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to Artie 



Introduction 

These are notes for a lecture series given at the University 

of Os!o in 1971 -1972. Although the manifolds of the title were 

constructed by $eifert [I] in 1933, considerable interest has 

been devoted to them recently. The principal aim here is to sur- 

vey the new results and to emphasize the variety of areas and 

techniques involved. 

The equivariant theory comprising the first four chapters 

was initiated by Raymond [I], who discovered that two classes of 

Seifert manifolds coincide with certain fixed point free 3-dimen- 

sional St-manifolds. Chapter I contains Raymond's classifica- 

tion of sl-actions on 3-manifolds. Chapter 2 describes equivar- 

iant plumbing of D2-bumdles over 2-manifolds and identifies the 

boundary 3-manifoids. This is used in chapter 3 to resolve sin- 

gularities of complex algebraic surfaces with C*-action. The 

technique is to compute the Seifert invariants of a suitable 

neighborhood boundary of the singular point and use these to con- 

struct an equivariant resolution following Orlik-Wagreich [1,2]. 

The equivariant fixed point free cobordism classification of 

Seifert man~folds due to Ossa [12 is given in chapter 4. 

The remaining chapters contain topological results. The 

homeomorphism classification by Orlik-Vogt-Zieschang [I] using 

fundamental groups is obtained in chapter 5. The known free 

actions of finite groups on S 3 are given in chapter 6 following 

Seifert-Threlfall [I]. In chapter 7 we determimewhich Seifert 

manifolds fiber over S I . The important results of Waldhausen 

[1,2] are outlined in the last chapter together with a number of 
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other topics that we could not discuss in detail in the frame 

of the lectures. 

I would like to thank my friends Frank Raymond and Philip 

Wagreich for teaching me directly or through collaboration much 

of the contents of these notes; the mathematicians in Oslo in 

general and Per Holm and Jon Reed in particular for their hospi- 

tality; and Professor ~. Hirzebruch for inviting me to Bonn and 

for recommending the publication of these notes. Thanks are also 

due to Artie for thorough proofreadnig and to Mrs. Moller for 

careful typing of the manuscript. 

Oslo, April 1972. 

Peter Orlik 

*) Supported by grants from the National Science Foundation, 

the University of Oslo and the University of Wisconsin. 
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I. Circle Actions on 3-~Tanifolds 

In this chapter we introduce the necessary preliminary 

material concerning the action of a compact Lie group on a smooth 

manifold. Some important standard results are stated without 

proof. 

We then proceed to the equivariant classification of circle 

actions on closed, connected, smooth 3-manifolds following Raymcnd 

[I] and 0rlik and Raymond [I]. This is done in terms of a weight- 

ed 2-manifold (the orbit space together with information about the 

orbit types). It may be summarized as follows: the closed, con- 

nected, smooth 3-manifold ~ with smooth S 1 action is deter- 

mined up to equivariant diffeomorphism (preserving the orientation 

of the orbit space if it is orientable) by the following set of 

invariants 

M = [b; (e,g,h,t); (~l,~l),...,(~r,Sr) } . 

Here e = o if the orbit space is orientable, e = n if not; 

g is its genus; fLis the number of components of fixed points 

in ~ ; t is the number of components of orbits with isotropy 

group ~2 and slice representation equivalent to reflection about 

a diameter in D 2 ; the relatively prime pair of positive integers 

(a,~) determines the orbit type of an orbit with isotropy group 

Ea ; and b is an integer representing an obstruction class sub- 

ject to the conditions that b = 0 if f+t > 0 , b 6 Z if 

f+t = 0 and e = o , b 6 E 2 if f+t = 0 and ¢ = n and b = 0 

if f+t = 0 , ¢ = n and some aj = 2 . 
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Manifolds with f+t = 0 belong to the classes 0,o and 

N,nI of Seifert EI] and together with the other Seifert manifolds 

(introduced in chapter 5) will be the main topic of these notes. 

1.1. Manifolds and Groups 

A topological space X is a set with certain subsets U i 

distinguished by being called open. The collection of open sets 

~ is required to satisfy the following conditions: 

(i) the empty set ~ E ~ and X E ~, 

(iii) if U i E ~ i E I then IJ U E SJ~for an arbitrary 
' iEl i 

index set I . 

If x E X then an open nei~hborhopd of x is an element of 

containing x . A basis for the topology of X is a subcollec- 

tion of open sets, ~ so that each element of ~ is a union of 

elements of D~ . X is a Hausdorff spaoe if for arbitrary dis- 

tinct points Xl,X 2 E X there are open neighborhoods U1, U 2 so 

that U I NU 2 = ~ . An open cover of X is a collection [Ui]iE I 

of open sets so that i~IUi=X . A Hausdorff space is cqmpact if 

for every open covering there exists a finite subcollection 

[Uil,...~Uin) which is an open covering of X . A map f ~ X ~ Y 

between topological spaces is continuous if the inverse image of 

every open set is open. It is a homeomorphism if there exists a 

continuous map g: Y ~ X so that g of = id X , f~g = idy . A 

space X is a topolo~igal manifold of dimension n if it is a 

Hausdorff space with a countable basis and every point x E X 

has an open neighborhood U x homeemorphie to an open subset of 

Euclidean n-space ~R n . This homeomorphism ~: Ux ~n is called 
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a coordinate system at x . Two coordinate systems ~ and 

-I C °o functions are d °° related if ~o ~-I and ~° ~ are 

whenever defined. A set of coordinate systems ~ is a smooth 

structure on the topological manifold X if 

(i) X is covered by the domains of the coordinate systems 

in ~ , 

(ii) any two coordinate systems in ~ are C ~° related, 

(iii) ~ is maximal with respect to (i) and (ii). 

X is a smooth manifold if it has a smooth structure. A map 

f : X ~ Y between smooth manifolds is called a smooth map if for 

every two coordinate systems ~ on X and ~!, on Y the func- 

tion ~o fo -I is of class C °o . A structure (topology, mani- 

fold, smooth) on X and Y induces a corresponding structure on 

the cartesian product X x Y . 

A group G is a topolog~al group if G is a topological 

space and the group operations 

-1 
(gl,g2) ~ glg 2 and g ~ g 

are continuous maps. The topological group G is a Lie group 

if G is a smooth manifold and the above maps are smooth. Well 

known examples are the general linear group GL(n;]R) of n x n 

real invertible matrices, the orthogonal group 0(n) of n x n 

real orthonormal matrices and the special orthogonal group SO(n) 

of n x n real orthonormal matrices with determinant +1 . Note 

that GL(n;~) is an open submanifold of ~q n2 while O(n) and 

SO(n) are compact manifolds. A subgroup of a topological group 

is called closed if the corresponding subset is closed in the 

space of the group, i.e. its complement is open. 
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1.2. G-I~ianifolds 

Let G be a compact Lie group and M a smooth manifold. 

A smooth (left) action of G on M is a smooth map 

G × M ~ M 

(g,x) ~ gx 

satisfying 

(i) g1(g2x) = (glg2)x 

(ii) ex = x , where e E G is the identity element. 

M together with the G action is called a G-manAfold. If M I 

and M 2 are G-manifolds then the map ~ M I ~ M 2 is called 

equivariant provided for all g E G and x E MI we have g~(x) = 

~(gx) Given x E M the subgroup of G defined by G x = 

[g I gx=x] is called the isotropy or stability group at x . The 

action is effective if only 

if gx = x fer all x E M 

fined by Gx = [gx ! g E G] 

e leaves every point fixed, i.e. 

then g = e . The subset of M de- 

is called the orbit of x . The col- 

lection of isotropy subgroups along Gx , [Ggx I g E G] is called 

the orbit type. It is the conjugacy class of G x in G since 

gGx g-1 . Consider the equivalence classes of orbits, Ggx 

x ~y <~> ~g E G ~ y = gx . Let x* denote the equivalence 

class of x and M* the collection of equivalence classes, 

called the orbit space , ~* = i~I/G . Let ~ M 

map. Topologize M* by the quotient topology~ 

if and only if w-1(U) is open in M . 

Notice that M* is not a manifold in general. An action is 

transitive if for any two points x,y E M ~g E G O: y = gx , 

so all of M is one orbit and the orbit space is a single point. 

A G-manifold with a transitive action is called a homogeneous 

~* be the orbit 

U is open in M* 
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space. A particularly important example of a homogeneous space is 

obtained as follows: Let G be a compact Lie group and H a 

closed subgroup. The coset space of H, G/H admits a natural 

action of G by multiplication and the action is clearly transi- 

tive. 

1.3. G- Vector Bundles 

A fiber bundle ~ = (E,B,F,p) consist of a total space E , 

base space B , map p : E ~ B called bundle projection, a fiber 

P , an open cover ~ and for each U E '~ a homeomorphism 

qO~T: ~ x S ~ p-1(~) 

so that the compos~ion p O~U is projection onto the first factor. 

The structure group G of a fiber bundle is a group of homeomor- 

phisms containing the homeomorphisms F - p-l(b) defined by 

x - ~ (b,x) , and their inverses, for every b E B . It is assu- 

med that G acts on the above homeomorphisms transitively on the 

right. A fiber bundle is principal if the fiber is a topological 

group G which is also the structure group of the bundle. A 

vector bundle is a fiber bridle with fiber a vector space and 

structure group the general linear group of that vector space. 

Thus a real vector bundle has fiber ~n and group GL(n) . 

Typical example of a vector bundle is the tangent bundle TM of 

a smooth manifold M n . The fiber at x E }~ , TM x = ~n and the 

total space of the bundle, TN is a smooth manifold of dimension 

2n . A G-vector bundle is a G-manifold Id and a vector bundle 

with total space E over M so that there is a G-action on E 

compatible with the bundle structure, i.e. the map from E x =pl(x) 

to E is an isomorphism making the diagram below commutative. 
gx 
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G ×E > E 

i id×p ~v p 

G x M  > M 

Typical example is the tangent bundle TM of a G-manifold M . 

The map from TM x to TMg x is given by the differential of the 

map g: M ~ M evaluated at x . 

Given x E M the map gG x - gx defines an equivariant em- 

bedding G/G x ~ M with image Gx , the orbit of x . Thus we 

may identify the G-manifolds G/G x and Gx . Next we shall see 

that the normal bundle of Gx in ~ is naturally a G-vector 

bundle. 

Let E ~ G/H be a G-vector bundle with base the homogeneous 

space G/H . Let V denote the fiber at eH . Since h ~ H 

leaves eH invariant, it lesves V setwise fixed so V is an 

H-module. Consider the principal H bundle G ~ G/H and the 

associated V bundle G ×H V over G/H obtained from G × V 

by identifying [g,v~ = Egh,h-lv] . Let G act on G ×H V by 

k E G k[g,v] = [kg,v] . Since V c E given g E G , v E V we 

have gv E E , thus we have a map [g,vl ~ gv consistent with 

the identification, resulting in a map 

G ×H V > E 

which is clearly a G-vector bundle isomorphism. Thus a G vector 

bundle over G/H is determined by the H-module structure of the 

fiber at eH . 

Returning to the case when H = G x ~ the normal bundle at 

x E Gx has fiber V x = TMx/(TGx) x . For each g E G x the dif- 

ferential of g: M ~ M inducas a linear map V x ~ V x providing 

a representation G x ~ GL(Vx) called the slice representation. 
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Its importance is given by the following theorem. 

1.4. Some Basic Results 

Slice theorem. Some G-invariant open neighborhood of the 

zero section of G ×Gx V x mis e~uivariantly diffeomorphi~ t_~o ~ 

G-invariant tubular neighborhood of the orbit Gx i__nn M by the 

map Eg,v] - gv so that the zero section G/G x maps onto the 

orbit Gx . 

A proof is given in J~nich Eli. 

This gives at x E M a slice S x with the following properties: 

(i) S x is invariant under G x , 

(ii) if g E G , y,y' ~ ~ S x and g(y) = y' , then g E G x , 

(iii) there exists a "cell neighborhood" C of G/G x so that 

C × S x is homeomorphic to a neighborhood of x . If F: C ~ G 

is a local cross section in G/G x then the map F: C × S x ~ M 

defined by F(x,s) = ~(c)s is a homeomorphism of C × S x onto 

an open set containing S x in M . In the differentiable case 

we may choose S x as a suitably small closed disk in V x . 

Another useful theorem from the general theory of transfor- 

mation groups is the following 

Principal Orbit Type Theorem. Le_~t M be a G-manifold and 

assume that M/G is connected. Then there is an orbit type (H) 

so that the orbits of this t2pe , ~(H) form a dense subset of 

and the smooth manifold M(H)/G is conuected. The type (H) i_~s 

called principal orbit type, an orbit is called a principal orbit 

and the bundle M(H ) ~ M(H)/G is called the principal orbit 

bundle. 

A proof is given in J~nich ~1]. 
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We shall also use the following result. 

Conjugate Sub[roup Theorem. Let G be a qompact Lie group 

actin~ on a manifold M . If x E M and U c G is an open set 

containing G x then for y sufficiently nea~ to x , Gy c U . 

A proof is given in Montgomery-Zippin [I, p.2153. 

1.5. The Circle Group 

We are particularly interested in the circle group G = S I . 

Recall first that there are different ways of thinking of this 

G = U(1) = [z E ~ Izl = I} , complex numbers of modulus I; 

G = S0(2) , 2 x 2 real orthonormal matrices of determi- 

nant +I ; 

(iii) G ~ T I =~/~ , reals modulo the integers. (When convenient 

we shall think of the equivalent form ~/2~ , i.e. elements 

of G wi~ll be angles ~ where 0 ~ ~ < 2~ .) 

Explicit isomorphisms are easily constructed and we shall use 

these three forms of G interchar~y and without further warning. 

The closed subgroups of S I are (e) , the cyclic groups Z and 

S I and by the Conjugate Subgroup Theorem the principal orbit type 

of an S I action is (e) . The purpose of this chapter is to 

give an equivariant classification of closed, connected 3-dimen- 

sional St-manifolds. First consider some examples. 

I) Let 

S 5 = { Z l , Z  2 6 ¢2 ! z1~1 + z2~2 = 1} 

and define an action of U(1) by t 6 U(1) 

t(zl,z2) = (t~zl,t~z2) . 

group: 

(i) 

(ii) 



This action is effective when (~,~) = I . The orbit [z I = O, 

z2~ 2 = I] has isotropy group ~ and the orbit [z 2 = O, zi~i= I] 

has isotropy group ~ . All other orbits are principal. We 

shall see later that fixed point free S ] actions on $3 are in 

one-to-one correspondance with the pairs (~,~) . 

2) Consider S 3 as above with the action 

t(z 1,z 2) = (z 1,tz 2) • 

The action has one circle of fixed points, [z 2 = O, ZlZ I = 1] and 

all other orbits are principal. ~e shall see that this is the 

only action on S 3 with fixed points. 

3) Take any closed 2-manifold B and let M = B x S I . Define 

an action of S I to be trivial in the first factor and the usual 

one in the second. This gives a free S 1 action with orbit space 

B . 

4) Let V = D 2 x S I be a solid torus with S I action trivial 

in the first factor and standard in the second. The subgroup 

~2 c S I operates on the boundary with the principal (antipodal) 

action. If we collapse each of the orbits on the boundary of V 

by this ~2 action we obtain a closed manifold N with 81 

action. There are only principal orbits (corresponding to the 

interior of V ) and orbits with isotropy group ~2 (correspon- 

ding to the boundary of V ) that are doubly covered by nearby 

principal orbits so that the local orientation is reversed. The 

orbit space of the action is a disk with principal orbits in the 

interior and orbits with isotropy group E2 on the boundary. 

The manifold N is the non-trivial S2 bundle over S I called 

the non-orientable handle. 

Before investigating the orbits with non-trivial isotropy 
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groups let us recall the orientation conventions of Raymond [I] 

and Neumann [1]. Given an oriented manifold M, its boundary 

~N is given the orientation which followed by an inward normal 

coincides with the orientation of M . If M is an oriented S I 

manifold and N* is an orientable manifold, then we orient M* 

so that M* followed by the natural orientation of the orbits 

gives the orientation of M . 

1.6. Fixed Points 

Assume that G x = S I so x is a fixed point. The slice 

at x may be chosen as a sufficiently small closed 3-ball D 3 

and the action of G x is an orthogonal action of S I D 3 on 

This is equivalent to the rotation of D 3 about an axis through 

x . The orbit space of this action on D 3 is a closed 2-disk 

with x on the boundary. So fixed points lie on 1-dimensional 

submanifolds and, by compactness~ circles. A sufficiently small 

tubular neighborhood of one component of fixed points is therefore 

a solid torus with only fixed points and principal orbits. If we 

parametrize such a solid torus V = D 2 x SI by (r,y,8) O~r~1 , 

0 ~ y,8 ~ 2~ and let S I act by addition of angles, 0 ~ 0 < 2~, 

then the action is equivalent to 

9(r,¥,6) = (r,¥+~,5) . 

. . . . . . . .  

/ , , / 4" ' \  5 

Call the collection of fixed points F and the (finite) 

number of components of fixed points f . 
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1.7. Exceptional Orbits 

Let G x = ~ . The orbit is l-dimensional and the slice may 

be chosen as a 2-disk, D 2 . The actions of E on D 2 are equi- 

valent to rotation (u>2) and rotation or reflection (~= 2) . 

Con~ider the rotations in this section and the reflection in the 

next. Let ~ = 2w/~ act on the unit disk as follows 

~(r,y) = (r,y+v~) 

where (u,v) = I and 0 < v < W . 

We call this the standard linear action of type [U,v] • Since 

this is the action in each slice of such an exceptional orbit 

(called E-orbit), a small tubular neighborhood is a solid torus 

V with action equivalent to 

~(r,y,8) = (r,y + v@, & +~) . 

The E-orbit corresponds to r = 0 and has isotropy group of order 

. We call [~,v] the oriented orbit invariants. The correspon- 

ding oriented Seifert invariants (a,fl) are defined by 

a = ~ , ~ v  ~ 1 mod a , 0 < fl < ~ . 

Their geometric interpretation is the following. 

Given an orientation on V. orient the slice so that it followed 

by the E-orbit gives the orientation of V . This orients the 

boundary of tile slice mj a curve that is null-homotopie in V . 

L~t 1 be a curve on $V homologous in V to the E-orbit and 

so that the ordered pair m,1 gives the orientation on BV . Let 

h be an oriented principal orbit on ~V . Since the action is 

principal on all of ~V it admits a cross-section, q and any 

other section, q' is related to q by 

q' = ~ q + sh 

for some s . Orient q so that the ordered pair q,h gives 
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the same orientation as m,l . Then we have 

m = aq + ~h 

and a suitable choice of s reduces ~ to the interval 

Similarly 

! = - ~q - ph 

and p so that 

a B 
= I 

-v-p 

thus ~ - I mod a . 

Solving for q and h in the 

for some v 

m,1 cystem we have 

Since 

range 

0<13 <m. 

q = - pm - S1 

h = vm + al 

1 may be changed by l' = l+ sm we can reduce v in the 

0 < ~ < a . In this case 

= ( s ' , -  1 ) / o ~  . 

Changing the orientation on the solid torus V, keeping the 

action fixed results in a changed orientation for the slice and 

" I }z  i \ 
~./ / 

In the action above, the curve 

q = [r = 1, y = p~p, 5 = ~, 0 ~ ~ < 2~) c 8V 

oriented by decreasing ~ will satisfy the above conditions. 
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hence the slice inveriants change to [~,~] = [~,~-v] . Similarly 

the Seifert invariants change to (~,8) = (a,a-~) . Thus the op- 

posite orientation satisfies the condition 

~ ~-I mod a . 

The latter was used in 0rlik-Wagreich [1,2]. 

If there is no orientation specified on the solid torus V, 

then the orbit invariants are only defined as [W,v] , 0 < v ~ W/2 

and the Seifert invariants (a,~) , 0 < ~ ~ a/2 with v~ ~ ± 1 

mod a . We shall call these the unoriented orbit and Seifert 

invariants. 

1.8. Special Exceptional Orbits 

If Gx = E2 and the action in the slice is reflection about 

an arc~then the neighborhood of such a special exceptional (SE) 

orbit is easily seen to be diffeomorphic to the cartesian product 

of the Moebius band with an interval, the non-trivial D 2 bundle 

over S I . All orbits intersecting the arc of reflection are 

SE-orbits,thus a component of SE-orbits is a torus. Let SE 

stand for the collection of SE-orbits and t denote the (clearly 

finite) number of components of SE . 

1.9. The Orbit Space 

As we have noted in the last three sections, the orbit space 

is a manifold near F*, E* and SE* . It is clearly a manifold 

near principal orbits, so we conclude: 

Lemma 1. The orbit space M* is a compact 2-manifold with 

boundary consisting of F* USE* . 

Let us associate the symbol ¢ = o with an orientable and 
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c = n with a non-orientable orbit space and let g denote the 

genus in either case. If e = o we assume that an orientation 

of M* is given. Thus we may associate the 4-tuple (¢,g,f,t) 

with M* where c =o or n , g ~ 0 , f ~ 0 is the number of 

boundary components in F* and t > 0 is the number of boundary 

components in SE* 

Lemma 2. If F I~ SE # ~ an__dd E = ~ then (e,g,f,t) is a 

complete set of invariants for ~ up to equivariant diffeomor- 

phism (preservin~ the orientation of ~* if ¢ = o ) . 

Proof. We show that the action admits a cross-section. 

Since E = ~ we have a principal bluudle over M*- F* USE* and 

since F* USE* ~ ~ this bundle is trivial. Choose a cross-sec- 

tion to this bundle. It is now sufficient to extend this section 

in the neighborhood of each F-component and each SE-component. 

By (1.6) the neighborhood of an F-component is a solid torus V 

in M . The given cross-section restricted to BV is a torus 

knot of type (1,b) for some b and it is well-known that there 

is an annulus in V spanned by this knot and the "center curve" 

(F-component) that extends the section. A similar argument ap- 

plies to SE-components. 

Next let us consider the somewhat more interesting case when 

F USE U E = ~ . Here all orbits are principal and we have a 

bundle over the closed 2-manifold H* . This bundle is classified 

by a map M* - CP c° and hence by an element of H2(M*;Z). This 

element is called the chern class or euler class of the bundle. 

If c = o then H2(M*;E) = ~ and if c=n then H2(M*;~) = E2 

so the obstruction to the bundle being trivial is an integer b 

where b E Z if e =  o and b E ~2 if c =n . 
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We may interpret this integer b as follows: Remove the 

interior of a solid torus V o from ~i . The remaining manifold, 

Mo admits a cross-section ~g . Let qo be the cross-setion to 

the action on the boundary oriented as the boundary of -M* The 
o " 

equivariant sewing of the solid torus V ° into M o is determined 

up to equivariant diffeomorphism by specifying the curve on the 

boundary of M 
o 

m = qo + bh 

that is to become nullhomotopic in V ° . We have obtained the 

following: 

Lemma 3. If E ~ F USE = ~ then Id i_~s determined u~ to 

e~uivariant diffeomorphism by ¢ , g and b where b E • if 

e = o and b E ~'2 if ¢ =n . 

In case c = o the total space M is orientable. A change 

of orientation of M results in a change of sign for b . 

We now have all the ingredients for the general case. 

1.10. The Classification Theorem 

Let S I act effectively and smoothly on a closed, connected 

smooth 3-manifold M . Then the ~ollowin~ orbit invariants 

M = {b;(~,g,f,t); (a1,B1),...,(ar,Sr)} 

subject to the conditions 

(i) b = O 

b E~ 

b E2~ 2 

b = 0 

if f+t >0 , 

if f+ t = O and c= o , 

if f+t = 0 and e=n , 

if f+t = O , c=n and aj = 2 for some J ; 
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(ii) 0 < ~j < aj , (aj,Sj) = I if e= o , 

0 < 8j _ < aj/2 , (ej,Bj) = 1 __if ¢ =n ; 

determine M up t__~o an equivariant diffeomorphism (which preserves 

the orientation of X* if ¢= o). 

Proof. Given the above set of invariants a standard action 

is constructed as follows: Remove from X* (r+l) disjoint open 

disks D* D* o''''' r ' If F USE = ~ then the remaining manifold is 

a trivial principal bundle over X* - ~ D3 and admits a cross- 
j=o a 

section. If F~U SE~ ~, remove the~ boundary components of 

M* r - U D~, construct a cross-section and extend it to F* U SE* 
j =O J 

as in (1.9.2). Let M r be the resulting manifold with (r+l) 
N,, 

boundary components and let X~ be the cross-section. Sew in 

neighborhoods V i of E-orbits with Seifert-invariant (aj,Bj) 

j = 1,...,r next. Let Q be a boundary component of M~ 

I 
and Q x S the corresponding boundary component of M r . Let 

Q x {0} be the cross-section. Now sew the solid torus V of 

(1.7) equivariantly onto this boundary by mapping orbits onto 

orbits and the cross-section q of V onto Q x [0] . Paramet- 

rize Q x S I by [y,6} , where increasing y orients Q as a 

boundary component of ~ . 

Define the equivariant map 

I 
F:QxS ~8V 

by 

~ ( y , ~ )  = ( p y + v ~ ,  , s v + = 5 )  . 

Notice that 

Ii =-I 

and therefore ~ is orientation reversing as required. The 
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oriented cross-section 

-Q. 

ing. 

q of 8V maps onto the oriented curve 

The equivariant sewing is therefore specified by the follow- 

~* in M r let qo,ql, "''qr be Given the cross-section M r 

cross-sectional curves in BM r oriented opposite to the induced 

orientation as components of ~i~ . The equivariant sewing of 

the solid torus Vj j = 1,...,r makes the curve mj = ajqj+ Bjh 

on the j-th component of 8~ null-homotopic in Vj . 

If e= o then the pair (aj,~j) is determined in the inter- 

val 0 ~ ~j ~ aj and if e =n only 0 ~ Bj ~ aj/2 since the 

local orientation may be reversed along a path in M* . We now 

have a manifold M ° with one torus boundary and a cross-section 

qo to the action. We sew the last solid torus V o fibered tri- 

vially onto this boundary so that the surve mo = qo + bh becomes 

null-homotopic in V This gives a manifold M with the re- 
o 

quired action. 

Conversely, given an action on M, we shall recover its orbit 

invariants as follows: Read off ¢,g,f,t from the orbit space, 
_v_ 

I~ '~ . The equivariant tubular neighborhoods of E-orbits are iso- 

lated. Each one is equivariantly diffeomorphic to a solid torus 

V as described in (1.7) and the action is determined by the 

Seifert invariants (a,~) , 0 ~ ~ ~ ~ . If c =n we use an iso- 

topy of the tubular neighborhood along a path reversing the orien- 

tation on V* to reverse the orientation on V . This reduces 

to O ~ ~ ~ a/2 . These pairs are invariants of V up to 

equivariant (orientation preserving, resp. not) diffeomorphism, 

specifying cross-sections ql,...,qr on the boundaries. If 

USE ~ ~ these cross-sections may be extended to a global 

cross-section. If ~ USE = ~ and ~ = o we have an obstruction 

in 
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co 9 i V ~" • H2(M *-int(V~ U .U V~) 5(V~ U..U ;);~) 

Its class is identified with the integer b . If P USE = 

and ~ = n the above group equals ~2 and b may take on the 

values 0 or I . A special argument shows that in the presence 

of an E-orbit of type (2,1) the two actions are equivariantly 

diffeomorphic, see Seifert [I, Hilfsatz VIII. 

It is easy to check that if M is orientable (c= o and t= 0), 

then a change of orientation results in the new orbit invariants 

-M = [b';(o,g,f,0);(a1,~1-81),...,(ar,~r-Sr)] 

where b' = 0 if f > 0 and b' =-b- r if f = 0 . 

In order to facilitate the notation we shall not insist that 

the Seifert invariants always be normalized. Writing M with 

these invariants should cause no confusion since the normalization 

is a well defined process. 

Another notational convention will be the occasional use of 

the orbit invariants [W,~] instead of the associated Seifert 

invaris~uts (a,~) Again, the conversion is unique. 

1.11. Remarks 

I. The equivariant classification of (1.10) does not answer 

the question of when two St-manifolds are homeumorphic i.e., 

what are the possible different actions on a given manifold (c.f. 

the examples in 1.5). We shall call this the "topological classi- 

fication problem". 

(i) If F USE = ~ the manifolds involved coincide with 

Seifert's classes 0,o and N,nl . These (together with the 

other Se[fert manifolds introduced in chapter 5) are the central 

objects of our considerations and their mutual homeomorphism rela- 
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tionship will be discussed in detail in chapters 5 and 7 • These 

manifolds are irreducible with universal cover S 3 or R 3 ° 

(ii) If F ~ ~ then the identification of the manifolds is 

done using equivariant connected sums. An arc S* in the orbit 

space with end points on fixed point components and interior 

points correspanding to principal orbits has as inverse image under 

the orbit map a 2-sphere, S . Using such arcs the manifold is 

decomposed as the equivariant connected sum of 3-manifolds with 

the following orbit spaces. 

L* / = ~ = [ o ~ o , o , l , o ) ; ( ~ , ~ ) }  

Clearly L is the result of an equivariant sewing of a solid 

torus neighborhood of P , V 1 and a solid torus neighborhood of 

the E-orbit, V 2 . Let h i and qi be the orbit and cross-sec- 

tion in 8V i . Then we have the relations for the bounding curves 

m I = h I, m 2 = aq 2 + ~h 2 The equivariant sewing is h 2 ~ h I , 

q2 ~ -ql and going through the computations of (1.7) shows that 

we obtain the lens space L(a,B) . 

i~* = ~ O F ~ / "  ,/ N, = [ 0 ; ( o , 0 ,2 ,0 }  

Obviously ~¢ = $2 x S 1 w i th  the standard S 1 act ion on the f i r s t  

factor and trivial action on the second factor. 

= [ o ; ( o , o , 1 , 1 ) }  



- 2 0 -  

Similarly p = p2 x 81 with the standard S 

trivial action on the second factor. 

1 action on p2 and 

N = [0 ; (n ,1 ,1 ,0) }  

The manifold N is the non-orientable 

action is visualized by taking 8 2 x I with the usual S 

in the first factor and identifying 8 2 x 0 and S 2 x I 

the orbits are reflected about the equator of 8 2 . 

We state the following result without proof, Raymond [1]. 

S 2 bundle over 81 The 

1 
action 

so that 

Theorem. Let 

M = [b;(c,g,f,t); (a1,~l)9...,(ar,~r)} 

and assume that f > O . Then M is equivariantly diffeomorphic 

to the equivariant connected sum: 

(a) S 3 ~-(S2x $1)1 ~:: . . .#(S2x81)2g+f_1{(p2x81~.. .#(p2xS1) t 

# L(al,~ 1) #...~ L(ar,Sr) if (¢,g,f,t) = (o,g,f,t) , t ~ 0 ; 

(b) (S2x sl)1 #. . .#  (S2x S1)g+f_l ~ (p2x 81)1 { . . .  ~ (p2xsl) t  

# L(al,~1) #...~ L(ar,er ) if (c,g,f,t) = (n,g,f,t) , t > 0 ; 

(c) N # (82x 81)1 #..# (S2x S 1 " )g+f-2 # L (¢ l ' f l l )  # ' ' ' #  

L(~r,Br) if (¢,g,f,t) = (n,g,f,0) . 

(iii) The case F = ~ , SE / ~ is handled using the classi- 

fication of 8eifert manifolds. The action lifts to the orientable 

double cover and commutes with the covering transformation. For 

details see 0rlik-Raymond [I]. 
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2. We assume that M is a smooth manifold and SI acts 

smoothly. It is known that all 3-manifolds are smoothable and 

using somewhat more elaborate arguments all the results hold for 

continuous S I actions on topological 3-manifolds, Raymond [I]. 

It follows from the discussion above that for the class of 3- ma- 

nifolds with S I action the Poincar~ conjecture holds. 

3. Raymond Eli also studies the case v~en M is not com- 

pact. Allowing boundary makes the equivariant classification 

more cumbersome but essentially the same. 

4. The classification above provides us with examples of 

manifolds that admit no S I action at all, e.g. any connected 

sum not on the list of the theorem. 
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2. Equivariant Plumbing 

Plumbing is introduced for building blocks that are D 2 

bundles over closed, orientable 2-manifolds, where it essentially 

consists of removing a D 2 x D 2 from each of the objects and iden- 

tifying the resulting boundaries after an interchange of factors. 

Prescribing an action of S I on the building blocks we may re- 

quire that the plumbing respect this action. The resulting 4- 

manifold with boundary is studied in terms of the graph of the 

plumbing. The boundary is a closed, orientable 3-manifold with 

S I action and may be identified in terms of (1.10). 

These ideas were first introduced by Hirzebruch [1] and 

yon Randow [I]. The equivariant analoo~e was needed in Orlik and 

Wagreich [I] to resolve singularities of algebraic surfaces with 

C* action. This application is presented in the next chapter. 

The orientation convention adopted here is that of Raymond 

[I]. The opposite was used in Orlik-Wagreich [1,2], where the 

letter b is also used differently. 

2.1. Plumbing 

The prin~pal S0(2) bundles over a closed, orientable 2- 

manifold M are classified by H2(M;E) = ~ . Denote the associ- 

ated D 2 bundles indexed by m E Z as ~ = (Ym,~,M) The com- 

pact 4-manifold Ym has the homotopy type of M aud if we let 

the zero section v: M ~ Y represent the positive generator 
m 

g E H2(Ym;E) J then its self-intersection number g.g = m is the 

Euler class of Ym " It is customary to let the bundle with 

Euler class m I over S 2 ,~,S 2 =- , ~ = (Y-I ) , be the disk 

bundle whose boundary, S 3 , has the Hopf fibration. 
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Given two such bundles ~I = (Ym1'~1'~1) and ~2 = 

(Ym2,~2,M2) we plumb them together as follows. Choose 2-disks 

B 1 c M I and B 2 c M 2 and the bundles over them, ~I and ~2 " 

Since they are trivial bundles there are natural identifications 

D 2 D 2 ~1: D2x D2 ~I , U2: x ~ ~2 " Consider the reflection 

t: D2x D 2 - D2x D 2 , t(x,y) = (y,x) and define the homeomorphism 

f: ~1 ~ ~2 by f = ~2 t ~i -1 . Pasting ~I and ~2 together 

along ~1 and ~2 by the map f is called plumbing. It yields 

a topological 4-manifold with corners that may be smoothed. The 

resulting smooth manifold is independent of the choices involved. 

A graph r is a finite, 1-dimensional, connected simplicial 

complex. Let Ao,...,A n denote its vertices. A star is a con- 

tractible graph where at most one vertex, say A ° , is connected 

with more that two other vertices. If there is such a vertex, 

call it the center. A weighted graph is a graph where a non-nega- 

tive integer gi (the genus) and an integer m i (the weight) is 

associated with each vertex A . 

Given a weighted graph r we define a compact 4-manifold 

P(r) as follows: For each vertex (Ai,gi,mi) take the D 2 bun- 

dle ~i = (Ymi'Wi'Mi) where M i is a closed, orientable 2-mani- 

fold of genus gi " If an edge connects A i and Aj in r then 

perform plumbing on ~i and qj . If A i is connected with more 

then one other vertex, choose pairwise disjoint disks on M i to 

perform the plumbing. Finally smooth the resulting manifold to 

obtain P(r) . 

2.2. Equivariant Plumbing 

We shall now define S I actions on the building blocks ~ = 

(Ym,~,~) . For g > 0 let S I act trivially in the base and by 
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rotation in each fiber. For g = 0 we define actions on D = 

(Ym,~,S 2) as follows: Let S 2 = B 1U B 2 be the union of two 

2-disks and Ym = B1 xD I U B 2 xD 2 . Parametrize D 2 x D 2 in 

polar coordinates with radii r and s , 0 ~ r,s ~ I and angles 

y, 6, o ~ y, 5 < 2n . The actions of S I on D 2 are equivalent 

to linear actions and we shall think of them as addition of angles. 

Let 8 6 S I , o < e < 2n . Define for i = 1,2 
m 

8i: D 2 xD 2 ~ D 2 x D 2 

8i(r,y,s,5) = (r,y+ui%,s,8+vi8) 

Now Ym is obtained by an equivariant sewing 

G: ~B I x D I ~ 8B 2 x D 2 . 

Since the action is linear, G is determined by 

F: ~B 1 x ~ D  I ~ ~B 2 x D 2 

which in turn is isotopic to a linear map of the torus. Let F 

be defined by 

F(y) = xy+y6 , F(6) = zy+t8 . 

Then F is equivariant if 

UlX+VlY = u 2 and UlZ+Vlt = v 2 . 

In order that G be equivariant on 5B I x 0 - 8B 2 x0 we need in 

addition that UlX = u 2 , thus y = 0 . 

Since the determinant of F is -1 and the sewing results in a 

total space with euler class m, we need x =-I , t = 1 , z =-m. 

Thus u 2 = -u I , v 2 =-mu I +v I . The action is effective if and 

only if (Ul,Vl) = I . 

A plumbing is equivariant if the identifying and trivializing 

maps are equivariant. Given a weighted graph F we say that 
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P(F) is equivariant if each plumbing involved is equivariant. 

In that case the boundary K(F) = ~P(F) is a 3-manifold with 

S I action. 

For M = S 2 

map S 1 - S I of degree -m . As above, ~Ym 

equivariant union of two solid tori 

8Yb = B~ × S 1 F 

We shall identify this manifold for certain graphs. 

we may think of the classifying element m as a 

is obtained as the 

This is the sewing of two solid tori that results in the lens 

space L(-m,1 ) . Due to the well Imown diffeomorphisms L(p,q) = 

- L(-p,q) = - L(p,p-q) , we may write 

~Ym = L(-m,1) = L(m,m-1) . 

Note also that the different actions on L(-m,1) are given by 

the different pairs (Ul,Vl) . For example u I = 0 , v I = 1 

(u 2 = 0 , v 2 = I) gives the free action 

~(-m,1) = {-m;(o,o,o,o)} . 

In case u I = I , v I = 0 we have a circle of fixed points and 

the orbit invariants are 

L(-m,1) = [O;(o,O,1,0);(m,m-1)} . 

Next consider the result of ~ equivariant plumbing accord- 

ing to the linear graph Fib I .... ,b s] 

where each vertex has genus zero. 

where F has the matrix 

1 . 
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Lemma I. The result of the e~uiyariant linear ~lumbing 

according to the graph F[bl,...,bs] above is the lens space 

LCps,p > where 

Ps I 
= b I ...,bs3 

b2 I = [bl' 

• I 

b s 

Proof. Decompose each base space as S i = Bi, I ~J Bi, 2 with 

the corresponding trivializat!ons of the bundles. As we have 

seen the first equivariant sewing requires Ul 2 = -Ul 1 and 
9 

Vl 2 = blUl I +vl I so it has matrix 
9 9 , 

I 

Since the plumbing is equivariant the actions of B1, 2 x $1, 2 

and B2, I × $2, I are the same but the factors are reversed, i.e. 

u2, I = vl, 2 and v2, I = Ul, 2 . The matrix of this map is 

and we have that 

The equivariant sewing of B2, I x $2, 1 

matrix 

Vl, I 

and B2,2 x $2,2 has 
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and the action on B2, 2 x $2, 2 

( u 2 , 2 , v 2 ,  2) = 
b 2 

is therefore expressed by 

Continuing the sewing results in the equation 

Note that all orbits are principal with the possible excep- 

tion of the center curves of BI, I × Si, 1 and Bs, 2 × Ss, 2 . 

The orbit space of the complement of these two solid tori is an 

annulus. Thus the total space is the result of the equivariant 

sewing of two solid tori by the product matrix above. Let 

(Us,2,Vs,2) = -I 

Ps P~ / I, " 

! 

Then the total space equals the lens space L(Ps,Ps) , where 

t 

ps/Ps = [bl,b2,...,bs]° The latter fact follows from elementary 

properties of continued fractions,vonRandow [I]. This completes the 

proof. 

In particular if the action on BI, I x $I, 7 has an orbit of 

fixed points, Ul, I = I , Vl, I = 0 , then Bs, 2 x Ss, 2 has an E- 

orbit with oriented orbit invariants [ps~-Ps_1 ] . 

Next we shall show that equivariant plumbing imposes a strong 

condition on the shape of the graph provided the weights are nega- 

tive. This will be the case for the applications in the next 

chapter. 

Lemma 2. Let 

is equivariant. If 

F be a weighted graph and assume that P(F) 
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(a) 

(b) 

(c) 

F has a vertex (Ao,go,mo) where the action is trivial in 

the base, 

for each vertex (Ai,gi,mi) we have m i ~ -I , and 

for each vertex (Ai,O,-1) connected with (Aj,gj,mj) 

have gj > 0 o__rr mj ~ -2 (or both) then 

(i) gi = 0 for all vertices i > 0 , 

(ii) F is a weighted star with center A o , 

(iii) the action is non-trivial on the base for i > 0 . 

we 

Proof: Since we plumb around a fixed point, 0 x 0 c D 2 × D 2, 

a vertex connected with more than two vertices must have trivial 

action in the base. Thus if A I is plumbed into Ao, it has non- 

trivial action in the base, hence gl = 0 and ul I = I ,v I I =0" 

From above we get Ul, 2 = -I , Vl, 2 = -m I . Define inductively 

Po = I , Pl =-ml ' P2 = -m2Pl-Po ' Pj = -mjPj-I-Pj-2 ' j = 2,...,r. 

Then the action has uj,2 = -Pj-1 ' vj,2 = Pj " We define the 
! ! 

' = 0 ' = 1 ' = -m2 P3 = -Pl auxiliary parameters Po ' Pl ' P2 ' -m3P2 ' 

' m ' ' Pj = - jPj-1 -Pj-2 ' j = 3,...,r . Then induction shows 

! ! 

1) PjPj-1 -Pj-lPj = -1 for 0 < j ~ r , 

2) (pj,p~) = I , (pj,pj_l) = I , (pj,pj_l) = I for 0 < j ~ r , 

3) if -mj ~ 1 for 0 < j ~ r and if -mj = I then -mj± 1 >I 

! 

implies that we have pj / 0 and 0 < pj < pj . 

This proves the lemma. 

Lemma 5. Consider the star S below ~ith each bi, j ~ 2 

and gi,j = 0 except for the center. 
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The result of the equivariant boundary plumbing K(S) has 

Seifert invariants 

K(S) = {b;(o,g,0,O)~(~1~l),...,(~r,~r)} 

where 

aj = [bj ,bj ] , j = 1,...,r . aj- Sj ,I,"" ,sj 

Proof: 

ing of an E-orbit with orbit invariants 

Psi > 0 , aj = Psj and ~ = -Psj-1 • 

From (1.7) and equation I) above we have 

By Lemma I each linear branch gives rise to a sew- 

[Psj'- Psj-1 ]" Since 

! 

P = Psj-1 and before 

normalization ~ = -p~j . 

a + = a -Psi 

Psi 
P~ 

J 

According to 3) the normalized 

This proves the assertion that 

6. 
~j_-~j = [bj,1,...,bj,sj] • 

= 

The Seifert invariants of the manifold before normalization equal 

! 

'-P! )'''''(Ps r' -Ps )) K(S) = {b+ r;(o,g,0,O);(PSl Sl r 
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and normalization gives the required Seifert invariants. 

Lemma 4. Given relatively prime integers (a,B) with 

0 < 8 < a the fraction a/a- 8 ma 2 be obtained as a unique 

continued fraction 

= [bl,b2,...,bs] 

where b i _> 2 , i = 1,...,s . 

Proof: Repeated application of the I~clidean algorithm. 

Corollary 5. Every Seifert manifold 

K = {bl(o,g,O,O)l(a1,~l) .... ,(ar,~r)] 

is the result of an e~uivariant plumbing according to a star S(K) 

as in Lemma 3. 

2.3. Quadratic Forms 

Given a connected, oriented 4k-dimensional manifold M, a 

quadratic form S M may be associated with it by homology inter- 

sections. Let V = H2k(M;~) / torsion and define 

by intersection of representative cycles. This is a well defined 

symmetric bilinear pairing, hence it induces a quadratic form on 

V , called S M . As usual, the form may be diagonalized over the 

reals. Let p+ denote the number of positive entries and p_ 

the number of negative entries. The integer 

• (M) = T(s M) = p+-p_ 
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is called the signature of the quadratic form (manifold). It is 

called positive (negative) definite if p+ (p_) equals the rank 

of V . 

We want to compute the quadratic form of the compact 4- 

manifold P(F). It is clear from the remarks of (2.1) that the 

graph F contains all necessary information. We may choose a 

basis for V consisting of one generator for each vertex (A,g,m) 

of F with self-intersection number mp and any two vertices 

connected in r have intersection number I. 

S(K) 

where each unfilled entry equals zero. 

S M = 

In particular the star corresponding to the Seifert manifold 

K = [b;(o,g,0,0);(a1,81),...,(ar, Br)] 

provided in (2.2.5) has quadratic form with matrix below 

I I I 

-bl I I 

1 -hl ,2 

' 1 

1 -hl, Sl 

-b2,1 1 

1 " I 

-b-r 

1 

-br, I I 

I 

I -br, sr 

Since bi, j _> 2 for all i,j this matrix is easily seen to be 

negative definite if and only if 

-b-r < O. 
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3. Resolution of Singularities 

This chapter describes some results from 0rlik-Wagreich rl,21. 

Many of the ideas go back to IIirzebruch [I]. 

Given a complex algebraic surface with singularities, V ad- 

mitting a "good" action of @~ , the multiplicative group of com- 

plex members, we obtain a resolution of the singularities of V 

by the following method. If V has an isolated singularity, then 

a small neighborhood boundary S c invariant under the action of 

U(1) c @* intersects it in K = VmS¢ , a smooth, orientable, 

closed 3-manifold with S 1 action. Given the orbit invariants 

of K (1.10) we prove that the corresponding star (2.2.5) is 

the dual graph of a (canonical equivariant) resolution of the iso- 

lated singularity of V . If the singularity is not isolated then 

a normalization must preceed the above construction. 

I~ather than giving all the details as published, the emphasis 

here is on a survey of the background material, motivation and 

examples. 

3.1. Algebraic and Analytic Sets 

~e shall define the necessary terminology as given in Fulton 

~I~ and Gunning [17. Let R be a commutative ring with unit. 

Let R[XI,...,Xn] denote the ring of pol~fnomials in n variables 

over R . A polynomial F E .... r~rx1,...,Xn~ is homogeneous of de- 

gree d if each monomial of F has degree d . An element a ER 

is irreducible if a = b. c implies that b or c is a unit. 

A ring R is a domain if a.b = 0 implies a = 0 or b = 0 . 

R is a UFD if every element has a unique factorization up to 

units and order. If R is a UFD so is R[X] . In particular 

• - ~  ,X n k~X1,... 7 is a UFD for any field ~ . The quotient field 
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of k[XIg...,X n] is the field of rational functions, k(X],°°.,Xn). 

An idea I I c R is proper if I ~ R , maximal if it is contained 

in no larger proper ideal and prime if ab E I implies either 

a E I or b E I . An ideal is p~incipal if it is generated by 

one element. A principal ideal domain (PID) is a domain where 

every ideal is principal. The residue classes of elements in R, 

modulo an ideal I, form a ring R/I and the natural map ~ : R 

R/I is a ring homomorphism. In particular k[Xl,.°.,Xn]/I is 

a vector space over k . Given an ideal I, define its radical 

by radI = [aER! a n E I for some integer n ~ O ~ . 

Let G n be the affine complex n-space. If S is a set of 

polynomials in C[ZI,...~Zn] let V($) = [~ E¢ n F(~) =O for all 

F ES] . Clearly V(S) = N V(F) . A subset X E ~n is algebra- 
F ~S 

i__~c if X = V(S) for some S . Note the following properties~ 

(i) if I is the ideal in C[Z] ..... Zn] generated by S then 

V(S) = V(1) , so every algebraic set is equal to V(I) for some 

ideal I ; 

(ii) if [I ] is any collection of ideals, then V(~ Ia) = anV(I ), 

so the intersection of any collection of algebraic sets is an al- 

gebraic set; 

(iii) V(F. G) = V(F)!!V(G) , so any finite union of algebraic sets 

is an algebraic set; 

(iv) if I defines an algebraic set then I = tad I . 

A ring is Noetherian if every ideal is finitely generated. 

In particular the Hilbert Basis Theorem shows that C[Zl,...,Z n] 

is Noetherian. 

Pr__~ective complex n-space C~ n is defined as all lines 

through the origin ~ E ~n+1 Any point z = (Zo, Zn) ~ O 

defines a unique line [kZo~ .... kZn! kE C*] and two points ~, ~' 
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determine the same line if and only if there is a k ~ C* so that 

z i = X z! for all i We let the equivalence class of these 1 

points EZo:Z1:...:Zn] be the homeogeneous coordinates of a point 

in C~ n . A projective algebraic set X is defined by homogen- 

eous polynomials. It is irreducible if its ideal I(X) is prime. 

In that case the residue ring R X = C[Xo, .... Xn]/I(X ) is a domain 

called the homo~enegus coordinate rin~ of X . 

The ring of germs of holomorphie functions in n variables 

at ~ E ~n is denoted ~a " It is identified with the ring of 

convergent complex power series @~z I - a1~...,z n- a n ] . For ~=2 

call the ring simply ~.~ . Note that for any two points ~, _b the 

rings ~a an~ ~b are canonically isomorphic. The ring ~is 

a Noetherian UFD . Its quotient field ~fY~ is the field of germs 

of meromorphic functions at ~ . The units of ~ are holomorphic 

germs not zero at 0 . The ideal i of non-units in ~ is maxi- 

mal and ~ is called a local r ~ .  Note that ~/I ~ C . 

The sheaf of ~erms of holo~or~hic functions in n variables 

is also denoted ,J . For any open set U c C n there is a natural 

identification of the sections F(U,C v) with the ring ~U of 

holomorphic functions over U . For any point a E @n the stalk 

of ~ at ~ is naturally the ring (~a defined above. 

analytic sheaf ~ over an open set U c ~n is a sheaf 

of modules over the restriction ~U . It is finitely generated 

over U if there are finitely many sections of ~ over U which 

generate the stalk ~a a -- " as an Q~ module at each point a E U 

An analytic subvariety X of an open set U c @n is a sub- 

set of U which in some open neighborhood of each point of U is 

the set of common zeros of a finite number of functions defined 

and holomorphic in that neighborhood. Two such pairs (XI,UI) , 
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(X2,U2) are equivalent if there is an open neighborhood W c 

U I 0U 2 so that WOX I = ~ X 2 . The equivalence class is called 

a ~erm of an analytic subvariet~. The ideal of the subvariety at 

a point is defined for the origin by I(X) = [f E (~o I ~ analytic 

subvariety X of U c C n representing the germ X and an analy- 

tic function f E ~JU representing the grem f with f!x ~ 0] . 

A germ X is said to be reducible at ~ if X = X I UX 2 where 

X i are also germs of analytic subvarieties at ~ ; otherwise it 

is irreducible at a . 
u 

An analytic variety is a IIausdorff space V with a distin- 

guished subsheaf ~V of the sheaf of germs of continuous complex 

valued functions on V so that at each point ~ E V the germ of 

V together with the stalk ((~V) a is called the sheaf of germs 

of holomorphic functions on V . A ~oq~hism between analytic va- 

rieties V and V' is a continuous mapping ~ V - V' so that 

~*(~V, ) c ~V ' A point in an ~ualytic variety V is regular 

(simple) if the germ of V at that point is equivalent to the 

germ of C n for some n . The set of all regular points is the 

regular locus of V . It is ~i analytic manifold, not necessarily 

connected or pure dimensional. Its complement in V 

the singular locus and a point on it a ~ingular point. 

is called n on-sin~ula r if the singular locus is empty. 

point ~ is isolated if there is a germ at ~ with no other sin- 

gular points. 

Notice that if V is algebraic in C n then I(V) is fini- 

tely generated, say I(V) = (gl,...,gr) . The Jacobian matrix 

~ ( g l , ' " , g r )  J (v )  = 
~(z1,...,z m) 

has maximal rank, rk J(V) = m- n at regular points and at singular 

is called 

The varie%v 

A singular 

points rkJ(V) < m-n . 
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3.2. Intersections and Covers 

Let V be a non-singular complex analytic surface. The al- 

gebraic intersection pairing 

is defined using Poincar@ duality 

8: H2(V) - H2(V ) • 

For X,Y E H2(V) define the pairing by 

( X , Y )  - (X . Y )  : X ( L Y )  . 

R e c a l l  t h a t  i n  c a s e  V i s  n o t  c o m p a c t  we u s e  h o m o l o g y  w i t h  c l o s e d  

supports in the definition of ~ . 

A map 0~ V' - V is said to be proper if the inverse image 

of a compact set is compact. If ~ is a proper surjective map 

of analytic spaces of dimension n, then there is a positive in- 

teger d and an open subset U c V so that ~-1(v) consists of 

d points for all v E U . We call d the degree of ~ . If V 

and V' are complex surfaces~ ~ is a map of degree d and D I 

and D 2 are elements of H2(V), then (~*(DI) • ~*(D2)) = d(~.D2). 

Let X,X' be curves in a non-singular surface V and x E 

X0X ~ . ~e say that X meets X ~ normall~ at x if there is a 

coordinate neighborhood U of x and local coordinates z I and 

z 2 so that X n U is the locus z I = 0 and X' o U is the lo- 

cus z 2 = 0 . It is well kno~ that if X # X' and (X. X') = I 

then X meets X ~ normally at precisely one point. 

We say that ~ is a finite map if ~ is proper and ~-1(v) 

consists of a finite number of points for all v E V . Suppose 

moreover that ~ is surjective. The set B of points v E V, 

so that ~-1(v) consists of fewer than d = degree~ points, is 
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called the branch locus of ~ . It is well knov~ that if V is 

non-singular then B is the union of a finite number of irredu- 

cible subvarieties each of complex codimension I ("purity of the 

branch locus"). 

Suppose X is a curve on a surface V . If x E X we re- 

call that X is locally irreducibl~ at x if for every suffici- 

ently small neighborhood U of x in V there is a unique irre- 

ducible component of X n U containing x . If x E X then 

there is a neighborhood U of x in V so that XOU = X~ U.. 

.. L!X r , where each X i is a curve ~hich is locally irreducible 

at x . The X i are called the branches of X i ~ x . 

Definition I. Suppose ~ ~ V' ~ V is a finite map of non-singular 

surfaces or curves, B is the branch locus of ~ and ~(v') = 

v E B . Let X i be a branch of ~-I(B) passing through v' (in 

the case of curves this is just v~). There is a neighborhood U 

of v in V and a holomorphic function f in U having a zero 

of order I along B ~ U and no other zeros. Let e(Xi) equal 

the order of the zero of f ~ ~? along X i . This is called the 

ramification index of rp along the branch X i at v' . Now 

v' J~-1(v) e(Xi) : degree c? 

v' E X i 

where we let X i range over all branches of ~-I(B) through v'. 

If there is a unique branch of ~-I(B) through v', we denote 

e(Xi) by e(v') . In this case we get ~ I e(v') = degree ~. 
v, E ~- (v) 

Note that v E B if and only if e(v') ~ I for some v' E~-1(v). 

If X is an irreducible curve on anon-singular analytic sur- 

face V, then there is an open dense subset Y c X with the pro- 

perty that X is locally irreducible at all points of Y . 
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Suppose ~-I(x) = XII~... UX r where the X i are irreducible. 

Then there is an open dense subset Y' of X so that Y' ~ Y , 

Xi 0 -l(y,) is locally irreducible and for any Vl,V 2 EX in~-1(T) 

we have e(vl) = e(v2) . Call this integer e(Xi) , the ramifi- 

cation index of X. over X . It follows immediately from the 
i 

definition of ~* that 

r 

~*(x) = z e(Xi):: i ~ ~12(v ') . 
i= i 

We can use the ramification index to get a useful relation 

between the genus of an analytic curve and the genus of a finite 

cover of that curve. 

Proposition 2. (Hurwitz formula) Le~ ~ ~ X' - X be a finite 

morphism of compact non-singular complex curves. Let 

2gx=dim HI(x,~) ,2gx, = dim HI(x ', ~) . Then 

(2-2gx,) : (degree~)(2-2g x) - Z (e(x')-1) . 
x'EX' 

Proof. Triangulate X so that the points of the branch 

locus are vertices of triangles and no two are connect~by a l-sim- 

plex. The Euler number of the triangulation is 2 - 2g X . It can 

be lifted to a triangulation of X' by means of ~ since outside 

of B the map ~ is a local homeomorphism. This mul~plies the 

number of faces and edges by degree ~ . if x E X is a vertex 

and x ~ B , then there are degree ~ vertices above x . But if 

x E B , then there are degree ~ - Z (e(x')-1) vertices 
~(x'):x 

above x . This proves the formula. 
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3.3. Monoidal Transforms and Resolution of Singularities 

Definition I. Suppose V is an analytic space, ~V is the 

sheaf of holomorphic functions on V and I c ~V is an ideal 

sheaf. The monoidal transform with center I is a pair (~,V') 

with w~ V ~ - V and 

(i) I~P~V , is locally principal i.e. ~v £ V' the stalk 

(I~v,) v is generated by one function, 

(ii) for every ~o : Vo ~ V satisfying "I ~o is locally 

principal" there is a unique d : V ~ V' with ~a=~ . 
O O 

The monoidal transform exists, Hironaka [ I ,p. 129], and is 

unique by (ii). If X is a subspaee of V and I X is the sheaf 

of functions vanishing on X , then the monoidal transform with 

center X is just the monoidal transform with center I x . 

~e can construct the monoidal transform as follows. Suppose 

v E V . Then there is a neighborhood U of v and holomorphic 

functions fo,...,fr on U so that the restriction of I to U 

is generated by fo,...,fr . Let X be the set of common zeros 

of the fi " These functions define a map 

~:U- X ~ C~ r 

by ~(u) = [fo(U):...:fr(U)] . Let 

F c (U-X) x CP r 

be the graph of ~ , let V~ be the closure of F in U x CP r 

and let 

' ~ U ~U : VU 

be the projection map. Then (Wu~V~) is the monoidal transform 

with center IIU . If we choose an open cover [Ui] of V where 

the U i are as above, then the universal property of monoidal 
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V ~ ) piece together to give transforms guarantees that the (~Ui , 
Ui 

(~,V') . Note that if Y is the set of common zeros of the func- 

tions in I , then V - Y is an open dense subset of V and 

-I 
~: ~ (V- Y) - V - Y is an isomorphism. The monoidal transform 

with center [v} is also called the a-transform with center at v. 

Definition 2. Suppose V is an analytic space and X c V 

is the set of singular points of V . We say that ~ : V' - V is 

a resolution of the singularities of V if 

(I) ~ is proper, 

(2) V' is non-singular, 

(3) w induces an isomorphism between V' - ~-I(x) and V - X . 

Remark. It is known, Hironaka [I], that if V is an alge- 

braic surface, then there is a resolution ~ which is a composite 

of monoidal transforms. For an isolated singularity we shall con- 

struct a "canonical" resolution but first we need a definition. 

Definition 3. 

v E V 

tion 

tion 

An analytic space V is said to be normal at 

if for every neighborhood U of v and meromorphic func- 

f on U and holomorphic functions [a i) on U, the equa- 

fn+ & n _ l : ~  " - t +  . • + a 0 o = 0  

implies that f is holomorphic. V is said to be normal if V 

is normal at every v E V . A curve is normal if and only if it 

is non-singular. On a normal variety V the singular locus has 

codimension > 2 . If v E V is a simple point, then v is a 

normal point. For any analytic variety V there is a unique pair 

(~,V) so that ~ : ~ ~ V , ~ is normal and for any normal variety 
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V' and w: V' - V there is a unique map ~ ~ V' ~ ~ with w ~ = 

w' . The pair (w,~) is called the normalization of V . The 

map w is finite and it is an isomorphism over an open dense sub- 

set of V . 

Suppose V is a complex algebriac surface with an isolated 

singular point v . There is a finite sequence of maps 

V i ~ Vi_ = V , V n is non-singu- wi: I ' i = 1,...,n so that V o 

lar; ~i is a normalization if i is even and wi is the monoi- 

dal transform with center at the (isolated) singular points of 

Vi_ I . Thus V n is a resolution of v E V but w-1(V) may be 

rather complicated. 

In order to improve w-1(v) we perform a further sequence 

of monoidal transformations Wn+j: Vn+j ~ Vn+j-1 so that the com- 

posite w = wl "'" Wn+k satisfies 

(*) w-1(v) = Xl ~!..o ~fX r , the X i are non-singular irreducible 

curves, (X i. Xj) = 0 or I for i # j and ~oXj 0X k= 

for distinct i, j, k . 

Let ~i = w1° . . . . .  oW i Then we can choose Wn+~. so that it is the 

monoidal transform with center x E Vn+j_ I where either 

(I) x is a singular point of some component of Cn~j_1(v) 

(2) x is a point of X i 0 Xj and X i and Xj do not meet 

normally at x , 

(3) x is a point of X i q Xj and X i ~ Xj consists of more 

than one point, 

(4) x E X i o Xj n X k , where i, j~ k are distinct. 

Definition 4. Given a resolution ~ of the isolated singu- 

larity v E V , w: ~ ~ V satisfying the conditions of (*) we 
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-I (v) associate a graph F to ~ as follows: To each X i in 

assign a vertex (Ai,gi,mi) where gi is the genus of X i and 

m i its self-intersection number. ~e join A i to Aj by an edge 

if X i meets Xj Let S c be a small sphere around v and 

K : V~S . Clearly w-1(K) is homeomorphic to K and it is the 

boundary of a tubular neighborhood of w-1(v) . Hence K is a 

singular S I fibration over w-1(v) . In fact it is obtained by 

plumbing according to the graph F . 

One can ask if there is a best resolution. 

Definition 5. A resolution ~ ~ ~ ~ of an isolated singu- 

larity v E V is called minimal if for any resolution w' : V'~ V 

there is a unique map ~: V' ~ ~ with w ~ = ~' . Of course the 

minimal resolution is unique. Brieskorn FI~ proved that the mini- 

mal resolution exists if V is a surface. 

Remark 6. There is a simple criterion for a resolution of a 

surface to be minimal. Suppose V is a non-singular surface and 
o 

X c V ° is a compact irreducible curve. Then there is a non-sin- 

gular surface V I and a proper morphism w~ V ° ~ V I so that 

w(X) = v E V I and w induces an isomorphism between V ° - X and 

V I - [v~ if and only if X is analytically isomorphic to CP I 

and (X- X) = -I . This is knov~ as Castelnuovo's criterion. A 

curve X satisfying the above is called exceptional of the first 

kind. A resolution ~ ~ ~ ~ V of an isolated singularity v E V 

is minimal if and only if no component of ~-1(v) is exceptional 

of the first kind. Note that in general if w is the minimal 

resolution, then it will not necessarily satisfy the conditions 

o f  ( . )  . 
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Suppose w: V ~ ¥ is a resolution of a normal singularity 

v E V and w-1(v) = XIU...~!X r , where the X i are irreducible 

curves. Then the matrix A = ((X i • Xj)) is an important invari- 

ant of w . One can see without difficulty, Mumford [I~, that A 

is negative definite, the diagonal entries are negative and the 

off diagonals are > O . It is remarkable that the converse of 

this theorem is true. 

Theorem (Grauert). Suppose V ° is a non-singular analytic 

surfac_~e, X = X I U ...U X r , where X i are compact irreducible 

curves and ((X i. Xj)) is negative definite. Then there is an 

analytic surface V I and a morp_h_ism ~ : v ° ~ v I so that w(X) = 

v E V I and w induces an isomorphism between V ° - X and ~- Iv]. 

It is interesting to note that if V 
o 

not be algebraic. 

is algebraic V I need 

3,4. Resolution and C*-action 

In this section we show that if V is a surface with a C*- 

action,then there is an equivariant resolution ~: ~ ~ V i.e. we 

can choose (w, ~) so that the C* action on V extends to ~ . 

Definition I. Suppose G is a complex Lie group and V is 

an analytic space. An action ~ of G on V is a morphism of 

analytic spaces 

~ G x V  ~ V 

so that ~(gg', v)=~(g,o(gV,v)) and ~(1,v ) = v . 

We shall denote ~(g, v ) by gv when there is no danger of con- 

fusion. Recall that the action is said to be effective if gv =v 

for all v implies g = I . 
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Proposition 2. Suppose a is an action of G o_~n V , 

I c ~V is an ideal sheaf and ~: V' - V is the monoidal trans- 

form with center I . If ~(g)*(1) = I for all g E G then 

ther%is a unique action of G on V' compatible with the action 

o n_n V . In particular if X c V is invariant under the action of 

G and N is the monoidal transform with center X then the 

above conclusion holds. 

Proof. 

of V . 

that if 

V' ~ V' 

that T 

the map 

If g E G then g defines an automorphism c(g) 

The universal property of monoidal transform (3.3) implies 

I is invariant under g there is a unique map T(g) : 

so that N o T(g) = G(g) o N . By the uniqueness we see 

defines an action. To be more precise we must check that 

T: G X V' - V' is analytic. Consider the diagram 

G × V' T > V' 

T 

~ V 

G xV > V  
G 

where ~o = idGX ~ . Let p2~ G x V ~ V be the projection of 

G × V on V . Then ~(g)(I) = I for all g £ V implies ~*(I)= 

p~(I) . Now one can easily check that n ° is the monoidal trans- 

form with center p~(I) . Thus (~ O~o)*(I) is locally principal 

and there is a unique map T ~ G x V' ~ V ~ making the diagram com- 

mutative. This is the same as our T above. 

Proposition 3. Suppose a is an action of G o_~n V . Then 

t h, ere, is a unique extension of ~ to the normalization ~ of V. 

Proof. Just use the universal property of normalization. 
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Proposition 4. Suppose G 

and ~ is an action of G on a surface V . 

following invariant: 

(I) 

(2) 

(3) 

(4) 

is a connected algebraic grou9 

Then ~ leaves the 

an isolated singular point, 

an exceptional curve, 

a singular point of an_3xceptional curve, 

a point x 6 V where two or more components of the excep- 

tional locus meet. 

Proof. Every element t 6 G acts as an automorphism of V . 

Hence if v satisfies any of the above properties, then so does 

tv . But if tv / v then the set of points satisfying that pro- 

perty is positive dimensional and this is impossible. If X c V 

is an exceptional curve and t(X) / X , then V is covered by 

exceptional curves. But there are only a finite number of such 

~urves. 

3.5. Weighted Homogeneous Pqll~omials and Good @*-action 

Definition I. Suppose (w ° ..... v~) are non-zero rational 

numbers. A polynomial h(Z ° ..... Zn) is weighted homogeneous of 

type (Wo,...,wn) if it can be expressed as a linear combination 

of monomials Z l° ... Z in for which 
o n 

i n i° + .+-- I 

W W 
o n 

This is equivalent to requiring that there exist non-zero integers 

qo,...,qn and a positive integer d so that h(tq°zo,...~nZn ) = 

tdh(z o .... ,Zn) In fact if h is weighted homogeneous of type 
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(Wo,...,Wn) then let <Wo,...,Wn> denote the smallest positive 

integer d so that for each i there exists an integer qi with 

qiwi = d . These are the qi and d above. 

Let V be the variety defined by weighted homogeneous poly- 

nomials h I ..... h r with exponents (qo,...,qn) Then there is 

a natural C* action 

a(t,(z o, .... Zn)) : (tq°zo .... ,tqnzn ) 

~le call this action good if it is effective and qi > 0 for all i. 

Proposition 2. Suppose V c @n+1 is an irreducible analytic 

variety and ~ is a ~ood C* action leaving V invariant, 

~(t~(z o .... ,Zn)) : (tq°zo , .... tqnzn ) 

Then V is algebraic and the ideal of polynomials in C[Zo,...,Z n] 

yanishing on v is ~enerated by weighted homo6eneous polynomials. 

Proof. Let f belong to C[Zo~...,Z n} the ring of conver- 

gent power series. We let fi denote the unique polynomials so 

that 

tq°zo qnZn) ~°tifi ( Zn) f( ,...,t : E Zo,..., . 
i=o 

The power series on the right converges for sufficiently small t. 

New suppose f vanishes on V near ~ . Then v 6 V implies 
OO 

E tmf (v) = 0 for all sufficiently small t . Hence fi(v) = 0 
i=o 1 

for all i and all v 6 V near 0 Let f(1) f(r) gen- 

erate the ideal I(V) of all functions in C[Zo,...,Z n] vanish- 

ing on V . Let J be the ideal generated by [(f(J))i ] . Clearly 

J c I(V) . No~ if v I V •As within the radius of convergence of 

(J) ~o that f[J)(v) ~0 Hence f(J) for all j then there is some fi " 

the locus of zeros of J is V and hence the radical of J is I~). Let 
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jT be the ideal generated by ~(f(J))i ) in @[Zo,...,Zn] and 

let I' be the radical of J' . Then I'C[Zo,...,Zn~=radJ=I(V). 

Therefore I(V) is generated by polynomials. 

Now let I'(V) be the ideal of V in C[Zo,...,Zn~ . If 

f E I'(V) then fi E I'(V) . If f is a polynomial, then there 

are only a finite number of integers i with fi # 0 . Therefore 

if f(1),...,f(r) generate I'(V), then the weighted homogeneous 

polynomials [f~J)~ generate I'(V) . 

Proposition 3. If V c C m .is an algebraic variety and there 

is a ~* action o on V defined by a m0rphism a : @*× V ~ V 

of algebraic varieties then 

(i) there is an embeddin~ j: V ~ C n+1 for some n and a @* 

action ~ o_~n @n+1 so that j(V) is invariant and ~ induces 

on V , 

(ii) by a suitable choice of coordinates in C n+1 we may write 

qo qnzn ) ~(t, Zo~...,Zn) = (t Zo,...,t where qi E Z , 

(iki) if the action is fixed point free on V - ~) then we may 

choose qi ~ 0 for all i . 

Proof. (i) is a special case of Rosenlicht [1,Lemma 2]~ (ii) 

is proved in Chevalley rl, expos@ ~i, s@minaire I] and (iii) fol- 

lows from Prill rl]. 

3.6. The Cone 0ver a Weighted IIomo~eneous Variety 

Henceforth we shall assume that V c C n+1 and ~ is a good 

C* action leaving V invariant. 
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Definition 1. 

qo qn -1 
c0(Zo,...,Zn) = (z ° ,...,z n ) and let V' = (V) . 

has a natural @* action defined by 

~(t,(z o, .... Zn)) = (tZo,...,tz n) 

and ~ commutes with the C* action. We call 

over V . Note that V is the quotient of V' 

acting on @n+1 coordinatewise. 

Let co : C n+1 ~ C n+1 be defined by 

Then V' 

(~,V') the cone 

by Eqo×'''X~qn 

Proposition 2. The cone is. a ~enerioally non-sin6ular vari- 

ety, i.e. there is an open algebraic (hence dense) subset U o c V' 

so that if 

I = fi(Zo .... ,Zn)) i = I .... ,r 

is the ideal of polynomials vanishin~ on V and 

gi(Zo, ,Zn) fi(Z~ ° Zn qn) i = I, r 

then 

for all w E U o where s = dim~V . 

Proof. We may assume that V 

dinate hyperplane [Zi= 0] . Now 

generically non-singular i.e. 

/~fi \ 
rank (~-~j} v = n-s+ I 

is not contained in any coor- 

V is a variety, hence it is 

for v 6U,open dense inV. 

Then 
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!% 
5Zk} (Z O,-..,z n) 

/ ~fi )( 

?zj qo nqn 
Z 0 9..,~ z ) 

/5(zqJ~ \ j , t  
"( ~Zk / . 

There exists a point (Zo,...,z n) E V with z i / O for all i , 

so that the matrix on the right is invertible at this point. Hence 

rank \~Zk I ( Z o ' ' ' ' ' Z n )  = n - s + 1  . 

But this property holds on some open algebraic subset and the sub- 

set is non-empty. This proves the assertion. 

3.7. The Quotient of V - [~} b_.yy ~* 

The cone V' above V is defined by homogeneous polynomials 

gl,...,g r . These polynomials define a projective variety X' cC~ n. 

In fact X' is precisely the algebraic quotient of V' - [~} by 

~* . The analogue is true for V , I~umford [2, chapter 2]. 

Proposition I. There is a pro iective variety X and an 

algebraic morphism w : v - [0} - x so that 

(1) 
(2) 
( 3 )  

the fibers of w are precisely the orbits of the action, 

the topology of X is the quotient topology, 

for any open algebraic subset U c X the al~ebraic func- 

tions on U are precisely the invariant functions o B -I(~o 

The map w' : V' - [~) ~ X' has fibers @* . We would like 

to add a zero section to get a map with fiber @ . Let 

r~, c ( v , - [ o ~ )  × x'  

be  t h e  g r a p h  o f  ~ '  ~ l e t  F '  be  t h e  c l o s u r e  o f  F i n  V' × X' 

a n d  l e t  T '  : F '  ~ X'  be  t h e  map i n d u c e d  by  p r o j e c t i o n  on t h e  
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second factor. We have obtained ~' from V' by blowing up the 

origin y' : F' ~ V' Clearly ~'(x') = (O,x') gives the zero 

section of (~',F') This pair is just the hyperplane bundle of 

X' . Now the action of G = ~qoX...x~ on V' induces an ac- 

tion on F' . Let F be the quotient of F' by this action. 

Note that F is just the closure of rw in~-~)XX . The actions 

of C* and G on V' commute, hence X is the quotient of X' 

by G . We have the commutative diagram 

G 
F' >F 

v v /  
G 

X '  > X  

~.here the horisontal maps are quotients by the action of G , ~' 

is the zero section, ~ is the map induced by ~' and , is 

the map induced by ,' . Let y : F ~ V be the map induced by y'. 

3.8. The Canonical Equivariant Resolution of a Surface 

Suppose dimcV = 2 and V has an isolated singularity at 2. 

Then by Proposition (3.6.2) there is an open dense subset U o of 

V' so that every point of V' is simple. Hence there is an open 

dense subset U c X' with the same property. Now (~',F') is a 

line bundle,hence ~-I(U) is non-singular. Clearly G is a fi- 

nite map ramified along a finite number of fibers of T' . Hence 

there is an open subset U I c X so that ,-I(uI) is non-singular. 

Now F -ix(X) is non-singular, hence F has only a finite number 

of singular points along ~(X) , all with neighborhoods of the 

form C2/~ for some a . Let Po : ~7 ~ F be the minimal resolu- 

tion of these singular points. Then the C* action extends to 

(since there is an equivariant resolution dominating ~) . The 
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composite map o ~ ~ Po " y>  . > F V is a resolution of the singu- 

larity of V . We shall say that p is the canonical equivariant 

resolution of V . Since p is equivariant given a small U(1)- 

invariant disk D e at £ , the manifold p-1(D e) is a U(1)-inva- 

riant subset obtained by equivariant plumbing of D 2 bundles by 

the g~aph of p-I(£) . Its boundary, K is therefore a smooth, 

orientable 3-manifold with 81 action and F trSE = ~ . 

The pro2er transform X ° of X c F is the unique irreducible 

curve in ~ so that 0o(Xo) = X . Note that the C* action is 

trivial both on X and X . It is easily proved that the other 
o 

curves of the resolution have no isotropy groups. It also follows 

directly from the fact that the singularity is isolated that X 

and X ° are isomorphic non-singular projective curves. 

1 U U X r where X. Theorem I. Let P- (2) = X o ''" , z 

ducible curve and X is the proper transform of X . 
O 

is an irre- 

Then 

(I) X i is non-singular for_all i , X i meets Xj at no more 

than one point, X i crosses Xj normally at that point and 

XiDXj0X k = @ for distinct i,j,k , 

(2) the action is trivial on X 
O ' 

(3) the action is non-trivial on X i , i > 0 , and gi = 0, i>O, 

(4) F is a weighted star with center A o , 

(5) m. < -2 , for all i > 0 . 
1 

Proof: By (3.4.4) we can perform a sequence of monoidal 

transforms with centers at fixed points of the action so that the 

composite p': V' ~ ~ satisfies 
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(a) the action extends to V ~ 

(b) V' and p ~ p' satisfy (I). 

Let (p o p,)-1(O) = X' !J UX~, and let F' be the graph asso- 
B O , a .  

ciated to 0 o 9' . Now F' satisfies (2.2.2.a) and (X~. X!)l <0 

as noted in (3.3). Finally, if X! and X~ have genus zero~ X! 
l j l 

meets X~j and (X~. X!)l = (Xi " X~)3 = -I then the intersection 

matrix ((X~. Xi) ) cannot be negative definite. Applying (2.2.2) 

' = 0 for ± > 0 and ~' is a weighted star with we see that gi 

center A o' . Thus F' satisfies (I) - (4). Let s be the num- 

ber of m i = -I . We will prove by descending induction on s 

that (I) - (4) are satisfied for any resolution between V' and 

. Suppose X! is a rational curve with non-trivial action and 
I 

(X~ • X!)l =-I Then by Castelnuovo~s criterion (3.3.6) there is 

a manifold V" and a map f~ V' ~ V ~' so that f(X~) is a point 

and f is an isomorphism outside of X~ . Now X!l meets at most 

two other curves~say X~ and X~ . It meets each at one point 

and with normal crossings there. Let Xj = f(Xi) . Then 

XI ' X2 = f*(X1 ) " f*(X2 ) = (X~ +X~). (X~ +X~) = I . Thus XI meets 

X2 normally at one point. Thus V" satisfies (I) - (4). Pro- 

ceeding inductively we see that V satisfies (I) - (4). But 

is a minimal resolution of F, hence (X i. Xi) ~ -2 . This com- 

pletes the proof. 

Combining the above theorem with the results of (2.2) we ob- 

tain the main resolution theorem. 

Theorem 2. The we.ighted graph associated to the can£nical 

eq___uivariant resolution of the isolated s in~ularity of V at the 

orisin is the star of K , S(K) . 

Thus in order to obtain this resolution it is sufficient to 

find the Seifert invariants of K from the algebraic descr~tdznofV. 
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3.9. The Seifert Invariants 

Assume now that V is an algebraic surface with an isolated 

singularity given as the locus of zeros of some polynomials in 

@n+l and it is invariant under a good ~* action. We shall de- 

scribe how to find the Seifert invariants of K . More specific 

results for hypersurfaces in ¢3 are given in the next section. 

I. Finding aj . If all coordinates of a point z = (Zo,...,Zn) 

are different from zero,then z is on a principal orbit since 

qo qn ) zi :'" ( ,..., = I . The point _z in the hyperplane H = { I 

• .=z. = O} with all other coordinates non-zero has isotropy 
I k 

^ qn) group of order a = (qo''''~qi l'''''qi k''''' . The number of 

orbits with isotropy group ~ lying in H equals the number of a 

those components of V 0 H that are not in any smaller coordinate 

hyperplane. 

2. Finding Bj • Let ~ be an orbit of K with isotropy group 

~ , ~ > I . For an analytic slice D 2 in K through x E S we 

can find an analytic isomorphism ~ : ~ = [u C¢ I !u! <I) ~ D so 

that the induced E action ~ on ,~ is a standard linear 

action. For 0 = exp(2~i/a) and for some 0 ~ ~, < a we have 

T(p,u) = p~u . Then G~ ~ I mod a and 0 ~ B < a . (Notice that 

the orientation adopted in Orlik-Wagreich [1~2~ is the opposite of 

this. ) 

3. Finding b . Suppose V is invariant under the good 

action 

and d 

~(t,Zo, o..,Zn) = (tq°zo .... ,tqnzn ) 

is the degree of the cone over V as defined in (3.6). 

Making adjustments for the present orientation convention we oh- 
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tain the following formula 

b = 
d r ~ 

qoq1"''quq j=1 mj 

Rather than repeating the proof as given in Orlik-Wagreich 

[I] we shall only outline the arg,~ment. If V is defined by 

homogeneous polynomials of degree d, then qo ='''= qn = I and 

there are no E-orbits. In this case V - [0} is a C*-bundle 

over X induced by the C* bundle C n+1 - {0} ~ CP n . The latter 

has chern class -I . The fact that X has degree d means that 

the map 

H 2 ( c p n ;  ~ )  ~ H 2 ( X ; Z )  

induced by inclusion is multiplication by d so the chern class 

of the bundle over X is -d and therefore b = d satisfying 

the formula in this case. The general formula is obtained as 

follows. Let ~: V' ~ V be the covering of V by its cone, 

V = V'/G , G = ~qo®...®~q~. and F,X,F~,X ' as in (3.7). Since 

V ~ may have non-isolated singularities the curve X' may be sin- 

gular. Let H: Y~ ~ X' be its desingularization and F = F' ×Y'. 
o X' 

Since F' is a C-bundle over X ~ of degree -d the same holds 

for F ° over Y' and (Y''Y')Po = -d . Let ~ be the canonical 

equivariant resolution and X the center curve. We want to com- 

pute (X. X)~ . First one constructs non-singular varieties W o 

~ and p ~ V I ~ ~ and a and V I and birational maps T: ~o o I 

map ~ : W o ~ V I so that the diagram below is commutative 

W ~ - - >  o o 

v v 
Pl v 1 > ~  ~ > F  
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Here W 
o 

G on Y, c F ° . Then G acts freely on W o 

q u o t i e n t  map. 
J~ JL N 

Let Yo = T~(Y') ' X = ~'7(X) ~ XI = p~(X) . 

map 

is the blowing up of the fixed points of the action of 

and ~ is the 

The degree of the 

is qoql...qn and it is easily seen that 

(qo...qn)(X1"Xl) V = (~X 1 • ~*XI) ~ : (Yo'Yo)w 
0 0 

The second part of the argument shows how the maps Pl and T 

change these intersection numbers. Specifically one proves that 

a n d  

(xl.Xl)vl = (X .~ )V  

r aj-Oj = (Y"Y')~ 
(Yo-Yo)w + qo...qn Z • ~J 

o j = 1  0 

giving the formula as asserted. 

4. Finding g . This computation is purely algebraic. The non- 

singular curve X has arithmetic (and topological) genus Pa(X) = 

dim HI(X,~x ) which is the constant term of the Hilbert polyno- 

mial of the homogeneous coordinate ring, R X . Now X' is de- 

fined by homogeneous polynomials so its coordimate ring~ RX, is 

known. One proves that R X = (R~,) (m) where m = qo...qn and 

( )G denotes the subring fixed by G . There are technical dif- 

ficulties because the ring R~, is not generated by forms of de- 

gree I and therefore the Hilbert polynomial is not defined, see 

Orlik- Wagreich [2]. An alternate method is given in (3.11) for 

hypersurfaces in @3 . 

3.10. Surfaces in @3 

Suppose that V is a surface in C 3 

gularity and admitting a good @* action. 

having an isolated sin- 

It follows from (3.5.2) 
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that V is defined by a weighted homogeneous polynomial, 

h(Zo,Zl,Z 2) . Using the ~* action it is shown in Orlik-Wagreich 

[1] that there is an equivariant analytic deformation of V into 

a surface defined by one of the following six classes of polyno- 

mials 

(1) 

(if) 

(ill) 

(Iv) 

(v) 

(vl) 

a I a 2 
ao + Z I + Z 2 Z o 

a I a 2 
ao + Z I + ZIZ 2 Z o 

a I a 2 
ao + Z 1 Z 2 + Z 2 Z 1 Z o 

a I a 2 
a° + ZoZ + Z Zo I IZ2 

a a I a 2 
Zo°Z 1 + Z 1 Z 2 + ZoZ 2 

a 
° + Z Z o iZ2 

inducing an equivariant diffeomorphism of respective neighborhood 

bounderies of the isolated singularity at the origin. 

Thus it is sufficient to study these six classes of polyno- 
a 

mials. The polynomial ZoO + ZIZ 2 is ~l~lytically isomorphic to 

ao + 2 
Z ° Z 1 + Z so it may be treated as a subclass of I . 

Assuming that the weights equal w i , i = 0,1,2 and they 

are reduced as a fraction to w i = ui/v i , we introduce auxiliary 

integers 

c = (Uo,Ul,U2) 

c o = ( U l , U 2 ) / o  , c I = ( U o , U 2 ) / c  , c 2 = ( U o , U l ) / C  , C l , 2  

Uo/CClC 2 , Co, 2 = Ul/CCoC 2 , Co, I = u2/CCoC 1 Note that Co, 

Cl,C 2 are pairwise relatively prime, Co,l,Co, 2 and Cl,2 are 

pairwise relatively prime and (ei,cj,k) = I if i,j and k are 

distinct. 

The integer d defined as the least common multiple of the u i 

equal s 
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d = 0CoCiC2Co,iCo,2Ci, 2 

and from this we compute qi = d/wi as qo = VoCoCo,lCo,2 ' 

ql = viCiCo,ICl,2 , q2 = v2C20o,2CI,2 " 

I. Orbits with non-trivial isotropy groups are in the hyperplane 

sections. The number of orbits in a given hyperplane section is 

the number of irreducible components of the curve of intersection. 

~or example in class I the subset 

a I a 2 
[z o = O, z I + z 2 = O} N S p 

= ~ci . It consists of has isotropy group ~mo = ~(q1'q2 ) ,2 

n o = (al,a2) = cc° orbits. Similar arguments yield the following 

table where So, al, a 2 are the three possible isotropy groups in 

the three hyperplane sections and no, nl, n 2 are the number of 

orbits in each. 

I 
:I 

[I 

[II 

[V 

V 

s o n o a I n I a 2 n 2 
I 

01,2 i cc° i Co~ 2 
i 

01 ,2 (CCo-1)/V2 'V2Cl ,2 
t 

ci ,2 (CCo-Vl-V2)/VlV2 F~v2c I ,2 
i 

°o,1 ! (c-1)/Vl  ! v2 
1 I v 1 VO ~ 

cc I 0o,1 

I c 
o,1 

1 VlCl, 2 

1 VlCo, 1 
1 v 2 

I 
[ 
I j cc 2 

O 

1 

1 

I 1 
t 

I 

I 

2. In order to compute 8 we note that a sufficiently close 

slice in V maps diffeomorphically onto a slice in K so we may 

consider the former. All orbits in the same hyperplane section 

have the same orbit type since so does the whole hyperplane. Con- 

sider for example an orbit with isotropy group E in class I 
S o 

as above. Let ~ = exp(2~i/~o) . The action of ~ in ¢3 is 
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~(Zo,Zl,Z 2) = (~q°zo,Zl,Z2) . 

Considering the 

action of type 

ence 

z ° plane as a slice the action is the standard 

[ao,qo] and hence Bo is defined by the congru- 

qoBo ~ 1(mod ~o) . 

Notice that this is the orientation convention of (1.1.7) and the 

opposite of that used in Orlik-Wagreich [1,2]. For an orbit on 

the intersection of two hyperplanes, e.g. in class II 

[z o = z I = O, Iz212= 1~ 
a o a I 

the slice at z 2 = I is the curve [z o + z I + z I = O) . This 

curve near (0,0,1) may be "approximated" by changing it by an 

analytic automorphism 

~(Zo~Z I) = (z o+ho(zo~zl), z I +hl(Zo,Zl)) 

where h i E @[Zo,Z1) have all terms of degree ~ 2 . The curve 
a 

[zoo + z I = 0 ~ is an approximation and if g = exp(2~i/al) the 

action in the slice is approximated by 

a ( qOz ° q a a qOzo _z2O ~(Zo,_zoO i ) = ,-~- o o zo °'I) =( ,1). 

So we have Vl = qo and hence 

Blq ° ~ l(mod a I) . 

The table below gives the vj , j = 0,1,2 

Since Bj~j ~ 1(mod aj) and 0 ~ Bj < aj this determines the 

Pj • 
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Vo Vl v2 

I qo ql q2 

II qo qo q2 

III qo qo qo 

IV q2 qo q2 

V q2 qo ql 

3. As we have mentioned earlier b 

b = d 

qoqlq2 j=1 aj 

is given by the formula 

4. Finally the construction of the previous section gives the 

following expression for g , Orlik-\,ragreich [1,(3.5.1);2,(5.4)] 

d 2 d(qo, q I ) d(q I ,q2) d(q2, q o) 
2g = 

qoqlq2 qoql qlq2 q2qo 

(d,q o) (d,q I ) (d,q 2) 
+ - - +  - - + - -  I . 

qo ql q2 

We shall give an alternate way of obtaining this formula 

using the fibration theorem of Milnor [I~ in the next section. 

Pirst consider an example. 

Let a variety V in ~3 be defined by the weighted homo- 

geneous polynomial of class III, h(Z) = Z15+ZIZ 2+Z~z I . It 
O 

has an isolated singularity at the origin. We find w ° = 15 , 

w I = 9/2 , w 2 = 9 , d = 45 , qo = 3 , ql = 10 , q2 = 5 , c = 3 , 

c o = 3 , c I 2 = 5 and the other c-s equal 1 . The locus 
Y 

[z O =0, z~ +z~ =0] 0 S 5 consists of 3 orbits with stability 

group of order a o = (ql,q2) = 5 . There is one orbit 

~Z = = = = = o Zl = Ol 0 S 5 with al q2 5 and one orbit [z o z 2 O)NS 5 
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with a2 = ql = 10 . The 9orresponding ~o = ~I = ~2 = qo so 

8o = 2 , 81 = 2 and 82 = 7 • The formula for b gives b = -I 

and the formula for g gives g = 3 . Thus 

K = [ - 1 ; ( o , 3 , 0 , 0 ) ; ( 5 , 2 ) , ( 5 , 2 ) , ( 5 , 2 ) , ( 5 , 2 ) , ( 1 0 , 7 ) ]  

and the star of K 

is the dual of the graph of the canonical equivariant resolution 

of the singularity of V 

3.11. Milnor's Fibration Theorem 

Let V be an algebraic hypersurface in ~n+1 defined by 

the zeros of a polynomial, V = [~ ! f(~)= O] Let ~ be an 

arbitrary point on V and S ~ sufficiently small sphere cen- 

tered at x Let K = V o S The following fibration theorem 
-- C 

is due to ~ilnor [1]. 

Theorem. The mapping 

from S c-K t_~o S 1 is the projection ma~ of a smooth fiber 
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bundle. Each fiber 

F~ = ~-1(ei~) c S¢- K 

is a smooth ~ara!lelizable 2n-manifold. 

For an isolated singularity there is additional information. 

Theorem. If ~ is an isolated critical point of f then 

each fiber F~ has the homotopy type of a bouquet snv...vS n of 

n-s~heres. Their number, u is strictly positive. Each fiber 

can be considered as the interior of a smooth compact manifold 

with boundary 

closure(F~) = P~ UK 

vqhere the common boundary K is an (n-2)-connected smooth (2n-I)- 

manifold. 

The complement of K in S¢ ~ S c - K is therefore obtained 

from ~ × [0,2w~ by identifying Po and F2~ by a homeomorphism 

h~ F - F, 

called the characteristic map. The Wang sequence associated to 

this fibration is according to I~ilnor FI~8.4] 

h -I 

...~ Hj+I(S ¢- K) ~ HjF :~ *> HjF ~ Hj(Sc-K) 4... 

v~here I is the identity map of F . in case ~ is an isolated 

singularity we can use the information on the connectivity of F 

and K , Alexander duality and Poincar@ duality to see that for 

n ~. 2 the V/ang sequence reduces to the short exact sequence 

h.-I. 
0 ~ HnK - HnF > HnF ~ Hn_ IK ~ 0 . 

Let A(t) = det(tl.-h.) denote the characteristic polynomialof~ 

transformation h. : HnF ~ HnP . 
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If f(~) is a weighted homogeneous polynomial of type 

(We, .... Wn) then Milnor shows furthermore that F is diffeomor- 

phic to the non-singular algebraic variety 

F, : [~  ! f ( £ ) =  ~} 

and the characteristic map h may be chosen 

q gqnzn ) h(z o, .... z n) = (~ °Zo,...~ 

where ~ = exp(2wi/d) In particular h is of finite order di- 

visible by d . Thus the minimal polynomial of h. divides 

(t d- I) and hence it is a square-free polynomial. This implies 

in turn that the rank of the kernel and cokernel of (h.-I.) 

equals the exponent ~ of (t-l) in A(t) . An expression for 

was obtained by Milnor-Orlik [I] in terms of the weights. Let 

w i = ui/v i , i = O,...,n be in irreducible form. Given integers 

ao,...,a k denote their least common multiple by [ao,...,ak]. 

c )n-s lo ~(Wo, . . . .  Wn) = L (-1 
~...,u. 

[ui ° a s 

where the sum is taken over the 2 n+1 subsets {io,...,i s] of 

{ 0  . . . .  ,n} . 

In the case of a surface in C 3 we already know HIK in 

terms of generators and relations. There are 2g free generators 

from the partial cross section to~ether with the generators 

qo,ql,...~qr ,h 

satisfying the relations: 

qo + ql +''" + qr = 0 

qo + bh = 0 

~jqj+ 8jh = 0 j = I, .... r . 

We have 
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The first comes from the partial cross section and the remaining 

ones from the sewings of the solid torus neighborhoods of the b- 

obstruction and the E-orbits. The determinant of the relation 

matrix equals P = b~'1 ''' ar+~la2 "'" ar+'''+a!~2 "'' ~r 

p r 

= b+ Z 
~I ''" ~r j=1 ~j 

On the other hand from the expression for b (3.10.3) we obtain 

r d 
b+ ~ 

j=1 aj qoqlq2 

so we see that p > 0 and therefore the generators qo'''''qr 'h 

are torsion elements of HI K . Thus 

7~(Wo,W I,w2) = rank HIK = 2g . 

Substituting w i = d/q i ~ i = 0, I,2 in ~t(Wo~Wl,W2) yields 

3.10.4). 

Although this proof is correct it is somewhat unsatisfactory 

in that the essential reason for p > 0 is hidden in the proof 

of the formula for b . Examining that proof one observes that 

p > 0 is equivalent to the negative definiteness of the quadratic 

form of the resolution. 

Finally note that this approach is valid only for hypersur- 

faces. Por higher embedding dimensions the algebraic method men- 

tioned in (3.9) has no topological replacement at present. 

3.12. Non-isolated Singularities 

Rather than giving a detailed account of the resolution of 

non-isolated singularities of surfaces with a good ~* action as 

in Orlik-Wagreieh [21 we shall point out the additional difficul- 

ties compared with the isolated case. 
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I. Let 8: ~ - V be the normalization (3.3.3) of V , where 

V c C n+1 is a surface invariant under a good @~ action. We are 

interested in the resolution of the isolated singularities of 

using the methods already developed. The fact that V is given 

with a good @* action is of little help, however, because the 

same may not be assumed of ~ . A canonical equivariant resolution 

of the singularities of ~ may be constructed as follows: Let V' 

be the cone over V in ~n+1 and V'-0/@* = X' cCp n . Let 

~: X' ~ X' be the normalization (resolution) of the projective 

curve X' . Let F' denote the hyperplane (Hopf) bundle of CP n 

restricted to X' . Since the degree of F' is negative Grauert's 

Theorem (3.3) assures that there is a birational map j': ~' ~ V' 

collapsing the zero section. Let F' = ~*(P') and 7' = F' ~ ~' 

be the map collapsing the zero section. Now ~' maps into the 

normalization of V' and it is normal so it is the normalization. 

F' is non-singular and the action of G = Eqo®...@Eqn on F' 

extends. Let F = F'/G , V = V'/G and ~ = F ~ V the induced 

map. Finally let ~: ~ ~ ~ be the minimal resolution of the 

quotient singularities of F . Then p = ~: ~ ~ ~ is the cano- 

nical equivariant resolution of ~ . 

2. Since the action extends~ ~ has an isolated singularity at 

the origin whose resolution is determined by the Seifert invari- 

ants of K . The topology of V at the origin is determined by 

the map 81~: K ~ K . In general K is not a manifold and 

may identify orbits of K, some by maps of different degrees. One 

needs some notation for these objects and an equivariant classifi- 

cation theorem. 

3. The central object is obtaining the Seifert invariants of 

and understanding the map ~ from the algebraic description of V. 
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The isotropy groups of orbits in K are easy to read off. The 

slice at ~ E K may consist of several disks meeting at ~ The 

number of orbits mapping onto the orbit of z is determined by 
u 

the number of orbits of the action of ~ in the slice. If k 

disks of the slice are mapped into each other by ~a" then there 

is one orbit with isotropy group ~/k in K mapping onto the 

orbit of ~ by a map of degree k . The action of ~a/k in the 

individual slice determines ~ (as an invariant of K ). The 

obstruction class b is obtained by the same formula as before. 

The genus g(X) of the non-singular curve X = ~ -Q/@* is ob- 

tained from the arithmetic genus Pa(X) of the (possibly singular) 

curve X = V- Q/@* using the formula 

g(~) = pa(X)- z 3 x 
xEX 

where 5 x is an invariant of the singular point x E X . The 

computations are, of course, harder. They are carried out for 

hypersurfaces of C 3 in Orlik-~Tagreich E2]. 
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4. Equivariant Cobordism and the a-Invariant 

This chapter is a brief extract from the thesis of 0ssa [I]. 

First some general notation is introduced then the basic facts 

about sl-manifolds are given. Next the fixed point free cobor- 

dism group of oriented, closed, smooth 3-dimensional fixed point 

free St-manifolds is discussed in detail. It is shown to be free 

and generators are constructed. An algorithm for finding the co- 

bordism class in terms of these generators from the Seifert inva- 

riants is also obtained. 

Using a fixed point theorem in Atiyah-Singer Ill, an invariant 

is defined for fixed point free circle actions. It is a rational 

function in Q(t) . This invariant is computed for 3-dimensional 

St-manifolds. 

4.1. Basic Results 

All manifolds and bundles are assumed smooth and orientable. 

Given the vector bundles ~I ~ XI ' ~2 ~ X2 define ~I ~ ~2 by 

the V~hitney sum of the pullbacks of the projections Pri: X I ×X 2 

X i , i = 1,2 . as 

~I ~2 = pr~ ~I ® pr~2 

Let G be a compact Lie group, H a closed subgroup and 

(H) = [gHg-1 ! g EG) . A family of subgroups F is called admis- 

sible if H E F implies (H) c P . All families of subgroups 

will be assumed admissible. Let ~n be a G-manifold and assume 

that G is orientation preserving. M is called of type (F,F') 

if p ~ M then G E F for all p E N and if p E 8M then 
P 

G E F ~ for all p E ~M . It is called (F,F')-bounding if there 
P 
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is an (F,F)-manifold W n+1 so that ~,i is an equivariant sub- 

manifold of SW and for every point p E ~W-M , Gp E F' . We 

also call W an (F,F')-cobordism for M Two G-manifolds M I 

and M 2 of type (F,F') are (F,F')-cobordant if the disjoint 

union M 1 + (-M2) is (F,F')-bounding. This is an equivalence 

relation. Denote by ~n(G;F,F') the equivalence classes of n- 

dimensional G-manifolds of type (F,F') and u~.~>(G;F,F') = 

® ~(G;~,F,) 
n 

Let F D P' ~ F" be families of subgroups of G Then 

there is an exact sequence 

. . . .  ~(G;F, F',) ~ ~ a ~" J ~ _ (~;F',F") . . . .  

~h( ;F, ) - %(~;F,~') ~ I 

where i and j are induced by inclusion mud ~ is restriction 

to the boundary. 

A G-vector bundle of dimension (k,n) is defined as a smooth 

G-vector bundle with fiber dimension k over a smooth, closed n- 

manifold. Assume that the total space is orientable and the ac- 

tion of G is orientation preserving. It will be called of type 

(~,H) if 

(i) each isotropy group of the zero section contains a subgroup 

conjugate to H , 

(it) each isotropy group of the associated sphere bundle is in 

- (i) . 

A G-vector bundle ~ of type (F,H) bounds if there is a 

G-vector bundle ~ with oriented total space over a manifold with 

boundary so that ~ is equivariantly diffeomorphic to the restric- 

tion of ~ to the boundary of its base. Two G-vector bundles 

and ~' of type (F,H) are (F~H)-cobordant if the disjoint 

union ~ + (-~,) bounds. Again, (~,H)-bounding is an equivalence 
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relation and the collection of equivalence classes ¢~(G;F,H) 

forms an abelian group under disjoint union. Let ,~[(G;F,H) = 

. 12k+1(G;P,H) 0 follows from the ¢ (G~F,H) Note that ~. = 
k~n 

orientation assumption, e.g. if G is abelian. 

Given a G-manifold M" of type (F,F -(H)) the set of 

points p E N so that G contains a conjugate of H is a clo- 
P 

sed G-invariant submanifold of M - ~ . Let ~ be its normal 

bundle in M . Then ~ is a G-vector bundle of type (F,H) . 

It is easily seen that the map M ~ ~ induces an Q. module iso- 

morphism 

- .>  ® 

k - - 

The inverse map is given by taking the associated disk bundle 

of ~ . 

4.2. Fixed Point Free SI-Actions 

1 
Let Pm be the family of subgroups of S with order ~ m , 

I 
Po~ = ~ F  m a n d  F S a l l  s u b g r o u p s  o f  S . N o t e  t h a t  Nm i n  F m 

S 1 in F S are maximal elements. Let us use the simplified and 

notation 

q'(m) = ~:~n(S1;Fm,~) 

1 )  = 

and similarly 

Cnk(m) , k  1 = Wn(S ;Fm,Z m) 

¢~(SI) = I, nk(SI[Fs,S 1) 

Let M be an St-manifold and H c S I a closed subgroup. 

Define I(H) = [p EM I h(p) = p ~ Vh E H ] Clearly I(H) is an 

invariant submanifold in M . Let N(H) be its normal bundle. 
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We call M an sl-manifold with c qmple~ normal bundles if for 

every H the bundle N(H) has the structure of a complex S 1- 

veetorbundle satisfying the condition that if H I c H 2 then the 

bundle N(HI)II(H2) is a complex S1-8ubbundle of N(H 2) . The 

corresopnding cobordism groups are denoted by ~n(m) , ~(oo) 

and ~(S 1) . Similarly we define complex vector bundles of type 

(m) over oriented S1-manifolds where the operation of S I is 

~ktm~ compatible with the complex structure to obtain the groups Vn ~ j 

of complex k-dimensional vector bundles of type (m) over n- 

manifolds. This yields the exact sequence 

Q . . . .  

.... (m-l) - ~--nCm) " ~}n-2k (~') ~ -I 

Given a complex representation r of Em with no trivial summand 

St-vector we can form the cobordism group Tn(m,r) of complex 

bundles of type (~m~r) over oriented S1-manifolds. Let Rk(~ m) 

denote the set of equivalence classes of complex k-dimensional 

representations of ~ with no trivial summand. Clearly 
m 

~k ,~n(m) = _~ ~nCm, r) 
rER-(~ m) 

Lemma 1. Let r: Em ~ U(k) be a complex representation of 

with no trivial summand. Let ~(r) be the centralizer of 
m , , 

r(~m) in U(k) Then there is a canonical 0. module isomor- 

phism with the singular bordism group of Conn er-Flo~d [I] 

~n(m,r) = On_1[B(S1/~m) xB(~(r))] . 

Proof. Let ~ E ~n(m,r) and let ~ denote the associated 

principal U(k) bundle. Now S I operates on the left on ~ and 
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U(k) on the right on ~ . Let 

' he=er(h) ~ vhE~ } = icE% ~ m " 

Then S I acts on ~ from the left. ~(r) operates as a subgroup 

of U(k) on the right on g and hence on q . Define a left 

action of ~(r) on ~ by Ge = e c -I . ~his_ gives a left action 

of S I x ~(r) on ~ . Define 

! 
A = [(h,r(h)) ! h E ~m" 

a normal subgroup of S I × C(r) . It is easily seen that A is 

exactly the isotropy group of every point of q under the action 

of S I X ~(r) and q is a principal S 1 x ~(r)/A bundle with 

base M/S I defining an element of ~n_1[B(S1x ~(r))/A] and it 

follows that 

S 1 x ~ ( r ) / A  ~ $1/~ mx ~ ( r )  . 

Conversely, given a principal S1/~m x ~(r) bundle ~ over 

~fi/S I, we obtain the principal ~(k) bundle ~ with S I action 

over N by noting that there is a canonical map v ; ~ ×U(k) ~ 

given by (e,~) ~ e~ equivariant with respect to the S I action. 

It is surjective and v(e1,~1) = v(e2,c2) iff ci~ I E ~(r) and 

-I 
e 2 = eIoi~ 2 Thus ~ is the quotient of ~ x U(k) by the 

action of ~(r) given by ~(e,s) = (e~-1,~s) . 

Let ~n " CPn be the Hopf bundle. Then the 0. algebra 

~ (~(k)) is a polynomial algebra generated by the classes 
k * 
[~n ] , 11 ~ 0 . According to Conner-~loyd [2,(18.1)] one has to 

show that if for a k-tuple w = (nl,...,n k) , n I ~ n 2 ~ ...~k~0 

we assoc ia te  the bundle ~w = ~nl $ ' ' ' ~ k  over Pw = Cpn l x ' " xcpnk  

~vith the classifying map fw' then the classes fm.[Pw] E 

H.(BU(k);~) form a ~-basis for H.(BU(k);~) . This is done by 

the usual characteristic class argument. 
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Recall that every complex representation r:~ m ~ U(k) is 

a sum of linear representations. Denote by rj- ~m ~ U(1) , 

j = 1,...,m-I the representation that sends the generator 

exp(2~i/m) of 2Z m to exp j (2wi/m) . Let krj denote the k- 

fold direct sum of rj . Then for some non-negative kl,...,km_ I 

with k1+..°+km_ 1 = k the representation r is equivalent to 

klr 1~... ~km_lrm_ I . Thus ~(r) is isomorphic to U(k I)×... 

~, I 
x U(km_ 1) and since $1/2~ m ~ o , we have from Lemma I: 

~n(m,r) = Qn_I(BS 1 xBU(k I) × ... xBU(km_1)) • 

Since H,(BU(k);E) has no odd torsion,the KGnneth formula of 

singular bordism theory applies~ Cormer-Floyd [2,(44.1)] and one 

obtains the following explicit generators. Let S 2q-I denote the 
m 

(2q-I) sphere [(z I .... ,Zq) E cq ! ~zi~ i= 1} with the ineffictive 

S I action t(z I .... ,Zq) = (tmzl, .... tmzq) . Let ~(J)n denote 

the Hopf bundle over CP n with S I acting by multiplication by 

t j in each fiber. 

~k Theorem 2. ~ (m) = ® ~n(m) is freely generated as an 
n 

module by 

s2q-1 x (~ (jl) ^ -(Jk) 
m in I ® ~ ) .... ~nk 

D 

where q ~ I ; m-1 ~ Jl Z J2 ~'°" Z Jk ~ 1 and n s ~ ns+ I i_~ 

Js = Js+1 

Theorem 3. 

is injective. 

(b) 

(c) 

(a) The canonical 

f~rr , 

module homomorphism 

j : ~(m) ~ ® '~k(m) is surjective. 

~.(m) is freely generated as an O. 
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module b~ 

(Jo)~ (Jl) (Js) 
S( ~no - ~nl ~ @ ~ ) 

. • • • ~ns 

where s > 0 , m > Jo > Jl >''' > Js > I and n o > no+ I if 

Ja = Jo+l " 

Here S ( q )  denotes the sphere bundle of the bundle ~ . 

Proof. If ~I and ~2 are of type (S I) so that every 

isotropy group in S(~1) is ~m and in S(~ 2) of order < m, 

then S(D 1 $ ~2 ) is of type (m) and the normal bundle N(~m) of 

the fixed set I(Em) is equivariantly equivalent to S(~I) × ~2' 

In the exact sequence 

~n " = k , ,  ~ ~n (m_1) .... . . . .  ( m - l )  i ~ ( m )  ~ ® ?n km) ~ -1 
n k 

~(m) is free on the generators given in Theorem 2. The element 

of ~r.(m) 

s(~(m) ~ (Jl)~. * (Jk) 
~q-1 • gn 1 " ~ gn k ) 

maps onto the corresponding generator by the remark above so j 

is surjeetive and by exactness i is injective. Part (c) follows 

from induction on m . 

In particular one obtains the following. 

D_Z 
Corollary 4. ~.(co) is freely generated as an Q. module 

(is) (Jo)@ ~(Ji)~..@ ~ns ) 
S(~n ° ~n I • 

where s > 0 , Jo > Jl > J2 >'''> Js > I and n a _> no+ 1 i_~f 

Jo = J~+1 " 
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4.3. 3-Manifolds 

The cobordism group of 3-dimensional fixed point free 

manifolds is determined as follows. 

Theorem I. ~+3(0o) is free abelian with free ~enerators 

(Jo) (Jl) 
S(~o ~ ~o ) ~ Jo ~ 2JI " 

$I_ 

proof. Consider the relations: 

( i )  [S(5o'(m)~ ~o"(n))l = FS(~(m+n)- -o ~ ~o"(m))] + [S(~(m+n).o ~ ~ n ) ) ] ,  
m,n~1 

. 

The first is obtained from the S I action on CP 2 given by 

= ~ :tm+nz27 observing that the fixed point tFZo~Zl:Z 2 ] _  FZo:tmz 1 

set consists of the three points [I~0~0] , [0:1:0] and [0~0:I] 

and the above are their normal sphere bundles. The second follows 

by noting that S(~ j ) )  = S (~  j)  ~ ~J ) )  and letting m = n = j 
in (i). Thus it follows from (4.2.4) that the image of 

is generated by the above generators. In order to prove that 

is an isomorphism we first claim that ~ is onto. This means 

that every 3-dimensional orientable fixed point free sl-manifold 

has complex normal bundles. This is obvious since these are ori- 

ented D2-bundles over S1 . To show that ~ is injective it is 

enough to show that the generators given in the theorem are linear- 

independent in ~3(0o) Here is ~uq outline of this argument. ly 

Using (ii) it suffices to prove that if Y is an oriented 4-di- 

mensional fixed point free S1-manifold with boundary 
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(Jo (Jl 
S(~o )$ ~o 

BY = Jo~2Jl ajo,j I ) 

j >1 

then the coefficients a 
Jo,Jl 

shown that Y is cobordant to 

(j) 
bj S(g I ) + j~1 

and b .  are zero. First it is 
J 

Y~ where Y' is a fixed point 

free S I- manifold with complex normal bundles and BY = BY' . 

Using (4.2.3a) and a do~ward induction on the orders of the 

isotropy groups one obtains the announced result. 

Next we shall express the cobordism class of an arbitrary 

oriented fixed point free S1-manifold 

M = [b; (o,g,0~0)~ (ai,~i) ..... (~rg~r)~ 

in terms of the generators given above. In order to avoid treat- 

ing the class b separately we shall think of M in the equiva- 

lent presentation 

M = [0; (o,g,0,O);(1,b),(~1,~ I) ..... (ar,~r)l . 

Remove the interior of an equivariant tube consisting of only prin- 

cipal orbits from M and call the resulting manifold-with-boundary 

M' . Let V be a tubular neighborhood of an E-orbit with Seifert 

invariants (a,S) as described in (1.7)~ a > 0 , (a,~) = I but 

B is not necessarily normalized. 

As in (].7) define v and o by 

v~ ~ 1 m o d  a ~ 0 < v < 

= ( ~ - 1 ) / ~  . 

Choose a cross-section on the boundary torus of M' so that the 

action ~&~itten with complex coordinates is 

t(zl,z 2) = (zl,tz 2) 

t E U ( 1 ) ,  !z1! = I , !z2! = 1 
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The action in V is described by 

t(x,z) = (tVx,taz) 

!x! < I , !z! = I . Define the equivariant map 

by ~ ( Z l , Z  2) = (Z lC'Z~,Z~z2P) , 

Its inverse is the map F given in (1.10). Since ~ has deter- 

minant -1 it is orientation reversing and it can be used to ob- 

tain an oriented manifold 

r4 = r 4 ( a , B )  = I4, u v . 

cp 

Let Y = Mx I with M = ~x [0} c Y . Consider the unit ball 

in ~2 

D = [ ( z  1 z 2) E ~2 11 1,2 ~,~ 9 I 

with the U(1) action 

+ lz212 ~ 1} 

and let S 

The map 

t(zl,z 2) : (tvzl,taz2) 

= ~D denote S 3 with the above action. 

x ( x  z) = ( , ,  x z ) 

~ l+xx  ~ l+x~  

defines an orientation preserving equivariant embedding 

i 
D e f i n e  D w = [ ( z  1 , E I Izl ! 2 2 • ,,,o~ z 2 )  :D,J,c~ + lz21 <--{ ]  

and 

l 
Y = D -D~ cD 
+ ~(Z Vg(Z Vg(~ 

Using k sew Y+ and Y_ together along V × [I} c M× [I} to 

obtain a 4-manifold with bo~mdary Y = Y U Y with a fixed 
- X + 

point free S I action. 

The boundary of Y has three companents 51(a,~) = M× {0] cY_~ 
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S ~ = S( (a)~{ v)) and the result of sewing ~ x [I] and S v,~. ~0 ~,~ 

together by k . The latter is obtained by sewing the complement 

of V 

that 

in S a into M' = Z(a,B)- V . A careful analysis shows 

= - - ~o ° 

In order to emphasize the symmetry of the situation we let 

and p = ~ and write the result as: 

, j = ~ '  

Lemma 2. With the above notation the fixed point free 

manifold Y has boundary 

o(~)$ o(~)) ~Y = M ( ~ , B ) - M ( ~ , ~ ) -  S ( %  % . 

S 1 _ 

Noting that 0 < ~ < a the above lemma gives an algorithm 
m 

for representing the cobordism class of an arbitrary fixed point 

S l-manifold in terms of the generators of %(co) given free in 

Theorem 1. 

¢°4. The a-invariant 

Consider the composition of inclusion maps 

Theorem I. The sequence above is exact in the middle. 

Corollar 2 2. If M is a £ixe~ point free S1-manifold with 

no isotropy group of even order s then M bounds an St-manifold. 

Proof. By (4.2.4) im ~ cker i . On the other hand we have 

the exact sequence of (4.1) 
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-~ ~.(S I) -~ ~ Jrk.(s I) ~ ~.(oo) i ~($I) .... 

so it is sufficient for the converse that keri = im~ c im~ . 

This follows because an S1-vector bundle of type (S 1) with 

fixed point set equal to the zero section has a natural complex 

structure inducing the structure of an S1-manifold with complex 

normal bundle on the associated sphere bundle. 

The next result is stated without proof, 0ssa [I, 2.2.1]. 

Theorem 3. coker~ is a 2-torsion group. 

Thus for every fixed point free S1-manifold ~I, a suitable mul- 

tiple 2rM bounds an S1-manifold. This fact will be used to 

define an invariant of the St-action on M, a(M) below. 

Given an S1-vectorbundle ~ over the compact, oriented 

manifold X so that the fixed point set is equal to the zero- 

section X c ~, there is a canonical splitting of 

of complex S1-vectorbundles Ok , k _~ I so that t E S I 

by complex multiplication by t k in the fiber of 

Let nk 
c(~ k) = H (1+ xj(k)) , xj(k) of degree 2 

j=1 
. 

be a formal factorization of the total chernclass c(~ k) EH (X;Q). 

Let i(X) E H*(X;Q) be the total ~ polynomial of X , 

Hirzebruch [2]. Define a rational function ~(~) E Q(t) by 

n k tke2Xj(k) 
~(~) : (~(x) ~ ~ +1)[x] , 

k>o j:1 tke2Xj (k)_ I 

where IX] is the fundamental class of X , [X] E H.(X;Q) . 

into a sum 

operates 

~k " 

Given a closed, oriented S1-manifold l~I with fixed point 

set X , its normal bundle O has a canonical complex structure 

and therefore it induces an orientation on X from the orienta- 
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tion of M . If ~(M) denotes the signature of Mj then a fixed 

point theorem in Atiyah-Singer [I,p.582] implies that 

T(M) : ~(~) . 

Now assume that M is an oriented fixed point free S1-mani- 

fold. For some r we can find an oriented S1-manifold Y so 

that ~Y = 2rM . Let ~ denote the normal bundle of the fixed 

point set of Y and define the rational function 

~(M) = 2-r(T(Y) -~(~)). 

To see that ~(M) is independent of the choice of Y one takes 

Y' , BY' = 2r'M and constructs 

W = (2r'y) !I (-2ry ~) 

to obtain a closed manifold for which the Atiyah-Singer theorem 

applies. The additivity of the signature implies the assertion. 

Remark. Ossa [I]. a(M) may be expressed as a polynomial 

tk+ I 
in k > 0 with coefficients in ~[½] . 

t k - I ' 

It turns out that a(M) is determined up to an additive con- 

stant by the fixed point free cobordism class of M . In order 

to compute a(M) for a fixed point free 3-dimensional S1-mani - 

fold,we first compute a(M) for the generators of %(2) . 

~(m) ~ ~(n) Then Lemma @. Let ~ = 5 o c o . 

t TM + I tn+ I 

t m - I t n - I 

Let D(~) and S(~) be the associated disk and sphere bundles. 

Then clearly ~(D(~)) = 0 and we have: 
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Lemma 5. 

t m + I t n + I 
~ ( s ( ~ ) )  : - 

t m - I t n - I 

Next recall the fixed point free S1-manifold 

tained from M in (4.3) with 

( ~ ) ~  ~(~) )  
~Y : M ( ~ , ~ ) - ~ ( ~ , ~ ) -  s ( ~  o ~o " 

Y = Y(M,a,8) ob- 

In order to find the relation between the a-invariants of M(a,B) 

and M(~,~) it is necesaary to compute the signature of Y . 

Let M = [0;(o,g,O,O); (a1~B1) .... ~(~n_1,~n_1 )] where the (aj,Bj) 

are not necessarily normalized. Direct computation gives: 

Lemma ~. 

where c = 
n-~ 

j=1 aj 

Given the relatively prime pair (~B) 

there is a unique continued fraction 

of positive integers 

a/8 = [ao,a I .... ,ak] = ao _ 1 
a I - 1 

• . 1 

a k 

with a i ~ 2 , as noted in (2.4). The auxiliary variables of 

the Euclidean algorithm are defined by P-I = I Po = ao ' 

Pi+1 = ai+IPi-Pi-1 ' i ~ 0 . Define the rational function 

k ~ tPi-1 
r ( a , S )  = Z (1 - t p i + l  • + 1 )  • 

i=o t pi - I t pi+l - I 

it has the following properties 
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(i) 

(ii) 

r(a,-~) = -r(¢,S) 

r(1,o) = o 

(iii) if (a,B) and (~,~) are given so that 0 < ~ ~ a and 

a~- aB = -I as above,then 

t a t ~ r(a,8) = r(~,~) + I - + I . + I 

t a - 1 t ~- I " 

With this notation the ~-invariant of a 3-dimensional closed, 

oriented sl-manifold is computed as follows: 

TheoremS. Let K = [O;(o,g,O,O);(a1~81),...,(an,~n)} @ 

Then we have 

n n ~. 

Proof. ~e use induction assuming the statement for all 

= ..... with 

m <n or 

m = n and a' < a n or 
m 

m = n and a~ = a n and !p1~ I < I Bn{ . 
m 

We may assume that 8n > 0 for if 8 n = 0 then the conclusion 

follows trivially and if 8n < 0 then we consider -K = [O,(o,g,~O); 

(al,-B1),...,(an,-Bn)} . Let }~ = [O,(o,g,O,O);(a1,81),... 

n-1 Bi Bn 
.. (an_1,~n_l) } , c = ~ __ and an,Bn,~n, as above. Now 

' i=I ai 

using the definition of a on the fixed point free sl-manifold 

Y we have 

a(~Y) = T(Y) 

t an + I t ~ + I 
a[M(an, Sn)] - a[M(~n,Bn)] + -  an ~n 

t -1 t -I 
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Using (iii) above and the induction hypothesis, the assertion 

follows from the simple identity below: 

sign(o+~)(o+~) = t -  sign(~+~)+sign(~+~) . 

Example 8. Let us compute the a-invariant of the 3-mani- 

fold K = [-I;(o,3,0,0);(5,2),(5,2),(5,2),(5~2),(I0,7)} obtained as 

the neighborhood boundary of the isolated singularity at O of 

15 ~4 7 =0] in (3.10) ~irst we the surface V = [z E ¢3 ! z ° + ~+z z I 

shall absorb b in the E-orbit (10,7) and write 

K = [0;(o,3,0,0);(5,2),(5,2),(5,2),(5,2),(10,-3)] . Next 

5 10 I 
"2' = 3-½- and - 3 - =  4 - - ~ _  . Hence  

t3+ I t+ I t5+ I t3+ I 
r(5,2) = I t ~- I t- I +I t 5- I 3_ I 

t 4 t 7 r(I0,3)= I + I t +1+ I + I t4+ I 

t 4- I t- I t 7- I t 4- I 

t10+1 t7+1 
+1 

t I 0 _ I t 7 - I 

5 ~i 2 -3 13 
and E -- = ~ ~-~ = ]-0 so 

i=I ~i 4 " ~ +  ' u  

a(K) = 4r(5,2) -r(I0,3)-I . 
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5. Fundamental Groups 

We noted in chapter I that only some of the Seifert mani- 

folds admit St-actions but deferred the introduction of the re- 

maining ones to this chapter. Using the terminology of Holmann 

[I] given in (5.]),the other Seifert manifolds are described in 

(5.2) and the classification theorem of Seife~t [I] is proved. 

In (5.3) we compute the fundamental groups and use the method of 

0rlik-Vogt-Zieschang [I] to show that if the ftmdamental groups 

of two Seifert manifolds satisfy a condition (in which case they 

will be called "large"),then they are isomorphic only if the mani- 

folds have the same Seifert invariants (up to orientation). This 

gives a homeomorphism classification of large Seifert manifolds. 

In (5.4) we investigate "small" Seifert manifolds (i.e. whose 

fundamental groups are not large) and their homeomorphism classi- 

fication. 

5.1 Seifert Bundles 

Recall that a bundle % = (X,~,Y) consists of a total space 

X , basis Y and continuous onto map ~: X ~ Y . A bundle homo- 

morphism from ~' = (X',~',Y') is a pair of continuous maps 

h: X ~ X' t: Y - Y' making the diagram commutative 9 

X ~ >Y 

~ t  
X' > Y' 

It is an isomorphism if h and t are homeomorphisms. 

Following Holmann [I] we define a Seifert product bundle with 
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typical fiber F as a triple ~xU)/G ,p', U/G} where U is a 

topological space, G a finite group operating on F and U (the 

action on U is not assumed effective) and on F xU by g(f,u) 

= (gf,gu) and there is a commutative diagram 

P 
F×U > U 

(Fxu) /o  P' , > u/o  

cal fiber F , i.e. Y has an open cover 

each i we have a Seifert product bundle 

and a commutative diagram 

where p is projection onto the second factor, × and • are 

orbit maps of the G actions and p' is the induced map. 

We call g = (X,n,Y) a Seifert bundle with typical fiber P 

if it is locally isomorphic to a Seifert product bundle with typi- 

[Vi, i£ I] so that to 

[(F ×Ui)/Gi,Pi,Ui/Gi] 

H i = 

h.l °Xi 

Pi 
F × U i ,> U i 

(F×Ui)/G i l> Ui/G i ti°~i 

- 1  rr 
(v i) > v i 

where (hi,ti) give a bundle isomorphism in the lower square. 

We call G a structure group of the Seifert bundle ~ if 

(i) it contains the finite groups G. above, 
1 

(ii) each non-empty subset of U i U~ = T? I , • (v i n vj) 

nite (unbranched)cover (Uij,~ij) where Uij = Uji 

o o .  = T oo Ti lj j ji ' 

has a fi- 

so that 
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(iii) for V i o Vj ~ ~ there is a continuous map 

so that by defining fij : (f,u) ~ (gij(u)f,u) 

the diagram below is commutative: 

gij: Uij ~ G 

f.. 1j 
× Uij > P × Uij 

Sji I i Sij=Xi°(iF×~ij ) 

h71oh, v 
i 

> i 

If the fiber F equals the structure group G acting on 

itself by left translations, we call it a principal Seifert bundle. 

The following two results of Holmann [I] will be useful later. 

Theorem I. Let ~ = (X,w,Y) be a principal Seifert bundle 

with structure ~roup and fiber G . Assume that X, Y and G are 

locally compact. Then X is a G-space and the orbits of the 

action are the fibers of the Seifert bundle. 

Theorem 2. Let a locally compact topological group G act 

on a locally compact space X so that each g: X - X is a proper 

map and all isotropy groups are finite. Then ~ = (X,w,X/G) is 

a pringipal Seifert bundle wit h fiber and structure group G . 

Corresponding results hold in the differentiable and complex 

analytic cases. 

Example (Holmann [I~.) Let ~ = ($3,~,S 2) 

bundle with total space S 3 and base space S 2 

bits of the St-action on S 3 from (1.5.1) 

be the Seifert 

given by the or- 
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t(zl,z 2) = (tnzl,tmz2) 

where (m,n) = I and S 3 = [(Zl,Z 2) EC 2 I z1~ 2 + z2z 2 = I] . We 

think of the base space S 2 = CP I with homogeneous coordinates 

[Xl:X 2] . The orbit map is then given by 

 (zl,s 2 )  = • 

Consider the open sets in the base space V i = [[Xl:X 2] ECp1!xif0}, 

i = 1,2 . Let U I and U 2 equal the complex numbers with coor- 

dinates Yl and Y2' and G n and G m the corresponding cyclic 

groups of order n and m . Let ~ = exp(2~i/n) operate on U I 

by ~(yl) = ~-my I and ~ = exp(2wi/m) operate on U 2 by ~(y2 ) = 

~-ny 2 . Define the corresponding actions on S I x U i by 

~ (x ,Y l )  = (~x ,~ -my t )  and ~(x ,Y2)  = (-qx,~-ny2) 
S 1 t 

Define T i: U i ~ V i , H i : xU i ~ ~- (V i) by 

n-m 

TI(Y 1) = [(1+Y1~1)'--"2-': y~]  

m-n 

T2(Y 2) = [y~ : (1+Y2~'2) ~ '~ ' ]  

x n xmy I 

Hl(X,y I) = (/i+Yi.~i 'I+~1~ ) 

xny 2 x m 
H2(x,y 2) =  ( i+y32 

' I~2~ 2 

giving the required Seifert diagrams. 

In order to define the action of the structure group we let U12 

= U21 equal the complex numbers without the origin and U~ = 

1 2 
U I - [0} , U 2 = U 2- {0} and define the covers ~12:U12 ~ UI by 

I -n in-m 
a12(Y ) = ym and °21:U21 ~ U2 by o21(Y ) = y !y~ . These 

maps satisfy the condition T2oq21 = Tioc12 . Finally let 
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S I g21(Y) = y l y l  -1 , g12(Y) = y - l l y  [ be maps U12 g i v i n g  r i s e  

to automorphisms f12 and f21 of S I x U12 defined by 

f 1 2 ( x , y )  = ( y - l ! y ! x , y )  , f 2 1 ( x , y )  = ( y ! y I - l x , y )  s a t i s f y i n g  

H2°(islYa21)°f21 = HI °(iSIw°12) 

Remark. If we define U12 = 021 as all complex numbers and 

extend the maps ~12 and c21 to be branched m-fold and n-fold 

covers and consider the locally trivial fiber bundle ~ obtained 

from S I x 012 and S I x U21 by identifying S I × U12 and 

S I ~ U21 using f12' then we see that ~ is a branched mn-fold 

cover of ~ branched along the two E-orbits of ~ . In fact 

= (S3,w,S 2) is just the Hopf bundle, and the equivariant branch- 

ed ccver is described globally by 

n 
z I 

~ ( z l , z  2) = ( 
m 

z 2 
). 

5.2. Seifert Manifolds 

In his classical paper Seifert [I] considered the class of 

closed 3-manifolds satisfying the conditions 

(i) the manifold decomposes into a collection of simple 

closed curves called fibers so that each point lies on a unique 

fiber, 

(ii) each fiber has a tubular neighborhood V consisting 

of fibers so that V is a "standard fibered solid torus". The 

latter is the quotient of D 2 × S I by the action of a finite cyc- 

lic group as in (1.7). 
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The problem is to classify all such manifolds up to fiber 

preserving homeomorphism. In the notation of (5.1) we have 

Seifert bundles ~ = (M,~,B) where M is a closed 3-manifold, 

the fiber is S I and the structure group is all homeomorphisms 

of S I . Since this group retracts onto 0(2) we can restate our 

problem as follows: Classify all Seifert bundl.es ~ = (M,w,B) 

with total space a closed 3-manifold, fiber S I and structure 

group 0(2) under bundle equivalence. The first result is a con- 

sequence of (5.1.1). 

Proposition I. If the structure group reduces to S0(2), 

then ~ is a principal Seifert bundle with typical fiber S I 

M admits an S1-action and the classification is given by 

Theorem (1.10). 

Considering the general case we may use the argument of (1.9) 

to conclude that B is a closed 2-manifold of genus g . Thus 

there are only finitely many open sets V i in the cover of B 

with G i ~ 1 . A refinement of the cover enables us to collect 

all these in an open set at the base point of B Outside of 

this set ~ is a genuine fiber bundle. The structure group 0(2) 

contains reflection of the fiber, i.e. along some curve of B 

(not homotopic to zero) the fiber may reverse its orientation. 

This gives rise to a homomorphism 

: ~ I ( B )  ~ c 2 

where C 2 is the multip]icative group of order 2 , C 2 = {I,-I] 

identified with the automorphism group of ~I(S I) = ~ Here 

~(x) = I if the fiber preserves its orientation along a curve 

representing x and ~(x) = -I otherwise. Select a set of gene- 
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rators for w1(B) . The next result is due to 8eifert Eli. We 

give the proof of Orlik ~13, see also Orlik-Raymond E23 for gene- 

ralizations. 

Theorem 2. Up to 8eifert bundle equivalence there are the 

following six possibilities: 

oi: B is orientable and all generators preserve orientation so 

M is orientable and is a principal 8eifert bundle; 

o2: B is orientable with g £ I and all ~enerators reverse ori- 

entation so M is non-orientable; 

nl: B is non-orientable and all ~eneratgrs preserve orientation 

s_~o M is non-orientable and ~ is a principal Seifert bundle; 

n2: B is non-orientable and all generators reverse orientation 

s_£o M is orientable; 

n3: B is non-orientable with g £ 2 and one generator preserves 

orientation while all others reverse orientation so M is 

non-orientable; 

n 4 : B is non-orientable with g £ 3 and two generators preserve 

orientation while all others reverse orientation so M is 

non-orientable. 

Proof. Clearly ~: ~I(B) - C 2 is determined by the values 

on the generators. We shall show that for an arbitrary homomor- 

phism we can choose new generators of w1(B) so that the induced 

acts on the generators according to one of the maps in the 

theorem. 

If B is orientable and ~ maps all generators into +I or 

all generators into -I, then there is nothing to show. Now sup- 
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pose ~(ui) = -I and ~(uj) = I . 

we may assume ~(Ul) = I . Let j 

9(uj) = I . If 

(i) j is even: let vj_ I = Uj_lU j ; 

for k / j-l,j . 

By renumbering the generators 

be the smallest index so that 

vj = uj_ 1 and v k = u k 

(ii) j is odd (j~3) and c~(uj+1) = I : let vj -I = u~luj -lv 

-I -1 -I = u ~uuT1 1 and vj = uj Uj_lUj_2Uj_lUjUj+ I ; vj+ I 3+ j j j+ 

v k = u k for k / j-l,j,j+1 ; 

j is odd (j ~3) and ~(uj+1) = -I : let vj = ujuj+ I 

and v k = u k for k / j . 

Repeated application of this procedure defines new generators for 

~I(B) so that ~ sends every generator into -I . 

A similar argument holds if B is non-orientable. If all 

generators are mapped into +I we have a principal bundle, n I . 

If all generators are mapped into -I we have an orientable total 

space, n 2 . Now suppose that some generators preserve orientation 

and some reverse it. Let ~(Ul) = -I and ~(u2) = ~(u 3) = ~(u 4) 

= I . The following change of basis reduces the number of orien- 

tation preserving generators by two: 

-1 -1 -1 -1 -1 -1 -2  -1 
v I = UlU2U 3 ; v 2 = u 3 u 2 u I u 3 u 2 u3u 4 u 3 u 2 u 3 ; 

-1 2 - 1 - 1  2 2 2  
v 3 = u 3 u2u3u 4 , v 4 = u 4 u 3 UlU2U3U 4 ; v i = u i for i > 4 . 

Repeated application of this map gives n 3 or n 4 . 

To show that the six bundle equivalence classes are indeed 

distinct is trivial in all eases except for n 3 and n 4 . Here 

we abelianize w1(B) and notice that the image of UlU2...Ug is 

the unique element of order 2 in HI(B;Z) . This element com- 

mutes in n1(M ) with the homotopy class of a typical fiber for 

odd g only for n 3 and for even g only for n 4 . 
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Using the proof of the classifJcation theorem (1.10) for 

3-manifolds with St-action and F USE = ~, we obtain the follow- 

ing classification theorem of Seifert [I]. 

Theorem 3. Let ~ = (}~,w,B) be a Seifert bundle with typi- 

cal fiber S I structure ~roup 0(2) and total space M a 
9 

closed 3-manifold. It is determined up to bundle equivalenqe 

(preservin~ the orientation of M or B if they have an~) b$ the 

followin~ Seifert invariants: 

N = [b;(E,g);(¢l,£1) , .... (ar,5r)] . 

Here 

of the 

E is one of Ol,O2,nl,n2,n3,n 4 denotin~ the weighted map 

2-manifold B of ~enus g described in Theorem 2; th__~e 

(aj,~j) are pairs of relatively prime positive integers 

0 ~ Bj ~ aj for E = oi,n2, 

0 ~ ~j ~ aj/2 for E = o2,nl,n3,n4; 

and b is an integer satisfyin~ the conditions 

b E E for E = ol,n 2 and 

b E E 2 for E = o2,nl,n3,n 4 unless aj = 2 for some j 

which case b = 0 . 

in 

Note that M is orientable if E = ol,n 2 and a change of 

orientation gives the Seifert invariants 

-M = [-b-r;(E,g);(~1,~1-~1),...,(ar,ar-Br)] . 

5.3. Fundamental Groups 

The fundamental group G = ~I(M) is generated by the "parti- 

al cross-section" qo'''''qr and a 1,b 1,...,~g,bg if B is ori- 
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entable or Vl,...,Vg if B is non-orientable and the fiber h . 

The relations are given by:the commuting relations of h with 

the other generators, the null homotopic curves in the E-orbits: 

qj3h 3a- 8. = I , the relation on the "partial cross-section" qo~. =I 

where ~. = ql...q~1,bl]...[ag,bg] if B is orientable and 

2 2 if B is non-orientable, and the relation w. = ql...qrVl...Vg 

qo hb = I , which we eliminate by substituting qo = h-b " Thus 

for orientable B we have 

h , : , . . . . . .  :h , G [a I bl ' ,ag,bg,ql, ,qr,hl aih~ ~ ¢i bihb~1= ci I 

qjJh J = I, ql...qr[al,bl]...[ag,bg]=hb} 

°I: ¢i = I for all i , 

02: e i = -I for all i ; 

and for non-orientable B we have 

vihv~ I ci ~J 6J I , G = I v  I . . . . .  V g , q l ,  . . . .  q r , h  i = h , q j h q ~  1 = h ,  q j  h : 

ql "'qrV~ v2 = hb} • oe • g 

n1: ¢i =I for all i , 

n2: c i = -I for all i , 

n3: ~I = 19 ci = -I for i > I , 

n4: Cl = ¢2 = I, e i = -I for i > 2 . 

We call M small if it satisfies one of the conditions 

below: 

(i) 01 , g = 0 , r < 2 , _  

I I I 
(ii) 01 , g = 0 , r = 3 , ~-~+--+~ > I 

a2 ~3 

( i i i )  [ - 2 ; ( O l , 0 ) ;  ( 2 , 1 ) , ( 2 ~ 1 ) , ( 2 , 1 ) , ( 2 , 1 ) ]  

(iv) 01 , g = I , r = 0 , 

(v) o 2 , g = I , r = 0 , 
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(vi) n I , g = I , r _< 1 , 

(vii) n 2 , g = 1 , r _< 1 , 

(viii) n I , g = 2 , r = 0 , 

(ix) n 2 , g = 2 , r = 0 , 

(x) n 3 , g = 2 , r = 0 , 

otherwise we call M large. 

We shall assume in the remainder of this section that M is 

large and prove following Orlik-Vogt-Zieschang [1] that the 

Seifert invariants of M are determined (up to orientation) by 

~I(M) . Small Seifert manifolds will be treated in the next 

section. 

Lemma 1. The subgroup generated by h is the unique maximal 

cyclic normal subgroup of G and h has infinite order. 

Proof. Consider the following groups: 

C i = [qi ,h I qihq~ 1 =h, qi h = I} 

~. ci} 
D i : [ai,bi, laihai I : h bihb 1:  

The subgroup generated by h is infinite cyclic and normal in 

each of these groups. We form the iterated amalgamated free pro- 

duct along (h) to cbtain G as follows: 

(i) for orientable B and r > 3 we take 

* C 2 C1 (h) 
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and note that h and qlq2 form a free abelian subgroup of rank 

2. Taking 

C3(~)C 4 ~)... (~)Cr(~)D1 ~)... ~)Dg 

we find that h and (q3...qr H [ai,bi]h-b)-I also form a free 

abelian group of rank 2 so we can amalgamate along these subgrcups. 

A similar argument shows the assertion for all classes except for 

g = 0, r = 3, ~i +~o+ I < I I r = I and 02, g = 01 , -- __ ~--~_ , 01 , g = , 

I, r = 1 , where there are not enough "parts". For these cases 

we note that the quotient group G/(h) is a planar discontinuous 

group and has no cyclic normal subgroup, 

(ii) for non-orientable B the above argument works for all 

large Seifert manifolds. This completes the proof. 

~e should remark here the following well known fact. 

Proposition 2. Let K be a closed 3-maz:ifold. I__f K i__s 

0rientable~ let K' = K if not~ let K' e~ual the orientable 

double cover of K . Suppose that w1(K') is infinite, not cyc- 

lie and not a free product. Then K and K' are aspherical and 

Wl(K) has no element of finite order. 

From this follows immediately: 

Proposition 3. A large Seifert manifold M is a K(G,I) 

space. 

We shall see later that it follows from Waldhausen [I] that 

they are also irreducible 3-manifolds. 

Given the planar discontinuous group D defined by {q1''" 

..,qr,al,bl,...,~g,bg I qjJ = I, ~i...~r[~1,bl]...[~g,bg]= I} or 

,~g _ a  - -2 . . ~ :  1~ 
[91 . . . .  , q r , V l , . . .  I q j J  = 1, ~ l . . . q r V l  . 
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We define free groups D with generators ~I,...,Qr,A1,BI,... 
_ _ 

..,Ag,Bg or I .... ' r' 71 ..... ~g and words in these groups 

• - V2 
5. = QI...Qr[AI,BI]...[Ag,Bg] or ~* = QI" "Qr I"" 

~2 Define a homomorphism D ~ D by mapping capital letters • • g • 

into lower case letters. Let ~(x) = w(X) = I if we have an ori- 

entable fundamental domain and ~(x) = w(X) = ±I according to 

whether the ~i (or Vi) occur an even or odd number of times in 

(or ~) . 

Define the group G as either 

Cl,BiHB~1 H I,QjHQjl=H} [ Q 1 , . . . , Q r , A 1 , B l , . . . , A g , B g , H I A i H A 1 1 = T  H = or 

[Q1,...,Qr,V1,...,Vg IViHV~I = HCi,QjHQ~ I = H} where the c i are 

the same as in the definition of G . Let H. be as above (with- 

out bars) and define the homomorphism G ~ G by sending capital 

letters to lower case letters. The map ~ is defined as above 

for G and G , i.e. w(x) = ~(X) = I for x E G and X E 

if B is orientable and ~(x) = ~1 (w(X) = ±I) according to the 

parity of the number of times v i (V i) occur in x (X). 

The next result is due to Zieschang [I]• 

Lemma 4• Every autgmorphism A of D is induced by an 

automorphism A of D with the property that: 

A(Qi ) = M i Qv i 

~(~ . )  : ~ ~ ~-1 

t where is a permutation with = ~i and w(Mi)~i = 
I •Vr avi 

w(M)~ : C = !I 

This allows us to prove the following: 

Theorem 5. Let M and N' be large Seifert manifolds and 

I: G' ~ G an isomorphism. Then we have 
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, X. ~i -I 
I(qi)= h lmi qvi mi 

where is a permutation and w(mi)Ci = p = ~1 . The 
1 " Vr - -  

map I is induced by an isomorphism of the ~roups I: G' ~ 

where 
~i M71 i(Q.~) = H xi M i Qvi 

i(~;) = H k N II~ M -I 

r 
and ~(M)~ = 0 Moreover k = ~ ki+ 2a where o = 0 for 

i=I 
= 01 o_~r n 2 . 

Proof. Since (h) and (h') generate characteristic sub- 

groups,the isomorphism I induces a commutative diagram: 

0 .... > (h') > G' > D' > I 

"~ 111 ~ ! ~ I O 

0 > (h) > O , ,> D .> I 

Next define an inclusion map ~: D ~ G by Qi " Qi ' ~i " Ai ' 

Bi " Bi ' ~i ~ Vi and consider the diagram below where Io is 

defined to induce I by lemma 4. 
o 

. T  l r  

I 

t 

v / 
g 

1!~ ' 

/ 
/ 

/ 

> D' 

-~I o -~ 

> ]} 

\ 

\ 

\ V  

> 5 

\ 

G' 

a ~ 

.... ^ 

@ 

o 
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Considering the solid arrows only this diagram is commutative. 

We want to lift the isomorphism I to an isomorphism I of the 

"^" groups. Let ~ and q' send capital letters to lower case 
^ 

letters. We can construct generators for G' from generators of 

using the composition J = ~Io~'O In order to make the whole 

diagram commute (apart from ~), we note that the difference between 

I~' and qJ lies in the kernel of ¢ , (h)° Now suppose that X' 

is a generator of G' and 

hk(X')~ J (X') = Iq'(X') . 

Define I by 

I(X') = Hk(X')j(X') 

I ( H ' )  = H 5 

w h e r e  I ( h ' )  = h 6 a n d  6 = ~1 f r o m  11 a b o v e ,  

T h i s  m a k e s  t h e  d i a g r a m  

o > ( ~ ' )  , > ~ '  > ~ '  

o > ( i )  > ~ -> 5 

> 1 

> 1 

commutative so I is an isomorphism. It follows from lemma 4 

-~i -- 
that Io(Qi ) = Mi Q~i Mil 

~o(~)  = ~ ~ ~-1 

w i t h  w ( ~ i ) C  i = w(~)~  = p . 

Letting k i = X(Q~) , k = X(H~) , ~(~i ) = M i , ~(M) = M we have 

I(Q!) = H ki M Q~i - z i vi Mil 

I(H~) = H X N ~  M -1 

It remains to prove the last statement. For orientable B we 
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have 

H-X~(H$) = J(H$) =J(Q~)...J(Q~)[J(A~),J(B~)]...[J(A~),J(B~)] = 

H-XI~(Q~)...H-Xr~(Q~)[H -X(A~) 
-X(AA)  ̂ -x(B~) 

[~ ~ !(Q),H ~ ~(B~)] . 

-x(B~) 
:(A~),H i(B~)]... 

If A! and B! commute with H' then so do i(A') and i(B') 
l 1 i i 

r 
and their commutator equals [!(A'),I(B:)]I_I ' thus k = Z k i . If 

i=I 
A'. and B' anticommute with H' 
1 1 

tor equals 

-2X(AI)-2X(B i) ^ r 
H r I(A'.),I(B!)~ so k = Z  ÷2o. 

I I i= I 

then the corresponding commuta- 

For non-orientable B a similar argument works. 

This leads us to the following homeomorphism classification 

theorem for large Seifert manifolds. 

Theorem 6. Let M and M' be large Seifert manifolds. 

The followin~ statements are e~uivalent: 

(i) M and M' are eguivalent Seifer~ bundles (possibly after 

reversin~ the orientation of one), 

(ii) M and M' are homeomorphic, 

(iii) N and M' have isomorphic fundamental groups. 

Proof. Clearly (i) ~> (ii) ~---> (iii). Assume that we have 

an isomorphism I: G' - G . Assume moreover that the permutation 

of theorem 5 is the identity. By lemma I we have an induced iso- 

morphism Io: G'/(h') - G/(h) between non-euclidean crystallogra- 

phic groups. This shows that B' = B , g' = g , r' = r and 

a~ = ~i " Also by lemma 1 I(h') = h 8 with 5 = ~I . Applying 
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aih,Bl to the relation q~ i = I according to theorem 5 gives 
1 

k i C. '5 ai~i I Xi~i+8 ' 
I = (h miqilm~1)aih 8i = miq i m~ h Bi = 

-8i~ i lhXiai+8 ' _c(mi)~iSi+Xiai+88~ mih m~ 8i = h 

where for x ~ G we let e(x) = ±I according to whether x com- 

mutes with h or anticommutes with h . Since h has infinite 

order 

-e(mi)CiSi+ kiwi+ &gl = 0 . 

For 01 and n 2 we have e(mi) = m(mi) so c(mi)~ i=~(mi){ i= p. 

Thus 

= 5 ' B i o 8 i + plia i 

and if 05 = I then the condition 0 < S i < a i implies that 

X i = 0 while if o5 = -1 we get &k i = -I . Substituting these 

values we have S i = S' = - ' i or Si ai Hi for all i . For the 

! 

other classes the condition 0 < ~i j ~i/2 implies that 8i =Hi 

and k. = 0 for all i . 
1 

Finally we need a similar computation for b : 

w$h,-b ~ -I~-5b' I = I( ') = hkmw. m n = 

hXmhCbm-lh -6b' = hX+c(m)~ b-Sb' 

and since h has infinite order 

k +c(m)Cb-Sb' = 0 . 

For o I and n 2 we have c(m) = ~(m) , o(m)~ = 0 

so r 
E X i+ ob- 6b' = 0 

i=I 

if p6 = I then k i = 0 and b = b'; if p8 = -I then 8k i= I 

and b = -b'-r as required. 

For the other classes k i = 0 

b = b' . 

r 

and k = E k r 
i=I 

and k = 2~ but b,b' 6 ~2 so 

This completes the proof. 
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5.4 Small Seifert Manifolds 

This section is based on 0rlik-Raymond [27. 

(i) The manifolds oi, g = 0, r ~ 2 (lens spaces). 

Since these manifolds all admit S1-aetions we can use the equi- 

variant method of chapter 2 to identify them. The manifold 

L(b,1) = [b;(o1,0)] was discussed there. The standard orienta- 

tion gives S 3 = L(-I,0) = L(1,1) aud we note that L(0,1) = 

S 2 x S I . 

The ma&ifold [b;(Ol,0);(~,£)] is identified similarly. 

By lemma (2.2.3) it is the boundary of the linear plumbing accord- 

ing to the graph 

- b  . . .  - b  -b-1, -b  1, . . 2 . . . . . . . . .  , s  

where ~- 3 = Ebl'''''bs] ° According to lemma (2.2.1) the result 

of this linear plumbing is L(p,q) where 

2q = rb+ l ,b  1 -  , .  . .  ,b  s ] = b +1 a.1 _ & ( b + l ) ~ - ( ¢ - 6 )  = b~+~ 
~ - 6  

so we see that {b;(Ol,0);(~,~)] = L(b~+~,~) . 

For r = 2 we apply the same argument: [b;(Ol,0);(a1,B1),(a2,~2)] 

is the boundary of the equivariant linear plumbing 

- b l  - b l , s  1 - b l  1 - b - 2  -b2  1 . . . . . .  b 2 , s 2  
, ' S l  ~._ 1 _ _  -_  , . . . . . . . .  ' , _ _ _ + _ ~  . . . . .  

~1 ~2 
where ~1 ~-----~ [b1'1'''''b1 ] and - -  = ,b2,s2 ]. - = 'Sl ~2-~2 [b2'I'''" 

It is L(p,q) with 

q = [bl,sl,...,b 1,1,b+2,b2,1,...,b2,s2] . 

First we note that the result of a reverse plumbing 

-b -b I 
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is determined from the product of matrices 

(-lbl :)~10 :),,, i: 10)(bl ~ )=s  t~-PS-lps -P's,1),,s 

and by induction 

PS = PS ' P's = Ps-1 ' Ps-1 = Ps ' = PS-1 
Thus we have for the determination of L(p,q) using (2.2.3): 

ala 2 +aiB2 + a2~ I 

where m = -by I - v I - Pl ' 

~lt~ 01/¢~1-0c1\0~ 1 

.) 
m e  2 - n ~  2 

n = -V I 

-P 11 = -~1 

satisfy the condition 

ma I -n(b~l+~1 ) = I . 

The manifold is L(p,q) with p = b~la 2 +~i~2+ a2B I and 

q = mm 2 -n~ 2 • 

The mutual homeomorphism classification of these manifolds 

is given by the well-known classification of lens spaces: L(p,q) 

and L(p',q') are homeomorphic if and only if !P! = !P'I and 

q ± q, m 0 mod p or q.q, ~ ~I (mod p) . The fact that they are 

not homeomorphic to any other Seifert manifold will follow once 

we have proved that they are the only ones with finite cyclic fun- 

damental groups. 

(ii) The manifolds oi, g = 0 , r 3 , 11 ~2+~3 = + - - > I .  

There are only four possible sets of ~i satisfying these condi- 

tions called the "platonic triples": (2,2,a3), (2,3,3), (2,3,4) 

and (2,3,5) . They have finite, non-abelian fundamental groups 
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and will be discussed in detail in the next chapter where we 

shaLl also show that those with (2,2,~3) called "prism manifolds" 

are homeomorphic to manifolds n2, g = 1 , r ~ I . Note that (h) 

is in the center of NI(M) and 

a 1 a 2 a 3 
~i (M)/(h) = {ql,q2,q3!qlq2q3=ql =a2 =q3 =I] 

has no center so (h) is the whole center and the ~j are in- 

variants of w1(M ) . The order of HI(M;E) 

= Ibala2a 3+ ~i~2a 3+a1~2a 3+mla2~31 P 

is sufficient to distinguish the manifolds with given (al,a2,a3) 

up to orientation. Since we shall see that the only other Seifert 

manifolds with finite fundamental groups are the lens spaces and 

the prism manifolds, their homeomorphism classification is com- 

pleted. 

(iii) The manifold ~ = {-2;oi,0); (2,1),(2,1),(2,1),(2,1)) 

is homeomorphic to M' = [0; (n2,2)~ . This is seen by noting 

that the orientable S I bundle over the I~Ioebius band is homeomor- 

phic to the manifold obtained by sewing two E-orbits of type 

(2,1) into a fibered solid torus. Doubling the former by an ori- 

entation reversing homeomorphism gives M' . Doubling the latter 

by an orientation reversing homeomorphism gives 

[0; (Ol,0),(2,1),(2,1),(2,-I),(2,-1)] = M . We shall see in chap- 

ter 7 that M fibers over S I with fiber the torus and the self- 

homeomorphism of the fiber is of order 2 . It turns out that I~ 

is a flat Riemannian manifold doubly covered by S I x S 1 x S I and 

the covering can be made equivariant with respect to the S I ac- 

tion on M , see chapter 8. 

The other small Seifert manifolds are easily seen not to be 
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homeomorphic to each other or any of the large ones with the ex- 

ceptions mentioned below, compare Orlik-Raymond [2q. We shall 

briefly mention their special properties and return to them in 

chapter 7. 

(iv) The manifolds 

(v) The manifolds 

over S I . 

(vi) The manifolds 

[b; (o1,1)) 

[b; (o2,1)) 

are torus bundles over S I . 

are Klein bottle bundles 

nl, g = I , r ~ I give rise to the dif- 

ferent S I actions on p2xS 

bundle over S I . 

I and N , the non-orientable S 2- 

(vii) The manifolds n2, g = I , r ~ I . Here M = [0;(n2,1)] 

is seen as the result of taking S 2 x I fibered by intervals p ×I 

and collapsing each boundary component by the antipodal map. The 

sphere S 2 x [½] decomposes M into a connected sum of two real 

projective spaces, M =]RP 3 #~p3 . The other manifolds are homeo- 

morphic to the prism manifolds of (ii) and will be treated in de- 

tail in the next chapter as orbit spaces of finite groups acting 

freely on S 3 

(viii) The manifolds {b; (ni,2)] 

bottle bundles as under (v). 

(ix) The manifolds [b; (n2,2)] 

distinct from (iv). 

are the same two Klein 

are torus bundles over S I 

(x) The manifolds 

1 
bottle bundles over S 

[b; (n3,2)~ are the "other two" Klein 

not obtained in (v) and (viii). 
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6. Free Actions of Finite Groups on S 3 

There has been no significant progress in the problem of 

finding all 3-manifolds with finite fundamental group since the 

results of H. Hopf [I] and Seifert and Threlfall [I] determining 

orthogonal actions on S 3 . These articles are somewhat difficult 

to read and the object of this chapter is to present old knowledge 

with new terminology. The basic theorem of section I is that if 

G is a finite subgroup of S0(4) acting freely on S 3, then 

there is an action of S I on S 3 commuting with G so that the 

orbit space S3/G is again an S1-manifold. Thus the orbit spaces 

of orthogonal actions are S1-manifolds with finite fundamental 

groups. These are discussed in section 2. In section 3 we list 

following Milnor r2] the groups that satisfy the algebraic condi- 

tions for an action but do not act orthogonally. 

The intriguing fact remains that if one could find a 3-mani- 

fold with finite fundamental group not homeomorphic to one listed 

above, then either it would be the orbit space of a non-orthogonal 

action on S 3 or its universal cover would provide a counterex- 

ample to the 3-dimensional Poinear@ conjecture. 

6.1. Orthogonal Actions on S 3 

In order to understand the structure of finite subgroups of 

S0(4) that can act freely on S 3, we shall decompose S0(4) . 

It is useful to think of S0(4) both as a group of orthogonal 

transformations of R 4 and as a matrix group of 4 ×4 real or- 

thonormal matrices. It is clear that the maximal torus of $0(4) 

is T 2 = S0(2) × $0(2) and the center is generated by the identity 

map e and the antipodal map a = -e . Let C = [e,a] denote 

the center of S0(4) . 
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Lemma I. The following sequence is exact: 

i P 

Proof. From Lie group theory we have that Spin(4)/center = 

S0(4)/C = Ad Spin(4) = Ad(Spin(3) × Spin(3)) = Spin(3)/center × 

Spin(3)/center = S0(3) × S0(3) . 

In order to gain geometric insight we shall now give a direct 

proof. Consider the maximal torus T 2 given by the matrices 

l 
os ~ -sin ~ 0 0 

0 cos ~ -sin 

0 sin ~ cos 

The subgroup generated by all 

0 < r# < 2st 

0 < ~  < 2 r r  . 

l-dimensional circles ~ = ~ is 

called right rotations, R The subgroup generated by ~ ~ -~ 

mod 2w is called left rotationR , L . Note that ROL = C and 

abstractly R~L ~ S 3 . Every element g E S0(4) is decomposed 

into a right and left rotation but this decomposition is only de- 

fined modulo a . Moreover, every right rotation commutes with 

every left rotation and vica versa. Specifically, if we choose 

coordinates so that g is given by the matrix above, then for 

some right rotation by Xr and left rotation by XI we have 

= Xr+Xl +2kw 

= Xr- XI+ 2k'~ 

and hence 

X r = ~(~+¢) + (k+k')~ 

~-I = ½(~-~) + (k-~,)~ 
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are the possible choices of angles for right and left rotations. 

Thus g can be decomposed into two pairs (Mr,X1) and 

(Xr+W,Xl+W) differing by the antipodal map. In order to elimi- 

nate this indeterminacy we construct double covers 

Pr: R ~ S0(3) and Pl: L ~ S0(3) as follows: 

Given a vector v in R 4 and a right rotation r by the angle 

Mr, there is a unique plane through v rotated in itself by r . 

There is also a unique left rotation 1 rotating the same plane 

by X 1 =-Mr so that the rotation rl leaves v fixed. It ro- 

tates the R 3 perpendicular to v by an angle Mr Xr-Xl 2Mr" 

The same construction applies for left rotations. 

Thus if g 6 S0(4) is determined in a suitable coordinate 

system by the angles 

be identified by two 

where 

, ~ ~ + 
X r 

(~,@), then its image in S0(3) × SO(3) may 

R 3 rotations (X~,Xi) fixing a given vector 

, ×~ ~ ~-@ (mod 2w) . 

Lemma 2. If 

M r' ~ XI' ~ W (mod 2w) 

then both g and ag have fixed points on S 3 . If 

' ~ + ' (mod 2w) 
X r -X I 

then either g o_rr ag has fixed points on S 3 . If neither 

e qngruence holds then both g ~ud ag are free on S 3 . 

Proof. Recall that ~ ~ Mr+M1 (mod 2w) and ~ ~ Mr-M1 

(mod 2w) so g has fixed points on S 3 if Bud only if at least 

one of these angles is zero so 7r~ X1 ~ 0 (mod 2~) . From the 
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relations 

formuli. 

Let G c SO(4) 

Let H = p(G) and 

clearly H c H I ×H 2 

product of subgroups. 

The finite subgroups of SO(3) 

They are the 

cyclic group C n of order n , 

M r' ~+- 2M r , X~ ~ 2M1 (mod 2w) we obtain the required 

The converse is a similar computation. 

be a finite subgroup acting freely on S 3 o 

H 1 = PrlHCSO(3) , H 2 = Pr2HcSO(3) . Then 

but H itself is not necessarily a direct 

were first found by F. Klein. 

C n : Ix Ix n : 1} ; 

dihedral group D2n of order 2n , the group of space symme- 

tries of a regular plane n-gon generated by rotations and a re- 

flection 

D2n = [x,y I x2 = yn = (~#)2 = I~ ; 

tetrahedral group T of order 12, the group of symmetries of 

a regular tetrahedron, 

T = ~x,y!x 2 = (xy)3 = y3= I~ ; 

octahedral ~roup O of order 24, the group of symmetries of 

a regular octahedron or , equivalently the cube 

o = ~ x,ylx 2 = (xy) 3 = y4 = I~ ; 

icosahedral ~roup I of order 60, the group of symmetries of 

a regular icosahedron or , equivalently the dodecahedron 

I = ~x,yfx 2 = (xy) 3 = y5 = I~ . 

Lemma 3. Every finite subgroup of S0(3) is one of the 

above. 
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Proof. (Wolf [1]) If G is a finite subgroup of S0(3) 

and g E G g # I, then g is a rotation by an angle 8g about 

a line Lg through the origin. Let ~g be the intersection of 

Lg with the unit sphere S 2 consisting of the two "poles" Pg = 

[pg,p~] which are the only fixed points of g on S 2 . We call 

two points x,y E S 2 G-equivalent if gx = y for some g E G . 

Let [CI,...,Cq} be the equivalence classes of poles for all non- 

trivial elements of G . If p is a pole • let Gp be the sub- 

group preserving p : Gp = 1U [g E G- 11 P E Pg} . Let p belong 

to the class C i and enumerate C i as [glp,g2p,... griP] with 

gl = I and the gi a system of representatives of the cosets of 

-1 
Gp in G . In particular Ggip = giGpgi exhaust all the con- 

jugates of Gp in G and the Ggip all have the same order n i ° 

If N is the order of G then N = rin i . 

Note that G has N - 1 non-trivial elements and each one 

has 2 poles. Since exactly n i - I non-trivial elements of G 

preserve a pole p E C i we have the identity 

q 

2(N-1) = i~iri(ni-1) 

SO 

2(I-~) q = E ( 1 - - ~  t ) . 
i=1 ni 

Since N ~ n i ~ 2 we see that q is 2 or 3 and one of the fol- 

lowing must hold: 

(i) q = 2 , n I = n 2 = N>I 

(ii) q = 3 , 2 = nl ~ n2 ~ 3 

a) 

b) 

c) 
~) 

n 2 < n 3 with the possibilities 

n I = n 2 = 2 , N = 2n 3 _> ¢ , 

n I = 2 , n 2 = n 3 = 3 , N = 12 , 

n I = 2 , n 2 = 3 , n 3 = 4 , N = 24 , 

n I = 2 , n2 = 3 , n 3 = 5 , N = 60. 
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It is now a simple geometric argument to show that these cases 

indeed correspond to the already listed groups. 

~e can now combine lemmas 2 and 3 noting that D2n , T, 0 

and I have elements of even order and go through the possible 

subgroups of H I × H 2 to obtain: 

Lemma 4. At least one of H I and H 2 is cyclic. 

This enables us to prove the main theorem of this section 

due to Seifert and Threlfall [I]. 

Theorem 5. Let G be a finite subgroup of 

freely on S 3 . Then there is an S1-action on 

action of G is equivariant and the orbit space 

an St-manifold. 

S0(4) acting 

S 3 so that the 

s3/o 

Proof. We may assume that H I is cyclic. Since R ~ S 3, 

its preimage G r = p~1(H I ) is cyclic and we can embed it in a 

circle subgroup ~ of R . Note that this is not true of every 

cyclic subgroup of SO(4) . Since every element of G decomposes 

into a left and a right rotation and the left rotations commute 

with E while the right rotations are contained in Z we see 

that G is equivariant with respact to E . 

It is easy to see by direct argument that the converse is 

also true, i.e. every St-manifold with finite fundamental group 

is the orbit space of a free orthogonal action of a finite group 

on S 3 . We shall list the groups and the orbit spaces in the 

next section. 
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6.2 Groups and Orbit Spaces 

We proved in (6.1) that if G is a finite subgroup of S0(4) 

acting freely on S 3 and H I c S0(3) , H 2 c S0(3) are the pro- 

jections of G, then either H 1 or H 2 is cyclic. Assume that 

H I is cyclic of order m . Before we list the possible groups 

note that if G has even order,then a E G and G/C ~ H so G 

is a C 2 central extension of H . Writing H = [e,hl,...,h k] 

we have G = [~e,±hl,...,±hk~ . On the other hand if G has odd 

order then G ~ H . 

The double cover S 3 - S0(3) gives rise to finite subgroups 

of S 3 doubly covering those of SO(5) . Corresponding to D2n 

we have D~n of order 4n 

D* x 2 2 4n = [x,y I = (xy) = yn] 

and corresponding to T, 0, I we have the binary tetrahedral 

group T* of order 24, the binary octahedral group 0* of order 

48 and the binary icosahedral group I* of order 120 presented by 

[x,y I x 2 = (xy) 3 = yn x % = I] for n = 3,4,5. 

It can be shown that these are in fact the only finite sub- 

groups of S 3 . Thus if H I = e then G is one of these groups. 

Also, if H I is a cyclic group of relatively prime order to one 

of the above groupssthen the direct product will act freely. 

It remains to investigate the non-trivial possibilities. 

Pirst note that if H is a subgroup of H I × H 2 then the elements 

of the form (hl,e) E H form a subgroup H~ c H I and similarly 

H i c H 2 so that H' = H1. H 2 '  .. , c H is an invariant subgroup. The 

quotient groups 

H/H' . H1/H ~ ~ H2/H ~ ~ 
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are isomorphic so H consists of elements (hl,h2) with the pro- 

perty that the coset of h I in H1/H ~ corresponds to the coset 

of h 2 in H2/H ~ under the isomorphism with F . 

We again assume that H 1 = C m is cyclic. 

If H 2 = C n is also cyclic~then we assert that H is also 

cyclic. This is clear if (n,m) = I . Otherwise suppose that F 

is of order f so H~ has order m' = m/f and H i has order 

n' = n/f . Clearly they are also cyclic. We shall prove that if 

G acts freely on S 3, then H must also be cyclic. If a gene- 

rates H I and b generates H 2 then H~ consists of all powers 

of a f and H' of b f Given an element of F, the elements of 
2 

H I corresponding to it in the coset decomposition mod H' are 
I 

those of the form a kf+p for fixed p and all possible k . If 

it corresponds to a generator of F~ then its order is f and 

(f,p) = I . Let k equal the product of all primes in m not 

in f • p (or k = I if no such prime exists). Then (kf+p,m) = I 

and u = a kf+0 has order m and therefore generates H I . We 

can find a similar generator v for H 2 . It remains to show 

that (u,v) generates H ° Since at least one of the preimages 

of (u,v) in S0(4) is fixed point free, it follows from (6.1.2) 

that (m',n') = 1 . Find p,q so that pm' +qn' = I . Then 

clearly pm ~ f (mod n) and qn ~ f (Inod m) so u qn = u f and 

v pm = v f . From this we get for arbitrary k,l,0 that 

(ukf+P, v lf+o) = (u,v)kqn+lpm+p 

proving the assertion that H is cyclic. 

Assuming that H 2 is one of the other groups D2m , T,0,I 

and using similar arguments it can be shown that only two more 

types of groups occur. 
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If H I = 02k_i , H 2 = D2(2n+1 ) , H'I = C2k-2 ' Hi = C2n+1 

and HI/H~ ~ H2/H ~ *~ C 2 then we obtain a group H with double 

cover in S0(4) equal to 

D'k(2 = [x,y Ix2k=l ,  y2n+l=1, xy-l=y-lx~l k>2 ,  n > l  . 
2n+1 ) -- -- 

Note that D~(2n+1 ) = D~(2n+1 ) . 

If H I = C3k , H 2 = T , H' = C3k_I I , H' = C 2 X C 2 and 
2 

HI/H ~ ~ H2/H ~ ~ C 3 then we obtain a group H with double cover 

in S0(4) equal to 

T' = =(xy) --~ , 8.3k [x,y,z I x 2 2 2 zxz-l=y, zyz -S = xy, z3k=l },k>1 . 

Note that T~4 = T* 
24 " 

Thus we have the following conclusion, see H. Hopf rl], 

Seifert-Threlfall ~I] and Milnor F2]. 

Theorem I. The following is a list of all finite subgroups of 

S0(4) that can act freel 2 on S 3 : 

Cm, D* D' , T*, T' 0", I* and the direct product of 
4m' 2k(2n+1) 8.3 k' 

any of these groups with a cyclic group of relatively prime order. 

Orbit spaces of finite groups acting freely and orthogonally 

on a sphere are called spherical Clifford-Klein manifolds. The 

3-dimensional ones correspond to $eifert manifolds with finite 

fundamental group by (6.1.5) and are listed as follows, see 

Seifert-Threlfall FI]. 

Theorem 2. The Seifert manifolds with finite fundamental 

group are: 
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(i) M = {b;(o1,0);(a1,~1),(a2,82)} , here we allow ~ = 1, 

= 0 , are lens spaces (see 5.4) with ~1(~) = Cp where p = 

Ib~la2 +a182 + ~1a21 ; 

(ii) M = [b;(o1,0);(2,1),(2,1),(a3,83)] are called prism 

manifolds. Let m = (b+I)63 + 83 ; i_~f (m,263) = 1 then ~i(~) 

= C mxD~63 , and if m = 2m' then neccessarily m' is even and 

(m,,63) = 1 and letting m' = 2km '' we have ~I(M) =Cm. XD~k+2 3; 

(iii) M = [b; (01,0);(2,1),(3,82),(3,~3)) , let m = 6b+3+ 

2(~2+~3) , i_~f (m,12) = 1 then ~i(~[) = C mxT* , and 

i_~f m = 3km ', (m,,12) = I then ~I(M) = Cm, ×T~.3k; 

(iv) M = {b;(oi#);(2,1),(3,~2),(4,~3) } , let m = 12b+6 + 

4# 2 +383 , it follows that (m,24) = I and w1(M) = C m x0* ; 

(v) M = [b;(o1,0);(2,1),(3,~2),(5,~3) ] , let m = 30b + 15 + 

1082 +683 , it follows that (m,60) = I and w1(M) = C mxI* ; 

(vi) 

homeomorphic to prism manifolds so that 

= >~ D* and if 61 is odd then ~I(M) C61 4n 

i_~f 61 = 2k6~ , (6~,2) = 1 then ~I(M) = C 

M = [ b ; ( n 2 , 1 ) ; ( a 1 , ~ 1 ) ]  w i th  n = Iba 1+ 811 / 0 

D~k+2 n • 

are 

Proof. Except for (vi) the proof consists of verifying the 

group isomorphisms. It remains to prove that every prism maul- 

fold also admits a Seifert bundle structure of type n 2 over the 

projective plane. If G is the group, acting on S 3 with cyclic 

H I and H 2 = D2n the dihedral group then we consider the maximal 

cyclic subgroup C n of D2n and the cyclic group C~n c G map- 

ping onto C n . Since C*2n consists of left rotations, 
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C* c L ~ 8 3 2n , it can be extended to a circle group F c L . If 

5 is a left rotation of order 4 in the group D* whose image 
4n 

is the re~lection of D2n, then for every element y E F we have 

6y8-1 -1 = y . Thus 8 maps the orbits of the circle action in- 

duced by £ into each other revers in~ the orientation and S3/G 

admits a Seifert fibration of class n 2 . Since Wl(~) is finite 

the orbit space is p2 and r < I . 
M 

Remark. It can be shown directly that apart from the lens 

spaces whose homeomorphism classification was given in (5.4) two 

3-dimensional spherical Clifford-Klein manifolds are homeomorphic 

if and only if their fundamental groups are isomorphic. Note al- 

so that under (vi) n = Iba I +~iI = 0 if and only if M = 

[0;(n2,1)! =mP3~P 3 , see (5.4). 

6.3. Non-orthogonal Actions 

It is not known whether there exists a smooth free action 

of any group G on 8 3 not conjugate to one of the orthogonal 

actions above. Since every such action has as orbit space a 

closed, orientable 3-manifold M with fundamental group G, it 

follows that G must have cohomology of period 4. We see from 

(6.1.2) that G can have at most one element of order 2. All 

finite groups not appearing in (6.2.1) satisfying these conditions 

are listed by ~ilnor [2] as follows: 

(i) Q(8n,k,1) = [x,y,z I x 2 = (xy) 2=y2n, zkl= I, xzx-1=zr, yzy-~ 1) 

where 8n,k,1 are pairwise relatively prime integers so that if 

n is odd3then n > k > 1 ~ 1 and if n is even~then n ~ 2 , 

k>l>1. 
m 



- 1 1 4  - 

(ii) 0'48.3 k k _> I is the extension I ~ C3k - O'48.3 k - O* ~ I 

with the property that its 3-Sylow subgroup is cyclic and the 

action of O* on C3k is given as follows~ The commutator sub- 

group T* c O* acts triviall~ while the remaining elements of 

O* carry each element of C3k into its inverse. 

(iii) the product of any of these groups with a cyclic group of 

relatively prime order. 

The smallest group on this list is Q(16,3,1) of order 48 that 

may or may not be the fundamental group of a 3-manifold. 
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7. Fibering over S 1 

In this chapter we shall find the Seifert manifolds that 

admit a locally trivial fibration with base S 1 and fiber a 2- 

manifold. This was originally done by Orlik-Vogt-Zieschang [1] 

for almost all cases and completed by Orlik-Raymond [21. These 

results are recalled in section 2. In the meantime, however, a 

beautiful theory of injective toral actions has been developed by 

Conner-Raymond [I] and we shall discuss these general considera- 

tions first. Tollefson [I] and Jaco [I] noted independently that 

the product bundles M = [0;(ol,g)] fiber over S 1 in infinitely 

many distinct ways, i.e. with infinitely many mutually non-homeo- 

morphic fibers. An outline of this argument is given in Section 3. 

7.1. Injective Toral Actions 

This section consist of results of Conner-Raymond [I]. 

Let X be paracompact, pathconnected, locally pathconnected 

and have the homotopy type of a CW complex. In the applications 

we shall assume that X is a manifold. An action of the torus 

group T k = SI~s I ×... >~S I (k times) on X is called injective 

if the map 

i ~ l ( T k ,  1) ~ ~I(X, x) 

defined by f~(t) = tx is a monomorphism for all x 

In this case we have a central extension 

0 . ~k . NI(X ) - F ~ I 

and only finite isotropy groups occur. 
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Theorem I. Let (Tk,x) be an action and HI(X;~) be fini- 

tel 2 generated. Then (Tk,x) fibers equivariantl2 over T k if 

and only if the induced map 

x f .  : H I ( T k , 1 )  - H I ( X , x  ) 

is a monomorphism. 

x x and the Note that if f. is a monomorphism then so is f~ 

action is injective. For the proof we start with an injective 

action and consider subgroups of ~1(X,x) containing im ~ . 

Let B H be the covering space associated with H and b o E B H 

be a base point corresponding to the constant path at x . The 

action of T k may be lifted to B H 

T k × B H ..... > B H 

T k x X > X 

since in the corresponding diagram of fundamental groups imf~ mH. 

Theorem 2. If im fx # c H and H is normal then the action 

(Tk,BH) is equivariantly homgomorphic to (Tk,Tk~<Y) , where the 

T k action is ~ust left translation on the first factor. 

The most important case is when ~ = id: w 1(X,x) ~ ~1(X'x) 

and H = im(f x) Note that in this case ~I(BH) = H = ~.k so Y 

is simply connected. 

The proof of theorem 2 consists of first showing that there 

is a natural splitting H _~ 2Z k,<ker ~. This follows because 

h E ~1(X,x) lies in H if and only if there is t E ~,k so that 

x 
~of (t) = ~(h) E L and since f# is a monomorphism t is unique. 

Define an epimorphism p: H -2~ k by p(h) = t in the above for- 
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mula. We have p(f~(t)) = t and ker ~ = ker p . Define q: H 

fx~ ~h-1 x c ker q and ker ~ by q(h) = h. ~Pt )) . Clearly im f~ 

since it is a central subgroup it is the whole kernel. Note that 

if h E ker ~ then q(h) = h and h = fXp(h).q(h) proving the # 

splitting of groups. Next we use induction on k . For k = I 

let ~ be the generator of ~I($1,1) represented by exp(2~it) , 
b 

0 ~ t ~ I . Then f~o(w) = exp(2wit)b ° represents the generator 

of the ~ factor in W1~H ) = H and by the naturality of the 

splitting b ° must have trivial isotropy group, i.e. if 

exp(2~it/n)b o , 0 ~ t ~ I , is a closed loop then necessarily 

n = I . A similar argument applies for arbitrary b E B H showing 

that the S~action is free. Induction on K proves that (~,BH) 

is free. The fact that the principal Tk-bundle over B H is tri- 

vial is obtained using the Leray-Hirsch theorem and the splitting 

H ~k × ker ~ . 

From the group of covering transformations N = ~I(X,x)/H 

and the projection in the splitting onto Y we obtain an N-action 

on Y which turns out to be properly discontinuous (all isotropy 

groups are finite and the slice theorem holds). 

The next step in the proof of theorem I is to classify ac- 

tions of N on T k x Y with the property that 

(i) T k acts on the first factor by left translations, 

(ii) the action of N commutes with this T k action and is equi- 

variant with a given properly discontinuous action (N,Y) by the 

projection map. 

Such actions are in one-to-one correspondence with elements of 

HI(N;Maps(Y,Tk)) where the N-module structure on the abelian 

group Waps(Y,T k) is given by (af)y = f(Y~) for f E Maps(Y,Tk), 

E N . Thus the action is given by a map m : T k × Y × N ~ T k so 
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that for t E T k , y E Y , a E N we have (t,y)a = (m(t,y,~),ya). 

Now m(t,y,a) = tm(1,y,~) by the left action of T k so it is 

sufficient to consider maps m: Y >~ N ~ T k satisfying m(y,a8)= 

m(y,a)m(ya,p) . The corresponding action is (t,y)a = (tm(y,a),ya). 

Consider these maps as Z1(N;~aps(Y,Tk)) , the l-dimensional co- 

cycles. Two such maps m1(Y,~ ) and m2(Y,a ) are cohomologous 

if they give rise to equivariant actions. Then there is a map 

g : Y ~ T k so that we have an equivariant homeomorphism 

~: (Tk,T k×Y,N) I - (Tk,T k×Y,N) 2 

defined by F(t,y) = (tg(y),y) in which case 

m2(Y,a) = m1(Y,~)g(y)g(ya) -I . 

If the cohomology class of m is of finite order, say n , then 

there is a map g: Y - T k for which 

(.) g(y)g(y~)-1 m m(y,~)n for all ~ E N . 

In particular if N is a finite group of order n , then every 

element of HI(N;Maps(Y,Tk)) has finite order dividing n . 

The last step in the proof of theorem I is to show that 

given the map g satisfying (*),the space X fibers over T k 

with structure group (~n)k, where we think of (Zn)k c T k as the 

product of n-th roots of unity. Let C = [(~,y)l~ng(y)= 1] c 

T k x Y . It admits an action of (En)k since if k 6 (~n)k and 

(~,y) E C then (kT,y) 6 C . Also, C is an invariant subset of 

the action (T kxY,N) because by (*) if (T,y) 6 C then 

nm(y,~)ng(ya) = ~ng(y) = I showing that (Tm(y,a),ya) 6 C . 

Thus there are actions ((~n)k,c,N) . Let W = C/N with the in- 

duced (~n)k action, let [~,Y] E W be the equivalence class of 

(~,y) under the action of N on C and w: T k×Y - X the N 
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orbit map. Define a new Tk-equivariant map G: T k xW - X by 

G(t,[~,y]) = w(t~,y) = tTn(1,y) . The fact that G is well de- 

fined follows from w(tfm(y,~),ya) = tf~(1,y) . If G(t,[T,y]) = 

G(to,[~o,Yo]) ~henforsome mEN ya=yo and t~m(y,a) = tot o . Now 

t n tnTn m, ,n , , t n tnTn t . tnTn , 
= ~y,a) g~ya) and o = o og~Yo ) = o o g~ya) so it 

follows that t n = t n and therefore there is a X 6 (~n)k such 
o 

that kt o = t , kTm(y,a) = T ° and (tk-1,[k~,y]) = (to,[~o,Yo]) 

showing that if (En)k acts on T k x W by k(t,[v,y]) = 

(tk-1,[k~,y]) then G induces a Tk-equivariant homeomorphism 

of (T k xW)/(En)k with X . The fibration over T k is given by 

the map (t,[~,y]) - t n with fiber W and structure group (~)k 

x 
The proof is completed by noting that if f.: HI(Tk,1) - 

- HI(X,x) is a monomorphism,then provided HI(X,x ) is finitely 

generated, we have a direct summand L of rank k with 

im f~ c L and an epimorphism ~: w1(X,x) - L . The group N = 

L/~(imf~) is therefore finite. 

Observe that the construction depends on the choice of the 

map g: Y - T k . Different choices may even give fibers of dif- 

ferent homotopy type as we shall show in section 3. 

For X a closed 3-manifold and k = 1 we obtain the follow- 

ing statement. 

Corollary 3. A Seifert manifold ~ of class o I o~r n I 

admits an equivariant fibration over SI if and only if the order 

of the principal orbit h i_~n HI(M;E) is infinite. 

Note that if there is a fibration, then the characteristic 

map of the fiber (3.11) is of finite order. We shall see in the 

next section that large Seifert manifolds of the other classes do 
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not admit a fibration over S I v~ile some small Seifert mani- 9 

folds admit non-equivariant fibrations over S I so that h has 

finite order in HI(M;~) and the characteristic map is of infi- 

nite order. 

7.2, Fibering Seifert Manifolds over S 

A 3-manifolds is called irreducible if every tamely embedded 

2-sphere bounds a 5-cell. The following result is due to 

Waldhausen [I], see (8.1). 

Theorem I. Large Seifert manifolds are irreducible. 

The basic result on fibering 3-manifolds over S I is due to 

Stallings [12. 

Theorem 2. Let M be an irreducible compact 3-manifold. 

If ~i(~) has a finitely generated normal subgroup N / [1],Z 2 , 

with quotient NI(M)/N ~ E then M fibers over S I with fiber 

a compact 2-manifold T and NI(T) ~ N . 

These manifolds were classified by Neuwirth [I~. In particular 

for closed manifolds we have: 

Theorem 3. Let M 2 be any closed irreducible 3-manifold 

and M I a closed manifold satisfyin~ the conditions of theorem2 ,. 

Then M I is homeomorphic to M 2 if and only if w1(~ is iso- 

morphic to ~I(M2) . 

The next result is from Orlik-Vogt-Zieschang [I]. 

Theorem 4. Let G be the fundamenta I ~roup of a large 

Seifert manifold and H the maximal cycli0 normal subgroup gene- 
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rated by h . There is a finitely generated normal ~ubgroup 

N c G with G/N ~ ~ if and only if [G,G] NH = [I} 

Proof. If [G,G~ 0H = [I] then H injects into G/~G,G] : 

HI(M;Z ) and since it is an infinite cyclic subgroup of G its 

image is contained in an infinite summand of G/rG,G] . We can 

construct a homomorphism ~: G - ~ so that ker~0 H = {I} . 

Then we have the commutative diagram 

1 >N 

I > N' 

0 

T 
v 
H 

>G ~,>~ >0 

>G/H ~>~/~H--> 0 

where N' is the kernel of the induced map G/H ~ ~/~H . Since 

ker ~0 H = [I} we see that ~ is an isomorphism. But G/H is 

finitely generated and Z/oH is finite so N' and hence N is 

finitely generated. Note that this argument has elements of the 

proof of (7.1.1). 

Conversely, if N is a finitely generated normal subgroup 

with G/N ~ ~ then it follows from the fact that M is large 

and from the above theorem of Stallings that N is the fundamen- 

tal group of a closed 2-manifold. If N 0H ~ ~1] then N con- 

tains an infinite cyclic normal subgroup. This is only possible 

for the torus and the Klein bottle~ Let N ' = N for the torus 

and let N' be the free abelian subgroup of rank 2 in N for 

the Klein bottle. Clearly, N' 0 H ~ I and N'/N' 0 H must be a 

cyclic group since in G/H (M large~) two elements commute if 

and only if they are the powers of some other element. On the 
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other hand N'/N' A H would be a cyclic normal subgroup of G/H 

and this is a contradiction. Thus N D H = [I] and clearly 

Corollary 5. Let M be a large Seifcrt manifold. It fibers 

over S I if and only if the order of the fiber h i_~n HI(M;E) 

is infinite. 

Since for classes other than o I and n I we have the homo- 

logy relation 2h = 0 , this corollary gives the same condition 

as (?.I.3). 

Looking at the homology relations one can see immediately (3.11) 

that 

(i) for o I the order of h is infinite in HI(M;~) if 

and only if 

p = bal...~r+B1a2...~r+...+al...ar_iBr = 0 

(ii) for n I the order of h is always infinite in HI(M;E). 

For a manifold M let A(M) denote its homeotopy group, the 

group of isotopy classes of self-homeomorphisms divided by the 

subgroup of those isotopic to the identity. For a group G we 

denote by Aut(G) the full group of automorphisms of G and by 

In(G) the subgroup of inner automorphisms° 

If M is a B-bundle over $I~ then it is determined by the 

characteristic map ~: B - B . If B ~ S2,p 2 then theorem 3 

says that M is determined by its fundamental group. Now a well- 

known theorem of Nielsen states that 

A(B) = Aut(~IB)/In(~iB) 

so the isotopy class of ~ is determined by the induced automor- 
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phism ~: NI(B) - NI(B) up to inner automorphisms. 

Given an automorphism of w1(B) we call the manifold, obtained 

as a fiber bundle over S I with characteristic map some ~ whose 

induced map agrees with ~ up to an inner automorphism, M . From 

the previous discussion it follows that 

let 

~I(B) = (X l , . . . ,Xn l  %) 

where ~. = [Xl,X2],...,[Xn_l,Xn] if B 

M is well defined. We 

is orientable and w. 

x2 Wl(M = x ,..., n if B is non-orientable. A presentation of ) 

is then given by 

w1(M ) = (x1,...,Xn,Xl~.,xxix-1 =$(xi) , i = I .... ,n). 

Now consider the small Seifert manifolds, see Orlik-Raymond 

[2]. The two fibers we shall encounter are the torus T and the 

Klein-bottle, K . Recall that A(T) is isomorphic to the multi- 

plicative group of unimodular 2 x 2 integer entry matrices. It 

can be generated by 

(:;) (:i)(:I ~ 1  = ' ~ 2  = ~ ~ 3  = 0 

and a presentation is given by 

2 3 )2 )2 
A(T) = (~1,~2,~31~I = ~  = ~  =~1~2= (~1~ 3 = (~2~ 3 = 1). 

The orientation preserving automorphisms (matrices with determi- 

nant +I) form a subgroup of index 2 

A+(T) = (~1,~21~I=M~=~M~= 1) 

isomorphic to the free product of C 4 and C 6 amalgamated along 

the subgroups isomorphic to C 2 . This shows that the only ele- 
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ments of finite order in Fk+(T) are powers of ~I and ~02 and 

their conjugates. 

It is known that A(K) = ~2 +2~2 and generators may be given 

2 2 
as the following automorphisms of w1(K) = (Xl,X21XlX2=1): 

$1(xI ) = x2 ' ~1(x2) = Xl ; ~2(xI ) = Xl I ' ~2(x2 ) = x21 " 

Now let us consider the small Seifert manifolds. 

(i) oi, g = 0 , r < 2 

the latter if and only if 

equation we conclude that 

are either lens spaces or S 2 x S I , 

p = bala 2+ Sla 2+als 2 = 0 . From this 

~2 = al and ~2 = -(b~I+~I) so b=-I 

and 82 = ¢1 -81 • Thus the complete set of S1-actions on S 2xS I 

is given by the collection [-1;(o1,0),(a1,81),(¢1,al-81)] . The 

order of h is infinite in HI(S 2 ×$I;~) . 

I I I 
(ii) oi, g = 0 , r = 3 9 ~-~+a-~+~-~ > I have finite HI(M;~) 

and cannot fiber over S 1 . 

( i i i )  M : { - 2 ; ( o 1 , 0 ) ; ( 2 , 1 ) , ( 2 , 1 ) , ( 2 , 1 ) ~ , 1 ) } s a ~ s f i e s  the con- 

dition for an injective action and it is easily seen that h has 

infinite order in HI(M;E) In fact there is an equivariant fi- 

bration of M over S I with fiber T and ~ = ~ 6 ~(T), see 

(ix) below. 

(iv) M = [b;(oi,1 )] are T-bundles over S I . Specifically, 

nI(M) = (al,bl,hl[al,bl]h-b,[al,h],[b1~h]) and the map f(a 1) =Xl, 

f(bl) = x , f(h) = x 2 defines an isomorphism with M for ~ = 

(~2)-b 6A+(T)whose matrix is (~-~) Note in particular 

that for b # 0 ~ has infinite order in A+(T) and h has 

finite order in HI(M;E) . Of course, for b = 0 we have M = 

S 1 × $1× S 1 . 

(v) M = [b;(o2,1)) are two of the four K-bundles over S I. 
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With the notation above we have 

{ 0 ; ( o 2 , 1 ) ]  = Mid = K x S  1 and [ 1 ; ( o 2 , 1 ) ]  = M~1¢2 

by f ( a  1) = x I , f ( b  1) = x~lx , f ( h )  = XlX 2 . 

(vi) nl, g = I , r ~ 1 give the possible S I actions on 

p2xS I and N and both fiber over S 1 . 

(vii) n2, g = 1 , r ~ 1 are the prism manifolds with finite 

fundamental groups and [0;(n2,1)} =~p3 #iRp3 so they do not  
1 

fiber over S . 

(viii) M = [b;(nl,2)} 

as under (v), 

[ 0 ; ( n l , 2 ) ]  = Mid = KxS 

are the same two K-bundles over S 1 

I 
and [ 1 ; ( n l , 2 ) ]  = M~1@2 

The first is obvious. The second is given by f(vl) = xl, f(v2)=x , 

f ( h )  = x~2x 2 . 

(ix) M = [b;(n2,2)] are T-bundles over S I Specifically, 

2 2.-b I lh) the f(v I Wl(M) = (Vl,V2,hlVlV2n , VlhV ~ h, v2hv ~ and map ) =x, 

f(v2)=Xl x-1 f(h) = x 2 defines an isomorphism with M for 9 

(~2)b E A+(T) whose matrix is -I . For b / 0 the 

order of ~ is infinite and Wl(~) is centerless. For b = 0 

the manifold [0;(n2,2)] is homeomorphic to [-2;(oi,0);(2,1), 

(2,1),(2,1),(2,1)] as noted in (5.4). Thus the latter is also 

a T-bundle over S I with characteristic map of order 2 and 

matrix ( - :  _~ )  . 

(x) M = {b;(n3,2)} are the other two K-bundles over S 1 , 

{ 0 ; ( n 3 , 2 ) ]  = M$2 and [ 1 ; ( n 3 , 2 ) ]  = M: I  

The first is given by f(v I) = Xl x-1 f(v2) = x f(h) = x~lx~ I , 9 9 

the second by f(vl) x f(v2) x -I f(h) = x2x 1 = , = x I , • 
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7.3. Non-uniqueness of the Fiber 

The choice of the map g: Y - T k in the proof of (7.1.1) 

determines the fiber. The non-uniqueness is clearly seen by the 

following example of Tollefson [I]. 

Let T(m) denote a closed orientable 2-manifold of genus 

m = k(g-1) + I where g > I and arrange T(m) in ]R 3 with k 

arms each of genus (g-l) about one hole at the origin, see pic- 

ture below for k = 3 , g = 3 . 

/ ', / ',, / j 

Let ~: T(m) ~ T(m) generate a free E k action by rotating 

through the angle 2wi/k and consider the 3-manifold M that 

is a T(m)-bundle over S I with characteristic map ~ . It ad- 

mits an obvious free S1-action as follows: If Ix,t] ET(m) xI~x,O) 

= (~(x),1) is the equivalence class of a point and s E S I =~/~ 

then define 

[s](rx,t]) = [x,t+~s] . 

The action is equivariant with respect to the ~k action and its 

orbit space is T(g) . Thus M = [b;(ol,g)] and since it fibers 
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over S I, it follows from (7.2.4) that b = 0 , hence M = T(g)×S 1. 

Thus for m = k(g-S) + I we can embed T(m) in T(g) xS I as 

a non-separating surface with complement T(m) x I so that the 

projection map p: T(g) x S 1 ~ T(g) restricted to T(m) is a 

covering. A much stronger statement about incompressible surfaces 

in St-bundles due to Waldhausen [1S may be found in (8.1.3). 
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8. Further Topics 

The important results of Waldhausen [1,2,3] occupy a central 

position in the theory of 3-manifolds in general and Seifert mani- 

folds in particular. It would carry us too far afield to give a 

detailed account of his work so we have to restrict ourselves in 

section I to a description of the most relevant results. In his 

book Wolf [I] determines all closed 3-dimensional flat riemarmian 

manifolds. There are six orientable and four non-orientable such 

manifolds and in section 2 we identify them as Seifert manifolds. 

Section 3 lists Seifert manifolds with solvable fundamental groups 

as determined by L. Moser [I]. We consider finite groups acting 

on Seifert manifolds in section 4. Some remarks on foliations in 

section 5 and on flows in section 6 conclude the notes. 

8.1. Waldhausen's Results 

Waldhausen [1,2,3] works in the pie cewise linear category 

so manifolds have combinatorial triangulations, submanifolds are 

subcomplexes and maps are piecewise linear. Manifolds are always 

orientable compact 3-manifolds and may have boundaries. Regular 

neighborhoods of submanifolds are also compact and chosen suffici- 

ently small with respect to the already given submanifolds of the 

manifold in question. In general the embedding of a surface F 

in a manifold M is proper, F 0 ~M = ~F and F is orientable, 

hence 2-sided. A s2stem of surfaces has a finite number of dis- 

joint components. Homeomorphisms are assumed to be surjective. 

An isotopy of X is a level preserving map h: X×I - X×I so 
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that at each level hlx × t = ht: X ~ X is a homeomorphism. We 

shall assume that h = id and call an isotopic deformation sim- 
o 

ply a deformation. Two subspaces of X , YI and Y2 are isoto~ic 

if there is an ambient isotopy of X so that hi(Y1) = Y2 ° Two 

surfaces ~ and G in M or bM with ~NG = bF = bG are 

called parallel if there is a surface H and embedding f: H×I 

~ so that f(H×O) = F and f(H×] U bH×I) = G . A surface 

F in M is called B-parallel (boundary-parallel) if there is 

a surface F in 8M parallel to F . For curves in sufaces we 

define parallel and b-parallel similarly. 

The following construction is often repeated. Given a system 

of surfaces F in ~ a new (not necessarily connected) manifold 

is obtained by cuttin~ up M along F , i.e. let U(F) be a 

regular neighborhood of F in M and let ~ = ~ - U(F-~ . We can 

thus view M as a submanifold of M . Note that the construction 

is well defined up to an isotopy of F . Given another system of 

surfaces G in M in general position w.r.t. F, the new system 

= G D~ , however, depends on prior deformations of F . 

A system of surfaces F in M or bM is compressible if 

one of the following holds: 

(i) there is a simple closed curve k in F that does not 

bound a 2-cell in F and an embedding of a 2-cell D in M 

so that D c M and D0F = k ; 

(ii) there is an embedding of a 3-cell E in ~ so that 

E D F = bE . 

The negation of compressible is denoted incompressible. Thus 

M is irreducible if it contains no imcompressible 2-sphere. 

Here are some of the main results of Waldhausen [1]: 
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Theorem I. Let 

i n  ~ .~,d ~ = M - U ( F )  . 

is irreducible. 

be an incompressible system of surfaces 

is irreducible if and only if 

Let B be a compact, not necessarily orientable 2-manifold 

and p: M - B an St-bundle over B with orientable total space. 

Thus if M is closed it is a Seifert manifold of class o1 or 

n 2 . A subspace X c M is vertical if X = p-1(p(X)) and hori- 

sontal if pIX is an embedding. 

Lemma 2. Let p: M - B be an St-bundle. If B is not S 2 

or p2 then M is irreducible. 

Note that the St-bundles over S 2 are lens spaces and knov~ 

to be irreducible or S 2 × S I while the sl-bundles over p2 are 

prism manifolds and irreducible or [0;(n2,1)] =~p3 ~Rp3 . If a 

manifold has irreducible orientable double cover, then it is itself 

irreducible so the above lemma proves the irreducibility of all S l- 

bundles with the noted exceptions~ p2 × S I and N . 

Theorem 3. Let p: M - B be ~ S1-bundle where B is not 

S 2 o_~r p2 . Let G be a system . . . . . .  of incompressible surfaces in N 

so that no bounded component of G i_~s ~-parallel. Then there 

is an ambient isotopy s O that the result is either that 

(i) G is vertical so each component of G is an annulus 

or a torus; or 

(ii) p!G is a covering map. 

The basic result on the homeomorphisms of St-bundles is the 

following: 

Theorem 4. Let p~ M - B and p': M ~ - B' b_~e S1-bundles. 
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Assume that neither B nor B' is S 2, p2, D 2 or S I × I and 

if B or B' is the torus or Klein bottle then the bundle has 

no cross-section. Let ~: N ~ M' be a homeomorphism. There 

exists a homeomorphism ~: M ~ M' so that 

(i) $ is isotopic to ~ , 

(ii) there is a map p(~): B ~ B' making (@,p(@) 

bundle isomorphism. 

Given a manifold M, a system of tori T = TIU...UT n , n ~ 0 in 

the interior of M with regular neighborhood U(T) is called a 

graph structure ("Graphenstruktur") on M if M - int U(T) is an 

St-bundle. M is then called a graph manifold ("Graphenmannig- 

faltigkeit"). In order to define a simple graph structure let T I 

be a component of T and U(TI) its regular neighborhood homeo- 

morphic to torus x interval with boundary components T' and 

T" . Let M I be the component of M -int U(T) meeting T' and 

M 2 meeting T" . The natural isomorphisms 

HI(T' ) <--> HI(U(TI)) <--> HI(T" ) 

allow us to talk about intersections of homology classes of curves 

on T' and T" A graph structure is simple (and the graph mani- 

fold is simple) if it is not one of the following: 

(i) M I is not identical to ~'~2 and M I is the bundle 

over the annulus, 

(ii) the fiber of N I is homologous to the fiber of M2 ! 

(iii) M I is a solid torus and a meridian curve has inter- 

section number I with a fiber of ~2 ' 

(iv) M 1 is a solid torus and a meridian curve is homologous 

to a fiber of M 2 , 

(v) M I is the $1-bundle over the ~oebius band and we 
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think of it embedded as a cross-section in NI so that its boun- 

dary is homologous to the fiber in M 2 , 

(vi) both M I and M 2 are St-bundles over the Moebius 

band with embedded cross-sections whose boundaries are homologous, 

(vii) M-intU(T1) has two components, one called Q is 

obtained by sewing two orbits of type (2,1) into D 2× S I and the 

other is not a solid torus, 

(viii) M I and M 2 are identical and isomorphic to torus x 

interval and the composition of natural isomorphisms 

H I ( T '  ) - H I ( U ( T 1 )  ) - H I ( T "  ) - H I (M1)  - H I ( T '  ) 

maps an element onto itself or its inverse, 

(ix) M I and M 2 are solid tori, 

(x) T = ~ and M is a bundle over S 2 or p2 . 

Waldhausen Eli gives a complete classification of graph manifolds 

up to homeomorphism and shows that Seifert manifolds are special 

cases of graph manifolds. Here are the main results. 

Theorem 5. A simple graph manifol~ is irreducible. 

Theorem 6. Let M and N be simple graph manifolds with 

,i ..UT m and T' = U. .UT' Assume graph structures T = T I . T~ . n ' 

that the pair (M,N) is not one of the exceptions below. Then 

5ivcn a homeomorphism ~: M ~ N there exists an isotopic homeo- 

morphism @: M - N so that $(T) = T' . 

Exceptions: 

(i) M = M -int U(T) is a bundle over the m-holed 2-sphere 

and m solid tori with m < 3 ; or M is a bundle over the m- 

holed projective plane and m solid tori with m ~ I . The same 

for N = N-intU(T') . 
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(ii) 

is a bundle over the n-holed 2-sphere and n 

n < 3 - or vica versa. 
m 

(iii) M is the manifold Q above and N is the St-bundle 

over the Moebius band - or viea versa. 

( i v )  M = { - 2 ; ( o 1 , 0 ) ; ( 2 , 1 ) , ( 2 , 1 ) , ( 2 , 1 ) , ( 2 , 1 ) ]  , N = { 0 ; ( n 2 , 2 ) }  

- or vica versa. 

We shall call an orientable Seifert manifold sufficiently large 

if it is not on the list below. 

( i )  O l ,  g = O, r ~ 2 

(ii) O1, g = O, r = 3 

(iii) n2, g = 1, r ~ I 

( i v )  S 1 × s l x  S 1 

(v) {0;(n2,2)] 

(vi) [ - 2 ; ( o 1 , 0 ) ; ( 2 , 1 ) , ( 2 , 1 ) , ( 2 , 1 ) , ( 2 , 1 ) ]  

(vii) [-1;(n2,1);(2,I),(2,1)] 

A corollary of theorem 6 is the following result. 

= M -int U(T) is torus x interval and N =N -intU(T') 

solid tori with 

Theorem 7. Let M and N be sufficiently large orientable 

Seifert manifolds. Given a homeomoryhism ~: M - N there exists 

an isotopic homeomorphism 4: M ~ N so that ¢ induces a Seifert 

bundle isomorphism. 

The proof consists of showing that if we take a simple closed 

curve about each component of E* in M* (and N*) and consider 

their inverse images, then this collection of tori gives rise to 

a simplegra~hstructure on M (and N). In particular this proves 

the irreducibility of these manifolds up to a few exceptions as 

claimed in (7.2.1). 

This is considerably stronger than (5.3.6) where we showed 

only the existence of some Seifert bundle isomorphism. Much more 
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is true, however. According to Waldhausen [2] two irreducible, 

sufficiently large closed orientable 3-manifolds are homeomorphic 

if their fundamental groups are isomorphic. The notion of "suffi- 

cently large" means that M is not a ball and contains an incom- 

pressible surface. Equivalently, an irreducible closed manifold 

N is sufficiently large if and only if HI(M) is infinite or 

~I(M) is a non-trivial free product with amalgamation. For ori- 

entable Seifert manifolds the notion coincides with the definition 

above. As a corollary to this result of Waldhausen [2] we may 

state: 

Theorem 8. Let ~ be a sufficiently large orientable 

Seifert manifold and N an irreducible ' closed~ orientable 3- 

manifold. If there exists an isomor2hism ~: ~i M - ~IN then 

there exists a homeomorphism ~: M ~ N inducing ~ . 

Waldhausen [2] also makes some comments about the homeotopy 

group A(N) of M . The following Nielsen-type theorem holds for 

sufficiently large manifolds but will be stated here only for 

Seifert manifolds. 

Theorem 9. Let M be a sufficiently large Seifert man~fold. 

Then there is a natural is qmorphism 

A(M) ~ Aut(wiM)/In(~1~ ) . 

Letting F(M) denote the group of fiber preserving homeo- 

morphisms of M modulo those that are isotopic to the identity 

by fiber preserving isotopies, Waldhausen [2] shows that the natu- 

ral map 

F(M) - A(M) 

is an isomorphism for sufficiently large Seifert manifolds. 
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Surjectivity follows from theorem 7 and injectivity from the 

methods developed in Waldhausen [2]. It requires deforming an 

isotopy into a fiber preserving isotopy. Not much is known about 

the structure of £(M) . 

Recall that if the orientable Seifert manifold M admits an 

S1-action, then h is in the center of Wl(M) . The following 

remarkable conversion of this fact is obtained in Waldhausen [3]. 

Theorem 10. Let M be .an irreducible I closed I orientable, 

sufficiently lar6e 3-manifold. If NI(N) has a non-trivial 

center then M is homeomorphig to a Seifert manifold of class o I 

and therefore admits an sl-action. 

Several of these results may be extended to non-orientable 

Seifert manifolds by lifting to the orientable double cover. Let 

N = [b;(c,g);(~l,~1),...,(~r,Pr )] be a non-orientable Seifert 

manifold. According to Seifert [I~ its orientable double cover is 

= [-r;($,&);(a1,81),...,(~r,Gr),(a1,a1-P1),...,(ar,ar-~r)) 

~ere 

c °2 I nl n3 n¢ 

01 1 01 n2 n2 

2gli g-1 2g-2 2g-2 

8.2. Flat Riemannian M~uifolds 

In this section we shall identity as Seifert manifolds the 

closed flat riemannian 3-manifolds found by Wolf [13. Let E(n) 

denote the group of rigid motions of R n ° Every rigid motion 

consists of a translation, t a by a vector a followed by a ro- 
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tation A . Write the motion (A,t a) . Clearly A is an element 

of 0(n) and a is an arbitrary vector in R n . Thus the eucli- 

dean group E(n) is the semi-direct product of O(n) and R n 

satisfying the following product rule: 

(A, ta)(B,tb) = (AB,tAb+a) • 

~e write E(n) = 0(n).R n . Obviously E(n) is a Lie group acting 

on R n and R n = E(n)/0(n) as coset space. 

A flat compact, connected riemannian manifold M n is the 

orbit space of R n by the free properly discontinuous action of 

a discrete subgroup r c E(n) , M n = Rn/F . It admits a covering 

by the torus T n . The group ~ has an abelian normal subgroup 

F* of rank n and finite index. As a group F* = F 0 R n . It 

follows also that r has no non-trivial element of finite order. 

The group of deck transformations Y in the covering T n ~ M n is 

called the holonomy group of M n , ~ = r/r* . 

The following result is from Wolf [I,p.117]. 

Theorem I. There are just 6 affine diffeomorphism classes 

of compact connected orientable flat 3-dimensional riemannian 

manifolds. They are represented by the manifolds R3/F where r 

is one of the six groups ~i given below. Here A is the trans- 

lation lattice, [al,a2,a3] are its generators , t i = tai , and 

= D/r* is the holonomy. 

~ I' ~ = [I~ and F is generated by the trans!ations 

[tl,t2,t 3) with [a i] linearly independent. 

~ 2" ~ = Z2 and F is generated by [a,tl,t2,t 3] where 

a 2 = t I , at2 a-1 = t~ I and at3~-1 = t~1;~lis orthogonal to a 2 

and a 3 while a = (A,tal/2) with A(al) = a I , A(a 2) = -a 2 , 

A(a3) = -a 3 . 
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~3 " ~ = ~3 and r is generated by [a,t1,t2,t31 where 

a3 = tl , at2 a-1 = t 3 and at3 a-1 = t~It~ I ; a I is orthogonal 

to a 2 an__~d a3, !!a21 ! = !!a31 ! and [a2,a 3] is a hexagonal plane 

lattice, and a = (A,tal/3) with A(al) = al, A(a2) = a3, A(a3) = 

= -a2-a 3 . 

~4 " ~ = ~4 and F is generated by [a,tl,t2,t 3] where 

~4 t I , at2 ~-I t 3 and at3a-1 t~ I = = = ; [ai) are mutually 

orthogonal with ia2!l = !la3' , while a = (A,tal/4) with A(al)=al, 

A(a 2) = a 3 , A(a 3) = -a 2 

~5" Y = ~6 and r is generated by [a,tl,t2,t 3] where 

6 -I -I t~It3 a I is ortho~onal to a 2 = t I , at2~ = t 3 , ~t3~ = ; . . . . .  

and a3, iIa2! ! = l!a311 and [a2,a3] is a hexagonal plane lattice, 

and a = (A,tal/6) with A(al) = a I , A(a2) = a 3 , A(a3) = a3-a 2. 

~6 " 
where Y~a = tlt 3 

2 
a = t I , 

@tl ~ - I  = tT  I , 

- I  
Y t I Y  

= ~'2 x Z 2 and r 

and 

at2 m-1 = t21 , at3 ~-I = t31 

B 2 = t 2 , Bt3~-1 = t31 

= t71 -I 21 2 t3 , Yt2Y = t , y = 

is ~enerated by [a,0,Y;tl,t2,t3] 

The [a i] are mutually orthogonal and 

a = (A,tal/2) with A(al) = a I , A(a2) = -a 2 , A(a3) = -a3; 

= (B,t(a2+a3)/2) with B(al)=-al, B(a2) =a 2 , B(a3) = -a 3 ; 

y = (C,t(a1+a2+a3)/2) W ith C(al)=-a I, C(a2)=-a 2, C(a 3) =a 3 • 

Theorem 2. The six compact, connected orientable flat 

riemannian 3-manifolds of theorem I are the Seifert manifolds: 
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M 1 { 0 ; ( o  I 1) }  S 1 >" 81 x 81 

M 2 = [-2;(oi,O);(2,1),(2,1),(2,1),(2,1 )} i_~s the. T 2 bundle 

over SI with matrix of the characteristic map (-~ _~I of order 2; 

M 3 = [-I;(oi,0);(3,1),(3,1),(3,1)} is the T 2 buntle over S 1 

with matrix of the characteristic map( ~_ -11) of order 3 ; 

M 4 = {-I;(oi,0);(2,1),(4,1),(4,1)} is the T 2 bundle over S I 

with matrix of the characteristic map (~_ O1) of order 4 ; 

M 5 = [-I;(oi,0);(2,1),(3,1),(6,1)] is the T 2 bundle over S I 

with matrix of the characteristic ma~ (_~ iJ of order 6 ; 

M 6 = [-I;(n2,1);(2,1),(2,1)} is the manifold obtained from 

takin~ the two Seifert fibrations of Q , one as a solid torus 

with two orbits of type (2,1) and the other as the circle bundle 

over the Moebius band with orientable total space, and sewin~ 

them to~ether by a fiber preservin6 homeomprphism. It is also 

the orbit space of the orientation preservin~ free involution on 

the Seifert bundle over S 2 with total space M 2 which identi- 

fies fibers over antipodal ~oints of the base.space by an orien- 

tation reversin~ homeomorphism. 

Proof. Let G i = w1(Mi) . It suffices to show that 

i ~ Gi for i = I,...,6 . It will be clear from the isomor- 

phisms in the first five cases that there is an S I action on 

$I~$I× S I making the action of the holonomy group equivariant 

and the fibration over S I will also be equivariant. M 6 admits 

no St-action. 
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_~ G 2 2 

~ 3 ~ G3 
~ 4 ~ G4 

~ 5 ~ G5 
~ 6 ~ G6 

l q l  by ~(~)  = ql ' T ( t 2 )  = q~ ' ~ ( t 3 )  = q2q31 

by T(a)  = q~ l ,  ~ ( t 2  ) = q~lq2 

by T(¢)  = q2 ' m( t2)  = q lq~ 1 

by T(a)  = ql ' m( t2)  = q~2q2 

-1 
by ~(a) = ql ' ~(¥) = Vl 

For these isomorphisms the groups are reduced by Tietze transfor- 

mations to have only the given generators. The isomorphism for 

G 5 was found by A. Strsm. It is interesting to note that the G i 

are all solvable groups, see (8.3). 

The next result is again due to Wolf [I,p.120]. 

Theorem 3. There are just 4 affine diffeomorphism classes 

of compact connected non-orientable flat 3-dimensional riemannian 

manifolds. They are represente d by the manifolds R3/r where F 

is one of the 4 groups ~i ~iven below. Her___~e A is the trans- 

lation lattice, [al,a2,a 3} ~re its ~enerators, t i = t a , Y =r/r* 
i 

is the holonomy, and F o = r o SO(3).R 3 so that R3/r ° - R3/F i_~s 

the 2-sheeted orientable riemannian covering. 

~I' ~ = ~2 and F is generated by [¢,tl,t2,t3] where 

2 - -1 t ~ l  ¢ = tl ' et2c I = t2 ' ¢t3c = ; a I and a 2 are ortho~onal 

t_~o a 3 while c = (E,tal/2) with E(al) = al, E(a2) = a 2 and 

E(a 3) = -a 3 r ° is ~enerated by [t1~t2,t 3] . 

~2" Y = ~2 and F is ~enerated by [¢,tl,t2,t3] where 

2 -1 -1 1 
c = tl, ~tlc = t2,ct3¢ = tlt2t ~ ; the orthogonal projection 

of a 3 on the (al,a2)-plane is (a1+a2)/2 ; ~ = (E,tal/2) with 

E(al) = al, E(a2) = a2, E(a3) = a1+a2-a 3 . r ° is generated by 

[tl,t2,t 3 ] 
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~3" Y = ~2 x~2 and £ is generated by [¢,a,tl,t2,t3] 

where a 2 . . . .  tl ' c2 t2 ' ea¢-1 t2a, at2a-1 t~1, at3a-1 = t3-I, 

ctl e-1 t I and ¢t3¢-I t; I = = ; th__~e a i are mutually orthogonal 

and 

F o 

where 

-I 
c t l e  

= (A ,  t a l / 2 )  

e = ( E , t a 2 / 2 )  

is generated by 

N4" 
2 

with A(al) = al, A(a2) = -a2, A(a3) = -a3, 

with E(al) : al, E(a2) = a 2 , E(a3) = -a3. 

[a,tl,t2,t 3] • 

= E2 x Z 2 and F is generated by 

= tl ' 2 = t2 ' ¢~c-I = t2t3a, at2a-1 

= tl, ct3~-I t~ I = ; the a i 

[¢,a,tl,t2,t 3] 

= t~ 1, ~t3~-I= t~ I 

are m u t u a l l ~  o r t h o g o n a l  and 

F o 

a = (A, tal/2 ) with A(al) = al, A(a2) = -a2, A(a3) = -a3, 

c = (E,t(a2+a3)/2) with E(al) = al, E(a2) = a2, E(a3) =-a3. 

is generated by [a,tl,t2,t3} . 

Theorem 4. The four compact conn. ected, non-orientable flat 

3-dimensional riemannian manifolds are the four Klein-bottle 

2 2 bundles over S 1 . Let w1(K) = (Xl,X2[XlX2) . Then 

N 1 = [ 0 ; ( n l , 2 ) ]  = K × S  1 , 

N 2 = [ 1 ; ( n l , 2 ) }  i s  t h e  K - b u n d l e  o v e r  S 1 

i s t i c  ma,p ,~ (X l )  : x 2 1 ,  ,~(x2)  = X l  1,  

N 3 = {0;(n3,2)] is the K-bundle over S 1 

tic map ~(Xl) = Xl I ~(x2) = x21 9 

1 N 4 = [I;(n3,2)] is the K-bundle over S 

tic map ~!i(xi) = x2, ¢(x2) = x I 

with character- 

with characteris- 

with characteris- 

Proof. Again we let B i = ~1(Ni) and show that ~i ~ Bi' 

Note that N 1 and N 2 admit S1-actions while N 3 and N 4 do 

not. 
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~ B 1 by 

~ B 2 by 

~83 ~ ~3 by 

~3 4 ~ B 4 by 

• (¢) : Vl, T(t2) : h, ~(t3) : VlV 2 ; 

~(¢) = v 1, T(t 3) : VlV 2 ; 

• (c) VlV 2 T(a) v~ 1 T( t  3) h -1 

• (e) = VlV2, ~(~) = VlV2V I . 

The groups are again reduced by Tietze transformations to have 

only the given generators. The isomorphisms for B 3 and B 4 

were found by A. Strum. The orientable double cover is M 1 for 

N 1 and N 2 and M 2 for N 3 and N 4 . Clearly the B i are 

also solvable groups, (8.3). 

8.3. Solvable Fundamental Groups 

Let G be a group and G (I) = [G,G] be its commutator sub- 

group. Define inductively G (m) = [G(m-I),G (m-l)] and call G 

solvable if the series terminates, i.e. 

G D O (I) ~... DG (m) = 1 

for some m . Typical example is an abelian group. A well-known 

example of a non-solvable group is the binary icosahedral group I*, 

since [I*,I*] = I* . The subgroups and factor groups of solvable 

groups are sovable and the extension of a solvable group by a solv- 

able group is solvable. An equivalent definition is that G has 

a finite series of normal subgroups 

G D G 1 •... oG n : 1 

each G i normal in Gi_ I so that Gi_I/G i is abelian for all i. 

If Gi_I/G i is in the center of G/G i for all i, then G is 

called nilpotent. 

If G is the fundamental group of a Seifert manifold, then 
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G is solvable if and only if the planar discontinuous group 

G/(h) is solvable. These considerations give the following re- 

sult essentially due to Moser [I]. 

Theorem 1.  The Seifert manifolds with solvable fundamental 

groups a r e :  

(i) M = [b;(oi,1)] , T2-bundles over S I ; G is a nilpotent 

extension of ~x~ by E ; 

( i i )  M = { b ; ( o 1 , 0 ) ; ( 2 , 1 ) , ( 2 , 1 ) , ( 2 , 1 ) , ( 2 , 1 ) }  , f o r  b : - 2  

M is a T 2 bundle over S I , otherwise ~ is the orbit space of 

a free ~2-action on one of the manifolds of (i), G is an exten- 

sion of a nilpotent group by ~2 ; 

I I I 
(iii) oi, g = O, r = 3, ~11 + a-~ + aU ~ I except for 

(al,a2,a 3) = (2,3,5) where I* is a direct summand of G ; for 

(3,3,3), (2,4,4) and (2,3,6) M either fibers over S 1 , see 

(8.2.2) or it is the orbit space of one of the finite groups E3' 

~4 o__rr ~6 acting freely on one of the manifolds of (i) s_£o G i_~s 

a single or double c~clic extension of a nilpotent group; for 

(2,2,n), (2,3,3) and (2,3,¢) G is finite, see (6.2.2); 

(iv) oi, g = O, r ~ 2 are lens spaces or S 2×S I s__£o G i_.£s 

finite or infinite cyclic; 

(v) M : [b;(n2,2)] are 

extension of ~×~ by ~ ; 

T-bundles over S I so G is an 

(vi) n2, g = I, r ~ I , here [0;(n2,1)] =~3 ~p3 with 

G = ~2 * ~2 which is an extension of E b_~v E2 while the other 

manifolds have finite fundamental groups, see (6.2.2); 

(vii) M = [b;(n2,1);(2,1),(2,1)] are orbit spaces of the 

free orientation preservin~ E2 actions on manifolds of (ii) that 
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induce the antipodal map in the orbit space of the S1-action; G 

is the double extension of a nilpotent group by cyclic groups; 

(viii) M = {b;(02,1 ) } are K-bundles over S I , s_qo G i_£s 

an extension of a solvable 6TOUp by E2 ; 

( i x )  M = [ b ; ( n l , 2 ) }  

(x)  M = { b ; ( n 3 , 2 ) ]  

(xi) nl, g = I, r ~ I 

s_oo G is ~ ×~2 o_~r ~ ; 

same as (viii); 

are the other two K-bundles over $1; 

are the manifolds p2 x S I and N 

(xii) M = [b;(n1,1);(2,1),(2,1)] are orbit spaces of the 

free orientation reversing E2 actions on manifolds of (ii) that 

induce the antipodal map in the orbit space of the sl-action; G 

is the double extension of a nil~otent group b2 cyclic groups. 

8.4. Finite Grou~ Actions 

If M = {b;(¢,g);(al,G1),...,(ar,Pr)] admits an S1-action, 

so c = o I or n I , then every finite subgroup Z kcS I acts on 

I~ with orbit space a Seifert manifold M' whose invariants were 

computed by Seifert E1,p.218]: 

, , .... it)} M, = { b ' ; ( c , g ) ; ( ~ l , ~  1) ,(~,~' 
where 

' = aj/(aj,k) , 8[ = kSj/(aj,k) • b' = kb , aj 3 

These Seifert invariants may need normalization. The action of 

~k is free on M if and only if (aj,k) = I for j =1,...,r . 

Note that the homeomorphisms of the action are isotopic to the iden- 

tity. 

The example of M 6 in (8.2.2) shows that not every finite 
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group acts as a subgroup of the circle. Tollefson ~2~ investi- 

gates when a free Ek action on a 3-manifold M embeds in an 

S1-action. It is clearly necessary that a homeomorphism genera- 

ting the action be homotopic to the identity. Such an action is 

called proper. Let M' be the orbit space and ~: M ~ M' the 

orbit map. The action is called E-classified if there is a com- 

mutative diagram 

M > S 1 

~ v 
M' > S 1 

where p: S 1 - S I is the usual k-sheeted covering of the circle. 

In particular such maps exist if HI(~';~) has no k-torsion. 

Two Zk-actions U,v: ~k ×14 ~ M are called weakl Z equivalent if 

there is a group automorphism A: ~k ~ Ek and a homeomorphism 

H: M ~ M so that u(g) = H-Iv(A(g)) H for all g E Z k . The 

main result of Tollefson [2] is: 

Theorem I. Let M be a closed~ orientable~ irreducible 

3-manifold. A Z-classified free E -action on M (p > 2 prime) -- p -- 

is proper if and only if it is weakly equivalent to some ~p-actio_.____&n 

embedded in an effective St-action on M . 

In the course of the proof it is shov~ that M fibers over 

I 
S and the E -action is equivariant with respect to the fibration. 

P 

Notice that in some cases a Seifert-manifold may cover itself, 

e.g. it follows from the opening remarks of this section that 

M = [ - 1 ; ( o l , g ) ; ( a , 1 ) , ( ~ , a - i ) )  

is a proper k-sheeted covering of itself for every k ~ I mod a. 

For g = 0 M = S 2× S I but for g > 0 M is irreducible and a 

non-trivial 2-manifold bundle over S I . Tollefson ~3] proves 
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that if M is a closed, connected 3-manifold that is a non-tri- 

vial connected sum and covers itself, then ~ =~p3 #IRP 3 . It is 

the k-fold cover of itself for every k but none of these free 

q-actions are proper in the above sense. If the covering action 

is proper, then Tollefson [3~ shows that the manifold M is irre- 

ducible and if HI(~;E) has no element of order k , then ~ fibers 

over S 1 . 

8.5. Foliations 

Let M be a smooth manifold with tangent bundle TM . A 

k-plane field on M is a k-dimensional subbundle ~ of TM . 

If L is an injectively immersed, smooth submanifold of M so 

that TL x = o xCTM x for all x E L j then L is called an integral 

submanifold of ~ . A k-plane field c is called completely 

integrable if the following three equivalent conditions are satis- 

fied: 

A. M is covered by open sets U with local coordinates 

Xl,...,x m so that the submanifolds defined by Xk+ I = constant, 

...,x m = constant are integral submanifolds of o . 

B. ~ is smooth and through every point x E M there is an 

integral submanifold L of a . 

C. ~ is smooth and if X 

with Xx,Y x E ~x for all x E M 

and Y are vector fields on M 

then the bracket [X,Y~ x E ~x " 

An integrable k-plane field is called a foliation and the 

maximal connected integral submanifolds are called leaves. The 

leaves of a foliation partition the manifold. The following re- 

sult is due independently to Lickorish, Novikov and Zieschang. 
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Theorem I. Every closed T orientable 3-manifold admits a 

codimension one foliation. 

The proof goes roughly as follows. The Reeb foliation on D2x S I 

is obtained by considering a function with graph below 

I 

f 
.............................. 4, ............................................................... ~ X 

\ 

and all its translates along the x-axis. Rotate to obtain a 

foliation of D 2 xR and identify integral translates to obtain 

the Reeb foliation on D 2 x~ . It has one compact leaf, 8D 2 x S I 

and all other leaves are homeomorphic to R 2 . The union of two 

Reeb foliations foliates S 3 . Every orientable closed 3-mani- 

fold is obtained from S 3 by a finite number of (1,1)-surgeries 

according to Wallace. Remove the necessary number of solid tori 

from S 3 and alter the foliation of S 3 at the boundary tori by 

the procedure of "dropping off leaves" 

\ 

to foliate the resulting manifold. Now sew in the required copies 

of D 2 x S I with Reeb foliations to obtain the manifold in question. 
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Wood [I] showed that non-orientable closed 3-manifolds also 

admit codimension one foliations. A celebrated theorem of Novikov 

proves that every codimension one foliation of S 3 has a compact 

leaf. 

The rank of a differentiable manifold M is the maximum 

number of linearly independent C 2 vector fields on M which 

commute pairwise. If M is a closed manifold, then the rank of 

M is the largest integer k so that there exists a non-singular 

action of R k on M with all orbits of dimension k . This 

action defines a foliation of M . The following was proved by 

Rosenberg-Roussaire-~eil [I]. 

Theorem 2. Closed orientable 3-manifolds have the follow- 

ing rank: 

(i) S I ×SIx S I has rank 3 ; 

(ii) N has rank 2 if and onl 2 if it is a non-trivial 

torus bundle over $I; 

(iii) all others have rank 1 • 

The proof is outlined in the paper as follows. If % is a non- 

singular action of R 2 on the closed, orientable manifold V • 

then the orbits are R 2 RxS 1 or T 2 It is known that if all 9 • 

orbits are R2~ then V is T 3 . If V has rank 2 ,then there 

must be orbits homeomorphic to R × S I or T 2 . If all orbits are 

homeomorphie to R × S I , 

then ¢ is modified to a C°-close action 91 which has a com- 

pact orbit. It is known that not every compact orbit of @ can 

separate V into two connected components• One can find k com- 

pact orbits T1,...,T k which do not separate V but have the 
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property that for every other compact orbit T the union 

T U T 1U... UT k separates V . Let W be the manifold obtained 

by cutting V along the T i , i = 1,...,k • Then ~W consists 

of 2k tori and every torus orbit in the interior separates W 

into connected components. By a transfinite argument it is ob- 

tained that ~ has no compact orbits in the interior of W • The 

crucial step is to show that W ~ T 2 x~0,1] so V is obtained as 

a T 2 bundle over S I . 

An explicit action of R 2 on a T 2 bundle over S I is de- 

fined as follows: Let f: T 2 ~ T 2 be the orientation preserving 

characteristic map of the bundle and V = T 2 x I/f . As noted 

earlier f is isotopic to a linear map F E A+(T 2) = GL+(2,~) 

and V is diffeomorphic to T 2 x I/F . Since the group GL+(2~R) 

is connected there is an isotopy F L with ~ = id F I = F -1 
b -0 ~ • 

Choose it so that F t = F ° for t < c and F t = F I for I-¢<t~I 

for some small ¢ > 0 . Any two constant vector fields on F 2 

which are linearly independent define two linearly independent 

commuting vector fields on T 2 . For t C [0,1] let X(t) =Ft(1,0) 

~d Y(t) = Ft(0,1 ) . Then X(t) and Y(t) are two linearly 

independent vector fields on T 2 xt . Moreover, d~1(X(1)) = (0,1) 

= X(0) and dFI(Y(1)) = (0,1) = Y(0) , hence X(t) and Y(t) 

define two linearly independent vector fields on V . 

It is interesting to note that if V has no compact orbits, 

then F = (~ t), so V is the Seifert manifold [-a;(oi,1)} o 

8.6. Plows 

A C r flow on a C r manifold M is a C r action ~:MxR ~ M 

of the additive reals on M . Such actions arise naturally from 

the integration of a C r vector field on M . Conversely, differ- 
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entiation of a C r+1 flow gives rise to a C r vector field on M. 

The following is an example of a flo~ on S 3 = [(Zl,Z 2) E 

C2 I z1~1+z2~ 2= 1) . Let (p,q) be relatively prime integers and 

define 

a(zl,zy,t) = (zle2~ipt,z2 ey~iqt) . 

This is clearly the R action obtained from lifting the correspon- 

ding S 1 action to the universal cever of SI For p = q = I 

this is called the Hopf flow on S 3 . These flows have only clued 

orbits. The following recent result of Epstein [I] proves that if 

all orbits are closed on a 3-manifold,then this is the most gene- 

ral situation. 

• C r Theorem I. Let a: MxR ~ ~ be a action (I ~ r Zoo) of 

the additive ~roup of real numbers on ZI , with every orbit a cir- 

cle. Let M be a cgmpact 3-manifold ~ossibly with boundary. 

Then there is a C r action ~': MxSI ~ M with the same orbits 

as ~ . 

If non-compact orbits are presentjthen the structure of flows 

is still unknown. The following result is due to Seifert [2]. Let 

C be the vector field of Clifford-parallel vectors whose integral 

curves, the Clifford circles, give the Hopf flow and let ~ be a 

continuous vector field on S 3 which differs sufficiently little 

from C , that is, the angle between a vector of C and that of 

is at every point of S 3 smaller than a sufficiently small a. 

Theorem 2. A continuous vector field on the 3-sphere which 

differs sufficiently little from the field of Clifford-parallels 

and which sends through every point exactly one integral curve 

has at least one closed intesral curve. 
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The question posed by Seifert [2] whether this is true for 

all flows on S 3 is still open and is now referred to as the 

Seifert Conjecture. 

Added in proof: Paul Schweitzer has obtained a counterexample to 

this conjecture. 
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