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Introduction

These are notes for a lecture series given at the University
of 0slo in 1971 -1972., Although the manifolds of the title were
constructed by Seifert [1] in 1933, considerable interest has
been devoted to them recently. The principal aim here is to sur-
vey the new results and to emphasize the variety of areas and
techniques involved.

The equivariant theory comprising the first four chapters
was initiated by Raymond (1], who discovered that two classes of
Seifert manifolds coincide with certain fixed point free 3-dimen-
sional S1—manifolds. Chapter 1 contains Raymond's classifica-
tion of S1-actions on 3-manifolds. Chapter 2 describes equivar-
iant plumbing of D2~bundles cver 2-manifolds and identifies the
boundary 3-manifolds. This is used in chapter 3 to resolve sin-
gularities of complex algebraic surfaces with C*-action. The
technique is to compute the Seifert invariants of a suitable
neighborhood boundary of the singular point and use these to con-
struct an equivariant resolution following Orlik-Wagreich [1,27.
The equivariant fixed point free cobordism classification of
Seifert manifolds due to Ossa [1] is given in chapter 4.

The remaining chapters contain topological results. The
homeomorphism classification by Orlik-Vogt-Zieschang [1] using
fundamental groups is obtained in chapter 5. The known free
actions of finite groups on 83 are given in chapter 6 following
Seifert-Threlfall [1]. In chapter 7 we determine which Seifert
manifolds fiber over S1 . The important results of Waldhausen

[1,2] are outlined in the last chapter together with a number of
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other topics that we could not discuss in detail in the frame
of the lectures,

I would like to thank my friends Frank Raymond and Philip
Wagreich for teaching me directly or through collaboration much
of the contents of these notes; the mathematicians in 0slo in
general and Per Holm and Jon Reed in particular for their hospi-

tality; and Professor F. Hirzebruch for inviting me to Bonn and
for recommending the publication of these notes. Thanks are also
due to Artie for thorough procfreadnig and to Mrs, Meller for
careful typing of the manuscript.

Oslo, April 1972,

Peter Orlik

*)  Supported by grants from the National Science Foundation,
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1. Circle Actions on 3 -NManifolds

In this chapter we introduce the necessary preliminary
material concerning the action of a compact Lie group on a smooth
manifold. Some important standard results are stated without

proof.

We then proceed to the equivariant classification of circle
actions on closed, connected, smooth 3-manifolds following Raymond
[1] and Orlik and Raymond [1]. This is done in terms of a weight-
ed 2-manifold (the orbit space together with information about the
orbit types). It may be summarized as follows: the closed, con-
nected, smooth 3-manifold M with smooth S1 action is deter-
mined up to equivariant diffeomorphism (preserving the orientation
of the orbit space if it is orientable) by the following set of

invariants
M= {b; (G,g,h,t); (G1’B1)""’(O:I"BI‘)} .

Here € = o 1if the orbit space is orientable, € = n if not;

g 1is its genus; f % is the number of components of fixed points
in M j; t is the number of components of orbits with isotropy
group Z2 and slice representation equivalent to reflection about
a diameter in D2 3 the relatively prime pair of positive integers
{a,8) determines the orbit type of an orbit with isotropy group
%a ; and b 1is an integer representing an obstruction class sub-
Ject to the conditions that b = 0 if f+t >0, b € & if

f+t =0 and e =0, b € %2 if f+t+ =0 and € =n and b =20

if f+t =0, € = n and some aj =2,
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Manifolds with f+t = 0 %belong to the classes 0,0 and
N,nI of Seifert [1] and together with the other Seifert manifolds

(introduced in chapter 5) will be the main topic of these notes.,

1.1. Manifolds and Groups

A topological space X is a set with certain subsets Ui

distinguished by being called open. The collection of open sets
?ﬁf is required to satisfy the following conditions:

(1) the empty set # ¢ 2L and X ¢ U,

(ii) if U,V € V[ then UNV € U,

(111) if U, € U, i €1 then T e ? for an erbitrary

i€l
index set I .

If x € X then an open neighborhood of x 1is an element of w

containing x . A basis for the topology of X 1is a subcollec-
tion of open sets, 03 sc that each element of 2 is a union of

elements of 03 . X is a Hausdorff space if for arbitrary dis-

tinct points Xq1,%X, € X there are open neighborhoods Uy, U, S0

that U;NU, = @ . An gpen cover of X 1is a collection {U;};.;

of open sets so that _gf%_:X . A Hausdorff space is compact if
i

for every open covering there exists a finite subcollection

{Ui ye..,U; Y} which is an open covering of X . Amap f:X-~Y
n

i1 1

between topological spaces is continuocus if the inverse image of

every open set is open. It is & homeomorphism if there exists a

continuous map g: Y - X so that gof = idy , fog = idY . A

space X 1is a topological manifold of dimension n 1if it is a

Hausdorff space with a countable basis and every point x € X
has an open neighborhood Uy homecmorphic to an open subset of

Euclidean n-space R® ., This homeomorphism o: Uy -RP is called
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a coordinate system at x . Two coordinate systems ¢ and ¢
are O related if ® o¢'1 and Y w'1 are ¢ functions
whencver defined, A set of coordinate systems % is a smooth

structure on the topological manifold X 1if

(1) X 1is covered by the domains of the coordinate systems
in %?,

(i1) any two coordinate systems in € are ¢° related,

(iii) %? is maximal with respect to (i) and (ii).

X is a smooth manifold if it has a smooth structure. A map

f:X - Y between smooth manifolds is called a smooth map if for
every two coordinate systems o on X and ¥ on Y the func-
tion {§o fe m_1 is of class dx>. A structure (topology, mani-
fold, smooth) on X and Y induces a corresponding structure on

the cartesian product X x Y .

A group G is a topological group if G is a topological

space and the group operations

-1
(g1:85) ~ 818, and g-g

are continuous maps. The topological group G is a Lie group

if G is & smooth manifold and the above maps are smooth. Well
known examples are the general linear group GL(n;R) of n x n
real invertible matrices, the orthogonal group O(n) of n xn
real orthonormal matrices and the special orthogonal group S0(n)
of n xn real orthonormal matrices with determinant +1 . DNote
that GL(n;R) is an open submanifold of ]Rn2 while O(n) and
50(n) are compact manifolds, A subgroup of a topological group
is called closed if the corresponding subset is closed in the

space of the group, i.e. its complement is open.



1.2. G -lanifolds

Let G Dbe a compact Lie group and M a smooth manifold.

A smooth (left) action of G on M is a smooth map

GxM - M
(g,x) - &x
satisfying
(1) &¢(gpx) = (g485)x
(ii) ex = x , where e € G 1s the identity element,
M together with the G action is called a G-manifold. If NLI
and M, are G-manifolds then the map «: My - M, 1is called
equivariant provided for all g € G and x € M, we have go(x) =

o{gx) . Given x € M the subgroup of G defined by Gy =

{g 1 gx=x} 1is called the isotropy or stability group at x . The

action is effective if only e leaves every point fixed, i.e.

if gx = x fer all x € M then g = e . The subset of M de-
fined by Gx = {gx!g € G} is called the orbit of x . The col-
lection of isotropy subgroups along Gx , {ng lg € G} is called
the orbit type. It is the conjugacy class of GX in G since
ng = gGXg_1 . Consider the equivalence classes of orbits,

X~y <=>Hg € G 9: y =gx . Let x*¥ denote the equivalence
class of x and M* +the collection of eguivalence classes,
called the orbit space, M* = M/G . Let m: M = M* be the orbit
map. Topologize M* by the quotient topology: U is open in M*
if and only if n—1(U) is open in W .

Notice that WNM* is not a manifold in general. An action is
transitive if for any two points x,y € M Hg € G 3: y = 8X ,
so all of M is one orbit and the orbit space is a single point.

A G-manifold with a transitive action is called a homogeneous
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space. A particularly important example of a homogeneous space 1s
obtained as follows: Let G be a compact Lie group and H a
closed subgroup. The coset space of H, G/H admits a natural
action of G by multiplication and the action is clearly transi-

tive.

1.3. G- Vector Bundles

A fiver bundle £ = (E,B,F,p) consist of a total space E ,
base space B , map p: E - B called bundle projection, a fiber

P , an open cover U( and for each U ¢ W a homecmorphism
oy: U x F = p_1(U)

so that the composition p o is projection onto the first factor.
Py p

The structure group G of a fiber bundle is a group of homeomor-

phisme containing the homeomorphisms F = p_1(b) defined by

x - o (b,x) , and their inverses, for every b € B, It is assu-
med that G acts on the above homeomorphisms transitively on the
right., A fiber bundle is principal if the fiber is a topological
group G which is also the structure group of the bundle. A

vector bundle is a fiber bundle with fiber a vector space and

structure group the general linear group of that vector space.
Thus a real vector bundle has fiber ZRn and group GL(n) .
Typical example of a vector bundle is the tangent bundle TM of
a smooth manifold M® . The fiber at x € M , T, = R’ eand the
total space of the bundle, TM is a smooth manifold of dimension

2n . A G-vector bundle is a G-manifold M and a vector bundle

with total space E over M so that there is a G-action on E
~1
compatible with the bundle structure, i.e. the map from EX =p (%)

to ng is an isomorphism making the diagram below commutative,



GXE —> E
iidxp P
v v
G XM —> M

Typical example is the tangent bundle TM of a G-manifold M .
The map from TMX to TMgX is given by the differential of the
map g&: M - M evaluated at x ,

Given x € M the map gGX - gx defines an equivariant em-
bedding G/GX - M with image Gx , the orbit of x . Thus we
may identify the G-manifolds G/GX and Gx . Next we shall see
that the normal bundle of Gx in M is naturally a G-vector
bundle,

Let E - G/H %be a G-vector bundle with base the homocgeneous
space G/H . Let V denote the fiber at eH . Since h € H
leaves eH invariant,it leaves V setwise fixed so V is an
H-module., Consider the prinrcipal H bundle G - G/H and the
associated V bundle G xy V over G/H obtained from G x V
by identifying lg,v] = [gh,h'1v] . Let G acton G xyV by
k€6 klg,v] = [kg,v] . Since VcCcE given g € G , v € V we

have gv € E , thus we have a map [g,v] - gv consistent with

the identification, resulting in a map

G Xg V e—> E

which is clearly a G-vector bundle isomorphism., Thus a G vector
bundle over G/H is determined by the H-module structure of the
fiber at eH .

Returning to the case when H = GX, the normal bundle at
x € Gx has fiber V,_ = TMX/(TGX)X . For each g € G, the dif-
ferentiel of g: M -~ M induces a linear map VX - Vx providing

a representation Gx - GL(VX) called the slice representation.
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Its importance is given by the following theorem,

1.4, Some Basic Results

Slice theorem. Some G-invariant open neighborhood of the

zero section of G xg V., is equivariantly diffeomorphic o a
- T x

G-invariant tubular neighborhcod of the orbit Gx in M by the

map [g,v] - gv so that the zero section G/GX maps onto the

orbit Gx .,

A proof is given in JHnich [1].
This gives at x € M a slice SX with the following properties:

(1) S, 1is invariant under G, ,

(ii) if g€6G, y,y' €5, and gy) =y' , then g € G,
(iii) there exists a "cell neighborhood" C of G/Gx so that
C x SX is homeomorphic to a neighborhood of x . If T:C -~ G
is a local cross section in G/G, then the map F:C x S, ~ M
defined by F(x,s) = I'(c)s is a homeomorphism of C x 3, onto

an open set containing Sx in M ., In the differentiable case

we may choose Sx as a suitably small closed disk in Vg .

Another useful theorem from the general theory of transfor-

mation groups is the following

Principal Orbit Type Theorem, Let M be a G-manifold and

assume that M/G is connected. Then there is an orbit type (H)

8o that the orbits of this type, M(H) form a dense subset of M

and_ the smooth manifold M(H)/G is connected. The type (H) is

called principal orbit type, an orbit is called a principal orbit

and the bundle M(H) - M(H)/G is called the principal orbit

bundle,

A proof is given in JHnich [17.
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We shall also use the following result.

Conjugate Subgroup Theorem. Let G be a compact Lie group

acting on a manifold M . If x €M and Uc G is an open set

containing Gx then for y sufficiently near to x , Gy cU.

A proof is given in Montgomery-Zippin [1, p.215].

1.5, The Circle Group

We are particularly interested in the circle group G = S1 .

Recall first that there are different ways of thinking of this

group:

(1) G =U(1) ={z¢ec |zl =1}, complex numbers of modulus 1;

(ii) G = 80(2) , 2 x 2 real orthonormal matrices of determi-
nant +1 ;

(iii) 6 = 7’ =IR/gz , reals modulo the integers. (When convenient

we shall think of the equivalent form R/2nZ , i.e. elements
of G willl be angles © where O < < 27.)
Explicit isomorphisms are easily constructed and we shall use
these three forms of G interchangaily and without further warning.
The closed subgroups of S1 are (e) , the cyclic groups %a and
S1 and by the Conjugate Subgroup Theorem the principal orbit type
of an 8§ action is (e) . The purpose of this chapter is to
give an equivariant classification of closed, connected %-dimen-

sicnal S1-manifolds. First consider some examples,
1) Let

s3 = {z4,2, € ¢? ! 2,2, + 2,8, = 1}
and define an action of U(1) by + € U(1)

U
t(z1,z2) = (tvz1,t’zz) .



O
1

This action is effective when (u,v) = 1 . The orbit {2z, = O,
2,2, = 1} has isotropy group Zu and the orbit {z, =0, %= 13
has isotropy group Zv « All other orbits are principal. We
shall see later that fixed point free S1 actions on 53 are in

one-to-one correspondance with the pairs (u,v) .

2) Consider 83 as above with the action

t(z1,22) = (21,t22) .
The action has one circle of fixed points, {z, = 0, 2z4E; = 1] and
all other orbits are principal. We shall see that this is the

only action on 83 with fixed points.

3) Take any closed 2-manifcld B and let M = B x S' . Define

an action of S1 to be trivial in the first factor and the usual
one in the second. This gives a free S1 action with orbit space
B L

4) Let V=1D°x58' bea solid torus with S' action trivial

in the first factor and standard in the second. The subgroup
Z, < S1 operates on the boundary with the principal (antipodal)
action. If we collapse each of the orbits on the boundary of V
by this ZZ action we obtain a closed manifeld N with S1
action. There are only principal orbits (corresponding to the
interior of V) and orbits with isotropy group 22 (correspon-
ding to the boundary of V ) that are doubly covered by nearby
principal orbits so that the local orientation is reversed. The
orbit space of the action is a disk with principal orbits in the
interior and orbits with isotropy group %2 on the boundary.
The manifold N 1is the non-trivial 82 bundle over S1 called
the non-orientable handle.

Before investigating the orbits with non-trivial isotropy
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groups let us recall the orientation conventions of Raymond (1]
and Neumann [1]. Given an oriented manifold N, its boundary

oM is given the crientation which followed by an inward normal
coincides with the orientation of M . If M is an oriented S1
manifold and M* is an orientable manifold, then we orient M"
so that M* followed by the natural orientation of the orbits

gives the orientation of M .

1.6, FPixed Points

Assume that GX = S1 so X 1is a fixed point. The slice

at x may be chosen as a sufficiently small closed 3-ball D3
and the action of Gx is an orthogonal action of S1 on D3 .
This is equivalent to the rotation of D3 about an axis through
X . The orbit space of this action on D3 is a closed 2-disk
with x on the boundary. ©Sc fixed points lie on 1-dimensional
submanifolds and, by compactness, circles, A sufficiently small
tubular neighborhood of one component of fixed points is therefore
a so0lid torus with only fixed points and principal orbits. If we
parametrize such a solid torus V = D? x5 by (r,v;8) O0<r<1,

0 <v,6 <2m and let S' act by addition of angles, O < § < 2m,

then the action is equivalent to

8(r,v,8) = (r,y+9,5) .

/-\‘\\\-‘-h \
/ ) TETe T R el
! AN 7 !\'\\ 8

( L F (’/\7\ I‘\ .

/ -~ L .. L 3

’ O h
\\’\ \\j // i <

T ———— T

Call the collection of fixed points F and the (finite)

number of components of fixed points f .
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1.7. Exceptional Orbits

Let GX =% . The orbit is I1-dimensional and the slice may

M
be chosen as a 2-disk, D2 . The actions of Zu on D2 are equi-
valent to rotation (u>2) and rotation or reflection (u=2) .
Congider the rotations in this section and the reflection in the

next., Let € = 2m/u act on the unit disk as follows
g(r’Y) = (r9Y+V§)

where (u,v) =1 and 0 <v <y .,

We call this the standard linear action of type [u,v] . Since

this is the action in each slice of such an exceptional orbit
(called E-orbit), a small tubular neighborhood is a solid torus
V with action eguivalent to

8(r,v,8) = (r,y+ve, &5+ud) .

The E-orbit corresponds to r = 0 and has isotropy group of order

M, We call {[u,v] the oriented orbit invarients. The correspon-

ding oriented Seifert invariants (a,8) are defined by

a=u , Bv = 1 mod a , 0<B<a.

Their geometric interpretation is the following.

Given an orientation on V, orient the slice so that it followed
by the E-orbit gives the orientation of V ., This orients the
boundary of the slice m, a curve that is null-homotopic in V .
L?t 1 be a curve on oV homologous in V to the E~orbit and

so that the ordered pair m,1 gives the orientation on 3V . TLet
h be an oriented principal orbit on 3V . Since the sction is
principal on all of 3V it admits a cross-section, ¢ and any

other section, Q' is related to g by

q' = f da + sh

for some s . Orient q so that the ordered pair q,h gives
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the same orientation as m,;1 . Then we have

m = agq+ 8h
and a suitable choice of s reduces § +to the interval O0<B <a.
Similarly

1l =-vg=-ph

for some v and p so that

3

a B

thus 8v = 1 mod o .

Solving for 9@ and h in the m,1 oystem we have

= -pm ~ 31
h=vm + al
Since 1 may be changed by 1' = 1+sm we can reduce v in the

range 0 < v < a . In this case
p = (pv=1)/a .
In the action above, the curve
g={r=1,v=op9p, 5=28p, O0=<op<2n} cav

oriented by decreasing ¢ will satisfy the above conditions.

Changing the orientation on the solid torus V, keeping the

action fixed results in a changed orientation for the slice and
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hence the slice inveriants change to f[{,v] = [4,u~v] . Similarly
the Seifert invariants change to (3,B) = (¢,0-8) . Thus the op-

posite orientation satisfiecs the condition
Bv =z-1 mod a .

The latter was used in Qrlik-Wagreich (1,27,
If there is no orientation specified on the solid torus V,
then the orbit invariants are only defined as [p,v],0 < v <p/2

1

and the Seifert invariants (a,8) , 0 < 8 < a/2 with VB

mod o . We shall call these the unoriented orbit and Seifert

invariants,

1.8, Special Exceptional Orbits

If GX = Z2 and the action in the slice is reflection about
an arc, then the neighborhood of such a special exceptional (SE)
orbit is easily seen to be diffecmorphic to the cartesian product
of the Moebius band with an interval, the non-~trivial D2 bundle
over S1 . All orbits intersecting the arc of reflection are

B-orbits, thus a component of SE-orbits is a torus. Let SE

stand for the collection of SE-orbits and % denote the (clearly

finite) number of components of SE .,

1.9. The Grbit Space

As we have noted in the last three sections, the orbit space

*

is a manifold near F*, E and SE¥ , It is clearly a manifold

near principal orbits,so we conclude:

=

Lemma 1. The orbit space M is a compact 2-manifold with

boundary consisting of F* U SE” ,

Let us associate the symbol e=0¢ with an orientable and
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e=n with a non~orientable orbit space and let g denote the
genus in either case, If e=0 we assume that an orientation
of M* 1is given. Thus we may associate the 4-tuple {(e,g,f,t)
with M* where e€=o or n, g>0, £ >0 is the number of
boundary components in PF* and t > 0 is the number of boundary

components in SE* .

Lemma 2. If FUSE#F and E=¢ then (e,g,f,t) 1is a

complete set of invariants for ¥ up to equivariant diffeomor-

phism (preserving the orientation of N if e=o0).

Proof. We show that the action admits & cross-section.
Since E = @ we have a principal bundle over M*- P U SE* and
since F* y SE¥ Z @ this bundle is trivial. Choose a cross-sec-
tion to this bundle. It is now sufficient to extend this section
in the neighborhood of each F-component and each SE-component.
By (1.6) the neighborhood of an F-component is a solid torus V
in M . The given cross-section restricted to 3V is a torus
knot of type (1,b) for some b and it is well-known that there
is an annulus in V spanned by this knot and the "center curve"
{P-component) that extends the section. 4 similar argument ap-
plies to SE~components.

Next let us consider the somewhat more interesting case when
PUSEUE =g . Here all orbits are principal and we have a
bundle over the closed 2-manifold M”* , This bundle is classified
by @ map M* - CP° and hence by an element of H2(M*;Z) . This
element is called the chern class or euler class of the bundle.
If e¢= o then HY(M*;%Z) =% and if e=n then HO(M*;E) = i,
so the obstruction to the bundle being trivial is an integer b

where b €% if e=o0o asnd b € %2 if e=n .
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We may interpret this integer b as follows: Remove the
interior of a solid torus V, from M . The remaining manifold,
MO admits a cross-section ﬁz . Let qo be the cross-setion to
the action on the boundary oriented as the boundary of -ﬁﬁ . The
equivariant sewing of the solid torus Vo into MO is determined
up to equivariant diffeomorphism by specifying the curve on the

boundary of MO

m = q0+bh

that is to become nullhomotopic in V0 . We have obtained the

following:

Lemma 3, If EUF USE =g then 1 is determined up to

equivariant diffeomorphism by ¢ , g and b where b €Z if

e=o and b € %2 iﬁ e=n .

In case e=o0 the total space M 1is orientable. A change
of orientation of M results in a change of sign for b .,

We now have all the ingredients for the general case.

1,10, The Classification Theorem

Let S1 act effectively and smoothly on a closed, connected

smooth 3-manifold M . Then the following orbit invariants

M = {b;(esg)fat); (a1s91)9---s(dr93r)}

subject to the conditions

(i) bv=0 if f+t >0,
be€Z if f+1t =0 and e=o ,
beZ, if f+t =0 and e=n,
b=0 if f+t =0, ¢e=n and ay = 2 for some J ;
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id < 2 < ry » . = 1 i —
(11) 0 BJ O.J ’ (aJ’BJ) if € [O2
< . < . . .
0 B:_] * G.J/Q 3 (QJ,BJ)

1 if e=n ;

determine M up to an equivariant diffeomorphism (which preserves

the orientation of M* if e=o0).

Proof. Given the above set of invariants a standard action

is constructed as follows: Remove from MN¥ (r+1) disjoint cpen

*

~+ If FUSE-= # +then the remaining manifold is

disks DJ,...,D
a trivial principal bundle over MN* -,@ D; and admits a cross-
section, If PF*U SE*¥ @, removetheaa%;zndary components of

M* -,@g?, construct a cross-section and extend it to F* u SE¥

as in—(1.9.2). Let M, be the resulting manifold with (r+1)

boundary components and let ﬁ; be the cross-section. Sew in

neighborhoods Vi of E-orbits with Seifert-invariant (aj,Bj)

'

J=1...,7r next. Let Q ©be a boundary component of Mr

and Q x S1 the corresponding boundary component of Mr . Let

Q x {0} bve the cross-section. Now sew the solid torus V of
(1.7) equivariantly onto this boundary by mapping orbits onto
orbits and the cross-section ¢ of V ontc Q x {0} . Paramet-
rize Q x §' by {v,5} , where increasing vy orients Q as a
boundary component of m*

T
Define the equivariant map

F:QxS -av
by

F(y,8) = {py+vs, 8y+ad) .
Notice that

PV
= =1

8 a

and therefore F 1is orientation reversing as required. The
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oriented cross-section q of 3V maps onto the oriented curve
-Q .

The equivariant sewing is therefore specified by the follow-
ing. Given the cross-section ﬁ; in M, let Qq_,q7,...,9, be
cross-sectional curves in aMr oriented opposite to the induced
orientation as components of aﬁi . The equivariant sewing of
the solid torus Vj j=1,...,r makes the curve my = a.qj+th

J

on the j-th component of 3M null-homotopic in Vj .
If e=o0 then the pair (aj,ﬂj) is determined in the inter-

val 0 < Bj <qa, and if e=n only O < Bj < aj/z gsince the

j
local orientation may be reversed along a path in M* . We now
have a manifold Mo with one torus boundary and a cross-section
q, vo the action. We sew the last solid torus Vo fibered tri-
vially onto this boundary so that the surve m, = qo-+bh becomes
null-homotopic in VO . This gives a manifold M with the re-
guired action.

Conversely, given an action on M, we shall recover its orbit
invariants as follows: Read off ¢,g,f,t from the orbit space,
M* . The equivariant tubular neighborhoods of E-orbits are iso-
lated, ZEach one is equivariantly diffeomorphic to a solid torus
V as described in (1.7) and the action is determined by the
Seifert invariants (a,8) , 0 < B <o . If e=n we use an iso-
topy of the tubular neighborhood along a path reversing the orien~
tation on V¥ +to reverse the orientation on V . This reduces
B to 0 <8< a/2 . These pairs are invariants of V wup to
equivariant (orientation preserving, resp. not) diffeomorphism,
specifying cross-sections QgsevesQ, ON the boundaries., If
F UGSE # ¢ these cross-sections may be extended to a global

cross-section. If F U SE =¢g and e=o0 we have an obstruction

in
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2 . 3 P
HE(M - int (V] U...U VD), 3(V] U...U V2)5E).

Its class is identified with the integer b . If F USE = §
an@ e=n the above group equsals Z2 and b may take on the
values O or 1 . A special argument shows that in the presence
of an E-orbit of type (2,1) the two actions are equivariantly
diffeomorphic, see Seifert [1, Hilfsatz VII].

It is easy to check that if M is orientable (e=o0 and t=0),

then a change of orientation results in the new orbit invariants
-4 = {b';(O,g,f,O);(a1,a1-81),...,(ar,ar—5r)}
where b' =0 if f >0 and b' ==~b-r if £ =0,

In order to facilitate the notation we shall not insist that
the Seifert invariants always be normalized. Writing M with
these invariants should cause no confusion since the normalization
is a well defined process.

Another notational convention will be the occasional use of

the orbit invariants [u,v] instead of the associated Seifert

invariants (a,8) . Again, the conversion is unique.

1.11. Remarks

1. The eguivariant classification of (1.10) does not answer
the question of when two 81—manifolds are homegmorphic i.e.,
what are the possible different actions on a given manifold (c.f.
the examples in 1.5). We shall call this the "topological classi-
fication problem".

(i) If P USE = § +the manifolds involved coincide with
Seifert's classes 0,0 and N,nI . These (together with the
other Seifert manifolds introduced in chapter 5) are the central

objects of our considerations and their mutual homeomorphism rela-
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tionship will be discussed in detail in chapters 5 and 7 . These
manifolds are irreducible with universal cover 83 or R3 .

(ii) If P # @ then the identification of the manifolds is
done using equivariant connected sums. An arc S* in the orbit
space with end points on fixed point components and interior
points corresponding to principal orbits has as inverse image under
the orbit map a 2-sphere, S . Using such arcs the maniféld is

decomposed as the equivariant connected sum of 3-manifolds with

the following orbit spaces.

{0(0309190);(0'98)}

Clearly L 1is the result of an equivariant sewing of a solid
torus neighborhood of F , V, and a so0lid ‘torus neighborhood of
the E-orbit, Vo « Let hi and qy be the orbit and cross-sec-
tion in avi . Then we have the relations for the bounding curves
m, = h1, m, = aq2-+6h2 . The equivariant sewing is h2 - h1 5

4, = -a, and going through the computations of (1.7) shows that

we obtain the lens space IL(a,8) .

- P
// \\\ L
[ |
u* = O ) M = {03(0,0,2,0}
ng
S /
Ny
Obviously M = 82 xS1 with the standard S1 action on the first

factor and trivial action on the second factor.
P -X-

&f) ? = {0;(0,0,1,1)}

B SE¥* /
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1

Similarly P = P° x S' with the standard S' action on P° and

trivial action on the second factor,

m/ N = {0;(n,1,1,0)}
g ‘

\\\_~‘M,//'

The manifold N is the non-orientable S2 bundle over S1 . The

action is visualized by taking S2 X I with the usual S1 action
in the first factor and identifying 32 x 0 and 32 x 1 so that
the orbits are reflected about the equator of 32 .

We state the following result without proof, Raymond [1].

Theorem, Let

M = {b;(e,g,f,t); (a1’31)""’(ar’3r)}

and assume that f > 0 . Then M is equivariantly diffeomorphic

to the equivariant connected sum:

o “ W ae?eal
() 87w (8%x8T)y fu it (5% x5 ), p g ¥ (BFxSTy#. L #(2xST),

# L(G1,31) Faoold L(ar,Br) ;i (e,g,f,t) = (o,g,f,t) ’ t Z 0 H
1 , 1 2 <y s (p2 s
() (8%x 8Ty oot (5Bx 8Ny oy # (BPxsT) bl # (B xS,

# L(ay,8)) #oouw Lay,e) AL (6,8,%,1) = (0,6,2,%) , £> 0

(c) m # (s2xs), #oou# (5%x8"), o 5 # T(ay,8,) #ouod

g+f-
L(dr,Sr) if (e,g,f,t) = (n,g,£,0) .

(iii) The case F =@ , SE # # is handled using the classi-
fication of Seifert manifolds. The action 1lifts to the orientable
double cover and commutes with the covering transformation. For

details see Orlik-Raymond [1].
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2, We assume that M is a smooth manifold and S1 acts
smoothly. It is known that all 3-manifolds are smoothable and
using somewhat more eleborate arguments all the results hold for
continuous S1 actions on topological 3-manifolds, Raymond [1].
It follows from the discussion above that for the class of 3- ma-

nifolds with S1 action the Poincaré conjecture holds.

3, Raymond [1)] also studies the case when M is not com~
pact. Allowing boundary makes the equivariant classification

more cumbersome bdbut essentially the same,

4, The classification above provides us with examples of
manifolds that admit no S1 action at all, e.,g. any connected

sum not on the list of the theorem.
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2, Bquivariant Plumbing

Plumbing is introduced for building blocks that are D2
bundles over closed, orientable 2-manifolds, where it essentially
consists of removing a D2 X D2 from each of the objects and iden-
tifying the resulting boundaries after an interchange of factors,
Prescribing an action of S1 on the building blocks we may re-
quire that the plumbing respect this action. The resulting 4-
manifold with boundary is studied in terms of the graph of the
plumbing. The boundary is a closed, orientable 3-manifold with
s! action and may be identified in terms of (1.10).

These ideas were first introduced by Hirgebruch [1] and
von Randow [1]. The equivariant analogue was needed in Orlik and
Wagreich [1] to resolve singularities of algebraic surfaces with
C* action, This application is presented in the next chapter.

The orientation convention adopted here is that of Raymond
f1]. The opposite was used in Orlik-Wagreich [1,27, where the

letter b is also used differently.

2.1, Plumbing

The principal S0(2) %bundles over a closed, orientable 2-
manifold M are classified by H2(M;%) =% . Denote the associ-
ated D2 bundles indexed by m € ¥ as n = (Ym,n,M) . The com-
pact 4-manifold Ym has the homotopy type of M and if we let
the zero section v: M - Ym represent the positive generator
g € H2(Ym;%), then its self-intersection number g.g = m is the
Euler class of Ym . It is customary to let the bundle with
Buler class m =-1 over S° , M= (Y_1,ﬁ952) , be the disk

bundle whose boundary, 33 , has the Hopf fibration.
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Given two such bundles mny = (Ym1,n1,M1) and n, =
(sz,nz,Mz) we plumb them together as follows, Choose 2-disks
B, €M, and B, M, and the bundles over them, §, and &, .
Since they are trivial bundles there are natural identifications
Mgt D2x D2 - §1 y Mol D2x D2 - §2 . Consider the reflection
t: D°x D% = D°x D° , t{x,y) = (y,x) and define the homeomorphism
f: 8,8 by f= “gtkh_1 . Pasting n; and n, together
along §, and §2 by the map f is called plumbing. It yields
a topological 4-manifold with corners that may be smoothed. The
resulting smooth manifold is independent of the choices involved.

A graph T is a finite, 1-dimensional, connected simplicial
complex. Let A ,...,A denote its vertices. A star is a con-
tractible graph where at most one vertex, say AO , is connected

with more that two other vertices. If there is such a vertex,

call it the center., A weighted graph is a graph where a non-nega-

tive integer g, (the genus) and an integer my (the weight) is
associated with each vertex Ai .

Given a weighted graph T we define a compact 4-manifold
P(r) as follows: PFor each vertex (Ai’gi’mi) take the D° bun-

dle n,

;= (Ymi,ni,Mi) where M, is a closed, orientable 2-mani-

fold of genus 8; - If an edge connects Ai and Aj in T then
perform plumbing on 0y and nj . If Ai is connected with more
then one other vertex, choose pairwise disjoint disks on Mi to
perform the plumbing. Finally smooth the resulting manifold to

obtain P(T) .

2,2, EBgquivariant Plumbing

We shall now define 81 actions on the building blocks n =

(Ym,ﬂ,M) . For g >0 1let 81 act trivially in the base and by
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rotation in each fiber., PFor g = 0 we define actions on n =

(Ym,n,sz) as follows: Let 82 = B.IUB2 be the union of two

2-disks and Y_ = B,xD, UB,xD, . Parametrize D% x D° in

polar ccordinates with radii r and s , 0 <r,s <1 and angles
Y, 8, 0 <y, § <2nm ., The actions of S1 on D2 are equivalent
to linear actions and we shall think of them as addition of angles.
Let 6 € S1 s 0 <8 <2m ., Define for i = 1,2

6.: D°xD° =~ D°xD?

ei(r,Y,S,é) (r,y+uie,s,5+vie)

Now Ym is obtained by an equivariant sewing

G BB1XD1 -‘6B2XD2 .

Since the action is linear, ¢ is determined by

F: BB1 xBD1 = 8B, x D,
which in turnm is isotopic to a linear map of the torus. Let F
be defined by

F(y) = xy+yd , F(8) = zy+ %5 .

Then F is equivariant if
WX+ VY = Uy and u124-v1t = Vg .

In order that G ©be equivariant on BB1x 0 - aB2 x 0 we need in

addition that wu,x = u, , thus y = 0 .

Since the determinant of F 1is -1 and the sewing results in a
total space with euler class m, we need x=-1, t =1, 2 =-m,
Thus Uy ==Uy , ¥V, =-mUy +Vy . The action is effective if and
only if (u1,v1) =1,

A plumbing is equivariant if the identifying and trivializing

maps are equivariant. Given a weighted graph T we say that
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P(T) 1is equivariant if each plumbing involved is equivariant.
In that case the boundary K(T) = 3P(I') is a 3-manifold with

S1 action, We shall identify this manifold for certain graphs.

For M = 82 we may think of the classifying element m as a
map S1 - S1 of degree -m . As above, aYm is obtained as the
equivariant union of two solid tori

2

2
3Y, = By

1 1
X S1 % B2 X 82

where F has the matrix

This is the sewing of two solid tori that results in the lens
space L(-m,1) . Due to the well known diffeomorphisms L(p,q) =

- L(-p,a) = - L(p,p-2) , we may write
aYm = L(-m91) = L(msm_1) .
Note also that the different actions on IL(-m,1) are given by

the different pairs (uy,v4) . For example uy =0, vy = 1

(up = 0, v, = 1) gives the free action

L{-m,1) = { ~-m;(0,0,0,0)} .
In case uy = 1, vy = 0 we have a circle of fixed points and
the orbit invariants are

L(-m,1) = {0;(0,0,1,0);(m,m~1)} .

Next consider the result of an equivariant plumbing accord-

ing to the linear graph T(b;,...,b.]

-b /j;\\ AVAYaY /:b
1 \j/ N

where each vertex has genus zero,
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Lemma 1. The result of the equivariant linear plumbing

according to the graph T(b,,...,b ] above is the lens space

L(pg,py) where

Pg 1
5= - = [0
by, -
0‘.—-1_'
P
Proof., Decompose each base space as 5, = B, ) B, with
e i i, i,2

the corresponding trivializations of the bundles, As we have
seen the first equivariant sewing requires Wy 5 o= =Uq g and
2 »

v1’2 = b,]u.‘,1+v1,1 so it has matrix

Since the plumbing is equivariant the actions of 31 o X S1 2
2 3
and B2 1 X 82 4 are the same but the factors are reversed, i.e.
¥ 1

uz,’1 = \71’2 and v2,1 = u1,2 . The matrix of this map is

0 1
1 0

and we have that

(u V, 1) =
2,1772,1 10 {v, 1) vy

The equivariant sewing of By 4 X 82 1 and B2 5 X 82 5 has
s L H s

matrix
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and the action on 32 5 X By o 1s therefore expressed by
H 9

( ) -1 0 0 1 -1 0\ fuy 4
u v = ]
2,2*°2,2
’ ' by 1 1 0/ 1% 1 v1’1 .

Continuing the sewing results in the equation

-1 0\ /O 1 -1 ¢ ¢ tif=t 0} fuy 4
(us 2’vs,2) - v ’

by 1 1 0 /1ty 1 1 0/iby 7 Vi o9

Note that all orbits are principal with the possible excep-

tion of the center curves of 31 7 X S1 1 and B X S
9 H

5,2 s,2 °

The orbit space of the complement of these two solid tori is an
annulus, Thus the total space is the result of the equivariant

sewing of two solid tori by the product matrix above. Let

$
=Pg-1 “~Pg_q Uq 4
(us,2’vs,2) =

Pg Pg V1,1 *

Then the total space equals the lens space L(ps,pé) , where
PS/Pé = [b1,b2,...,bS]. The latter fact follows from elementary
properties of continued fractions,vonRandow [1]. This completes the
proof,

In particular if the action on 31,1 X S1’1 has an orbit of
fixed points, u.1’1 =1, vu1 = 0 , then Bs,2 X Ss,2 has an E-

orbit with oriented orbit invariants [ps9—ps_1] .

Next we shall show that ecguivariant piumbing imposes a strong
condition on the shape of the graph provided the weights are nega-
tive. This will be the case for the applications in the next

chapter.

Lemma 2, Let T be a weighted graph and assume that P(T)

is equivariant. If
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(a) T has a vertex (Ao,go,mo) where the action is trivial in

the base,

(b) for each vertex (Ai’gi’mi) we have m; < -1, and

(¢) for each vertex (Ai,o,-1) connected with (Aj’gj’mj) we

have gj >0 or mj < -2 (or both) then

(i) g; = 0 for all vertices i >0,

(ii) T is a weighted star with center Ao .

(iii) the action is non-trivial on the base for i > 0 .,

Proof: Since we plumb around a fixed point, 0x0 C D2 xD2,

a vertex connected with more than two vertices must have trivial
action in the base, Thus if A1 is plumbed into Ao’ it has non-
trivial action in the base, hence g4 =0 and uy 4y =1,vy =0,
L 9
From above we get u, , = -1, v, o = -my . Define inductively
9 9
Py = L Pq =-04 , Pp = ~MsP¢4=P, » pj = _mjpj-1-pj—2 s 3= 20T
Then the action has u. = =D. V. = p. +» We define the
© 3,2 p3'1 3,2 pJ

PR f ¥ [ [} t $

auxiliary parameters Py = 0, pp =1, Pp = -My , Pz = ~M3Pr=Dq;

pé = -my j-1"P3-2 s J = 3,004, . Then induction shows

1) pypj_q-Pjqpy=-1 for 0<j=<r,

2) (pj’pé) =1 H (Pj,Pj_1) 1 9 (péspé_1) =1 for 0 < E T

3) if -my 21 for 0<j <7t and if -my =1 then -myuq>1

ix1
implies that we have 1B A0 and 0 < pé <y -

This proves the lemma,

Lemma 3., Consider the star S below with each b. . > 2

and gi,j = 0 except for the center.




The result of the equivariant boundary plumbing K(S) has

Seifert invariants

K(S) = {b;(ovgsoao);(a1951)9-“s(ary5r)}

where

Q.
—d— = (1.
as- Bj J

,1,...,b ], S .

3.8y

Proof: By Lemma 1 each linear branch gives rise to a sew-
ing of an E-orbit with orbit invariants [pg., ~pg _¢]. Since
J -
Pe. >0, a, =p,, and v =-p, _4 .
S5 P73 3 S5 1
Prom (1.7) and equation 1) sbove we have p = pé,_1 and before
d

normalization 8 = -pé_ . According to 3) the normalized B =
J
a+ 3 = a-—pé_ . This proves the assertion that
d
Ps a
J _ j _
e R T RIE
J

The Seifert invariants of the manifold before normalization equal

K(S) = {b+r;(o,g,0,0);(ps1, -p;1),--.,(ps s =pg )}
r r
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and normalization gives the required Seifert invariants,

Lemma 4, Given relatively prime integers (a,B) with

0 < B <a the fraction a/a-p may be obtained as a unique

continued fraction

a -
o~ B = [b19b21-”sbsj

where bi >2, i=1,..,.,8.

Proof: Repeated application of the Rilidean algorithm.

Corollary 5. Every Seifert manifold

K= {b;(o’gio’o);(a"]981)""’(ar!8r)}

is the result of an equivariant plumbing according to a star S(K)

as in Lemma 3,

2,3, Quadratic Forms

Given & connected, oriented 4k-dimensional manifold M, a
quadratic form SM may be associated with it by homology inter-

sections, ILet V = H2k(M;Z)/ torsion and define
S:VxV-2%2

by intersection of representative cycles, This is a well defined
gymmetric bilinear pairing, hence it induces a quadratic form on
V , called SM . As usual, the form may be diagonalized over the
reals. Let b, denote the number of positive entries and p_

the number of negative entries. The integer

(M) = 1(Sy) = o, ~-D_
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is called the signature of the quadratic form (manifold). It is
called positive (negative) definite if D, (p_) equals the rank
of V.

We want to compute the quadratic form of the compact 4~
menifold P(T'), It is clear from the remarks of (2.1) that the
graph T contains all necessary information., We may choose a
basis for V consisting of one generator for each vertex (A,g,m)
of T with self-intersection number m, and any two vertices
connected in T have intersection number 1,

In particular the star corresponding to the Seifert manifold

K = {b;(o,g,O,O);(a1,81),...,(ar,8r)}

S(X) provided in (2.2,5) has gquadratic form with matrix below

where each unfilled entry equals zero,

-b=1 1 1 1

1 —b1’1 1

1 “boq 1
- 1 b,
M- té#%
- 1
! br,1
1 ‘.
1
1 'bnsr
Since bi j > 2 for all i,j this matrix is easily seen to be
?

negative definite if and only if

-b~r < 0O,
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3. Resolution of Singularities

This chapter describes some results from Orlik-Wagreich 71,27,
Many of the ideas go back ‘to Hirzebruch [17.

Given a complex algebraic surface with singularities, V ad-
mitting a "good" action of €% , the multiplicative group of com-~
plex members, we obtain a resolution of the singularities of V
by the following method., If V has an isolated singularity, then
a small neighborhood boundary S€ invariant under the action of
U(1) © €* intersects it in K = vns, , a smooth, orientable,
closed 3-manifold with S1 action., Given the orbit invariants
of K (1.10) we prove that the corresponding star (2.2.5) is
the dual graph of a (canonical equivariant) resolution of the iso-
lated singularity of V . If the singularity is not isolated then
a normalization must preceed the above construction.

Rather than giving all the details as published, the emphasis
here is on a survey of the background material, motivation and

examples,

3,1, Algebraic and Analytic Sets

We shall define the necessary terminology as given in Fulton
17 and Gunning (17, Iet R Dbe a commutative ring with unit.

Let REX1,...,Xn] denote the ring of polynomials in n variables

over R . A polynomial P € R{X1,...,Xn] is homogeneous of de-
gree d if each monomial of F has degree d , An element a €R
is irreducible if a = b.c implies that b or c¢ 1is a unit,

A ring R is a domain if a.b = 0 implies a =0 or b= 0.

R is a UFD if every element has a unique factorization up to

units and order. If R is a UFD so is RIX] ., In particular

kTX1,...,Xn1 is a UFD for any field Xk ., The guotient field
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of k[X1,...,Xn] is the field of rational functions, k(X1,...,Xn).
An jdeal I < R is proper if I # R , maximal if it is contained

in no larger proper ideal and prime if ab € I implies either

)

a €l or be&lI. An ideal is principal if it is generated by
one element, A principal ideal domain (PID) dis a domain where
every ideal is principal, The residue classes of elements in R,
modulo an ideal I, form a ring &/I and the natural map o©: R -
-~ R/I is a ring homomorphism. In particular k(X1,...,Xn]/I is
a vector space over k ., Given an ideal I, define its radical
by radIl = {a€R!a®¢I for some integer n > 0% .

Let " be the affine complex n-space, If S 1is a set of
polynomials in C[Z1,...,Zn] let ¥(8) = {5 €6 | F(z)=0 for all
Fe8} . Clearly V(8) = ng V(F) . A subset X € €% is algebra-
ic if X = V{(S) for scme S . Note the fcllowing properties:
(i) 4if I 4is the ideal in C[Z1,...,Zn] generated by S then
V(S) = V(1) , so every algebraic set is equal to V(I) for some
ideal T ;

(ii) 4if {Ia? is any collection of ideals, then V(gIa)= QV(I&),
so the intersection of any collection of algebraic sets is an al-
gebraic set;

(111) V(F « ¢) = V(F) "1 V(@) , so any finite union of algebraic sets
is an algebraic set;

(iv) if I defines an algebraic set then I = radl.

A ring is Noetherian if every ideal is finitely generated.
In particular the Hilbert Basis Theorem shows that €[Z,,...,2,]

is Noetherian,

Projective complex n-space cP™ is defined as all lines
through the origin 0 € ¢+t any point 2z = (2 ,...,2,) #0

defines a unique line {Az_,...;\z ! 1 ¢cC*] and two points 3z, z'
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determine the same line if and only if there is a X € €* so that

zi = kzi for all i . We let the equivalence class of these

points sz:ZT:...:zn] be the homeocgeneous coordinates of a point

in CP". 4 projective algebraic set X 1is defined by homogen-~

eous polynomials, It is irreducible if its ideal I(X) is prime,

In that case the residue ring RX

called the homogeneous coocrdinate ring of X .

= @[XO,...,XHJ/I(X) is a domain

The ring of germs of holomorphic functions in n variables

at a ¢ ¢ is denoted CZ; . It is identified with the ring of

convergent complex power series <D{z1 = 81s00e,3, = an} « For a=0

call the ring simply ¥ . Note that for any two points

rings (J, and I, are canonically isomorphic. The ring (7 is

a = b

a Noetherian UFD . Its quotient field /Tl is the field of germs

.":) .
of meromorphic functions at 0 . The units of '~ are holomorphic

germs not zero at 0 ., The ideal I of non-units in C? is maxi-
o S
mal and ' is called a local ring. WNote that U /I ~ € .

The sheaf of germs of hclomorphic functions in n variables

is also denoted {J . For any open set U c €% there is a natural
identification of the sections F(U,C?) with the ring f?h of
holomorphic functions over U ., Por any point a € ¢® the stalk
of O at a 1is naturally the ring Caé defined above,

An analytic sheaf QS over an open set U C ¢® is a sheaf

of modules over the restriction CajU . It is finitely generated

over U if there are finitely meny sections of D over U which
generate the stalk \Sa as an Caa module at each point a € U .

An analytic subvariety X of an open set U c ¢® is a sub-

set of U which in some open neighborhood of each point of U is
the set of common zeros of a finite number of functions defined

and holomorphic in that neighborheod., Two such pairs (X1,U1) s
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(X29U2) are equivalent if there is an open neighborhood W <
U1f1U2 so that Wﬁ.X1 = Wn X2 . The equivalence class is called

a germ of an analytic subvariety. The ideal of the subvariety at

a point is defined for the origin by I(X) = {fe &7

13 analytic
subvariety X of U c ¢b representing the germ X and an analy-
tic function f € 135 representing the grem f with fly = 0} .
A germ X is said to be reducible at a if X = X1IJX2 where

Xi are also germs of analytic subvarieties at a ; otherwise it
is irreducible at a .

An analytic variety is a Hausdorff space V with a distin-

guished subsheaf Cﬁ; of the sheaf of germs of continuous complex
valued functions on V so that at each point a € V the germ of
V together with the stalk (C?})a is called the sheaf of germs

of holomorphic functions onm V . & morphism between analytic va-

rieties V and V' 1is a continuous mapping o: V - V' so that
¢*(C3§,) c ‘fu-. A point in an analytic variety V is regular
(simple) if the germ of V at that point is equivalent to the

germ of ¢™ for some n . The set of all regular points is the

regular locus of V ., It is an analytic manifold, not necessarily

connected or pure dimensional, Its complement in V is called

the singular locus and a point on it a singular point, The variely

is called non-singular if the singular locus is empty. A singular
point x 1is isolated if there is & germ at x with no other sin-
gular points,

Notice that if V is algebraic in % then I(V) is fini-
tely generated, say I(V) = (g4544+58,) . The Jacobian matrix

a(g" 9088 9gr)

IV = 6(21,...,Zm)

has maximal rank, rkJ(V)= m-n at regular points and at singular

points rkJ(V) <m-n .
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3,2, Intersections and Covers

Let V Dbe a non-singular complex analytic surface, The al~

gebraic intersection pairing
H2(V) ® HO(V) - %

is defined using Poincaré duality
2 .
(V) =~ (V) .

For X,Y € H2(V) define the pairing by

(X,Y) - (X-Y) = X(aY) .

Recall that in case V is not compact we use homology with closed

supports in the definition of A ,

A map : V' -V is said to be proper if the inverse image
of a compact set is compact. If ¢ 1is a proper surjective map
of analytic spaces of dimension n, then there is a positive in-
teger d and an open subset U <V so that w-1(v) consists of
d points for all v € U . We call d the degree of ¢ . If V
and V' are complex surfaces, ¢ 1is a map of degree d and D1
and D, are elements of H'(V), then (9%(D;) -+ e*(D,)) = a(D;+D,).

Let X,X' Dbe curves in a non-singular surface V and X €
XnX" . VWe say that X meets X' normally at x 1f there is a
coordinate neighborhood U of x and local coordinates Z4 and
Z, SO that X n U 1is the locus Zq = 0 and X' n U dis the lo-
cus 2z, = 0 . It is well known that if X A X and (XX')= 1
then X meets X' normally at precisely one point.

We say that ¢ is a finite map if ¢ is proper and m"1(v)
consists of a finite number of points for all v € V , Suppose
moreover that ¢ is surjective. The set B of points v € V,

so that m'1(v) consists of fewer than 4 = degreew points,is
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called the branch locus of ¢ . It is well known that if V 1is

non-singular then B is the union of a finite number of irredu-
cible subvarieties each of complex codimension 1 ("purity of the
branch locus").

Suppcse X 1is a curve on a surface V ., If x € X we re-

call that X dis locally irreducible at x if for every suffici-

ently small neighborhood U of x in V there is a unique irre~
ducible component of X N U containing x . If x € X then
there is a neighborhood U of x in V so that XNU = X, U..
..lJXr , where each Xi is a curve which is locally irreducible

at x ., The Xi are called the branches of Xi through x .

Definition 1. Suppose ¢: V' - V is a finite map of non-singular
surfaces or curves, B is the branch locus of ¢ and o{v') =

v €B. Let X, be a branch of ¢'1(B) passing through v' (in

the case of curves this is just v'). There is a neighborhood U

of v in V and a holomorphic function £ 1n U having a zero

of order 1 along B " U and no other zeros., Let e(Xi) equal

the orxrder of the zero of f e along Xi . This is called the

ramification index of ¢ along the branch Xi at v' ., DNow

' Z‘_1 e(Xi) = degree ©
vtE g (v)
V' GXi
where we let X, range over all branches of @"1(B) through v'.
If there is a unique branch of @"1(B) through v', we denote

e(Xi) by e(v') . In this case we get T ; e(v') = degree ¢ .
vicaog (v)
Note that v € B if and only if e(v') > 1 for some V' e@'1(v).

If X dis an irreducible curve on a ron-singular analytic sur-
face V, then there is an open dense subset Y < X with the pro-

perty that X is locally irreducible at all points of Y .
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Suppose ¢'1(X) = Xy U... UX, where the X, are irreducible.
Then there is an open dense subset Y¥' of X so that Y' C ¥
0N w-1(Y') is locally irreducible and for any v,,V, eXir1¢7CP)
we have e(v1) = e(v2) . Call this integer e(Xi) , the ramifi-
cation index of Xi over X ., I% follows immediately from the

definition of «* that

z 2
o*(X) = T e(X,)u, € HY(V')

1= 1
We can use the ramification index to get a useful relation

between the genus of an analytic curve and the genus of a finite

cover of that curve.

Proposition 2, (Hurwitz formula) et o:X' - X be a finite

morphism of compact non-singular complex curves. Let

2gg=din H'(X,Z) ,2gy, = dim H'(X', Z) . Then

(2~2gy,) = (degree 9 )(2-2gy) - T (e(x')-1) .
x'eX!

Proof. Triangulate X so that the points of the branch
locus are vertices of triangles and no two are connected by a 1-sim-~
plex, The Euler number of the triangulation is 2 - ZgX . It can
be lifted to a triangulation of X' by means of ¢ since outside
of B the map ¢ is a local homeomorphism, This multiplies the
number of faces and edges by degree v . If x € X 1is a vertex
and x £ B, then there are degree © vertices above x , But if

X € B, then there are degree ¢ - X (e(x')-1) wvertices
o{x')=x

above x , This proves the formula,



- 39 -

5.3, Monoidal Transforms and Resolution of Singularities

Definition 1. Suppose V is an analytic space, Uy 1is the
sheaf of holomorphic functions on V and I C 695 is an ideal

sheaf. The monoidal transform with center I is a pair (m,V')

with m: V' -V and

(i) 13%, is locally principal i.e. Vv € V' the stalk

(I1:7,), is generated by one function,

(i1) for every m_ :V_ -V satisfying "I}
o] o) VO
principal" there is a unique o0: Vo - V' with meog=T_.

is locally

The monoidal transform exists, Hironaka [1,p.129], and is
wunique by (ii). If X 1is a subspace of V and Iy is the sheaf

of functions vanishing on X , then the monoidal transform with

center X 1is just the monoidal transform with center Iy .

Ve can construct the monoidal transform as follows, Suppose
v € V. Then there is a neighborhood U of v and holomorphic
functions fo,...,fr on U so that the restriction of I to U

. Let X Dbe the set of common zeros

is generated by fo"“’fr

of the fi . These functions define a map

w: U =X =~ cp”

by ou) = [fo(u):...:fr(u)] . Let
T c (U-X) x CP"

be the graph of ¢ , let Vy be the closure of T in U x ot
and let

- i —
ﬂU. VU U

be the projection map. Then (”U’Vﬁ) is the monoidal transform
with center IIU . If we choose an open cover {Ui} of V where

the Ui are as above, theh the universal property of monoidal
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transforms guarantees that the (nUi,Vﬁi) piece together to give
(m,V') . DNote that if Y 1is the set of common zeros of the func-
tions in I , then V - Y is an open dense subset of V and

T n'1(V-Y) -V - Y is an isomorphism. The monoidal transform

with center {v} is also called the o-transform with center atv.

Definition 2. Suppose V is an analytic space and X c V
is the set of singular points of V , We say that m:V' =V 1is

a resolution of the singularities of V if

(1) m™ is proper,
{(2) V' 1is non-singular,

(3) 1 induces an isomorphism between V' - n"1(X) and V-X,

Remark. It is known, Hironaka {1], that if V is an alge-
braic surface, then there is a resclution w which is a composite
of monoidal transforms. For an isoclated singularity we shall con-

struct a "canonical® resolution but first we need a definition.

Definition 3, An analytic space V is said to be normal at
v € V if for every neighborhood U of v and meromorphic func-
tion f on U and holomorphic functions {ai} on U, the equa-
tion

n -1 .
hil 4-an_1fn teest B = 0

implies that f is holomorphic., V is =aid to be normal if V

is normal at every v € V . A curve is normal if and only if it
is non-singular. On a normal variety V +the singular locus has
codimension > 2 , If v € V is a simple point, then v is a
normal point, For any analytic veriety V +there is a unidque pair

~

(”,v) so that m:V - ¥ , V is normal end for any normal variety
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Vi and mw: V' =V there is a unique map o: V' = ¥ with meo=

mt . The pair (n,?) is called the normalization of V . The

map m is finite and it is an isomorphism over an open dense sub-
set of V ,

Suppose V is a complex algebriac surface with an isolated
singular point v . There is a finite sequence of maps

m, ¢ V., =V

i i j-1 » 1 = 1,.¢0yn so that V = v, V_ is non-singu-

n
lars my is a normalization if i 1is even and my is the monoi-

dal transform with center at the (isolated) singular points of

v . Thus V_  is a resolution of v ¢V but ﬂ-1(V) may be

i-1
rather complicated.

. -1
In order to improve = (v) we perform a further sequence

of monoidal transformations ﬁn+j: Vn+j - Vn+j—1 so that the con-
posite m = Ty eve Motk satisfies
(*) W_1(V) = Xy !'.., 1%, , the X, are non-singular irreducile

curves, (X,+X.) =0 or 1 for i # j and X, nX,nX =4
i J J k

for distinet i, j, k .

Let 9, = ﬂ1°...oﬁi . Then we can choose ﬁn+j so that it is the

mnonoidal transform with center x € V Where either

n+j-1
(1) x is a singular point of some component of 0513_1(v)
(2) x is a point of Xi n Xj and X, and Xj do not meet

normally at x ,

(3) x is a point of X n Xj and X; N Xj consists of more

than one point,

(4) =€ X, nX, "X , where i, j, k are distinct.
i J k

Definition 4. Given a resolution ¥ of the isolated singu-

larity v é V., m: V-V satisfying the conditions of (*) we
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associate a graph T to m as follows: To each X, in n'1(v)
assign a vertex (Ai,gi,mi) where g; is the genus of X, and
my its self-intersection number. We join Ai to Aj by an edge
if Xi meets Xj . Let Se be a small sphere around v and
K=V~8_ . Clearly n'1(K) is homeomorphic to K and it is the
boundary of a tubular neighborhood of n'1(v) . Hence K is a
singular S' fibration over n~ (v) . 1In fact it is obtained by

plumbing according to the graph T .

One can ask if there is a best resolution.

Definition 5. A resolution m:V - V of an isolated singu-
larity v € V is called minimal if for any resolution =n': V' -V
there is a uwnique map o: V! = ¥ with m-0 = mnt' . Of course the
minimal resolution is unique. Brieskorn 717 proved that the mini-

mal resolution exists if V 1is a surface,

Remark 6. There is a simple criterion for a resolution of a
surface to be minimal., Suppose VO is a non-singular surface and
X < VO is a compact irreducible curve, Then there is a non-sin-
gular surface V, and a proper morphism T: V0 -V, so that
m(ZX) = v ¢ Vy and 7 induces an isomorphism between V_ - X and
Vy = {v! if and only if X 4is analytically isomorphic to cp’

and (X« X) =«1 ., This is known as Castelnuovo's criterion, A

curve X satisfying the above is called exceptional of the first

kind, A resolution m:V - V of an isolated singularity v € V
is minimal if and only if no component of n'1(v) is exceptional
of the first kind. Note that in general if m is the minimal

resolution, then it will not necessarily satisfy the conditions

of (%) .
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Suppose Tm: V¥ -V 1is a resolution of a normal singularity
v € V and n'1(v) = X, U... "X, , where the X, are irreducible
curves., Then the matrix A = ((Xi- Xj)) is an important invari-
ant of m , One can see without difficulty, Mumford [1], that A
is negative definite, the diagonal entries are negative and the
off diagonals are > 0 . It is remarkable that the converse of

this theorem is true,

Theorem (Grauert), Suppose VO is a non-singular analytic

surface, X = X, U.., X, , where X, are compact irreducible

curves and ((Xi' Xj)) is negative definite. Then there is an

analytic surface V, and a morphism m: Vo -V, so_that m(X) =

v € V1 and 1 induces an isomorphism between VO - X and Vi—{VL

It is interesting to note that if VO is algebraic V, need

not be algebraic,

3.4. Resolution and C¥*-action

In this section we show that if V is a surface with a €*-

action,then there is an equivariant resolution m:V -V i,e. we

can choose (m, V) so that the € action on V extends to 7.

Definition 1. Suppose G is a complex Lie group and V is
an analytic space. An action ¢ of G on V is a morphism of
analytic spaces

c: G xV = ¥

so that o(gg', v)=os(g,o(g,v)) and o{l1,v) = v .
We shall denote o(g,v) by gv when there is neo danger of con-

fusion. Recall that the action is said to be effective if gv=v
for all v dimplies g = 1 .
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Proposition 2. Suppose o is an action of G on V ,

Ic fjv is an ideal sheaf and m: V' - V 1is the monoidal trans-

form with center I . If o(g)*(I) = I for all g € G then

there is a unique action of G on V' compatible with the action

on V . In particular if X ¢V is jnvariant under the action of

G and w is the monoidal transform with center X +then the

above conclusion holds.

Proof. If g € G then g defines an automorphism o(g)
of V . The universal property of monoidal transform (3.3) implies
that if I is invariant under g +there is a unigue map r7(g):
V' - Vit s0 that mert(g) = o{(g) em . By the uniqueness we see
that 1t defines an action. To be more precise we must check that

the map t: G x V' -~ V' is analytic., Consider the diagram

G x V' ~=Ilos v
noj iﬁ
/ \"
G xV 0>V

where My = ide m. Let p,y: G x V-V be the projection of

G xV on V. Then o(g)(I) = I for all g € V implies o*(I)=
pg(I) . Now one can easily check that no is the mecnoidal trans-
form with center p;(I) . Thus (2 ono)%(I) is locally principal
and there is a unique map T: G x V! = V' making the diagram com-

mutative, This is the same as our Tt above.

Proposition 3. Suppose o is an action of G on V . Then

there is a unique extension of ¢ to_the normalization ¥ of V.,

Proof, Just use the universal property of normalization.
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Proposition 4. Suppose G 1is a connected algebraic group

and ¢ is an action of G on a surface V , Then o 1leaves the

following invariant:

(1) an isolated singular point,

(2) an_exceptional curve,

(3) a singular point of an exceptional curve,

(4) = point x € V where two or more components of the excep-

tional locus meet.

Proof. Every element + € G acts as an automorphism of V .
Hence 1if v satisfies any of the above properties, then so does
tv . But if +tv £ v then the set of points satisfying that pro-
perty is positive dimensional and this is impossible, If X <V
is an exceptional curve and +t(X) £Z X , then V is covered by
exceptional curves, But there are only a finite number of such

curves,

5,5. Weighted Homogeneous Polynonials and Good C€¥-action

Definition 1. Suppose (wos...,wn) are non-zero rational
numbers. A polynomial h(ZO,...,Zn) is weighted homogeneous of
type (wo,...,wn) if it can be expressed as a linear combination

io

i
of monomials Zo ees Znn for which

This is equivalent to requiring that there exist non-zero integers
q
QgseeesQy and a positive integer d so that h(t OZO”nx Zn) =

tdh(ZO,...,Zn) . In fact if h is weighted homogeneous of type
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(wo,...,wn) then let <w_,...,w > denote the smallest positive
integer d so that for each 1 there exists an integer 9y with
qiwi = d . These are the q; and d above.

Let V Ybe the variety defined by weighted homogeneous poly-
nomials hy,...,h, with exponents (qo,...,qn) . Then there is

a natural C€* action

qnz ) .

0
0(t, (2 ,00as2,)) = (8 72,000yt T2y

We call this action good if it is effective and qi > 0 for all i.

Proposition 2. Suppose V C Cn+1 i€ an irreducible analytic

variety and o is a good ©€* action leaving V invariant,

%n

2. ) .

qO
Z )) = (-t ‘2070"9-t n

3(t,(2 500,58y,

Then V is algebraic and the ideal of polynomials in C[Zo’”"zn]

vanishing on V is generated by weighted homogeneous polynomials.

Proof. Let f ©belong to @{ZU,...,le the ring of conver-

n-

gent power series, We let fi denote the unique Eolxnomials so

that
to oy .
n z).

q
£ 7% ,00a,t T2) = S AT (2 00,2

Tiie power series on the right converges for sufficiently small t.

Ncw suppose f vanishes on V near 0 . Then v € V implies
0 .
I tlfi(v) = 0 for all sufficiently small t . Hence fi(v)= 0

1=0
NED)

for all i and all v € V near 0O Let f(r) gen~

gseey

erate the ideal I(V) c¢f all functions in C{ZO,...,Zn} vanish-

ing on V. Iet J Ybe the ideal generated by {(f(j))i} . Clearly
J cI(V) . Nowv if v £V is within the radius of convergence of
£(3) for al1 j then there i: some fga) so that f§3)(v);£o . Hence
the locus of zeros of J is V and hence the radical of Jis I(V). Let
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J' be the ideal generated by {(f(j)).} in €2 ,...,Z2_ 71 and
i o’ n

let I' ©be the radical of J' ., Then I'C{ZO,...,Zn1=:radJ'=I(VL
Therefore I(V) is generated by polynomials,

Now 1et I'(V) ©be the ideal of V in @[zo,...,znj . If
f € I'(V) then £, € I'(V) ., If f is a polynomial,then there

are only a finite number of integers i with fi # 0 . Therefore

if f(1) f(r) generate I'(V), then the weighted homogeneous

g0 0 ey

polynomials {fgj)} generate I'(V) .

Proposition 3. If V c ¢® is an algebraic variety and there

isa C*¥ action o on V defined by a morphism o:C&¥xV =V

of algebraic varieties then

(i) there is an embedding j: V - ™' for some n and a €+

. ~ 1 . . . . ~ .
action T on ¢ o that (V) 4is invariant and 5 induces

c on V,

(ii) by a suitable choice of coordinates in ®n+1 we may write

q.

o~ 0 n
c(t,zog..,,zn) = (t Zoseenst z,) where 4q; € Z ,

(i11) if the action is fixed point free on V - {Q} then we may

choose qi >0 for all i .
Proof., (i) is a special case of Rousenlicht [1,Lemma 2], (ii)

is proved in Chevalley 71, exposé 4, séminaire 1] and (iii) fol-
y 9 9

lows from Prill (17,

3,6, The Cone Over a Weighted Homogensous Variety

n+1

Henceforth we shall assume that V c € and o0 1is a good

¢*¥ action leaving V invariant.
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¢n+1 . Cn+1

Definition 1, Let o be defined by

q Q.
Q(Zo,...,zn) = (zoo,...,znn) and let V' = w'1(V) . Then V¢

has a natural ¢€* action defined by

)

T(t,(zo,...,zn)) = (tzo,...,tzn

and © commutes with the ¢* action. We call (o,V') the cone
over V ., Note that V is the quotient of V' by Zq x...x%qn
o}

. 1 . .
acting on ¢t coordinatewise,

Proposition 2, The cone is a generically non-singular vari-

ety, i.e. there is an open algebraic (hence dense) subset U, c v

so that if

T = (£(8,.00,2))) i=1,00.,r

is the ideal of polynomials vanishinz on V and

4 4n )
8:(2 5000,2,) = fi(zoo,...,zn ) i=1,0e.,T
then
F 3g .
rank | —= = n- s+l
3z .
jiw

for all w € Uo where s = dim®V .

Proof. We may assume that V is not contained in any coor-
dinate hyperplane {Zi= 0} . Now V dis a variety, hence it is
generically non-singular 1i.e.

‘3F .
rank (325) =n-s+ 1 for v €U,open dense in V.
Jjir v

Then



. \ a.
(Bg]_\ /af B(ZZJ)\
) ) TN ‘ 3z
k/(z_ ,.00,2) \ ) q k / :
o] n d (Z O Zq'n)

There exists a point (z_,...,2,) € V with z, #0 for all i,

so that the matrix on the right is invertible at this point. Hence

‘g,

rank l L
‘\‘sz (309"-9zn)

= nNn-S41.

But this property holds on some open algebraic subset and the sub-

set is non-empty. This proves the assertion,

3.7, The Quotient of V - {0} by ¢*

The cone V' above ¥V is defined by homogeneous polynomials
E1see038p - These polynomials define a projective variety X ceP?
In fact X' 4is precisely the algebraic quotient of V' - {0} by

¢* , The analogue is true for V , Mumford (2, chapter 2],

Proposition 1. There is a projective variety X and an

algebraic morphism mw:V - {0} - X s8¢ that

(1) +the fibers of T are precisely the crbits of the action,

(2) the topology of X is the quotient topology,

(3) for any open algebraic subset U < X the algebraic func-

tions on U are precisely the invariant functions on n'kUL

The map #': V' - {0} = X' has fibers ¢€* . We would like

to add a zero section to get a map with fiber € . Let

T, c (v -0} x X'

Tr!
be the graph of m' 3 let F' Dbe the closure of T in V' x X¢

and let T': F' - X' be the map induced by projection on the
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second factor. We have obtained F' from V' Dby blowing up the
origin y': F' - V' , Clearly u'(x') = (0,x') gives the zero
section of (71',F') . This pair is just the hyperplane bundle of
X' , Now the action of G = x...xZql on V' induces an ac-
tion on F' ., Let P be the quotlent g} F* Dby this action.
Note that F is just the closure of r, in (V-0)xX . The actions

of €* and G on V' commute, hence X is the quotient of X'

by G . We have the commutative diagram

> T
L]

IT] u
v/
X

>3

where the horisontal maps are quotients by the action of G , u!'
is the zero section, u is the map induced by wu' and T is

the map induced by 71' , TLet y:P - V be the map induced by v'.

3.8. The Canonical Equivariant Resolution of a Surface

Suppose dimCV = 2 and V has an isolated singularity at Q.
Then by Proposition (3.6.2) there is an open dense subset Uo of
V' so that every point of V' is simple, Hence there is an open
dense subset U < X' with the same property. Now (7',F') is a
line bundle,hence 7'1(U) is non-singular, Clearly G is a fi-
nite map ramified along a finite number of fibers of 11' . Hence
there is an open subset U, c X so that T_1(U1) is non-singular,
Now F - u(X) is non-singular, hence F has only a finite number
of singular points along u(X) , all with neighborhoods of the
form 02/ZOL for some a . Let o, : ¥ - P Dbe the minimal resolu-
tion of these singular points., Then the €% action extends to 7

(since there is an equivariant resolution dominating V) . The
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Py y

composite map o3 V > F ——> V 1is a resolution of the singu-

larity of V . We shall say that o is the canonical equivariant

resolution of V . Since o is equivariant given a small U(1)-

invariant disk D, at 0, the manifold p'1(De) is a U(1)-inva-
riant subset obtained by equivariant plumbing of D2 bundles by
the graph of p_1(9) . Its boundary, K is therefore a smooth,
orientable 3-manifold with S' action and P USE = g .

The proper transform XO of X T is the unique irreducible

curve in V so that 0,(X,)) = X . Note that the €* action is
trivial both on X and Xo . It is easily proved that the other
curves of the resolution have no isotropy groups. It also follows
directly from the fact that the singularity is isolated that X

and XO are isomorphic non-singular projective curves,

Theorem 1. Let 9-1(9) = XO UeooU Xr , where Xi is an irre-

ducible curve and XO is the proper transform of X . Then

(1) Xi is non-singular for all i , Xi meets Xj at no more

than one point, Xi crosses Xj normally at that point and

Xinxjnx = g for distinct i,j,k ,

k

(2) +the action is trivial on XO R

(3) the action is non-trivial on X, , i >0, and g; = 0,1>0,

(4) T 4is & weighted star with center A_

(5) m; <-2, forall i>0.

Proof: By (3.4.4) we can perform a sequence of monoidal
transforms with centers at fixed points of the action so that the

composite p': V' - ¥ satisfies
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(a) the action extends to V¢
(b) V' and p-op! satisfy (1).

Let (p Op')-1(9) = X U...UX), and let T' be the graph asso-
ciated to pop’' . Now T' satisfies (2,2,2,a) and (Xi° Xi) <0
as noted in (3.3). PFinally, if X! and Xi have genus zero, X!
meets Xé and (Xi- Xi) = (Xs- Xé) = ~1 +then the intersection
matrix ((Xi~ Xs)) cannot be negative definite. Applying (2.2.2)
we see that g} = 0 for i1 >0 and T' is a weighted star with
center A! . Thus T' satisfies (1) - (4), ITet s be the num-
ber of my = -1 ., We will prove by descending induction on s
that (1) - (4) are satisfied for any resolution between V' and
7. Suppose Xi is a rational curve with non-trivial action and
(Xi -Xi) =~1 . Then by Castelnuovo’s criterion (3.3.6) there is
a manifold V" and a map f: V' - V' so that f(Xi) is a point
and £ 1s an isomorphism outside of Xi . Now Xi meets at most
two other curves,say Xj and Xj . It meets each at one point
and with normal crossings there, ILet ij = f(XS) . Then

Xy o X, = £(Fy) ctx(X,) = (X3+%L) - (Xp+X{) = 1 . Thus X, meets
iz normally at one point, Thus V" satisfies (1) - (4). Pro-
ceeding inductively we see that ¥ satisfies (1) - (4). But v
is a minimal resolution of ¥, hence (Xi' Xi) < -2 . This com-
pletes the proof.

Combining the above theorem with the results of (2.2) we ob-

tain the main resolution theoren.

Theorem 2, The weighted graph associated to the canonical

equivariant resolution of the isolated sincsularity of V at the

origin is the star of K , S(X) .

Thus in order to obtain this resoclution it is sufficient to

find the Seifert invariants of X from the algebraic description of V.
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3.9, The Seifert Invariants

Assume now that V is an algebraic surface with an isolated
singularity given as the locus of zeros of some polynomials in
®n+1 and it is invariant under a good ¢€¥* action. We shall de-
scribe how to find the Seifert invarisnts of K . More specific

results for hypersurfaces in ®3 are given in the next section.

1. Pinding ay . If all coordinates of a point 2z = (zo,...,zn)
are different from zero,then 2 1is on a principal orbit since
(qo,...,qn) = 1 ., The point 2z in the hyperplane H = {zi1=...
«e=Zy = 0} with all other coordinates non-zero has isotropy

k
group of order a = (qo"“’qi1""’qik""’qn) . The number of
orbits with isotropy group Za lying in H equals the number of
those components of V N H +that are not in any smaller coordinate

hyperplane.

2. Finding Bj . Let S %be an orbit of X with isotropy group
Za , a > 1, For an analytic slice D° in X through x € S we
can find an analytic isomorphism o:A = {ue€ ! lu]l <1} =D so
that the induced %a action T on A 1is a standard linear
action, For o = exp(2mi/a) and for some O < v < a we have
7(p,u) = p®u . Then Bv = 1 moda and O <8 <a . (Notice that
the orientation adopted in Orlik-~Wagreich [1,2] is the opposite of

this,)

3. Finding b . Suppose V is invariant under the good €%

action

a4

0 n
o(t,zo,...,zn) = (% zo,.,.,t Zn)

and d is the degree of the cone over V as defined in (3.6).

Meking adjustments for the present orientation convention we ob-
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tain the following formula

a r
| s U
Gy ..y, oo

m  j=1

o

Rather than repeating the proof as given in Orlik-Wagreich
[1] we shall only outline the argument., If V is defined by
homogeneous polynomials of degree 4, then Qy =eee= 4, = 1 and
there are no E-orbits. In this case V - {0} is a €*-bundle
over X induced by the C*%* bundle 3n+1-{0} - CcP® . The latter
has chern class -1, The fact that X has degree d means that

the map

g2(cPP; ) - HE(X; %)

induced by inclusion is multiplication by d so the chern class
of the bundle over X is -d and therefore b = d satisfying
the formula in this case. The general formula is obtained as
follows, Let ¢: V' -V be the covering of V by its cone,
V=Vi/¢, G-= qu@..xazqn and PF,XZ,?",Xt* as in (3.7). Since

V' may have non-isolated singularities the curve X' may be sin-

gular. Let H: ¥' - X' Dbe its desingularization and FO = F'§;YH

Since F' is a €-bundle over X' of degree -d the same holds
for F, over Y' and (Y'-Y')F = -d . Let V be the canonical
o)
eqQuivariant resolution and X the center curve. We want to com-

~ A
pute (X -X)v . PFirst one constructs non-singular varieties W,

and V, and birational maps T: WO - Fo and pqa:Vy = ¥ and a

map mn: Wo - V1 so that the diagram below is commutative
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Here WO is the blowing up of the fixed points of the action of
G on Y'cC FO . Then G acts freely on wo and n 1is the
quotient map.
e ~ A A~

Let Y = t"(Y') , X=72"(X), X;=p7(X). The degree of the
map mn is qoq1...qn and it is easily seen that

(qocﬂlqn)(x1‘x1 )V,] = (71 X1 ° N X‘] )WO = (YO.YO)WO .
The second part of the argument shows how the maps P and T

change these intersection numbers, Specifically one proves that

X, X = (X))~
(KyeXy)y = (KB
and
(1Y) r o.-B. ( )
* + Q eve 2 “‘l‘-—-l= Y" !
o "o WO o} qn j=1 aj Fo

giving the formula as asserted.

4., Finding g . This computation is purely algebraic. The non-
singular curve. X has arithmetic (and topological) genus pa(X) =
dim H1(X,C7X) which is the constant term of the Hilbert polyno-
nial of the homogeneous coordinate ring, Ry . Now X' is de-
fined by homogeneous polynomials so its coordimate ring, RX' is
known, One proves that Ry = (R}{}(m) where m = g ...9, and
( )G denotes the subring fixed by G . There are technical dif-

ficulties because the ring R is not generated by forms of de-

G
Xl
gree 1 and therefore the Hilbert polynomial is not defined, see
Orlik- Wagreich [2]. An alternate method is given in (3.11) for

hypersurfaces in ®3 .

3,10, Surfaces in 03

3

Suppose that V is a surface in € having an isolated sin-

gularity and admitting a good % action, It follows from (3.5.2)
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that V 1is defined by a weighted homogeneous polynomial,
h(ZO,Z1,Z2) . Using the €* action it is shown in Orlik-Wagreich
{1] that there is an equivariant analytic deformation of V into

@ surface defined by one of the following six classes of polyno-

mials
ao 8,1 8.2
(1) 2,° + 2, + 2
ao 8.1 a2
(11) 2,0+ Iy + BqZy
(111) Z:O + z?122 + 22221
(IV) Z:O + 202?1 + z1zz2
(V) 2500, w20 47 2.2
0 21+ 29 %y + 2.7,
a'O
(V1) 2.0 + 2,3,

inducing an equivariant diffeomorphism of respective neighborhood
bounderies of the isolated singularity at the origin.

Thus it is sufficient to study these six classes of polyno-
mzals. The polynomial Z:O + Z122 is analytically isomorphic to
ZZO + Z% + Zg so it may be treated as a subclass of I .

Assuming that the weights equal LA i=0,1,2 and they

are reduced as a fraction to W, = ui/vi, we introduce auxiliary

integers

c, = (ug,up)/c , cy = (uo,u2)/0 , Cp = (uo,u1)/c » Cqp =
u/ccqcy Cy,2 = uqs/ce e, Cy,1 = uy/cc cq . Note that c,
CqsCp @are pairwise relatively prime, 0091,00’2 and 0192 are
pairwise relatively prime and (Ci’cj,k) =1 if 1i,j and k are
distinct.

The integer d defined as the least common multiple of the uy

equals
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d = ee,04CxC, 1%5,2%1,2
and from this we compute q; = d/w; as qg = V6%6%0,1%,2
99 = V1%1%,1%1,2 s %2 T VpCpC%; 2%1,2 ¢
1. Orbits with non-trivial isotropy groups are in the hyperplane
sections, The number of orbits in a given hyperplane section is

the number of irreducible components of the curve of intersection,

For example in class I the subset

has isotropy sgroup Za . It consists of

=& =%
(24,95) c
o 1922 1,2
n, = (a1,a2) = cc orbite, Similar arguments yield the following
table where Qys Qq, Gp aTe the three possible isotropy groups in
the three hyperplane sections and n,, ny, ny, are the number of

orbits in each.

%o %o aq 2y o o
I 0192 ce g 00,2 | cey 0091 cey,
rT 0192 (000-1)/v2 :v201’2 1 Co,1 c
[II | eq o | (eey-vy=vy)/vywmvoeq o 1 Vit | ]
v o, 1 (c=1)/v, L 1 V14,1 1
v Vs 1 ! V4 1 Vs 1

2., In order to compute B3 we note that a sufficiently close
slice in V maps diffeomorphically onto a slice in K so we may
consider the former, All orbits in the same hyperplane section
have the same orbit type since so does the whole hyperplane. Con-
gsider for example an orbit with isotropy group Za in class I

)
as above. Let § = exp(2ni/ao) . The action of & in ¢ is
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%o
8(z,,24,25) = (8 "2 ,2,,25) .

Considering the z, plane as a slice the action is the standard
action of type [ao,qo} and hence Bo is defined by the congru-
ence

4,8, = T(mod a,) -

Notice that this is the orientation convention of (1.1.7) and the
opposite of that used in Orlik-Wagreich [1,237. For an orbit on

the intersection of two hyperplanes, e.g. in class II

the slice at 2z, = 1 is the curve {zo°+-z114-z1 = 0} . This
curve near (0,0,1) may be "approximated” by changing it by an

analytic automorphism
w(25,29) = (2,+0,(2,,27), 24 +0(2,,24))

where hi € @{20,21? have all terms of degree > 2 . The curve
a

{zoov;‘z1 = 0! is an approximation and if & = exp(2mi/a,) the

action in the slice is approximated by

a q ga a q a
@(Z ZOO51) = (§ OZO,—g © Oz 091> =(§ OZ s =2 091) .

o~
So we have vy = qo and hence

B,q 1(mod ay) .

"t

¢

The table below gives the v, , Jj = 0,1,2 .
Since ijj g 1(mod aj) and 0 < By < ay this determines the

33 .
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Vo V1 Vo

I q, 4y a5

11 q0 qo q2
111 qo qo qo
v a, 4 a5
LA 4, a4

3. As we have mentioned earlier b is given by the formula

r B.
-4 __ v 1,
4% 521 9y

4, DTinally the construction of the previous section gives the
following expression for g , Orlik-Wagreich [1,(3.5.1)3;2,(5.4)]

o2 49,,99) ) d(g4,9,) ) d(a,,9,)
7,679, 4 q, T4, T4,

2g =

(a,a,) (d,aq) (d,ap)
+ +

T a, P

e .

o]

We shall give an alternate way of obtaining this formula
using the fibration theorem of Milnor {1] in the next section.
Pirst consider an example.

Let a variety V in @3 be defined by the weighted homo-
geneous polynomial of class III , h(Z) = Zl54-Z$Z2-+ZZZ1 . It
has an isclated singularity at the origin, We find W, o= 15 ,
wy=9/2,w,=9,da=45,¢ =3,q =1 ,q=5,c¢c=3,
C, = 3, 01’2 = 5 and the other c-s equal 1 . The locus
{zo:=o, z?-+zg==0} n 8° consists of % orbits with stability

group of order a = (q1,q2) = 5 ., There is one orbit

{ZO==Z1 =0' n 85 with ay = dyp = 5 and one orbit {zoz Z5 = O}n85
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with a, = Q¢ = 10 . The corresponding Vo = vy = vy = Qg S0
Bo =2 , By =2 and B8, =7 . The formula for b gives D = -1

and the formula for g gives g = 3 . Thus
K = {‘1;(0939090);(592)9(592)9(592)9(592)9(1087)}
and the star of K

TN

is the dual of the graph of the canonical equivariant resolution

r

of the singularity of ¥

3,11, Milnor's Fibration Theorenm

Let V be an algebraic hypersurface in ®n+1 defined by
the zeros of a polynomial, V = {z | f(z)=0} . Let x be an
arbitrary point on V and Se a sufficiently small sphere cen-
tered at x . ILet K =VnS5_ . The following fibration theorem

is due to Milnor T1].

Theorem. The mapping

$(z) = £(2)/12(2)!
1

from Se-K to B is the projection map of a smooth fiber
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bundle. ZEach fiber

Fo= 8 (e2) 5 -k

is a smooth parallelizable 2n-manifold.

Por an isolated singularity there is additional information.

Theorem. If x 1is an isolated critical point of f then

n of

each fiber Fg has the homotopy type of a bouquet s™v...vs

n-spheres, Their number, u is strictly positive., ZEach fiber

can be considered as the interior of a smooth compact manifold

with boundary

closure(P,) = F, UK

vnere the common boundary K is an (n-2)-connected smooth (2n-1)-

manifold.

The complement of K in S Se - K is therefore obtained

€ y
from T x [0,2r] by identifying P, and F, by a homeomorphism
h: P - T,

called the characteristic map. The Wang sequence associated to

this fibration is according +o Milnor 71,8.4]

h -1

B

¥*

- | 8 - — iI.p - S - -
ves Hj+1(o€ K) HJF > JjF Hj(ue K) =eus

where 1 1s the identity map of F . In case X 1is an isolated
singularity we can use the information on the connectivity of F
and K , Alexander duality and Poincaré duality to see that for
n > 2 the Vang sequence reduces io the short exact sequence

h -1,

* ¥*

o = HnK - HnF > HnF - H K -0.

111

Let A{%) = det(tI*—h%) denote the characteristic polynomial of the

transformation h, : HnF - HnF .
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If f(z) 1is a weighted homogeneous polynomial of type
(wo,...gwn) then Milnor shows furthermore that ¥ is diffeomor-

phic to the non-singular algebraic variety
Pr= [z | £(2)=1}
and the characteristic map h may be chosen

h(z - qnz )

O,...,zn) = (3 Ozo,...,é n

where £ = exp(27i/d) . 1In particular h is of finite order di-
visible by d . Thus the minimal polynomial of h,_ divides

(td- 1) and hence it is a square-free polynomial. This implies
in turn that the rank of the kernel and cokernel of (h*—I*)
equals the exponent » of (t-1) in A(t) . An expression for
#x was obtained by Milnor-Orlik (11 in terms of the weights, Let
Wi o= ui/vi s 1 =0,...,n be in irreducible form. Given integers

8 s+e0s3, denote their least common multiple by [la_,...,a. .

We have
W, W
- i orreesVy
: n-s 0 5]
W o yeoes,W = ; (=1
K( orrre n) LJ( ) Tu. W
- 1 g 9 l,_,y
o] S
. 1 . .
where the sum is taken over the ont subsets i ,000,i,1 of
09 9 s

{0guea,ny
In the case of a surface in ¢~ we already knmow H,K in
terms of generators and relations, There are 2g free generators
from the partial cross section together with the generators
qo,q1,...,qr,h
satisfying the relations:
Qo+ g +teaatq, = 0
q04—bh =0

ajqj+-th = 0 J= Tse0asr
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The first comes from the partial cross section and the remaining
ones from the sewings of the solid torus neighborhoods of the b~
obstruction and the E-orbits, The determinant of the relation

natrix equals p = bag ... Ap+ Bqlo eee GpFoen+ 905 oo B

r
r B.
— 2 _ve oz o
Q1 PR Gr j=1 aj

On the other hand from the expression for b (3.10.3) we obtain

so we see that p > 0 and therefore the generators qo,...,qr,h

are torsion elements of HiK . Thus

u(wo,w1,w2) = rank H4K = 2g .
Substituting w, = d/qi , 1=0,1,2 in w(w ,wy,wy) yields
(3.10.4).

Although this proof is correct it is somewhat unsatisfactory
in that the essential reason for p > 0 is hidden in the proof
of the formula for b . Examining that proof one observes that
p > 0 is equivalent to the negative definiteness of the quadratic
form of the resolution.

Finally note that this approach is valid only for hypersur-
faces. For higher embedding dimensions the algebraic method men-

tioned in (3.9) has no topological replacement at present.

3,12, Non~isolated Singularities

Rather than giving a detailed account of the resolution of
non-isolated singularities of surfaces with a good ¢€* action as
in Orlik-Wegreich [2] we shall point out the additional difficul-

ties compared with the isolated case.
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1. Let 8:V -V be the normalization (7.3.3) of V , where

Ve Cn+1

is a surface invariant under a good C%* action. We are
interested in the resolution of the isolated singularities of v
using the methods already developed. The fact that V is given
with a good €% action is of little help, however, because the

same may not be assumed of V . 4 canonical equivariant resolution
of the singularities of V may be constructed as follows; Let V!
be the cone over V in €®'! and V'-0/6* = X' cCP® ., et

n: X' - X' Ybe the normalization (resolution) of the projective
curve X' . Let P' denote the hyperplane (Hopf) bundle of cp™
restricted to X' . Since the degree of F' is negative Grauert's
Theorem (3.,3) assures that there is a birational map j': F' - V!
collapsing the zero section. Let F' = n*(P') and V' = Ft - V!
be the map collapsing the zero section., Now L maps into the
normalization of V' and it is normal so it is the normalization.
F' is non-singuler and the action of G = %qo@...eazqn on P!
extends, Let F =P'/G , V=V'/G and 7 =F - ¥ the induced
map. PFinally let 75 : V - P be the minimal resolution of the

quotient singularities of F , fThen p = ¥p 3 ¥ -V is the cano-

nical equivariant resolution of V .

2, Since the action extends, V has an isolated singularity at
the origin whose resolution is determined by the Seifert invari-
ants of K . The topology of V at the origin is determined by
the map 8!F:K - K . In general K is not a manifold and 6
may identify orbits of K, some by maps of different degrees, Cne

needs some notation for these objects and an equivariant classifi-

cation theorem,

7z

3. The central object is obtaining the Seifert invariants of K

and understanding the map 8 from the algebraic description of V.
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The isotropy groups of orbits in XK are easy to read off. The
slice at 2z € K may consist of several disks meeting at 2z . The
number of orbits mapping onto the orbit of 2z is determined by
the number of orbits of the action of %a in the slice. If k
disks of the slice are mapped into each other by Za’ then there
is one orbit with isotropy group Za/k in X mapping onto the
orbit of 2 by a map of degree k . The action of Za/k in the
individual slice determines 8 (as an invariant of K ). The
obstruction class b is obtained by the same formula as before.
The genus g(X) of the non-singular curve X = V-Q/€% is ob-
tained from the arithmetic genus pa(X) of the (possibly singular)

curve X = V- Q/¢* using the formula

X) = X) - 3
§(0) = p,(0- 3 s

bre
where 8, 1s en invariant of the singular point x € X . The
computations are, of course, harder, They are carried out for

hypersurfaces of €° in Orlik-Wagreich [27.
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4. Equivariant Cobordism and the o -Invariant

This chapter is a brief extract from the thesis of Ossa [1],
First some general notation is introduced then the basic facts
about S1—manifolds are given. Next the fixed point free cobor-
dism group of oriented, closed, smooth 3-dimensional fixed point
free 81-manifolds is discussed in detail. It is shown to be free
and generators are constructed. An algorithm for finding the co-~
bordism class in terms of these generators from the Seifert inva-
riants is also obtained,

Using a fixed point theorem in Atiyah-Singer [1],an invariant
is defined for fixed point free circle actions. It is a rational
function in Q(t) . This invariant is computed for 3-dimensional

Sj-manifolds.

4,1, Basic Results

A1l manifolds and bundles are assumed smooth and orientable,
Given the vector bundles my X1 sy Mo 7 X2 define 4 % ) by
the Whitney sum of the pullbacks of the projections pri:X1 XX, =

- Xi , i=1,2 . as

'r11ff+)'r‘,2 = pr;'r ™ @prgﬂz .

Let G %be a compact Lie group, H a closed subgroup and
(H) = {gHg—1 g€l . A family of subgroups F is called admis-
gible if H ¢ P implies (H) ¢ P . All families of subgroups
will be assumed admissible. Let M° be a G-manifold and assume
that G 1is orientation preserving., M is called of type (F,F')
if p ¢ M then Gp ¢ P for all p ¢ M and if p € 3M then

G € P for all p € 3M . It is called (F,F')-bounding if there
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1 so that M is an equivariant sub-

manifold of 23W and for every point p € 3W-M | Gp € . We

also call W an (F,F')-cobordism for ¥ . Two G-manifolds M,

and M, of type (F,F')

are (F,F')-cobordant if the disjoint

union M, + (—M2) is (F,P')-bounding., This is an egquivalence

relation, Denote by Cﬁé(G;F,F') the equivalence classes of n-

dimensional G-manifolds of type (F,F') and OL(G;F,F') =

® & (657,F')

Let F o F' > F" Dbe families of subgroups of G . Then

there is an exact sequence

i
vee = T(G3F,E) 3 (6P, FY)

j 3
SCR,E) 2 O (G5B EY) - e

where i and j are induced by inclusiocn and 3 1is restriction

to the boundary.

A G-vector bundle of
G-vector bundle with fiber
manifold, Assume that the
tion of G 1is orientation
(F,H) if

(1) each isotropy group
conjugate to H ,

(ii) each isotropy group
F - (H) .

A G-vector bundle ¢§

dimension (k,n) is defined as a smooth
dimension k over a smooth, closed n-
total space is orientable and the ac-
preserving. It will be called of type
of the zero section contains a subgroup

of the associated sphere bundle is in

of type (F,H) bounds if there is a

G-vector bundle mn with oriented total space over a manifold with

boundary so that £ is equivariantly diffeomorphic to the restric-

tion of n to the boundary of its base. Two G-vector bundles

£ and &' of type (F,H)

union € + (-€!') bounds,

are (F,H)-cobordant if the disjoint

Again, (P,H)-bounding is an equivalence
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relation and the collection of equivalence classes wi(G;F,H)

forms an abelian group under disjoint union. Let $:(G;F,H) =
2k+1

*

k
ke?n v, (G;F,H) . Note that y

orientation assumption, e.g. if G 1is abelian.

(G;F,H) = 0 follows from the

Given a G-manifold M" of type (F,F-(H)) the set of
points p € M so that Gp contains a conjugate of H 1is a clo-
sed G-invariant submanifold of M - 3M . Let & be its normal
bundle in M . Then £ is a G-vector bundle of type (F,H) .

It is easily seen that the map M - & induces an , module iso-
morphism

GG - (1) ——> © 475, (657,1)

The inverse map is given by taking the associated disk bundle

of €,

4,2, Pixed Point Pree S1-Aotions

o

Let Fm be the family of subgroups of 01 with order < m ,

P =

' = YE end F

5 all subgroups of 81 . Note that Zm in Fm

and 81 in FS are maximal elements. Let us use the simplified

notation

T = Gshr 0

G = sl
Gh = Csirg,9)

and similarly

k Kial,
bi(m) = vi(s%57,,3,)

kol koo .1
(s = vf(s'3Eg,8") .
Let M be an 81-manifold and H c S1 a closed subgroup.

Define I(H) = {peM|h(p)=p , YheH} . Clearly I(H) is an

invariant submanifold in M . ILet N(H) be its normal bundle.
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We call M an S1-manifold with complex normal bundles if for

every H the bundle N(H) has the structure of a complex S1—
vectorbundle satisfying the condition that if Hy < Hy then the
bundle N(H1)§I(H2) is a complex S1—subbundle of N(H2) . The
corresopnding cobordism groups are denoted by 6§h(m) . Cé;(dﬁ

and 65;(31) . Similarly we define complex vector bundles of type
{(m) over oriented S1~manifolds where the operation of S1 is
compativle with the complex structure to obtain the groups §ﬁ(m)

of complex k-dimensional vector bundles of type (m) over n-

manifolds, This yields the exact sequence

cee - ﬁn(m_” - Cﬁl”l(m) - %Ei—Zk(m) - ':9;1_1(31—1) - eee

Given a complex representation r of Zm with no trivial summand
we can form the cobordism group ?n(m,r) of complex S1—vector
bundles of type (Zm,r) over oriented § -manifolds. Iet ﬁk(%m)
denote the set of equivalence classes of complex k-dimensional

representations of Zm with no trivial summand. Clearly

nm = 2 §y(m,r)

_k n
reR (Zm)

Lemma 1., Let 1r: Zm - U(k) Dbe a complex representation of

Z, with no trivial summand. Let C(r) ©be the centralizer of

r(%m) in U(k) . Then there is a canonical Q, medule isomor-

phism with the singular bordism group of Conner-Floyd (1]

Vo(m,r) = 0, 088" /z_ ) xB(E(x))] .

Proof., TLet § ¢ Gn(m,r) and let E denote the associated

principal U(k) bundle. Now s! operates on the left on & and
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U(k) on the right on ¢ . TLet

n={ecs 'he=er(), VhEZm} .

Then 51 acts on mn from the left. 5(r) operates as a subgroup

of U(k) on the right on E and hence on 1w . Define a left

action of C(r) on n by oce = ec™ . This gives a left action

of S1 x C(r) on mn . Define
A= {(h,r(h)) | heZ !

a normal subgroup of S1 X a(r) . It is easily seen that A is

exactly the isotropy group of every point of mn under the action

of 8! x C(r) amd n is a principal st « C(r)/s bundle with

base M/S1 defining an elcment of Qn_1[B(S1x a(r))/A] and it

follows that

s xC{r)/n = ST/%m><5(r) .

Conversely, given a principal 81/Zm x Z(r) %bundle n over
M/S1, we obtain the principal U(k) bundle T with s action
over M by noting that there is a canonical map v :n xU(k) - 3
given by (e,s) - eo equivariant with respect to the S1 action.
It is surjective and v(e,,04) = v(ez,cz) iff 01651 € C(r) and
e, = 6101651 . Thus ¢ is the quotient of =n x U(k) by the

1

action of C(r) given by o(e,s) = (ec™ ,0o8) .

Let § = cpt

® Q (BU(k)) is a polynomial algebra generated by the classes

be the Hopf bundle. Then the Q_ algebra

(€] , n >0 . According to Conner-Floyd 72,(18.1)] one has to

show that if for a k-tuple @ = (n1,...,nk) y 04 215 2 ...an%?
n

& g 3 — A ,: — 1 'k

we associate the bundle §w = §n1®...O§nk over Pw = CP 'x.,..xCP

with the classifying map f , then the classes fw*[Pm] €

H, (BU(k);Z) form a Z-basis for H*(BU(k);Z) . This is done by

the usual characteristic class argument.
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Recall that every complex representation =» :Zm - U{x) is
a sum of linear representations. Denote by rj: Zm - g1,
j=1,...,m=1 the representation that sends the generator
exp(2mi/m) of Zm to expj (2ni/m) . Iet krj denote the k-
fold direct sum of rj . Then for some non-negative k1,...,km__1
with k1+...+km_1 = k the representation r 1is equivalent to

kyry®...0k . Thus C(r) is isomorphic to U(k1)x...

m-1m-1
X U(km_1) and since S1/Zm =4 81, we have from Lemma 1:

¥o(m,r) = o 1(BS! xBU(k,) x ... xBU(k,_;)) .

Since H,_(BU(k);Z) has no odd torsion,the Kinneth formula of

singular bordism theory applies, Conner-Floyd [2,(44.1)7 and one

2q-1
m

obtains the following explicit generators., ILet S denote the

(2¢g=1) sphere {(21,...,20) e ¢t !ZziEi= 1} with the ineffictive
1 N - .

S aetion t(z1,...,zq) = (thT,...,tmzq) . Let EQJ) denote
the Hopf bundle over cP®  with S1 acting by multiplication by

td  in cach fibver.

Theorem 2. 5§(m) =0 Eg(m) is freely generated as an 0
P e R .

module by
(31) 4 ~ ()
5291 (o T B L B "
1 k
where ¢ > 1 ; m-1 > 31 23 Zeee 2 jk >1 and ng > ng 4 it

Jg = gyt -

Theorem 3. (a) The canonical 0 module homomorphism

i :‘iz(m—1) - fi&(m)
is injective,

(b)Y j: T(m) -~o ﬁE(m) is surjective.

%

e

(¢c) C.(m) is freely generated as an Q,

*
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module by

where s >0, m > jo > 34

Jo = Jog1

Here S(n) denotes the sphere bundle of the bundle n .

Proof. If my and n, are of type (S1) so that every
isotropy group in S(n1) is Z_ and in S(ng) of order < m,
then S(rheévb) is of type (m) and the normal bundle N(Zm) of
the fixed set I(Zm) is equivariantly equivalent to S(n1) X Mo

In the exact seqguence

62;1(m-1) - e

los

e 2 B (pey 1T d o 3
Tplw-1 = G @) =04 m

; Ef(m) is free on the generators given in Theorem 2. The element

of 55;(m)

().~ G3y)

e 3 A e k

(m) 2
S(g G n,

)
q-1 n,

maps onto the corresponding gemerator by the remark above so
is surjective and by exactness 1 is injective, Part (¢) follows
from induction on m .

In particular one obtains the following.

Corollary 4. fi;(xﬂ is freely generated as en 9, module

by . . .
(G0, G, 4 _Gig)
S(s, " @8 D25 )
o} 1 s
.-——Where 5 2 0 9 jO > J‘] ..>_ 1]2 Z"‘Z jS 2. 1 -.——a'nd no’ 2 nc+‘] .l_f

Jot1

ig =
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4,3, 3 -Manifolds

The cobordism group of 3-dimensional fixed point free S1-

manifolds is determined as follows,

Theorem 1. Caé(dﬁ is free abelian with free generators

(i) . (i)
g J0’ 5 g 01

s(s, ),

Jo 2 23y -

Proof. Consider the relations:

(1) (i e(mhyy o rs(elmml g glmyy, rg(elmml g (ndyy
m,n >1

(i1) rs(&;gj))] = 2[S(eg2j)é§gj))] s 3= 1.

The first is obtained from the S1 action on CP2 given by
t[zozz1:zzj = [zoztmz1:tm+n22] observing that the fixed point
set consists of the three points [1:0:0] , [0:1:0] and [0:0:1]
and the above are their normal sphere bundles, The second follows
by noting that s(ggj)) = s(ggj)éggj)) and letting m =1 = 3
in (i). Thus it follows from (4.2.4) that the image of

2 G - U

is generated by the above generators. In order to prove that o

is an isomorphism we first claim that © 1is onto. This means

that every 3-dimensional orientable fixed point free ST—manifold
has complex normal bundles, This is obvious since these are ori-
ented D°-bundles over §' . To show that o is injective it is
enough to show that the generators given in the theorem are linear-
ly independent in Cﬁé(aﬂ . Here is an outline of this argument.

Using (ii) it suffices to prove that if Y is an oriented 4-di-

mensional fixed point free S1—manifold with boundary



(3). (i) )
3 = ¢ a; ,. S(5, " @¢g )+ T b.B(& )
i >235, Jo I i>1
0 1 -
j 2t
then the coefficients aj j and bj are zero, First it is
oY1

shown that Y is cobordant to Y' where Y' is a fixed point
free S1— manifold with complex normal bundles and Y = 3Y' .
Using (4.2.3a) and a downward induction on the orders of the

isotropy groups one obtains the announced result.

Next we shall express the cobordism class of an arbitrary

oriented fixed point free S1-manifold
M = {b; (0’g909o); (a1981)9"‘9(ar98r)}

in terms of the generators given ahove. In order to avoid treat-
ing the class b separately we shall think of M in the edquiva-

lent presentation
M= {05 (0,8,0,0)5(1,0),(aqy,81),...,(a.,8.)7 .

Remove the interior of an equivariant tube consisting of only prin-
cipal orbits from M and call the resulting manifold-with-boundary
M* . Let V be a tubular neighborhood of an E-orbit with Seifert
invariants (a,8) as described in (1.7), a« > 0 , (a,8) =1 dut
B 1s not necessarily normalized,

As in (1.7) define v and o by
v3=1meda , O0<vy<oaqo
p = (Bv-1)/a .
Choose a cross-section on the boundary torus of M' so that the
action written with complex coordinates is
t(2zq,25) = (24,%25)

tEU(1)9 [Z,‘! =1 s ‘Zzl =1 .
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The action in V 1is described by

t(x,z) = (t¥x,1t%)

'x] <1, !zl = 1, Define the equivariant map
w: JdM' -~ 3V
by ©(2q,2,) = (z;“zz,zszgp).

Its inverse is the map F given in (1.10). Since o has deter-
minant -1 it is orientation reversing and it can be used to ob-

tain an oriented manifold

It

MTyuv .,
@

M = M(a,8)

Let Y_ = HMxI with ¥ = Mx {0} c Y . Consider the unit ball
. 2
in €

2 2 2
D, o= {(z4,2,) €€ | lz4!%+ 2,121}

with the U(1) action

t(z1,22) = (tvz1,tazz)
end let S_ _ = 2D denote S° with the above action.
v,0 Ve
The map
AMx,z) = (r,_fﬁ:” s ;,f’__:_..
IRES S §14xX
defines an orientation preserving equivariant embedding Ai: V-*Q)a
H
% 2
; 5 1
Define Dv,a = {(z4,2,) €D, 4 | lz 1%+ |2,]° 23]
and
Y =D _~-DF <D _ .
+ v, Tv,a V,Q

Using . sew Y _ and Y_ together along V x (1} cix {1} to
obtain a 4-manifold with boundary Y = Y_ y T, with a fixed

point free S1 action.

The boundary of Y has three compoments M(a,B) = ﬁ)({o}c:Y_,
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(@) 3 ¢(v) e T
2 = a v . -
Sv,a = S(%o DEL ) and the result of sewing M x {1} and Sv,a
together by A . The latter is obtained by sewing the complement
of V in SV q Iinto W' = M(a,B)=-V . A careful analysis shows
?
that

3Y = M(a,3) - M(Vsp)"s(gga)é €£V)> :

In order to emphasize the symmetry of the situation we let v = q

and p = 8 and write the result as:

Lemma 2, With the above notation the fixed point free S1-

manifold Y has boundary

3 = (e, 8) - 1(F,3) - 528 (&)

Noting that O < @ < a the above lemma gives an algorithm
for representing the cobordism class of an arbitrary fixed point
free S1-manifold in terms of the generators of Cfg(aﬁ given in

Theorem 1.

4,4. The a-invariant

Consider the composition of inclusion maps

G 2> T 2> (5"

Theorem 1., The sequence above is exact in the middle.

Corollary 2. If M is a fixed point free S -manifold with

no isotropy group of even order, then M bounds an S1—manifold.

Proof. By (4.2.4) imo cCkeri. On the octher hand we have

the exzact sequence of (4.1)



-G ~edtsh 2 T 2 T -

so it is sufficient for the converse that keri = imd <€ imo .
This follows because an ST—vector bundle of type (81) with
fixed point set equal to the zero section has a natural complex
structure inducing the structure of an S1—manifold with complex
normal bundle on the associated sphere bundle,

The next result is stated without proof, Ossa [1, 2.2,17.

Theorem 3. cokero is a 2~torsion group.

Thus for every fixed point free S1-manifold M, a suitable mul-
tiple 2TM  bounds an S1—manifold. This fact will be used to
define an invariant of the 81—action on M, a(M) below.

Given an S1—vectorbundle n over the compact, oriented
manifold X so that the fixed point set is equal to the zero-
section X < n, there is a canonical splitting of mn into a sum
of complex S1—vectorbund1es My s X >1 so that t ¢ S1 operates
by complex multiplication by tk in the fiber of M e

Let

Nk
c(nk) = .n1(1+~xj(k)) . xj(k) of degree 2
J:

*
be a formal factorization of the total chernclass c(nk) €H (X;Q3}.
Let Ji(X) e B'(X;Q) be the total L polynomial of X ,

Hirzebruch [2]. Define a rational function a&f(n) € Q(t) by

’ n. o 2x.(k)
(n) = (LX) 0 1 -t——e-,—i——i—l)m ,
k>0 J:1 tkedXJ(k)_

where [X] is the fundamental class of X , [X] € H_(X;Q) .

Given a closed, oriented S1—manifold M with fixed point
set X , its normal bundle n has a canonical complex structure

and therefore it induces an orientation on X from the orienta-
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tion of M , If 1(M) denotes the signature of M, then a fixed

point theorem in Atiyah-Singer [1,p.582] implies that
(M) = 3(n) .

Now assume that M is an oriented fixed point free S1-mani-
fold., TFor some r we can find an oriented 81—manifold Y so
that 2Y = 2'M . Let mn denote the normal bundle of the fixed

point set of ¥ and define the rational function
a(M) = 27F(r(¥) -&(n)).

To see that «(M) is independent of the choice of Y one takes

Y, 3Y' = 2r'M and constructs

wo= (27'y) y (=2%yr)
3

to obtain a closed manifold for which the Atiyah-Singer theoren

applies. The additivity of the signature implies the assertion.

Remark., Ossa [1]. a(M) may be expressed as a polynomial

k
in Eﬁi—l , k >0 with coefficients in Z[%) .

1T -1

It turns out that o(M) is determined up to an additive con-
stant by the fixed point free cobordism class of M . In order
to compute a(M) for a fixed point free 3-dimensional S1-mani-

fold,we first compute a(M) for the generators of Cj;(xﬂ .

Lemma 4. Let n = ggm)é>ggn) . Then

m n
~ 1
an) = 0+ 1 . tn+

t2 21 B

Let D(n) and $S{(n) Dbe the associated disk and sphere bundles.

Then clearly T(D(mn)) = O and we have:
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Lemma S,

m n
1 1
a(s(n)) = - tm'F . tn'k .
T T

Next recall the fixed point free S1-manifold Y = Y(M,a,8) ob-

tained from ¥ in (4.3) with

2Y = M(a,s)-m(&,g)-s(gé“)régga)) .

In order to find the relation between the qg-invariants of M(a,B)
and M(&,8) it is necesasary to compute the signature of Y .
Let M = {0;(0,8,0,0)5 (ay,84),...,(0y 1,8, 1)} where the (aj,8;)

are not necessarily normalized. Direct computation gives:

Lemma &.

T(Y) = sign(o+2) (0 +8)
o

where T = E
Given the relatively prime pair (a,B) of positive integers
there is a unique continued fraction

o/8 = lag,a,...,8,] = a_ -

o) '_'—_'T—

with a; 2 2 , as noted in {2.4). The auxiliary variables of

the Euclidean algorithm are defined by p_4 = 1 P, = &, ,

) o
Pj,1 = 8;,9P3 ~P3_1 » I >0 . Define the rational function
k Py Pi-1
t 1t 1
r(a,8) = T (1-IEL .t
i=o TE_q iy

It has the following properties
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(1) r(a,-8) = -r(a,8)

(ii) r(1,0) = 0

(iii) if (a,8) and (&,8) are given so that 0 <& < o and
aB-0B = -1 as above, then

%41 %41
S T S

r(a,8) = r(a,8)+1-

With this notation the a-invariant of a 3-dimensional closed,

oriented 81—manifold is computed as follows:

Theorem 7, Let K = {O;(o,g,O,O);(a1,81),...,(an,sn)} .

Then we have

n
a(k) = T

n g,
£ r(ay,8) - sign( T 4.
J =1 7]

1

Proof., We use induction assuming the statement for all
M= {O;(O,g,O,O);(a',B'),...,(a'98')} with
177 m’m
m<n or

m=n and o' < oy or

m
m=n and T o= and !g'l < .
ol = ay el < I8yl
We may assume that Bn > 0 for if Bn = 0 then the conclusion

follows trivially and if B8 < O then we consider -K = {0,(0,£,0,0);

(ag5-84) 5000, (ay,-8,)} ' Let M = {0,(0,8,0,0);5(ay,89)5.4.
..,(an_1,6n_1)} , 0 = 251 ;% and an,sn,Eh,Eﬁ as above. Now
using the definition of o on the fixed point free S1-manifold
Y we have

a(3Y) = 7(Y)

a.
~ o~ R s 8 E
a[M(an,Bn)]-a[M(an,Bn)]+- = C g = s1gn(c4—a)(c-+a) .

§Po1 t Pen
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Using (iii) above and the induction hypothesis, the assertion

follows from the simple identity below:

&mM0+§Mo+§):1—3@Mo+ﬁ)+ﬂgﬂc+% .
o4 i (04 a

Example 8. ILet us compute the a-invariant of the 3-mani-
fold X = {-1;(0,3,0,0);(5,2),(5,2),(5,2),(5,2),(10,7} obtained as
the neighborhood boundary of the isolated singularity at 0 of
the surface V = {g € 03 !zg5~+zﬁ@+zgz1==0} in (3.10). First we
shall absorb b in the E-orbit (10,7) and write
X = {05(0,3,0,0);(5,2),(5,2),(5,2),(5,2),(10,~3)} . Next

%.—_ 5-% and 150': 4-53:—1 . Hence

3 5 43
74+ 1 t4 1 7+ 1 7+ 1

r(5,2) = 1- 1~

’ 't3-1t-1 t5-1 3.

r10,5) 1 et pet g te 1 gt g 80w T4

421 £ o1 Ao 01 47
> B

i_4.2,73_13

and 151 —; = 4 E+TH = T0 S0

alK) = 4r(5,2) -r(10,3)~1 .
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5. Fundamental Groups

We noted in chapter 1 that only some of the Seifert mani-
folds admit S1-actions but deferred the introduction of the re-
maining ones to this chapter. Using the terminology of Holmann
[17 given in (5.1), the other Seifert manifolds are described in
(5.2) and the classification theorem of Seifext [1] is proved.

In (5.3) we compute the fundamental groups and use the method of
Orlik~Vogt-Zieschang {1} to show that if the fundamental groups

of two Seifert manifolds satisfy a condition (in which case they
will be called "large"), then they are isomorphic only if the mani-
folds have the same Seifert invariants (up to orientation). This
gives a homeomorphism classification of large Seifert manifolds.
In (5.4) we ihvestigate "small" Seifert manifolds (i.e. whose
fundamental groups are not large) and their homeomorphism classi-

fication,

5.1 Seifert Bundles

Recall that a bundle ¢ = (X,7,Y) consists of a total space
X , basis Y and continuous onto map m: X - Y , A bundle hcmo-
morphism from &' = (X',n',Y') is a pair of continuous maps

he X = X', t: Y - Y' making the diagram commutative

X > Y
hj b
V/ v
L}

X > Y

It is an isomorphism if h and t are homeomorphisms,

Following Holmann [1] we define a Seifert product bundle with
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typical fiber F as a triple {#xU)/G¢ ,p', U/G} where U is a
topological space, G a finite group operating on F and U (the
action on U 1is not assumed effective) and on FxU by g(f,u)

= (gf,gu) and there is a commutative diagram

PxU —2 s U

xl lT

(FPxU) /G L > U/G

where p is projection onto the second factor, x and 1T are
orbit maps of the G actions and p' is the induced map.

We call € = (X,m,Y) a Seifert bundle with typical fiber F

if it is locally isomorphic to a Seifert product bundle with typi-
cal fiber F , i.e. Y has an open cover (V,, i€ Il so that to
each i we have a Seifert product bundle {(F><Ui)/Gi’p;’Ui/Gi}
and a commutative diagram

P
FxUi > U

b
X4 EZ/
H., = \l ' . =

* (FxU.)/G. =1 U_ /6 *
XU . o — - .
hi X4 Y, i i i’ v ti T4
/P t\\&

1 1

\ A

-1 m
m (Vi) > V5

where (hi,ti) give a bundle isomorphism in the lower square,

We call § a structure group of the Seifert bundie § if

(i) it contains the finite groups Gi above,

(ii) each non-empty subset of U, , UJ = T;1(virwvj) has a fi-

nite (unbranched)cover (Uij,cij) where Uij = Uji so that
Tiooij = Tj°oji ’



- 84 -

(iii) for ViﬁVj # @ there is a continuous map gs4° Uij -G

so that by defining fij: (f,u) -~ (gij(u)f,u)

the diagram below is commutative:

£, .
1J

> Finj

i | 854 = X3 °(1pxay4)
¥ h"1°h v

i i j i Tj
WﬂHM%—————>(m®QﬂH

If the fiber F equals the structure group G acting on
itself by left translations,we call it a principal Seifert bundle.

The following two results of Holmann [1] will be useful later,

Theorem 1. Let € = (X,nw,Y) be a principal Seifert bundle

with structure group and fiber G . Assumre that X, Y and G are

locally compact., Then X is a G-space and the orbits of the

action are the fibers of the Seifert bundle.

Theorem 2. Let a locally compact topological group G act

on a locally compact space X so that each g: X - X 1is a proper

map and all isotropy groups are finite. Then & = (X,7,X/G) is

a principal Seifert bundle with fiber and structure group G .

Corresponding results hold in the differentiable and complex

analytic cases.

Example (Holmanmn [11.) Let & = (5°,m,5°) be the Seifert
bundle with total space 33 and base space 82 given by the or-

bits of the S'-action on S° from (1.5.1)
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t(z1,zz) = (tnz1,tmz2)

2 - -
where (m,n) = 1 and s> = {(21,22) €C !z122+~z2z2 =1} . We
think of the base space 82 = CP1 with homogeneous coordinates
[x1:x2] . The orbit map is then given by

ﬂ(z1,z2) = [z?: z?] .

Consider the open sets in the base space V; = {[x;:x,] ECPTEXi%O},
i=1,2 . Let U1 and U2 equal the complex numbers with coor-
dinates ¥ and Yoo and Gn and Gm the corresponding cyclic
groups of order n and m . Let & = exp(2mi/n) operate on U1
by g(y1) = %’my1 and n = exp(2mi/m) operate on U, by n(y2) =
n-nyz . Define the corresponding actions on S1 X Ui by
8(x,y,) = (8x,87%y,) and n(x,y,) = (mnx,n"y,) -

1

. -1
Define T,:7U; =V, , Hi:8 xU; = (Vi) by

n=--m
[O+y,5) 2 1 vy

it

T1(y1)

m-n
-
T2(y2) = [yg: (1+YQy2) <]
bii
n Xy,
Hy(x,y,) = (=, -
N1+7qFy Y1445,
n
Xy, m
HQ(X)yz) = ( = ’ z = )
V1+y2y2 v1+Y2y2

giving the required Seifert diagrams.
In order to define the action of the structure group we let U12

equal the complex numbers without the origin and U? =

1
2

1 - -
012(Y) = y" and Opq: Upq = Uy Dy 021(y) = y B y!P ™ | These

= Upy

2
U1-{O} , U,y = U2-{O} and define the covers 0,,: Uq, = Uy by

maps satisfy the condition Tye0,, = Ty°04, . Finally let
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-1 -1 T .
g51(¥) = ylyl™ , &15(y) = 37 |yl bve maps U, - S giving rise
to automorphisms f12 and f21 of S1 X U12 defined by
£,05,9) = (57 ylx,y) , £5,(x,5) = (yly]7'x,y) satisfying

Hyo (1 9>05q) fpq = Hyo (i 4x0q5)

Remark. If we define ﬁ12 = ﬁ21 as all complex numbers and
extend the maps o4, and 0,; to be branched m-fold and n-fold
covers and consider the locally trivial fiber bundle E obtained
from S1 X 612 and S1 X ﬁ21 by identifying S1 x Uqp and
S1 bS U21 using f12, then we see that % is a branched mn-fold
cover of & ©branched along the two E-orbits of € , In fact
g = (SB,n,SQ) is just the Hopf bundle, and the equivariant branch-

ed ccver is described globally by
o: § = §
n m

Z,] V4

(e = =)
V1221712812 A2 2 2B

@(21322) =

5.2. Seifert Manifolds

In his classical paper Seifert [1] considered the class of
closed 3-manifolds satisfying the conditions

(i) +the manifold decomposes into a collection of simple
closed curves called fibers so that each point lies on a unigue
fiver,

(ii) each fiber has a tubular neighborhocd V consisting
of fibers so that V is a "standard fibered solid torus". The
latter is the quotient of D2 X S1 by the action of a finite cyc-

lic group as in (1.7).
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The problem is to classify all such manifolds up to fiber
preserving homeomorphism. In the notation of (5.1) we have
Seifert bundles & = (M,m,B) where M 1is a closed 3-manifold,
the fiber is S1 and the structure group is all homeomorphisms
of S1 . Since this group retracts onto 0(2) we can restate our

problem as follows: Classify all Seifert bundles §& = (M,w,B)

with total space a closed 3-manifold, fiber S1 and structure

group 0(2) under bundle eguivalence. The first result is a con-

sequence of (5.1.1).

Proposition 1. If the structure group reduces to S0(2),

]
then £ is a principal Seifert bundle with typical fiber 5 .

M admits an S1-action and the classification is given by

Theorem (1,10).

Considering the general case we may use the argument of (1.9)
to conclude that B is a closed 2-manifold of genus g . Thus
there are only finjtely many open sets Vi in the cover of B
with Gi Z 1 ., A refinement of the cover enables us to collect
all these in an open set at the base point of B . Outside of
this set & is a genuine fiber bundle. The structure group 0(2)
contains reflection of the fiber, i.e. along some curve of B
{(not homotopic to zero) the fiber may reverse its orientation.

This gives rise to a homomorphism
@ n1(B) - Gy

where C, is the multiplicative group of order 2, C, = {1,-1}
identified with the automorphism group of n1(S1) =Z . Here
p{x) = 1 if the fiber preserves its orientation along a curve

representing x and o(x) = -1 otherwise. Select a set of gene-
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rators for n1(B) . The next result is due to Seifert [1]., Ve
give the proof of Orlik [1], see also Orlik-Raymond [2] for gene-

ralizations.

Theorem 2. Up to Seifert bundle equivalence there are the

following six possibilities:

04 B is orientable and all generators preserve orientation so

M 1is orientable and €& is a principal Seifert bundle;

O0,: B 1s orientable with g > 1 and all generators reverse ori-

entation so M is non-orientable;

n,: B is non-orientable and all generators preserve orientation

50 M is non-orientable and & is a principal Seifert bundle;

n,: B is non-orientable and all generators reverse orientation

80 M 1is orientable;

Nzt B is non-orientable with g > 2 and one generator presgrves

orientation while all others reverse orientation so M 1is

non-orientable;

B is non-orientable with g > 3 and two generators preserve

o]
N

orientation while all others reverse orientation so M is

non~-orientable,

Proof. Clearly o: n1(B) - C, 1is determined by the values
on the generators, We shall show that for an arbitrary homomor-
phism we can choose new generators of n1(B) so that the induced
@ acts on the generators according to one of the maps in the
theorem.

If B is orientable and ¢ maps all generators into +1 or

all generators into -1, then there is nothing to show. Now sup-
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pose w(ui) = -1 and w(uj) = 1 . By renumbering the generators
we may assume p(uy) =1 . Let j be the smallest index so that
cp(ua) =1 . If

(i) j 1is even: let Vioq = UjoqU; v, = u,

j 3 3=1 and v, = Uy

j...
for k £ j=1,3 .

. C . = ! .
(i1) § is odd (j>3) and m(uj+1) =1 : let Vi1 T Uy My_q
=1 - -1 _ -1
Vj = uy uj_1uj_2uj_1ujuj+1 H vj+1 = uj+1ujuj+1 and
v = u for k£ j-1,3,i+1 ;
j is odd (j>3) and a(uj+1) = -1 : let vy o= uglyg
and v, =, for k#j .

Repeated application of this procedure defines new generators for
m(B) so that ¢ sends every generator into -1 .

A similar argument holds if B is non-orientable. If all
generators are mapped into +1 we have a principal bundle, n, .
If all generators are mapped into -1 we have an orientable total
space, n, . Now suppose that some generators preserve orientation
and some reverse it, Let @(u1) = -1 and m(uz) = m(u3) = m(u4)
= 1, The following change of basis reduces the number of orien-

tation preserving generators by two:

~ . SRS U [, S, [ -1 =2 1 .
Vio= WUpusz Vy = Uz Uy Up Uz Up Uglly Uz Us Uz j

L o= 2 _o=1 -1 2.2 2 B .
Vz = Uz UplzUy 5 V, = Uy Uz WlpUzly, 5 V3 = Uy for i >4 .

Repeated application of this map gives Nz Or 1y .

To show that the six bundle equivalence classes are indeed
distinct is trivial in all cases except for nz and ny . Here
we abelianize m,(B) and notice that the image of Uplip. s Uy is
the unique element of order 2 in H1(B;Z) . This element com-
mutes in n1(M) with the homotopy class of a typical fiber for

odd g only for N, and for even g only for n, .
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Using the proof of the classification theorem (1.10) for
3-manifolds with S1-action and FUSE = @, we obtain the follow-

ing classification theorem of Seifert [1].

Theorem 3, Let € = (M,m,B) be a Seifert bundle with typi-

cal fiber 81, structure group 0(2) and total space M a

closed 3-manifold. It is determined up to bundle equivalence

(preserving the orientation of M or B if they have any) by the

following Seifert invariants:

M= {b;(e;g);(a1531)"007(ar13r)} .

Here € 1is one of 09509, T, 3,1y denoting the weighted map

of the 2-manifold B of genus g described in Theorem 2; the

(aj,Bj) are pairs of relatively prime positive integers

0 < Bj < aj for € = 04505,
0 < By < aj/z for € = o5,n4,05,0,3

and b is an integer satisfying the conditions

b €Z for € = 01,0, and
b € %2 for ¢ = OpsTy 5Nz, unless ay = 2 for some j in

which case b = 0 .,

Note that M is orientable if € = 01505 and a change of

orientation gives the Seifert invariants

-M = {-b—r;(E,g);(a1,a1-81),.-.,(ar,ar—sr)} .

5.3. Fundamental Groups

The fundamental group G = n1(M) is generated by the "parti-

al cross-section” Qysreerslp and a1,b1,...,ag,bg if B is ori-
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entable or v1,...,vg if B is non~orientable and the fiber h ,

The relations are given by:the commuting relations of h with
the other generators, the null homotopic curves in the E-orbits:

as B
quh‘J = 1 , the relation on the "partial cross-section" 9T =1

where m, = q1...qgh1,b1]...[ag,bg] if B is orientable and

My = q1...qu?...v§ if B is non-orientable, and the relation

b -b

qoh = 1 , which we eliminate by substituting 9, = h . Thus

for orientable B we have

~1_, % . N I
¢ = {a1,b,,...,8 bg,q1,...,qr,h|aihai=h ,bynb; =h qhq; =h,

g’
Qs B b
quh =1, q1...qr[a1,b1]...[ag,bg]=h }

093 €4 = 1 for all i ,
Oni €4 = -1 for all i ;

and for non-orientable B we have

G o= {Vqs00esVysQys0es, Gl iv.hv71=hei, ¢.hqT' =n, qofjhsj=1
g1’ 1%p® ivta 3775 J
q1...qrv%...v§=hb}
n,: ey =1 for all i ,
ny: € = -1 for all 1 ,
nzi €4 = 1, e, = -1 for i > 1,
Nyt €4 = €5 = 1, € = -1 for 1i2>2,

We call M small if it satisfies one of the conditions

below:

(1) o1,g=0,r§2,

(11) Q ,g:o,r:B —1—-+-1—.+—-1—>1
1

Taq oy Ay

(111) {—2;(01,0); (2’1)3(291)9(291)9(271)}

|
—_
2]

(iV) 0198'_ =0,

|
Y
H

(V) 0293— = 0,



(vi) ny , 8=1,r

IA
—

(vii) n, ,g=1,r

A
—

(viii) nqy , g=2,r =0

(lX) n2,g=2,r=0,

(x) ng , g = 2., r 0,

otherwise we call M large,

We shall assume in the remainder of this section that M is
large and prove following Orlik-Vogt-Zieschang [1] that the
Seifert invariants of M are determined (up to oriemtation) by
n1(M) . Small Seifert manifolds will be treated in the next

section.

Lemma 1, The subgroup generated by h is the unigue maximal

cyclic normal subgroup of G and h has infinite order,

Proof, Consider the following groups:

¢, = {a,,h]qha; =n, q:1h61= 13
-1, % -1 %1
D; = {a;,b;,h|asha] =h %, bhbT =h 7}
-1 51
E; = {vy,h Ivihvi =h *} .

The subgroup generated by h is infinite cyclic and normal in
each of these groups. We form the iterated amalgamated free pro-
duct along (h) +to cbtain G as follows:

(i) for orientable B and r > 3 we take

C * C
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and note that h and 2495 form a free abelian subgroup of rank
2, Taking

el R SRR R SR SR
we find that h and (q3...quI[ai,bi]h'b)-1 also form a free
abelian group of rank 2 so we can amalgamate along these subgroups.
A similar argument shows the assertion for all classes except for
04, 8 =0, T =3, é%.f—_.k—— <1, 04y & = Ty, r =1 and oy, 8 =
1, r = 1 , where there are not enough "parts", For these cases
we note that the quotient group G/(h) is a planar discontinuous
group and has no cyclic normal subgroup,
(ii) for non-orientable B the above argument works for all
large Seifert manifolds. This completes the proof.

We should remark here the following well known fact.

Proposition 2, Let K be a closed 3-mapifold. If X is

orientable, let K' = K equal the orientable

if not, let K!'

double cover of K . Suppose that n1(K') is infinite, not cyc-

lic and not a free product., Then K and XK' are aspherical and

m,(K) has no element of finite order.

From this follows immediately:

Proposition 3. A large Seifert manifold M is a K(G,1)

space.
We shall see later that it follows from Waldhausen [1] that

they are also irreducible 3-manifolds,

Given the planar discontinuous group D defined by {§1,..

- - - - - 0 - - - - _ -
ol;qr9a1’b19 o,ags gquJ=1, qi...qr[a1,b1]...[ag,bg]=1} or
q I .V = =5 = - =2 =2
{q1""’qr’v1""’vgqu']=13 Q.-] ..qu‘]...Vg:'])
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We define free groups D with generators 61,...,§r,ﬁ1,§1,-°-

coshy B, or Q4,...,0Q

g'’g V1,...,V and words in these groups

r’ g

Ty = 51"‘6r[11’§13"'EKg’Eg or Ty = 61...QTV?..
..Vg . Define a homomorphism D-D by mapping capital letters
into lower case letters. Iet o(%) = w(X) = 1 if we have an ori-
entable fundamental domain and (X)) = m(i) = +1 according to
whether the Gi (or Vi) occur an even or odd number of times in
£ (or X) .
Define the group G as either

{Q1,lon,Qr,A1,B1,-..,Ag

=1 €4 -1
{Q1,...,Qr,V1,...,Vg lViHVi =H 1,QjHQj = H} where the €, are

-1 _goi -1 _ 5% -1_
,Bg,H[AiHAi =H °,B;HB] =H *,Q HQ] =H} or

the same as in the definition of G . Let I, be as above (with-
out bars) and define the homomorphism G -¢ by sending capital
letters to lower case letters, The map w is defined as above
for G and G , tee. w(x) =0(X) =1 for x €G and X € G

if B is orientable and w(x) = 1 (w(X) = £1) according to the
parity of the number of times vy (Vi) occur in x (X).

The next result is due to Zieschang [1].

Lemma 4. Every automorphism A of D is induced by an

automorphisn A of D with the property that:

n" = N S
Q) = . 5 F @]
1 1 V. 1
i
AT =@ as i
T.eu -

where is a permutation with a, = a; and w(M, )¢, =
—— V1l'lvr i 1 1 1

w(M)g = ¢ = 1 .,

This allows us to prove the following:?

Theorem 5., Let M and M' be large Seifert manifolds and

I: G' = G an isomorphism. Then we have
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A Co
I(Qi)= hlmi qv% mi1
i

Teea T
where is a permutation and o(m.){. = p = £1 . The
= \)1...\)r i i e

A

map I is induced by an isomorphism of the groups 1I: ' - ¢

where

Faere Aj T

H M. Q M3
iy 7l

[t}

2 [
£(a))
f(nl) = 8* won§ u

and w(M)C = p . Moreover \ =

Lo L}

Xi+ 20 where o = 0 for

i=1

€=o1g£n2.

Proof. Since (h) and (h') generate characteristic sub-

groups, the isomorphism I induces a commutative diagram:

0 —> (h!') —> G' —m> D' =——> 1
~ ij1 ~ ‘I/I ~ 110
0 —> (h) =—>G —>D —>1

Next define an inclusion map ®: D - G by éi - Q. A, =4, ,
Ei - Bi , Vi - Vi and consider the diagram below where 1 is
defined to induce Io by lemma 4.

~
[
Y]

G' > B
\ ' /
[N //
by " 5
| G' > D'
I’ 311 :llo o~ IO
!
! G 7 > D
. 2
! ,/1’] n \
Ve b VY
G > D

8>
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Considering the solid arrows only this diagram is commutative.
We want to 1lift the isomorphism I +to an isomorphism i of the
"a¥ gpoups, Let n and n' send capital letters to lower case
letters., We can construct generators for &' from generators of

el using the composition J = $i0$'. In order to make the whole
diagram commute (apart from @), we note that the difference between

In' and nd lies in the kermel of ¢y , (h)., Now suppose that X'

is a generator of G' and

hh(x')713(X') = In'(X') .
Define I by

fxr) = BME )3z

Tg") 5

H

&

where I(h') =h” and 6 = %1 from I, above.

This makes the diagram
0 —> (§') —> G' —> D' —— 1
v 1 II LIO

v
0 —> () —>G —>D —>1

~

I

commutative so I is an isomorphism, It follows from lemma 4

that f (Qi) e o 15

i
=
=1
e
=

A -t - -
W ¢

il
el
.

with w(i,)¢, = w(i)¢

Letting Xy = x(Qi) , A= a(my) , &(Mi) =M, , (M) = M we have
. As i 1
- 1 1
I(Qi) =H W QVi My
T(nl) = gt uné

It remains to prove the last statement. For orientable B we
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have
-\ ' J(m: F(Q: FOYI T (ALY . F(B! J(ay) 5(Br
HAMI(ny) = J(my) =J(Q1)...J(Qr)[J(A1),J(B1)]...[J(Ag),J(Bg)] =

-Xa - -x(AL) . -x(B!)
H 1I(Qi)...H rI(QI',)[H Y3an),m !

;
-x(Aar). -x(B').
g I(Aé),H g I(Bé)] .

I(BNI...
(H

If Al and B] commute with H' then so do i(Ai) and i(Bi)
- A r
and their commutator equals [I(Ai),I(Bi)] , thus =_21xi . If
1=
Ai and Bi enticommute with H' +then the corresponding commuta-

tor equals

-2x(A1)-2x(B!) . R r
H * TOI(AD),I(B})]  so A= I A#20.
1 1 i=1

For non-orientable B a similar argument works,
This leads us to the following homeomorphism classification

theorem for large Seifert manifolds.

Theorem 6. Let M and M' be large Seifert manifolds.

The following statements are equivalent:

(i) M and M' are equivalent Seifert bundles (possibly after

reversing the orientation of one),

(ii) M and M' are homeomorphic,

(i1i) M and M' have isomorphic fundamental groups.

Proof. Clearly (i) ==> (ii) ==> (iii). Assume thait we have
an isomorphism I: G* = G . Assume moreover that the permutation
of theorem 5 is the identity. By lemma 1 we have an induced iso-

morphism IO: G'/(h') - G/(h) Vvetween non-euclidean crystallogra-

phic groups. This shows that B’ B, g =g, r" =r and

af = a; . Also by lemma 1 I(h') 5

h® with & = %1 ., Applying
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. !
I to the relation ay hr 1 = 1 according to theorem 5 gives

M. . . B.& a. C. AL 0.+8B.
_ i i =171, P17 i=i -1 "17i i_
V=(h TmiaiTmy ) Th o= myayt Tmy =
1 t
. h-sigim_1hxiai+éﬁi ) h_e(mi)gisi+kiai+éei
i i -

where for x € G we let e{x) = %1 according to whether X conm-
mutes with h or anticommutes with h . Since h has infinite
order

]
—e(mi)ci8i+-xiai+-68i =0 .

For o, and n, we have e(mi) = w(mi) s0 e(mi)gi_zw(mi)gi= .
Thus

\
Bi = oéBi-+pkiai

and if p5 = 1 then the condition 0O < ﬁi < ay implies that

A; = 0 while if 05 = -1 we get 6y = -1 . Substituting these

values we have 3, = Bi or 3, = a4-5i for all i . PFor the

. . - . 1
other classes the condition 0 < Bi < 4;/2 implies that Bi =Bi

and Xi =0 for all i .

Finally we need a similar computation for b

1= I(mn' Py = nrunbn~Tn"0%"
ph g pCPn= Ty =6D" _ yhbe(m) (b-gb"

and since h has infinite order
A +e(m)Cb-68b' =0,

r
For o, and n, we have e(m) = w(m) , o(m){ =p and A=_T_ )
1 2 i=1 T
50
ZA:+0b~-8b' = O
i=1 *
if p8& = 1 then ki =0 and b = b'; if 08§ = -1 then 6\, = 1
and b = =b'=r as required.
For the other classes xi =0 and A = 20 but b,b' € %2 S0

b =b' ., This completes the proof.
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5.4 Small Seifert Manifolds

This section is based on Orlik-Raymond [2].

(1) The manifolds o,, g = 0, r <2 (lens spaces).

Since these manifolds all admit 81—actions we can use the equi-
variant method of chapter 2 to identify them. The manifold

L(b,1) = {b;(o1,0)} was discussed there, The standard orienta-
tion gives §° = L(-1,0) = L(1,1) end we note that L(0,1) =

82 ><S1 .

The maaifold {b;(0,,0);(x,8)} is identified similarly.

By lemma (2.2.3) it is the boundary of the linear plumbing accord-

ing to the graph

-P—1 =by  =b, ... -by

—+ R

where

cxfs = [b1,...,bs} , According to lemma (2.2.1) the result

of this linear plumbing is L(p,q) where

1 _a{b+1) -(a=B) _ ba+8B
o - o - I

g = [b+1,bq,.00,0. ] = D+ 1 =

a-8
so we see that ({b;(04,0);(a,B)} = L(ba+8,a) .
For r = 2 we apply the same argument: {b;(o1,0);(a1,81),(a2,82)}

is the boundary of the equivariant linear plumbing

P15, Plsget P11 PR mPpq mmrha
h al b b g ——2 [b by o ]
where W= { 1,150 1,81] an m = 2,170 2,32 .
It is I(p,q) with

P _

= [b1,s1,...,b1,1,b+2,b2’1,...,bg,sgj .

First we note that the result of a reverse plumbing

P4

;
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is determined from the product of matrices

- -

-1 0\ /0 1 o 1 -1 0 -Pg_1 —Pg 1

and by induction
ps = pS ’ .:és = ps_1 ’ ps__‘] =p! ié_‘] = Pé_'] ’

Thus we have for the determination of IL(p,q) using (2.2.3):

Vo =Po o 1 -1 oy/0 1 Bq=aq =Py _
0o  Qo=85 T 0)tb+2 1 1 0 0 =Vq )
* *
) ba1a2-+a182+-a281 maz--ns2
where m = “bvy-vy-py, B o= -vy satisfy the condition

ma1-n(ba1+s1) = 1.

The manifold is L(p,q) with p = boga, + aqBy+ ayB8y  and
qQ = mcx,2-n$2 .

The mutual homeomorphism classification of these manifolds
is given by the well-known classification of lens spaces: L(p,q)
and IL(p',q') are homeomorphic if and only if lp| = |p'| and
qtq' = Omod p or q-q' = *1 (mod p) . The fact that they are
not homeomorphic to any other Seifert manifold will follow once
we have proved that they are the only ones with finite cyclic fun-

damental groups.

;L_+ 1 1
> ag T ap 0z
There are only four possible sets of oy satisfying these condi-

(ii) The manifolds 04, 8=0,1=73

tions called the "platonic triples": (2,2,a3), (2,3,3), (2,3,4)

and (2,3,5) . They have finite, non-abelian fundamental groups
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and will be discussed in detail in the next chapter where we
shall also show that those with (2,2,a3) called "prism manifolds”
are homeomorphic to manifolds n,, g =1, r <1 . Note that (h)

is in the center of n1(M) and

a a a
TT-I(M)/(h) = {q1sQ.2’q3 ’ q1Q2Q.3 = Q11 = Q.zz': q33=1}

has no center so (h) is the whole center and the ay are in-

variants of n1(M) . The order of H1(M;%)
p = |ba1a2a34-B1a2a3-+a162a3-+a1a283!

is sufficient to distinguish the manifolds with given (a1,a2,a3)
up to orientation. Since we shall see that the only other Seifert
manifolds with finite fundamental groups are the lens spaces and
the prism manifolds, their homeomorphism classification is com-

pleted.

(iii) The manifold M = {-2;01,0); (2,1),(2,1),(2,1),(2,1)1
is homeomorphic to M' = {0; (n2,2)? . This is seen by noting
that the orientable S‘I bundle over the Hoebius band is homeomor-
phic to the manifold obtained by sewing two E-orbits of type
(2,1) into a fibered solid torus. Doubling the former by an ori-
entation reversing homeomorphism gives M', Doubling the latter
by an orientation reversing homeomorphism gives
{0; (01,0),(2,1),(2,1),(2,—1),(2,—1)} =M . We shall see in chap-
ter 7 that M fibers over S1 with fiber the torus and the self-
homeomorphism of the fiber is of order 2 , It turns out that M
is a flat Riemannian manifold doubly covered by S1><S1 xS1 and
the covering can be made equivariant with respect to the S1 ac-
tion on WM , see chapter 8.

The other small Seifert manifolds are easily seen not to be
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homeomorphic to each other or any of the large ones with the ex-
ceptions mentioned below, compare Orlik-Raymond [2]. We shall
briefly mention their special properties and return to them in

chapter 7.

{iv) The manifolds {b; (04,1)1 are torus bundles over st .

(v) The manifolds {b; (0,,1)} are Klein bottle bundles

over S1 .

(vi) The manifolds =n,, g =1, r <1 give rise to the dif-

ferent st actions on P2><S1 and N , the non-orientable 82—

bundle over S1 .

(vii) The manifolds Ny, & = 1, r<1. Here M= {O;(n2,1ﬂ
is seen as the result of taking SZ><I fibered by intervals pxI
and collapsing each boundary component by the antipodal map. The
sphere 82 x {4} decomposes M into a connected sum of two real
projective spaces, M =]BP3 #]R.P3 . The other manifolds are homeo-
morphic to the prism manifolds of (ii) and will be treated in de-
tail in the next chapter as orbit spaces of finite groups acting

freely on 83 .

(viii) The manifolds {b; (n1,2)} are the same two Klein

bottle bundles as under (v).

1
(ix) The manifolds ({b; (n2,2)} are torus bundles over S

distinct from (iv).

(x) The manifolds {b; (n3,2)} are the "other two" Klein

bottle bundles over S1 not obtained in (v) and (viii).
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6, Free Actions of Finite Groups on 83

There has been no significant progress in the problem of
finding all 3-manifolds with finite fundamental group since the
results of H., Hopf [1] and Seifert and Threlfall [1] determining
orthogonal actions on 83 . These articles are somewhat difficult
to read and the object of this chapter is to present old knowledge
with new terminology. The basic theorem of section 1 is that if
G is a finite subgroup of S0(4) acting freely on S3, then

there is an action of S1 on 53

commuting with G so that the
orbit space 83/G is again an S1-manifold. Thus the orbit spaces
of orthogonal actions are S1—manifolds with finite fundamental
groups, These are discussed in section 2, 1In section 3 we 1list
following Milnor 72] the groups that satisfy the algebraic condi-
tions for an action but do not act orthogonally.

The intriguing fact remains that if one could find a 3-mani-~
fold with finite fundamental group not homeomorphic to one listed
above, then either it would be the orbit space of a non-orthogonal
action on 83 or its universal cover would provide a counterex-
ample to the 3-dimensional Poincaré conjecture.

6.1. Orthogonal Actions on 83

In order to understand the structure of finite subgroups of
50(4) +that can act freely on 82, we shall decompose SO0{(4} .
It is useful to think of SC(4) both as a group of orthogonal
transformations of R4 and as a matrix group of 4 x4 real or-
thonormal matrices, It is clear that the maximal torus of S0(4)

is T2 = 80(2) ¥ S0{(2) 2zand the center is generated by the identity

map e and the antipodal map a = -e . Let C = {e,al denote
the center of $S0(4) .
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Lemma 1, The following sequence is exact:

i b
1 = ¢ = 380(4) - 80(3) » 30(3) - 1.

Proof. From Lie group theory we have that Spin(4)/center =
S0(4)/C = A4 Spin(4) = Ad(Spin(3) x Spin(3)) = Spin(3)/center x
3pin(3)/center = S0(3) x S0(3) .

In order to gain geometric insight we shall now give a direct

proof. Consider the maximal torus T2 given by the matrices

cos ¢ -sin o 0 0 \

sin o cos @ 0 0 \ 0 <o <2m
0 0 cos -sin § 0 < ¢ <2m .
0 ¢} sin § cos ¢

The subgroup generated by all 1-dimensional circles o9 = ¢ 1is

called right rotations, R . The subgroup generated by o = -V

mod 27 is called left rotations, L . Note that RNL = C and

abstractly Rs L &~ 52 . Every element g € S0(4) is decomposed
into a right and left rotation but this decomposition is only de-
fined modulo a . Moreover, every right rotation commutes with
every left rotation and vica versa, Specifically, if we choose
coordinates so that g is given by the matrix above, then for

some right rotation by Xy and left rotation by Xq we have
® = Xp+Xq +2km
= xr—x1+2k'n
and hence
Xp = Blore) + (ktk')m

xy = Hlo-t) + (k-k')m
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are the possible choices of angles for right and left rotations,
Thus g can be decomposed into two pairs (xr,xl) and
(xr+n,x1+n) differing by the antipodal map. In order to elimi-
nate this indeterminacy we construct double covers

p.: R~ S0(3) and p;: L~ S0(3) as follows:

4 and a right rotation r by the angle

Given a vector v in R
Xp s there is a unique plane through v rotated in itself by =r .
There is also a unigue left rotation 1 rotating the same plane
by X3 ==X, 8o that the rotation rl leaves Y fixed. It ro-
tates the R3 perpendicular to v Dby an angle xé = Xp =Xy = 2Xr'
The same construction applies for left rotations.

Thus if g € S0(4) is determined in a suitable coordinate
system by the angles (o,y), then its image in S0(3) x S0(3) may

be identified by two R’ rotations (xé,xi) fixing a given vector

where
X = e+t x) = e~-y  (mod 2m) .

Lemms 2., If

x; = xi =1 (mod 2m)

then both g and ag have fixed points on 52 . If

1t = Syt
X5 = ixg {mod 2m)

then either g or ag has fixed points on 53 . If neither

congruence holds then both g and ag are free on 83 .

il

Proof. Recall that o = X,.+¥X3 {(mod 2w) and ¢ = Xp = X
(mod 2m) so g has fixed points on 83 if and only if at least

one of these angles is zero so yri;xl = 0 (mod 2n) . From the
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relations x; =1 2y =1 2x1 (mod 2m) we obtain the required

roo Xp
formuli, The converse is a similar computation,

Let G < S0{4) ©be a finite subgroup acting freely on s?
Let H = p(G) and Hy = pr,Hc80(3) , H, = prQHCZSO(3) . Then
clearly H c H1><H2 but H ditself is not necessarily a direct
product of subgroups,

The finite subgroups of S0(3) were first found by P. Klein.
They are the

cyclic group C~ of order n, C = {x I x® =1}

dihedral group D2n of order 2n , the group of space symme-~
tries of a regular plane n-gon generated by rotations and a re-
flection

2
Doy = (2,5 %% = ¥™ = (x)% = 13 ;

tetrahedral group T of order 12, the group of symmetries of

a regular tetrahedron,

T = {x,yx° = (xy)° = y° = 1} ;

octahedral group O of order 24, the group of symmetries of

a regular octahedron or , equivalently the cube

0= {xylx®= ()’ =y =11

icosahedral group I of order 6C, the group of symmetries of

a regular icosahedron or , equivalently the dodecahedron

I={x,7!x°=(xy)° =73 =1}.

Lemma 3, Every finite subgroup of S0(3) is one of the

above.
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Proof, (Wolf [1]) If G is a finite subgroup of S0(3)
and g €G g #1, then g is a rotation by an angle eg about

a line Lg through the origin. Let Pg be the intersection of

Lg with the unit sphere S2 consisting of the two "poles" Pg =
{pg,pé} which are the only fixed points of g on s° . We call
two points x,y € S2 G-equivalent if gx =y for some g € G .
Let {01,...,Cq} be the equivalence classes of poles for all non-
trivial elements of G . If p is a pole, let Gp be the sub-
group preserving p @ Gp =1ufgeG-1]pe Pg} . Let p Dbelong
to the class C; and enumerate C;, as {gP,8oP)..- grip} with
gq = 1 and the g; @ system of representatives of the cosets of

G, in G . In particular G, , = giGpg;1 exhaust all the con-

P €

jugates of & in G and the G all have the same order n..
P gip i

If N 4is the order of G +then N = TNy .

Note that G has K - 1 non-trivial elements and each one
has 2 poles. Since exactly n; - 1 non-trivial elements of G

preserve a pole p € Ci we have the identity

2(N=-1)

q
I r;(ny=1)

i=1

80

q
=
a=

2(1-g) (121 .
by

1

Since N > n; > 2 we see that q is 2 or 3 and one of the fol-

lowing must hold:
(1) Q=2,n1=n2=N>1

(i1) a

it
wi
o
I
]
—
A
=
N
IA
3
ot
bl

R with the possibilities
a) n, =n, = 2 , N = 2n3 >4,

b) n, =2, n, = ng = 3, N

c) ny = 2, n, = 3, ng = 4 , N = 24,
d) ny = 2, n, = 3, n; = 5 N
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It is now a simple geometric argument to show that these cases
indeed correspond to the already listed groups.

We can now combine lemmas 2 and 3 noting that D2n’ T, O
and I have elements of even order and go through the possible

subgroups of H1 X H2 to obtain:

Lemma 4, At least one of H; and H2 is cyclic,

This enables us to prove the main theorem of this section

due to Seifert and Threlfall [1],.

Theorem 5. Let G be a finite subgroup of S0(4) acting

freely on S3 . Then there is an 81—action on 53 so that the

action of G is equivariant and the orbit space 83/G is_again

an  S'-manifold.

Proof. We may assume that H; is cyclic. Since R ~ s,
its preimage G, = p;1(H1) is cyclic and we can embed it in a
circle subgroup T of R . Note that this is not true of every
cyclic subgroup of S0{4) . Since every element of G decomposes
into a left and a right rotation and the left rotations commute

with ¥ while the right rotations are contained in ¥ we see

that G dis equivariant with respact to T .

It is easy to see by direct argument that the converse is
also true, i,e. every S1-manifold with finite fundamental group
is the orbit space of a free orthogonal action of & finite group
on S3 . We shall list the groups and the orbit spaces in the

next section,
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6.2 Groups and Orbit Spaces

We proved in (6,1) that if G is a finite subgroup of S0(4)
acting freely on 52 and Hy © s0(3) , Hy, @ S0(3) are the pro-
jections of G, then either H1 or H2 is cyclic., Assume that
H1 is cyclic of order m . Before we list the possible groups
note that if G has even order,then a € G and G/C~H so G
is a C, central extension of H . Writing H = {e,h1,...,hk]

we have G = {te,th,,...,%h, ! . On the other hand if G has odd

k
order then G =~ H .
The double cover 8% - S0(3) gives rise to finite subgroups
of §° doubly covering those of S0(3) , Corresponding to Dy,
¥
we have D4n of order 4n

D = my | x5 = )f = ™)

and corresponding to T, 0, I we have the binary tetrahedral

group T* of order 24, the binary octahedral group O0* of order
48 and the binary icosahedral group I* of order 120 presented by

x5 | %% = (xy)® = y*, %" = 11 rfor n=3,4,5.

It can be shown that these are in fact the only finite sub-
groups of 83 . Thus if H1 = ¢ then G is one of these groups,
Also, if H1 is a cyclic group of relatively prime order to one
of the above groups,then the direct product will act freely.

It remains to investigate the non-trivial possibilities,
Pirst note that if H 4is a subgroup of H1 X H2 then the elements
of the form (h1,e) € H form a subgroup Ha © Hy; and similarly
H' < H2 so that H' = H%><Hé c H 1is an invariant subgroup. The

2
quotient groups

H/H ~ Hy/H) ~ Hp/HY ~ P
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are isomorphic so H consists of elements (h1,h2) with the pro=-
perty that the coset of h, in H1/H% corresponds to the coset
of h, in H2/Hé under the isomorphism with F .

We again assume that Hy = Cm is cyclic.

If H, = C, dis also cyclic,then we assert that H 1is also
cyclic. This is clear if (n,m) = 1 ., Otherwise suppose that F
is of order f so H; has order m' = m/f and Hé has order
n' = n/f . Clearly they are also cyclic, We shall prove that if
G acts freely on S3, then H must also be cyclic, If a gene-
rates H; and b generates Hy then H% consists of all powers
of af and Hé of bf . Given an element of F, the elements of
H1 corresponding to it in the coset decomposition mod H; are

those of the form akf+p

for fixed p and all possible k . If
it corresponds to a generator of ¥, then its order is f and
(f,p) =1 . Let k egqual the product of all primes in m not
in fep (or k =1 if no such prime exists). Then (kf+p,m) =1

and u = akf+°

has order m and therefore generates H, . We
can find a similar generator v for H, . It remains to show
that (u,v) generates H ., Since at least one of the preimages
of (uw,v) in 8S0(4) is fixed point free,it follows from (6.1.2)
that (m',n') = 1 . PFind p,q so that pm'+4gn' =1, Then

clearly pm = f (mod n) and gn = f (wod m) so 2 - uf and

v vf . From this we get for arbitrary k,l,p that

(ukf+p’ v1f+o) - (u’v)kqn+lpm+p

proving the assertion that H is cyclic.
Assuming that H2 is one of the other groups D2m’ 7,0,1
and using similar arguments it can be shown that only two more

types of groups occur,
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HY

I Hy=C 2 = Con

k=17 H2 = Doconyry » By = C oo
and HT/H; ~ Hg/Hé =~ C, then we obtain a group H with double

cover in S0(4) equal to

k
{x,y Ixz =1’ y2n+1=1s Xy~1=y-1}{} kzz’ n_>.1 .

D' -
2X(2n41)

- *
Note that Di(2n+1) = D4(2n+1) .

If Hy = C3k , H2 =T, H; = C3k—1 s Hé = Cr,xCH and

H1/H; ~ H,/H) ~ C5 then we obtain a group H with double cover
in S0(4) equal to

2
T k:{x,y,z!x:(xy
8.3

k
)2 =3'2s ZXZ;‘:y; Zyz-1=3‘y, 7—‘3 =1},k>1,

Note that T' = T*
24~ 24

Thus we have the following conclusion, see H., Hopf 711,

Seifert-Threlfall [1] and Milnor [2],

Theorem 1, The following is a list of all finite subgroups of

S0(4) +that can act freely on s? .

c D* D T*, T 0¥, I*¥ and the direct product of
W 4w ToKiongq)’ T 7 Tgaz® T

any of these groups with a cyclic group of relatively prime order.

Orvit spaces of finite groups acting freely and orthogonally
on a sphere are called sphericsal Clifford-Klein manifolds, The
3-dimensional ones correspond to Seifert manifolds with finite
fundamental group by (6.1.5) and are listed as follows, see

Seifert-Threlfall 717,

Theorem 2, The Seifert manifolds with finite fundamental

group are:
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(1) ¥ = {b;(o1,O);(a1,B1),(a2,52)} , here we allow a = 1,

3 = 0, are lens spaces (see 5,4) with n1(M) = Cp where p =

[bajay +aq8; + 83, 5

(i1) M = {b;(o1,O);(2,1),(2,1),(a3,53)} are called prism

manifolds, Let m = (b+1)a3+s3 ; if (m,2a3) = 1 then m, (M)

= meDjicL3 , and if wm = 2m' then neccessarily m' is even and

(m',a5) = 1 and letting m' = 20" we have n1(M)=Cm,,xDék+2 ;
a

3

(111) 1 = (55 (04,003(2,1),(3,8,),(3,85)} , let m = 6b+3+
2(.32'*'53) , if (m,12)
if m = 3", (wr,12)

1 then nﬁM):meT*, and

1 then m,(M) = Cpr ¥ T!
83

(iV) M = {b;(01,0);(2,1),(3,82),(4,33)} ’ }_92 m= 12b+6 +
48, +383 » it follows that (m,24) =1 and m (M) = Cp x0%* 3

k)

(V) M = {b;(01,0)3(2,1),(3,82),(5,83)} 9 .lif?. m = 30b + 15+
1082-+6B3 , it follows that (m,60) = 1 and n1(M) = CpxI* ;

(vi) M = {b;(ny,1);(ay,8;)} with n = |ba, +84] # 0 are

homeomorphic to prism manifolds so that

if oy is odd then m (M) = Ca1x DZn and

if ag = 2kai , (a{,z) = 1 then ﬂ1(M) = Ccix Dék+2 .
- n

Proof. Except for (vi) the proof consists of verifying the
group isomorphisms. It remains to prove that every prism mani-
fold also admits a Seifert bundle structure of type n, over the
projective plane, If G 1is the group,acting on 83 with cyclic

H, and H, =D the dihedral group then we consider the maximal

2n

cyclic subgroup C of D and the cyclic group C*¥ < G map-
n 2n J 2n

ping onto Cn . Since C;n consists of left rotations,
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C;n CL =~ 83; it can be extended to a circle group I'c L . If

$ 1is a left rotation of order 4 in the group DZn whose image

is the reflection of D2n’ then for every element vy € T we have
=1 -

dyd =y L « Thus & maps the orbits of the circle action in-

duced by T into each other reversing the orientation and 83/G

admits a Seifert fibration of class n, . Since n1(M) is finite

the orbit space is P2 and r <1 .

Remark, It can be shown directly that apart from the lens
spaces whose homeomorphism classification was given in (5.4) two
3-dimensional spherical Clifford-Klein manifolds are homeomorphic
if and only if their fundamental groups are isomorphic. Note al-
so that under (vi) n = [bay+8;] = 0 if and only if M =
{05{ny, 1) = RP° +RP° , see (5.4).

6.3. Non-orthogonal Actions

It is not known whether there exists a smooth free action
of any group G on S3 not conjugate to one of the orthogonal
actions above, Since every such action has as orbit space a
closed, orientable 3-manifold M with fundamental group G, it
follows that G must have cohomology of period 4. We see from
(6.1.2) that G can have at most one element of order 2, All
finite groups not appearing in (6.2,1) satisfying these conditions

are listed by Milnor [2] as follows:

en k1 _

(i) Q(8n,k,1) = {x,y,2 |X2 =(Xy)2==y , xzx'1=zr,yzy;LiJ}

where 8n,k,1 are pairwise relatively prime integers so that if
n is odd,then n >k >1>1 and if n is even,then n > 2,

k>1>1.,
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(i1) 0' . k> 1 is the extension 1 ~C , = 0' = 0%~ 1
48.3 3 48+3

with the property that its 3-Sylow subgroup is cyclic and the
action of 0¥ on C x 18 given as follows: The commutator sub-
group TI* < 0* acts trivially, while the remaining elements of

0* carry each element of C k into its inverse,

3
(1ii) the product of any of these groups with a cyclic group of

relatively prime order.

The smallest group on this list is Q(16,3,1) of order 48 that

may or may not be the fundamental group of a 3-manifold.
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7. Fibering over S1

In this chapter we shall find the Seifert manifolds that
admit a locally trivial fibration with base S1 and fiver a 2-
manifold, This was originally done by Orlik-Vogt-Zieschang [1]
for almost all cases and completed by Orlik~Raymond [2]., These
results are recalled in section 2, In the meantime, however, a
beautiful theory of injective toral actions has been developed by
Conner-Raymond [1] and we shall discuss these general considera-
tions first. Tollefson [1] and Jaco [1] noted independently that
the product bundles M = {0;(o0,,8)} fiber over s' in infinitely
many distinct ways, i.e., with infinitely many mutually non-homeo-

morphic fibers. An outline of this argument is given in Section 3.

7.17. Injective Toral Actions

This section consist of results of Conner-Raymond [1].

Let X ©be paracompact, pathconnected, locally pathconnected
and have the homotopy type of a CW complex, In the applications
we shall assume that X 1is a manifold. An action of the torus
group ok - S1>rS1 x...><S1 (k times) on X 1is called injective

if the map

£ m(r5, 1)« m(%,x)

o
[

defined by fi(t) = tx 1is a monomorphism for all x .
In this case we have a central extension

k

0 = Z° ~ m(X) -~ P = 1

and only finite isotropy groups occur,
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Theorem 1. Let (Tk,X) be an action and H1(X;Z) be fini-

tely generated, Then (Tk,x) fibers equivariantly over Tk if

and only if the induced map

£% ¢ B (1%,1) - Hy(%,x)

is a monomorphism,

Note thet if fﬁ is a monomorphism then so is f? and the
action is injective., For the proof we start with an injective
action and consider subgroups of n1(X,x) containing im fy .
Let BH be the covering space associated with H and bo € BH

be a base point corresponding to the constant path at x ., The

action of T may be lifted to By
X
™ x BH ----- > BH
N \
™ X > X

since in the corresponding diagram of fundamental groups imf; cH.

Theorem 2. If im f; c H and H is normal then the action

(Tk,B is equivariantly homeomorphic to (Tk,Tk:<Y) , where the

)
.
T action is just left tramnslation on the first factor.

The most important case is when ¢ = id: m,(X,x) = m (X, %)
and H = im(fﬁ) . Note that in this case n1(BH) -u=2% so ¥
is simply connected.

The proof of theorem 2 consists of first showing that there
is a natural splitting H ::Zk><kerc,. This follows because

k so that

h € ﬁ1(X,X) lies in H 4if and only if there is t € &
m°f§(t) = p(h) € I and since fﬁ is a momomorphism t 1is unique.

Define an epimorphism p:H = z* vy p(h) = t in the above for-
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mula, We have p(f?(t)) =t and ker ¢ = kerp . Define gq: H =
~ker ¢ by a(h) = h-ff(p(n™')) . Clearly im f} C ker a and
since it is a central subgroup it is the whole kernel, Note that
if h € ker ¢ then q(h) =h and h = f;p(h)-q(h) proving the
splitting of groups. Next we use induction om k . For k =1
let @ be the generator of n1(S1,1) represented by exp(2nit) ,
0<t<1. Then f:o(m) = eXp(2nit)bO represents the generator
of the Z factor in ﬂ1®H) = H and by the naturality of the
splitting bo must have trivial isotropy group, i.e. if
exp(2ﬂit/n)bO s, 0 £t <1, is a closed loop then necessarily
n=1, A similar argument applies for arbitrary b € BH showing
that the éLaction is free. Induction on X proves that (T§BH)
is free, The fact that the principal Tk—bundle over BH is tri-
vial is obtained using the Leray-Hirsch theorem and the splitting
H=Z% ¥ ker o .

From the group of covering transformations N = ﬂ1(X,X)/H
and the projection in the splitting onto Y we obtain an N-action
on Y which turns out to be properly discontinuous (all isotropy
groups are finite and the slice theorem holds).

The next step in the proof of theorem 1 is to classify ac-
tions of N on Tk x Y with the property that

k

(i) T" acts on the first factor by left translations,

k action and is equi-

(ii) +the action of N commutes with this T
variant with a given properly discontinuous action (N,Y) by the
projection map.

Such actions are in one-~to-one correspondence with elements of
H1(N;Maps(Y,Tk)) where the N-module structure on the abelian
group Maps(Y,Tk) is given by (af)y = f(ya) for £ € Maps(Y,Tk),

o € N ., Thus the action is given by a map m :Tk x ¥ ¥ N - Tk 50
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k

that for t €™ , y €Y, a € i we have (t,y)a = (m(t,y,a),ya).

Now m(t,y,a) = tm(1,y,c) by the left action of ¥ 5o it is

sufficient to consider maps m: Y x N = Tk satisfying m(y,aB) =

n(y,a)m(ya,8) . The corresponding action is (t,y)a = (tm(y,a),ya).
Consider these maps as Z1(N;Maps(Y,Tk)) , the 1-dimensional co-
cycles. Two such maps m1(y,a) and mz(y,a) are cohomologous

if they give rise to equivariant actions. Then there is a map

k

g:Y - T so that we have an equivariant homeomorphism

k k

Fio(T5,0%xv,m), - (T5,25xY,m),

defined by F(t,y) = (tgly),y) in which case
-1
ny(y,a) = my(y,adelylelya)” .

If the cohomology class of m is of finite order, say =n , then

k

there is amap g: Y = T for which

(*) g(Pelya)™" = nly,a)? for all a €N .

In particular if N is a finite group of order n , then every

element of H1(N;Maps(Y,Tk)) has finite order dividing n .

The last step in the proof of theorem 1 is to show that
given the map g satisfying (%), the space X fibers over Tk
with structure group (%n)k, where we think of (Zn)k c ™ as the
product of n-th roots of unity. Let C = &&,y)ITng(y)= 1} <
TxY . It admits an action of (%)% since if A € ()" ana
(t,y) € C then (AT,y) € C . Also, C is an invariant subset of
the action (Tk><Y,N) because by (*) if (7,y) € C then
Po(y,a)e(ya) = ™"g(y) = 1 showing that (tm(y,a),ya) € C .

Thus there are actions ((Zn)k,C,N) . Let W =C/N with the in-
duced (Zn)k action, let [T,y] € W be the equivalence class of
(t,y) under the action of N on C and m: Tk><Y - X the N



~ 119 -

k

orbit map. Define a new Tk-equivariant map G: T"xW - X by

G(t,[7,y1) = n(tr,y) = ¢7n(1,y) . The fact that G is well de-
fined follows from n(ttm(y,a),ya) = tro(l,y) . If &(t,[T,y]) =

G(t ,[7,,¥,]) then forsame g €N ya=y, ad tto(y,a) = t 1, . Now

n_ .nn n n_ .nn _.nn .
t7 = ttrn(y,a) g(ya) and t, = toTog(yo) = tOTOg(ya) so it
follows that " = tg and therefore there is a ) € (Zn)k such

that At =t , Mu(y,a) = T, and (tk'1

k

s[XT,y]) = (to’[TO’yO])
x W by Azt,lt,y]) =

(tl-1,EXT,y]) then G induces a Tk—equivariant homeomorphism

showing that if (Zn)k acts on T

of (7¥ xW)/(Zn)k with X . The fibration over TX is given by

the map (t,[{T,y1) - t% with fiber W and structure group (Zn)k.
The proof is completed by noting that if £ : Hy(T,1) =

- H1(X,X) is a monomorphism,then provided H1(X,x) is finitely

generated,we have a direct summand I of rank k with

imf%* ¢ L and an epimorphism o: m(X,x} - L. The group N =

L/mthnfi) is therefore finite.

Observe that the construction depends on the choice of the
map g: Y - Tk . Different choices may even give fibers of dif-
ferent homotopy type as we shall show in section 3.

For X a closed 3-manifold and k = 1 we cobtain the follow-

ing statement.

Corollary 3. A Seifert manifold M of class 04 or ny

admits an equivariant fibration over S? if and only if the order

of the principal orbit h in H1(M;%) is infinite.

Note that if there is a fibration,then the characteristic
map of the fiver (3.11) is of finite order. We shall see in the

next section that large Seifert manifolds of the other classes do
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not admit a fibration over S1 , While some small Seifert mani-
folds admit non-equivariant fibrations over S1 so that h has
finite order in HT(M;%) and the characteristic map is of infi-

nite order.

7.2. Pibering Seifert Manifolds over §

A 3-manifolds is called irreducible if every tamely embedded
2-sphere bounds a 3-cell, The following result is due to
Waldhausen [1], see (8.1).

Theorem 1, Large Seifert manifolds are irreducible.

The basic result on fibering 3-manifolds over S1 is due to

Stallings [13.

Theorem 2. Let M ©be an irreducible compact 3-manifold,

Iif n1(M) has a finitely generated normal subgroup N # {1}922 s

with gquotient ﬂ1(M)/N ~Z then ¥ fibers over S1 with fiber

a compact 2-manifold T and nT(T) ~ N .

These manifolds were classified by Neuwirth [17. In particular

for closed manifolds we have:

Theorem 3., Let M2 be any closed irreducible 3-manifold

and M1 a closed manifold satisfying the conditions of theorem 2.

Then M, is homeomorphic to M, if and only if w1(M? is iso-

morphic to n1(M2) .

The next result is from Orlik-Vogt-Zieschang [1].

Theorem 4. Let G be the fundamental group of a large

Seifert manifold and H +the maximal cyclic normal subgroup gene-
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rated by h . There is a finitely generated normal subgroup

NcG with G/Nm~2%Z if and only if ({G,G1nH = {1} .

Proof. If [G,3)1NnH = {1} then H injects into G/[G,G] =
H1(M;Z) and since it is an infinite cyclic subgroup of G its
image is contained in an infinite summand of G/{G,G} . We can
construct a homomorphism «: G -~ Z so that keronH = {1} .

Then we have the commutative diagram

!

¥

H

|i

Y

1 —> N G 2> % —>0

ool

1 —> N >G/H —>Z/pH—> 0

where N' is the kernel of the induced map G/H - Z/¢H . Since

kerpnNH = {1} we see that ¢ is an isomorphism. But G/H is

finitely generated and Z/¢oH is finite so N' and hence N is
finitely generated. Note that this argument has elements of the

proof of (7.1.1),

Conversely, if N is a finitely generated normal subgroup
with G/N ~Z%Z +then it follows from the fact that M is large
and from the above theorem of Stallings that N 1is the fundamen-
tal group of a closed 2-manifold. If NNH #Z {1} then N con-
tains an infinite cyclic normal subgroup. This is only possible
for the torus and the Kiein bottle. Let N' = N for the torus
and let N' be the free abelian subgroup of rank 2 in N for
the Klein bottle. Clearly, N'nNH £ 1 and N'/N'NH must be a
cyclic group since in G/H (M large!) two elements commute if

and only if they are the powers of some other element. On the
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other hand N'/N'nE would be a cyclic normal subgroup of G/H
and this is a contradiction., Thus NNH = {1} and clearly

[(G,G]JnH = {1} .

Corollary 5. Let M be a large Seifert manifold. It fibers

over S1 if and only if the order of the fiber h in H1(M;Z)

is infinite.

Since for classes other than 04 and n, we have the homo-
logy relation 2h = 0 , this corollary gives the same condition
as (7.1.3).

Locking at the homology relations one can see immediately (3.11)
that

(i) for o, ‘the order of h is infinite in H1(M;%) if
and only if

P = baj...a #8050 a0 teretOqeeiay, 9B, = 0

(ii) for n, the order of h is always infinite in H#M;%L

For a manifold M 1let A(M) denote its homectopy group, the
group of isotopy classes of self-homeomorphisms divided by the
subgroup of those isotopic to the identity. For a group G we
denote by Aut{G) the full group of automorphisms of G and by
In(G) the subgroup of inner automorphisms.

If M is a B-bundle over §',then it is determined by the

2

characteristic map $:B -+ B . If B # S2,P then theorem 3

says that M is determined by its fundamental group. Now a well-

known theorem of Nielsen states that

A(B) = Aut(n1B)/In(n1B)

so the isotopy class of @& is determined by the induced automor-
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phism o n1(B) - n1(B) up to inner automorphisms,

Given an automorphism of m,(B) we call the manifold,obtained
as a fiber bundle over S1 with characteristic map some § whose
induced map agrees with ¢ up to an inner automorphism, Mcp . From
the previous discussion it follows that Mcp is well defined., We

let

M (B) = (Xq,0ee,x fm)

where m, = [x1,x2],...,[xn_1,xn] if B is orientable and m,

2 2

= x1,...,xn if B is non-orientable. A presentation of ﬂ1(Mm)

is then given by
-1 .
n1(M®) = (x1,...,xn,x!n*,xxix =:¢(xi), i=1,...,0).
Now consider the small Seifert manifolds, see Orlik-Raymond
{2]. The two fibers we shall encounter are the torus T and the
Klein-bottle, K , Recall that A(T) is isomorphic to the multi-

plicative group of unimodular 2 x2 integer entry matrices. It

can be generated by

0 -1 0 -1 0 1
1R o) 2Ty 4Ty

and a presentation is given by

AMT) = (cpq,coz,co3!w?=cpg=w§=cp§cpg= (cp1cp3)2= (qogcp3)2=1).
The orientation preserving automorphisms (matrices with determi-
nant +1) form a subgroup of index 2

AF(T) = (07,0508 = 05 = oies = 1)

isomorphic to the free product of C4 and C6 amalgamated along

the subgroups isomorphic to C This shows that the only ele-

2 -
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ments of finite order in Af(T) are powers of o, and ¥y and
their conjugates.

It is known that A(K) = %Z,+%Z, and generators may be given
as the following automorphisms of n1(K) = (x1,x2lx$xg==1):

1 1

¢1(X1) = X5 $1(X2) = X403 ¢2(X1) = X; s ¢2(X2) = XE .

Now let us consider the small Seifert manifolds,

(1) ©0,,8=0, r <2 are either lens spaces or s° ><S1 .
the latter if and only if p = bajas+ 805+ @48, = 0 From this
equation we conclude that o, = aq and 82 = —(bq1+81) so b=-<1
and 85 = aq -84 . Thus the complete set of S1—actions on S2:><S1
is given by the collection {—1;(01,0),(a1,61),(a1,a1-81)} . The

order of h is infinite in H1(82><S1;Z) .

(i1) o4, =0, r =3, ¥L-+——-+éL > 1 have finite H,(M;1Z)

and cannot fiber over S1 .

(iii) M = {-2;(01,O);(2,1),(2,1),(2,1)&Lﬂ}s&ﬁsfies the con~
dition for an injective action and it is easily seen that h has
infinite order in H1(M;%) . In fact there is an equivariant fi-
bration of M over S1 with fibver T and o = w? € AT(T), see

(ix) below,

(iv) ™ = {b;(o1,1)} are T-bundles over s . Specifically,
m, (M) = (a1,b1,h{[a1,b1]h_b,[a1,h],[bT,h]) and the map f(ay)=x,,

f(b1) x , f(h) = X, defines an isomorphism with Mcp for o =
1 <b
€ AT(T) whose matrix is (O 1) Note in particular

that for b # 0 @ has infinite order in AY(T7) and h has

(w?wg)'b

finite order in H,(M;Z) . Of course, for b = O we have M =

stsws'xs! .

(v) M = {b;(o2,1)} are two of the four K-bundles over S1.
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With the notation above we have

»* —_— - 1 ° —
{05(0p, 1)} = My = KxS' and {1;(0,,1)} = Mw1¢2

by f(ay) = x, , £(by) = x7'x , £(h) = x,%, .

(vi) ny,,8=1, r <1 give the possible s! actions on

P ><S1 and N and both fiber over S1 .

(vii) n,, g =1, r <1 are the prism manifolds with finite
fundamental groups and {O;(n2,1)} - RP° # RP°  so they do not

fiver over S1 .

(viii) M = {b;(n1,2)} are the same two K-bundles over S1

as under (v},

1
{05(nq4,2)1 = Mjq = KxS'  and {13(ny,2)} = Mw1¢2 .

The first is obvious. The second is given by f(v1) = X4, f(v2)=x,
£(n) = x;°%° .
(ix) u = {b;(n2,2)} are T-bundles over S . Specifically,

- =1 -1
my (1) = (v1,v2,h|v$v§h b, v hv] h, v,yhv, h) and the map f(v,) =x,
-1

f(vy)=x4x" ", f(h) = x, defines an isomorphism with M, for o=
e
@%(m?@z)b € AT(T) whose matrix is ( 0 1) . For b £ 0 -‘the

order of ¢ is infinite and m,(M) 1is centerless. For b = 0
the manifold {0;(n,,2)} is homeomorphic to {-2;(04,0);(2,1),
(2,1),(2,1),(2,1)} as noted in (5.4). Thus the latter is also
a2 T-bundle over S1 with characteristic map of order 2 and
matrix (-; _2) .

(x) M= {b;(n3,2)} are the other two K-bundles over s R

{O;(n392)} =M and {1;(1’13,2)} = M:!"'l o

Vo

-1 =1
x , f(h) = 27 x5,

#

The first is given by f(v1) = xjx"1 , f(v2)
the second by f(v1) =X, f(vz) = x'1x1 , f(h) = XXq .
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7.3. Non-uniqueness of the Fiber

The choice of the map g: Y - X in the proof of (7.1.1)
determines the fiber. The non-uniqueness is clearly seen by the
following example of Tollefson [1].

Let T(m) denote & closed orientadble 2-manifold of genus
m = k(g-1)+1 where g > 1 and arrange T(m) in R’> with Xk
arms each of genus (g-1) about one hole at the origin, see pic-

ture below for k=3, g =3 .,

Let o: T(m) - T(m) generate a free %, action by rotating
through the angle 2mi/x and consider the 3-manifold M that

is a T(m)-bundle over S1 with characteristic map ¢ . It ad-
mits an obvious free S -action as follows: If Tx,t] € T(m) x1/x,0)
= (»(x),1) is the equivalence class of a point and s € S1 =R/Z

then define
s1(Tx,t]) = [x,t+ks] .

The action is egquivariant with respect to the Z, action and its

k
orbit space is T(g) . Thus M = {b;(0,,g)} and since it fibers
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over S1, it follows from (7.2.4) that b = 0 , hence M = T(g)xS1.
Thus for m = k(g-1)+1 we can embed T(m) in T(g)xS1 as
a non-separating surface with complement T(m)x I so that the
projection map p: T(g) ><S1 - T(g) restricted to T(m) is a
covering, A much stronger statement about incompressible surfaces

in S1—bundles due to Waldhausen [1] may be found in (8.1.3).
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8, Further Topics

The important results of Waldhausen [1,2,3] occupy a central
position in the theory of 3-manifolds in general and Seifert mani-
folds in particular., It would carry us too far afield to give a
detailed account of his work so we have to restrict ourselves in
section 1 to a description of the most relevant results. In his
book Wolf [1)] determines all closed 3-dimensional flat riemannian
manifolds. There are six orientable and four non-orientable such
manifolds and in section 2 we identify them as Seifert manifolds,
Section 3 1lists Seifert manifolds with solvable fundamental groups
as determined by L. Moser [1]. We consider finite groups acting
on Seifert manifolds in section 4. Some remarks on foliations in

section 5 and on flows in section 6 conclude the notes.

8.1, Waldhausen's Results

Waldhausen [1,2,3) works in the piecewise linear category

so manifolds have combinatorial triangulations, submanifolds are
subcomplexes and maps are piecewise linear, Manifolds are always
orientable compact 3-manifolds and may have boundaries. Regular

neighborhoods of submanifolds are alsc compact and chosen suffici-

ently small with respect to the already given submanifolds of the
manifold in question. In general the embedding of a surface F
in a manifold M is proper, FnNaM = 3F and F is orientable,

hence 2-sided. A system of surfaces has a finite number of dis-

jeint components. Homeomorphisms are assumed to be surjective.

An isotopy of X is a level preserving map h: XxI = XxI so
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that at each level hlyxxt = ht: X - X is a homeomorphism, We
shall assume that h0 = id and call an isotopic deformation sim-
ply a deformation. Two subspaces of X , Y1 and Y2 are isotopic
if there is an ambient isotopy of X so that h1(Y1) =Y, . Two
surfaces P and G in M or 3M with FNG = 3F = 3G are
called parallel if there is a surface H and embedding f: HxI~
-+ M so that f(Hx0) = F and f(Hx1 U 3HxI) = G . A surface
P in M is called 3-parallel (boundary-parallel) if there is
a surface F in aM parallel to P . For curves in sufaces we
define parallel and ?3d-parallel similarly.

The following construction is often repeated., Given a systenm

of surfaces F in M a new (not necessarily connected) manifold

if is obtained by cutting up M along P , i.e. let TU(F) be a

regular neighborhood of F in M and let M = ﬂF:TRTW . We can
thus view M as a submanifold of M . Note that the conmstruction
is well defined up to an isotopy of F ., Given another system of
surfaces G in M in general position w.r,t. P, the new system
§=06nN , however, depends on prior deformations of F .

L system of surfaces F in M or 3M is compressible if
one of the following holds:

(i) there is a simple closed curve k in P that does not
bound a 2-cell in F and an embedding of a 2-cell D in N
so that Dc M and DNF = k 3

(ii) +there is an embedding of a 3=-cell E in M so that
ENF = 3E ,

The negation of compressible is denoted incompressible. Thus

M is irreducible if it contains no imcompressible 2-sphere.,

Here are some of the main results of Waldhausen [1]:
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Theorem 1, Let P be an incompressible system of surfaces

in M and M = W-0(F) . ¥ is_irreducible if and only if M

is irreducidble.

Let B be a compact, not necessarily orientable 2-manifold
and p: M - B an S1-bund1e over B with orientable total space,
Thus if M 1is closed it is a Seifert manifold of class o4 or
n, . A subspace X M is vertical if X = p'1(p(X)) and hori-

sontal if plX is an embedding,

Lemma 2. Let p: M - B be an S1—bundle. If B is not 52

or P2 then M is irreducible.

Note that the S1—bundles over 82 are lens spaces and known

tc be irreducible or S2 X S1 while the ST—bundles over P2 are
prism manifolds and irreducible or {O;(n2,1)} =]RP3 ﬁmPB . If a
manifold has irreducible orientable double cover,then it is itself

irreducible so the above lemma proves the irredudbility of all 81-

bundles with the noted exceptions, P2 X S1 and N .

Theorem 3. Let p: M - B be an S1-bundle where B is not

52 or P2 . Let G be a system of incompressible surfaces in M

so_that no bounded component of G is 3-parallel. Then there

is an ambient isotopy so that the result is either that

(i) G 4is vertical so each component of G is an annulus

or a torus; or

(ii) plG¢ is a covering map.

The basic result on the homeomcrphisms of S1-bund1es is the

following:

Theorem 4. Let p: M - B and p': M' = B' be S1-bund1es.



Assume that neither B nor B' is 82, P2, D2 or S1 x I and

if B or B' is the torus or Klein bottle then the bundle has

no cross-section. Let o: M - M' Ybe 2 homeomorphism. There

exists a homeomorphism ¢: M ~ M' so_that

(1) ¢ is isotopic to o ,

(ii) there is a map p(y): B ~ B' making (¥,p(¥)) 2

bundle isomorphism.

Given a manifold M, a system of tori T = T4U...uT, , n >0 in
the interior of M with regular neighborhood U(T) is called a
graph structure ("Graphenstruktur") on ¥ if M -intU(T) is an
S1-bund1e. M is then called a graph manifold ("Graphenmannig-
faltigkeit"). 1In order to define a simple graph structure let T,
be a component of T and U(T1) its regular neighborhood homeo-
morphic to torus x interval with boundary components T' and
T" . Let M; be the component of M -intU(T) meeting T' and

M2 meeting T" ., The natural isomorphisms

H1(T') <—> Hy(U(14)) <—> H1(T")

allow us to talk about intersections of homology classes of curves
on T' and T" . A graph structure is simple (and the graph mani-~
fold is simple) if it is not one of the following:

(i) M, dis not identical to I, and M, is the bundle
over the annulus,

(ii) the fiber of M, is homologous to the fiber of M, ,

(i1idi) M; 1is a solid torus and a meridian curve has inter-
section number 1 with a fiber of M, ,

(iv) M1 is a solid torus and a meridian curve is homologous
to a fiber of M, ,

(v) M, is the s'-bundle over the Moebius band and we
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think of it embedded as a cross-section in M1 so that its boun-
dary is homologous to the fiber in M,

(vi) both M, and M, are S -bundles over the Moebius
band with embedded cross-sections whose boundaries are homologous,
(vii) M -intU(T1) has two components, one called Q is
obtained by sewing two orbits of type (2,1) into D2><S1 and the

other is not a solid torus,

(viii) M, and M, are identical and isomorphic to torus x

interval and the composition of natural isomorphisms
Hi(T") - H1(U(T1)) - H1(T”) ~ H () = H1(T')

maps an element onto itself or its inverse,

(ix) M; and M, are solid tori,

(x) T =g and M is a bundle over s or P2 .
Waldhausen [1] gives a complete classification of graph manifolds

up to homeomorphism and shows that Seifert manifolds are special

cases of graph manifolds., Here are the main results.

Theorem 5. A simple graph manifold is irreducible.

Theorem 6. Let M and N be simple graph manifolds with

graph structures T = T1W...UTm and T*' = TiU...UTﬁ . Assume

that the peir (M,N) is not one of the exceptions below. Then

given a homeomorphism ¢: M - N there exists an isotopic homeo-

morphism ¢: M - N so that (T) = 7' .

Exceptions:
(i) M = M-intU(T) is a bundle over the m-holed 2-sphere
and m solid tori with m <3 ; or M is a dbundle over the m-

holed projective plane and m solid tori with m < 1 . The same

for N = N-int U(T') .
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(ii) ¥ = M-1int U(T) is torus x interval and N =N - intU(T)
is a bundle over the n-holed 2-sphere and n solid tori with

n <3 - or vica versa,

(iii) M is the manifold Q above and N 4s the S -bundle

over the Moebius band - or vica versa.
(iV) M = {"‘2;(01yo);(291)9(231);(251)’(291)} y N = {O§(n2!2)}
-~ or vica versa,

We shall call an orientable Seifert manifold sufficiently large

if it is not on the list below.

[t}

(i) 04, 8 =0, <2

3
]

(ii) 0y, =0, r
(iid) n,, g =1, r
1

tA

(iv) S1><S1><S
(v) {05(n,5,2)}

(vi)  {-25(04,0);(2,1),(2,1),(2,1),(2,1)}
(vii) {-13(n,,1);(2,1),(2,1)}

A corollary of theorem 6 is the following result.

Theorem 7. ILet M and N be sufficiently large orientable

Seifert manifolds. Given a homeomorphism ®o: M -« N there exists

an isotopic homeomorphism ¢: M -~ N so that ¢ induces a Seifert

bundle isomorphism.

The proof consists of showing that if we take a simple closed
curve about each component of E¥* in M¥* (and N*) and consider
their inverse images, then this collection of tori gives rise to
a simplegraphstructure on M (and N), In particular this proves
the irreducibility of these manifolds up to a few exceptions as
claimed in (7.2.1).

This is considerably stronger than (5.3.6) where we showed

only the existence of some Seifert bundle isomorphism. Much more
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is true, however, According to Waldhausen [2] two irreducible,
sufficiently large closed orientable 3~manifolds are homeomorphic
if their fundamental groups are isomorphic, The notion of "suffi-
cently large" means that M is not a ball and contains an incom-
pressible surface, Equivalently, an irreducible closed manifold

M is sufficiently large if and only if H,(M) is infinite or

m, (i) is a non-trivial free product with amalgamation. For ori-
entable Seifert manifolds the nction coincides with the definition
above, As a corollary to this result of Waldhausen [2] we may

state:

Theorem 8, Let M be a sufficiently large orientable

Seifert manifcld and N an irreducible, closed, orientable 3-

manifold., If there exists an isomorphism o: m,M - m N  then

there exists a homeomorphism &: M - N inducing o .

Waldhausen [2)] alsc makes some comments about the homeoctopy
group A(M) of M . The following Nielsen-type theorem holds for
sufficiently large manifolds but will be stated here only for

Seifert manifolds,

Theorem 9. Let M be a sufficiently large Seifert manifold.

Then there is a natural isomorphism

AM) ~ Aut(m,M)/In(mM) .

Letting T(M) denote the group of fiber preserving homeo-
morphisms of M modulo those that are isotopic to the identity
by fiber preserving isotepies,Valdhausen [2] shows that the natu~
ral map

(M) - A(M)

is an isomorphism for sufficiently large Seifert manifolds,
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Surjectivity follows from theorem 7 and injectivity from the
methods developed in Waldhausen {2], It requires deforming an
isotopy into a fiber preserving isctopy. Not much is known about
the structure of T(M) .

Recall that if the orientable Seifert manifold M admits an
S1-action,then h is in the center of n1(M) . The following

remarkable conversion of this fact is obtained in Waldhausen [3].

Theorem 10. TLet M be an irreducible, closed, orientable,

sufficiently large 3-manifold., If ﬁ7(M) has a non-trivial

center thenm M is homeomorphic to a Seifert manifold of class 04

and therefore admits an S1—action.

Several of these results may be extended to non-orientable
Seifert manifolds by 1lifting to the orientable double cover. ILet
N = {b;(E,g);(a1,81),...,(ar,8r)} be a non-~orientable Seifert

manifold., According to Seifert [1] its orientable double cover is

M = {‘ri(gsé);(a1,81)9-~o,(ar95r)9(a1’a1‘01),---9(@roar‘ﬁr)}

where
€ 05 ny ns n,
¢ o4 04 n, n,
g 2g-1 g-~1 2g-2 | 2g-2 .

8.2, Flat Riemannian Manifolds

In this section we shall identity as Seifert manifolds the
closed flat riemannian 3-manifolds found by Wolf [1]. Let BE(n)
denote the group of rigid motions of R? Every rigid motion

consists of a translation, ta by a vector a followed by a ro-
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tation A . Write the motion (A,ta) . Clearly A 1is an element
of 0(n) and a is an arbitrary vector in R . Thus the eucli-
dean group ZE(n) is the semi-direct product of 0(n) and R®

satisfying the following product rule:

(A,ta)(B,t ) = (AB’tAb+a) .

7e write E(n) = 0(n)-R® . Obviously E(n) is a Iie group acting
on R® and R™ = E(n)/0(n) as coset space.

A flat compact, connected riemannian manifold M2 is the

orbit space of o by the free properly discontinuous action of
a discrete subgroup I c E(n) , ¥ = R%/T' . It admits a covering
by the torus T . The group T has an abelian normal subgroup
T* of rank n and finite index, As a group T¥* = rnR® . It
follows also that T has no non-trivial element of finite order.
The group of deck transformations ¥ in the covering ™ o u® is

called the holonomy group of m , ¥ = T/T% ,

The following result is from Wolf [1,p.1173.

Theorem 1., There are just 6 affine diffeomorphism classes

of compact connected orientable flat 3-dimensional riemannian

manifolds. They are represented by the manifolds R3/P where T

is one of the six groups Gﬁi given below., Here A is the trans-

lation lattice, {a1,a2,a3} are its generators, ti = tai, and

Y = T/T* is the holonomy.

6%1. ¥ = {11 and T is generated by the translations

{t1,t2,t3} with {ai} linsarly independent.

2o Y =1Z, and T 1is generated by {a,t1,t2,t3} where

2 -1 =1 -1 ~1 .
o = t1 s atea = t2 and atga = t3 ;@ is orthogonal to as

and as while a = (A,ta1/2) with A(a1) = ay , A(az) = -a, ,
A(aB) = —8.3 .
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6%3. ¥ = ZB and T is generated by {a,tj,tg,t 1 where

3
a3 =ty , at2a'1 = t3 and at3a'1 = t51t§1 ; a4 1is orthogonal

o a, and as , Ha2H = HaBH and {az,a31 is _a hexagonal plane
lattice, and o = (A,ta1/3) with A(ay) = a4, A(a2) = 8z, A(a3) =

= -a,-az .

4 ¥ = Z4 and T 1is generated by {a,t1,t2,t3? where

-1 -1 =1
a4 = t1 . atza = t3 and at3a = t2

; {ai3 are mutually
= na3ﬂ while o = (A,ta1/4) with A(a;)=ay,

orthogonal with Hae{

A(ag) = ag , A(a3) = ~a,

@}5. ¥ =Z; and T is generated by {a,t1,t2,t3} where
6

o® = 5y, atpa = ts atBa—1 = t§1t3 ; a, 1is orthogonal to a,

and az , lasl = HaBH and {a2,a3} is_a hexagonal plane lattice,

and @ = (A,ta1/6) with A(a1) = ay , A(ag) = 8z , A(aj) = az-a,.

- Y =%Z,xE&, and T is generated by {a,s,y;t1,t2,t3}

where vy8q = t1t3 and

1 -1 1 =1

a” o=ty atra = b, atBG = t3
-1 -1 2 -1 -1

Bt18 =t , B” = tz 5 Bt38 = t3
-1 -1 =1 -1 2

Yt1Y = t1 sYth = t2 s Yy = t}

The {ai} are mutually orthogonal and

a = (A,ta1/2) with A(a1) = a; , A(ag) -a, A(a3) = -as;

B = (B,t(a2+33)/2) with B(ay)=-a4, Bla,) =2, , B(aB) = -8z ;
Y = (C,t(a1+a2+33)/2) with C(a1)=—a1,(Xa2)=-az, C(a3):=a3.

Theorem 2. The six compact, connected orientable flat

riemannian 3-manifolds of theorem 1 are the Seifert manifolds:
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M

;= 0500y, DY = sTslus?
o = (-25(04,0)3(2,1),(2,1),(2,1),(2,1)} is the . 1° bundle
-1

over S1 with matrix of the characteristic map (

M

O> of order 2;
0 -1

My = (=13(04,0)5(3,1),(3,1),(3,1)} 1is the T2 buntle over S

0 1) of order 3 ;
-1 <1

with matrix of the characteristic map (

M, = {-13(04,0)5(2,1),(4,1),(4,71)} is_the 72 bundle over S

0 1 of order 4 ;
-1 0

with matrix of the characteristic map (

M5 = {—1;(01,0);(2,1),(3,1),(6,1)} is the T2 bundle over S

0 1) of order 6 ;
1 —

with matrix of the characteristic map (

Mg = {-1;(n,,1)5(2,1),(2,1)} is_the manifold obtained from

taking the two Seifert fibrations of Q , one as a solid torus

with two orbits of type (2,1) and the other as the circle bundle

over the Moebius band with orientable total space, and sewing

them together by a fiber preserving homeomorphism. It is also

the orbit space of the orientation preserving free involution on

the Seifert bundle over 82 with total space M2 which identi-

fies fibers over antipodal points of the base space by an orien-

tation reversing homeomorphism.

Proof. Let G; = m(M;) . It suffices to show that
G%i i~y Gi for i =1,...,6 . It will be clear from the isomor-
phisms in the first five cases that there is an S1 action on
S1>f81ys1 making the action of the holonomy group equivariant
and the fibration over S1 will also be equivariant. M6 admits

no S1-action.
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G% o ¥Gy by T(a) = a; , 7(%,) = q§1q1 » T(t3) = qzqg1
G§3 6y by 71(a) = q;1, T(t,) = q§1q2
Gj4 ¥G, by T(a) =ay, T(t,) = a9
Gas ¥ G by m(a) = a5 , 7(t,) = qngg
=q; , t(y) = V§1

G%e ¥ 6, by (a)

For these isomorphisms the groups are reduced by Tietze transfor-
mations to have only the given generators., The isomorphism for
G5 was found by A, Strem. It is interesting to note that the Gi
are all solvable groups, see (8.3).

The next result is again due to Wolf [1,p.120].

Theorem 3., There are just 4 affine diffeomorphism classes

of compact connected non-orientable flat 3-dimensional riemannian

manifolds, They are represented by the manifolds R3/r where T

is one of the 4 groups dgi given below., Here A is the trans-

lation lattice, {a,,a,,a,} &re its generators, t. = t, , ¥ =T/T*
1 2) 3 i ai

is the holonomy, and T, = I'nSO(3)-R’ so that R°/T, - R/T is

the 2-sheeted orientable riemannian covering,

031. Y =%, and T is generated by {e,t1,t2,t3} where

e = tqs etge'1 = t,, €t3€_1 = tg1; a; and a, are orthogonal

o az vhile ¢ = (E,ta1/2) with I(a;) = 24, E(ay) = a, and

3(83) = -az . T, is generated by {t1,t2,t3} .

&%. Y =Z, and T 1is generated by {e,t1,t2,t3} where

2 =1 =1 -1 . :
e = t,, etqe = t2,et33 = t1t2t5 3 the orthogonal projection

of a; on the (aq,2,)-plane is (a1+a2)/2 s € = (E,ta1/2) with
E(a1) = ay, E(a2) = a5, E(a3) = aj+ay-az . T, 1is generated by

Q
{t1!t29t3} .
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J33. ¥ =Z,x%Z, and T is_generated by {e,a,t1,t2,t3}

2 2 ~1 -1 -1 -1 -1
where o° = ty, & = t2, cae = tra, at2a = t2 s at3a = t3 B
et1e'1 = t, and et3e*1 = tg1 ; the a, are mutually orthogonal
and
a = (A’ta1/2) with A(aj) = ay, A(az) = =8y, A(aB) = -az,
€ = (E,tag/z) with E(a1) = ay, E(az) = 8y , E(a3) = -az.

I', is generated by {a,t1,t2,t3} .

d34. ¥ =%Z,x%, and T 1is generated by {c,a,t1,t2,t3}

2 2 -1 -1 -1 =1 -1
where ao° = t1, e = t,, cac = t2t3a, atoa =t , at3a = t3 5

et1e'1 = 14, etse'1 = tg1 ; the a; are mutually orthogonal and

a = (A,ta1/2) with £A(aq) = ay, Alay) = -a,, A(a3) = -a,
e = (E’t(a2+33)/2) with E(ay) = a;, E(a,) = a,, E(a3) = -8,

o]

I is generated by {a,t1,t2,t3} .

Theorem 4, The four compact connected non-orientable flat

5-dimensional riemannian manifolds are the four Klein-bottle

bundles over S' ., Let m(K) = (X1,X2IX$X§) .  Then

Ny = (05(ny,2)) = Kx8' ,

1

N, = {1;(n1,2)} is the K-bundle over S1 with character-
. X -1 -1
istic map w(x1) = x5, ¥(x,) = x7°,
N3 = {O;(n3,2)} is the K-bundle over S with characteris-
. -1 =1
tic map ¥(xy) = x7, W(x,) = x5,

N4 = {1;(n3,2)} is the X-bundle over S1 with characteris-~

tic map w(x1) = Xp, w(xz) = x4 .

Proof. Again we let B, = m(N;) and show that &. = B..
Note that N, and N, admit S'-actions while Ny and XN, do

not.
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0
o

il

B,
13

B3
3y

The groups are again reduced by Tietze transformations to have

4 bY T(e) Vis T(tz) = h, T(tz) = V45 ;

m
o]

o by 7(e) = vy, T(t5) = vV, 5

-1 =1
V2 ’ T(tB) =h H

R
td

3 by t(e) = ALY T(a)

T

B4 by 1(e) = ViVos 7(a) \ALEE
only the given generators. The isomorphisms for B3 and B4
were found by A. Strem. The orientable double cover is M, for
N, and N, and M, for N3 and N4 . Clearly the Bi are

also solvable groups, (8.3).

8.3. Solvable Fundamental Groups

Let G be a group and G(1) = [G,G] be its commutator sub-
group., Define inductively G(m) = [G(m"1),G(m'1)] and call G

sclvable if the series terminates, i.e.
¢oe(Ms,  oem oy

for some m . Typical example is an abelian group. A well-known
example of a non-solvable group is the binary icosahedral group I¥,
since [I*,I*] = I*¥ . The subgroups and factor groups of solvable
groups are sovable and the extension of a solvable group by a solv-
able group is solvable. An equivalent definition is that G has

a finite series of normal subgroups

G3G13...3Gn=1

each G, normal in G, , so that Gi-1/Gi is abelian for all i,
If (}1_1/6i is in the center of G/Gi for all i, them G is

called nilpotent.
If G is the fundamental group of a Seifert manifold, then
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G 1is solvable if and only if the planar discontinuous group
¢/(h) is solvable, These considerations give the following re-

sult essentially due to Moser [1].

Theorem 1. The Seifert manifolds with solvable fundamental

groups are:
(i) M = {b;(o1,1)}, Tz—bundles over S1 s G is a nilpotent

extension of ZxZ by Z ;

(11) M= {b;(o']’O);(2’1)s(2,1)a(291)9(291)] ’ _f;'_(l-'_f’_ b = -2

M is a T2 bundle over S1 , otherwise I is the orbit space of

a free Ez-action on one of the manifolds of (i), G is an exten-

sion of a nilpotent group by ZZ ;

(1ii) o4, 8 =0, 7 =% 2oL 5 1 except for
1 ’ EXcept 1ol
a1 ag G.3 -

(a1,a2,a3) = (2,3,5) where I* is a direct summand of G ; for

(3,3,3), (2,4,4) and (2,3,6) M either fibers over s , see

(8.2.2) or it is the orbit space of one of the finite groups ZB’

24_ or ZG acting freely on one of the manifolds of (i) so G is

2 single or double cyeclic extension of a nilpotent group; for

(2,2,n), (2,3,3) and (2,3,4) G is finite, see (6.2.2);

(iv) o4, g =0, r <2 are lens spaces or s°xs’ so G is

finite or infinite cyclic;

(v) M = {b;(n2,2)} are T-bundles over s so G is an
extension of ZxZ by Z ;
(vi) n,, g =1, r <1, here {O;(n2,1)} =IRP3 #]RP3 with

G =Z%Z, *Z, which is an extension of % by %, while the other

manifolds have finite fundamental groups, see (6.2.2);

(vii) M = {b3(n,,1)5(2,1),(2,1)} are orbit spaces of the

free orientation preserving Z2 actions on manifolds of (ii) that
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induce the antipodal map in the orbit space of the S1-action; G

is the double extension of a nilpotent group by cyclic groups;

(viii) M = {b;(0,,1)} are K-bundles over S' , so G is

an extension of a solvable group by Z2 H

(ix) M = {b;(n,,2)} same as (viii);
(x) M= {b;(n3,2)} are the other two K-bundles over S1;

(xi) ny, g =1, r <1 are the manifolds P2><S1 and N

so G is ZxZE, or Z ;

(xii) M = {b;(n,y,1);(2,1),(2,1)} are orbit spaces of the

free orientation reversing Z, actions on manifolds of (ii) that

induce the antipodal map in the orbit space of the S1-action; G

is the double extension of a nilvotent group by cyclic groups.

8.4. PFinite Group Actions

: 1 .
If M= {b;(e,g);(a1,51),...,(ar,8r)} admits an S -action,
So e =04 Or ng, then every finite subgroup ZkC:S1 acts on
M with orbit space a Seifert manifold M' whose invariants were

computed by Seifert [1,p.21873:

i

{b'5(e,8)5(aq,85) 005 (ay,8.)1

where

i b ' = . . t = . LK) .
b kb , o “a/(“a’k) ) Bj kBJ/(aa, )

These Seifert invariants may need normalization. The action of
%, 1is free on M if and only if (aj,k) =1 for j=1l,iee,T o
Note that the homeomorphisms of the action are isotppic to the iden-
tity.

The example of M, in (8.2.2) shows that not every finite
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group acts as a subgroup of the circle. Tollefson [2] investi-
gates when a free Zk action on a 3-manifold M embeds in an
S1—action. It is clearly necessary that a homeomorphism genera-
ting the action be homotopic to the identity. Such an action is
called proper. Let M' ©be the orbit space and w: M - M' the
orbit map., The action is called Z~classified if there is a com-

mutative diagram

M > 3
m p
v v
M > s

where p: S1 - S1 is the usual k-sheeted covering of the circle.

In particular such maps exist if H1(M';Z) has no k-torsion.

Two Zk-actions M,V Zk><m - M are called weakly equivalent if

there is a group automorphism A: Zk - %k and a homeomorphisn

H: M -~ M so that u(g) = H 'w(A(g))H for all g € % The

Kk *
main result of Tollefson (2] is:

Theorem 1. Let M be a closed, orientable, irreducible

3-manifold. A Z-classified free %p—action on M (p > 2 prime)

is proper if and only if it is weakly edquivalent to some Z%-action

embedded in an effective S1—action on M .,

In the course of the proof it is shown that M fibers over
S1 and the Zp-action is equivariant with respect to the fibration,
Notice that in some cases a Seifert-manifold may cover itself,

e.g. it follows from the opening remarks of this section that
M = {-1;(01!g);(a’1)s(aaa—1)}

is a proper k~sheeted covering of itself for every k = 1 mod a.
For g =20 M= Szx S1 but for g > 0 M is irreducible and a

non-trivial 2-manifold bundle over 5! . Tollefson [3] proves



- 145 -

that if M is a closed, connected 3-manifold that is a non-itri-~
vial connected sum and covers itself,then M =]RP3 #IRP3 . It is
the k-fold cover of itself for every k but none of these free
Z&-aotions are proper in the above sense, If the covering action
is proper, then Tollefson [3] shows that the manifold M is irre-
ducible and if HT(M;Z) has no element of order k , then M fibers

over S1 .

8.5. Foliations

Let M be a smooth manifold with tangent bundle IM . A
k-plane field on M is a k-dimensional subbundle o of TM .
If 1 is an injectively immersed, smooth submanifold of M so
that TLX = OXCTMx for all x € L,ythen L 1is called an integral
submanifold of o , A k-plane field ¢ 1is called completely
integrable if the following three equivalent conditions are satis-
fied:

A, M is covered by open sets U with local coordinates
XyseeesXy SO that the submanifolds defined by Xl = constant,

.v03X%_ = constant are integral submanifolds of o .

m
B. ¢ is smooth and through every point x € M there is an
integral submanifold L of o .,

C, o is smooth and if X and Y are vector fields on M
with X ,Y € o, for all x €M then the bracket [X,Y]x € 0y »

An integrable k-plane field is called a foliation and the
maximal connected integral submanifolds are called leaves. The
leaves of a foliation partition the manifold. The following re-

sult is due independently to Lickorish, Novikov and Zieschang.
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Theorem 1. Every closed, orientable 3-manifold admits a

codimension one foliation.

The proof goes roughly as follows, The Reeb foliation on D2><S1

is obtained by considering a function with graph below

em———

/

. ——— 4

e e I

e
e —————

and all its translates along the x-axis., Rotate to obtain a

foliation of D2 xR and identify integral translates to obtain

2

the Reeb foliation on D2><§1. It has one compact leaf, 3D xE§

and all other leaves are homeomorphic to R2 . The union of two

Reeb foliations foliates 83 . bBEvery orientable closed 3-mani-

fold is obtained from 83 by a finite number of (1,1)-surgeries
according to Wallace. Remove the necessary number of solid tori
from S3 and alter the foliation of 83 at the boundary tori by

the procedure of "dropping off leaves"

~

|

|

|
-

to foliate the resulting manifold, Now sew in the required copies

of D2><S1 with Reeb foliations to obtain the manifold in question.
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Wood [1] showed that non-orientable closed 3-manifolds also
admit codimension one foliations. A celebrated theorem of Novikov
proves that every codimension one foliation of S3 has a compact
leaf,

The rank of a differentiable manifold M 1is the maximum
number of linearly independent 02 vector fields on M which
commute pairwise, If M is a closed manifold , then the rank of

T

M is the largest integer k so that there exists a non-singular
action of RS on M with all orbits of dimension k . This
action defines a foliation of M . The following was proved by

Rosenberg-Roussaire-Weil [1],

Theorem 2, Closed orientable 3-~-manifolds have the follow-

ing rank:

(1) S1><S1x S1 has rank 3 ;

(i1) M has rank 2 if and only if it is a non-trivial

torug bundle over S1;

{(iii)} all others have rank 1 .

The proof is outlined in the paper as follows., If & 1is a non-
singular action of R2 on the closed, orientable manifold V 4
then the orbits are R2, Rxs1 or T2 ., It is known that if all
orbits are R2, then V is T3 . If V has rank 2 , then there
must be orbits homeomorphic to R><S1 or T2 . If all orbits are
homeomorphic to R X S1 P

then & is modified to a C°-close action 2, which has a com-
pact orbit, It is known that not every compact orbit of & can

separate V into two connected components., One can find k com-

pact orbits T1""’Tk which do not separate V but have the



- 148 -

property that for every other compact orbit T the union

TUT, U...!JTk separates V . Let W be the manifold obtained
by cutting V along the T, , 1= 1yeee,k « Then 3W consists
of 2k ‘tori and every torus orbit in the interior separates W
into connected components. By a transfinite argument it is ob-
tained that ¢ has no compact orbits in the interior of W . The
crucial step is to show that W ~ T2 X.0,1] so V is obtained as
a T2 bundle over S1 .

An explicit action of R2 on a T2 bundle over S1 is de-
fined as follows: Let I: T2 ~ T2 be the orientation preserving
characteristic map of the bundle and V = T2>:I/f . As noted
earlier f is isotopic to a linear map F € AT(T%) = 617(2,%)
and V is diffeomorphic to T2><I/F . Since the group et (2 R)
is connected there is an isotopy ¥, with F_ =1id , Py = o,
Choose it so that F, =P, for t <e and F, = Fy for 1-e<t<i
for some small € > 0 . Any two constant vector fields on F2
which are linearly independent define two linearly independent

commuting vector fields on T2 . For t ¢ [0,1] 1let X(t)::EéLO)
and Y(%)

Ft(0,1) . Then X(t) and Y(t) are two linearly
independent vector fields on T2 xt . Moreover, dF1(X(1)) = (0,1)
= X(0) and dFﬂ(Y(1)) = (0,1) = Y(0) , hence X(t) and Y(%t)
define two linearly independent vector fields om V ,

It is interesting to note that if V has no compact orbits,

then P = (1 a)’ so V is the Seifert manifold ({-a;(o4,1)} .
o 1

8.6, Flows

A CF flow on a C¥ manifold M is a CF action u:M xR - M

of the additive reals on M . Such actions arise naturally from

the integration of a of vector field on M . Conversely, differ-
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entiation of a Cr+1

flow gives rise to a ¢¥ vector field on M.
The following is an example of a flow on s2 = {(zq,2,) €
CZI 2,24+252,=1} . Let (p,q) Ve relatively prime integers and
define
u(z1,22,t) - (Z1e2nipt’2282niqt)

This is clearly the R action obtained from lifting the correspon-
ding S1 action to the universal ccver of S1 . For p=gq=1

this is called the Hopf flow on 53 . These flows have only closed
orbits. The following recent result of Epstein [1] proves that if
all orbits are closed on a 3-manifold,then this is the most gene~

ral situation,

Theorem 1. Let wu: MXR = M be a C° action (1 <r <9 of

the additive group of real numbers on 11 , with every orbit a cir-

cle, Let M be a compact 3-manifold possibly with boundary.
1

Then there is a C¥ action pu': MxS - M with the same orbits

as W .

If non~compact orbits are present,then the structure of flows
is still unknown. The following result is due to Seifert [2], Let
C be the vector field of Clifford-parallel vectors whose integral
curves, the Clifford circles, give the Hopf flow and let € ve a
continuous vector field on 83 which differs sufficiently little
from C , that is, the angle between a vector of C and that of

~

C is at every point of 83 smaller than a sufficiently small ao.

Theorem 2, A continuous vector field on the 3-sphere which

differs sufficiently little from the field of Clifford-parallels

and which sends through every point exactly one integral curve

has at least one closed integral curve,
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The question posed by Seifert [2] whether this is true for
all flows on 83 is still open and is now referred to as the

Seifert Conjecture.*

*
Added in proof: Paul Schweitzer has obtained a counterexample to

this conjecture.
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