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ABSTRACT. We give a new formula for the winding number  of smooth  planar curves and show 
how this can be generalized to curves on closed orientable surfaces. This gives a geometric 
interpretation of the notion of winding number  due to B. Reinhart and D. R. J. Chillingworth. 

1. I N T R O D U C T I O N  

The winding number of a smooth closed planar curve is just the number of 
complete turns the tangent vector to the curve makes as one passes once 
around the curve; that is to say, it is the degree of the curve's Gauss map (see, 
for example, [1]). As shown by Whitney [12], winding number is invariant 
under regular homotopy, and may thus be regarded as an integer-valued 
homomorphism from the group of regular homotopy classes of smooth 
planar curves. Moreover, again by Whitney [12], there is a simple formula for 
the winding number of normal planar curves in terms of the number of 
positive crossings and negative crossings. 

For curves on closed orientable surfaces the situation is more complicated. 
Here there is no canonical definition of winding number (and in the non- 
orientable case there is no general definition at all [3]). However, as shown by 
Reinhart [7], [8], [9], and Chillingworth [3], for a chosen set of smooth 
generators of the fundamental group of the surface, there is a unique notion of 
winding number that gives zero for each of the chosen generators and gives 
the value 1 for small anti-clockwise contractible loops. (See [6], [5] and [4] 
for other works on winding numbers.) Here, by a winding number one again 
means a homomorphism from the group of regular homotopy classes of 
smooth curves on the surface. However, whereas for planar curves the 
winding number is an integer, for curves on a closed oriented surface M one 
can show that the winding number homomorphism must take its values in 
the finite group ZIx~M)I, where z(M) is the Euler characteristic of M (see [7]; 
we give further discussion of this point below in Section 5). In [7] an 
algorithm is given for the computation of the winding number of a given 
curve, for a certain choice of generators; but the algorithm requires that the 
regular homotopy class of the curve be first expressed in terms of the 
generators, and this can often be troublesome. 

The aim of this paper is to provide a new geometric method for the 
computation of winding numbers. In the special case of planar curves, this 
method also gives a new formula; let us first describe this case. Let ~ be a 
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smooth closed planar curve and suppose that ~ is normal; that is, 7 has only 
finitely many crossings, ~ only passes through each crossing point twice, and 
at each crossing point the two tangent vectors to 7 are linearly independent. 
(As Whitney showed in [-12], every planar curve can be arbitrarily closely 
approximated by a normal curve.) Now each normal planar curve partitions 
its complement into a finite number of connected open regions. The 'outside' 
region is the only one that is not precompact. The following elementary 
lemma shows that the regions can be coherently numbered (see [2]). 

LEMMA 1. Given a closed oriented normal curve ~, one can associate integers 
to each of the regions such that at each segment of y the number to the left of 
7 is 1 greater than the number to the right, and the outside region is numbered 
zero. Moreover, such a numbering is unique. 

Now for each positive (respectively negative) integer i, define St to be the 
closure of the union of the regions with a number greater (resp. less) than or 
equal to i. Each of the St is a polygonal domain with a piecewise smooth 
boundary comprising segments of 7. In particular, each St has a well-defined 
Euler characteristic x(Si). 

THEOREM 1. The winding number ~o(7 ) of 7 is given by 

= Z z(st ) -  E z(st). 
i > 0  t<O 

The proof of this theorem is quite simple. On the one hand, the winding 
number of y is just the integral of its curvature, divided by 2n. On the other 
hand, by the Gauss-Bonnet  formula (see, for instance, [1]), the Euler 
characteristic of each of the St is (up to a sign, and when multiplied by 2re) 
equal to the integral of the curvature of those segments of Y that form the 
boundary of St plus the sum of the external angles at the crossing points of 
that occur in the boundary of St. It suffices then to notice that each crossing of 

occurs in the boundary of precisely two domains St, and that the 
corresponding pairs of external angles each sum to zero. 

In the rest of this paper we will show how an analogous formula may be 
obtained for curves on arbitrary closed orientable surfaces. We begin in 
Section 2 by proving a generalization of Lemma 1. This enables us to state the 
general formula in Theorem 2. Section 3 gives several examples. Theorem 2 is 
proved in Section 4. Once again the proof is simple. Section 5 gives a brief 
discussion. 

Finally, it should be said that the key idea in Theorem 2 is essentially 
contained in Lemma 5 of [-8], which B. Reinhart attributes to A. Haefliger. 
This lemma states the following: if on a closed surface M of genus g a simple 
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bounding curve cuts off surfaces with p and g - P handles, then its winding 

number  is + (2p - 1)mod(2g - 2). Theorem 2 may be regarded as a gen- 
eralization of this result to the case of non-simple non-bounding curves. 

Our  thanks go to David Chillingworth, for having made a remark that 

improved the proof  of Theorem 2. 

2. T H E  G E N E R A L  F O R M U L A  

Consider a closed oriented Riemannian surface M, of genus g, and let 

v l , . . . ,  v2g be a set of smooth curves whose homology classes, [-Vx] . . . . .  [v2g ] 
say, form a generating set for the first homology group HI(M ) of M. Now let 7 

be a smooth oriented curve on M. We will suppose throughout the rest of this 

paper  that the curves 7, v l , . . . ,  v2a are normal curves and that, moreover, they 
intersect each other normally. 

Now the homology class [?] of 7 may be written as a sum: 

[7] = nl[Vx] + "'" + n20[v20] 

where the coefficients n l , . . . ,  n20 are integers. And as in the planar case, the 
complement C in M of the union 

7 k..) Vl  k..J " "  k.) V2o 

is a finite number  of connected open regions. Choose an arbitrary point Xo in 
C. We can now state the generalization of Lemma 1. 

L E M M A  2. One can associate integers to each of the regions such that at each 
segment of 7 the number to the left of 7 is 1 greater than the number to the 

right of 7 , and for each i = 1, . . . ,  2g, the number to the left of each segment of vi 
is ni less than the number to the right of vi, and the region containing the point 
x o is numbered zero. Moreover, such a numbering is unique. 

Proof The curves 7, vl . . . . .  v2g determine a natural CW-complex; its 0- 
skeleton is the set of crossing points of the curves, the 1-skeleton is the image 
of the curves, and the 2-skeleton is the entire set M. In particular, the 2-cells of 

this complex are just the regions determined by the curves 7, v~ . . . . .  v2o. This 
CW-complex may not be regular, but it has a natural orientation determined 
by the orientation of the curves and that of M. 

Let c~, c2, . . . ,  cp denote the 1-cells of this complex, and let e,, e2,... , eq be 
the 2-cells. Suppose that the 2-cell containing the point x o is % Now, the 1- 
cycle 

c = 7 - ( n l v  1 -4- . . .  q- n20v2o ) 



152 M A R G A R E T  M C I N T Y R E  A N D  G R A N T  C A I R N S  

is exact and hence c is the boundary of a 2-chain: 

c = 8(mlel + m2e2 + ... + mqeq), 

for some integers ml . . . . .  mq. Moreover, it is clear that these integers may be 
chosen in precisely one way such that mq = O. 

The integers m~ . . . . .  mq define a numbering of the regions of ? which, by 
construction, satisfies the required properties. This completes the proof of 
Lemma 2. 

Now, as in the planar case, for each positive (resp. negative) integer i, define 
S~ to be the closure of the union of the regions with a number greater (resp. 
less) than or equal to i. We will call the sets S~ the domains ofy. Each of them is 
a Riemannian surface with piecewise smooth polygonal boundary, and hence 
has a well-defined Euler characteristic x(S~). The general result is the same as 
that in Theorem 1. 

T H E O R E M  2. The windin 9 number ~o(y) of y is 9iven by 

= z ( s , ) -  Y z(s,), 
i > 0  i < 0  

if M is the torus T z, and 

~(y) = ~ z ( S 3 -  ~ z(S,) (modlg(M)l), 
i > 0  i < 0  

otherwise. 

3. EXAMPLES 

In this section we give three examples. The first example is shown in Figure 1. 
This is a planar curve ? with winding number co(7). Only four numbers occur 
in the numbering of the regions of 7: - 1, 0, 1 and 2. The Euler characteristic 
of $1 is 0, while those of S_ 1 and $2 are both 1. Hence, Theorem 1 reads; 
m ( y ) = 0 + l - l = 0 .  

The next two examples are on the closed oriented surface M of genus 3. 
Figure 2 shows the choice of generators vl . . . .  , v6. In the example shown in 
Figure 3, the curve y belongs to the homology class [v3] - [v5]. The only 
numbers occurring in the numbering of the regions of y are 0 and 1. Figure 4 
shows the domain S~; it has Euler characteristic - 3. Hence, Theorem 2 reads; 
~o(y) = 1 (mod 4). 

In the final example, in Figure 5, the curve y belongs to the homology class 
[%] + [v4]. The only numbers occurring in the numbering of the regions of y 
are 0, 1 and - 1. Domain Sa has Euler characteristic - 1, while domain S_ 1 
has Euler characteristic 1. Hence, Theorem 2 reads; co(y) = 2 (mod 4). 
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Fig. 1. 

4. P R O O F  O F  T H E O R E M  2 

We will prove Theorem 2 for closed orientable surfaces M other than the 

torus. The case of the torus is quite analogous. 

We assume, as above, that we have a chosen generating set vl . . . . .  v2g of the 

fundamental group of M, and that the homology class [7] of the given curve 7 
is 

[7] = nx[vl] + "" + nzo[v2a] ,  

where n t , . .  •, na o ~ Z .  

v2 ~ . ~ v4 . , /  / 

Fig.  2. 
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Fig. 3. 

We first choose an arbitrary conformal structure on M. Then according to 
[7] there is a vector field X on M with only one singularity, at xo, such that 
the following two conditions hold: 

(a) for each i = 1, . . . ,  2g, the integral around vi of the angle ~; between X 
and vi is zero, 

(b) if 0 denotes the angle between X and 7 then 

o(~) = ~ dO 

We will show that 

(mod Ix(M)I). 

(1) ~ -  dO : E z(Si)- E Z(Si), 
i>0 i<0 

1 

Fig. 4. 
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Fig. 5. 

where, for each non-zero integer i, the set Si is defined as in Section 2. 
Consider one of these domains Si, for some non-zero integer i. The domain S~ 

has a piecewise smooth boundary with external corner angles q~l . . . . .  q~k say. 

Let 6~ denote the angle between the vector field X and the tangent to the 
boundary of Si. Now X has no singularity in S~, since its only singularity 

occurs at Xo, which lies in a region numbered zero. It follows from the 
Po inca r6 -Hopf  theorem (see, for instance, [11], see also Lemma 5.7 of [3]) 

that 

(2) 2rc')r(Si) = d~i + ~ ~bj. 
S~ j =  1 

Now it is clear that in the summation 

z(s,)- z(s3, 
i > 0  i < 0  

the total contribution of the external corner angles of the boundaries of the 

different domains is zero. Indeed, consider a corner point x say, in the 

boundary of one of the domains. Then x is contained in the closure of four 
regions, numbered n I ~< n2 ~</'13 -~ n4 say. (Note that at least three of these 
numbers are distinct.) Then x is a corner point of precisely two domains and 

the sum of the corresponding two external angles is zero. To see this, one 
needs to consider three cases, according to whether the numbers n~ . . . . .  n4 are 
all positive, all negative, or neither all positive nor all negative. Each case is 
simple, and so we leave the details to the reader. As an example, for natural 
number n, Figure 6 shows the boundaries of the domains numbered n and 
n + 1 meeting at a certain crossing. In this figure the external angle to S, + 1 is 
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Fig. 6. 

q~, while the external angle to S, at the same point is - q~. Evidently, the sum is 
zero. 

In view of the above discussion, in order to prove (1) it suffices to prove 

,3, f do , o(f s (f, s 
In order to prove (3), let us consider a domain Si. The boundary of Si is 
composed of segments, some of which are segments of 7 and some of which 
are segments of the curves vj. Now notice that for points on Y, one has 3i = 0, 
and for points on vj, one has 6i = a 2. Notice also that for if> 1, the 
orientation of the boundary of S~ coincides with the positive direction of y and 
the negative direction of the curves v~. Similarly, for i ~< 1, the orientation of 
the boundary of S~ coincides with the negative direction of y and the positive 
direction of the curves vj. Finally, notice that each segment of ? occurs in the 
boundary of precisely one domain S~, and for each j, each segment of U occurs 
in the boundary of precisely nj domains Sg. Combining these observations, 
one has that 

,4, ) 

:~dO-(n,~ da,+'"+n2ofv2 d'72o )" 
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But by the definition of X one has 

fv dffl = O, 
i 

for each i = 1,. . . ,20. Hence (4) implies (3), as required. This completes the 

proof of Theorem 2. 

5. D I S C U S S I O N  

We begin by considering an orientable closed surface M, of genus g, which for 
the moment we suppose to be other than the torus. Recall that the 

fundamental group ~x(M) of M has a generating set/~1,..., P2o with the one 
relation 

Ul/,/21,/1 1 ~2  1 . . .  /220_ llA2glA2gl 1/A201 = l .  

By a theorem of Smale [10], the group ~R(M) of regular homotopy classes of 
smooth curves on M is isomorphic to the fundamental group ztl(S1M) of the 
unit tangent bundle SIM of M. This latter group (see [-7]) has generating set 

/~1 . . . . .  Pzg, h and the one relation 

]A1/A2Pl 1/22 1 . . .  ]220 _ 1/./20/./201_ 1/A2gl ~--- h[x(M)t. 

NOW, if by a 'winding number' one is to understand a homomorphism, q~ say, 
from Ks(M ) to some abelian group, then q~ must factor through the 
abelianization of z~a(M ) ~=zq(S1M). But this abelianization is, of course, 
nothing other than the first homology group HI(SIM) of S1M. From the 
above presentation of ~I(SIM) one has immediately that 

HI(S1M) ~- Z 2g x glz~M)E. 

Now the factor Ziz(M)l in the above product is generated by the homology 
class of the generator h in ~(S~M). And h is given by the homotopy class of 
the fibre of the natural fibration of SIM over M, and this in turn corresponds 

to the regular homotopy class of a small contractible loop in M. But if a 
winding number is to have any meaning, it should be non-zero on small 
contractible loops. It follows therefore that if the winding number is to be a 
homomorphism into a cyclic group, then that group must necessarily be 
ZiztM)l. In other words a winding number is just a homomorphism 

c): Hx(S1M) ~ Z 20 X ~Iz(M)[ ~ ZIx(M)I' 

Seen in this light, it is clear that every winding number necessitates a 
preferred choice of generators for rq(M), and that every such choice 
determines a winding number homomorphism. 
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The above remarks clearly also apply to the torus. Here the group 
HI(SIM) is just 7/3 and winding numbers are integer valued. In fact, the above 
remarks clearly also apply to the case of non-compact surfaces. Here again 
the winding numbers are integer valued. However, for non-compact surfaces 
the formula given in Theorem 2 has no general meaning, because of the lack 
of definition of Euler characteristic for noncompact surfaces. This parallels 
the approach in [7] and [3], which also gives a method for computing 
winding numbers only in the compact case. 

A comparison of the algorithm given in [7] and [-3] with the method of 
Theorem 2, reveals certain advantages of the geometric approach. Firstly, as 
mentioned in the introduction, the algorithm of [7] and [3] first requires that 
the regular homotopy class of the given curve be expressed in terms of the 
generators of the group nR(M ). Theorem 2, however, only requires that one 
express the homology of the given curve in terms of the generators of Ha(M). 
In addition, the algorithm in [7] is stated only for simple curves, and that of 
[3] is applicable only to direct curves (that is, normal curves with no 
nullhomotopic loops). So, in order to find the winding number of an arbitrary 
curve, using [7] or [3], one must first find a curve which is regularly 
homotopic to the given curve and to which one can apply the algorithm. Of 
course this difficulty does not occur with the method of Theorem 2. On the 
down side, Theorem 2 requires the calculation of the Euler characteristic of a 
number of regions. It therefore seems less suited to calculation by computer 
than is the algorithm of [7] and [3]. 

It should be noted that there is a more direct proof of Theorem 2 than the 
one given above. In effect, it suffices to show that the formula in the statement 
of Theorem 2 defines a homomorphism from HI(S1M). To see this one must 
prove that the evaluation of the formula is independent of the choice of base 
point Xo, that it is invariant under regular homotopy, and that it is additive. 
The first two points are straightforward. Additivity can be established by 
induction on the number of crossings. 

It is perhaps also worth remarking that there is an alternate formulation of 
Theorems 1 and 2. Suppose that one has a normal curve ? in the plane or on a 
closed oriented surface M, and suppose that the corresponding regions are 
numbered as in Lemma 1 and Lemma 2. Then for each integer i let At denote 
the closure of the union of the regions with number i. So, for instance, if i > 0 
one has 

Si = U Aj. 
j>~i 
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Then it is easy to prove that the winding number co(y) of y can also be written 
as 

og(y) = ~ i . z (A , ) ,  
iez 

if  y is a curve  in the plane or on the torus, and by the same expression modulo 
Iz(M)I if M is a closed orientable surface other than the torus. This follows 
from Theorems 1 and 2 since, for example, for positive i, one has 

z(Ai)  ~--- z(S i )  - -  z(Si+ 1). 
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