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Classical Knot Invariants and Elementary Number Theory

Kunio Murasugi

1. Introduction and Preliminaries

(1) Knots, equivalent knots and knot types

A knot K is a simple closed curve in a 3-space R3 or a 3-sphere S3. (Since S3 is
obtained from R3 by adding one point 0o, there are no essential differences between
knots in R?® and knots in $3.) Further, in order to avoid unnecessary complications,
we may assume that K is a polygon (with many sides). See Fig.1.1. Both R? and
8% are oriented. A 3-space R® (and S2) is given a right handed orientation. See

Fig. 1.2.
z

Figure 1.1 Figure 1.2

The orientation of a knot is usually denoted by an arrow. See Fig.1.1. Such a
knot is called an oriented knot. Two knots K; and K> (in R® or $3) are said to
be equivalent (or ambient isotopic) if there is a homeomorphism f of R? (or S%)
onto itself that maps K; to Kj, where f preserves orientations of R3 (or $%). If
K; and K are oriented, then f sends K; to K3 including orientations. Intuitively
speaking, two knots are equivalent if we can move one knot to another knot in R3
(or S3) without allowing any self-intersections. See Fig.1.3. The simplest knot is
a knot equivalent to a circle on the plane in R3. It is called a trivial knot or a
unknotted knot. Fig.1.4.

Figure 1.3 Figure 1.4
Two equivalent knots are said to be of the same type.
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(2) Invertibility
Each knot can have two different orientations, one is opposite to another. See

0GP

(b)

Figure 1.5 Figure 1.6
It is conceivable that two oriented knots with opposite orientations given to
the same knot may not be equivalent. But it was 1964 when H.Trotter first proved
that the knot in Fig. 1.6 is one of such knots [T3]. A knot is called invertible if
two oriented knots with opposite orientations obtained from the same knot are
equivalent. Many knots are invertible, but non-invertible knots are by no means
rare
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(3) Amphicheirality

Given a knot K in R3, we can construct a mirror image of K. More pre-
cisely, let f be a reflection of R3, ie. f(z,y,2) = (z,y,—2). The image of K
under f is called the mirror image of K. If K is equivalent to its mirror image
K™, then K is said to be amphicheiral. If an oriented knot K and K* with the
orientation induced from that of K are equivalent, we say an (oriented) knot K
is +amphicheiral. However, if K and K* with opposite orientation are equivalent,
K is called —amphicheiral. For example, the knot in Fig. 1.1 is not amphicheiral,
but the proof is rather complicated. The simplest non-trivial amphicheiral knot is

Figure 1.7 Figure 1.8

(4) Knot invariant

One of the fundamental problems in knot theory is a so-called the classification
problem. The problem is to construct a list £ of knots for which (1) any knot is
equivalent to a knot in £ and (2) two knots in £ are not equivalent. The clas-
sification problem has been solved for certain families of knots which we discuss
later. However, so far, there are no algorithms by which we can determine whether
or not given two knots are equivalent. One of the effective methods to distinguish
two knots is to compare their knot invariants. A quantity p(K) assigned to a knot
K is called a knot invariant if p(K,) = p(K3) for equivalent knots Ky and Ko.
One of the earliest knot invariants is probably the Minkowski unit Cp(K) for a
knot K and an odd prime p. (See Section 6.) Later, Alexander [A2] introduced
the most important knot invariant in knot theory called the Alexzander polynomial.
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The Alexander polynomial is an integer polynomial for any knot, and in particular,
for a trivial knot, its value is 1. The Alexander polynomial is one of the major
tools to distinguish two knots, however it is not a complete invariant. In fact,
Kinoshita-Terasaka knot (or KT knot) depicted in Fig. 1.8 is not a trivial knot, but
the Alexander polynomial is 1.

(5) Links

So far, we have only looked at knots, but many concepts can be extended to a
link, a collection of knots. A link is a finite ordered collection of mutually disjoint
knots L = K1 UKy U - U Ky, in R3 or 3. Each knot K; is called a component
of L. If L consists of n knots, L is called an n-component link. If each component
is oriented, L is called an oriented link. Two links L = {K;, K3,...,K,} and L' =
{K{,K},...,K],} are equivalent if (1) n = m, and (2) there is a homeomorphism f
that preserves the orientation of R3 (or $3) and f maps K; to K}, K to K3,..., K,
to K] (since m = n). Strictly speaking, the equivalence of links should also be
related to how we order the components. However, such a stringent condition is not
necessary, since we may suitably reorder the components. Therefore (2) is usually
replaced by the following (2A): (2A) There is a homeomorphism f that preserves
the orientation of R? (or $%) and maps K1 UK, U---UK, to K{UK,U---UK], .
For a link, invertibility or amphicheirality is not a major problem. In fact, the
Alexander polynomial is defined only for an oriented link, and if one component
K; reverses its orientation, the Alexander polynomial changes entirely. For a knot,
however, the Alexander polynomial does not depend on its orientation. Therefore,
the non-invertibility of a knot cannot be detected by the Alexander polynomial.
Although these notable differences exist between knots and links, many properties
of knots are extended to those of links in a straightforward manner. However, in
this article, knots and links are carefully distinguished. Therefore, a link always
means a link with more than one component.

2. Knot (or link) Group

(1) Diagram

We usually represent a knot K by a graph D with “broken edges” on a plane.
See Fig.1.1. This is called a regular diagram of K. A regular diagram gives us a
sense of how the knot may in fact lie in 3-dimensions, i.e. it allows us to depict
the knot as a spatial diagram on the plane. Since we consider exclusively regular
diagrams, we call them simply diagrams of knots.

(2) Knot group

For a knot K, m1(R3 — K, *)(~ m1(S® — K, )), the fundamental group of the
complement of K in R3 (or S3), is called the group of knot or knot group of K,
where * denotes a base point, but since two groups with different base points are
conjugate, we usually omit x. We denote the knot group of K by G(K). G(K)
is finitely presented, i.e. G(K) has a presentation in which both the number of
generators and relations are finite.

(3) Wirtinger presentation

Using a diagram, we can obtain one of finite presentations, called a Wirtinger
presentation, of G(K). In this presentation, each generator corresponds to an over-
passing arc, defined below, and each relation corresponds to a crossing point. Let K
be an oriented knot and D a diagram. Select one under-crossing point, P; say, and
trace the arc (according to its orientation) until the next under-crossing point P;.
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See Fig.2.1. The arc connecting P, and P, is denoted by s1, called an over-passing
arc. The next arc sy is the arc connecting P» and Ps, and so on. Note that s; is
a long arc, but s; and s¢ are short arcs in Fig.2.1. A short arc does not pass over
any arc. Each arc s; corresponds to a generator z; of G(K). See Fig.2.2.

s, P2 /

Ss

S * (a)
Figure 2.1 Figure 2.2 Figure 2.3

z; is an oriented loop in R3? (or .5'3) that circles once around s; as is shown in
Fig.2.2. The set of these elements {z1,2,...,%,} is a set of generators of G(K),
where n is the number of crossing points in D. A relation of G(K) is obtained as
follows: To each crossing point, 3 arcs meet as in Fig.2.3 (a) or (b). For (a), the
corresponding relation is R; = z;zx Jrllm,:l. For (b), it is R; = a:iw,:la;i" _,fla:k.

Therefore, G(K) has a presentation G(K) = (z1,%2,...,Zn|R1 = 1,Ry =
1,...,R, = 1). It is known that any one of R; is unnecessary, so that G(K) is
presented by n generators and n — 1 relations, where n is the number of crossing
points of D. This presentation of G(K) is called a Wirtinger presentation of G(K).

(4) Examples

Example 2.1 For the knot with the diagram D in Fig. 2.1,

G(K) = (z1,22,...,26|R1 = 1,Rp = 1,..., Rg = 1), where R; = z12; ‘x5 x4,
R2 = .’1221124.’1?;11221,123 = .’1?31'1_1.’122111:1, R4 = :L‘4.’E2:B;1£II2_1, R5 = $5$4$gll‘zl, R6 =
TeTz 1:1:1'13:3.

Example 2.2 A Wirtinger presentation of K in Fig.2.4 is
G(K) = ($1,$2,$3'R1 = 1,R2 = 1), where R1 = $1l’3122_11';1, Rz = 562.’121.’,!3;111_1.
We can simplify this presentation as follows. First, Ry = 1 yields a;l‘lzzwl = z3,
and hence z3 can be eliminated. A new presentation has 2 generators z; and
Z2, and one relation Rj that comes from Ry: R] = zazi12; lxl_lazg 1z,. If we set
a = 2%y and b = 222122, then a and b generate G(K) and one relation R} becomes
ab2a? =1, and thus we have a simple presentation G(K) = (a, bla® = b?).

(5) Link group

For an oriented link L = K; UK, U---UK,, the link group G(L) = m(R3 - L)
(=~ m1(S%— L)) has a Wirtinger presentation, where the set of generators is {z; ;|i =
1,2,...,m75=1,2,...,m;}, and the set of relations is {R; ; =1 =1,2,...,r;j =
1,2,...,m;}, and R;; is of the form : a:,-,jx;’;’;a:i—’}z;j"j, where e; ; = +1 or—1.
z;; corresponds to an over-passing arc in the ith component K; of L. As in the
case of the knot group, at least one of the relations can be eliminated.

Example 2.3 Let L be a link consisting of n completely separated trivial knots.
More precisely, L has a diagram consisting of n trivial knots that are separated by
n — 1 parallel lines. See Fig. 2.5 for n = 3. Then L is called a trivial n-component
link.

The group of L is a free group of rank n freely generated by z1,1,22,1,...,Zn,1.

Example 2.4 Let L be a 2-component link in Fig. 2.6.

Then G(L) = (z1,122,1|R1,1 = 1,R2; = 1) where R;; = wl,lxg,lml"}z;j, and
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Ry1 =Ry, 1. Therefore, G(L) is a free abelian group of rank 2. The link L is called
a Hopf link.

Remark 2.1 The knot (or link) group is an invariant of an unoriented knot (or
link). Furthermore, the group of a knot (or link) K is isomorphic to that of the mir-
ror image of K. Therefore, we cannot detect the invertibility and amphicheirality
of K by its group alone.

D L9 (1)

Figure 2.4 Flgure 2.5 Figure 2.6

3. Braids

(1) n-braids

Take a cube B in R3, and plot n points A, As, ..., A, on the top of B and other
n points A, Aj, ..., Al on the base of B. For the sake of neatness, we specify the
coordmates of these points. First, describe B as the set {(z,y, z)]O <z,y,2 <1},
and define the coordinates of A; as (}, ;37,1) and that of A} as (3, 737,0). Now
join these Aj,..., A, to A},..., A], by means of n (polygona.l) arcs Uy, Ug,...,Un
inside B (except their end points) as follows: (1) u; and u; do not intersect ifi ;é 3.
(2) u; joins A; to A}, for some k. These arcs u; are called strings. If any plane E
parallel to the base of B either intersects each string at one and only one point, or
it does not intersect at all, then the set of these n strings in B is called an n-braid.
Given an n-braid, by projecting the braid onto the yz-plane, we obtain a (regular)
diagram of a braid (as in the case of knots) . See Fig.3.1 (a) or (b).

<3
ﬁ\ /\

(a) (b)
Figure 3.1

As is shown in Fig. 3.1 (b), if each 4; (1 = 1,2,...,n) is connected to A] by the
ith string u;, then an n-braid is called a pure n-braid. Intuitively, two braids (in a
cube) whose end-points we keep fixed, is said to be equivalent, if we can continuously
deform one to the other without causing any of the strings to intersect each other.

(2) The n-braid group B,

Given two n-braids o and 3, we can define the product af. First glue the
base of the cube that contains a to the top face of the cube that contains 8. The
gluing together of two cubes produces a rectangular solid in which there exists an
n-braid that has been created from o and §. This braid is the product af. It is
well known that under this product, the set of all (equivalent classes of) n-braids

: (@3}
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forms a group, called the n-braid group, denoted by B,,. The group B, is generated
by n — 1 n-braids, 01,09,...,0,-1. See Fig.3.2. .
A Az Ay A A A2 Ap A, Ay Ay Ai Aix Aisz A

\ /
A Ay, A, A AL, A, AL A Ay, AL AL A, Ay A
-1
(&) o; (b) o;
Figure 3.2

There are two types of relations for B,. One is of the form (I) o;0; = g;0; for
| — 71 > 1, and another is of the form (Il) 0;0;4+10; = 0i+10:0:+1. These relations
(I) and (II) form a complete set of relations for B,.

(3) Examples

Example 3.1 The 3-braids shown in Fig. 3.1 (a) and (b) are written, respec-
tively, as 0207 ‘09030, * and o7 o, toios toy.

Example 3.2 (1) B; = (1) is a trivial group. (2) B; = (01|—) is an infinite
cyclic group.

(8) B = (01,02|010201 = 020103)

(4) By = (01,02,03|0103 = 0301,010201 = 020102,020302 = 030203)

(4) closed n-braid (or the closure of a braid)

As is shown in Fig.3.1 (c), we connect, by a set of parallel arcs that lie out-
side the square, the points A;, Ag,..., A, on the top of the braid o to the points

1, A%, ..., Al,. The knot or link thus created is called the closed braid (or the

closure of a). We assign to each string an orientation downward. The following
theorem due to Alexander connects the braid theory to knot theory.

Theorem 3.1[Al] Any knot (or link) is equivalent to some closed braid.

Therefore, to each knot, we can associate an element of some braid group.
However, since a knot can be represented as many different closed braids, an element
of a braid assigned to a knot is not a knot invariant.

(5) Braid index

By Theorem 3.1, we see that any knot (or link) K is a closed n-braid for some
n > 1. If K is a closed m-braid, but K cannot be represented by less number of
strings, then m is called the braid indez of K, denoted by b(K). Obviously, b(K)
is an invariant of a knot (or link). It is a hard problem to decide the braid index,
and there is no algorithm to determine b(K). If L is an n-component link, then
b(L) > n. For a link L, b(L) depends on the orientation of each component. If L
is a closed pure braid, then each component of L is unknotted, but the converse is
not true.

4. Special families of knots (I): Torus knots

In the following two sections, we introduce two familiar classes.of knots, tours
knots and 2-bridge knots. These knots have been studied quite extensively, and, in
particular, these knots are completely classified. Now, we begin with an introduc-
tion of a new concept.

(1) Peripheral system

Let T be a torus in R3. T may be considered as the boundary of a solid obtained
by fatting a knot K in R3. (Such a solid is called a tubular neighbourhood of K.) See
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Fig.4.1 (a). On this torus 7', there are two simple (oriented) closed curves, called
a meridian m and a longitude £, see Fig. 4.1. A meridian m is a simple closed curve
on T that bounds a disk inside T', while £ is a simple closed curve on T' that bounds
an orientable surface outside T. (For an existence of a longitude, see Remark 7.1.)
Both are oriented as are shown in Fig. 4.1 (a) and (b), where the orientation of £ is
given so that two oriented simple closed curves £ and K are parallel. A pair {m, ¢}
is called a peripheral system of aTknot K.

Figure 4.1

Two curves m and £ represents two elements of the knot group G(K) in a
natural way.

A pair {m, ¢} with the knot group G(K) characterizes completely the knot
type. More precisely, we have the following theorem due to Waldhausen:

Theorem 4.1 [Wal] Two oriented knots K1 and K, are equivalent if and only
if there exists an isomorphism f : G(K1) — G(K32) such that f maps a peripheral
system of Ky to a (conjugate of a ) peripheral system of K.

In fact, Dehn’s proof of non-amphicheirality of the knot in Fig.1.1 and also
Trotter’s proof of the non-invertibility of the knot in Fig. 1.6 are based upon The-
orem 4.1.

(2) Torus knots

A torus knot is a knot embedded in a standard torus T in R, where a standard
torus means a surface generated by revolving a circle C (on a plane) about a line
disjoint to C. Therefore, a standard torus can be considered as the boundary of
a tubular neighbourhood of a trivial knot. Let {m, £} be a peripheral system of a
trivial knot K, see Fig.4.1 (b). A torus knot (or link) of type (p,q), denoted by
T(p,q), is an oriented knot (or link) such that (i) T'(p, q) crosses a meridian m at
exactly |p| points from right to left if p > 0 (or from left to right if p < 0), (ii)
T(p, q) crosses a longitude £ at exactly |g| points from right to left if ¢ > 0 (or from
left to right if ¢ < 0). Any (non-trivial) knot on T' can be deformed on T to T'(p, q)
for some integers p and g, and ged(p, q) = 1. See Fig.4.2.

(b)

Figure 4.2: T'(3,-2)

In particular, a meridian m may be considered as a torus knot of type (0, —1)
and £ as T'(1,0). The number of components of T'(p, q) is given by ged(p, q). Fur-
thermore, if p > 0, then T'(p, g) is represented as a closed p-braid (o102 -+ 0p—1) 7%
For p < 0, see Theorem 4.4. These torus knots have been completely classified.
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Theorem 4.2 A torus knot T(p, q) is a trivial knot if and only if pg =0, orp
or q is +1.

Theorem 4.3 Any torus knot is invertible, and any non-trivial torus knot is
not amphicheiral.

A proof of the second statement will be outlined later.

Theorem 4.4 Assume that none of p,q,p’,q' is 0 or +1, and ged(p,q) =
ged(p',q') = 1. Then, (i) T(p,q) = T(q,p) (i6) T(p,q) = T(¥',q’) if and only if
{p,q}={p.d'}.

Proof. (i) T(p,q) can be deformed into 7T'(q,p) in R® (not on T). A proof of
(ii) will be given later.

Theorem 4.5 The braid indez of a non-trivial torus knot T(p, q) is equal to
min{|pl, |a|}.

5. Special families of knots (II) 2-bridge knots (or rational knots)

(1) Bridge index

Any knot (or link) has a diagram with only finitely many local maximal points.
The minimal number of local maximal points among all diagrams K can have is
called the bridge indez of K, denoted by br(K). br(K) is an invariant of a knot (or
link) K. The bridge index of an n-component link is at least n. Since a knot with
the bridge index 1 is a trivial knot, the class of 2-bridge knots is the simplest class
of non-trivial knots with respect to the bridge index. It is not easy to determine
the bridge index for a knot or link, and there is no algorithm to decide the bridge
index.

(2) 2-bridge knot (or link)

A knot (or link) K is called a 2-bridge knot (or link) if K has a diagram D that
has only 2 local maximal (and 2 local minimal) points. See Fig.5.1.

)04
, 56%%500T)
XX
Figure 5.1
A 2-bridge knot (or link) K is characterized by two non-zero coprimes, a and
B, where —a < 8 < a, or equivalently a rational number —1 < 8/a < 1. K is
called a 2-bridge knot (or link) of type (a, ) and is denoted by B(a,). K is a
knot if and only if « is odd.
(3) Diagram of B(«, )
Given a rational number 3/a, a 2-bridge knot (or link) B(a, 8), ged(a, B) = 1, is
constructed in the following way. First express 8/« as a continued fraction:

B 1

« 1
a; —

ag —

ag —
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where a; # 0. This expression is not unique. To [a1, ag, ..., an] associate a 3-braid
v=03'0t?05307¢ ...of™ if m is even, or v = 0307?0507 ... 03™, if m is odd.

Finally, join the top and bottom as is shown in Fig. 5.2.

n m‘f /\f f A

7

(a) m=0(mod 2)  (bym=1 (mod 2) 13,2,2) 13,1,-2) [2,-3] [2,-2,-2]
Figure 5.2 Figure 5.3 Figure 5.4

The diagram of a knot (or link) thus obtained is a diagram of B(a, ). It is
shown that no matter what continued fractions of 3/« is used, we obtain the same
(i.e. equivalent) knot (or link).

Example 5.1 (1) Since 3 = [3,2,2] = [3,1,-2] = [2, 3], three diagrams in
Fig. 5.3 represent the same 2-bridge knot B(7, 3).
(2) Since 3 = [2, -2, —2], Fig. 5.4 depicts a 2-bridge link B(8, 3).

(4) Classification

The orientation of B(a, ) is given as follows. The second string is always
oriented downward (see Fig.5.3). If B(a, () is a link, then the third string forms
one component and is oriented downward (see Fig. 5.4). Thus, we obtain an oriented
2-bridge knot (or link) B(a, 3). These knots (or links) are classified by the following
theorem.

Theorem 5.1 [Sc] For oriented 2-bridge knots (or links), B(a, ) is equivalent
to B(«/, ') if and only if
(i) a=a and B=f', (mod ), or
(i) a=cd and BB =1 (mod a).

Example 5.2 (1) B(3,1) = B(3,-2) (2) B(7,4) = B(7,—3) = B(7,-5).

Theorem 5.2 A 2-bridge knot B(a, () is invertible, and B(a, () is amphicheiral
if and only if B2 = —1 (mod ).

3-b1aid

3-braid

6. Minkowski units

In the following three sections, we discuss three classical knot invariants. As
was stated in Introduction, the Minkowski unit is one of the earliest numerical
invariants in knot theory. Since its value is either +1 or —1, it cannot be applied
on the classification problem, but it gives an elegant solution to the amphicheirality
problem.

(1) Goeritz matrix

Let D be a diagram of a knot (not a link) K. Then D divides R? into finitely
many domains, Dy, D,,..., Dy, one of which is unbounded, say D,,. We classify
these domains into two classes, black and white in such a way that no domains of
the same colour have edges in common. For convenience, we assume that D,, is a
black domain. (This assumption is not a serious restriction, because any domain
can be deformed into an unbounded domain by a suitable deformation of K.) Now
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we define an index ¢ of a crossing point v of D, where ¢(v) = 1 according to
Fig. 6.1.

7 v

(’U)_—_l 6(’U)=—1

Figure 6.1
Here, a shaded area indicates a black domain and the orientation of K is ir-
relevant. Let {W1,Ws,...,Wp41} be the set of all white domains. Using these
white domains, we define an (m+1) x (m+ 1) integer symmetric matrix A = (a; ;),
For i # j,—a;; = Y €(v), where the summation runs over all crossing points of D
m+1
that are common to W; and Wj. For ¢ =1,2,...,m+1,a;5 = — Z a; ;. This
=1
(integer symmetric) matrix A is called the Goeritz matriz of a knot K. Obviously,
A is singular, so we eliminate one row, say the last row, and the last column from
A to obtain an m x m matrix A. Usually, |det A| is called the determinant of a
knot K. It is a knot invariant. However, the matrix A itself is not a knot invariant,
since A depends on a diagram D. It is known that |det A| = 1 (mod 2).

N

™

(2) Minkowski unit
Take an odd prime p. If p  det A, then we define the Minkowski unit C,(K) of K
at p to be 1. So let p|det A. Suppose that there is an integer unimodular matrix
B with which we can diagonalize A as follows, where p { bj,i=12,...,m:

by

by 0

BTAB = by, (mod p?),
Pbr+1

Pbm

where BT denotes the transpose of B.

—1)[=5E N
Then we define Cp(K) = (( DA bk;bk“ " ) , where ( g) denotes Le-
gendre symbol. The Minkowski unit Cp,(K) is an invariant of a knot K. For a

link L, we can define the Goeritz matrix A in the same way, but detA may be 0.
Therefore, we need a different approach to define Cp(L). See [Mu2]. -
Example 6.1 The Goeritz matrix of a knot K in Fig.6.2 (a) is given by
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2 -1 -1
A=| -1 2 =1 |, and hence detA = 3.
-1 -1 2
2 0

Therefore, C,(K) = 1 for p # 3. Let p = 3. Then A ~ ( 0 -3 ) (mod 9),

and hence, C3(K) = (——1) = —1. On the other hand, the Goeritz matrix of the
mirror image K* of K is —A. See Fig.6.2 (b). Therefore, C3(K*) = 1. Since
C3(K) # C3(K*), we conclude that K is not equivalent to K*, and K is not

amphicheiral. /Wl/ //%
g/ =

Figure 6.2

7. Seifert Matrix

In 1934, H.Seifert defined a new integer matrix N for a knot K. This matrix
N is not necessarily symmetric and may be singular. However, using N, we can
define two important invariants, called the signature and the Alexander polynomial
of a knot K.

(1) Seifert surface

A connected orientable surface that bounds a given oriented knot (or link) K is
called a Seifert surface of K. For an arbitrary knot (or link), such a surface always
exists. In fact, Seifert gave an algorithm by which one can construct such a surface
from a diagram D of K. Given a diagram D of K, first draw a small circle with
one of the crossing point of D as its center. This circle intersects D at four points,
say a, b, c and d. See Fig. 7.1 (a).

b . a b ('a Cg) B

(a) (b) (a) (b)

Figure 7.1 Figure 7.2

Then as is shown in Fig. 7.1 (b), splice this crossing point and connect a and d,

and b and c. In this way we can remove the crossing point of D that lies within the

circle. Now apply this process at every crossing point of D, and we remove all the

crossing points from D. Then D becomes decomposed into several simple closed

curves, and we span each simple closed curve by a disk. For the knot in Fig. 7.2
(a), there are three disks Dy, Dy, D3. See Fig.7.2 (b).

Finally, we attach a half-twisted band at the place of D that corresponds to

a crossing point before they are removed. See Fig.7.2 (c). Thus we obtain a

connected, orientable surface S that bounds K. A shaded areas denotes the face
(or front) of the surface S and a dotted area the back of S. (If K is a link, we alter
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K, if necessary, in such a way that the projection of K is connected, then by the
abave method we can also obtain a connected orientable surface.)

By this simple process, we can guarantee the existence of at least one Seifert
surface for any knot (or link). However, the surface obtained by this algorithm
(called Seifert algorithm) may be unnecessarily complicated. For a Seifert surface
S, we denote by g(S) the genus of S. The genus of S is evaluated as -;—(2—n— x(5)),
where n is the number of component of K and x(S) denotes the Euler Characteristic
of S. The minimum genus of all Seifert surface for a given knot (or link) K is an
invariant of K. For an arbitrary knot (or link), there does exist an algorithm to
actually calculate its genus, but it is exceedingly difficult to implement. In truth,
to calculate its genus for an arbitrary knot (or link) is a difficult undertaking.

Remark 7.1 If a torus T is a boundary of a tubular neighbourhood of a knot
K, then a longitude of T can be obtained as the intersections of a Seifert surface
of Kand T.

(2) Linking number

The linking number, denoted by lk(], ), between two disjoint oriented simple
closed curves A and u in R3 is the simplest, but important link invariant of a 2-
component link L = AU u. The linking number lk(\, 1) is evaluated as follows.
Consider a diagram D of a link L. See Fig.7.3.

Figure 7.3 Figure 7.4

Let ny (or n_) denote the number of times u passes under A\ from the right
to left, (or the left to right). Then lk(\, u) = ny —n_. For the link L in Fig. 7.3,
k(A, ) = 1. It is known that k(A u) = lk(p, A).

Now we return to a Seifert surface.

(3) Seifert Matrix

Let S be a Seifert surface of a knot (or link) K and g the genus of S. Then the
first homology group H;(S;Z) of S is a free abelian group of rank 2g+n — 1, where
n is the number of components of K. For convenience, denote m = 2g+n—1. Now
we can choose m oriented simple closed curves oy, g, ..., a;, on the face of S in
such a way that (a) For ¢ # j, o; and «; intersect only at a finite number of points.
(b) Homology classes 1], ..., [am] form a basis for H;(S;Z). Using these curves,
ai,...,0m, we define an m x m integer matrix N = (¢;;),1 < 4,5 < m, where
Cij = lk(af,aj), Here af is a simple closed curve in R?® that is obtained from a;
by lifting a bit in the positive normal direction, see Fig.7.4. The orientation of
o is induced from that of o;. Even if o; and a; may intersect, of and a; never
meet, since a? is no longer on S. The matrix N is called the Seifert matriz of K.
The matrix N is an integer matrix, but it may be singular, and in general it is not
symmetric. Further, N itself is not an invariant of K, since N depends on a Seifert
surface.

Example 7.1 Consider a Seifert surface S depicted in Fig.7.5 (a). Choose
a3 and a2 as is shown in Fig. 7.5 (a). Then the Seifert matrix N = (c; ;) is given
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as follows. See Fig.7.5 (b)-(e). ¢11 = lk(afﬁ,al) =-1,¢c,.2 = k(a¥, ) = 0,
ca1 = lk(af, a1) = 1, caz = k(o a3) = 0, and hence, N = ( -1 )

1 0
D) B89 80 &,
(a) (b) (c) (d) (e) |

Figure 7.5

(4) Signature

Let N be an m x m Seifert matrix of an (oriented) knot (or link) K. Then,
N + N7 is a symmetric integer matrix. If K is a knot, it is not singular and
|det(N + NT)| = |det A|, whereA was defined in Section 6. Furthermore, it is
shown [T2, Mu3] that the signature of N + N7 is an invariant of a (oriented) knot
(or link) K that is called the signature of K, and denoted by o(K). Here, the
signature of N + N7 is defined as follows: First, diagonalize N + NT over Q by
means of some unimodular matrix B. Let by, by, . .., by, be diagonal elements. Then
signature of N + N7 is defined as the number of positive b;’s minus the number of
negative b;’s.

Theorem 7.1 Let K be an oriented knot and K* the mirror image of K. Then
o(K*) = —o(K).

Therefore, if K is amphicheiral, then o(K) = 0. The converse is not true. Let
K be the knot obtained from K by reversing the orientation. Then, o(K ) = o(K).

(5) Alexander polynomial

The Alexander polynomial Ag(t) of a knot K is redefined as, up to +t*,
Ak(t) = det(N — tNT). The original definition by Alexander was combinato-
rial [A2]. The Alexander polynomial of a knot is characterized in the following
theorem due to Seifert.

Theorem 7.2 [Se| If an integer polynomial f(t) satisfies the following three
conditions: (a) the degree of f(t) is even, 2r say, (b) f(t) is symmetric, i.e. f(t) =
trf(t7Y), (c) f(1) = 1, then f(t) is the Alezander polynomial of some knot in R3.
The converse is also true.

For a link L, the polynomial Ay (t) = det(N — tNT) is also an invariant of L,
up to £t*¥, where N is a Seifert matrix of L. This is called the reduced Alexander
polynomial of L. From these definitions, we see

Theorem 7.3 The degree of the (reduced) Alexander polynomial of a knot (or
link) K 1is at most m =2g+n—1.

In the next section, we will define the Alexander polynomial of a link, and also
will discuss other formulations of the Alexander polynomial.

8. Alexander polynomials

Since Fox’s free derivatives [F1] will be the most effective tool to define the
Alexander polynomial for knots and links simultaneously, first we explain this op-
eration briefly.

(1) Free derivatives
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Let F be a free group generated freely by zi,%s,...,Z,, and let ZF de-
note the integer group ring. With a word w = z3}z}...2%% in F, we associate
the free derivatives Ow/0x1,0w/0%s,...,0w/0x, defined as follows: dw/dx; =

(61 1)/2 51 (62 1)/2 L €l -7(k 1) (E,k—l)/2
€10/,j, %}, + €20;,5, %5, T;, ooty 2, T 0T
For example, if w = z12; %12 2027 *20,0w/0xy = 1 + x1x2 + zy25 ey —

xlxglmlxlxzwl“l,aw/axz = —mla:z"l + wlxglwlxl + :clwz_lmla:lxga:l_l, where 1 =

le, e being the identity of F. Therefore, the free derivatives are mappings from F

to ZF, but they are obviously extended to mappings from ZF to ZF'. The following

formulas are easily verified.

(a) 01/0z; = 0,0x;/Oxx = d;k,and ascj'l/axj = —a:j'l, forany j=1,2,...,n,

(b) O(wv)/dz; = Ou/dx;+udv/dz;, for any wordsu and vin Fand j =1,2,...,n,
ow

n
(c) (Fundamental formula) w —1 = —a—;(:cj — 1), for any word w in F.
j=1

Note that since F' is not commutative, g—( —1) # (z;

1)(9919J
(2) Alexander polynomials
Let K be a link of » components, » > 1. Consider a Wirtinger presentation
of the group G(K) of K. G(K) = (z;5|Ri; = 1),1 <i<nrl1<j < my. See
Section 2 (5). Compute OR; j/0xy  for all 4, j and k, £, and obtain a square matrix
r

M = [0R; j /Oy 4] of order Z m;, called the Jacobian. Now let F be the free group
=1

T
of rank Zmi freely generated by {z;;},1<i<rl1<j<miand¢:F -G
i=1
be a natural homomorphism so that Ker¢ is the normal closure of {R; ;}. Further,
let 9 : G — G/G’' = H be the abelianization of G, and hence, H is a free abelian
group of rank r generated by {z;1},1 < i < r. For convenience, we use ¢; for
x;,1, but if r = 1, we use t for ;. Now evaluate M at ¢, and hence we obtain a
square matrix M%¥ of order ) m;, where an entry of M%¥ is an integer Laurent
polynomial in ty,%,...,¢.. Note that M%¥ is singular.

Definition 8.1 The g.c.d. of all minors of M*#¥ of order 3 m; — 1 is called the
Alezander polynomial of K, denoted by A(ty,tz,...,t,).

This is an invariant of K up to a unit of ZH, i.e. t¥* .. thr. If r = 1, this
polynomial coincides with det(N —¢NT), where N is a Seifert matrix of K studied
in section 7.

The Alexander polynomial may possibly be 0 for a link, but for a knot, it is
never 0, since |A(1)| = 1. Further, if r > 1, set Ag(t) = Ag(t,t,...,t) that is
obtained from the Alexander polynomial of K by substituting ¢ for every t;,1 <
i < 7. It is known that(1 — t)AK(t) = det(N — tNT). Therefore (1 — )Ak(t) is
the reduced Alexander polynomial of a link K.

Remark 8.1 If G(K) has a presentation such that the number of relations is
less than > m; — 1, then Ag(¢1,t2,...,t,) is defined to be 0.

Example 2.2 (continued) From the presentation of G(K), we obtain

OR,/0xy = 1,0R; [0z = —xlmgxgl,(?Rl/@xg =z — xla:g:c;lxgl,

OR2/0z) = T3 — xax173 @7 ,OR2 /Oy = 1,0Ry /013 = —z2123 "
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1 -t t—1
Therefore, we have, M®¥ = [ t—1 1 —¢ ], and Ag(t) =1—t+1¢2.
* * *

(We do not need to evaluate dR3/0x;.)

Example 2.3 (continued) By Remark 8.1, Ay (¢y,...,%.) =0.

Example 2.4 (continued) Since Ry 1 = 71,122,127 1751, we have

8R1,1/3$1,1 =1- .’271,13)2,13.’31_,% and 8R1,1/8a:2,1 = .’1:1,1 - $1,1x2,1.’1}1-jx'2-j,

and hence, M?¥ = 1 _*tz b : 1

In the rest of this section, we discuss the Alexander polynomials of torus knots
and 2-bridge knots.

(3) Torus knots

With a Seifert matrix N of a torus knot T'(p, q), the calculation of det(N —tNT)
is cumbersome, but the final form is neat.

Theorem 8.1(1) If pg =0, then Aqp o)(t) = 1.
(2) If pg # 0, then Apgp g (t) = (P —1)(t — 1)/(t* — 1)(t? — 1).

Using Theorem 8.1, we can prove Theorem 4.4 (ii).

(4) 2-bridge knots

The calculation of the Alexander polynomial of a 2-bridge knot B(«a, 3), using a
Seifert matrix, is also quite messy. However, a different approach makes it possible
to write down the Alexander polynomial of B{a,3) in one form. See Theorem
9.5 in Section 9. Finally, we state a few properties of the Alexander polynomial
of B(a, (). Since Ap(a,p)(t) = Ap(a,s)(t) = AB(a,a—p)(t) and « is odd, we may
assume that 3 is even. Consider the even continued fraction of a rational 8/a:

Jéj 1

2a1 -

. Therefore, Ar(t1,t2) = 1.

20&2 - 1

1
2am-1— 5—
O,
= [2(21, 2“2, Y 2am],
where ar # 0,1 < k < m. Then we have:
Theorem 8.2 [Kan] (1) the degree of Ap(qp)(t) is exactly m,

(2) |AB(a,3)(0)| = |a1az...am|. Therefore, Ap(a,p)(t) is monic if and only if
la1| = |ag| = - -+ = |am| = 1, namely, B/a = [£2,£2,...,+2].

9. Signature

In this section, we evaluate the signatures for torus knots and 2-bridge knots.
(1) Torus knots
The calculation of the signatures for torus knots is not easy. The earliest
attempt was made by Hirzebruch in 1968, and he proved:
Theorem 9.1 [HizM] Let T(p, q) be a torus knot of type (p,q), where p > 0
and q > 0. Suppose that p and q both are odd. Then
(¢-1)

a(T(p,q)) = 2{@—;1)“‘2—‘ + Np,g + Nop},

where Npq = |{z|l <z < (g-1)/2,((pz/q)) > 0}|, and
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_Jy-ll-1/2, ifyeR-1Z,

(@) = { 0, ifyeZ

Example 9.1 6(T(5,3)) = 2{5 2 + Ns3+ N3 5} = 8, sinceNs 3 = N3 5 = 1.

Hirzebruch also proves the following reduction formula.

Theorem 9.2 Under the same assumptions of Theorem 9.1, the following for-
maula holds: o(T(p+2¢,9)) = o(T(p,9)) — (¢ — 1).

In 1981, we proved the following complete reduction formula for o(T'(p, q)).

Theorem 9.3 [GLM] Write o(p, q) for o(T(p,q)). Assume p >0 and ¢ > 0.
(1) o(p,q) = 0(q,p). Therefore, we may assume further that 0 < q < p.
(2) Case 2q < p.

(i) If =1 (mod 2), then o(p,q) = o(p — 2¢,9) +¢° - 1.

(#6) If g = 0 (mod 2), then o(p,q) = o(p — 2¢,9) + ¢*.
(8) Case g < p < 2q.

(i) If =1 (mod 2), then o(p,q) +0(2¢ —p,q) =¢* — 1.

(i) If g = 0 (mod 2), then o(p,q) +0(29 — p,q) = ¢* — 2.
(4) Forp>0, o(p,2) =p—1 and o(p,1) = 0.

Example 9.2 For p = 4 and ¢ = 3, we have from (3)(i) ¢(4,3) + ¢(2,3) = 8
and since 0(2,3) = 0(3,2) = 2, we see o(4,3) = 6.

(2) 2-bridge knots

In contrast to torus knots, an evaluation of the signature of a 2-bridge knot is
straightforward. Let B(c, 3) be a 2-bridge knot, where « is odd. Since B(a, —f) is
the mirror image of B(a, ), it follows that o(B(a, —)) = —o(B(a, 8)), and hence,
we may assume that o > 3 > 0. Further, we may assume that 8 is odd. In fact,
Theorem 5.1 yields o(B(a, 8)) = o(B(a, B~ ) = —o(B(a, a — 8)). Now consider
the sequence E = {3,20,30,...,(a—1)3}. Take representatives k3 of k3 (mod 2c)
in —a < kB < a, and obtain a new sequence E = {3,28,38,...,(a — 1)3}. Let ¢
be the sign of k3, i.e. ¢x = kB/|kp|.

a—1
Theorem 9.4 [Sh] If « and B are odd and o > 8 > 0, then o(B(a, ) = Z €k-
k=1
Example 9.3 For B(5,3), we have E = {3,6,9,12} and E = {3,—-4,-1,2}
and therefore, o(B(5,3)) = 0.
Finally, the Alexander polynomial of a 2-bridge knot B(«, 8) can be calculated
in the following simple form:
Theorem 9.5 [HiM1] If a and (3 are both odd, and o > 3 > 0, then:

a=—1 k
Ap(a,p)(t) = Z(—l)"t%,where gk = Zei,and =1
k=0 i=0

10. Fibred knots

(1) Commutator subgroup and Augmentation subgroup

Almost the same time when Alexander defined his polynomial, Reidemeister
also introduced the same polynomial from a different point of view.

Let K be a knot (not a link) and G = G(K) the group of K. Let G’ be the
commutator subgroup of G. Then the infinite cyclic group G/G' & Z = (t|-)
acts on G’ by conjugation, and G’/G" becomes a finitely generated Z[t*]-module
with the relation matrix A. Then Reidemeister showed that det A is an invariant
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of K, up to +t*, and in fact it is the Alexander polynomial of a knot K. For
an (oriented) r-component link L, > 1, the commutator subgroup G should be
replaced by the kernel of ¢i7, where 7 : H — (t|-), and 7(¢;) = t,1 < i < 7.
The subgroup A = ker ¢3p7 is called the augmentation subgroup of the group of
L. Then the same argument above shows that the reduced Alexander polynomial
(1—t)A(t) is given by det A. It is important to note that the augmentation subgroup
A depends on the orientation of each component. If one of the components reverses
its orientation, we have a different augmentation subgroup and hence the different
(reduced) Alexander polynomial.

(2) Fibred knots (or links)

This reformulation suggests that the Alexander polynomial may provide us some
information on the structure of G/G”. In fact, we have

Theorem 10.1 [Ra] Let Ak (t) be the Alexander polynomial of a knot K. Then
Ag(t) is monic if and only if G'/G" is finitely generated, and then G'/G" is a free
abelian group of rank d, where d is the degree of Ak (t).

On the other hand, L. Neuwirth studied the structure of the commutator sub-
group G’ of the group of a knot K, and, in particular, he proved

Theorem 10.2 [N] If the commutator subgroup G’ of the group of a knot K
is finitely generated, then G’ is a free group of rank d, the degree of the Alexander
polynomial.

Later, the property that G’ be finitely generated was characterized topologically
by J.Stallings.

Theorem 10.3 [St] Let K be a knot. Suppose that the commutator subgroup of
G(K) is finitely generated. Then the complement of a small tubular neighbourhood
of K in S3 is the total space of a fibre space with base space a circle and with fibre a
Seifert surface of K. The converse is also true. We call such a knot a fibred knot.

Remark 10.1 For a link in $3, analogous theorems to Theorems 10.2 and 10.3
hold if the augmentation subgroup A replaces the commutator subgroup. As an
immediate consequence of Theorem 10.3, we obtain:

Theorem 10.4 If K is a fibred knot, then the Alexander polynomial of K is
monic. The converse is not true, however.

The property that K be a fibred knot is a topological property, and hence,
it is difficult to characterize this property by algebraic invariants. However, for
2-bridge knots or more generally for alternating knots, their Alexander polynomials
characterize fibred knots. See Theorem 10.5 below. An alternating knot is a knot
that has at least one alternating diagram. A diagram is called alternating if over-
passing and under-passing alternate while moving along a diagram. Fig.1.1 is an
alternating diagram, while Fig.2.1 is not an alternating diagram, but the knot
itself is an alternating knot, since it has an alternating diagram. A 2-bridge knot
is an alternating knot. Alternating knots form a large and special class in knot
theory, and the classification problem is completely solved for these knots [MeT).
But, not all knots are alternating. A torus knot T'(p, ¢) is alternating if and only
if min{|p|, |g|} < 2. For alternating knots, the converse of Theorem 10.4 holds.
Namely, we have:

Theorem 10.5 [Mul] Let K be an alternating knot. Then K is a fibred knot
if and only if Ak (t) is monic.

Recently, Gabai introduced some geometric methods by which one can decide
whether many knots (or links) are fibred or not [G].
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Remark 10.2 A trivial knot is a fibred knot, and all torus knots are fibred
knots. A Hopf link is a fibred link.

11. Representation - Covering space

Let J,, denote a set of n elements, {1,2,...,n}, say, and S(J,) the group of all
permutations of the set J,.

(1) Permutation Representation

Let G(K) be the group of a knot (or link) K in S3. Let ® be a transitive
representation of G(K) into S(J,,) for some n. Corresponding to ® is the covering
space M of S3 branched along K with the covering projection p (that we call simply
the branched covering space of K in §%). Two permutation representations & and
&’ are called equivalent if they differ by renumbering of J,. Two covering spaces
corresponding to ¢ and @’ are homeomorphic. Now if H is a subgroup of G(K) with
finite index n, then we obtain a transitive representation ® of G(K) into S(J,).
(Any two such representations are equivalent.) This representation will be called
a representation corresponding to the subgroup H. In fact, H is obtained as the
stabilizer of some element in J,, under ®.

(2) Cyclic covering space - Homology invariants

By taking various representations of G(K), we obtain various compact 3-
manifolds M as branched covering spaces of K. Since these manifolds are in-
variants of K, we can deduce many knot invariants from these manifolds. For
example, the first homology group H;(M;Z) is one of many classical invariants
that were already studied in 1930’s. For example, the torsion number and Betti
number of Hy(M;Z) provide us handy and neat numerical invariants. In partic-
ular, the branched covering space of K associated with the cyclic representation
®: G(K) — {(12---n)} C S(Jn) was the subject of investigation from the early
stage of knot theory. In fact, we have

Theorem 11.1 Let M, be the n-fold cyclic branched covering space of a knot
K. Let 51(K) and 71(K) denote respectively the first Betti number and torsion

n—1
number of Hi(M;Z). Then, if 51(K) =0, then 11 (K) = H Ak (£, where € is a
i=1
primitive nth root of unity.
Note that if n = 2, then 8;(K) = 0 for a knot K.
For a knot, any abelian covering is necessarily a cyclic covering. However, for
a link L, there are infinitely many non-cyclic abelian coverings. But, if 8;(L) =0,
there is a formula that evaluates the torsion number of H;(M;Z) in terms of the
Alexander polynomial of L and those of the various sublinks of L [MaM)]. These
formulas give us the torsion number of H;(M;Z), but do not give any information
on the structure of Hy(M;Z). The structure of H,(M;Z) is generally complex. A
few classical results are known for the case of cyclic coverings of knots [Pl]. Later,
we will discuss some results for the case of links.
(3) Dihedral representations
Besides abelian representations, representations of the knot group on the di-
hedral groups D, of order 2p, p odd, have been studied extensively. The following
theorem will easily be proved.
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Theorem 11.2 Let D, = {a,bla® = b*> = (ab)? = 1) be the dihedral group of
order 2p, where p is odd. Then the knot group G(K) has an (irregular) representa-
tion ®, : G(K) — D, C 8(Jp) in such a way that &, maps every meridian element
of K to an element of order 2 in D, if and only if Ax(—1) =0 (mod p).

It is shown that if K is a 2-bridge knot, then the branched covering space
corresponding to ®, is simply connected [F2], but in fact it is S* [Bu2]. One
of the reasons to study (irregular) branched covering spaces of knots (or links) is
hopefully to obtain a simply connected closed 3-manifold other than S3. But, up to
the present, nobody has found such a 3-manifold. Besides the dihedral coverings,
various coverings have been studied, see [Ri], [HaM2].

(4) Covering linkage invariants

As was seen in the above subsection, the covering spaces themselves may not be
significant invariants of a knot. However, even if the covering space M is simple, like
53, we can deduce from M some important invariants of K. Let ® : G(K) — S(J,,)
be a transitive representation of G(K). Suppose that the branched covering space
M corresponding to ® is a homology 3-sphere, i.e. Hy(M;Q) = 0 and, further,
p~1(K), a lift of K in M is an r-component link K = K; UK, U---UK,,r > 2.
Then the linking numbers Ik(K;, K;) (mod g),1 < i # j < r, are well-defined and
they are invariants of K, where ¢ is the order of Hy(M;Z). They are called the
covering linkage invariants associated to ®. These invariants are sometimes very
powerful tools to distinguish between two knots. In fact, two 2-bridge knots that
have the same Alexander polynomials are distinguished by the covering linkage
invariants associated to (irregular) dihedral representations ®, [BS]. The following
theorem is one of many results about the covering linkage invariants.

Theorem 11.3 [Pe] Suppose that the group of a 2-bridge knot K has an (ir-
regular) representation on D, C S(Jp), where p is odd. Then the lift of K in
the irregular dihedral covering space M of K is a link K of (p+1)/2 components
K1, Ka,...,Kpy1)/2, and for i # j,1k(K;, K;) = 2 (mod 4).

Evaluation of these covering linkage invariants for a knot or link associated
to an arbitrary finite representation ® is completely formulated [Ha] and various
applications can be found in [HaM1], [HaM2], [Mu5], [Lu].

12. Modular representations of 2-bridge knot groups

In this section, we will discuss an unimodular representation of the group of a
2-bridge knot B(c, §). The information we obtained in this section will be used in
the next section.

(1) Unimodular representations

Suppose there is an unimodular representation p : G(K) — SL(2,Z) such that
p(m) = ( (1) } ), where m is one Wirtinger generator.

Such a representation p will be called a canonical representation. Since
PSL(2,Z) = Z/(2) x Z/(3), p can be lifted to a homomorphism p : G(K) — H =
(a,bla® = b%) [HaM2]. Now H is the group of a torus knot of type (3,2) and
Arp(s2)(t) = 1 —t +t2, and hence, we have

Theorem 12.1 If the group G(K) of a knot K has a canonical unimodular
representation p : G(K) — SL(2,Z), then Ak (t) =0 (mod 1 — ¢t + ¢2).
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The converse of Theorem 12.1 is not true. For example, the Alexander polyno-
mial of the 2-bridge knot B(27,17) is (1 — ¢ + t2)(2 — 5t + 2¢2), but its group does
not have a canonical representation on SL(2,Z). See Theorem 12.2.

(2) Admissible form

In this subsection, we characterize a 2-bridge knot K = B(a, ) that has a
canonical representation on SL(2,Z). First, we consider a continued fraction of
B/a. Since the groups of 2-bridge knots B(c, f) and B(«, —f3) are isomorphic, we
may assume that « = 8 = 1 (mod 2) and 0 < 8 < a. Now express §/a as the
continued fraction of the form:

B _ 1

o 1
2a1 -

2a2 -

= [2011’ 2a3,- - ,20m, C]v

where a; # 0, ¢ is odd and |¢| > 1. This expression is called an almost even
continued fraction of 8/a, and this expression is unique. We say that §/a or
[2a1,2as,...,2am, ] is admissible if G(B(a, 3)) has a canonical representation on
SL(2,Z). Note that if [2a4,2az,...,2am,c] is admissible, then [—2a;,—2ao,...,
—2a,, —¢] is also admissible. The admissibility of an almost even continued fraction
is completely determined by the following theorem.

Theorem 12.2 [HiM2] Let X = [2a1,2a2, . ..,2am,c|, ¢ odd and |c| > 1, be the
almost even continued fraction of §/a, where a > 3> 0 and a = =1 (mod 2).
We call m + 1 the length of X. (1) If X is admissible, then the length of X must
be odd, i.e. m is even.

(2) Suppose the length of X is 1. Then [c] is admissible if and only if c = 3 (mod 6),
(3) Suppose the length of X is 3, i.e. X = [2a1,2a2,c]. Then,

(i) [6k,2a2,c],k # 0, is admissible if and only if [c] is admissible, i.e. ¢ =
3 (mod 6).

(i) [6k + 2,2a3,c], k # 0, is admissible if and only if

2a3 = -2, and [c — 2] is admissible, i.e. ¢ =5 (mod 6).

(iii) [6k + 4,2a2,¢], k # 0, is admissible if and only if

2a; =2, and [c — 4] is admissible, i.e. ¢ =1 (mod 6).
(4) Suppose the length of X > 5.
(i) [6k,2aq, ..., 2am,c|, k # 0, is admissible if and only if

[2as,2a4, ...,2am,c] is admissible.
(i) [6k + 2,2ay,. .. ,2am,c|, k # 0, is admissible if and only if
2a2 = -2, and [2a3 — 2,204, ..., 20y, c| is admissible.

(ii) [6k + 4,2a2, . ..,2am, |,k # 0, is admissible if and only if
2a; = 2, and [2a3 — 4,244, .. .,20m, | is admissible.
A proof needs a careful study of the modular diagram and a theorem due to
Sakuma [Sa]. See also [GR] for a similar theorem to Theorem 12.2.
Example 12.1 Let K be a 2-bridge knot B(27,17). Since 17/27 = [2,2, -2, 3],
it is not admissible, but 1 — ¢ + ¢ divides Ag(t).
Example 12.2 Let K = B(27,11). Since 11/27 = [2, -2, 5], it is admissible.
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13. Twisted Alexander polynomial

The twisted Alexander polynomial of a knot (or link) was defined by Wada
[Wad] and Lin [Li] in early 1990’s. This is a generalization of the Alexander poly-
nomial, but it is a subtler invariant than the Alexander polynomial. In fact, it may
distinguish between a knot and its mirror image. This is in general not possible by
the Alexander polynomial.

(1) Definition

Originally, Wada defined this polynomial for a finitely presented group G with
G/G' free. However, for simplicity, we consider only the group of a knot K. Let
p: G = G(K) — GL(n, R) be a linear representation of the group of a knot K,
where R is an unique factorization domain. Let @ : G — G/G' =2 Z = (t|-)
be an abelianization. Then p and a can be extended to p : ZG — M,(R), and
& : ZG — Z[t*'], where M,, denotes the ring of matrices of order n. Now, let
G = (x1,%2,...,Zm|r1 = 1,72 = 1,...,7m—1 = 1) be a Wirtinger presentation
of G(K). Let F be a free group freely generated by {z1,z2,...,Zm}. Let A =
[0ri/0z;],1 < i <m—1,1 < j < m, be an (m — 1) x m matrix (over ZR),
where 3/0z; denotes Fox’s free derivatives. (See 8(1).) Now eliminate one column,
say the last column to obtain A. Let ¢ : F — G be a natural homomorphism
defined by ¢(z;) = z; and ¢ : G — M, (R[t*']) be a homomorphism defined by
é(x;) = p(z;)t. Extend ¢ to a ring homomorphism from ZG to M,(Z[t*']). Then
(8ri/0z;)® € M, (R[t*']), and A? = ||(8r;/dz;)?|| is an n(m—1) x n(m — 1) matrix
over R[t*!]. We define as in [Wad]:

A, k() = detA? /det(z®, — I), where I denotes the identity matrix of order n.

This is an invariant of a knot K up to ut**, where u is a unit of R.

Remark 13.1 [Wad] (1) If p, : G — GL(n,Z) be a trivial representation, then
Ap, k(t) = (Ak(t)/(1 —t))™. (2) Ap k(t) is a rational function, but if there exists
an element w € G’ such that 1 is not an eigenvalue of p(w), then A, k(t) is a
Laurent polynomial with coeflicients in the field of quotients Ry of R. Therefore,

A, k(t) € Ro[t*!].

Example 13.1 Let K be a knot in Fig. 13.1. Then a Wirtinger presentation
of G(K) is given by (z,y|ryry 'z ly~! = 1). Then p(z) = ( é i ) and p(y) =

( _; (1) ) define a linear representation. Then A, g (t) = (1—t)2(1+t2)/(1-t)? =

1+12.

(2) Fibered knots

As one of the general results, we mention the following theorem.

Theorem 13.1 [GKM] If K is a fibred knot, then for any unimodular represen-
tation p : G(K) — SL(2n, F), A, k(t) is a rational function of monic polynomial,
where F is a field.

Remark 13.2 [Ki] If F = C or a finite field F,, then A, k() is symmetric.

(3) Twisted Alexander polynomial

Now we consider the twisted Alexander polynomial A, x(t) of a 2-bridge knot
K = B(a, B) associated to p : G(K) — SL(2,Z), where p is a canonical representa-
tion of G(K). See Section 11. For convenience, we write a Wirtinger presentation
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of G(K) as follows: G(K) = (z,y|R = 1), And assume that p(z) = ( 3) } )
1

and p(y) = ( -1 (1) ) Then zy~! belongs to G/, but none of the eigenvalues of

p(zy~!) is 1, and hence by Remark 13.1 (2), A, k(t) is a Laurent polynomial over
Q. Further, for any prime p, p induces a representation p, : G(K) — SL(2,Z/p),
and A, k(t) = Ap k(t) (mod p), and therefore, by Remark 13.2, A, k(t) is an
integer symmetric polynomial. Noting that A, r(32)(t) = 1 + t2, (see Example
13.1,) we see that A, x(t) is divisible by 1 + 2. Now, set A(t) = A, k (t)/(1 + t2).
Then, by Theorem 13.1, we see that if K = B(a, 3) is fibred, then A(¢) is monic.
However, for a 2-bridge knot, the converse also holds. Namely, we have

Theorem 13.2 [HiM2] Suppose that the group of a 2-bridge knot B(c, 8) has
a canonical representation p on SL(2,Z). Then, B(a,f) is fibred if and only if
A, i (t) is monic.

A table of the twisted Alexander polynomials of about two hundred 2-bridge
knots with canonical representation p on SL(2,Z) by Stoimenow reveals the follow-
ing facts. Since these facts are not proven yet, we leave them as conjectures.

Conjecture 13.1 Let K be a 2-bridge knot with a canonical representation p
on SL(2,Z). Then
(1) X(1) = 1. Therefore, A(t) is the Alezander polynomial of some knot K in R3.

What is K ¢
(2) M(—=1) = ¢? for some integer q.

14. Milnor’s Invariants (I)

Let G be a finitely generated group, and let {G(9),g > 1} be the lower central
series of G, i.e. GV = G and G@ = [G,G@Y)] for ¢ > 2. In 1957, J. Milnor
defined a sequence of numerical invariants for an n-component link L, n > 2, using
the specific presentation of the nilpotent group G(L)/G(L)@. These invariants are
called Milnor’s fi-invariants. These invariants are trivial for a knot, since G(?) =
G®) = ..., for the group of a knot. In this section, we give a definition of Milnor’s
p-invariants and state a few properties of these invariants. In the next section, we
will give a topological interpretation of these invariants.

(1) Chen-Milnor presentation

Consider a Wirtinger presentation of the group of an n-component link L =
KUKy U-.--UK,. See Section 2.

The set of generators is {Z1,1,...,%1,my, %2151 L2,mar+++1Ln,1s- -y Tnymn }r
and a set of relations is {R1; = 1,...,Rim;, = LLR21 = 1,...,Rom, = 1,

wRn1 =1,...,Rym, = 1}. Although one of relations is irrelevant, we keep
it in the set.

Each relation is of the form, for 1 <7 < n,1 < j <my, R;; = x4 50; j; ,J+1a”1,
where a; ; = x,ie for some k,£,1 < k < n,1 < £ < mg. Now replace R; 2, by

;,2 = Ri,l(ai,lRi,zai"’ll) = z;,1(a;, 1,a],2)x:31( zzal 1) and then replace R;3 by
R} 3 = R§,2(ai,1a¢,2Ri,3a[’21ai_,11) %i,1(@;,10i 20 ,3) :cl 1 (a, 3aZ 2 al ~1). Inductively,
the set {Rz I;Rt2a zm,} is replaced by {Rz 1) 1,2’ zm } where R‘:,J
z“W,Jx;JlH for 1<i<nl1<j<m,and W” = 040;2 0 ;. In
particular, R} .. = %;1Wim,z;s Wi ,.. Write a;; = ”:kijl,' , and let A, =3 e,
where the summation runs over all a,,j in W; p,, such that k;; = i. Then for

Z]’
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t=1,2,...,n,m = Wim,z;, f‘i represents a longitude of the ith component of
K; of L. Let F and F,, respectively, be free groups that are freely generated,
respectively, by {z;j,1 <i < n,1<j<m;}and {z1,72,...,2,}. Now we define
the homomorphisms 6, : F — F,, inductively.

(141) For 1 <i<n,1<j <mj and ¢ > 1, 2% = z;, and ¢(%" = z;, 2758 =
(Wi i1 Wi )%

Then the following theorem is proved by Milnor [Mi] [C]:

Theorem 14.1 For ¢ > 1,G(L)/G(L)\9+Y) has a presentation:

(1, Z2,... ,xnlnf":cmi_"“:z[l = l,FT(,qH), 1 < i < n), where F,(Lq“) denotes the
(g + 1)th member of the lower central series of Fy,.

(2) Milnor’s i - invariants

Obviously, 6, can be extended to the ring homomorphisms ZF to ZF,,. The
trivializer o : ZF,, — Z is a homomorphism defined by Y (a;z;, ...%;,)° = Y a;.
Now following Milnor [Mi], we define an integer p(iyiz...ipk) for a sequence of
integers {i1,42,...,%p,k},p > 1,1 < 41,43,...,%p,k < n, as follows:

(14.2) p(iia . .. ipk) = (8Pny? [0z, 8z, - -~ Dz ).

Let A(i1éz...4,) = ged (4172 - - . Js), Where j1j2 ... 75, (2 < s < 1) is to arrange
over all sequences obtained by canceling at least one of the indices %1, iz, . .., %, and
permuting the remaining indices cyclically. Then Milnor proved:

Theorem 14.2 [Mi] fi(i192 - - - ipk) = p(iniz .. . ipk) (mod A(iriz - - - ipk)) is an
invariant of L.

This is called Milnor’s p-invariant.

Remark 14.1 (1) f(jij2 -« - j-) is in fact an isotopy invariant of L, where two
n-component link L and L' are said to be isotopic if there is a continuous family
of homeomorphisms {f;,0 <t <1}, f; : L — R3 (or S%) such that f, is an identity
map and fi(L) =L'.

(2) We define (i) = 0 for any .

(3) For ¢ # j,pu(ij) = k(K;, K;), and p(is) = 0. Due to these facts, Milnor’s
[-invariants are sometimes called a higher linking invariant.

N u(ij) L
4) pgi---ij) = ( " ) mod A(gi...q ).
k times k times

(5) If a sequence {41, iz, .. .,i,} does not contain ji, j2, .. ., jk, then i(iyis - - - i,)
is equal to Milnor’s invariant for the sublink L’ that excludes k components,
K;,Kj,,..., K, from L.

(6) For a trivial n-component link, all Milnor’s invariants vanish.

These invariants satisfy many relations. Some important relations are listed in
the following theorem.

Theorem 14.3 [Mi] (1) cyclic symmetry: f(iiiy---iy) = G(izis - - - ipi1)

(2) shuffle equality: If iy,...,%. and j1,...,js are given sequences with r,s > 1,
then Y fi(hy - hrysk) = 0 mod ged A(hy - - hyysk), where the summation runs
over all proper shuffles of i1,...,i, and ji,...,js. (A proper shuffle h1,..., hrys
of i1,...,%r and j1,...,Js is one of the (T':s) sequences obtained by intermeshing
Ty .oy b With j1,...,7s.)

Like 2-bridge links or closed pure n-braids, if the group of an n-component link
L is generated by exactly n Wirtinger generators, then G(L) has a presentation:
G(L) = (xl,xz,...,mnmxm;lx-_l = 1,1 < i < n). For this case, 6, becomes an
identity, and hence, G(L)/G(L)9*") has a presentation:

k3
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(T1,%2,. .., Tn|mzin; 27t = l,FT(,qH), 1 < i < n). Therefore, the computation of
p-invariants is much simpler.

(3) Examples

Example 14.1 Let L be a link depicted in Fig.14.1. For simplicity, we use
z;,y; for x1;,%, 5, and R;,S; for Ry, Ry ;. (In Fig.14.1, we do not distinguish
between an over-passing arc and a generator of G(K).) Then G(L) = (z;,y;,|R; =
1,8, =1,i=1,2,3,j = 1,2,...,5), where R; = z1y12; 'y}, R2 = Zays3x3 3",
Rs = zaysay 'ys ', and S1 = yiysy; 'ys 'y Sz = yerayz ', Sz = ysysys ys
Sy = yaz1y5 27", S5 = ysz1y; ‘z7 . The set of new relations Ry, R}, S5, ..., S,
are given below:

Ry = z1(nys)z3 (5 v1 ), By = 21(vaysys)zr (v 'ys'vi '), and hence,
T = y1Ysys, and Sy = y1(ys21)ys (21 95 ), S5 = v1(ysrys)ys ' (v5 21 w5 ),
Sy = n(ysT1ys21) y5 (27 'y w1 w5 '), S5 = vi(usmayszd)yi (21 %5 ey e ),
and hence, 7 = ysz1yszy;>. Now we evaluate some of f-invariants. (1) =
f(2) = 0. To evaluate higher fi-invariants, first we compute 8,. They are: 6, (z;) =
zy and 61(y;) = y1, 02(z1) = 31, O2(z2) = yi'mawn, O2(zs) = yy’z1yd, and
02(y1) = y1,02(y2) = y1, O2(ys) = o7 121, O2(va) = (v1 27 Dvi(z1yn), O2(ys) =
(@1 'y e Dy (@)

Using these formulas, we have nf‘ = 3, nf’ = ylxl_zylmlyla:l, and ngl =
yizyieyr 0yt = o yr el sy ey ey yizyiedy; 2. Now we are in posi-
tion to evaluate j-invariants. fi(12) = (9n3'/0z:)° = 3, E(21) = (A’ /0y,)° = 3,
B(121) = (8%7%2/8210y,)° = 0, since A(121) = 3, E(112) = (8%n82/8x2)° = 0,
since A(112) = 3, 5(122) = (82052 /8x18y1)° = 0, since A(122) = 3. Similarly, we
can show that (1122) = 2, since A(1122) = 3. Further, by using Theorem 14.3, we

(a) (b)
Figure 14.1 Figure 14.2

Example 14.2 Let L be a link depicted in Fig. 14.2 (a) or (b). This link is called
the Borromean rings. (This link has a property that a removal of one arbitrary
component results a trivial link.) As before, we use ;, y;, zx for z1;,z2 ;, Z3,x, and
R;, S;, U for relations. The group G(L) has the following presentation:

($1,$2,y1,y2,21,22|R1 = ]-)RZ = ]->Sl = 1,‘52 = I,Ul = 1aU2 = 1)’ where
Ry = 227 23 21, Ry = o227 251, 81 = pial y; 21, 82 = yozoyy 2y U =
21Y1 lz; Ly, Up = 29Y22, ly; 1. And new relations are:
Ry = 1 (27 222y (25 20), S5 = v (a7 o)y (3 1 21), Up = 21(y1 'y2) 21 (w2 '),
and 1y = 21 '22,m2 = 7' @2, M3 = y; 'y2. Now, i(12) = i(13) = (23) = 0, and
#(123) = 1,(132) = —1. Therefore, A(j1j2jsja) = 1, and f(i123---ix) = O for
k>4

(4) Lower central quotients
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Let G = G(L) be the group of an n-component link. If all fi-invariants vanish,
then it is known that for any ¢ > 1,G/G@ = F/F\?. However, if fi(ij) = *1
for any i and 4,1 # 7, then ji(¢192...4x) = 0 for k > 3. In this case, the following
theorem is proved.

Theorem 14.4 Let G be the group of an n-component link. Suppose that
a(ij) = 1 for any i and j,i # j. Then for any ¢ > 2,G@ /G(a+1) F‘,(L‘I_)I/F‘,(Lq_ﬁl),
where F,,_y is a free group of rank n — 1.

This theorem was first proved by Kojima for the case ji(ij) = 1 for any ¢ and
j,i # j [Ko]. Later, Maeda proved this theorem under weaker conditions [Ma],
also see [MaT] [La]. In 2000, Morishita proved a number theoretical version of this
theorem [Mo].

15. Milnor’s invariants (II)

Milnor’s fi-invariants are interpreted as covering linkage invariants in a certain
covering space. Since fi(iyiz - -+ i,) is defined via a nilpotent group G/G(9, the
covering will be most likely a nilpotent covering.

(1) Nilpotent Representation

To find an appropriate covering, first we define a free group action on Z*,
the set of k-tuples {(a1,a2,...,ax)|la; € Z}. Let F be a free group of rank n
freely generated by z1, s, ..., Z,. Given a sequence of integers & = {j1,Jj2,.-.,Jk},
1 < j1,52y- -,k < n, we define an action ® of F on Z¥ : ®¢(z;)(a1,az,...,ax) =
(bl,bz, - ,bk), where by = a; + 6i,j1,b2 = a +6,-,j2a1, cee by =ag + 6,',]',‘0,];_1. For
example, if £ = {1,2,1,1,2}, then ®¢(z1)(a1,az2,...,as5) = (a1 +1,a2,a3 +az,a4 +

a’37a'5)7 Qf(mZ)(all) A2y -0y a5) = (a'ly az +ai,0a3,0a4,05 + a4), Qf(zz) = id. for ¢ > 3.
This action is written in the matrix form as follows:
1 6':,]'1
1 6i,j2 0
D (z;) = € GL(k +1,Z).
0 L b
1

-~

Let Q be the orbit of (0,0,...,0) under ®; and S(f2), the group of permutations
on 2. Then we have a homomorphism ®; : FF — S(€). Using this (transitive)
homomorphism, we can define a permutation representation of G(L). Let £ =
{71,525+ - - »Jks Jk+1, Jk+2} be a sequence of the length k + 2.

Let m = A(j1j2 - - - Jejr+1Jk+2)- Now we consider a nilpotent representation
& : G(L) — S((Z/m)¥), where S((Z/m)*) denotes the group of permutations on
k-tuples {(a1,az2,...,ax)|0 < a; <m—1}.

(2) Covering linkage invariants

Let L be an n-component link in S%, and Mg the covering space corresponding
to &¢. Let L be the lift of L in My. Assume m # 0. Let {QP, Q" ..., 0P} be
the set of all orbits in Q under the actions (i>5(a:p,1) and <i>£ (Mp)y 0 = J1, 925+ - Jkt2
’I~‘hen each orbit Qgp ) corresponds to one and only one component of L, denoted by
R,

Now to each orbit Qﬁj"“) , we define ¢; = Y Bk(bs,...,bx), where the sum-
mation runs over all (by,...,bx) in QEjHl) and B(b1,...,bx) = bx. Then set
o= Z;\=1 qujk+1,i € Hl(iz; Z)
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It is known that a bounds a 2-chain B in Mg and we have:
Theorem 15.1 [Mu6] Given a sequence & = {j1,J2,---,Jks Jk+1,jk+2}, let

Kj, .20 be the knot corresponding to the orbit Q(()Jk“) that contains (0,0,...,0).
Assume that m # 0. Then G(ji1,J2,...,Jk+2) = int (Kjk+2,0,B) (mod m), where
int( , ) stands for the intersection number in Mg. Therefore, if K. k42,0 18 homol-
ogous to 0 in Mg, then fi(j1,j2,. .., Jk+2) = Ik(Kj,,,,0,2) (mod m).

Remark 15.1 (1) If m = 0, then consider a finite nilpotent representation
& : G(L) = S8((Z/q)*) for a sufficiently large ¢ > 0. Then ‘mod ¢’ will be
interpreted as ‘equality’.

(2) By Cyclic Symmetry (Theorem 14.3), we may assume without loss of generality
that jk41 # Jk+2-

Example 15.1 For £ = {i, j, k}, we have from Theorem 15.1 that ji(ijk) =
int(Ky 0, B) (mod fi(jk)), where OB = S pK;p, € Hi(L,Z), and L is a lift of L in
the m-fold cyclic covering space of K;.

(3) Examples

Example 14.1 (continued) First we see that (12) = 3. Since A(1jk) = 3,
M3 is the 3-fold cyclic covering space of K, and Mg ~ S3. Then the lift of L in
My is depicted in Fig. 15.1.

-

K31

/ ’
K>, Kz,o_\/
Ko T Kl'ogb

X 7
f Q.\:ﬁ C
ITII,I K’ K3_0
K
1,2 K2’0 / K2,2 K2,—l<:: \\.
Figure 15.1 Figure 15.2

From this diagram, we can see easily that 7(112) = 1k(K20, K1,1 + 2K1,2)
3 =0 (mod 3), ,ﬁ(121) = lk(Kl,o,Kz’l + 2K2,2) =3=0 (mod 3),/7,(122)
lk(K27o,K2,1 + 2K2,2) =3=0 (mod 3)

Example 14.2 (continued) Since z(12) = 5(13) = (23) = 0, we see A(ijk) =
0. To see fi(123), consider the lift L of L in the infinite cyclic covering space of K
(or the m-fold cyclic covering space with a sufficiently large m). L is depicted in
Fig.15.2. Let a = Y, K3, and 8 = ), K3,;. Then we see [i(123) = lk(K3,a) =
Ik(K3,0, —K2,-1) = 1, 5(132) = 1k(K3,0, 8) = Ik(K2,0, K3,-1) = —1.

16. Questions and Problems

In this last section, we discuss some problems in knot theory related to the
number theory.

(1) Structure of the homology group

Let My be the double covering space of an n-component link L = K; U K, U
---UK,. Suppose |[H;(Mg;Z)| < co. Then the 2-sylow subgroup I' of H; (Mg;Z) is
of the form: ' = Z/2P* +7Z/2P* +- - -+Z /2P, p; > 1. Define ex(L) = |{pilp; > k}|.
Then we have e;(L) = n — 1 [Sal]. Further, ea(L) is determined as follows. Let A
be an n x n matrix over Z/2:
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w12 - u(in)
_ u('lz) #.22 ﬂ(?n) (mod 2),
pnl) pn2) - e
where (i) = p(ji) = (K, K)i # J, and pys = — If;k ().

Then e3(L) =n — 1 —rank A.

Question 16.1 Can ex(L), k > 3, be determined by Milnor’s ji-invariants ?

Question 16.2 Given a sequence of positive integers, Ay > A2 > ---
Am,(m > 1). Does there exist a link L in S3 such that e;(L) = A1, ez(L)
)\2,...,em(L) = /\m ?

Remark 16.1 Question 16.1 has been solved completely by Hillmann, Matei
and Morishita [HMM].

(2) Galois group of the Alexander polynomials

Let Ag(t) be the Alexander polynomial of a knot K.

Question 16.3 What is the Galois group of Ag(t) ?

Since Ak (t) is characterized by two conditions, see Theorem 7.2, this problem
is to characterize the Galois group of the polynomials satisfying these conditions.

(3) Hilbert class field

(i) Periodic knots

We say that a knot K has period p if there exists an orientation preserving
homeomorphism ¢ from S® to S3 such that (a) ¢(K) = K, (b) ¢ = id, but
¢ #1id. for 0 < g < p, (c) Fix(¢) and K are disjoint, where Fix(¢) denotes the set
of points in $2 that are fixed under ¢. (We know that Fix(¢) is a trivial knot.)

Example 16.1 The knot K depicted in Fig. 16.1 has period 3. In fact, ¢ is a
rotation about the z-axis through 27, and obviously Fix(¢) is the z-axis. This knot
K also has period 2. More generally, a 2-bridge knot has period 2, and a torus knot
of type (p,q) has periods p and ¢g. A non-trivial knot can have only finitely many
periods. The set of periods that a knot can have is certainly a knot invariant, but
there is no algorithm to determine all periods of a knot.

¢

v

Figure 16.1

(ii) Criteria on periodic knots

The first result on the periodic knots was obtained by Trotter in 1960.

Theorem 16.1 [T1] Suppose a knot K has period n. If (1)K is a fibred knot,
and (2)Ak(t) has no repeated roots, then the splitting field Fa of Ax(t) over Q
contains a primitive nth root of 1.

Later, using the theory of the covering space, the following theorem was proved
without any restriction.
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Theorem 16.2 [Mud] Suppose a knot K has a period p, where p is a prime.
Then

Ag@)= (1 +t+2 4+ + 2" HP1($)P (mod p),

where A > 1 and f(t) is the Alexander polynomial of some knot.

The number X and f(t) are interpreted as follows. Suppose a knot K has period
p, p a prime. Let K, = Fix(¢). Then 83 is the p-fold cyclic covering space of a
3-manifold ¥ branched along K, where ¥ ~ $3. Let 9 : S3 — I be the projection.
Then ¢(K) = K is a knot in T and it is shown that f(t) = Ag(t), and further
A = [Ik(K,, K)| # 0. (If A = 0, then 1»~1(K') would be a link (not a knot). Often
K is unknotted, so f(t) = 1.

(3) Heilbronn’s Conjecture

By looking at above two theorems from the number theoretical points of view,
Heilbronn suggested the following conjecture:

Conjecture Let K be a knot. Suppose p is a prime. Then, if Ax(t) = (1+t+
2 + .-+ 2" 1P=1 (mod p), A > 1, then Hilbert class field ' of Fa, the splitting
field of Ak (t) over Q, contains a primitive pth roof of 1.

This conjecture is in general not true. The simplest example is the following

Example 16.2 Consider Ag(t) =1 — 6t + 11¢2 — 6% + t*(= (1 — 3t + ?)?) =
(14t)* (mod 5). Then Fa = Q(1/5) € R, but Q(/5) has class number 1 and hence
F' = Fa does not contain a primitive 5th root of 1.

However, for some knot, the conjecture holds.

Example 16.3 Let Ag(t) = 4— 7t + 4t = (1 + t)? (mod 3). Then Fp =
Q(v/~15) and Fa(w),w a primitive 3rd root of 1, is unramified over Fa, and hence
F' contains w.

(3) Revised Problem

These two examples suggest that the conjecture should be revised, and Mor-
ishita now proposes the following question:

Question 16.4 (Morishita) Let p be a prime. Which Alexander polynomial
Ak(t) of degree p — 1 has the splitting field Fa over Q so that Fa(£),£ a primitive
pth root of 1, is unramified over Fp ?

Finally, we mention one of the recent result due to Morishita and Taguchi that
gives a sufficient condition for Ak (t) to hold Heilbronn Conjecture.

Theorem 16.3 [MoT| Let p be a prime # 2. Let g(t) be an Eisenstein polyno-
mial, i.e. g(t) = tP "  +a1tP~2+---+a,_1, where pla;,1 <i<p—1, but p? {ap_1.
Then, Hilbert class field of the splitting filed F of g(t) contains a pth root of 1.

Therefore, if g(t+1) = Ak(t) for some knot K, then Ak (t) = (t+1)?~! (mod p)
and Hilbert class field of the splitting field of Ax(t) contains a primitive pth root
of 1. For example, let g(t) = t* + 5¢3 — 40t2 + 70t — 35. Then g(t+ 1) = t* 4+ 9¢3 —
1962 + 9t + 1 = Ag(t) for some fibred knot K [Bul], and Ak (t) = (1+¢)* (mod 5).
Since the splitting field F of Ak (t) does not contain a primitive 5th root of 1 (due
to T. Komatsu), K does not have period 5 by Theorem 16.1, but by Theorem 16.3,
Hilbert class field of F contains a primitive 5th root of 1.

Recently, using Theorem 16.1, T. Komatsu shows [Kom]| that for every odd
prime number, there are infinitely many knots satisfying Heilbronn’s conjecture.
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