-h -1 -1 h

8, B b2 Bagay,n-1 51 = b

1 Bitae-1 By ez

1 -h -1 h

E 5p F Ein-1 51 Baciy,o ©

i+1,0 51 Baco),h-1 L.

: h R .
In this, if one sets H = Sl = 1, and abelianizes the resulting group,

then one obtains as exponent matrix the matrix given in (8) of §2, Ch. II,
which arose from (CEB) by striking out the columns (1,k} (k =

0,1,...,h-1).

The group Kh which is obtained from wh by adjoining the
relation H = 1 is (as a comparison of the relations with those of the

commutator group shows) isomorphic ([29]) to the group which arises from

the commutator group by the adjunction of the relations

E (L =0, *1,...).

12 = By n4n
From this it follows that there is a corresponding connection
between the groups K(x) and Kh(x) which arise from K respectively

Kh, by abelianizing K respectively Kh’ and introducing the operator

4 . -1 .x
= K7, respectively S Khs} a2 Kh'

beS ]

~1
(.

1
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The relations of Kh(x) result from those of K(x) by adjoining

the relation:

(1) E = 1.

We can derive from the relations of Kh(x) the matrices whose elementary

divisors are the torsion numbers by introducing as before

as generators. From (1), we then have

I
X -
Ei = EiR’ where k £ 2 (mod h).
Thus the relations among the EiR which follow from (1) are satisfied.
k
In the remaining relations we replace E; by EiQ' Each relation R

of Kh(x) gives rise to the h distinct relations which are produced
i

by the introduction of the Ei£ in the relations R (i =0,1,...,h-1).
It follows from these considerations that the torsion numbers

are determined by the equivalence clacs of the matrix (Qik(x)).

§8. The edge path group of a knot
The group of a knot is isomorphic to the fundamental (or the edge
path) group of the complement of the knot. Recall that the complement of
the knot is the manifold which arises from Euclidean 3-space upon

removal of trhe points of the knot. We first define the edge path group,
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and then show that this group has n generators Si with the defining
relationg (2) of &3, Ch. IIT.

In the Euclidean 3-space that contains the knot, we choose a fixed
point A in the complement of the knot and consider the directed closed
polygonal paths emanating from this point which do not intersect the knot.
We denote an edge path which passes through A by w. We understand

Wy Wy to be the path which arises from w

W is understood to be the path which is directed oppositely to w.

by attaching w to it,

1 2

Paths w and w' will be called homotopic if each can be carried

into the other by applying operations of the following type a finite
number of times.

Al Lert PQ be a segment of the path with endpoints P and
Q. Furthermore, let PR and RG be two additional segments with
endpoints P, R, and R,Q. Suppose that the triangle PRQ has no
point in common with the knot., Then PQ is replaced by PR, RQ. The
triangle PRQ may degenerate to a segment.

Ao, is the operation inverse to A.q. In this deformation
process, self-intersection of the path is permissible.

A group element of the edge path group of the complementary space
of a knot with the base point A is defined to be a class [w] of
homotopic paths, based at A, By the product of two group elements
[wl} and [w2} we understand the element [Wlwl]'

It is clear that this defines a group. The unit element is the
class of paths which can be retracted to A; the inverse of an element
[wi dis the class [w_l] of paths directed in the reverse sense.

The structure of this group does not depend on A.
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By {w} we will understand the class of ioops which are freely
homotopic te w (arbityvary inltial point). Fach class {wo} then
corresponds to a class of elements [w'] [wo] [w'_l] of an adge path

group, which arise from a definite element [WG] by means of conjugation
with an arbitrary edge path [w']. The paths which can be collapsed to

a point are also called null homotopic.

§9., Structure of the edge path group
In order to obtain the generators and defining relations of the

edge path group, we arbitrarily fix a regular projection direction., Each

point P of the knot has a projection ray that passes through it. After
a choice of a positive direction, each such ray is decomposed by P into
an upper and a lower half ray. We keep the lower half ray.

The lower half rays generate a half-cylinder =z which is bounded
by the knot (Fig. 28); the double generators (double axes) of the cylinder
correspond to the double points of the knot projection; the cylinder
crosses itself there. To the arcs 85 of the knbt, there correspond
strips of surface zs of the cylinder which are bounded by 8, and the
consecutive double axes emanating
From the knot (4 = 1,2,...,n). A
ileft and right side of each 7 is

!
' defined by the orientation of the

|. | |
Fig. 28. knot, Assume that the base point A
does mnot lie on =z ([34]).

We first observe that two paths v, and wi are homotopic if

they pierce z only once, and both pierce the same zy in the same
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direction (for example, from left to right. We denote the class {wi]
by Si'

Let w be an arbitrary path based ar A, We can deform w so

that it consecutively pierces the surface strips

A A N
k) Tk, ke,

That is, w decomposes into a product of elementary paths passing through

A each of which pierces some surface strip z; once. Therefore,

€ £ £
[w] = skl sk2 .. skr,
72 T
where Ei = +1 or Ei = =1, according as Zy is pierced from left

i
to right or from right to left. Since we can deform each path so ‘that

it pierces 2z only finitely often and does not cross any deuble axes,
the Si form a system of generators of the edge path group,

Naturally, formally distinct words may determine the same group
element. This occurs if and only if the associated edge paths are
homotopic, i.e., arise from each other by successive applications of
L. and  A'.q.

We can compose these deformations from those in which the surface
of the triangle PRQ is met by at most one double axis and the boundary
of the triangle pierces the half-cylinder 2z either exactly four times
or exactly twice, depending on whether the triangle surface crosses a
double axis (A.x.1.) or not {(A.0.2.). The operations Ao 2. cause

. . . Ve \ .
the insertion or the deletion of the factor sjsi . The operation

%
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Awi.i. (Fig. 29) indices the application of a relation(2) from §3,
Ch.

it follows that the relations
(2) of &3, Ch. III, are the defining
relations of the edge path group in
[, 1.

We note further: Of the n

il

the generators Si

Fig, 29. ' relations Ri(S), each is a
consequehce of the other n-1;
for, a path which links a double axis once can be viewed instead as a path
which links once each of the other =n~1 double axes. The elements Ln+l
defined in (2) of 8§84, Ch. III, can be represented by paths which corres-
pond to a parallel knot consisting of one string. The homotopy class of
an arbitrary parallel knot qu corresponds to a class of conjugate
elements of the form
Mgy sy

We can present the generators and defining relations of the path
group in many ways. These may be obtained by cutting up the complementary
space using surfaces other than the half cylinder =z ([15]). For example,
let Bw be the band defined in §4, Ch. I, which corresponds to the white
regions, and which is bounded by a knot, and let BS be the analogous
band which corresponds to the black regions (including TO}. These bands

can be so situated that they intersect in precisely n segments

i . : ; ,
di =T Ui’ each of which connects an overcrossing point with the
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corresponding undercrossing point. The knots and the segments di

decompoge the bands BW and BS into nt+2 disks fO’fl""’fn+l which

project onto the regions TO’Tl""’Fn+1 respectively. We understand £
to be the surface formed from the fi(i =1,2,...,n+tl) (Fig, 30). For

each path w there is a path w' that 1s homotopic to w and which

pierces £ only finitely often. We conclude from this that the classes

Pig. 30a.

[w,] =T, (L = 1;2,...,n+l) of paths W, which pierce f exactly once
in fi (i =1,2,...,n+1l) from under to over, form a system of generators
for the edge path group; we may recognize that the defining relations
in (6) from 83, Ch. III, correspond to those paths y that link the
segments di once,

If w 1is a path that represents the class [w] = W and if W
lies in the coset Ks' relative to the commutator group, then Vv 18
the intertwining number defined in §1, Ch, II, of w and the knot polygon.
The subgroups wh (see. §7, Ch. III) therefore consist of the classes w
of paths which link the knot kh times (k = 0,%1,...). If [w] lies
in K and if [w] is distinct from the unit element, then the link
consisting of w = kl and the knot Lk = k2 has the intertwining number

v equal to¢ zero and linking number 012 not equal to zero.

N
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§10. Covering spaces of the complementary space of the knot

There is in intimate connection between the edge path group and
the unbranched covering spaces of a manifold which we shall describe in
the case of the complement A of a knot.

Let 'z be the half cylinder described in §9, Ch. III, which is
constructed by hanging parallel half rays along the knot k.

Euclidean 3-space is compactified by the adjunction of a point
at infinity and is then cut open along this cylinder =z. One obtains in

this manner a cell Z whose boundary surface consists of two copies of

the cylinder. The boundary surface is decomposed by k into two "pieces'

z and Zp and with the aid of the half rays corresponding to double

A

points we decompose the boundary surface into the pieces Zy 40 zDi
(4 = 1,2,...,n). Now we take a finite or countably infinite number of
copies of Z; we label the k-th copy Z(k), and we label the surface

pieces of their boundaries by z(k), z<k) (k = 1,2,...). A covering Y

Al pi
of the complementary space A is defined by specifying a successive
_ . (k) (L. ! . "
pairing of the surface pieces 2y and zpi with the same index i
and the same or different indices k and 2. Furthermore, we do this

so that exactly four such surface piece pairs are grouped about each line

over a double axis; hence if T, is a closed path of A that iinks a

double axis exactly once, then any path rij) of the covering space Y

that lies over ri is closed.
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By traversing the surface pieces corresponding to a z; in a

definite direction (say, from left to right) one goes from an arbitrary

. (k)
cell Z(J) to the same or a different cell 2z J | In this, the kj
run through all the indices of the cells Z(J) and the numbers corres-
ponding to one another
12,44,
=T|“‘
1
kl,kz,

form a particular permutation, Exactly one permutation m corresponds
to each surface piece Z. s and by virtue of the special conditions on
our covering space, the ﬂi satisfy the relations of the fundamental
group of the complement of the knot. To be precise, if the generators
Si of the knot group W correspond to the surface pleces zs and the
relation

£, ~£
-1 i i

_ 1
Ri(s) - Si+1 SA(i) Si SA(i)

corresponds to the path r. about a double axis, then

£, -
-1 i €

i
Tit1 Moy M Ma)

must be the identity permutation. This follows since the paths rij)
are closed paths over T Therefore the ", gencrate a group p that

is the homomorphic image of the knot group, and conversely each group p
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of permutations that is the homomorphic image of the knot group vields

a covering space Y having the required property,

(1) (1)

Each point A and each path w

above a well-defined point A and above a well-defined path w of the

complement of the knot. Conversely, if w is a path starting at A,
(1)

then there is a unique path w over w which starts at the point
A(i) over A. Define operations A.v. on closed paths in Y to be
similar to the operations A.o. inzéz. Thus we may define homotopy
of paths in Y, and hence the path groups in Y can be defined.

If w 18 a loop based at A, that is null homotopic im.é:’
(1)

then each lifting w of w is also a loop and is null homotopic in

Therefore, Y 1is an unbranched covering of A,

From this it follows: ZIf Wy and w, are homotopic and if

wii) and wéi) A(i)

are liftings of Wy and w2 both starting at

then either w(l) and w(l)

1 9 are both loops or neither is a loop. The

of trhe covering space lies

(L)

collection of the elements [w] from W, for which the liftings w

of w starting at A(l) are loops, form a subgroup uél) of @

The Uél) (i =1,2,...) form a complete class of conjugate subgroups.

The edge path group of Y is isomorphic to the subgroup [J§l>.

Conversely, a particular unbranched covering can be constructed
fer each complete class of conjugate subgroups U(i) of (.

Thus, we may think of the subgroups of the edge path group of a
knot as the edge path groups of the covering spaces of the complement

corresponding to the groups W, is

of the knot. The covering Y I

h

obtained by setting
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and
2,3,...,1

- . h ,
The elementary divisors of the matrices (c_,) are the torsion numbers

af
([51,127]) of the manifold ¥, -
The boundary of the covering space Y consists of one or more
curves k(i) (i = 1,2,...,r) which cover the knot k. One obtains a new
covering space Y* which has empty boundary if one includes in Y those
boundary curves. One obtains the edge path group of ¥* from the edge
path group wY of the corresponding Y by forming a system of paths
w(i) (i = 1,2,...,r) each of which link exactly one of the k(i) ance,
expressing [w(i)} in terms of the generators of Wi, and adjoining
these power products as defining relations. For example, one obtains
B = Sh = 1 as a new relation for the edge path group of the space Yﬁ.

The analogous situation heolds for links. Each three-dimensional

manifold can be represented as a covering space Y* of a link ([4]).

§11. The group of a parallel knot
When investigating the group of particular knots, it is frequently
easier to obtain the group propertieé by using generators and relations
that are different from the generators (1) from §3, Ch. III, and the
relations (2) from §3, Ch. ILI. As an example, we give a system of

generators and defining relations for the group qu of the parallel knot
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qu. These new generators and relations can be obtained quite easily
from the generators and defining relations of the group W of the
original knot k. From this presentation we will obtain information
about the structure of the group wqr with respect to its relation with
the group @([14]).

Let Di (L = 1,2,...,0) be the double points of a projection of

k and let the generators and defining relations associated according to

(1) and (2) of &3, Ch., III, be Si (i = 1,2,...,0) and

£ . -,
-1 i 81

itl Sk(i) Si SA(i) (i = 1,2,...,n}.

Ri(Sk) = 5

Let qu be the parallel knot with g strings and twisting
number r > 0 that is constructed from Kk, Position qu so that the
projection of the attached cylindrical braid with twisting number 1 lies
between the set with qz double points that corresponds to Dn and the
set with q2 doubie points that corresponds to Dl' Using the method
of 84, Ch., III, one can read off qzn generators corresponding to the
Di's and an additiomal r{g-1) generators that correspond to the double
points of the cylindrical braid, for atotal of q2n+r(q*l) generators, and
also q2n+r(q—l) relations for the group qu of qu.

We will replace those generators by new ones that have a simple
geometrical significance for the parallel knot qu. If we imagine that
in place of the knot k we have the corresponding torus with qu lying
on it, then we can assign to the generators S of (W the corresponding

k

Tinkings T ol the torus; considercd as a path from the proup il

le gqr’

each of the Tk (k = 1,2,...,n) links the q strings of qu. From
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this interpretation of the Ti cne gets that the relations Ri(Tk) = ]

(i = 1,2,...,n) hoeld, which arise from Ri(sk) upon replacing each Sk

by Tk. We now assert that qu is generated by the Tk (k = 1,2,...,0)

and one additional generator (¢ whichcorresponds toa pathalong the core of the torus
and wqr has as defining relations, Ri(Tk) (i = 1,2,...,n), together

with one new defining relation R(Q,Tk) which we define later (see

formula (16) below).

We consider first the an double points Di K (i = 1,2,...,n;
3

2
k =1,2,...,9 ) that correspond tc the double points Di' If Ui . are
the corresponding undercrossing points, then we can select the enumeration

so that the subarc of qu going from Ui K to contains no

U.
, i,k+q
overcrossing points. The collection of generators that correspond to

these arcs can clearly be eliminated. Thus, the generators that remain

consist of those generators S5, k=1,2,...,9) that correspond to

i,k (

to a U, (i = 2,3,...,n) together

subarce which go from a
i,k

Uitk

with those generators that correspond to the arcs which

51,1501,k

go through the cylindrical braid portion and end and begin at U

1,k
and Un K respectively., If, for brevity, we set
3

1
{1 I Si,kr='Ti (1 = 1,2,...,0+1),

=q
then the relations which now correspond to the Di K read as follows:

€. —£,

1 L

(2) -Si+1,k = Tk(i) Si,k Tk(i) (i =1,2,...,ny k =1,2,...,9}.
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In this, €, is the characteristic (see (1), §2, Ch. II) of the double
point Di.

We now consider (1) as the defining equations of the new

generators Ti' From (1)} and (2) follow the relations
-1, R4 oy
(3) R, (T) = Tip rl(i) T, 1A(i) (1 =1,2,...,n).

As a consequence of the cylindrical braid relations (as is also easily
observed from the gecmetric significance of the elements Ti) we have

that

(4) Toe1 = T

Equations (1) feor i = 1,2,...,n can be derived from equatlon (1)
with 1 = n+l by means of conjugations with suitable elements and
applications of (2) and (3), and can thus be omitted, Therefore, of

the equations (1) only

(1%)

remains. We now replace (2) by the equivalent relations

e

R !

ga — —1 U "
(2%) Sia1, T L (P 8y ey g (T Ty (1) = 1y T

) - T

L =1,2,...,n; k=1,2,...,q9).
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Since the Si " (i # 1,n+1) do not occur in the cylindrical braid
3
relations, we eliminate these generators and retain from the equations
(2%) only
-4 ~1

L (T) S. . L7 (T) (k=1,2,...,9).

X% =
(2%%) R,k = Sntl,k Sntl 1,k Mol

We now turn to the cylindrical braid portions. The overcrossing
segments decompose the braid inte v + 1 lavers each of g segments
corresponding to the ¥ twistings (to the right). Let the generators

which correspond to the £-th layer be denoted by

AQ,k (0= 1,2,...,0+l; k= 1,2,...,9).

Let

(5) A S (kzlg-?-s‘-'sq);

1,k = Sael K Avii e T 1Lk

one obtains the relations in the form

-1 , - . =
(&) AR,k = A£—1,1A£~l,k+1A£~l,l (L= 2,3,...,0+1l; k = 1,2,00054)
between the AQ K by the usual method after using the identities
Aﬂgq = Aﬁwl,l' Tn this, the second indices are taken modulo g. One

obtains from {(6) the equations

j E
(6%) il jemj (QE]Aﬁsl) Ay oA
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It follows from this, that,for k = j + 1,

j+1 ]
A I A

2,1 P13+ ey B1

and therefore by repeated application of this relation, we get

Taking (5) into consideration, then for j = r it follows from (6%) that

(6%%) g = L"l

1,k-r Spr1, kb T L2seea),

while all other Ai and all other relations from (6%) can be

Jk

eliminated.

. : ot .
With the aid of (6%**) we now eliminate the Si,k from Rn+l,k'
We denote the elements Sn+l,k by Sk. For brevity, we set
(7 L (1t =qt and 1= ﬁ 3
ntl = Q n Gy A

In addition to equations (3) and (4), we cbtain as the defining relations

of W the following:
qr

(8) Re1,0= 71 Eq Sy
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and

R R | _
(9) Rn'l'}.,k - Sk‘Hﬁ‘QSkQ (k = 1’29' "9q)-
1t follows from (9) that
= n9e o749
(9a) Sk Q SkQ .

We will now show that S can be expressed in terms of Q and

i

Ln+l' To this end, we observe that by (9)
t -t

(10) Sk+tr = Q SkQ

and hence taking (7) into consideration

ot -t
Sr+trsrml+tr"'sl+tr = QL -,
s s S S g, = g oM = ottt = oLt
trotr-1°"" " Ytr-r+l7 (- "7 gmtol . - ©Tntl”
Now, let
(11 a=pr =Kq + 1;

then, on the one hand,

1

. oD
Sy = QL
1=a




106 KNOTS AND GROUPS Ch. ITI, 511

and, on the other hand,

Therefore,

- PP —K
(12) Sl =0 Ln+l T1 .

Henceforth we consider equation (7) to be the definition of the
new generator Q and we therefore eliminate the generators Si' Next,

by (10) and (11), we can set
Sppr = @5

and

s =0 s o n=2,3,...,0.
L 1
If we introduce these expressions into Rn+1 1c* there arise relations
b
that follow from (9a) with k = 1, There consequently result from (7),
(8), (9) the defining relations
ro-1,.~-p

T BN I RN . ro-l ~1
(13) Ry =Ty Q7Q S0 Ry = Q @ 57 Loy

and

RS N PR |
(14) R} = 51 Q's,Q 7.

o

-
SEaRa
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We now use (12) to eliminate S1 from (13) and (14). Then observe that

L and Tp commute (by (3) and (4)). We obtain from {13) that

n+l

qu - 1P r}{,;<q+l, Qrp~l - L—pr+1 TKr

n+l 1 n+l 1?2
oy, by considering (11}, that
ap _ 79 EP G _ 10 YK
Q Coer T Q Ty T

These two equations can be replaced by the one equation

(15) ¥ = 179 Tt

Since (15) holds, so does (14).

The calculations are similar for r < 0, We therefore obtain:

k

The group of the parallel knot qu is generated by the elements T

(k = 1,2,...,n) and Q and has for defining relations
i -1 B !
Ri(Tk> = T;0 Tl(i) Ti Tl(i)’ (i = 1,2,...,0),
(16) S

R I .
REQT) =Q "Ly 1y

The R, (Tk) arise from the relations (2) in 83, Ch. III, of
the group of the original knot by replacing each Sk by Tk' Ln+] is
gt ) “ L By ’ - m
defined by (2%). ln+l is equal to 11.
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812. The groups of torus knots

The groups of torus knots are obtained as a special case of the
result in 811, Ch. III. As the carrier of the torus we take a double
point free projected ¢irecle; then the group of the torus kanot with q
strings with twisting number r 1is generated by Q and Tl’ and since

= . - o qnT
Ln+l(T) 1, the group has the one relation R Q Tl'

Concerning the structure of thig group {{32]), it is easy to

establish the following: Qq Tt commutes with every element of the

1
group, and if Z 1is any element that commutes with each element of the
group, then Z = qu (k = 0,21,...). Therefore, the subgroup generated
by Qq = TE is the center 7 of , Hence, the quotient group
F = W/Z is a group with generators Q, Tl and with defining relations

It is the free product of the subgroups generated by Q and Tl
respectively. It would be easy to miss the further possibility of
representing F as a free product of finite cyclic subgroups. The only
elements of finite order in F are namely
1

WorWt and WT};w"

(W arbitrary; i = 1,2,...,q~1; k = 1,2,000, )] - 1),

We deduce from this that the relatively prime numbers q and ]rl, as
the maximal order of the elements of finite order, are characteristic

numbers for F and hence for . Furthermore, the automorphisms
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of F and hence those of W can be completely determined; the latter
have the form

; ' g -1 ' Eer— .
(L Q' = wWow 7, Tl = WI W (W arbitrary; ¢ = +1),

One can use these facts to completely classify torus knots. It
is easy to see that two torus knots that are twisted uniformly with
q=a, |r| =0, orwith q="5b, |r| =a are isotopic. Consequently,
two similarly twisted torus knots consisting of q respectively q'

strings and with twisting number = respectively r' are isotopic if

and only if q = q' and r = r' or q = ;r'I and |r| = q'.

In order to complete the classification of torus knots we will
also show that knots which are twisted in different ways but have the
same number pairs q, |r| are not isotopic ([16],[32)). Since a knot

corresponding to q,r that is twisted to the right is the mirror image

of the knot with ¢, -r; thus, we assert that no torus knot is

amphicheiral.

it follows from the definition of T1 in (1) of §11, Ch. TIT,
that in a torus knot the element defined in (2) from §4, Ch. III, is
Ln+l = Ti = Q“q. Thus the homotopy class that is associated with the
element Wqu—l = Qq can be represented by a path parallel to the torus
knot.

We now observe that Qq, represented by such a parallel curve

s induces an orientation of the knot, and hence Qq cannot be deformed

into an inversely directed parallel path.




110 KNOTS AND GROUPS Ch. IIT, 8§12

The collection of all group elements that correspond to paths

parallel to p and directed the same as § will be represented by

The collection of all group elements corresponding to paths parallel to

[ and directed oppositely to [ are represented by

where S is an arbitrary element of the group (I3],[9]).
Therefore, if P were deformable into an oppositely directed

longitudinal path, then we would have to have in the group [
Qq . WQ—qSkwml,

and hence, since Qq commutes with all elements, we would have

wskw"l = qu. On the other hand, by (12) in §11, Ch. TIII, we can choose
S equal to QDTIK; here Ln+l(T) which was defined in (12) of §11,

Ch. 111, is equal to the identity. It follows that (QDTIK)k represents
the identity element in F = W/Z , But that contradicts the fact

that F is the free product of the subgroups generated by ( and T1

respectively.
The proof of our assertion is now as follows: If k can be
deformed into its mirror image k' then there must be a homeomorphism

T of Euclidean space which carries k into itself and reverses the
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orientation of Euclidean space, That is, T is the extension to
Euclidean space corresponding te the deformation that carries Lk onto
its mirror image k'. But such a mapping does not exist. For, if we
let

A(Q) = Q') A(Tl) = Ti

be the automorphism corresponding to such amapping T of k onto itself,
then, by (1), we have

Q' = wetwt, T = miw‘
If & = +1 then the directed knot k is mapped onto itself with
preservation of orientation; for, Qq, the curve parallel to the knot
that is directed the same way, goes to Q'q = Qq, that is, into itself.
The curves which link around k once in the positive sense, again go to
such curves, since the residue class KQ’OTiK relative to the commutator
subgroup K goes to itself. Consequently, the corresponding mapping
must preserve the orientation. But if £ = -1, then the directed curve
k dis mapped onto itself with reversal of the orientation; but also a
curve which is positively linked is mapped to a negatively linked curve,

and the orientation is therefore again preserved.

§13. The L-polynomials of parallel knots
Using the group-theoretic interpretation of the L-polynomial, one

can obtain the L-polynomial by means of group calculations.
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We give here the calculation of the L-polynomial for parallel
knots which were considered in 8§11, Ch, TIIL, and also in ([14D).

Instead of the Ti we introduce new generators Ti = EiT and

i
~f

replace formally TREiTl by Eiﬂ (1 =1,2,...,n3 &= 0,%1,...)., If

1

the Ti are made commutative, then it follows from R(Q,T() in (16) of

§11, Ch. III, that

(1) o = I e

=
[ e Y]
1
™
I
=

Therefore, in W _,
qr

(2) Q!

W(E TE“*r.

iR)

It follows from (1) in §11, Ch, III, that T. belongs to the residue

1
class K _s% of the commutator group K in W _, where S
qr qr qr

represents an element that links once. It follows from (2) that Q is
in the residue class qusqw+r. Since ¢ and r are relatively prime,

0 and T1 can be replaced by a pair of primitive elements En+l and

S1 from the free group generated by (@ and Tl where also En+l

belongs to K and S. belongs te K S. Then
qr L qr

) ) qurtr
(3 Q= QE 158 = W(E L, 2%
and

_ . q
(4) Ty = T Eys8y) = Wo(B Ly 8y

3

Sl St

S

L s T
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with
- ot -4 .
En+ls9* B Sl.EfH'lSl * (L = 0,%1,...).
In order to form qu(x), we set
s,E.87h = EY (4=1,2 +1)
l j.. l - i 1 = > ,-..’n ,

X ) . \
make the Ei commutative, and determine the form of the new matrix.

Since

e S fq., .~0q.~1
g o= TYB(T)" = Wa(B 4y )8 7E;S TSR 4y )
(i = 1,2,...,n)
in qu(x), we have that
fq
¥
EiR Ei .

Therefore using the relations (16} from §11, Ch. III, one obtains the

exponent matrix belonging to qu(x) {defined in §6, Ch. III) by

q

replacing x by =x' in the exponent matrix of the group K(x) of

the original knot, and then adjoining a new column corresponding to En+l

and a new row corresponding to the new relation R(Q,Ti). En+l really

appears only in the new row.

Now it follows from (2), making use of (3) and (4), that

3

g, qurty .
)8/} {w, (1

; QW =9 | u(E . . qutr =g
Wk T Q WEE )+ Twy ey )8y 08y

+1
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hence the expoenent of En%l is dindependent of W(Eiﬁ)’ gsince therein

the index i rums only from 1 to n. Tt follows further from the

definition of wl and w2 in (3) and (4) that: The exponent of En+l

is the L-polynomial of the torus knot that has (¢ strings and twisting

number quwtr. Thus, if F(x) is the polynomial of k and qu+r,q(x)

is the polynomial of this torus knot, then the polynomial corresponding

to k is
qr

; = dy .

(5) RS ICOIE SN COR

The evaluation of qu+r,q(x> yields a cyclotomic polynomial

{Xq(qw+r) - 1 {x -~ 1)

4 utr () = {(qur) :
4 2! (xF - 1} {x qu - 13

By means of (5) one can recognize the numbers g and qutr
of a parallel knot to be invariants, when F(x) possesses a factor
Q(x) # 1 which is not a cyclotomic polynomial. Furthermore, (5) yields
an algorithm for the calculation of polynomials of cable knots. From
these polynomials one succeeds in reading off for the similarly twisted
cable knots of the s-th order the characteristic series 4ysTy
(1 =1,2,...,8) which by &8, Ch. 1, characterize the construction of

these knots, and consequently the polynomials completely classify these

knots ([14]).
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§14. Several special knot groups

The generator T1 used in 8§12, Ch. III, for the group of the
torug knot can, by §11, Ch, III, be represented by a path which
links once the torus on which the knot lies, Corresponding generators
can be introduced for a knot which lies on & surface cf a higher genus p.
The knot will be situated to meet each line of a parallel bundle in at
most two points. For such a knot, there is always a system of pt+l
generators of which p correspond te paths which link the surface., A
knot, whose projection determines m finite black regions, can always he
situated on a surface of the above-mentioned sort of genus m., Of the
w1 generators mentioned, there are m elements Ti which by (5) of
§3, Ch. TII, are assigned to the black regions, while the last generator
corresponds to any path which goes exactly once through the cylinder =z
defined in §9, Ch. III.

Using these generators, one can, for example, easily determine
the group w2 for an alternating pretzel knot and the group W§ which
arises from w2 upont adjunction of the relation H = 82 = 1 ([27]).

If there lie a, (i = 1,2,3) overcrossings on the three two-stringed
braid parts of the pretzel knot, then W§ expressed with the appropriate

generators U, (i = 1,2,3) has. the relaticns

.1 2 I 3 =
(1) Ry = U0, % R, =T, " Uy7, Ry=TU,U,0U,
ay a, aq
In case all a,; > 1, then U1 = U2 = U3 generate the center Z of

wg; the quotient group F= wg/ 7 can be represented by a discrete

transformation group of the plane. The a, arise as the characteristic
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numbers for F and consequently as invariants for the corresponding
knots. Since alternating pretzel knots with the same number triple a,
(independent of the order) are isotopic, the complete classification
of these knots with a, > 1 s reduced to the question of which of these knots
are amphicheiral.
The calculation of the L~polynomial for alternating pretzel knots
is further facilitated if the generators are chosen as above ([291).
Here it is essential to distinguish two cases, according as ay + 32 + aq
is even {case 1)} or odd (case 2), We restrict ourselves to knots with
a, = 1. Then, in case 1, both a and a are odd. If we set

3 1 2

a, = 2@i + 1 (i=1,2), B = (al + 1) (uz + 1),

then

2) L(x) = - 8 + (28 + L)x - Bx°.

In case 2, let, say, a be even and equal to Zul and let a be

1 2
odd. The L-polynomial has the degree g = 2, + 1, and
g-1 i
(3) L(x) =6, + a.x5 + (a, +1) & (-x)".
1 1 1 -1

In case 2, it follows that a and a turn out to be knot invariants;

1 2
in case 1, on the other hand, we obtain only that £ is a knot

invariant which fact can also be determined from the second torsion

nunbers.
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For the figure eight knot (a, = 2, a, = a, = 1}, the commutator

1 2 3

subgroup is a free group with two generators; consequently, the word
problem can be solved for the group of the figure eight knot ([29]). The
automorphism group of the figure eight knot group deserves special notice
since the figure eight knot is amphicheiral ([16},[23]).

For a different example, assume that we have a knot where as a
consequence of relations (2) from &3, Ch. III, all Si except for two,
S and 8", can be successively eliminated. Hence in this case only one
relation

R(S,8") = 1SL Ys'™1  with L = L(S,S")

-1

remains. Instead of §' we introduce X = §'3 and then obtain

1.-1

(4) R(S,K) = LsL i Tk with L = L(S,K)
as the new defining relation. We will now show: If one adjoins the
relation 52 = 1, then there arises from [ a group % which is

isomorphic to a dihedral group. It follows from (&) that

(5) ksks = 1s.7ie7l . sterieTt s = 1t
. 2 . , . i
Hence, if S = 1, we can bring all elements either into the form K
X . e te ,
or into the feorm SK°. If we now set L = K or L = SK™7, then it
follows that
(6) S2c+.]. -
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In this, we can assume that 2ct+l is greater than zero; if ¢ 1is
greater than zerv themn 2c¢c+l is the second torsion number of this knot,
The plaits with four strings defined in 86, Ch. I {and the pretzel knots
with a3 = 1, which can by 86, Ch, I, be deformed into plaits with four
strings), yield examples of such knots ([30]).
If the knot k has two composite parts, kl and kz, then the
group of k is isomorphic with the free product of the groups wi of ki
(i = 1,2) with amalgamated subgroups ([331); the amalgamation subgroups
are infinite cyclic groups which are each generated by one of the elements defined

S (1) L(2)

respectively 8 from W respectively

in (1) of §3, Ch. IIIL, 1

W, .
2
In order to investigate links more closely, it is expedient to
consider the quotient group of higher commutator groups (I1]). Thus one
can recognize, for instance, that links which are plaits with four strings

consist of linked curves (Fig. 16) having intertwining number zero, hence

then the linking number defined in §1, Ch, II, is also zero.

§15. A particular covering space

From each group of permutations p which is the homomorphic
image of the group W of a knot one can construct by 8§10, Ch. III, a
corresponding covering space Y, whose properties are characteristic
for the knot. We consider one exampie of such a covering space for an
arbitrary knot whose group can be generated by two elements K,S with
the defining relation (4) from §1l4, Ch. IIT ([30]).

1f the 2c+1 defined by (5) of 8§14, Ch. IIT, is not 1, then let

K rtespectively § correspond to the permutations
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()
D)

m*

7
{r’
/; - otl,ct2
"y o= \\ . °
2c41,2 ct2,ctl
Clearly, m¥* and T generate a dihedral group P. Suppose that the

permutations g (i = 2,3,...,n) corresponding to the generators (1)
of §3, Ch, IILI, have been calculated and that the covering Y has been

constructed according to the rule in 510, Ch. III. We assert: In ¥

there lie ¢ + 1 curves k(l) over the knot k, Let zy be the piece

of surface of the cylinder in the knot complement A that corresponds

te S.. If w 1is a path that plerces =z once and if A is a peint

1 1
on w, then there are 2¢t+l points A(l),...,A(2c+l) in the covering
space over A, and c+l different closed curves over W, That is, if
(1) (D

we go out from A along the path w that lies over w, then

R&
(1)

another point A , then we veturn to the initial point after a two-

we return to after a one-fold covering of w. If we go out from

fold covering of w. In the preceding, the curves which one desgcribes

going out from A(z) and A(2C+l), from A(g) and A(ZC), etc., are

2 +
the same. We shall call them w( ),...,W(C l).

Now  ThyeeesT arise from Ty by conjugation with =%, there-
fore they are constructed analogously, and hence one can construct

exactly ¢ + 1 such covering curves over each path w that pierces any

cylinder piece Zy - But each of the transpositlons of a “i arises
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under this conjugation from a specific tramsposition of My Conse-
quently if we shove w along the entire knot so that it returns to its
initial position after describing a knotted torus with k as core, then

the c¢+l accompanying liftings also describe ¢+l disjoint tori which

close when w again reaches its initial position., We dencte by k(l)

the curve over k that links the path w(l) once.
By §10, Ch, III, the edge path group TF of Y with the base

(13

point A is isomorphic to a subgroup Ul of . U, consists of

1

those elements of W which correspond to permutations from [ which
send the symbol 1 to itself. The identity element and the KQ(R =
1,2,...,2c) are a complete system of representatives of W/Ul. The
procedure given in §6, Ch. I1I, for determining subgroups ([27],[33])

gives as generators of Ul and hence of T

~m.
3

i +
(1) U, = KSK T = Aot

U2c+1 (i =0,1,...,2¢c)

and gives as defining relations
i

(2) xiR(slx)K“ =R, (W) = 0,1,...,2).

In this, m, = 2¢ + 1 - 1.

F is the group of a link consisting of ¢+l curves., In order

to show this, we introduce mew generators in place of (1) and indeed
generators that correspond to curves each of which link once, exactly

one of the liftingsof the knot.
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The generator S already has this property. We assert that

instead of the remaining generators we can introduce as generators a

finite number of elements

(3) 0.8°q, (L = 1,2,...,1).

A1l elements of the form (3) belong in any case to F since the corres-
ponding permutations are all equal to the identity which is due to the

fact that ﬁi = 1,

But by (5) of &l4, Ch. III, since 82 = 1 41t follows that

2et+1 -

in W, K 1, KSKS = 1, and hence that

gitlgpdtlpy-ige=i o 1 (4

1l
'_-I

., e = 1),

These expressiocns can therefore be written as products of conjugates

of 52 and of conjugates of the relations (2}, The latter are egual to

1 in the knot group, and if we omit them, then we obtain

K1+ISK1+1K—1SK—1

expressed in terms of finitely many lelel.

and K2c+l

These equations (as do all relations in () also hold in |, and

if we introduce on the one hand these QlSZQ}__l and on the other hand

E2RE k= 1,2,..0,0)
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Ch. II1%,

as further generators, then we can determine successively from KS8KS,

and KHISZK firast KSK and then K—lSK_l and from K2SK2K—1SKH1

y

2,2

< 25%%k?  First KOSK 2gp2

and then K~

all generators (1) in terms of the new generators QiszQ;l,

and [K2C+l]; finally,

[K2C+l} is eliminated.

But now we can give certain relations between the new generators.

SK “, ete. C(learly, we can represent

K“kszxk,

If Ql belongs to the coset modulo F  represented by qu then
lequl _ ng—qqulSZKMqqulQll _ QqulszK‘qlqi-z
where Q? belongs to F. Now if
0,570,
is an element where Q2 belongs to the same coset as qu, then one
seeg that for suitable Q§ from F,
But one can furthermore see that
QlSZQIl - MstnglM“l
holds in F, where M belongs to F. If Ql beiongs to the

coset kY and Q2 beleongs to the coset FK—q, then
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Is%™9 = gIskd .+ k928 . 9579,

Hence, if we now adjoin the ¢+l curves over the knot k to the
. . 1.2 -1

covering space, then we must certainly set 5§ =1 and K SK 7 =1
(i =1,2,...,¢). In fact, it then follows from the statements just made
that the resulting group becomes the identity.

It can be conjectured that all closed curves of Y can be
deformed so that they run around in the interior of a particular cell.
1 (1)

Specifically, the curves over k and all curves which correspond

to the generators of I can be so deformed. Consequently the group F

(1)

is in fact the group of a link. If we eliminate all the curves k

k(l), then all generators with the exception

L (D)

with the exception of

of 8§ equal 1. One can therefore conjecture that is unknotted,

Examples of knots with generators 8, K, and one defining

relation (4) of 8§14, Ch. III, are the plaits with four strings given

in 86, Ch. I. A closer investigation is fruitful for the alternating

plaits with four strings. Here, it turns out that the groups of the
k(l) are free groups with one generator ([30]); the linking

(1) L @)

curves

numbers1 Vi T Vi of each pair of oriented k are equal

is

to £2 oxr O Vi is always equal to #2,

Other invariants of these knots can be obtained from the matrix

(ViR)° Thus, for example, the sequence of the sums
o+l
Qil iviﬁt - P

lC. Bankwitz, unpublished.




124 KNOTS AND GROUPS Ch, TII, §15

which states that k(l) is linked with v, curves. The linking

relations can be expressed by constructing a graph with ¢+ points
P(l) in which each pair P(l), ?(ﬁ) is connected by a segment if and
only if Vi # 0.

Using the invariants v, one can show that a and a are

1 2

. 1 : .
characteristic numbers™ for the alternating pretzel knots where a, = 2@1 + 1,

1

a, = 2a2+l, ay = 1 are the overcrossings on the two-stringed braid parts.
From this it fellows that the knots 74 and 92 of the table are not
isctopic. Also the knots 814 and 98 can be deformed into plaits with

four strings (Fig. 15) and proved to be non-isotopic with the aid of the

vy The A have the following values fox:

4

92: 7, b6, 5, 4, 4, 3, 2, 1

814: 15, 12, 10, 10, 9, 9, 8, 8, 8,7, 7,7,06,5,4, 3
98: 15, 12, 10, 10, 9, 9, 9, 8, 8,7, 7,6, 6, 5, 5, 2

Furthermore, the knots 928 and 929 can also be recognized to
be non-isotopic by constructing a suiltable three-sheeted covering
space, The signs of the vy, are also characteristic when one uses the
orientation of k to induce an orientation on the lifted curves k(i).

From this there results a method for proving that the mirror images of

alternating plaits with four strings (hence in particular, also of

lC. Bankwitz, Uber die Torsionszahlen der alternierenden
Knoten. Math, Ann. 103 (1930) 145-162.
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alternating torus knots) are non-isotopic. For alternating torus knots

the curves k(l) form a torus link.
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The table of the following knot projections, up tO wine overcrossings,
wils Laken From the work ol ALEXANDER and BRIGGE 151, Thoe curves 84 and

97 for which the number of overcrossings did not agree Lave been improved.

Bu
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Covering spaces §6, 118

Crossing of the k-th and (k+1)-st strings of a braid
Cyclotomic polynomial 114

Cylindrical braid 16, 17

Cylindrical braid (with twisting r) 17
Dehn's lemma 26

Deformation of a link. 2

Deformation (of a polygon) 1
Deformation of a projected curve 6

Deformation of an open braid 71

115,

16
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INDEX

Determinant, irreducible 52

Determinant, irreducible components of a 53
Determinant of a knot 33

Dihedral group 117, 119

dij (the number of double points in which Ti and I&

are contiguous) 34
Double points 3
Edge path group (of a knot) 27, 90, 92

Elementary (matrix) transformations (£.£.1, £.£.2,

£.£.3, L.E.4, £.E£.5) 67
Equivalent (open) braids 71
Euler—Poincarg characteristic 25
Exponent matrix 87, 89, 113
Figure eight knot group 117
Fundamental group of the complement of a knbt 90
Gleichsinnig verdrillt 16
Group, dihedral 117, 119
Group, edge path (of the complement of a knot) 90, 92
Group elements 73
Group, fundamental (of the complement of a knot) 90
Group of a knot, W 76
Group of a link 76, 120
Group of a parallel knot 99
Greup of a torus knot 108
Groups, amalgamated 118
Half-cylinder 92

Homotopic, null 92

137




138

INDEX

Homotopic paths Gl

Hyperboloid of singular projection directions

Incidence number, n 31
Intertwining number of a link 26
Invariance of the knot group 79
Invariance of torsion numbers 35
Inverse knot 2, 83

Irreducible components of a determinant
Irreducible determinant 52
Isotopic links 2

Isotopic polygons 2

Isotopic systems 2

Knot 2

Knot, alternating 6

Knot, amphicheiral 2, 109

Knot, cable 24, 75

Knot, cloverleaf 11

Knot, figure eight 117

Knot, inverse 2, 83

Knot, oriented 2

Knot, parallel 23, 99, 111, 114
Knot, pretzei 11, 33

Knot, prime 12

Knot property 2

Knot, s-th degree cable 24

Knot, symmetric 2

53




INDEX

Knot, torus 18, 85, 108, 109

Knot, trefoil 11, 75

Knotted polygon 2

Knottedness, measure of 25

Knotting number 4, 26

Legendre symbol 48

L-equivalent matrices 67

Link 2

Link, order of a 2

Link, torus 18

Linking number 4, 26, 27, 123
L-~polynomial of a knot 63- 68, (table) 70
L-polynomial of a parallel knot 111
L-polynomial of a torus knot 114
L-polynomial of an alternating pretzel knot
Matrices, L-equivalent 67

Matrix (céB) 31

Matrix (cgg) 27, 88

Matrix (aik) 31

Matrix (Qik(x)) 63, 85

Matrix (bik) 31

. L
Matrix (bik) 31

h
aB

. . ;
Matyix (akﬁ) 33

Matrix (b ) 31

Matrix (Vik) 123

Measure of knottedness 25

116
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1490 INDEX
Minkowski's units, Cp 46-5]
Minkowski's units (table of) 51
Mirror image kmot 6, 83
m{k) 25
Non-compact regilon, TO’ of a subdivision 10
Normal knot projection {(for two regions) 13
Normal projection 13
Normalization of a projection 3
Normalized Alexander polynomial 63
Null homotopic 92
Number, incidence 31
Number, intertwining 26
Number, knotting 4, 26
Number, linking 4, 26, 27, 123
Number, second torsion 38, 39,118
Number, third torsion 39
Number, torsion 30
Number, torsion (second) 38, 39, 118
Number, torsion (third) 39
Open braid 15
Operations (on a polygon in Euclidean 3-gpace): A, AT

Operations (on a projected polygon):
(A.7.1,2) 6

(0.1, 2, 3, 4, 5 6, 7, 8, 12, 13, 14
R'.1, 2, 3) 8
Operations (on a closed braid) 18
Operations A.C.m 71

Operations (Q.7.2,8.0.3) 72

1




INDEX 141

Operations (on the edge path group): A.g,A'.o 91

Operations {(on a projected braid) 17 ; :

Operations {(in covering spaces): A.v 98

QOperations {A.z, A'.z) 71

Operations (0.1¢,R.20,0.18,0.2R) 40, 42

Operations (I.1, %.2, ©.3) 46, 47

Order of braid 17

Order of a link 2
Orientable surface 10

Orientation in the projection plane 28

Oriented koot 2
Overcrossing point 5

Parallel knot 25, 99, 111, 114

Parallel knot, group of a 99

Parallel knot, L-polynomial of a 111

Parallel projection 3

Plait with four strings (Viergeflecht)} 18, 21, 118, 123
Point, overcrossing 5

Point, undercrossing 5

Pretzel knot 11, 38

Prime knot 12

Principal minors {(of a determinant) 52

Product of two classes 73
Projection, alternating (knot) 5
Projection, normal 13

Projection, normal (for fwo regions, Fi and T 13

"




INDEX

Projection, parallel 3

Projection, regular 3

Projection, schema of a 4

Property, knot 2

Quadratic form (of a knot) 40
Quotient group 76

Regular projection 3

Regions (white and black) 10

Schema of a projection 4

Second commutator group of a group 77
Second tersion number 38, 39, 118

S:s s;l [braid with overcrossing (undercrossing) stringl
Singular points of a projection 3
Singular projection directions 3, 4
s~th degree cable knot 24

Strings of a braid 16

Subdivision of the projection plane 10
Surface spanned by a knot 10, 25
Symmetric knot 2, 22

Table of torsion numbers 39

Theorem of Bankwitz 56

Third torsion number 39

Torsion numbers 30, 38, 99

Torsion numbers, h-th 30

Torsion numbers, invariance of 35
Torsion numbers, table of 39

Torus braid 18

72




INDEX

Torus knot 18, 85, 108, 109, 114

Torus knot, group of a 108

Torus link 18

Transformation problem 71, 74
Transformation of a projection direction &
Transformations (A.E.1, 2, 3, 4, 5) 67

Trefoil knot 11, 75

Twisted uniformly (gleichsinnig verdrillt) 16, 18

Unbranched covering space 96, 98
Undercrossing point 5

Units of a quadratic form 47
Unlinked polvgeons 27
Viergeflecht 18

Word problem 71, 74
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