Infinite Cyclic Coverings

JOHN W. MILNOR

The first two sections of this manuscript are expository in nature,
and describe the homology of an infinite cyclic covering of a finite
complex. Section 3 is a digression concerning torsion and the zeta
function. Section 4 proves a Poincaré duality theorem for infinite cyclic
coverings of manifolds, and Section 5 applies this duality theorem to
describe the Trotter-Murasugi signature of a knot. An appendix
computes the Reidemeister, Franz, de Rham torsion associated with an
infinite cyclic covering.

I want to thank J. G. Hocking for his help in the preparation of this
manuscript.

1. AN ALGEBRAIC PRELIMINARY

We will need one algebraic definition before proceeding. Let M
be a finitely generated module over a principal ideal domain P. Then M
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is isomorphic to a direct sum of cyclic modules, say

where (p;) denotes the principal ideal spanned by an element p, € P.

DEFINITION. The product ideal (p,p;- - - p:) is called the order
of M.

This order function is well defined, and is muitiplicative:

ASSERTION 1. If M, < M, then order M; = (order M;)(order
M2/M1)'

The proof, which is not difficuit, can be based either on the
Jordan—-Hoélder theorem, or on the interpretation of order in terms of
the determinants' of a relation matrix.

Here are two immediate consequences of the definition:

ASSERTION 2. The order of M is (1) if and only if M is the zero
module.

ASSERTION 3. The order of M equals (0) if and only if M
possesses a P-free cyclic direct summand; and order M # O if and only
if M is a torsion module over P. (That is, if and only if for each me M
there exists pe P withpm = 0, p # 0.)

2. THE HOMOLOGY MODULE OF A COVERING

Now consider the following geometric situation. Let X be a finite
connected simplicial complex or CW-complex and £ the infinite cyclic
covering of X, determined by some homomorphism of the fundamental
group 7w X onto an infinite cyclic group II. Thus II acts freely as the
group of covering transformations of the infinite complex X, and the
quotient complex X/II can be identified with X

Choosing some coefficient field F, consider the chain complex
C(X; F) and its homology groups H(X; F). The infinite cyclic group

¥ See for example Zassenhaus [26],
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IT of covering transformations operates on these groups. Hence we can
think of C(X; F) and H(X; F) either as vector spaces over F, or
alternatively as modules over the group algebra FII.

Note that C,(X; F) is free and finitely generated over FII, with
one generator for each i-cell of X. Since the ring FII is Noetherian, it
follows immediately that the homology H(X; F) is also finitely gener-
ated over FII.

In fact FII is a principal ideal domain. [Proof: If t generates the
infinite cyclic group II then every ideal a of FII certainly intersects the
polynomial ring F[t] in a principal ideal. But every element of the ideal
a can be expressed as the product of a polynomial in ¢ and a unit of
FI.}

Hence the order of the module H(X; F) is a well-defined ideal in
FT11.

Now let us forget the FII-module structure for a moment, and
think of H(X; F) as a vector space over F.

ASSERTION 4. If H(X; F) is a finite dimensional vector space
over F then the ideal order H(X; F) in F11 is non-zero, and is spanned
by the characteristic polynomial of the F-linear transformation
te: H(X; F)—> H(X; F) (where t(£) = tf). On the other hand if
H(X; F) is infinite dimensional over F, then order H(X; F) = (0).

The proof is not difficult. (In the finite dimensional case note that
the cohomology module H(X; F) is also finitely generated, and that
order H(X; F) = order H(X; F).)

Here are a few examples:
ExXAMPLE 1. If X = S v S2, then X can be visualized as an

infinite string with infinitely many balloons attached (Figure 1). The
covering transformation ¢ € Il carries each balloon onto the next one.

t In fact C4(X; F) can be identified with the chains of the original complex X,
taking FII suitably twisted as coefficient group.
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Clearly H,(X; F) is not finitely generated over F. In fact Ho{X; F) is
free cyclic over FII, so that order H,(X; F) = (0). On the other hand,
Hy(X; F) is a one-dimensional vector space over F, with II operating
trivially; so that order Hy(X; F) = (¢t — 1). Finally, it is clear that
order H(X; F) = (1) fori # 0, 2.

EXAMPLE 2. If X = S! x §2 then X has the homotopy type of
S3, and the group II operates trivially. Hence order H, = order H, =
(t — 1) and the other homology groups are trivial.

ExampLE 3. If X is a Klein bottle then X has the homotopy type
of a circle, and order Hy, = (t — 1), order H; = (¢t + 1); the other
homology groups being trivial.

These examples suggest the general problem of deciding, for any
given complex X, whether the ideals order Hy(X; F) are zero or non-
zero. Here are two partial results.

ASSERTION 5. If X has the homology of a circle [H(X; F) ~
H(S; F)], then the ideals order H(X; F) are all non-zero; so that
H(X; F) is finitely generated over F.

ASSERTION 6. If H(X; F) is finitely generated over F, then the
euler characteristic y(X) must be zero.

Proof of Assertion 5: The short exact sequence
0— C S5 Cf—> CX—>0
of chain complexes gives rise to a long exact sequence
S RS > HX 2> H_ 8> -

of homology; the coefficient group F (or any other fixed coefficient
domain) being understood throughout.
For i > 2, since H{X = 0, the sequence

HX = HX—s0

asserts that every element of H,X is divisible by ¢ — 1. Hence H, X
cannot admit any FII-free cyclic direct summand. And, since Hy X &~
H, X ~ H,X ~ F, our homology sequence evidently terminates with

2> HX2> HX 2> H § 5> H X—>0.
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Therefore a similar argument works for i = 1.

Proof of Assertion 6: 1f H,X is finitely generated over F then the
sequence

"'i}HiXHHiX_)H’X_q“')H;,IY—")

implies by a standard argument that y(£) = x(X) + x(X), so that
x(X) = 0.

[Remark: Our exact sequence can also be formulated as a
“universal coefficient theorem™

0> HE ® F-> HX > Totsn(H;-1(£, F)) — 0

which is the analogue, for the prime element 1 — 1 € FII, of the usual
theory associated with a prime element p € Z. Similarly one could
construct a “Bockstein spectral sequence” relating H, X to the FII-free
part of H,X. Compare [3].]

ExaMPLE 4. Let f: S"— S™*2 be a nice (say a differentiable)
embedding of the sphere S™ into S**2, Remove from S™*2 an open
tubular neighborhood of f(S™) to obtain the space X. Then X can be
triangulated as a finite complex, and by Alexander duality X has the
homology of S*. Thus Assertion 5 applies; so H, X is finitely generated
over F,

As usual, the module HyX =~ F has order ideal (¢ — 1).

The module H,X depends only on the fundamental group of X.
In fact note that the corresponding integral homology group H,(¥; Z)
can be identified with the abelianized commutator subgroup of =, X.

DEFINITION. Any generator of the ideal order Hy(X; F) is
called the Alexander polynomial of =, X. (See for example Crowell [5].)

In the case # = 1 of classical knot theory the modules H, X are
trivial for /i > 2; but for » > 1 we obtain further invariants H, X, ...,
H,X of our knotted n-sphere. These have been studied by Levine [13].

To what extent do the statements above depend on the use of field
coefficients ? If we use the integers Z as coefficient domain, then the
group ring ZII is still Noetherian. Hence H(X;Z) is still finitely
generated (and a torsion module) over Z II. However there is no really
satisfactory theory of finitely generated ZII-modules. And, even if
H(X; Z) happens to be well behaved over ZII, it may not be finitely
generated over Z.
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To illustrate this point consider the two knots of Figure 2. Follow-
ing Alexander and Briggs these knots are called 3, and 5; respectively.
(Compare [20].)

D L

Figure 2.

In the case of the trefoil knot 3, Stallings and Neuwirth [18] have
shown that the complementary complex X is a fibre bundle over the
circle, each fibre M2 being a surface of genus 1 bounded by a circle
(i.e., M2 is a torus with an open disk removed). Thus the covering X is
homeomorphic to the product M2 x R,and H\(X;Z) ~ H{(M?;Z) ~
Z @ Z. This group certainly is finitely generated over Z. (Over the
group ring ZII, the homology H,(X;Z) can be described as the
Z Il-cyclic module of order (¢2 — ¢ + 1).)

But for the knot 5, there is no such fibration, and the homology
H\(X; Z) is not finitely generated over Z. In fact H,(X;Z) can be
described over Z as a torsion-free group of rank 2 in which every element
is divisible by 2. (Compare [19], [6].)

Over ZI1, however, there is still a tidy description: the module
H(X; Z) is ZI-cyclic' of order (212 — 3t + 2).

Presumably, for a suitably chosen knot, the module H,(X; Z) can-
not even be described as a direct sum of ZII-cyclic modules?

I am grateful to H. Trotter for pointing out that an example of
such a knot has been described by R. H. Fox and N. Smythe, ““An
ideal class invartant of knots,” Proc. Amer. Math. Soc., 15 (1964),
707-709. In fact Fox and Smythe define an invariant called the row
class of a moldule, which is clearly trivial in the case of a direct sum of
cyclic modules. But in the case of a “pretzel knot” with crossing
numbers 25, —3, 13, thinking of Hy(X;Z) as a module over the

¥ More generally, whenever the group =; X is generated by two elements one
can verify that H.(X; Z) is ZIT-cyclic.
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quotient ring Z IT/[4(¢)], they show that the row class of H,(X; Z) is
nontrivial. (Here {A(¢)] denotes the prime ideal spanned by the Alexander
polynomial A(¢t) = 5312 — 105¢ + 53.) It follows that H,(X; Z) is not
a direct sum of Z I1-cyclic modules.

3. A DIVERSION

I want to spend a few minutes to describe a remarkably useless
theorem: namely, I will show that the ‘“zeta function” of André Weil
is almost the same thing as the “torsion” invariant of Reidemeister,
Franz, and de Rham. Presumably this result is of interest only as an
example of the way in which an algebraic formalism can recur in widely
separated areas of mathematics.

First recall the concept of torsion. (For a list of references, see
[16].) Given a finite complex X of dimension n and a homomorphism 4
from 7, X to the group of units of a commutative ring P, one can
consider the associated system of local coefficients P, over X and the
twisted homology H (X, P,). If H (X, P,) = 0 then the rorsion (X, h)
is a unit of P, well-defined up to multiplication by + A(7, X).

In particular suppose that we are given an infinite cyclic covering
X of X with H(X; F) finitely generated over F. As ring P we choose
the quotient field F(¢) consisting of all rational functions f(¢)/g(¢) in
the indeterminate ¢. Let A: w, X — F(¢) be the composition of the homo-
morphism =, X — Il associated with our covering and the inclusion
I1 < Units [F(¢)]. Then clearly the chain complex

Gl X5 F()] = F(1) © CuX; F)

has trivial homology. Hence the Reidemeister, Franz, de Rham torsion
(X, h) € F(t) is well-defined up to multiplication by units + ¢ of ZII.

ASSERTION 7. The torsion invariant (X, h) associated with our
covering is equal to a unit of F11 times the alternating product!

SoDLO LoD f ()1 Sul0)*,
where f,(t) denotes the characteristic polynomial of the F-linear trans-
formation
te: H(X; F) — H(X; F).

* Special cases of this formula have been proved by Kervaire [12] and myself
[15]. (Note that our T corresponds to A~! in [15].)
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In more concise language this formula can be expressed as follows:
The fractional ideal () = (FII)r in F(¢) is equal to the quotient order
Hevenf / order HoddX .

A proof will be given in the appendix.

Now let me recall the Weil zeta function (in a topological context
rather than the number theoretic context in which Weil introduced it).
Let K be a finite complex and g: K— K a continuous mapping. We
would like to count the number of fixed points of g and of its various
iterates:

g3(x) = glg)], £°(x) = g(glg)); .- -.

But this is usually too difficult,t so instead we look at the Lefschetz
numbers L(g ) of the iterates. (If g has only finitely many fixed points,
then L(g) can be interpreted as the *“algebraic number” of fixed points,
each being counted with a suitable multiplicity.) We consider the
sequence L(g), L(g?), L(g®,... of integers and try to build some
pattern out of it.

According to Weil [25] the useful way to do this is by means of the

zeta function
s\'
2 L(g" ‘;)-

vzl

i(s) = exp(

This expression defines a formal power series in an indeterminate s
which is concocted in such a way that

(1) knowing {(s) is equivalent to knowing all of the Lefschetz
numbers L(g"),

(2) &(s) can be described in a simple way in terms of the action of
[+ on the homology of H,K in each dimension.

In fact Wetil showed that {(s) is a rational function of the form
La) = po(s) ™ pi(s)p=(s) ' pa(s)- - - pals)* Y,
where each p(s) is a polynomial closely related to the characteristic

polynomial of the linear transformation g,: H(K; Q) — H(K; Q).
More precisely, if the characteristic polynomial is

S =85+ a1+ - + a,

then p(s) =1 + ays + -+ - + a,s* = s¥(s~ ) where k denotes the ith
Betti number of K.

t Compare Artin and Mazur [1].
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Introducing the abbreviation (s) = fo(s)fi(s)~!-: -fo(s)*! in anal-
ogy with Assertion 7, the relation between = and  can be expressed by
the concise formula {(s~1)r(s) = s** where x(Y) denotes the euler
characteristic.

(For example, if we map an even-dimensional sphere to itself with
degree d, so that L(g") = 1 + d, then

(s) = (s — 1)(s — d),
) =01 -5 —-ds)™",
and {(s~})+(s) = 5%.)

e

4. POINCARE DUALITY

Next I want to describe a Poincaré duality theorem for infinite
cyclic coverings. Suppose that M is a compact, connected, triangulated*
n-manifold without boundary, and let M be an infinite cyclic covering
of M. We will assume that # is orientable.

Taking coefficients in a field F, there are two possibilities. The
homology groups H,(M; F) may be finite dimensional vector spaces
over F, or some H(M; F) may be an infinite dimensional vector space.
We will be interested in the first possibility only.

DUALITY THEOREM. If H (M ; F) is finitely generated over F,
then H*~Y(M; F) is one-dimensional over F, and the vector spaces
HY(M; F) and H"~*~Y(M; F) are dual to each other, being orthogonally
paired to H*~Y(M; F) =~ F by the cup product pairing.

In other words M has the homology properties of a compact
manifold of dimension n — 1.

Remark: Inmany cases M actually splits as the cartesian product
of an (n — 1)-dimensional manifold and the real line. -For example,
Siecbenmann and Novikov have proved that such a splitting occurs
whenever M is dominated by a finite complex and has free abelian
fundamental group, providing that n > 6. (Compare [9], [22], as well
as [4].) The present Duality Theorem has a weaker hypothesis and a
correspondingly weaker conclusion.

t The triangulation will be used in the proof, although I conjecture that it
shouldn’t be needed.
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The proof will depend on H. Hopf’s assertion that any infinite
cyclic covering of a finite complex must have exactly two “ends.”

(See [7], [11])

DEFINITION. An end ¢ of a locally compact space Y is a
function which assigns to each compact subset K < Y precisely one
component €(K) of the complement ¥ — K, subject to the requirement
that «(K) = e(L) whenever K = L. Any set N < Y which contains
some (K) is called a neighborhood of the end e.

The cohomology* group H'(Y, €) of Y modulo an end is defined
to be the direct limit of the groups H!(Y, N) as N ranges over all
neighborhoods of ¢, using for example singular cohomology theory.

Taking coefficients in a field F, we will prove:

ASSERTION 8. If X is the infinite cyclic covering of a finite com-
plex and if H(X; F) is Sgfinitely generated over F, then H*(X, ¢; F) = 0,
H*X, ¢'; F) = 0, where € and € denote the two ends of X.

Proof: Choose a finite subcomplex K = X so that X is covered
by the translates ...t 'K, K, tK, t2K,... under the group II of
covering transformations (Figure 3). Note that KN ’K = @ for

Figure 3.

|i — j| = constant. It will be convenient to assume that X is connected,
and intersects tK. It is then easy to verify that the set N, = *!K U
tP*1K U tP+2K U - - - is a neighborhood of one end, say e, of K. In fact
the sets No = N, @ N, > --. form a cofinal sequence of neighbor-
hoods: in other words, every neighborhood of € contains some N,,.

t The corresponding homology groups H,(Y, ¢) can also be defined, but more
care is needed. One must first construct Cy(Y, €} = lim C.(Y, N) and then take
the homology of this chain complex.
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Similarly the sets N, = t"KUt *"KU ... form a cofinal
sequence of neighborhoods for the other end ¢ of X.
We must prove that

lim H*(X, N,) = 0.
—

First note that H,N, is finitely generated over F. This follows immedi-
ately from the Meyer—Vietoris sequence

e =25 H(No N N}) —> HN, @ HNt —> HZ 2> ...,

where H, X is finitely generated by hypothesis and N, N N is a finite
complex.?

It follows that the relative group H (X, N,) is also finitely generated
(using the exact sequence of the pair (X, N,)). Hence there must exist
some finite subcomplex L < X so that every homology class of
H (X, N,) is represented by a cycle lying within L.

If we choose the neighborhood

N_;=t7*KUt?**Ku.--UKUIKU ...

large enough so that N_; = L, then it follows that every homology class
in H (X, N,) is represented by a cycle lying within N_,. In other words
the natural homomorphism Hy(N_,, No) — Hy(X, N,) is surjective.
Hence, from the exact sequence of the triple ¥ = N_, = N,, it follows
that the natural homomorphism H,(X, Ny) — H (X, N_,) is zero.

Now apply the automorphism ¢*** which carries the triple
(X, N_,, N,) onto the triple (X, N,, N,.,). Thus we have proved:

LEMMA. There exists an integer s > 0 so that, for all p, the
natural homomorphism H(X, N, ,) — H(X, N,) is zero.

Using field coefficients, it follows immediately that the dual
cohomology homomorphism H*(X, N,) — H*(X, N,.,) is also. zero.
Hence H*(X, ¢) = lim H*(X, N,) = 0. This proves Assertion 8.

—

Proof of the Duality Theorem: Note that the direct limit of the
groups H*(M, N, U N) as p,q— o is just the cohomology of M

t The triangulation of X really seems to be needed at this point.
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with compact support, denoted by Hoompac: M. Thus if we consider the
Meyer—Vietoris sequence
oo —> H-1M 25 HY(M, N, U N)) —
Hi(ﬂ, Np) @ Hi(ﬂy N:l) T
and pass to the direct limit, we obtain the exact sequence
v s B s Hpu M —> 0 @0 —> - -,

which shows that the homomorphism 8 is an isomorphism.
But the oriented n-manifold M is known to satisfy a Poincaré
duality theorem of the form

H:ompactﬂ = Hn—iﬂ'

This yields a duality isomorphism H*-*M 2~ H,_,M which is close to
the statement of our theorem.

To obtain the required statement we need only to note that, with
field coefficients, and with H, M finitely generated, the cup product

Hompaer M @ H M — Hopouot M = F

provides a dual pairing. Using the identity (8x) Uy = o(x U y) for
x€ H'"1M,y e H* M, this completes the proof.

Remark 1: With somewhat more care, the analogous theorem
n u. Hi—lﬂ'i) Hn—iﬂ

with integer coefficients can also be proved. It is easiest to base the
proof on the statement that the homology groups

Hi(ﬂs €) = Ht[(_.h{li__c*(ﬂs N,)]

are zero, in place of Assertion 8.

Remark 2: For any xe H'-'M, ye H* 'M note the identity
(1*x) v (t*y) = t*(x U y) = + x U y where the plus sign holds if and
only if the base manifold M is orientable. From this, one easily derives
the duality formula

order H'-1M = order H"~ M,

where the bar stands for the conjugation automorphism f(¢)— f(x ¢~ 1)
of FII (again using the plus sign if M is orientable). This duality
formula is due to Blanchfield [2, § 4 8).
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There is also a relative form of the duality theorem, proved in the
same way:

ASSERTION 9. Let M be a compact triangulated n-manifold with
boundary, and M an orientable infinite cyclic covering of M. If H M is
finitely generated over the coefficient field F, then the groups H'~ M and
H"~Y(M, 8M) are orthogonally paired to H"~ (M, 0¥ ) ~ F by the cup
product operation.

5. THE SIGNATURE OF A KNOT

As an example let X be the complex which is obtained from the
sphere S® by removing an open tubular neighborhood of a knotted
1-sphere. Thus X is a 3-manifold bounded by a torus, and He(X; F) is
finite over F by Assertion 5. Hence the pair (£, 8X) has the cohomology
properties of a 2-manifold bounded by a circle’ (Assertion 9). In
particular, studying the cohomology exact sequence of this pair, one
easily verifies that the natural homomorphism H(X, 8X)— H*X is
an isomorphism. Hence, using Assertion 9 again, the skew-symmetric
cup product pairing H'(X, 6X) @ HY(X, 6X) -~ H¥ (X2 6X?) ~ F is
nonsingular.

One cannot hope to extract much information from a skew-
symmetric pairing alone. But we have some additional structure which
arises from the fact that X is an infinite cyclic covering. Namely we
have the covering automorphism t* of HY(X, 8X) =~ H'X. Out of the
skew cup product pairing together with the automorphism t* we construct
a symmetric bilinear pairing from HX(X, 08) @ HYX, 0X) to F by the
Sormula {x,y) = (t*x) V y + (t*y) U x.

DEFINITION. This symmetric pairing is called the gquadratic
form of the knot.

This concept (in somewhat different form) is due to Trotter [24].
(Compare [10].)

ASSERTION 10. Using real or rational coefficients, the quadratic
form of a knot is non-singular.

tIn fact for a Neuwirth-Stallings knot such as 3, the pair (X, 8.X) actually
splits as a product (M2, §!) x R. (See Section 2.)
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Proof: Using the identity (ty) U (¢2) = y U z we see that (¢y) U
X=yUtlx=—(t"1x) Uy, and hence that<{x, y> = [(t — ¢t x] U y.
Thus, for fixed X, the equation <X, y> = 0 holds for all y if and only
if(z—t")x =0.8Sincet — t~! = (¢t — D(t + 1)z, this equation has
a solution X # 0 if and only if the characteristic polynomial A(¢) has
+1 as a root.

But according to Alexander the polynomial A(¢) (with integer
coefficients) satisfies 4(1) = 1 and hence 4(—1) = 1 mod 2. (Compare
[21], [13].) Hence A(1) # 0, A(—1) # 0 in F; which proves Assertion
10.

DEFINITION (Murasugi [17]). The signature o of a knot is the
signature of its quadratic form (again using real or rational coefficients).

This signature is an even integer whose sign depends only on the
choice of orientation for the containing space S3. (In other words
the sign does not depend on the choice of generator for II, or for
the homology group of the knot.)

According to Murasugi:

(1) The signature o(k; # k,) of the composition of two knots is
the sum ao(k,) # o(k3). In fact the quadratic form of k, # &, is
the direct sum of the corresponding quadratic forms.

(2) If a knot k is “cobordant” to k' (that isif Kk x O and k' x 1
together bound a locally flat annulus within $® x [0, 1]) then
o(k) = a(k').

Hence o gives rise to a homomorphism from the group of knot
cobordism classes’ onto an infinite cyclic group. (Note the analogy
between o and the Thom signature of a compact oriented 4n-manifold.)

Here is an example in which ¢ is easy to compute:

ASSERTION 11. If the Alexander polynomial A(t) of k has
degree 2, then the signature o(k) is either O or +2 according as the roots
of A(t) are real or lie on the complex unit circle.

These possibilities are mutually exclusive since A(+ 1) # 0. For
example, since the polynomials 12 — ¢ + 1 and 2¢2 — 3¢ + 2 have no
real roots, this shows that the knots 3, and 5, both have signature +2

t Compare [8], [12].
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(where the sign depends on the choice of orientation). It follows, for
example, that the “granny knot” 3, # 3, has signature +4 and hence
is not cobordant to the circle O.

Proof: Clearly the automorphism ¢* of HY(X, 0X) leaves the
quadratic form invariant. But every isometry of an indefinite quadratic
form of rank 2 has real eigenvalues, and every isometry of a definite
quadratic form of rank 2 has eigenvalues lying on the unit circle.

Now consider the direct sum decomposition of the FII module
HY(X, 2X) into [p(¢)}-primary summands corresponding to the various
prime ideals [p(f)] in FII. Using the identity {f(t)x, y> = {x, f¢~Yy)
we see that the [p(¢)]-primary summand is orthogonal to the [q(?)]-
primary summand unless [p(¥)] = [¢(t~')]. It follows that the only
contributions to the signature arise from those primary summands for
which [p(¢)] = [p(t~Y)]. Taking real coefficients this will happen only if
the irreducible polynomial p(¢) is a quadratic polynomial of the form
Po(t) = t2 — 2tcos 8 + 1, 0 < 0 < =, with roots cos 8 + isin 0 lying
on the unit circle.

DEFINITION. For each such 8, let o,(k) denote the contribution
> of the [py(t)}-primary component of H'(X, 8.X) to the signature o(k).
(Thus o(k) is the sum, over all § such that py(t) divides the Alexander
polynomial, of o,(k).)

THEOREM. Each of these signatures ou(k) is a cobordism
invariant of the knot k. In particular the signatures oy corresponding to
the values

cost =4,4,2.%,...

are independent and give rise to a homomorphism of the knot cobordism
group onto a free abelian group with infinitely many generators.

Similar assertions hold for knotted (29 — 1)-spheres in S27*?! for
all odd values of g, making use of Levine [13]. (Compare Kervaire [12].)

The proof that o, is a cobordism invariant can be sketched as
follows. If k = S2 is cobordant to 0 then k bounds a locally flat 2-cell
within the disk D*. (Compare [8].) Removing a tubular neighborhood
of this 2-cell, we obtain a manifold M* where éM* can be obtained
from S2 by surgery along k. (See for example [14].) Using the excision
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isomorphism H*(X, 8X) ~ H*(@M?*, §' x D?) we see that the signa-
tures o and o, can just as well be defined using the manifold 947+ in
place of (X, 2.X).

Now consider the exact cohomology sequence of the pair
(M4, oM*). Just as in Thom [23, Theorem V.II], the natural homo-
morphism i*: HY(M*) — HY(0M*) is dual to 8: H (0M*) — HX(M*,
&M *). Hence the image of i* is a subvector space of half the dimension
of H(8M*) on which the quadratic form is identically zero. Therefore
a(k) = 0. Splitting this exact sequence up as a direct sum of its various
[p(t)]-primary components, we see similarly that each o4(k) is zero.

The statement that o,(k # k") = og(k) + op(k’) follows immediately
from the fact that the quadratic form of k& # k'’ splits as a direct sum.

Now if k, is cobordant to k, then it follows as in [8] that the
composition k, # (—k;) is cobordant to 0, and hence that g4(k,) —
ae(kz) = 0.

Finally we must show that infinitely many of the invariants o, are
independent. It follows from Seifert [21, p. 589] that, for each integer
m > 1, there exists a knot k,, with polynomial A4(?) equal to mt® —
(2m — 1)t + m. (For example we can take 3, and 5, as k, and %,
respectively.) Dividing by m, this polynomial correSponds to pe(t) with
cos 8 = 2m — 1)/2m. Hence

. 2m — 1
og(k,) = +2 if cos 6 = "'2m ,
and
X 2m — 1
opo(k,) = O if cos 0 # mZm .

This completes the outlined proof.

APPENDIX: A COMPUTATION OF TORSION

Let C, be a free finitely generated chain complex over a principal -
ideal domain P. If each C, is assigned a preferred basis, and if the
homology groups H/(C,) are torsion modules over P, then the torsion
T of the corresponding complex over the quotient field of P is an
element of the quotient field Q(P), well-defined up to sign. It can be
constructed as follows.

Let ¢ be the preferred basis for

Ceven=C0®C2@C4 ®---
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and ¢’ the preferred basis. for C,qe. We will think of each “basis™ as a
column vector of module elements.

Choose a basis b for the (necessarily free) submodule Beyen Of
boundaries in C,..,, and choose a column vector x' of elements of
Coaa SO that dx' = b. Similarly choose a basis dx = b’ for B,q. Then
the entries of x and b can be expressed as linear combinations of the
basis elements of Ceyen, yielding matrix equations x = Xc¢, b = Yc, and

hence
()= (2)e
b/ \Y/)”—
Choosing X' and Y’ similarly, the torsion of Q(P) ®, C, can now be

defined by
det (ﬁ) '

T=f——r

det ( ‘;:,)
(Compare [16, §3 and §1.2].)
We will prove that the elerﬁent det (i) of P spans the ideal
order H,,., = (order Ho)(order Hy)(order H,)--- and similarly that
det (‘;::) spans order H,4. Dividing these two ideals, this implies:

THEOREM. The fractional ideal (1) is equal to

order Hoyen
order Hodd

Clearly this implies Assertion 7 of Section 3.
To compute det (f,) choose a basis z for the module Z,,,, of

cycles, and note that (ch) is then a basis for Cgen. Setting z = Mec, it

()= ()

so that the matrix (;};) must be invertible. Hence its determinant must

follows that

be a unit % of our ring.
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Now let & = Rz so that RM = Y. Then the identity

(0 %) - (7)

shows that det R times the unit u is equal to det (?)

But clearly R is a relation matrix for the quotient module

ZBV
Boey — Hoven:

Therefore the determinant of R spans the order ideal of H,y,. (Com-
pare Zassenhaus [26].) This completes the proof.
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