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Isolated singularities of algebraic 
surfaces with C* action 

By PETER ORLIK* and PHILIP WAGREICH** 

Introduction 

Let V be an algebraic surface in C'+1 with an isolated singularity at the 
origin. The main result of this paper is to find the resolution of this singu- 
larity for those V which admit a suitable action of C*, the multiplicative 
group of non-zero complex numbers. 

Our method is topological. We consider the intersection K =V n S2ff+ 
of V with a small sphere in Cu+'. Then K is a smooth, orientable, closed 
3-manifold. Since V admits an action of C*, if S2"1+1 is invariant under the 
action of the subgroup U(1) c C*, then so is K. Identify U(1) - SO(2). 
Such actions were classified in [12], and K together with the action is de- 
scribed by a set of orbit invariants. We investigate the connection between 
the resolution of the singularity at the origin and the orbit invariants of K. 
This connection was anticipated by work of F. Hirzebruch [6, 7], F. Hirze- 
bruch and K. Janich [8], R. von Randow [13], and E. Brieskorn [2]. 

In ? 1 the algebraic preliminaries are introduced and a canonical equivar- 
iant resolution is constructed. We also discuss the singular (Seifert) fibra- 
tion of V - {O}. In ? 2 we use equivariant plumbing to show that the canonical 
equivariant resolution is star shaped with at most one non-rational curve 
(the center). We prove the main result that the orbit invariants of K deter- 
mine the canonical equivariant resolution. 

In ? 3 these results are applied to weighted homogeneous polynomials 
in C3 with an isolated singularity. First we show that up to equivalence of 
equivariant resolutions there are only six classes to consider and then proceed 
to compute the orbit invariants, and thereby the resolution, for these. Each 
section has its own introduction. 

We are pleased to acknowledge the stimulating influence of several 
conversations with C. H. Clemens and with S. Abhyankar. 

1. In this section we study certain algebraic aspects of singularities 
with C* action. In (1.1) we recall some results about embeddings of these 

* Research partially supported by National Science Foundation. 
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singularities in complex affine space. Then in (1.2) we associate to every 
variety Vci C'+1 with C* action a homogeneous variety that covers V. We 
use this to construct the Seifert fibration F associated to V. Finally in (1.3) 
we consider the case when V is a surface with an isolated singularity. We 
use F to construct a canonical equivariant resolution of the singularity 
of V. 

1.1. Weighted homogeneous varieties. 

Definition (1.1.1). Suppose (w0, ..., wy) are fixed non-zero rational 
numbers. A polynomial h(Zo0, * .. ZI) is weighted homogeneous of type 
(w0, ..., wI) if it can be expressed as a linear combination of monomials 
Z0o ... Zin for which 

io/Wo + il/W, + ***+ ii/W = 1 

This is equivalent to requiring that there exist non-zero integers q0, ...* qn 

and a positive integer d so that h(toZoZ, ...* tq?&Zl) = tdh(Zo, * * * Zn). In fact 
if h is weighted homogeneous of type (w0, ..., WI) then let <wo, .., WI> 
denote the smallest positive integer d such that there exists, for each i, an 
integer qj so that qiwi = d. These are the qj and d above. 

Let V be a variety defined by weighted homogeneous polynomials 
hl, y, hry each with exponents (q0, ...* q). Then V is invariant under the 
C* action 

a(t, (zo, . ., Zn)) = (tqoZoy *.., tqnZf,) 

Now consider the converse. 

PROPOSITION (1.1.2). Suppose VcCn+' is an irreducible analytic variety, 
a is a C* action leaving V invariant, 

a(t, (zo, ** , Zn)) = (tq?Zoy 
. . . t tqzn) 

and qj > 0 for all i. Then V is algebraic and the ideal of polynomials in, 
C[ZO, ...* Z.] vanishing on V is generated by weighted homogeneous poly- 
%nomials. 

Proof. Suppose f e C{Z0, ... , Z.}, the ring of convergent power series. 
We let fi denote the unique polynomial such that 

f(tqoZo, *t * tqnZn) = tif(Z0* *... Zn) 

The power series on the right converges for sufficiently small t e C and 
z e C'+. Now suppose f vanishes on V near o. Then v e V implies 
Ad otifi(v) = 0 for all sufficiently small t. Hence fi(v) = 0 for all i and all 
xv e V near o. Let f(), " I , f Ir generate the ideal I(V) of all functions in 
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CIZos*, Zj} vanishing on V. Let J be the ideal generated by {(f(j)),}. 
Clearly J c I(V). Now if v 2 V is within the radius of convergence of f(i) 
for all j, there is some f (j) so that f i'(v) L 0. Hence the locus of zeros of J 
is V and hence by the Nullstellensatz the radical of J is I( V). Let J' be the 
ideal generated by {(f i'))j} in C[ZO, *.., Zj] and let I' be the radical of J'. 
Then I'C{Zo, *. ., Z} = the radical of J = I( V). Therefore I(V) is generated 
by polynomials. Clearly the algebraic variety defined by I( V) equals V. 

Now let I'(V) be the ideal of V in C[ZO, * *, Zn]. If fC I'(V) then 
cft I'( V). If f is a polynomial, there are only a finite number of integers i 
so that fA : 0. Therefore if f (l), *. ., f r) generate I'( V), then the weighted 
homogeneous polynomials {f i)} generate I'( V). 

Remark. If V is a hypersurface then the ideal of V is principal and 
hence V is defined by a weighted homogeneous polynomial. 

PROPOSITION (1.1.3). If Vc Cm is an algebraic variety and there is a C* 
action on V defined by a morphism a: C* x V-> V of algebraic varieties 
then 

(i) there is an embedding j: V-> Cn+' for some n and a C* action & on 
Cn+' such that j( V) is invariant and Y induces a on V, 

(ii) by a suitable choice of coordinates in Cn+' we may write 
j(tg (zo, *..., Zn)) = (tqoZ, *... * tqffZn) where qj e Z. 

Proof. (i) is a special case of [14, Lem. 2], (ii) is proven in [3, expose 
4, seminaire 1, 1956/58]. We do not know if the analogue is true if V is a 
Stein space. 

1.2. The cone over a variety with good C* action. Henceforth we shall 
assume Vcz C1+1, V spans C'+' and a is a C* action leaving V invariant, 
defined by 

a(t, (zo, **, Zn)) = (tqozoy ** , tqnZ n) 

If qj > 0 for all i and g.c.d. (q0, a a, qn) = 1 we say that a is a good C* action. 
It will follow from (3.2) that for any weighted homogeneous polynomial 
h(Zoy Z1, Z2) whose variety V has an isolated singularity, a may be chosen 
to be a good action. 

Definition (1.2.1). Let q': Cn+1 Cn+' be defined by 9(z,, ..., zn) = 

(z0go ..., zqn) and let V' = q-( V). Then V' has a natural C* action defined 
by r(t, (zO, *a a, Zn)) = (tz0, *a a a tzn) and the induced map p: V' V commutes 
with the C* action. We call (q', V') the cone over V. 

Remarks (1.2.2). (i) Let U = {z = (zo, *.. , zn) I z c V is a simple point 
and zi : 0, Vi}. Since q' is unramified off the coordinate axes, every point of 
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q-'( U) is simple on VP. 
(ii) Identify Zq. with the group of qith roots of 1. Then V is the 

quotient of V' by G= Zq0 ( *) * Zq. acting on V' by coordinatewise multi- 
plication. 

The cone V' above V is defined by homogeneous polynomials which 
define a projective variety X' = (V' - {0})/C* c Pa. Let A': (V' - {0}) -X 

be the quotient map. There is a well-known way of adding a zero section to 
this C* bundle to get a C bundle. Let F, c (V' - {0}) x X' be the graph of 
A', let F' be the closure of P,, in V' x X', and let A': F' - X' be induced by 
projection on the second factor. The induced map Y': F' - V' is just the 
monoidal transform with center o C V', and (r', F') is the dual of the hyper- 
plane bundle on X' c( Pa. Clearly ,ci': X').F' given by ,ca'(x') = (0, x') defines 
the zero section of (z-', F'). The actions of C* and G on V' commute, hence 
G acts on X' and defining X= X'/G we see that X= (V - {0})/C*. Let 
A: (V - {0}) ). X be the quotient map. As above, we would like to add a 
zero section to this map to get a map with fibers C. The action of G extends 
to F' and we define F = F'/G. Then F is just the closure of IF in V x X. 
Now we have a commutative diagram 

F' F 

where q and 0 are the quotient maps, fe is the map induced by A' and v is 
induced by z-'. Let -: F - V be the natural map. We call (r, F) the singular 
(Seifert) fibration associated to (V, a). 

1.3. Resolution of singularities. Henceforth we shall assume that 
VcCn+l is a normal complex algebraic surface (and hence it has only isolated 
singularities). If D and D' are divisors (or 2-cycles) with compact support 
on a non- singular complex surface we let (D. D') C Z denote the intersection 
product [11]. 

Definition (1.3.1). A resolution ir: V- V of an isolated singularity 
v c V is called minimal if for any resolution w1: V1 - V there is a unique 
map X: V, - V so that roX = r1. Of course the minimal resolution is unique. 
Brieskorn [1] has shown that the minimal resolution exists if V is a surface. 

Remark (1.3.2). There is a simple criterion for a resolution of a surface 
to be minimal. Suppose V0 is a non-singular surface and Xc V0 is a compact 
irreducible curve. Then there is a non-singular surface V1 and a proper 
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morphism w: V,- V, so that w(X) = v C V, and w induces an isomorphism 
between V0 - X and V, - {v} if and only if X is isomorphic to Pc and 
(X(X) =-1. This is known as Castelnuovo's criterion. A curve X satisfy- 
ing the above is called exceptional of the first kind. A resolution w: V - V 
of an isolated singularity v C V is minimal if and only if no component of 
c-'(v) is exceptional of the first kind. Note that in general if w is the 

minimal resolution, the components of r-'(v) may have singularities, may 
have non-normal crossings, etc. 

Suppose w: V - V is a resolution of a normal singularity v C V and 
7c-'(v) = X1 U ... U X7, where the Xi are irreducible curves. Then the 
matrix A = ((Xi X3)) is an important invariant of w. One can see without 
difficulty that A is negative definite, the diagonal entries are negative and 
the off diagonals are > 0 [11]. 

Definition (1.3.3). Suppose V is a complex surface and v e V is an 
isolated singular point. We say that w: V, V is a good resolution of the 
singularity at v if 

(i) w is a proper morphism, V, is non-singular in a neighborhood U of 
7z-'(v) and w induces an isomorphism w: U - r-'(v) -) r(U) - {v}; 

(ii) if r-'(v) = Uj=1Xi, where each Xi is an irreducible curve, then Xi 
is non-singular for each i; 

(iii) Xi meets Xj at most in one point and they meet normally there; 
(iv) xi n x, n Xk =0 for i, j, and k distinct. 

It is a well-known classical result that a good resolution exists [18]. The 
fact that V is normal implies that r'(o) is connected (Zariski's connectedness 
theorem [19]). 

Consider the case where V has a good C*-action. Recalling the notation 
of (1.2) the map A: F' - F is ramified only along a finite number of fibers of 
v'. Hence there is an open subset U c X so that -w'( U) is non-singular. But 
F - p(X) is non-singular since o is an isolated singular point of V, hence F 
has only a finite number of singularities. These singularities are quotient 
singularities, hence they are rational singularities [2] and therefore they 
can be resolved by a sequence of monoidal transforms with centers at isolated 
singular points (u-transforms) [16]. Let p1: V, - F be such a resolution. 
Isolated singular points of a surface with C*-action must be invariant under 
the action, hence the action extends to V1. Let A9: V - F be the minimal 
resolution of the singularities of F. Then there is an induced C* action on 
V. The composite map p = -i: Van V will be called the canonical equiva- 
riant resolution of V. 
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For f: W e V a birational map of surfaces and X a curve in V we let 
f$(X) denote the unique irreducible curve in W for which f(f,(X)) = X. 
This curve is called the proper transform of X. 

Note that the induced C* action on = p3(X) is trivial and it can be 
shown that the other curves of the resolution have trivial stability groups. 

2. In this section we shall describe a pasting process for manifolds 
known as plumbing [6]. The building blocks are in our case D2 bundles over 
closed, orientable 2-manifolds. We first define plumbing according to a 
weighted graph. Next we let SO(2) act on the building blocks and define 
equivariant plumbing. In Theorem (2.2.1) we describe the restrictions im- 
posed on the graph by requiring the plumbing to be equivariant. 

The result of an equivariant plumbing is a compact orientable 4-manifold 
with SO(2) action. Its boundary is a closed orientable 3-manifold with SO(2) 
action. These -were classified in [12]. The manifolds in question were first 
treated by Seifert [15]. The orbit invariants of the SO(2) action coincide 
with the Seifert invariants, as computed by Hirzebruch [6] and von Randow 
[13] from the weighted graph of the plumbing. 

Let V be an algebraic surface in C'+1 defined by a weighted homogeneous 
polynomial. Restrict the natural C* action to the U(1) c C* action and con- 
sider K( V) = vn sff+, the intersection of Vwith the sphere of radius e in C'+1. 
Clearly K6(V) is a closed, orientable 3-manifold with U(1) = SO(2) action. 

The existence of a canonical equivariant resolution and the equivariant 
Plumbing Theorem (2.2.1) together give the main result(2 .6.1) showing how 
the resolution of the isolated singularity of V is obtained from the orbit 
invariants of K6(V). 

2.1. Plumbing. The principal SO(2) bundles over a closed, orientable 
2-manifold M are classified by H2(M; Z) = Z. 

Denote the associated D2 bundles indexed by m e Z as r = (Y.n, 7, M). 
The compact 4-manifold Ym has the homotopy type of M and if we let the 
zero cross-section z: Me Ym represent the positive generator g e H2(Ym, Z) 
then its self-intersection number, gag = m, is the Euler class of YKm. 

It is customary to let the bundle with Euler class m =-1 over S2, 
= (Y, oz S2), be the disc bundle whose boundary, S3, has the Hopf fibra- 

tion. This specifies orientations. 
Define plumbing as follows. Suppose we have two D2 bundles, i = 

(YMy 7zi, Mj) i = 1, 2. Choose a 2-disc B*j~ in the base space of Pi and let 
7ri-'(B,) = Yjj. Since 'P I B*j~ is trivial, there is a homeomorphism ,Iij: D2 x D2 Yi 
whose first component gives base coordinates and second fiber coordinates. 
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Let t: D2 x D2 D2 x D2 be the reflection t(x, y) = (y, x). Then there is a 

homeomorphism (with j = i + 1 mod 2) fii: Yii - Yij given by fji [ ,tP jtyJi'. 
Since Yj C Y.m we may paste Yi2 and Yi1 together along Y21 and Y12 by f2, 
to obtain a topological 4-manifold with corners. It may be smoothed accord- 
ing to [6]. Note that the resulting manifold is independent (up to diffeo- 
morphism) of the choices involved. 

A graph is a finite one-dimensional simplicial complex. (We shall always 
assume that graphs are connected.) Let A1, ***, An denote its vertices. 

A star is a contractible graph where at most one vertex is connected 
with more than two other vertices. If there is such a vertex, call it the 
center. A weighted graph is a graph where each vertex Ai has associated 
with it a non-negative integer gi (the genus of Ai) and an integer m* (the 
weight of Ai). 

Given a weighted graph G we define a compact 4-manifold P(G) as 
follows. For each vertex (Ai, gi, m*) take the D2 bundle 2i = (Yn.,g 7*, Mi), 
where Mi is a closed, orientable 2-manifold of genus g*. If an edge connects 
Ai and Ai then perform plumbing on 7i and rij. If Ai is connected with more 
than one other vertex, choose pairwise disjoint discs on M* and perform the 
plumbing over each. Finally smooth the resulting manifold to obtain P(G). 

2.2. Equivariant plumbing. Now let us define an action of SO(2) on 
(Yin, W, M). 
If g > 0, let SO(2) act trivially on the base space M and by rotation in 

each fiber. 
If g = 0, we define linear actions on,7 = (Y., w, S2). Let the base space 

be the union of two discs S2 = B2 U B22 then Ym = B x D U B22 x D2. We 
parametrize the discs in polar coordinates, radii Xi, pi, 0 < Xi, pi < 1, and 
angles 7*i ai, 0 < vi, ai < 2c, i = 1, 2. The actions of SO(2) on D2 are 
equivalent to linear actions and we shall think of them as addition of angles. 
Let a C SO(2), 0 < 0 < 2w. 

Define 

B1 x D,-> B x D, 

(Oi Y,1 P1, 1) (XBy Y1 + u10, P1, &1 + v10) 

B22 x D-> B2 x D2 

(X21 /29 P29 a2) - (X2, /2 + U20, P29 a2 + V20) 

Now Y. is obtained by an equivariant sewing 

h: aB2 x D2 -aB22 x D . 
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Since the action is linear, h is completely determined by 

h': aB 2 x aD2- aB21 x aDD2 

which in turn is isotopic to a linear map of the torus. Let h' be 

h'(71, 81) = (x-il + y81, zyl + to1) a 

In order that h' be equivariant we need uix + Vly = u2, ulz + vlt = v2. In 
order that h be equivariant on aB1 x 0 -+ 2B2 x 0 we need ulx = u2. Thus 
we must have y = 0. Since the determinant of h' is -1 and the sewing 
results in a total space with Euler class m, we need x =-1, t = 1, z =-m. 

Thus u2 =- u1, V2 =- mul -F v. The action is effective if and only if 
(u,, VI) = 1. Note that this action is in general different from the action 
where SO(2) operates on each fiber of the disc bundle. The latter corresponds 
to ul = v 9V = ?1 (u2 = 0, v2 = +1). 

A plumbing is equivariant if the identifying map fji and the trivializing 
maps yij are equivariant. Given a weighted graph G we say that P(G) is 
equivariant if each plumbing involved is equivariant. 

THEOREM (2.2.1). Let G be a weighted graph and assume that P(G) is 
equivariant. If 

(a) G has a vertex (A., gO, MO) where the action is trivial in the base, 
(b) for each vertex (Ai, gi, mi) we have m* < -1, and 
(c) for each vertex (Ai* 0, -1) connected with (Aj, gj, Mi) we have gj> 0 

or mj < -2 (or both), then 
(i) gi = 0 for all vertices i > 0, 
(ii) G is a weighted star with center A0, 
(iii) the action is non-trivial on the base for i > 0. 

Proof. First note that we plumb about a fixed point (O x 0 e D2 x D2) 
of the action. Thus, if a vertex is connected with more than two vertices, 
then its base must have trivial action. 

Let the action at AO be defined uOl = v0 vo 1, 1U02 0 ,9 v02 = 1. Note 
that the action is independent of io. 

Now suppose Al is connected to AO. Then the action in the base of Yin 
is non-trivial, hence g, 0 and ll = v029 V, U02, u12 -v02 -1, v12 = 
- M1vO2 I u02 M-in. 

Define inductively 

pO =-u12 1P, p1 v12 =-ml, I2 =-M2Pl - PO 

pj -iMpjj1 -Pj-2 j = 2, ..., r. 
Then the action is as follows. At Al we have u12 _-p0 v12 = P1. If A2 is 
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connected to A, then g2 = 0 and u22 =-p1, v22 = p2. Since the action has 
only two fixed points, no further vertices are connected with A,. Similarly, 
if A3 is connected with A2 then g3 = 0, u32 =-p2, V32 = p3, etc. 

Define the auxiliary parameters 

o = 0 , q1 1 , q2 'M2, q3 -M3q2 - q 

qj = mjqjl- qj-2 j = 2,. *, r. 

The following statements are easy to prove by induction [13]. 
(1) pjqj-l -pj-lq = -1 for 0 < j < r. 
(2) (ps, qj) = 1, (pj, pi-l) = 1, (qj, qj-1) = 1 for 0 < j < r. 
(3) If -m > 1 for 0 < j < r and if -mj = 1 implies -mj, > 1, then 

for 0 < j < r we have pj # 0 and 0 < qj < p3. 
This proves the theorem. 

2.3. The weighted graph associated to a resolution. Suppose V ( CC+ 
is a complex surface with an isolated singularity o C V and po: VO - V is a 
good resolution of the singularity so that p-'(o) = Xo U ... U Xr where the 

Xi are irreducible curves. 
We associate a weighted graph G to po in the following way. To each 

Xi there corresponds a weighted vertex (Ai, gi, ma) where gi is the genus of 
Xi and mi = (Xi*Xi). We join Ai to Aj by an edge if Xi meets Xj. 

Let Se be a small 2n + 1 sphere around o and let K = V n So. Now 
p-'(K) is homeomorphic to K and is the boundary of a tubular neighborhood 
of pcV'(o). In fact, it is obtained by plumbing according to the graph associ- 
ated to po [11]. 

Now assume that a is a good C* action. Let p be the canonical equiva- 
riant resolution. Then K is obtained by an equivariant plumbing. 

THEOREM (2.3.1). In the above situation 
(1) p is a good resolution, 
(2) the action is trivial on XO 
(3) the action is non-trivial on Xi, i > 0, and gi = i. X > 0, 
(4) G is a weighted star with center AO, 
(5) m, < -2, for all i > O. 

Proof. Let X: W-? F be a resolution of F such that YX: W V is a 
good resolution of V. Let G' be the graph associated to -ix. The action of a 
on X#(X) is trivial and the intersection matrix of the resolution is negative 
definite, hence (a)-(c) of (2.2.1) are satisfied. Thus (i)-(iii) are satisfied for 
G'. Contracting exceptional curves of the first kind (other than the proper 
transform of X) we see that (1)-(5) holds for p. 
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2.4. The star S. Let S denote the weighted star below 

where g > 0, b > 1 and all other vertices have genus zero and bij > 2. Let 

a*/,8i 1 - [bil, , biri] 

bbr* 

fori= 1, ..,s. 
It is easily seen that (at*, Si) = 1 and 0 <,Si < ai for all i. 
2.5. Actions of SO(2) on 3-manifolds. The equivariant plumbing of S, 

P(S) is a compact 4-manifold with boundary admitting an SO(2) action. 
Let K(S) = aP(S). 

According to [12] a 3-manifold with SO(2) action, K, may be described 
by the orbit invariants 

K = {t9; (S, g, h, t), (a1, iS) ***, (aA, 'Sn)} 
Here is a brief explanation of the meaning of these orbit invariants 

following [12]. The orbit space K* is a weighted 2-manifold whose orien- 
tability is given by e = o or n and genus by g. The number of boundary 
components of K* is t + h > 0. Of these h represent components of the 
fixed point set and t components of orbits with stability group Z2 which acts 
on the slice D2 by reflection. Note that along these orbits the local orienta- 
tion is reversed. The ordered pair of integers (a, ,Sj), O < ,Sj <aj, (a, ,Sj) =1, 



ISOLATED SINGULARITIES 215 

corresponds to an orbit with finite stability group Z,,j and representation 
Za. ) SO(2) given by 8j. Orbits of type (1, 0) are principal. If these are 
omitted from the expression of K, then the pairs (j, /%j) are unique up to 
order [12]. Finally remove a small disk D* around the image of each orbit 
(aj, /j) from K*. Let Ko* = K* - Uj int D. We can specify a cross- 
section to the orbit map on aK0*. The obstruction to extending this cross- 
section to all of Ko* is the integer /8. 

Clearly K(S) is orientable and the action has no fixed points, hence 
e0 = , t = h = 0. 

The following information will be needed about K(S) (see [12], [15]). 
Let at, bi, i = 1, ..., g generate wc1(K(S)*) and qj, j = 1, *.. , n be the 

additional generators of w1,(K(S)*). If we let h be a typical orbit, then 
ncl((S))= (a bzqj, h It r*h-P, [a,, h], [big h], [qjg h]g qnihWi) 

where i = 1, *** , g; i = 1, ...*, n and 7r* = q, *** q,[a,, bj]** [age bg] 
It follows that H1(K(S)) has 2g free generators, {al, b1, *.., ag, bg}, and a 

subgroup T(K(S)) generated by {h, ql, * * q*} with relations 

-,Sh + ql + * - - + qn 0 

,Sjh + axjqj =0 ly = ,*YI n. 

Let b =-,S and let R denote the coefficient matrix of the above relations. 
Let 

p = det R = bax, .. a. - (Xn1a2 ... an- a, * ...f1** n-~ 

torsion if p # 0, 
Then T(K(S)) = Z + torsion if p = 0. 

THEOREM (2.5.1). Let S be the weighted star of (2.4). Then 

K(S) = {-b; (o, g, 0, 0); (a, 1,1) ..., (a8, 8)} 

where 
a,/,S, = [bil y ... bird] for i =1,.,s. 

This result is due to Hirzebruch [6] and von Randow [13] when g = 0. 
For g>0 the proof is the same. 

THEOREM (2.5.2). Let 

K = (C; (o, g, 0, 0); (a,, )91), ., (a8, /98)} 

be the orbit invariants of a 3-manifold with SO(2) action and a6 > 1 for 
j = 1, * * *, s. Then K determines a unique weighted star S(K) with the 
property that the center has genus g and weight - b = R. There are s 
arms. If 
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tc*/ - [bil Y . ., bired Y i -I **s 

with b6j > 2 for all i, j, then the vertices on the i-th arm have genus 0 and 
weights -b1, -bi b2, .., - bir starting from the center. Furthermore 

K(S(K)) = K 

equivariantly. 

The only part of this theorem that is not obvious is the uniqueness of 
the continued fraction decomposition of ai/fSiQ but this follows from the 
assumption that bij > 2 for all i, j. 

2.6. The main theorem. Now let V be an algebraic surface in C"+' with 
an isolated singularity at the origin. Suppose V has a good C* action. 

Consider the U(1) c C* action restricted to the invariant intersection 

K = Vn s ~ 
Our results now yield the following. 

THEOREM (2.6.1). The weighted graph associated to the canonical resolu- 
tion of the isolated singularity at the origin of V is the star of K, S(K). 

In particular we may obtain this resolution by computing the orbit 
invariants of the U(1) = SO(2) action on K. 

Remark (2.6.2). Since the intersection matrix of the resolution is nega- 
tive definite, we see that the determinant of the relation matrix for H1(K), 
p > 0 and therefore the rank of H1(K) equals 2g. 

Note also that the orbit space K* of the U(1) action on K coincides with 
the orbit space X of the C* action on V - {0}. 

3. In this section we apply our results to surfaces in C3. More precisely, 
let V be defined as the locus of the zeros of a weighted homogeneous poly- 
nomial, with an isolated singularity at the origin. We shall find the resolu- 
tion of this singularity by computing the orbit invariants of the natural 
SO(2) action on K = V n S5. We noted in the remark after (1.1.2) that if 
an algebraic surface with an isolated singularity is invariant under a good 
C* action on C3, then it is defined by a weighted homogeneous polynomial. 

We first show that up to equivariant resolution weighted homogeneous 
polynomials divide into six classes, one being the Brieskorn varieties. Next 
we compute the weights for these classes. Then we proceed to find the 
orbit invariants of K. We determine the orbits with non-trivial stability 
groups: their number and the orders aj of the stability groups. The slice 
representation is used to determine the corresponding 8j. Finally we use 
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covering arguments to compute the genus of the "central curve" X and its 
self intersection, -b. 

It should be pointed out that not all algebraic surfaces with an isolated 
singularity in C3 admit good C* actions. Here is an example: 

Vz= {z2 A z - 3zlz4 + A-z5z + 2z' - = O} . 

This is an elliptic singularity with the following graph (cf. [17]): 

[0] [0] 

No resolution of this singularity can have a star-shaped graph. Moreover 
V {= ZA + Z4 + Z2 + zozlz2 =O} has graph 

[3] 

but V has no C* action. 
3.1. The six classes. Consider weighted homogeneous polynomials 

h(Z0, Z1, Z2) with the property that the variety {h(z., z1, z2) = O} in C3 has an 
isolated singularity. We show that all such polynomials fall into six classes. 
A variety in one of these classes is diffeomorphic to a variety having a 
certain simple normal form. 

Definition (3.1.1). A weighted homogeneous polynomial h(Z0, Z1, Z2) is 

said to be of class I (resp. II, III, * * *) if there is a permutation AT of {O, 1, 2} 
and non-zero complex numbers a0, acy a2 such that h(aoZ,(o), a1Z1,(1)y a2Z.r(2)) is 

equal to 
(I) ZOaO + Zal + Z2a2, 

(II) Zoa + Za A + Z1Z2a2 a, > 1, 

(III) Zoa + Zla1Z2 + Z2a2Z, al > 1, a2 > 1, 

(IV) ZoaO + ZOZal + ZZ2a2, ao > 1, 

(V) Zao Z, + Z1 "Z2 + ZoZ2a2 

(VI) Zoao + Z1Z2. 

PROPOSITION (3.1.2). Suppose h(Zo, Z1, Z2) is a polynomial and the locus V 
of h has an isolated singularity. Then h(Zo, Z1, Z2) =f(ZO, Z1, Z2) + g(ZO, Z1, Z2) 

where f is in one of the six classes above and f and g have no monomial in 
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common. If h is weighted homogeneous of type (w, w1, w2) then so are f 
and g. 

Proof. Let h(Zo, Z1, Z2) = La o 2 If io + i1 > 1 for all monomials 
of h then the line ZO = Z, = 0 is a subset of V and (ah/aZ,) = 0 for all i at 
every point on this line. This contradicts the fact that the singularity is 
isolated. Hence there must be a monomial of the form ZY2, Z1Z2 or ZZ2a2 

in h. The same reasoning implies that Zai, ZOZ1al or Z2Zla1 and ZaO , Z1Zoao or 
Z2ZOao must appear. Putting these three facts together one can easily see that 
we must get a polynomial f in one of the six classes above. 

Remarks. (1) It should be noted that f is not unique. 
(2) An analogous theorem holds for polynomials in more variables. 
Now we want to show that if h is weighted homogeneous then the 

variety of h is diffeomorphic to the variety of f. The crucial fact we need 
is that K, = V S, is independent of s. 

PROPOSITION (3.1.3). Suppose Vc C(-- a1(t, zo, * , zn) = (tq0z0, *.., tqnZ) 

is a C* action on V, qj > 0 for all i. Let Se be the real 2n + 1 sphere of 
radius s about the origin and K, = v nS,. Then for any e, a' > 0 K, is 
equivariantly homeomorphic to K, 

Proof. Suppose s ? a'. We define a homeomorphism f: Ke K, by 
letting f(z) be the unique point z' X K, so that there is a positive t e R where 
o(t, z) = z'. Suppose s e C * and II s jj = 1. If o(t, z) = z' then o(t, a(s, z)) = 
u(s, z') e K,, hence f is an equivariant map. Clearly we can define f- 
similarly. 

THEOREM (3.1.4). Suppose h(ZO, Z1, Z2) is weighted homogeneous of type 
(Wo, Wl, W2), the variety V of h has an isolated singularity and h = f + g 
where f belongs to one of the six classes and no monomial appears in both I 
and g. Let V. be the variety off and let 

K= VnS5, Ko= VonS5 

where S5 is a sphere around the origin. Then K is equivariantly diffeo- 
morphic to Koc. 

Proof. Let g(Zo, Zl, Z2) = a;1x:M, where M; is a monomial. Let x = 
(xl, **, xA) and let Vx be the locus of 

f(Z0, Z1, Z2) + Er=X$,MS 

Let KX = VX . )5, Then if a = (a ..., a,.) V = Va. Now it is sufficient to 
find a manifold M with SO(2) action, an open set UC r and a map A: M-e U 
such that o e U, a e U, the action leaves q-'(x) invariant for all x e U, 
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'9'(x) = K, equivariantly and q' is a locally trivial fiber space. 
Let k(Zo, Z1, Z2, XI, *... , Xr) = f(Zo, Z1, Z2) + ,r 1X-M (Zo, Z1, Z2), let 

NcC G+3 be the locus of k, let C= z{(zO, z, Z2 Xl ...* x) e Cr+3 I I Zo 12 + I z 12 + 1Z212-1}, 

let T0: CG 3 - Cr be defined by 9o(zo, z1, Z2, X19 * * * Xr) = (x1, * * * xr) and let 
91, = ( I N. We denote by U the (open) set of x G Cr such that 9(p'(x) has an 
isolated singularity at o. Finally define M = Nn On qn-'(U) and c-9 I M. 
Clearly o and a c U. Now let qi = <wo, wI, w2>/wi e Z. Then 

U(t, (zOY Z19 Z29 X19 .. * Xr)) = (tqoy tqlZlj tqZ21 X11 .. * *X r) 

induces an SO(2) action on M leaving the fibers of q invariant. It is sufficient 
to show now that ? has no critical points. Suppose (zo, z1, Z2, X1, ***, Xr) = 

m e M. Let TM, TN and TC denote the tangent planes at m to M, N and C 
respectively. Now TN is the complex plane perpendicular to 

ak ak ak ak ak 
= a a az S az Z ax"S axrrJ 

and T0 is the real plane perpendicular to v' = (zo, ZI, Z2, O *.., 0). We must 
show that (kernel TO) + TM = CT+3. But TM = T, n TC and v' e kernel qi. 
Hence it is sufficient to show that (kernel 9o) + T, = CT+3 or equivalently 
that TN 6 kernel q9. Now suppose kernel 9,0 c TN. Then (Y0, Y1, Y2, 0, ..., 0) 
is perpendicular to v for all (YO Yy1, Y2) G C3. But then 

a~k ___ ak () 0 (m) = (m) = (m)=O. 

But Ny'(xI, ..., Xr) has an isolated singularity at o. Hence, we get a 
contradiction. 

Remarks. (1) An analogous theorem holds for polynomials in more 
variables. 

(2) It should be noted that we have constructed a complex analytic 
deformation between V and VO. 

Definition (3.1.5). Let 

V(ao, al, a2; I) - {ZOO + zl1 + ZZ2 = O} 

and 

K(ao, al, a2; I) = V(ao, a1, a2; I) n S5 
where S5 is the unit sphere in C3. Use similar definitions in the other classes. 

Remark (3.1.6). Although it is convenient to discuss these classes 
separately, it is clear from the above that the weights form a complete set of 
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invariants for the variety. Thus either (w0, w1, w2) determine the class of a 
polynomial or, if more than one class is possible, the corresponding varieties 
are diffeomorphic. 

3.2. Weights. Let h(Z0, Z1, Z2) be weighted homogeneous with weights 
wi = uiwvi, i = 0, 1, 2 in reduced form. For integers a,, a2, ... , ak let 
(a1, a2, *.., ak) denote their greatest common divisor. Define 

c = (UO, Y U2); co = (U1, U2)/C; C1 = (Uo, U2)/C; c2 - (uo9 U1)/C 

Then for some positive integers rY0, tl y2 we have 

Uo = CC1C20 Y U1 = CC0C2Y1 U2 = CC0C172 

Note that c0, Cl, c2 are pairwise relatively prime, Y0, A Y2 likewise and 
(ci, vi) = 1 for i = 0, 1, 2. Thus we have 

d- <w0, Wl, W2> = CC0ClC2y0y1y2 

and 

qO = vOcO71Y2 , ql = vcjYOrY2 y q2 V2C2YOY1. 

In the six classes we note the following. 
Class I. wi = ai, so vi = 1 for i = 0,1, 2. 
Class II. w0 = ao, w, al, w2 = a1a2/(a -1), so V0 = V1 = C2 = 7 1. 
Class III. w0 = ao, w1 = (ala2 -1)/(a2 -1), w2 = (aa2 -1)/(a1 -1), o 

Vo= C1 = C2 = 1 = Y2 = 1. 

Class IV. wo = aoy w, aoal/(ao- 1), W2 = aoala2/(aoal -a 1), so 
Vo= C1 = C2 =0 = Y1 1. 

Class V. wo = (aOaja2 + 1)/(ala2-a2 + 1), w1 = (aoala2 + 1)/(aoa2- ao + 1), 

W2 = (aoala2 + 1)/(aoal-a, + 1) Y SO Co = Cl = C2 = 70Y =1 = 72 = '- 

Class VI. The polynomial Zoao + Z1Z2 is analytically isomorphic to the 
polynomial Za+o + Z -+ Z22 so it may be treated as a subclass of I. 

3.3. Orbits with non-trivial stability groups. Recall that the U(1) action 
on K is defined by 

t(ZO, Z1, Z2) = (tq0zo, tq'Zl, tq2z2) , t X U(1) 

If z0 # 0, z1 # 0, Z2 # 0 then the orbit of (z0, z1, Z2) has trivial stability group. 
On the other hand it is clear that for example 

K(aO, al, a2; I) n {z0 0} - {Z=1 ? Za2 - 0 I z, 2 + I z2 2 

is fixed by the subgroup of U(1) that fixes z, and Z2 pointwise; that is 
Z(qlq2) = Z70. This set consists of a collection of linked, knotted circles whose 
number equals the number of irreducible factors in the factorization of 
Zla + Z2a2 over the complex numbers, no = (a1, a2) = ccO. 
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In each class there are at most three non-trivial stability groups. If we 
call their orders a., a1, a2 and the number of orbits no, n1 and n2 respectively, 
then the following table arises. 

a(o no 1 a, a2 n2 

I Y CC0 c c1 c1, '2 Cc2 

II '0 (Cc0 - )/v2 V2'0 1 Y2 C 

III Y0 (c0 - V- v2)/vIv2 v2'0 1 v'0o 1 
IV t2 (c-1)/Vl V2 1 V)'2 1 

V Vo 1 V1 1 V2 1 

3.4. Slice representation. In this section we compute the /3j determining 
the representation Zags SO(2), 0 < /j < aj for the stability groups of (3.3), 
see [12]. 

Consider the no orbits with stability group ZAO in K(ao, al, a2; I). Since 
all of {zo= o} n S5 has the same stability group, all no orbits are of the same 
type, (a09, 89) for some obo If we let $ = exp (2zi/ao) then the action in the 
slice is described by d(zO, z19 Z2) = ($qoZo0 Z1, Z2) and by definition [121*, qo80f 
-1 (mod ao). 

The orbit with stability group Z,1 in K(ao, a1, a2; II) is {zO=zj=O, 9z212=1}.. 
At Z2 = 1 the slice is {zoo + zal + z, = ol n S5. Very near (0, 0, 1) we may 
approximate it by {Zao + z - o} n S5, hence the action in the slice is deter- 
mined by the projection into the zo plane, thus qf31 -1 (mod a1). 

Similar considerations result in the table below, where each entry is 
congruent to -1 modulo the aj on the top of its column. This determines 
the fSj since 0 < fSj < a,. 

a0o a a2 

I q0/o0 q1/18 q2f32 
II q0/90 q0?18 q2/92 

III q0/90 qo13I q0/92 
IV q2/80 qo13I q2/92 
V q210 qO13I q1f32 

* In [12] we defined ,B by the equation q, =_ 1 (mod a). Reversing orientation sends 
(a, A) into (a', ') = (a, a - A) and hence q,' -1 (mod a). This turns out to be the induced 
orientation in our case. 
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3.5. The genus of X. 

PROPOSITION (3.5.1). With the notation above 

2g Cc clcc2 - C(C0v0 + C1V1 + C2V2) + V0V1 + V1V2 + V2V0 - V0V1V2 
VovlV2 

For a proof consider the normalization Y' of X' and compute its genus 
using classical formulas. The map Y' - X allows one to find the genus of 
X and note (1.3) that X is isomorphic to X. We shall carry out the verifica- 
tion of the above formula in Class II and leave the remaining cases to the 
reader. First we need a definition and a lemma. 

Definition (3.5.2). Suppose po and p1 are positive integers, P1 < Po. 
Then there are unique integers P2, , Pt rl, ..., rt such that 

pi-, -ripi = pi+, ? < pi+, < Pi,9 

i = 1, 2, ..., t - 1 and rtp = pt-1. Then pt = (PO, p1) and we define po, p1 I to be 

P0, p1 1 = E=lripi(p-1) Pop - Po - P1 + (PO, Pi) 

If X c P2 is defined by a homogeneous polynomial of degree d and Y is 
the desingularization of X then the genus of Y is equal to (1/2)(d- 1)(d- 2)- 
2xexax. Suppose X is a curve, x E X is the only singular point of X and 
Xc V where V is a non-singular surface. Define inductively wri: Vim Vi-l 
where Vo = V, Xo = X, wri is the monoidal transform with center at the 
singular points of Xi-, and Xi is the proper transform of Xi-, by wri. There 
is an integer n such that X, is non-singular. By the classical Plucker 
formula [5, Th. 1] 

2 =o EyeC Xi Y(M 1) 

where my is the multiplicity of the singular point y. 

LEMMA (3.5.3). Suppose X is the curve in C2 given by 

z,0 + Zp? + Z?aZb = 0 

where po - p1, a + b ? po, b > p1. Then the singularity of X at the origin 
has order 

an 1 P0, Pi 
2 

Moreover if f: Ye- X is the desingularization of X then f'-(o) consists of 
(po, p1) points. 

Proof. Blow up and proceed inductively. 
We shall also need the classical Hurwitz formula. Let qA: X' X be a 

finite morphism of compact non-singular complex analytic curves. Then 
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(2 - 2g,) = (degree 9p)(2 - 2gx) - - ex(e() -1) 

where g denotes genus and e denotes ramification index. 

Proof of (3.5.1) for class II. Zao + za, + zzla2 = 0. With the notation 
of (1.2) and (3.3), X' is defined by the homogeneous equation 

4 + Z ? Zdqlq2a2 = 0 

It has precisely one singular point, at (0, 0, 1). In affine coordinates this 
singularity is given by 

zo + z + Zlt = 0 

By (3.5.3) a = d((q, - 1)/2). Let f: Y' - X' be the desingularization of X'. 
Then the genus of Y' is gy, = (1/2)(d - 1)(d - 2) - d((q1 -- 1)/2). Now we 
apply the Hurwitz formula to the covering Y' - X to get the genus of X. 
It is sufficient to find the ramification indices of the map. Consider the map 
9: V' - {O} - V - {O}. It is ramified along the three sets zo = 0, z1 = 0, and 
Z2 = 0. Above the no orbits given by zo = 0, zll- + za2 = 0 (cf. 3.3) there 
are q2a2 orbits given by zo = 0, zlq2a2 + Zq2a2 =0. Hence we get a contribution 
to the ramification of qOqlq2no - q2a2. Similarly we get a contribution of 
q0qlq2n2 - d from the n2 orbits given by Z2 = 09 Zao Zl = 0. Finally there 
is one orbit defined by zo = z0 = 0 and there is one orbit in V' lying above 
this defined by zo = z0 = O. This orbit corresponds to the singular point of 
X'. There are (qj, d) = q, points of Y' lying above this point (by 3.5.3). 
Hence we get a contribution of qoqlq2- q1 to the ramification. We conclude 
that 

2g = d(d- q) no-n2 +1 
qOqlq2 

Substituting from (3.3) gives 

c2coc1 - C(CO + C1 + V2) + V2 + 1 
2g = 

V2 

as required. 

3.6. Computation of b. 

THEOREM (3.6.1). Suppose V is an algebraic surface in C"+' with an 
isolated singularity at o and V is invariant under a good C*-action a of 
the form 

U(tq (Zo, * * Zn) = (tqzo;Zo * * tq,&Z ) 
Assume that V is not contained in any coordinate hyperplane. The 

manifold K = V n S2'+1 has an induced circle action with exceptional orbits 
019 ...* * * of type (a,1 s,) ... , (ar, Mar) respectively. Then 
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b =_ d +Er A,6 
qO 

. . . 
q, r 

where d is the degree of the cone V' over V. 

Remark (3.6.2). Suppose U and U' are non-singular surfaces, X is a 
non-singular curve on U and f: U' - U is a proper birational map. Then by 
a theorem of Zariski [18], f is a composite of a-transforms fi: Ui U- , 
U = Uo, U' = Us where fi has center xi-, E Ui-1. Let X0 = X, and Xi 
fi'(Xi-1) the proper transform. Then 

(f#(X) X #f(X)) + m = (X.X) 
where m is the number of indices such that xie Xi. We shall say that 
"f has m centers along X". If f: U' - U is a finite covering of degree n then 
n(X. X) = (f *(X). f *(X)) where f *(X) is the inverse image of the divisor 
(or cohomology) class determined by X. 

Proof of (3.6.1). The idea of the proof is as follows. Let A: V' V be 
the covering map. Recall that V = V'/G where G = ZqO D ... ** Zin. Now 
let F, X, F', X' be as in (1.2) and let h: Y' - X' be the desingularization of 
X'. Define Fo = F' x xA Y'. Clearly F' is a line bundle of degree -d over 
X', hence FO is a line bundle of degree -d over Y' and (Y' * Y')FO = -d. 
Now we shall construct non-singular varieties WO and V1 and birational maps 
z: Wo Fo and P1: V1 Vand a map ?: WO V1 so that rz = &jy) 

72 
WO Fo 

V1 -P. V -P' F. 

Let Yo = z-(Y'), X= PI(X) and X, p'(X). We want to compute -b 
(X . It is easy to see that degree 7 degree C YO and hence 7) is 
unramified along Yo and therefore we get: 

(II> 0q?)(X. Xi1)V =- (*GX1) C *(XA)) = (Y0. YOO)T O 1 

For the desired result it is sufficient to show that p, has no centers along X 
and z has 

(Hi= i) S=1 aj 

centers along Y'. 
The construction of WO will be a local process, i.e., it will be a composite 

of monoidal transforms with centers over the finite number of fixed points 
of G on Fo. We consider the following general situation. 
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LEMMA (3.6.3). Let G be a finite abelian group acting analytically on C2 
leaving o fixed. Let Y be a non-singular curve passing through o. Assume 
that Y is invariant under G and the action of G on C2 is effective. Let 
U= C2/G, wr: C2 U, u = r(o) and Z = 7c(Y). Then for some relatively 
prime integers, a, C, 0 < 8C < a we have that u E U is the quotient singu- 
larity of type <a, iS>, [cf. 2]. There is a canonical resolution a: U, "- U 
depending only on a and ,C (not on G) so that there is a proper birational 
morphism of non-singular surfaces a,,,: S,,, C2, an extension of the action 
of G to S9,,, and a map S/G U-," which is an isomorphism in a neighbor- 
hood of Z" = 9#(Z) and a has (order G)(,/Sa) centers along Y. 

Proof. We may choose coordinates (z., zj) in C2 so that Y= {z1 = ?}, 
and G acts linearly [2a]. Then it is easy to show that G = G' ] H where G' 
is cyclic generated by (0 Gus), H is cyclic generated by ( ? e~) - 

- e2:1a 0 < ,C < a and (a, ,C) = 1. Suppose first that H = (0). Let T. = 
C2, Y0 Y and y0 = o. Define inductively for i = 1, .**, C zi: Tim Ti, the 
a transform with center yi-1, Yi = z4(Y._ ), yi = the point of intersection of 
Yi and z '(yi-,). The action of G extends to Tp. Let U' = Tp/G, wrp: TO FU'. 
Then one can easily compute the action of G on Tp to see that U' has no 
singularities along Wrp(Yp). Let U" be the minimal resolution of U'. In this 
case (H = (o)) we construct S to be the minimal resolution of Tp x , U". 
The composite map v: -o C2 has ,C centers along Y and this is the desired 
result since order G = a. The general case follows from the following fact. 
If ~A: C2-+ C2, ,(z0, z1) = (z z1), and z-1: T1 C2 is the a transform with center 
o then we must perform a composite of k monoidal transforms centered at o, 
Tz: T ' C2 to get a commutative diagram 

T1' - ,C2 

T , )C2 

Now we return to the proof of the theorem. If y E Y' is any fixed point 
of the action of G there is a neighborhood of y satisfying the hypotheses of 
Lemma (3.6.3). Performing the composite of monoidal transforms U""P de- 
scribed in the lemma, at each fixed point, we get z: Wo - F0 and p1k: V1- F. 
Let Ca,p: U, -+ U,:YB be the minimal resolution of Ua:Y,p, Z ?K#,P(Z) and let 
6(a,,,S) be the number of centers of the canonical map -1,: UB UTp on 
Z. Locally p, is of the form -" p hence 

b = _ ir~l 
A _ (avi, Sli)) _ d ~+ z i= _ 

q0 .. qnai 
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The proof will be completed by showing that 6(ai, /Si) = 0 for all i. 

LEMMA (3.6.4). If V is the variety defined by 

Za0 + Z11 + Za2 = 0 

with (aO, a,, a2) = 1 then the theorem holds for V. Moreover this implies 
6(a, S) = 0, for all pairs (a, S) with 0 < , < a, (a, S) = 1. 

Proof. Recall that the intersection matrix of a resolution is negative 
definite. From this we concluded (2.6.2) that the determinant p of the 
relation matrix of H1(K) is positive and by (2.5) 

p = a1 ... a,(b - Si/ai) 

In the above case we have ci orbits with stability group Z,,i and hence 

p ao0-1ac1-'ac2-1(baoraa2 COo-acla2 - c1'1a0a2 - C2/32a0a1) 

Now p is a positive integer hence 

b> 1 >+ ci 
a0a1a2 ai 

But b = d/(qoqlq2) + Zci(/i3/ai) - Za(ai, Si) and by (3.3), d/(q0qlq2)= 1/(a0aja2} 
thus we must have 6(ai, ,Si) = 0, i = 0, 1, 2. 

For a given orbit type (a, p3), 0 < , < a, (a, ,C) = 1 find d so that 
0 < < <a and $,S-1 (mod a). Apply the above lemma to the variety of 
{z"' + z4 + z' = 0} which has one orbit of type (a, C). This shows that 
6(a, $S) = 0 for all orbit types and completes the proof of Theorem (3.6.1). 

Remark (3.6.5). According to Milnor [9] there is a fibration F 
S5 - K-n S1, where the fiber F is an open 4-manifold. Let h: F-x F be the 
characteristic map of this fibration and I the identity map of F. It is proved 
in [9, ? 8] that 

0 - H2K- H2F ,- H2F -, H1K-, 0 

is exact. It follows from (2.4) that the group H1K has rank 2g and the order 
of its torsion equals p. Let A(t) = det (tI* - h*) denote the characteristic 
polynomial of h* and let r be the exponent of (t - 1) in A(t). 

In [10] A(t) and r are computed for weighted homogeneous polynomials 
and it is noted that the minimal polynomial of h* has no multiple roots. 
Thus K rank H1(K), providing an alternate way of computing 2g. It would 
be of interest to obtain p also using [10]. 

We conclude with an example. The weighted homogeneous polynomial 
Z0105 + Z9 + Z1Z214 is of class II. Its variety has an isolated singularity at 
the origin, whose resolution may be found as follows. 
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From (3.2) the weights are (105, 9, 63/4), hence c= 3, co= 3, c1= 7. 
-o = 5, v2 = 4, c2 71 = 72 = Vo = V1 =1 and d = 315, qo = 3, q1 = 35, q2 - 
20. From (3.3) a0 5, no = 2; a1 = 20, n1 = 1; a2 =1, n2= 3. From (3.4) 

o = 3, = 13, 12 =0. From (3.5) 2g = 38 and from (3.6) b = 2. 
Since orbits of type (1, 0) are principal and do not appear in the resolu- 

tion, they may be omitted. Thus 

K(105, 9, 14; II) = {-2; (o, 19, 0, 0); (5, 3), (5, 3), (20, 13)} . 

We note that 5/3 = [2, 3] and 20/13 = [2, 3, 2, 2, 2, 2, 2] and apply Theorem 
(2.6.1) to conclude that the graph of the resolution is as below. 
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