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Gauss gave an integral formula for the linking number of two disjoint closed
space curves. By studying the limiting behavior of this formula as one curve
approaches the other, G. Célugireanu [5, 6, 7] discovered an integer invariant
for a single simple closed space curve. We give here a new, clearer, and much
simplified treatment of his results on this invariant.

1. Let us consider two closed oriented curves in ordinary (real) space
f1: C, — E® and f, : C, — E?, where C, , C, denote distinct circles and f, , f,
are differentiable of class C*. We assume that f,(C;) and f,(C,) are disjoint loci.
We may regard C; as the boundary of a disc D, which we assume oriented
compatibly with C; . By the Thom Transversality Theorem f, extends to a C*
map f; : D — E°, the singularities of which are of dimension 1 or less in D, and
so that the image of the singularities does not meet f,(C,). We assume that
E? is oriented. The linking number of the two curves, L(f, , f,), is defined to
be the intersection number f,(D)-f,(C.). Note that this number is independent
of the extended map f, : D — E?; for if another such map f; were chosen, then
since f{(D) — fi(D) is homologous to zero, we have

0 = [fiD) — HL(D)]-2(C) = fi(D)-f2(C2) — f(D)-f2(C)-

In order to give an integral formula for the linking number it will be con-
venient to assume that f,(C,) intersects f;(D) transversally, and hence in a
finite number of points z;, = f,(d)) = f.(cL), * -, 2y = fi(dy) = fo(cy). (This
can always be achieved by a small alteration of the map f, on the interior of D.)
To each point (z, y¥) € D X C; other than (d, , ¢;), +++ , (dv , cx) We associate
the unit vector e,(z, y) directed from f,(z) to f.(y). We surround each (d; , ¢;)
by a sphere Z; in D X C, which contains no other (d; , ¢;) and which does not
meet the boundary of D X C,, that is C; X C, . Let dS denote the pull-back
of the element of area on the unit sphere S* under the map e, . Note that d(dS) =0
since dS is the pull-back of a 2-form defined on a 2-dimensional manifold. We

* Research supported by the National Science Foundation under Grant GP 5760.
975
Journal of Mathematics and Mechanics, Vol. 17, No. 10 (1968).



976 WILLIAM F. POHL

orient D X C, in the canonical way. By Stokes’ Theorem we have

f iS=-3 [ ds.
C1XC32 i Zj

But the j-th integral on the right gives —4r times the intersection number of
f1(D) and £.(C) at (d; , ¢;) [1]. This proves the Formula of Gauss:

L(fy , f2) = 417“_[ ds.

C1XCs

This integral is called the Gauss Integral. Let us note that if C;, and C, are
interchanged then the orientation of the product is reversed and e, , and hence
the integrand, is just reversed in sign. Consequently the integral is unchanged
and we have L(f, , f) = L(f,, f.). We note also that L(f, , f) is just the degree
of the map e, : C; X C, — S°. And finally the Gauss Integral does not involve D,
which shows again that L(f, , f,) is independent of the extension f, : D — E°.

The Formula of Gauss enables us to study the behavior of the linking number
under deformations. First, we observe that if f, and f, are smoothly deformed
in such a way that the curves never meet, then the integral changes in a con-
tinuous fashion but the linking number remains integer-valued. Consequently
the linking number must remain constant. However, if the curves are deformed
in such a way that an arc of one passes through an arc of another then the
intersection number f,(D) - f,(C;) will change by =1 (a circumstance which might
be used to define the passing-through), and hence the linking number will
change by that amount. This implies that the Gauss Integral jumps by 4.
We can derive some analytic information from this. Let fi; , foe , 0 < t £ 1,
denote smooth deformations of f; and f, respectively. (For fixed ¢ we assume
that f,, and f,, are closed curves of class C'.) We assume that in the deformation
only a single passing-through occurs. Analytically this may be expressed by
saying that there are points z, e C; , 2, € Cy , to £ [0, 1] s0 that if f;,(x) = f..(y),
thent =t,,2 = 25, and y = ¥, , and that a passing through actually occurs at
t = & . We may surround (z, , %o) € C; X C, by an arbitrarily small square Q.
We can set

47|'L(fu ) fzc) = Ia = Ilt + Ize,

where

I, = deS and I, = f”c a8,

Now I,, varies continuously in ¢ throughout, so that as ¢ goes through ¢, the
jump of I, must occur entirely in I, .

We shall now reinterpret the Formula of Gauss to give another way of finding
the linking number. Locally on C; X C, let us associate smoothly with every
point unit vectors e, , €3 , which are perpendicular to one another and to e, ,
and so that e,e.e; is a right-handed frame in E°. Let w;; = de;-e; . Then since
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e;-e; = §;;,we find by differentiation that w;; + w;; = 0. By expanding d de; = 0,
we obtain the equations of structure:

3
dw.—; = Zwik A Wi o

k=1
It is elementary that
dS = wia A\ wz = dwsg .

This shows that if e.e; could be chosen globally on C; X C; in a smooth fashion
to complement e, , then dS would be exact, and hence L(f, , f;) = 0.

There is, however, a natural choice of frames in general. Let us assume that
f1 is differentiable of class C* and free from cusps. For each (x, y) ¢ C; X C,
at which the direction e,(z, y) and the positive tangent vector to C, at z, fi(z),
are in general position, we consider the plane spanned by e,(z, y) and fi(x)
with orientation e;f] . Let e, be a unit vector in this plane normal to e, and so
that e,e, agrees with the given orientation. The third leg of the frame is com-
pletely determined: es = e, X e, . Where this construction becomes indeter-
minate, that is, at a point (z, y) € C; X C, such that the tangent line to f, at
z contains f,(y), we shall call (z, ¥) a cross tangent of f, with respect to f, .

Now the totality of tangent lines to f; forms a developable surface, called the
tangent developable of f; . Let us now assume that the curvature of f, never
vanishes. This will guarantee that the tangent developable is an immersed sur-
face everywhere except at f;(C;) (which is called the edge of regression). Let us
also assume that the curve f, crosses the tangent developable of f, transversally
and note that a point where such a crossing occurs is just a cross tangent of
f, with respect to f, . It follows that the cross tangents are finite in number, say
@, ), -+, (@x , Yu). We surround each cross tangent by a box of width
& B, = {(&, ) eC, X Cy| | — 2| = ¢ |y — y:| = €} with e taken small
enough that B;, contains no other (z; , y;).

Let A;. denote the boundary of B;. . On C; X C, — \UB,, the frames de-
seribed above are well-defined, and we may apply Stokes’ Theorem:

0 [ as=1m %[ .

€0 i

We assert that in the limit the integrals on the right are integral multiples
of 27. To prove this we apply the operation of directed dilatation [4] to each
(z;, y:) £ C; X C, ; that is, we replace each (x; , y;) with the circle of oriented
tangent directions Z; to C, X C, at (x; , y;). In this way we obtain a manifold
with boundary consisting of 2, , -+, 25 . We assert that the frames defined
on Cy X Cy — {(xy, ¥1), -+, (@®xr , Yu)} extend smoothly to the boundary.
To prove this we take power-series expansions of f; and f, in neighborhoods of
z; and y; respectively. We take the origin of E® at f,(x;) and we let s, , s, denote
arc length on f; and f, respectively, so taken that s;(x;) = s,(y;) = 0. Let
€0 = = e, (x;, Ys), €0 , €30 denote the tangent, principal normal and binormal,
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respectively, of f, at z; , and let ¢, denote the positive tangent to f, at y; . Then
f)(sl) = 81610 + %stezo -+ 0(39
fo(s2) = £200) + 8280 + O(s2).

But f,(0) = Ney for some N\, and we may write to = @1€10 + 220 + ase5 - We
have assumed that f, crosses the tangent developable of f, transversally, and
since the tangent space to this developable along the tangent line to f, at x;
is spanned by e, and ez , we must have a; 5 0. Now e,(s, , S5) is proportional
to f2(s;) — fi(sy) and es(s, , s;) is proportional to

[fa(s2) — fi(81)] X fi(s1) = @sSs20 + (kAS; — 8:as)es0 + second order terms.

This shows that the direction of e; is dominated by first-order terms so that it
extends continuously to the boundary Z=; . The leg e, is well-defined and con-
stant on Z; ; and e, = €3 X e, . Clearly

lim W3y = Waz .

e—0 YA, Zs
But since e, is constant on Z; , ws, = Z=dp, where ¢ = £ (e;, e30). Consequently
the integral on the right is an integral multiple of 2, which proves the previous
agsertion. We call this integer the index of the cross tangent (x; , y:). From
Formula (1) we now obtain our first theorem: L(f, , f.) s equal to half the sum
of the indices of the cross tangents of fi with respect to f, .

As we have already observed, L(f, , f.) = L(f., f,). This gives our second
theorem: the sum of the indices of the cross tangents of f, with respect to f, equals
the sum of the indices of the cross tangents of f, with respect to f, .

In obtaining our first theorem we assumed that f, crosses the tangent de-
velopable of f; transversally, and in obtaining the second we assume moreover
that f, crosses the tangent developable of f, transversally. However, the results
are true without these assumptions, provided that the cross tangents are counted
according to the rules of the art of geometrical counting. Moreover the general
position can always be achieved by a small deformation of f, . Finally, the index
of a cross tangent is stable under deformations which preserve the general
position. We may deform therefore to some standard form, say f, a circle in a
neighborhood of z; , and f, a line in a neighborhood of y; . As one may now check,
the index of the cross tangent is just the local intersection number of f, with the
tangent developable of f, , where this developable is oriented in the following
fashion: in each tangent space, which is spanned by the tangent vector ¢ and
the principal normal at some point of the curve f, , we take nt as a right handed
frame, where 7 is the principal normal on the concave side of f, . Since the
intersection number is also invariant under the previous deformation we may
assert without qualification that the index of a cross tangent of f, with respect

to fz is just the local intersection number of f, and the tangent developable of f,
canonically oriented.
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Our first theorem may be approached more directly as follows. Let us observe
that the tangent developable of f, divides into two parts, the part swept out
by the forward, or positive, tangent rays, and that swept out by the backward,
or negative, tangent rays. We denote these parts by T, and T, respectively.
It is easily checked that the orientations of T'; and T', agree with the orientation
of C, ; let us recall that we have spanned f,(C,) by a disc D the orientation
of which also agrees with that of C, . Consequently T, — D and T, — D are
both homologous to zero. Therefore

0= (Tb - D)fz(cz) = Tb'f2(02) - L(fl ) f2)

and

0= (T, — D)'fz(Cz) = Tf'fz(Cz) - L(fl s f2)-

We call a cross tangent of f, with respect to f, a forward cross tangent if f, meets
the forward tangent ray, and a backward cross tangent otherwise. This gives
our third theorem: the sum of the indices of the forward cross tangents equals the
sum of the indices of the backward cross tangents and both sums are equal to L(f, , f2).

Our theory may be generalized in the following way. Let us consider the ruled
surface swept out by the principal normal lines, or by the binormal lines. We
may define forward and backward cross normals and cross binormals of f, with
respect to f, in analogy with our definition of forward and backward cross
tangents. Our proofs go over almost exactly and we obtain our fourth theorem:
the sums of the indices (suitably defined) of the forward cross normals, backward
cross normals, forward cross binormals, backward cross binormals, are each equal
to the linking number L(f, , f,).

2. The definition we have given of the linking number of two space curves
(which is in fact the standard one) requires that the two curves do not meet,
for otherwise the intersection numbers used in the definition are indeterminate.
It is therefore useless for defining a “self-linking number” of a single curve with
respect to itself. Another candidate for such a definition is the Gauss Integral.
In fact if f: C — E® is a simple closed curve differentiable of class C*, we assign
to each (z, ) e C X C, (x # y), the unit vector e,(x, y) oriented from f(z) to
f@). Let dS denote the pull-back of the element of area on the unit sphere under
this map. We call

[ as
cxXce

the Gauss Integral for f. However, as we shall see before long this integral may
assume a continuum of values, so that it does not define an integral “self-linking
number”. But our first theorem offers a point of departure. We consider a closed
curve f: C — E® which is differentiable of class C°, which is free from cusps and
double points (i.e. is embedded) and which has the property that the (second-
order) curvature never vanishes. We assume C oriented. We define the self-
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linking number of f, SL, to be half the sum of the indices of the cross tangents
of f with respect to itself. It is easy to see that this number is independent of
the orientation of C. Note that the discussion of the local properties of cross
tangents already given applies in the new context.

Let us give an integral formula for SL. Let S(C) denote the space of abstract
secant directions of the circle C. (This space was constructed in a canonical
fashion in [4]; it has been studied by Whitney, Lashof and Smale, inter al.)
S(C) is a differentiable manifold with boundary; the interior consists of C' X
C — A where A = {(z, 2)} C C X C, and the boundary is the unit tangent
bundle of C. It is constructed by replacing A in C X C with its bundle of oriented
normal directions, that is to say, by cutting C X C along A. The result may be
represented graphically in the following fashion. We regard C X C as the
Cartesian plane modulo points of the form (m, n), m, n integers. If we take the
parallelogram 0 < z £ 1,0 £ y — «z = 1 and identify the vertical sides by
©, ) = 1,1 + y) we obtain S(C) (Figure 1). To each (z, y) e C X C — A
we associate the unit vector e,(z, ) in E® directed from f(x) to f(y). To each
t € 3S(C) we associate e,(f) = {, regarded as a unit vector in E®. This map
e, : S(C) — §? is differentiable, as is shown in [4]. To each (x, ) e C X C — A
such that the tangent line to f at  does not pass through f(y) we associate
e;(z, ¥), the unit vector in the plane spanned by the tangent line to f at x and
the secant line f(x)f(y), perpendicular to e, and so oriented that e,e, agrees
with the orientation e;f'(z), where f' is the positive tangent vector to the curve
at 2. The vector function e, also extends smoothly to the boundary of S(C)

)
A

o,1)

| N
1 > Z

1,0

F1GurE 1.
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(as is shown in [3]), and gives there the principal normal of f lying on the concave
side of the boundary component consisting of the negative tangents and the
principal normal lying on the convex side as a positive tangent is approached.
Note that e, is undefined at the cross tangents. We let e3 = ¢; X e, . Let us
take the canonical orientation on C X C; this induces an orientation on S(C).
Let us now assume that f(C) crosses its tangent developable transversally
at the cross tangents. This guarantees that the cross tangents are finite in
number, (z, , ¥1), --- , (i , Yu). We surround each by a box B;, of width e
inC X C — A C 8(C), and apply Stokes” Theorem.

(2) f w1z A\ w3 = f wsz + lim Zf W3g »
8(¢) a8 (C) i JoBie

€0 k3

The integrals under the limit give the indices of the cross tangents times 2r;
consequently the entire sum gives 4vSL. Now 8S(C) consists of two parts,
the forward unit tangent vectors C(1) and the backward tangents C(2). Let
T:CXC— A—C X C — Abedefined by T(z, y) = (y, x); this map extends
smoothly to a map 7: S(C) — S(C). Now T reverses the orientation of C X

C — A; hence it reverses the orientation of 4S(C). It is clear that ¢,T = —e, ,
and as we have remarked, on the boundary e,T = —e,T. Consequently ;T = e,
80 that T*ws; = —ws, on the boundary. It follows that
f Wiz = W3z .
C (1) c(2)
But on C(1) the chosen frames are just the Frenet frames of the curve, so that
ws; = —7 ds where 7 is the torsion of f and ds is the positive element of arc on

the curve. And the induced orientation on C(1) agrees with that of the curve,
as one verifies by inspecting Figure 1. Consequently

f W3z = ""‘f Tds.
Cc (1) ]

Using these considerations, and the fact that w,; A w;3 = dS is the pull-back
of the element of area on the unit sphere under the map e, , we may rewrite
2) as
® SL=1 [ as+ o [ rds.

4 Joxe 2m Jo
This remarkable formula constitutes our fifth theorem. The first integral in
the formula is called the Gauss Integral for f, and the second integral is called
the total torsion. Observe that both integrals are invariant under reversal of the
orientation of the curve.

In establishing this formula we have assumed that the curve crosses its
tangent developable transversally. But any curve can be brought into such a
state by an arbitrarily small deformation, which will preserve the sum of the
indices of the cross tangents, and hence SL, and will disturb the integrals by
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an arbitrarily small amount. Hence the formula holds for any curve satisfying
our original hypotheses.

We have defined SL to be half of an integer; it remains to show that SL
itself is an integer. We shall give three proofs, and the first is as follows. We
deform the curve f by moving it up the binormal at each point a distance d
to obtain a new curve f, . If d is sufficiently small, this may be done without
passing the new curve through the original curve or through itself, and we take
d to be that small. This operation moves the curve off of its original tangent
developable. The sum of indices of the cross tangents of f with respect to itself
equals the sum of the indices of the cross tangents of f with respect to f, . Con-
sequently SL = L(f, f,) which constitutes our sixth theorem and proves that
SL is an integer. Note that the forwardness of cross tangents is preserved under
the operation so that by our second theorem we conclude that the sum of the
wndices of the forward cross tangents of f with respect to itself equals the sum of the
indices of the backward cross tangents of f with respect to itself, and both are equal
to SL. This is our seventh theorem.

Our second proof that SL is an integer is by homology theory. We identify
the special orthogonal group, SO(3), with all right-handed frames e;e.e; in E°.
Recall that the fundamental group of SO(3) is the group of order 2, Z, , and
that a generating curve consists of all eje.e; with e, fixed. Also the map
T : SOB) — S0(3) defined by T(eiese5) = (—e;)(—es)e; induces the identity
map on the fundamental group. We may identify the first homology group of
S0(3) with coefficients in Z, , H,(SO(3); Z,), with the fundamental group.
We now assume that our curve f has been deformed slightly so that it crosses
its tangent developable transversally and hence in a finite number of points.
We assume that the cross tangents have been blown up in S(C), so that S(C)
is transformed into a new manifold S*(C), the boundary of which consists of
C(1), C(2) as before and circles Z; . The frames defined on S(C) except at the
cross tangents extend, as we have shown, to the =; . We thus have a map
F : 8*(C) — SO(3). Now F(C(1)) 4+ F(C(2)) is homologous to zero in SO(3)
since one curve differs from the other by the map 7', hence are homologous,
and the homology group has order 2. But C(1) + C@2) 4+ =, + =, + --- is
homologous to zero in S*(C) since it forms the boundary. Hence F(Z;,) -+
F(Z;) + -+ - is homologous to zero in SO(3). And each F(Z;) gives the generator
of H,(S0(3); Z,). Hence the =; must be even in number. But the cross tangent
corresponding to 2; has index 4=1. Hence the sum of the indices is even, which
proves that SL is an integer. Our third proof that SL is an integer will be given
in the next §.

In proving (3) we could have chosen our frames so that e, is in the plane
spanned by e, and the principal normal at z, or in the plane spanned by e,
and the binormal at x. The frames become undefined when the normal (or bi-
normal) lines cross the curve again. As with the cross tangents we may assign
indices to the cross normals or cross binormals. Following the proof of (3) we
obtain our eighth theorem: SL eguals half the sum of the indices of the cross normals,
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and also equals half the sum of the indices of the cross binormals. Furthermore the
sum of the indices of the forward cross normals equals the sum of the indices
of the backward cross normals, and similarly for eross binormals.

3. We shall next investigate the behavior of SL under deformations. Let
us begin with some definitions. By a smooth regular deformation of closed curves
we mean a thrice continuously differentiable map H : C X I — E°, where C
is an abstract circle and I = [0, 1] is the closed unit interval of real numbers,
such that for fixed ¢, f,(x) = H(z, t) is a closed immersed curve. We call such
an H a non-degenerate deformation if each f, is non-degenerate, z.e. has nowhere-
vanishing curvature. We call a smooth regular deformation an isotopy if each
f. is embedded (i.e. free from double points).

It is well-known that the total torsion of a closed space curve may assume a
continuum of values; in fact if a curve is non-degenerately deformed into a plane
curve the total torsion goes to zero. However it is a striking consequence of (3)
that the sum on the right is an integer. (It follows from these statements that
the Gauss Integral of a single closed space curve may take a continuum of
values.) Let us now observe that under a non-degenerate deformation the Frenet
frames vary smoothly, which implies that the total torsion varies continuously.
And under an isotopy the Gauss Integral varies continuously. Since SL re-
mains integral, (3) implies that SL 4s tnvariant under a non-degenerate tsotopy.
This is our ninth theorem. (I find that this helps me understand the difficulties
of untangling coiled telephone cords.)

Let us next consider some examples. Any plane convex curve has no cross
tangents, so that SL = 0. Figure 2.b depicts a curve with SL = 1, and Figure
2.c depicts a curve with SL = —1. Now curve 2.b may be deformed non-
degenerately into curve 2.¢ by passing it through itself at the apparent crossing
point in the obvious way. Since the total torsion varies continuously in a non-
degenerate deformation, the Gauss Integral must jump by 8= in this self-passage.
Now if an arbitrary curve is passed through itself, the deformation may be
changed so that locally the self-passage has the form of that just considered.
Hence the Gauss Integral must jump by 8 in an arbitrary self passage of an

(a) (b) (©)

FiGure 2.
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arbitrary curve. Hence in a self-passage of a curve during a mon-degenerate
homotopy SL changes by 2. This is our tenth theorem.

Now curve 2.b may be isotopically deformed into a circle by *“pulling out
the kink’’, a procedure familiar to any one who has handled fine copper wire,
but which we shall not attempt to define mathematically. In this operation
the Gauss Integral varies continuously, but the total torsion jumps by 2. The
jump occurs in a neighborhood of the kink so it is local. (This might be used
to define the operation precisely.) Thus we find that under an isotopy in which
a kink 1s pulled out SL changes by 1. This is our eleventh theorem. I think it
indicates that the theory of SL belongs not to topology, nor even to differential
topology properly speaking, but to differential geometry. We next state a

Theorem of Feldman [2]. Any non-degenerate closed space curve may be
non-degenerately deformed into either of curves 2.a or 2.b. Neither of these can be
non-degenerately deformed into the other.

Since during a non-degenerate deformation SL changes by twos its parity is
preserved. It follows that a closed space curve may be non-degenerately deformed
nto curve 2.a if and only if SL is even; it may be non-degenerately deformed into
curve 2.b if and only ¢f SL is odd. This is our twelfth theorem. It also follows that
SL is an integer and this is our third proof of this fact.

We can say more: ¢f SL is even, a non-degenerale deformation of a curve to
curve 2.a requires al least 3 |SL| self-passage; and if SL is odd, a non-degenerate
deformation of a curve to curve 2.b requires at least $(|SL| — 1) self-passages.
(This is our thirteenth theorem). And an arbitrary regular deformation of a curve
to a circle requires at least s self-passages and k “kink pullings”, so that 2s + k =
|SL|. (This is our fourteenth theorem.)

4. Sometimes it may be tedious to locate and count the cross tangents in
order to determine the self-linking number of a curve. There is another method,
however, which permits it to be found very easily in certain cases. Let us in-
troduce coordinates (z, ¥, 2) in E® and consider the transformation S, of E*
defined by S,(z, y, 2) = (z, ¥y, tz). This is affine for ¢ ¢ 0, so that as ¢ varies
from 1 to ¢ > 0 S, gives a non-degenerate isotopy of any non-degenerately
embedded space curve. Suppose we have such a curve C and suppose that
So(C) has nowhere vanishing curvature. As ¢t goes from 1 to O the total torsion
goes to zero, so that 4wSL equals the limit value of the Gauss Integral alone.
Now to evaluate this it suffices to determine how many times a general point
of the sphere is covered by the e; map in the limit, and what the signs of the
Jacobian are at the inverse images of that point. But it is readily seen that this
number is the number of double points of S,(C), and that these are to be counted
in the following fashion. Let ¢, be the positive tangent to the top branch and ¢,
the positive tangent to the bottom branch at a double point. Then if #,¢, appears
to form a right-handed frame we count the double point positively, and if ¢,
appears to form a left-handed frame we count negatively. Of course it is not
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FiGURE 3.

necessary actually to deform the curve into the plane. If one constructs a model
of the curve out of wire, stands at some distance from it, and looks at it, then
if there are no apparent second-order inflection points, one counts the apparent
double points in the fashion indicated and obtains SL. This method is applicable
to the curves in Figure 2, as well as the trefoil in Figure 3. Here SL = —3.

I wish to thank John Little and James White for some interesting observa-
tions which I have incorporated into this paper. Mr. White has generalized some
of these theorems to higher dimension. I also wish to thank R. H. Fox for some
helpful criticisms of this paper.
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