Annals of Mathematics

Isolated Singularities of Algebraic Surfaces with C* Action

Author(s): Peter Orlik and Philip Wagreich

Source: The Annals of Mathematics, Second Series, Vol. 93, No. 2 (Mar., 1971), pp. 205-228
Published by: Annals of Mathematics

Stable URL: http://www.jstor.org/stable/1970772

Accessed: 17/07/2010 11:17

Y our use of the JSTOR archive indicates your acceptance of JISTOR's Terms and Conditions of Use, available at
http://www.jstor.org/page/info/about/policies/terms.jsp. JISTOR's Terms and Conditions of Use provides, in part, that unless
you have obtained prior permission, you may not download an entire issue of ajournal or multiple copies of articles, and you
may use content in the JSTOR archive only for your personal, non-commercial use.

Please contact the publisher regarding any further use of this work. Publisher contact information may be obtained at
http://www.jstor.org/acti on/showPublisher?publisherCode=annals.

Each copy of any part of a JSTOR transmission must contain the same copyright notice that appears on the screen or printed
page of such transmission.

JSTOR is anot-for-profit service that helps scholars, researchers, and students discover, use, and build upon a wide range of
content in atrusted digital archive. We use information technology and tools to increase productivity and facilitate new forms
of scholarship. For more information about JSTOR, please contact support@jstor.org.

Annals of Mathematics is collaborating with JSTOR to digitize, preserve and extend access to The Annals of
Mathematics.

http://www.jstor.org


http://www.jstor.org/stable/1970772?origin=JSTOR-pdf
http://www.jstor.org/page/info/about/policies/terms.jsp
http://www.jstor.org/action/showPublisher?publisherCode=annals

Isolated singularities of algebraic
surfaces with € action

By PETER ORLIK* and PHILIP WAGREICH**

Introduction

Let V be an algebraic surface in C**! with an isolated singularity at the
origin. The main result of this paper is to find the resolution of this singu-
larity for those V' which admit a suitable action of C*, the multiplicative
group of non-zero complex numbers.

Our method is topological. We consider the intersection K = V n S*+
of V with a small sphere in C**'. Then K is a smooth, orientable, closed
3-manifold. Since V admits an action of C*, if S***! is invariant under the
action of the subgroup U(l) < C*, then so is K. Identify U(Ql) =~ SO(2).
Such actions were classified in [12], and K together with the action is de-
scribed by a set of orbit invariants. We investigate the connection between
the resolution of the singularity at the origin and the orbit invariants of K.
This connection was anticipated by work of F. Hirzebruch [6, 7], F. Hirze-
bruch and K. Janich [8], R. von Randow [13], and E. Brieskorn [2].

In §1 the algebraic preliminaries are introduced and a canonical equivar-
iant resolution is constructed. We also discuss the singular (Seifert) fibra-
tion of V' — {0}. In § 2 we use equivariant plumbing to show that the canonical
equivariant resolution is star shaped with at most one non-rational curve
(the center). We prove the main result that the orbit invariants of K deter-
mine the canonical equivariant resolution.

In § 3 these results are applied to weighted homogeneous polynomials
in C* with an isolated singularity. First we show that up to equivalence of
equivariant resolutions there are only six classes to consider and then proceed
to compute the orbit invariants, and thereby the resolution, for these. Each
section has its own introduction.

We are pleased to acknowledge the stimulating influence of several
conversations with C. H. Clemens and with S. Abhyankar.

1. In this section we study certain algebraic aspects of singularities
with C* action. In (1.1) we recall some results about embeddings of these

* Research partially supported by National Science Foundation.
** Research partially supported by an O.N.R. Postdoctoral Research Associateship.
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singularities in complex affine space. Then in (1.2) we associate to every
variety V < C*! with C* action a homogeneous variety that covers V. We
use this to construct the Seifert fibration F associated to V. Finally in (1.3)
we consider the case when V is a surface with an isolated singularity. We
use F' to construct a canonical equivariant resolution of the singularity
of V.

1.1. Weighted homogeneous varieties.

Definition (1.1.1). Suppose (w, ---, w,) are fixed non-zero rational
numbers. A polynomial A(Z, ---,Z,) is weighted homogeneous of type
(Wyy +++, w,) if it can be expressed as a linear combination of monomials
Z¥ -+« Zin for which

B/ w, + 1w, + -o0 + L jw, =1.

This is equivalent to requiring that there exist non-zero integers q, ---, ¢,
and a positive integer d so that A(t*Z,, ---, tZ,) = t*h(Zy +-+, Z,). In fact
if h is weighted homogeneous of type (w,, ---, w,) then let {w,, -+, w,)
denote the smallest positive integer d such that there exists, for each 7, an
integer ¢; so that q,w; = d. These are the ¢; and d above.

Let V be a variety defined by weighted homogeneous polynomials
hy ++«, h,, each with exponents (¢, --+, ¢,). Then V is invariant under the
C* action

0(ts (2o =+ 1 22)) = (E92 =+, 1772,) .
Now consider the converse.

PROPOSITION (1.1.2). Suppose VC C** is an irreducible analytic variety,
g 1s a C* action leaving V invariant,

O-(ti (zO’ *t Yy zn)) = (thzoy eoe, tq"Zn)
and q; > 0 for all 1. Then V is algebraic and the ideal of polynomials in
ClZ, - -+, Z,] vanishing on V is generated by weighted homogeneous poly-
nomials.

Proof. Suppose fe C{Z, ---, Z,}, the ring of convergent power series.
We let f; denote the unique polynomial such that

f(thZO, N tq”Zn) = E‘;o tifi(Zor *eey Zn) .

The power series on the right converges for sufficiently small te C and
z2eC**, Now suppose f vanishes on V near o. Then ve V implies

= tfiv) = 0 for all sufficiently small ¢. Hence f;(v) = 0 for all 4 and all
ve V near o. Let f, ..., f” generate the ideal I(V) of all functions in
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C{Z, ---, Z,} vanishing on V. Let J be the ideal generated by {(f?):}.
Clearly JC I(V). Now if v¢ V is within the radius of convergence of f
for all 7, there is some f{” so that f{’(v) # 0. Hence the locus of zeros of J
is V and hence by the Nullstellensatz the radical of J is I(V). Let J’ be the
ideal generated by {(f);} in C[Z, ---, Z,] and let I’ be the radical of J’.
Then I'C{Z,, ---, Z,} = the radical of J = I(V)). Therefore I(V) is generated
by polynomials. Clearly the algebraic variety defined by I(V) equals V.

Now let I'(V) be the ideal of V in C[Z, ---, Z,]. If feI'(V) then
fieI'(V). If fis a polynomial, there are only a finite number of integers ¢
so that f; = 0. Therefore if f®, ..., f™ generate I'(V), then the weighted
homogeneous polynomials {f{”} generate I'(V).

Remark. If V is a hypersurface then the ideal of V is principal and
hence V is defined by a weighted homogeneous polynomial.

ProposITION (1.1.3). If V C C™ is an algebraic variety and there is a C*
action on V defined by a morphism d:C* X V—V of algebraic varieties
then

(i) there is am embedding j: V— C"** for some n and a C* action & on
C*** such that j(V) is invariant and & induces o on V,

(ii) by a suitable choice of coordinates in C** we may write
3ty 2oy =+, 2,)) = (t9%, + -+, t™2,) where g; € Z.

Proof. (i) is a special case of [14, Lem. 2], (ii) is proven in [3, exposé
4, séminaire 1, 1956/58]. We do not know if the analogue is true if V isa
Stein space.

1.2. The cone over a variety with good C* actron. Henceforth we shall
assume Vc C"*, V spans C"*! and ¢ is a C* action leaving V invariant,
defined by

O'(t, (zoy ey zn)) = (t"ﬂzo, ceey, t"nzn) .

If ¢; > 0 for all 7 and g.c.d. (¢, --+, ¢,) =1 we say that ¢ is a good C* action.
It will follow from (3.2) that for any weighted homogeneous polynomial
h(Z, Z,, Z,) whose variety V has an isolated singularity, ¢ may be chosen
to be a good action.

Definition (1.2.1). Let @:C"*'— C**' be defined by @(z, ++-,2,) =
(2, «++,2%») and let V' = @~(V). Then V'’ has a natural C* action defined
by (t, (z) +++» 2,)) = (tz,, - -+, t2,) and the induced map @: V' — V commutes
with the C* action. We call (@, V') the cone over V.

Remarks (1.2.2). (1) Let U ={z = (2, --+,2,)|2€ V is a simple point
and z; # 0, Vi}. Since @ is unramified off the coordinate axes, every point of
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@~ *(U) is simple on V".

(ii) Identify Z, with the group of ¢* roots of 1. Then V is the
quotient of V' by G=Z, @ --- P Z,, acting on V'’ by coordinatewise multi-
plication.

The cone V'’ above V is defined by homogeneous polynomials which
define a projective variety X’ = (V' — {0})/C* cP*. Let 7/: (V' — {0}) - X’
be the quotient map. There is a well-known way of adding a zero section to
this C* bundle to get a C bundle. Let I';, — (V' — {0}) x X’ be the graph of
7', let F"’ be the closure of I';, in V' x X', and let z’: F'— X'’ be induced by
projection on the second factor. The induced map 7': F'— V' is just the
monoidal transform with center o € V’, and (z/, F”) is the dual of the hyper-
plane bundle on X’ c P*. Clearly ¢': X’— F’ given by p/(2’) = (0, 2’) defines
the zero section of (z/, F”’). The actions of C* and G on V'’ commute, hence
G acts on X’ and defining X = X'/G we see that X = (V — {0})/C*. Let
7:(V — {0}) — X be the quotient map. As above, we would like to add a
zero section to this map to get a map with fibers C. The action of G extends
to F'" and we define F' = F’/G. Then F' is just the closure of ', in V' x X.
Now we have a commutative diagram

Fr2,F

x Y. x
where @ and v are the quotient maps,  is the map induced by ¢’ and 7 is
induced by 7’. Let 7v: F'— V be the natural map. We call (z, F) the singular
(Seifert) fibration associated to (V, o).

1.3. Resolution of singularities. Henceforth we shall assume that
VcC**' is a normal complex algebraic surface (and hence it has only isolated
singularities). If D and D’ are divisors (or 2-cycles) with compact support

on a non-singular complex surface we let (D. D’) ¢ Z denote the intersection
product [11].

Definition (1.3.1). A resolution m: V— V of an isolated singularity
ve V is called minimal if for any resolution z,: V, — V there is a unique
map ¥: V, — V so that moy =m,. Of course the minimal resolution is unique.
Brieskorn [1] has shown that the minimal resolution exists if V is a surface.

Remark (1.3.2). There is a simple criterion for a resolution of a surface
to be minimal. Suppose V, is a non-singular surface and X c V, is a compact
irreducible curve. Then there is a non-singular surface V, and a proper
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morphism 7: V,— V, so that 7(X) = ve V, and 7 induces an isomorphism
between V, — X and V, — {v} if and only if X is isomorphic to Pt and
(X-X)= —1. This is known as Castelnuovo’s criterion. A curve X satisfy-
ing the above is called exceptional of the first kind. A resolution 7: V—V
of an isolated singularity v e V is minimal if and only if no component of
n~'(v) is exceptional of the first kind. Note that in general if 7 is the
minimal resolution, the components of 7—'(v) may have singularities, may
have non-normal crossings, etc.

Suppose m: V— V is a resolution of a normal singularity ve V and
'(v) =X, U .-+ UX,, where the X, are irreducible curves. Then the
matrix A = ((X;-X;)) is an important invariant of z. One can see without
difficulty that A is negative definite, the diagonal entries are negative and
the off diagonals are = 0 [11].

Definition (1.3.3). Suppose V is a complex surface and ve V is an
isolated singular point. We say that z: V, — V is a good resolution of the
singularity at v if

(i) 7 is a proper morphism, V, is non-singular in a neighborhood U of
n~'(v) and 7 induces an isomorphism 7: U — 7='(v) = n(U) — {v};

(ii) if 7~'(v) = Ui, X;, where each X; is an irreducible curve, then X;
is non-singular for each 7;

(iii) X; meets X; at most in one point and they meet normally there;

(iv XxnX;nX, =@ for4,j, and k distinct.

It is a well-known classical result that a good resolution exists [18]. The
fact that V is normal implies that 7~'(o) is connected (Zariski’s connectedness
theorem [19]).

Consider the case where V has a good C*-action. Recalling the notation
of (1.2) the map @: F’ — F' is ramified only along a finite number of fibers of
7’. Hence there is an open subset U C X so that !(U) is non-singular. But
F — n(X) is non-singular since o is an isolated singular point of V, hence F’
has only a finite number of singularities. These singularities are quotient
singularities, hence they are rational singularities [2] and therefore they
can be resolved by a sequence of monoidal transforms with centers at isolated
singular points (o-transforms) [16]. Let p,: V,— F be such a resolution.
Isolated singular points of a surface with C*-action must be invariant under
the action, hence the action extends to V,. Let g: V — F be the minimal
resolution of the singularities of .. Then there is an induced C* action on
V. The composite map p = v9: V' — V will be called the canonical equiva-
riant resolution of V.
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For f: W — V a birational map of surfaces and X a curve in V we let
F#X) denote the unique irreducible curve in W for which f(f¥X)) = X.
This curve is called the proper transform of X.

Note that the induced C* action on X = p*X) is trivial and it can be
shown that the other curves of the resolution have trivial stability groups.

2. In this section we shall describe a pasting process for manifolds
known as plumbing [6]. The building blocks are in our case D* bundles over
closed, orientable 2-manifolds. We first define plumbing according to a
weighted graph. Next we let SO(2) act on the building blocks and define
equivariant plumbing. In Theorem (2.2.1) we describe the restrictions im-
posed on the graph by requiring the plumbing to be equivariant.

The result of an equivariant plumbing is a compact orientable 4-manifold
with SO(2) action. Its boundary is a closed orientable 3-manifold with SO(2)
action. These were classified in [12]. The manifolds in question were first
treated by Seifert [15]. The orbit invariants of the SO(2) action coincide
with the Seifert invariants, as computed by Hirzebruch [6] and von Randow
[13] from the weighted graph of the plumbing.

Let V be an algebraic surface in C*** defined by a weighted homogeneous
polynomial. Restrict the natural C* action to the U(1) c C* action and con-
sider K,(V)= V' N S+, the intersection of ¥V with the sphere of radius ¢ in C*+*.
Clearly K, (V) is a closed, orientable 3-manifold with U(1) =~ SO(2) action.

The existence of a canonical equivariant resolution and the equivariant
Plumbing Theorem (2.2.1) together give the main result(2 .6.1) showing how
the resolution of the isolated singularity of V is obtained from the orbit
invariants of K,(V).

2.1. Plumbing. The principal SO(2) bundles over a closed, orientable
2-manifold M are classified by H*(M; Z) = Z.

Denote the associated D* bundles indexed by meZ as y = (Y., @, M).
The compact 4-manifold Y,, has the homotopy type of M and if we let the
zero cross-section v: M — Y, represent the positive generator g e Hy(Y,, Z)
then its self-intersection number, g.g = m, is the Euler class of V.

It is customary to let the bundle with Euler class m = —1 over S?
n = (Y_,, @, S?), be the disc bundle whose boundary, S°, has the Hopf fibra-
tion. This specifies orientations.

Define plumbing as follows. Suppose we have two D? bundles, 7; =
(Ym; miy M;) ©=1,2. Choose a 2-disc B}; in the base space of 7; and let
;7 (B)=Y;;. Since ;| B is trivial, there is a homeomorphism g;;: D* X D> - Y;
whose first component gives base coordinates and second fiber coordinates.
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Let t: D* x D*— D* X D* be the reflection ¢(x, ¥) = (¥, ©). Then there is a
homeomorphism (with j = ¢ + 1 mod 2) f;;: Y,; — Y;; given by f,;; = p;tpsl.
Since Y;; C Y,,, we may paste Y, and Y,, together along Y, and Y, by f
to obtain a topological 4-manifold with corners. It may be smoothed accord-
ing to [6]. Note that the resulting manifold is independent (up to diffeo-
morphism) of the choices involved.

A graph is a finite one-dimensional simplicial complex. (We shall always
assume that graphs are connected.) Let A,, ---, A4, denote its vertices.

A star is a contractible graph where at most one vertex is connected
with more than two other vertices. If there is such a vertex, call it the
center. A weighted graph is a graph where each vertex A; has associated
with it a non-negative integer g; (the genus of A;) and an integer m,; (the
weight of A4,).

Given a weighted graph G we define a compact 4-manifold P(G) as
follows. For each vertex (A4, g;, m;) take the D* bundle 7; = (Y,,, ©;, M),
where M; is a closed, orientable 2-manifold of genus g;. If an edge connects
A; and A; then perform plumbing on 7; and 7,. If A, is connected with more
than one other vertex, choose pairwise disjoint dises on M; and perform the
plumbing over each. Finally smooth the resulting manifold to obtain P(G).

2.2. Equivariant plumbing. Now let us define an action of SO(2) on
N =(Y,, m, M).

If g > 0, let SO(2) act trivially on the base space M and by rotation in
each fiber.

If ¢ = 0, we define linear actions on » = (Y, 7, S?). Let the base space
be the union of two dises S* = B U B then Y,, = B X D} U B} X D;. We
parametrize the discs in polar coordinates, radii n;, 0;, 0 < N\, 0; < 1, and
angles 7;, 0;, 0 <7, 0; <2m, © =1, 2. The actions of SO(2) on I* are
equivalent to linear actions and we shall think of them as addition of angles.
Let 6e SO(2), 0 < 6 < 2.

Define

B:x D2 B x D?

Oy Yoy Ors 6) —= (\s V1 + w0, 0y, 6, + 0,0)
B! x Di—2> B! x D

oy Tar Ons 85) —= gy Vs + U, O 65 + 00 -

Now Y, is obtained by an equivariant sewing
h: 0B X D*—— 0B} x D:.
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Since the action is linear, A is completely determined by
h': 0B} X 0D} — 0B} X 0D?
which in turn is isotopic to a linear map of the torus. Let &’ be
R (71, 0) = (&7, + ¥d, 27, + t4,) .

In order that ' be equivariant we need wx + v,y = U,, U2 + vt = v, In
order that % be equivariant on 0B? X 0 — 0B x 0 we need u,x = u,. Thus
we must have y = 0. Since the determinant of 2’ is —1 and the sewing
results in a total space with Euler class m, we need x = —1,t=1, 2= —m.
Thus %, = —u,, v, = —mu, + v,. The action is effective if and only if
{uy, v,) = 1. Note that this action is in general different from the action
where SO(2) operates on each fiber of the disc bundle. The latter corresponds
tow, =0, v, = £1 (4, =0, v, = £1).

A plumbing is equivariant if the identifying map f;; and the trivializing
maps f;; are equivariant. Given a weighted graph G we say that P(G) is
equivariant if each plumbing involved is equivariant.

THEOREM (2.2.1). Let G be a weighted graph and assume that P(G) s
equivariant. If

(a) G has a vertex (Ay 9oy M,) Where the action is trivial in the base,

(b) for each vertex (A, 9;, m;) we have m; < —1, and

(c) for each vertex (Ai, 0, —1) connected with (A;, 9;, m;) we have g; >0
or m; < —2 (or both), then

(i) g: = 0 for all vertices ¢ > 0,

(ii) G s a wetghted star with center A,,

(iii) the action is non-trivial on the base for 1 > 0.

Proof. First note that we plumb about a fixed point (0 x 0¢ D?* x D?
of the action. Thus, if a vertex is connected with more than two vertices,
then its base must have trivial action.

Let the action at A, be defined u,, =0, v, = 1, up, = 0, v,, = 1. Note
that the action is independent of m,.

Now suppose 4, is connected to A,. Then the action in the base of Y,
is non-trivial, hence ¢, = 0 and u,, = Vygy Vi = Uogy Upp = — Vo = —1, V, =
— MUy + Uy = — M.

Define inductively

D= —Up =1, D, =0,=—m, D= —MP, — Dy,
Pj = —mM;Pjy — Dje .7.221"'17"
Then the action is as follows. At A, we have u, = —p,, v, = p,. If A4, is
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connected to A, then g, = 0 and %, = —p,, v, = P.. Since the action has
only two fixed points, no further vertices are connected with A,. Similarly,
if A, is connected with A4, then g, = 0, %y, = — P, v, = s, ete.

Define the auxiliary parameters

%=0, ¢=1, ¢=—my, @ = —Mq: — q,
q; = —mM;q;, — Q4 J=2,c00,7.

The following statements are easy to prove by induction [13].

D) pig;— — pjg; = —1for 0 <j <.

@ 5 9) =1, (9, p;-) =1, (g5, ¢;-) =1for 0 <j=<r.

8) If —m; =1 for 0 <j < r and if —m; =1 implies —m; ., > 1, then
for 0 < 7 < r we have p; = 0 and 0 < q; < p,.
This proves the theorem.

2.3. The weighted graph associated to a resolution. Suppose V < C***
is a complex surface with an isolated singularity oe V and o,: V,— Vis a
good resolution of the singularity so that o;'(0) = X, U .-+ U X, where the
X, are irreducible curves.

We associate a weighted graph G to o, in the following way. To each
X, there corresponds a weighted vertex (A4, g;, m;) where g; is the genus of
X; and m; = (X;-X;). We join A; to A; by an edge if X; meets X;.

Let S, be a small 2n + 1 sphere around o and let K = V' N S.. Now
074(K) is homeomorphic to K and is the boundary of a tubular neighborhood
of 07*(0). In fact, it is obtained by plumbing according to the graph associ-
ated to p, [11].

Now assume that o is a good C* action. Let o be the canonical equiva-
riant resolution. Then K is obtained by an equivariant plumbing.

THEOREM (2.3.1). In the above situation

1) p is a good resolution,

(2) the action is trivial on X, = X,

(3) the action ts non-trivial on X;, © > 0, and g; = 0, ¢ > 0,
(4) G 1is a weighted star with center A,

B) m; £ —2, for all © > 0.

Proof. Let y: W — F be a resolution of F' such that vy: W—V is a
good resolution of V. Let G’ be the graph associated to 7). The action of ¢
on ¥*(X) is trivial and the intersection matrix of the resolution is negative
definite, hence (a)-(c) of (2.2.1) are satisfied. Thus (i)-(iii) are satisfied for
G’. Contracting exceptional curves of the first kind (other than the proper
transform of X) we see that (1)-(5) holds for p.
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2.4. The star S. Let S denote the weighted star below

where g = 0, b = 1 and all other vertices have genus zero and b;; > 2. Let
1

ai/IBi - bi1 — = [biu cccy biri]
1

biz I

bir,,;
fort =1, ...,s.
It is easily seen that (a;, 8;) = 1and 0 < B; < «; for all 1.

2.5. Actions of SO(2) on 3-manifolds. The equivariant plumbing of S,
P(S) is a compact 4-manifold with boundary admitting an SO(2) action.
Let K(S) = oP(S).

According to [12] a 3-manifold with SO(2) action, K, may be described
by the orbit invariants

K = {B; (51 g, Er t)) (all :81)7 cccy (am :8")} .

Here is a brief explanation of the meaning of these orbit invariants
following [12]. The orbit space K* is a weighted 2-manifold whose orien-
tability is given by € = 0 or » and genus by g. The number of boundary
components of K* is t + h = 0. Of these % represent components of the
fixed point set and ¢ components of orbits with stability group Z, which acts
on the slice D? by reflection. Note that along these orbits the local orienta-
tion is reversed. The ordered pair of integers (a;, 8,), 0 < B8;<a;, (@;, B;) =1,
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corresponds to an orbit with finite stability group Zaj and representation
Z,;— SO(2) given by 8;. Orbits of type (1, 0) are principal. If these are
omitted from the expression of K, then the pairs («;, B8;) are unique up to
order [12]. Finally remove a small disk D} around the image of each orbit
(@, B;) from K*. Let K} = K*—|J,;int Df. We can specify a cross-
section to the orbit map on 0K;*. The obstruction to extending this cross-
section to all of K* is the integer 5.

Clearly K(S) is orientable and the action has no fixed points, hence
e=o,t=h=0.

The following information will be needed about K(S) (see [12], [15]).

Let a;, b, ¢ =1, .-+, g generate 7,(K(S)*) and ¢;, j =1, ---, n be the
additional generators of m,(K(S)s). If we let & be a typical orbit, then

R'l(K(S)) - (ai7 bi! ij h l ﬂ*h—ﬁr [ai9 h]y [bu h]y [qjy h]y q?jhﬂj)

wheret=1,.--,g;5=1,.---,nand w, = q, -++ q,[a,, b] -+ [a,, b,].
It follows that H,(K(S)) has 2¢g free generators, {a,, b;, -++, a,, b,}, and a
subgroup T(K(S)) generated by {%, q,, -+, ¢,} with relations

—Bh+¢q+ s +¢,=0

B]h+a]q]:0 j:l,“',’n.
Let b = — B and let R denote the coefficient matrix of the above relations.
Let
» =det R =ba1 cee ¥, — ﬁlaz el — cer — @ oo &, B .
torsion ifp=+-0,
Then T(K(S)) =
n (()) Z + torsion ifp=0.

THEOREM (2.5.1). Let S be the weighted star of (2.4). Then

K(S) = {_b; (Oy g, 0! 0); (aly :81)7 c (aar 188)}
where

B; = [biyy + =5 bir,] fori=1,+.s,5.
This result is due to Hirzebruch [6] and von Randow [13] when g = 0.
For g>0 the proof is the same.
THEOREM (2.5.2). Let
K = {B;(0,9,0,0); (a;, B, *++, (,, B}

be the orbit imvariants of a 3-manifold with SO2) action and a; > 1 for
j=1,..-,8. Then K determines a unique weighted star S(K) with the
property that the center has genus g and weight —b = . There are s
arms. If
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ai/Bi=[bi1v“'vbiri]v t=1,¢-4,8

with b;; = 2 for all i, j, then the vertices on the i-th arm have genus 0 and
weights —b;,, — b, <+, —b;,, starting from the center. Furthermore

K(S(K)) = K
equivariantly.

The only part of this theorem that is not obvious is the uniqueness of
the continued fraction decomposition of «;/B;, but this follows from the
assumption that b;; = 2 for all 7, j.

2.6. The main theorem. Now let V be an algebraic surface in C*** with
an isolated singularity at the origin. Suppose V has a good C* action.
Congider the U(1) c C* action restricted to the invariant intersection

K= Vn8Sx»t,
Our results now yield the following.

THEOREM (2.6.1). The weighted graph associated to the canonical resolu-
tion of the isolated simgularity at the origin of V isthe star of K, S(K).

In particular we may obtain this resolution by computing the orbit
invariants of the U(1) = SO(2) action on K.

Remark (2.6.2). Since the intersection matrix of the resolution is nega-
tive definite, we see that the determinant of the relation matrix for H,(K),
» > 0 and therefore the rank of H,(K) equals 2g.

Note also that the orbit space K* of the U(1) action on K coincides with
the orbit space X of the C* action on V' — {0}.

3. In this section we apply our results to surfaces in C*. More precisely,
let V be defined as the locus of the zeros of a weighted homogeneous poly-
nomial, with an isolated singularity at the origin. We shall find the resolu-
tion of this singularity by computing the orbit invariants of the natural
SO(2) action on K = V' N S. We noted in the remark after (1.1.2) that if
an algebraic surface with an isolated singularity is invariant under a good
C* action on C?, then it is defined by a weighted homogeneous polynomial.

We first show that up to equivariant resolution weighted homogeneous
polynomials divide into six classes, one being the Brieskorn varieties. Next
we compute the weights for these classes. Then we proceed to find the
orbit invariants of K. We determine the orbits with non-trivial stability
groups: their number and the orders «; of the stability groups. The slice
representation is used to determine the corresponding B;. Finally we use
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covering arguments to compute the genus of the “central curve” X and its
self intersection, —b.

It should be pointed out that not all algebraic surfaces with an isolated
singularity in C* admit good C* actions. Here is an example:

V={2+2 — 322 + 22 + 22 — 2 = 0} .

This is an elliptic singularity with the following graph (cf. [17 ]):

[0] [0]

No resolution of this singularity can have a star-shaped graph. Moreover
V = {2t + 2! + 2t + 2%z, = 0} has graph

[3]

but V has no C* action.

38.1. The sixz classes. Consider weighted homogeneous polynomials
W(Z,, Z,, Z,) with the property that the variety {h(z, z,, ;) = 0} in C* has an
isolated singularity. We show that all such polynomials fall into six classes.
A variety in one of these classes is diffeomorphic to a variety having a
certain simple normal form.

Definition (3.1.1). A weighted homogeneous polynomial h(Z, Z,, Z;) is
said to be of class I (resp. II, III, - ..) if there is a permutation = of {0, 1, 2}
and non-zero complex numbers «,, «,, a, such that h(a,Z. ), .2, ), @2, ) is
equal to

(D O+ 4+ Z5,

A Zp+ Zr + Z,Z7, a, > 1,
(III) Zgo+ ZnZ, + Z32Z,, a,>1,a >1,
AV) Zp + Z,Z + Z,Z5», a, > 1,

) Z»Z, + Z8Z, + Z,2%,
(VI) Z& + Z,Z,.

PROPOSITION (3.1.2). Suppose h(Z,, Z,, Z,) is a polynomial and the locusV
of h has an isolated singularity. Then W(Zy Z,, Z,)=[f(Zy, Z,y Zy) + 9(Zyy Zy, Z;)
where f s in one of the six classes above and f and g have no monomsial in
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common. If h is weighted homogeneous of type (w,, w,, w,) then so are f
and g.

Proof. Let h(Zy, Z,, Z,) = Y _ 4 ZiZrZ2. If 4,+14,>1 for all monomials
of h then the line Z, = Z, = 0 is a subset of V and (0h/0Z;) = 0 for all 7 at
every point on this line. This contradicts the fact that the singularity is
isolated. Hence there must be a monomial of the form Zg, Z,Z or Z,Z
in 2. The same reasoning implies that Z*, Z,Z* or Z,Z* and Z{, Z,Z¢ or
Z,Z» must appear. Putting these three facts together one can easily see that
we must get a polynomial fin one of the six classes above.

Remarks. (1) It should be noted that f is not unique.

(2) An analogous theorem holds for polynomials in more variables.

Now we want to show that if & is weighted homogeneous then the
variety of 4 is diffeomorphic to the variety of f. The crucial fact we need
is that K, = V' N S, is independent of ¢.

PROPOSITION (3.1.3). Suppose V.C C**, a(t, 2y +++, 2,) = (£, +++, t*2,,)
s a C* action on V, q; > 0 for all i. Let S, be the real 2n + 1 sphere of
radius & about the origin and K, = VN S.. Then for any &, € >0 K, is
equivariantly homeomorphic to K...

Proof. Suppose ¢ < ¢’. We define a homeomorphism f: K, — K., by
letting f(z) be the unique point 2’ € K., so that there is a positive ¢ ¢ R where
o(t, 2) = 2’. Suppose se C* and ||s|| = 1. If o(t, 2) = 2’ then o(¢, a(s, 2)) =
o(s,2')e K., hence f is an equivariant map. Clearly we can define f*
similarly.

THEOREM (3.1.4). Suppose h(Z,, Z,, Z,) is weighted homogeneous of type
(W, w,, w,), the variety V of h has an isolated singularity and h = f+ g
where f belongs to one of the six classes and no monomial appears in both f
and 9. Let V, be the variety of f and let

K=VvVnSsS, K,=V,nS®
where S°® is a sphere around the origin. Then K is equivariantly diffeo-
morphic to K,.
Proof. Let 9(Z, Z,, Z,) = Y_7_a;M; where M; is a monomial. Let z =

i=1

(xy, +++, ,) and let V, be the locus of
f(ZOy Zu Zz) + E:=1xiM *

Let K, =V,nS% Thenifa = («,, -+, ,), V= V,. Now it is sufficient to
find a manifold M with SO(2) action, an open set UcC" and a map ¢: M— U
such that oe U, ac U, the action leaves @~'(x) invariant for all ze U,
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@~ (x) = K, equivariantly and ¢ is a locally trivial fiber space.

Let k(Zm Zu sz Xn M Xr) = f(Zor Zu Zz) =+ EzleiM(Zm Zv Zz)’ let
NcC+*be the locus of k, let C={(zy, 2,y 2, &y, + = +, &,) € C42| |2, [P+ |2, |*+ | 2. =1},
let @,: C"**— C" be defined by @,(2y 2,, 25y %y, +++, ,) = (¥, *++, x,) and let
P, = @,| N. We denote by U the (open) set of # ¢ C" such that o;'(x) has an
isolated singularity at o. Finally define M = NNCnNe; (U) and @ = @, | M.
Clearly o and a € U. Now let g; = {w,, w,, w,>/w; € Z. Then

O'(t, (zoy Ry Rgy Tyy oo 0,y xr)) = (t‘lozo, tqlzu tqzzz, Lyy o0y xr)

induces an SO(2) action on M leaving the fibers of @ invariant. It is sufficient
to show now that @ has no critical points. Suppose (2, 2, 2y Ty ==+, &,) =
me M. Let T,, Ty and T, denote the tangent planes at m to M, N and C
respectively. Now T is the complex plane perpendicular to

_ (ak ok ok ok 8k>

 \oz, 0z, 9z, 0w, 0w, /m

and T, is the real plane perpendicular to v = (2,, 2, 2, 0, +++, 0). We must
show that (kernel @) + T, = C"**. But T,, = Ty N T, and ' € kernel @,.
Hence it is sufficient to show that (kernel ¢,) + Ty = C** or equivalently
that T, 2 kernel ¢,. Now suppose kernel ¢, = Ty. Then (¥, ¥y ¥z 0, +++, 0)
is perpendicular to v for all (¥, ¥, ¥,) € C*. But then

Ok () = 9K () = K () —
5, = 5 m) = 5 (m) = 0.

But or'(x, +++,2,) has an isolated singularity at o. Hence, we get a
contradiction.

Remarks. (1) An analogous theorem holds for polynomials in more
variables.

(2) It should be noted that we have constructed a complex analytic
deformation between V and V,.

Definition (3.1.5). Let
Viag ayy as; I) = {250 + 211 + 232 = 0},
and
K(ay, ay, a5 1) = Viag, ay, a3 1) N S?
where S° is the unit sphere in C®. Use similar definitions in the other classes.

Remark (3.1.6). Although it is convenient to discuss these classes
separately, it is clear from the above that the weights form a complete set of
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invariants for the variety. Thus either (w,, w,, w,) determine the class of a
polynomial or, if more than one class is possible, the corresponding varieties
are diffeomorphic.

3.2. Weights. Let h(Z,, Z,, Z,) be weighted homogeneous with weights
w; = w;/v;, © = 0,1,2 in reduced form. For integers a, @, ---, a; let
(ay, ag «++, a,) denote their greatest common divisor. Define

€ = (Uoy Uyy U); Co = (Uyy U)[C; € = (Ugy U)[C; € = (Ugy U)/C
Then for some positive integers 7,, 7,, 7. we have
Uy = CC,CYoy Uy = CCCyY1y Uy = CCLL Yz o

Note that ¢, ¢, ¢, are pairwise relatively prime, 7, 7, 7. likewise and
(¢iy7;) =1fors =0,1,2. Thus we have
d = Wy, Wy, W) = CCL1CY oY1 Y5
and
Qo = V€Y1 Ve s @y = V0T Ty Qo = V6T .
In the six classes we note the following.
Class 1. w;=a;,sov; =1fortv=0,1,2.
Class II. w, = ag, w, = a,, W, = a,a5/(a, — 1), 80 v, =v, = ¢, =7, = L.
Class III. w, = a, w, = (,a, — 1)/(a, — 1), w, = (a,a¢, — 1)/(a, — 1), so
Vo=¢ =€ =7 =7 =1.
Class IV. w, = a,, w, = a,a./(a; — 1), w, = @,a,a,/(aa, — @y + 1), 8O
Vo=¢ =¢="="7 =1.
Class V. w, = (a,a,a;+ 1)/(a,a,—a,+ 1), w, = (aa,a,+ 1)/(a, — a; + 1),
w, = (@@ + 1)/(aa, — a,+1), 80 ¢,=¢,=c, =7, =7,=7,=1.
Class VI. The polynomial Z& + Z,Z, is analytically isomorphic to the
polynomial Z%» + Z? + Z? so it may be treated as a subclass of I.

3.3. Orbits with non-trivial stability groups. Recall that the U(1) action
on K is defined by
t(zo, 21y 25) = (t92, t92,, 722,) , te UQ) .
If 2,0, 2, #0, 2, # 0 then the orbit of (z, z,, z,) has trivial stability group.
On the other hand it is clear that for example
K(ag ayy a3 ) N {z, =0} = {21 + 202 = 0; |2, [° + |2, = 1}

is fixed by the subgroup of U(1l) that fixes 2z, and z, pointwise; that is
Z,..p = Z,. This set consists of a collection of linked, knotted circles whose
number equals the number of irreducible factors in the factorization of
Z® + Zg= over the complex numbers, n, = (a,, a,) = cc,.
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In each class there are at most three non-trivial stability groups. If we
call their orders «,, «,, o, and the number of orbits u,, #, and n, respectively,
then the following table arises.

o, N o, | n | a | m
1|7 cCy Y, lee | Y. | ee,
II| v, (ce, — 1)/v, 2%, | 1 Y, c
III | 7, | (eco — v, — v)/vw, | ©.7, | 1 | 07, | 1
v, (¢ — 1)/v, V, 1 |v7 |1
V| 1 v, 1 U, 1

3.4. Slice representation. Inthis section we compute the 8; determining
the representation Z,, — SO(2), 0 = 8, < «; for the stability groups of (3.3),
see [12].

Consider the n, orbits with stability group Z,, in K(a,, a,, a,; I). Since
all of {z, = 0} N S® has the same stability group, all n, orbits are of the same
type, (a,, B,) for some B,. If we let & = exp (27i/a,) then the action in the
slice is described by &(z,, 2., 2,) = (£%%,, 2, 2,) and by definition [12]*, ¢,8, =
—1 (mod «,).

The orbit with stability group Z., in K(a,, a,, a,; II) is {z,=2,=0,|2,[*’=1}.
At z, = 1 the slice is {z5° + 2t + 2z, = 0} N S°. Very near (0,0,1) we may
approximate it by {zi° + 2z, = 0} N S° hence the action in the slice is deter-
mined by the projection into the z, plane, thus ¢,5, = —1 (mod «,).

Similar considerations result in the table below, where each entry is
congruent to —1 modulo the «; on the top of its column. This determines
the B; since 0 < B, < «a;.

a, a, Q,

I 905, 4.5, 0.5,
II 4.5, 45, q:5,
III 9B, 2.8, 4B,
Iv 2.5, 2.8, 2.5,
A 2.8, 405, 0.5,

* In [12] we defined 8 by the equation ¢f =1(modea). Reversing orientation sends
(a, B) into (&, ') = (@, a — B) and hence ¢f’ = —1 (mod @). This turns out to be the induced
orientation in our case.
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3.5. The genus of X.

PROPOSITION (3.5.1). With the notation above

9g = cte,eie, — c(egV, + ¢, + €0,) + Vo, + VY, + V0, — VU,V )
Vo,V
For a proof consider the normalization Y’ of X’ and compute its genus
using classical formulas. The map Y’ — X allows one to find the genus of
X and note (1.3) that X is isomorphic to X. We shall carry out the verifica-
tion of the above formula in Class II and leave the remaining cases to the
reader. First we need a definition and a lemma.

Definition (3.5.2). Suppose p, and p, are positive integers, p, < p,.
Then there are unique integers p,, -+, p,, 71,  ++, 7, such that
Diey — 10 = Dy 0 < 05y = 05
1=1,2,.--,t—1and r,p, = p,_,. Then p, = (p,, »,) and we define | p,, p, | to be
[ Doy Do | = 225 mi0i(D: — 1) = Doy — Dy — D1 + (Doy D) -

If X c P% is defined by a homogeneous polynomial of degree d and Y is
the desingularization of X then the genus of Y is equal to (1/2)(d—1)(d—2)—
.. 9. Suppose X is a curve, x€ X is the only singular point of X and
X c V where V is a non-singular surface. Define inductively 7,: V;— V,_,
where V, = V, X, = X, «; is the monoidal transform with center at the
singular points of X;_, and X; is the proper transform of X, , by m;. There
is an integer n such that X, is non-singular. By the classical Plicker
formula [5, Th. 1]

25: = E:’:() Eyexi my(my - 1)
where m, is the multiplicity of the singular point y.
LEMMA (3.5.3). Suppose X is the curve in C* given by

2004 2l 4 2820 =0

has order

where Py = Py, & + b = Dy, b= .. Then the singularity of X at the origin

1
50:?|p01p1| .

Moreover if f: Y — X is the desingularization of X then f~'(o) comsists of
(Do, P,) POINLS.

Proof. Blow up and proceed inductively.

We shall also need the classical Hurwitz formula. Let ¢: X’ — X be a
finite morphism of compact non-singular complex analytic curves. Then
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(2 — 2g5) = (degree ®)(2 — 2g4) — 3. ,(e(@) — 1)
where g denotes genus and ¢ denotes ramification index.

Proof of (8.5.1) for class II. 230 + 2z + zz32 = 0. With the notation
of (1.2) and (3.3), X’ is defined by the homogeneous equation

2+ 2l + 2l =0 .

It has precisely one singular point, at (0,0, 1). In affine coordinates this
singularity is given by
i+ +2r=0.

By (3.5.3) 6 = d((¢, — 1)/2). Let f: Y’ — X’ be the desingularization of X'.
Then the genus of Y’ is gy, = (1/2)(d — 1)(d — 2) — d((g, — 1)/2). Now we
apply the Hurwitz formula to the covering Y’ — X to get the genus of X.
It is sufficient to find the ramification indices of the map. Consider the map
@: V' — {0} - V — {0}. It is ramified along the three sets z, = 0, 2, = 0, and
2z, = 0. Above the n, orbits given by z, = 0," 221! + 252 = 0 (cf. 3.3) there
are q.a, orbits given by z, = 0, 22% + 2222 = 0. Hence we get a contribution
to the ramification of ¢,9,¢.n, — @.a,. Similarly we get a contribution of
9,9.9;n; — d from the n, orbits given by z, = 0, 2% + 2z = 0. Finally there
is one orbit defined by 2z, = 2, = 0 and there is one orbit in V’ lying above
this defined by z, = 2, = 0. This orbit corresponds to the singular point of
X'. There are (q,, d) = q, points of Y’ lying above this point (by 3.5.3).
Hence we get a contribution of ¢,9,9. — ¢, to the ramification. We conclude
that

dd — ¢,

90:9.9:

2gX= _‘no_n2+lo

Substituting from (3.3) gives

_Cee, —cleo+e+v) v+ 1
(23

29

as required.
3.6. Computation of b.

THEOREM (3.6.1). Suppose V is an algebraic surface in C*™ with an
1solated singularity at o and V is invariant under a good C*-action o of
the form

0(t, (2oy + =+ 2,)) = (t%, =+ -, t2,) .

Assume that V 1s not contained in any coordinate hyperplane. The
manifold K = V NS> has an induced circle action with exceptional orbits
0O, -+, 0, of type (a,, B, +++, (a,, B,) respectively. Then
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b:_d—+EZ=1&

Qo Qn a;
where d is the degree of the cone V' over V.

Remark (3.6.2). Suppose U and U’ are non-singular surfaces, X is a
non-singular curve on U and f: U’ — U is a proper birational map. Then by
a theorem of Zariski [18], f is a composite of o-transforms f;: U, — U,_,,
U=U, U = U, where f; has center z;,_,e U;_,. Let X, =X, and X, =
fHX,_,) the proper transform. Then

(FHX)-fHX)) + m = (X-X)

where m is the number of indices such that x;¢ X;. We shall say that
“f has m centers along X’. If f: U’ — U is a finite covering of degree n then
n(X. X) = (f*(X). f*(X)) where f*(X) is the inverse image of the divisor
(or cohomology) class determined by X.

Proof of (3.6.1). The idea of the proof is as follows. Let @:V’'— V be
the covering map. Recall that V = V'/G where G =Z, D --- @ Z,,. Now
let F', X, F’, X’ be as in (1.2) and let h: Y’ — X’ be the desingularization of
X'. Define F, = F’ x,. Y'. Clearly F’ is a line bundle of degree —d over
X', hence F is a line bundle of degree —d over Y’ and (Y'-Y"), = —d.
Now we shall construct non-singular varieties W, and V, and birational maps
t: W,— F,and p,: V, — V and a map 7: W,—V, so that =z = gp,».

W, SR F,
d |
v, 27 -2 F.
Let Y, = z%(Y"), X = 0% X) and X, = p%(X). We want to compute —b =

(X-X);. It is easy to see that degree » = degree 7|Y, and hence 7 is
unramified along Y, and therefore we get:

(H?ZOQi)(XL- Xl)Vl = (7]*(X1)’77*(X1))W0 = (Yo- Yo)wo .

For the desired result it is sufficient to show that o, has no centers along X
and 7 has

(H?:oqi) E;a Bj
«a;
centers along Y.
The construction of W, will be a local process, i.e., it will be a composite
of monoidal transforms with centers over the finite number of fixed points

of G on F,. We consider the following general situation.
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LEMMA (3.6.3). Let G be a fintte abelian group acting analytically on C*
leaving o fized. Let Y be a non-singular curve passing through o. Assume
that Y is invartant under G and the action of G on C* is effective. Let
U=CG, m:C— U, u=rm(0) and Z = n(Y). Then for some relatively
prime integers, «, B, 0 < B < & we have that <€ U 1is the quotient singu-
larity of type {a, B, [cf. 2]. There is a canonical resolution 7: Uy, — U
depending only on a and B (not on G) so that there is a proper birational
morphism of non-singular surfaces 0,,s: S’a,ﬁ—>CZ, an extension of the action
of G to S, ; and a map S/G — U, which is an isomorphism in a neighbor-
hood of Z" = Y(Z) and o has (order G)(B/a) centers along Y.

Proof. We may choose coordinates (z,, z,) in C* so that Y = {z, = 0},
and G acts linearly [2a]. Then it is easy to show that G = G’ @ H where G’
is cyclic generated by (g gﬁ), H is cyclic generated by (g g), £ = e*ilk,
E=¢e"" 0< B <aand (a, B) = 1. Suppose first that H = (0). Let T, =
C?, Y, = Yand y, = 0. Define inductively for : =1, .-+, 8 7;: T; — T;_, the
o transform with center y;, ,, Y; = %(Y;_,), y: = the point of intersection of
Y; and 7z7'(y;_,). The action of G extends to T;. Let U’ = T,/G, n;: T;—U".
Then one can easily compute the action of G on T; to see that U’ has no
singularities along 7,(Y;). Let U” be the minimal resolution of U’. In this
case (H = (0)) we construct S to be the minimal resolution of T; x, U".
The composite map o: S — C* has B centers along Y and this is the desired
result since order G = a. The general case follows from the following fact.
If p: C— C* p(z 2) = (28, 2), and 7,: T, — C* is the o transform with center
o then we must perform a composite of k¥ monoidal transforms centered at o,
7' T! — C? to get a commutative diagram

T — C?

|
T, — C*.

Now we return to the proof of the theorem. If y ¢ Y’ is any fixed point
of the action of G there is a neighborhood of y satisfying the hypotheses of
Lemma (3.6.3). Performing the composite of monoidal transforms o, ; de-
scribed in the lemma, at each fixed point, we get z: W,— F, and p,0: V,— F.
Let 7,,: U, ;— U, be the minimal resolution of U, ; Z = #,(Z) and let
d(at, B) be the number of centers of the canonical map v7,: UYs — U, on
Z. Locally p, is of the form 7 ; hence

b=—2 5 (L~ o, 8)) -

Qo+ qyn a;




226 ORLIK AND WAGREICH

The proof will be completed by showing that d(«;, 8;) = 0 for all <.
LEMMA (3.6.4). If V is the variety defined by
250 + 211 + 22 =

with (ay a,, a;) = 1 then the theorem holds for V. Moreover this implies
é(a, B) = 0, for all pairs (a, B) with 0 < B < «a, (a, B) = 1.

Proof. Recall that the intersection matrix of a resolution is negative
definite. From this we concluded (2.6.2) that the determinant p of the
relation matrix of H,(K) is positive and by (2.5)

p=a - a, — X Bila) .
In the above case we have ¢; orbits with stability group Z,., and hence
p = aplairtag T (baa,a, — B @y — €8, — ¢,B,a.) .

Now p is a positive integer hence

e + X e

o,

But b = d/(9,0.9,) + 2 ci(Bi/a)) — 3 0(a;, B;) and by (3.3), d/(¢,9.2,) = 1/(@.,t,)
thus we must have d(a;, 8;) = 0,7=0,1, 2.

For a given orbit type (a,8), 0 < B8 <a, (,8) =1 find & so that
0<é<aand &8 = —1 (mod ). Apply the above lemma to the variety of
{25 + 2t + 25 = 0} which has one orbit of type (a, 8). This shows that
o(a, B) = 0 for all orbit types and completes the proof of Theorem (3.6.1).

Remark (3.6.5). According to Milnor [9] there is a fibration F —
S® — K— S*', where the fiber F'is an open 4-manifold. Let h: F— F be the
characteristic map of this fibration and I the identity map of F. It is proved
in [9, § 8] that

B;
a;

00— HK—HF-*™ gr HK—0
is exact. It follows from (2.4) that the group H,K has rank 2¢ and the order
of its torsion equals p. Let A(t) = det (tI, — h,) denote the characteristic
polynomial of 4, and let £ be the exponent of (¢t — 1) in A(Z).

In [10] A(t) and £ are computed for weighted homogeneous polynomials
and it is noted that the minimal polynomial of %, has no multiple roots.
Thus £=rank H,(K), providing an alternate way of computing 2¢g. It would
be of interest to obtain p also using [10].

We conclude with an example. The weighted homogeneous polynomial
Z + 70+ Z,ZM is of class II. Its variety has an isolated singularity at
the origin, whose resolution may be found as follows.
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From (3.2) the weights are (105, 9, 63/4), hence ¢ =3, ¢, =3, ¢, = 7,
YVo=b,m=4¢=7"=7.=v=v=1andd=3815,¢, =3, ¢, = 35, ¢, =
20. From 3.3) ¢, =5, n,=2; , =20, n, = 1; @, = 1, n, = 3. From (3.4)
By =3, 8, =13, B, = 0. From (3.5) 2¢g = 38 and from (8.6) b = 2.

Since orbits of type (1, 0) are principal and do not appear in the resolu-
tion, they may be omitted. Thus

K(105, 9, 14; II) = {—2; (0, 19, 0, 0); (5, 3), (5, 3), (20, 13)} .

We note that 5/3 = [2, 3] and 20/13 = [2, 3, 2, 2, 2, 2, 2] and apply Theorem
(2.6.1) to conclude that the graph of the resolution is as below.
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